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Abstract 

The Food and Drug Administration’s Bacteriological Analytical Manual recommends 

two enumeration methods for Bacillus spp.: 1) standard plating method using mannitol-egg yolk-

polymyxin (MYP) agar and 2) most probable number (MPN) method with tryptic soy broth 

supplemented with 0.1% polymyxin sulfate.  Preliminary research evaluated three inoculum 

preparation methods using EZ-Spore™ B. cereus pellets.  Two methods involved EZ-Spore™ B. 

cereus pellets that were dissolved in deionized (DI) water, grown in brain heart infusion broth 

with manganese sulfate, and then heated to produce spores. The third inoculum preparation 

method of dissolving EZ-Spore™ pellets only in DI water was the most efficient due to 100% 

spores being present in the inoculum.  Preliminary research also determined that MPN method 

recovered greater (p<0.05) B. cereus populations than MYP method in inoculated ultra-high 

temperature pasteurized skim and 2% milk.  The objective of the main study was to compare the 

MYP and MPN method for detection and enumeration of B. cereus in raw and high-temperature-

short-time pasteurized skim, 2%, and whole milk at 4 °C for 96 h.  Milk samples were inoculated 

with B. cereus EZ-Spores™ dissolved in DI water and sampled at 0, 48, and 96 h after 

inoculation.  No differences (p>0.05) were observed among sampling times so data was pooled 

for overall mean values for each treatment.  The overall B. cereus population mean of pooled 

sampling times for MPN method (2.59 log CFU/mL) was greater (p<0.05) than MYP plating 

method (1.89 log CFU/mL).  B. cereus populations ranged from 3.40 log CFU/mL to 2.40 log 

CFU/mL for inoculated milk treatments for MYP and MPN methods, which is well below the 

necessary level for toxin production.  Even though MPN method enumerated more B. cereus, the 

MYP method should be used by industry for enumeration of B. cereus due to its ease of use and 

rapid turnover time (2 d compared to 5 d with MPN).  However, MPN method should be used for 

 



 

validation research due to its greater populations recovered.  EZ-Spore™ B. cereus pellets were 

found to be an acceptable spore inoculum for validation research because the inoculum consists 

of 100% spores and does not contain vegetative cells. 
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CHAPTER 1 - INTRODUCTION 

Milk is an important staple of the average American’s diet.  Total milk production for the 

United States (U.S.) reached 47 billion pounds in 2003 with an annual per capita consumption 

rate of 594 pounds of dairy products (FAO 2006).  The large consumption rate is due to the use 

of milk as an ingredient in other food products as well as to consumption based on the vast 

nutritional benefits linked to dairy products (Miller and others 2007; Chandon and Kilara 2008).   

With the high consumption rate of milk and dairy products in the United States also 

comes the great risk of illness if intentional or unintentional contamination occurs in the U.S. 

milk supply.  Since the attacks of September 11th, 2001 and the “Amerithrax” incident in October 

2001, the American public has become highly aware of the devastation that terrorism and 

bioterrorism can cause (FBI 2008).  Wein and Liu (2005) published a risk assessment that 

focused on the potential impact of intentional contamination of the U.S. dairy supply with the 

spore-forming pathogen Clostridium botulinum.  They concluded that of all food products, milk 

may be at the greatest risk due to its rapid distribution and high consumption rates (both in the 

U.S. and worldwide).  Dr. David Acheson, former Director of the Food and Drug 

Administration’s (FDA) Center for Food Safety and Applied Nutrition (CFSAN), further 

testified that the dairy industry is of great concern as a potential bioterrorism target (FDA 2007).   

Another spore-forming pathogen, Bacillus cereus, is widely known to be part of the 

natural microflora of milk (Jay and others 2005).  Bacillus cereus has also been found to grow at 

temperatures as low as 4 °C (Larsen and Jorgensen 1999; Jay and others 2005).   

Bacillus spp. can be found in both spore and vegetative form in raw and high-

temperature-short-time (HTST) pasteurized milk. Research has shown that less than 1 log 
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CFU/mL of Bacillus spores are destroyed during heating to 72 °C and 78 °C for 35 min (Novak 

and others 2005).   

To determine the effect of processing procedures on controlling pathogens, food products 

are often inoculated with high levels of a microorganism ranging from 4 to 7 log CFU/mL or g.  

Preparing an inoculum for validation research involves determining the amount of cells or spores 

initially needed and the optimum growth phase of the cells prior to incorporating them into a 

food product (Montville and others 2005; de Siano and others 2006; Rice and others 2005; Rose 

and others 2005).   

Recently, Microbiologics® (Saint Cloud, Minn.) released a new product of lyophilized 

spore pellets that contains 4.6 log CFU per pellet of B. cereus EZ-Spore™ (Microbiologics 

2008).  These pellets could make inoculum preparation more efficient and consistent as cells 

would be in the spore form rather than vegetative cells. However, there is limited research on the 

use of B. cereus EZ-Spore™ pellets as an inoculum for milk products or optimum methods and 

media to produce growth from these pellets for higher levels prior to inoculation.   

Once microorganisms have been inoculated into a food matrix and a validation study has 

been completed, detection of viable and injured cells is critical to determining actual populations. 

The National Center for Food Protection and Defense (NCFPD) describes detection 

methodologies as an important area of research in food defense.  With effective detection 

methods, the contaminant can be identified, a recall or hold can be initiated, and deleterious 

public health effects can be limited.  It is also very important to determine the type of 

microorganism in the food because microorganisms have differing resistance to antimicrobial 

agents and other microbial intervention strategies. 
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  FDA’s Bacteriological Analytical Manual (BAM) documents specific methods that 

should be used for detection and enumeration of specific bacteria (FDA 2006).  The BAM states 

that two different techniques can be used for detection of Bacillus spp. in food: 1) a standard 

plating method using mannitol-egg yolk-polymyxin (MYP) agar and 2) a three tube most 

probable number (MPN) method using tryptic soy broth supplemented with 0.1% polymyxin 

sulfate (TSB-P) (FDA 2006).  Neither of these methods is recommended by FDA over the other 

for detection and enumeration of B. cereus.   

The objectives of the preliminary research were to determine the feasibility of B. cereus 

EZ-Spores™ as an inoculum in ultra-high temperature (UHT) pasteurized skim and 2% milk and 

to evaluate the efficacy of three different spore growth media:  1) brain heart infusion broth 

supplemented with 0.1% manganese sulfate heptahydrate (BHI + MnSO4·7H2O), 2) twice the 

recommended BHI supplemented with 0.1% manganese sulfate heptahydrate (2xBHI + 

MnSO4·7H2O), and 3) deionized water to increase EZ-Spore™ populations prior to inoculation 

into UHT skim and 2% milk.  The preliminary research also evaluated the three tube MPN and 

MYP plating methods’ effectiveness in recovering and enumerating B. cereus in inoculated UHT 

skim and 2% milk.   

The objectives of the main study were: 1) to determine the efficacy of the standard MYP 

plating method and MPN method in detecting and enumerating B. cereus spores and vegetative 

cells in raw and high-temperature-short-time (HTST) pasteurized milk and 2)  to determine the 

effectiveness of EZ-Spore™ pellets as an inoculum for milk validation research.  A final 

objective was to determine if the fat content of the milk had any effect on the detection or 

enumeration of B. cereus. 
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CHAPTER 2 - REVIEW OF LITERATURE 

1. Introduction 
 Food defense is an important and re-emerging field of research in the food industry.  

While the airline attacks of September 11, 2001, and the October 2001 letters to Congress that 

contained anthrax toxin brought terrorism to a forefront, the United States (U.S.) has been 

dealing with the possibility of a terrorist attack on the food supply for years (Miller and others 

2002; CDC 2003; Roth and others 2008). 

The Dalles, Oregon, was the site of a terrorist attack on the food supply in September 

1984.  The Rajneesh cult inoculated salad bars at local restaurants with Salmonella Typhimurium 

so that the population would not be able to vote in the local elections.  By the end of the attack, 

more than 750 people had been hospitalized.  However, an entire year passed before a defected 

member of the cult described the incident to the Federal Bureau of Investigation (FBI), which 

revealed that the outbreak was an act of terrorism (Miller and others 2002).  

In late December 2002, 36 people became ill after purchasing ground beef at a Michigan 

supermarket.  Following an investigation by the U.S. Department of Agriculture (USDA), it was 

determined that a disgruntled employee had intentionally contaminated over 200 pounds of 

product with the insecticide Black Leaf 40, an ingredient used for the production of nicotine 

(CDC 2003).  

In 2007, the Food and Drug Administration (FDA) launched an investigation into the 

cause of unexplained deaths of several cats and dogs.  The FDA determined that the chemical 

melamine had been added to wheat gluten to falsify the protein content.  Consumption of 

melamine by animals can result in renal failure leading to illness or even death.  This outbreak 

prompted studies on the detection of melamine in food for human consumption by using methods 
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such as enzyme-linked immunosorbent assay (ELISA), high performance liquid chromatography 

(HPLC), or gas chromatography combined with mass spectroscopy (GC/MS) (Lin and others 

2008 and Ibens 2009).   

In 2008, FDA reported that melamine had been found in infant formulas in China (FDA 

2009b).  One study estimates that over 290,000 Chinese children were affected by this incident; 

more than 50,000 were hospitalized and at least 6 died (Ingelfinger 2008).  Melamine was added 

to milk to artificially elevate the protein levels so that the product would appear to meet proper 

concentrations as required by customers (Roth and others 2008).  Although this event was for 

economic gain, not meant to harm consumers, it is still categorized under food defense because it 

was an intentional contamination that caused deleterious effects to public health (Roth and others 

2008).   

Based on these incidents and others, the U.S. government and academic institutions have 

begun and continue research and education efforts in the area of food defense.  The National 

Center for Food Protection and Defense (NCFPD) was founded in 2004 as a Department of 

Homeland Security (DHS) Center of Excellence to research the vulnerabilities of the nation’s 

food supply to an intentional attack (NCFPD 2006b).  The Center is composed of researchers and 

investigators from food industry companies, governmental agencies, and academic institutions.   

The Center has defined eight categories of food defense research needs:  1) supply chain 

and information management; 2) public health response and epidemiology; 3) economic 

analysis; 4) detection and diagnostics; 5) inactivation and food processing; 6) decontamination 

and disposal; 7) risk communication; and 8) education programs (NCFPD 2006b). Detection is 

an important research area because without effective detection methods, a contaminant may go 

unrecognized in a food and can cause serious illness to those who consume it.  However, the 
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biological contaminant must be differentiated to the species level for proper detection to occur.  

With effective detection methods, the contaminant can be identified, a recall or hold can be 

initiated, and deleterious public health effects can be limited.  It is also critical to determine the 

contaminant so that public health officials will know what treatments to administer to those 

affected.  However, detection of contaminants can be difficult due to interference from the food 

system.  Also, the onset of illness could take days to manifest and the food may have been 

destroyed by that time (FDA 2001).    

2. Food Defense 
The term “food defense” is sometimes used interchangeably with “food security.”  

Currently, the World Health Organization (WHO) recognizes the original definition of food 

security as access to food (WHO 2008).  However, after the attacks of September 11th, 2001, the 

term “security” has changed dramatically in the U.S.  The Department of Homeland Security has 

used the term “security” as synonymous with defense to refer to the protection of the food supply 

from intentional contamination.  USDA's Food Safety and Inspection Service (FSIS) officially 

uses the term “defense” to describe “protection of food products from intentional adulteration by 

biological, chemical, physical, or radiological agents” (FSIS 2008).  The FDA defines food 

defense as “tampering or [performing] other malicious, criminal, or terrorist actions” on the food 

supply (FDA 2008). 

Since the attacks on September 11th, 2001, the U.S. government has adopted new policies 

to strengthen the protection of the food system.  Many of these policies were to grant FDA 

powers similar to those held by USDA for importing, detaining, and regulating the transport of 

food (Strongin 2002).   
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2.1 Public Health Security and Bioterrorism Preparedness and Response Act 

In 2002, Congress enacted and the FDA implemented the 2002 Public Health Security 

and Bioterrorism Preparedness and Response Act (also known as the Bioterrorism Act).  Title III 

encompasses four main points of this act: 1) requirement of a manufacturing, processing, 

packaging or holding facility of food to be registered with FDA; 2) advanced notice to FDA of 

any food being imported into the U.S.; 3) authorization of FDA to detain an article of food with 

credible evidence; and 4) documentation of food when it is received, released, or transported 

(FDA 2005a).  Prior to the 2002 Bioterrorism Act, USDA had these powers, but FDA did not 

(GAO 1999).  Implementation of this act has allowed FDA to become more proactive in the 

protection of the food supply from both intentional and unintentional contamination.  It also will 

allow the agency to respond more quickly to a foodborne outbreak (Strongin 2002). 

While increased authoritative powers are beneficial for the safety and defense of the food 

supply, there are further complications in regards to implementation of this Act.  In 2002, when 

the Act became effective, FDA staffed 770 inspectors for 57,000 inspected establishments and 

132 ports while USDA employed 7,600 inspectors for 6,500 plants as well as another 5,000 

inspectors and veterinarians working at ports, research laboratories, and crop fields.  It is also 

estimated that FDA facilities are inspected every 5 to 10 years while USDA inspects most 

facilities every shift (Strongin 2002).   

2.2 Homeland Security Presidential Directive 9 

In January 2004, President George W. Bush signed Homeland Security Presidential 

Directive 9 (HSPD-9), which established “a national policy to defend the agriculture and food 

system against terrorist attacks.”  This directive also placed “major disasters and other 

emergencies” under the definition of food defense (OPS 2004).   

 7



Section 4 (e) of HSPD-9 states that it is “the policy of the U.S. to protect the agriculture 

and food system from terrorist attacks, major disasters, and other emergencies by enhancing 

screening procedures for domestic and imported products.”  The phrase “enhancing screening 

procedures” can mean many things, from increasing the number of inspectors to the development 

of better detection methods for determining the type of contaminant in a food or animal product 

(OPS 2004). 

3. Milk 
Milk is an extremely nutritious food that is important to the human diet, which also 

makes it a vulnerable source for an attack on the food system.  Typical cow’s milk is composed 

of 87.3% water, 3.4% protein, 3.7% fat, and 4.8% lactose.  Milk contributes 19% of protein, 72% 

of calcium, 26% of riboflavin, 22% of vitamin A, and 20% of vitamin B12 to the average 

recommended daily intake of the American diet (Chandon and Kilara 2008).  Milk also contains 

citrate, chloride, magnesium, inorganic phosphorus, potassium, calciferol, tocopherol, 

phylloquinone, thamine, riboflavin, ascorbic acid, niacin, biotin, pantothenic acid, and folic acid, 

as well as many other trace elements. Fat concentration can be changed during processing to 

produce skim, ½%, 1%, 2%, or whole milk (Chandon and Kilara 2008).  Milk is also used in the 

production of other foods such as cheese, ice cream, and yogurt.  Highly nutritious foods such as 

milk and dairy products are rapidly consumed in large quantities, especially when they have 

many known health benefits (Putnam and Allshouse 2003).   

3.1 Nutrition and milk 

During the past twenty years, numerous studies have assessed the health benefits of milk 

and other dairy products.  Whole milk contains a moderate amount of fat (~4%) and research has 

found that moderate consumption of whole milk could reduce the risk of coronary heart disease 
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(Chandon and Kilara 2008).  In fact, consuming 3 to 4 servings of dairy products per day can 

lower the risk of coronary heart disease by 10% and stroke by 20% (Chandon and Kilara 2008).  

Because milk and other dairy products contain a high concentration of calcium, dairy products 

have been shown to be able to protect against colon cancer as well (Chandon and Kilara 2008).  

Other studies have shown that milk consumption can reduce the risk of breast and prostate 

cancer, too (Chandon and Kilara 2008).  Some of the better-known health benefits of consuming 

dairy products also include a reduced incidence of osteoporosis and increased tooth strength due 

to the presence of calcium and vitamin D in milk (Miller and others 2007; Chandon and Kilara 

2008).   

3.2 Milk consumption trends 

Putnam and Allshouse (2003) observed that as more health benefits have been linked to 

milk and dairy products, the consumption rate of low-fat fluid milk has increased significantly. 

Total milk production in the U.S. reached 47 billion pounds in 2003 with an annual per capita 

consumption rate of 594 pounds of dairy products.  Fluid milk is consumed at a rate of 20 billion 

gallons annually in the U.S. and 20 gallons annually by each person worldwide (FAO 2006).  

Raw milk is also consumed by a large portion of consumers, although many more people 

consume pasteurized milk.  In a study of dairy consumption in the state of New York, 45% of 

those surveyed had consumed raw milk at least once in the past year (Kaylegian and others 

2008). 

3.3 Milk as a food for intentional contamination 

Milk can be an excellent medium to sustain microbial growth for several different 

reasons.  First, it has a very neutral pH (approximately 6.8), which will not inhibit germination or 

cell growth (Miller and others 2007).  It is a great source of the proteins, sugars, and vitamins 
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that microorganisms need to reproduce and grow.  Milk does not contain any natural 

antimicrobials that would inhibit or kill microorganisms that might be present.  Bacterial 

populations in raw milk may be as high as 5 log CFU/mL before commingling and 5.4 log 

CFU/mL after commingling (FDA 2005b).  However, the high-temperature-short-time 

pasteurization process destroys most microorganisms, excluding spore-formers and other 

thermo-tolerant microbes.  The shelf life of milk can vary depending on the microorganisms 

present after pasteurization.  Schaffner and others (2003) found that shelf life is based mostly on 

whether the pasteurized milk contains psychrotrophic or mesophilic microorganisms.  They 

observed that pasteurized milk containing psychrotrophic microorganisms had a shelf life of 

approximately 14 d, while milk contaminated with mesophiles had a shelf life of 19 d.  Carey 

and others (2005) also determined the typical shelf life of pasteurized milk to be at least 14 d. 

Many different microorganisms are naturally present and can grow in dairy products (Jay 

and others 2005).  Raw milk can contain species of Enterococcus, Lactococcus, Streptococcus, 

Leuconostoc, Lactobacillus, Microbacterium, Proteus, Pseudomonas, Bacillus, and Listeria.  

Pasteurized milk typically contains species of Streptococcus, Lactobacillus, and Bacillus.  In 

fact, Shehata and Collins (1972) found that as much as 36% of raw milk samples in one study 

contained psychrotrophic Bacillus spp.  Milk has also been linked to the foodborne pathogens 

that cause human illnesses such as campylobacteriosis, salmonellosis, listeriosis, Q fever, and 

hemorrhagic colitis.  Mycobacterium paratuberculosis has been found in raw milk, which has 

been linked to Crohn’s disease in humans (Jay and others 2005). 

 Milk is considered by many to be a major target for a bioterrorist attack.  Wein and Lui 

(2005) stated that milk may be at great risk due to its rapid distribution and high consumption 

rates (both in the U.S. and worldwide).  Wein and Lui (2005) discovered that in the absence of 
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detection, botulism toxin in milk could injure or kill as many as 100,000 people if 1 g of toxin 

were introduced into 586,000 gallons of milk. 

In addition, Dr. David Acheson, former Director of the Food and Drug Administration’s 

(FDA) Center for Food Safety and Applied Nutrition (CFSAN), reported that the dairy industry 

is of great concern as a potential bioterrorism target (FDA 2007).  Spore-forming bacteria such 

as Clostridium botulinum and Bacillus anthracis are the microorganisms that would most likely 

be used for an attack on the milk supply (FDA 2007).   

4. Spore-Forming Bacteria  
Food products containing spore-forming bacteria are more difficult to decontaminate due 

to their resistance to heat, acid, and other standard microbial intervention strategies.  A spore 

coat forms around certain bacteria to protect them from adverse conditions that could harm the 

vegetative cell.  A spore coat is a multilayer protein shell composed of three different layers that 

have varying purposes.  The inner layer is an amorphous undercoat in contact with the cortex 

(outer cell wall of the vegetative cell).  The intermediate level is a very laminar layer while the 

outer level is a very thick, electrodense, striated layer (Ricca and others 2004). 

The spore coat is responsible for the bacterium’s resistance against acids, enzymes, 

radiation, and other intervention strategies.  However, the thick peptidoglycan layer, called 

cortex, gives the bacterium its resistance to heat.  Specifically, dipicolinic acid (DPA) in the 

cortex allows for the high heat resistance.  Novak and others (2005) found that both B. anthracis 

and B. cereus are only reduced by less than 1 log CFU/mL when inoculated into skim milk that 

is heated and held at 72 °C and 78 °C for 35 min.  Therefore, once milk has been contaminated 

with spore-forming bacteria, such as B. anthracis or B. cereus, decontamination is potentially 

difficult (Ricca and others 2004).  Bacterial spores also contain a polar charge on the exterior of 
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the spore coat (Singleton 2004).  This is potentially important because spores will attach to the 

fat cells rather than the free water of the milk, which could cause insulation or shielding by the 

fat. 

4.1 Bacillus anthracis 

Bacillus anthracis is a potential “Category A” threat agent that could be intentionally 

added to the milk supply (FDA 2003).  This bacterium has the potential to survive milk 

pasteurization because of its ability to form an endospore and resist heat treatments and because 

it can grow after pasteurization due to absence of competitive microflora (Hanson and others 

2005).  In fact, Bowen and Turnbull (1992) found that B. anthracis spores survive in both 

unpasteurized (populations remained constant) and pasteurized milk (populations increased 1 log 

CFU/mL at 37 °C and decreased 1.5 log CFU/mL at 5-9 °C for 48 h).  Montville and others 

(2005) also determined that B. anthracis is resistant (D-value=138 min) to heating milk to 

temperatures similar to high-temperature-short-time pasteurization of 72 °C for 15 sec.   

4.1.1 History of Bacillus anthracis  

The anthrax toxin has been very important in the history of the human race.  It is believed 

to have been responsible for the Sixth Plague in Egypt, which is referenced in the Bible.  Starting 

in the 1500s and continuing for several hundred years, anthrax was known as an agricultural 

disease. Humans became sick after coming into contact with animal wool (Woolsorter’s disease) 

and hides that harbored B. anthracis cells.  In 1881, Louis Pasteur developed the first effective 

live bacterial vaccine against anthrax (Akula and others 2005).   

During the Cold War, both the U.S. and Russia conducted extensive research on B. 

anthracis and the anthrax toxin as biological weapons (Miller and others 2002).  Many studies 

were done by both sides to determine the most effective method of infection as well as 
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environmental resistance to adverse conditions.  In 1979, the large city of Sverdlovsk, Russia, 

began seeing cases of anthrax poisoning.  The Russian government denied American reports that 

Sverdlovsk was the site of a Russian bioweapons facility.  Sixty-eight victims eventually died 

from the accident.  Most importantly, animals more than 50 km away from the town became sick 

from anthrax poisoning.  Later, others became interested in the use of anthrax as a weapon, and 

by 1990, Saddam Hussein had developed a large stockpile of anthrax toxin in Iraq that could be 

used against enemies (Miller and others 2002).   

4.1.2 Characteristics of Bacillus anthracis 

B. anthracis is a Gram-positive, non-motile, spore-forming bacterium that is 1-1.5 μm in 

diameter and 3-10 μm long.  Its name originates from the Greek word “anthrakis,” which means 

coal, because of the black, cutaneous papule that anthrax causes (Claus and Berkley 1986).  It 

does not form a spore in living tissues, but instead sporulates in food or tissues that have been 

exposed to air because of its need for oxygen for growth and sporulation.  Spores can survive 

very harsh environmental conditions, even surviving decades in certain soils.  B. anthracis can 

grow at temperatures between 7-48 °C and in a pH range of 4.9-9.3 (Jay and others 2005).  

Clery-Barraud and others (2004) found that B. anthracis spores suspended in deionized (DI) 

water are only reduced by about 1 log CFU/mL when held at 20 °C and treated by high 

hydrostatic pressure of 280 and 400 MPa for 350 min.   

4.1.3 Anthrax toxin 

Anthrax toxin causes a zoonotic disease, meaning it is pathogenic to both humans and 

animals.  Anthrax is highly pathogenic through three main forms of contraction:  inhalation, 

cutaneous infection, and ingestion (Anderson and others 2006).   While the most common form 

is through the skin and the most lethal form occurs through inhalation, ingestion of the toxin in a 
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food terrorism scenario is still a serious concern because an infection contracted in that manner 

can also be quite lethal.   

Cutaneous anthrax typically causes small papules to appear, which then progress into 

vesicles.  Finally, the vesicle ruptures and causes an ulcer with a necrotic center.  If left 

untreated, 20% of cutaneous anthrax can progress to septicemia.  Inhalational anthrax is caused 

by the inhalation of 4,000 spores.  While being transported to the mediastinal and peribronchial 

lymph nodes, the spores germinate and produce toxin.  Inhalational anthrax closely resembles 

pneumonia, but is characterized by a widening of the mediastinum and pleural effusion.  

Ingestion of anthrax toxin causes mesenteric lymphadentitis by the toxin breaching the mucosal 

lining (Akula and others 2005). 

The American Medical Association (AMA) states that the mortality rate for anthrax 

poisoning can be as high as 60% from ingestion of the toxin (AMA 2005).  Research has shown 

that the anthrax toxin is produced when the bacterial concentration reaches 106 CFU/mL or g in 

food (Murray and others 1995). 

4.2 Bacillus cereus  

Bacillus cereus is a Gram-positive, spore-forming bacterium that is commonly found in 

milk and other dairy products, but unlike B. anthracis, it is motile.  Bacillus cereus can cause 

foodborne illness through the production of toxins that cause gastroenteritis.  The diarrheal toxin 

is caused by a high molecular weight, heat-labile enterotoxin produced in the intestines when 

bacterial concentrations reach 7 log CFU/g or mL in food (Jay and others 2005).  Typical 

symptoms develop within 8-16 h after ingestion of food and include nausea, abdominal pains, 

tenesmus, and diarrhea.  Symptoms usually persist for 6-12 h.  Diarrheal toxin is commonly 

associated with meat and milk products (Jay and others 2005; FDA 2002).   
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The emetic syndrome is produced by a low molecular weight, heat-stable toxin produced 

in the food product when bacterial concentrations are 6 log CFU/g or mL in food (Jay and others 

2005; FDA 2002).  Symptoms of emetic toxin usually begin within 2-5 h of ingestion and 

include vomiting and stomach pain, which resemble staphylococcal toxin food poisoning.  These 

symptoms generally last for less than 24 h (FDA 2009a).  The emetic toxin typically occurs in 

starchy products (Jay and others 2005; FDA 2009a).    

Bacillus cereus has been found to grow at temperatures as low as 4 °C (Larsen and 

Jorgensen 1999; Jay and others 2005).  The psychrotrophic bacterium can grow and produce 

toxin while stored at refrigeration temperatures (Larsen and Jorgensen 1999).  Christiansson and 

others (1989) reported that 28% of B. cereus naturally found in milk could grow and produce 

toxin in skim milk after 7 days at 8 °C.  However, no naturally occurring foodborne outbreaks 

have been reported in milk due to B. cereus (Christiansson and others 1989).  The reason for this 

is still not understood. 

4.3 Destruction of Spore-forming Bacteria 

Typical HTST milk pasteurization conditions of 72 °C for 15 sec has been shown to 

reduce B. cereus by less than 1 log CFU/mL in milk (Novak and others 2005).  D-values of 

approximately 246 min and 12.2 min for B. cereus in skim milk at 72 °C and 100 °C were 

determined by Novak and others (2005).   

B. cereus has also been shown to grow at a pH range of 4.9-9.3 (Jay and others 2005).  

Browne and Dowds (2002) observed only a 1 log CFU/mL reduction of B. cereus spores that 

were exposed to low concentrations of organic acids (pH 5.0) for 20 min. A contact time of 60 

min with nisin (5.3 μg/mL) also caused reductions of only 1 log CFU/mL of B. cereus spores 

(Pol and Smid 1999).  
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Salt solutions of 10% reduced B. cereus spores by approximately 1 log CFU/mL with 20 

min of contact time (Browne and Dowds 2001).     However, research by den Besten and others 

(2006) has shown that when B. cereus spores were exposed to a 12% NaCl solution for 20 min, 2 

log CFU/mL reductions occurred. 

Bacterial spores can be very difficult to destroy in food due to their very resistant spore 

coat.  Black and others (2008) determined that when 2% fluid milk is intentionally contaminated 

with B. cereus and B. anthracis spores, the spores can be resistant to hydrogen peroxide, 

Clorox® bleach, and other household cleaning supplies (including ammonia, rubbing alcohol, 

Pine Sol®, and Tilex® Mold and Mildew remover)  that were used as potential decontaminants 

when added to milk.  Hydrogen peroxide at a concentration of 3% caused a <1 log CFU/mL 

reduction after 2 h of exposure and only a 2.5 log CFU/mL reduction was observed after 2 h of 

exposure to Clorox bleach (6%).   Other products studied had less of an effect on the spores.   

Rose and others (2005) found that 0.8 mg of free available chlorine/mL reduced B. anthracis 

spores by 2 log CFU/mL.  They also determined that chlorine can be used as a decontaminant for 

B. anthracis in water at levels of 0.8 mg/mL of free chlorine.  However, Rice and others (2005) 

determined that a 5 log CFU/mL reduction can be achieved by increasing the free available 

chlorine concentration to 2 mg/mL.  This research has only been proved in simple matrices such 

as water or broth and has not been proven successful in a complex food matrix.   

High hydrostatic pressure (~400 MPa) along with high temperature (~75 °C) has been 

shown to reduce B. anthracis spores in water by >8 log CFU/mL (Clery-Barraud 2004).  

However, this technology has not been used on a food matrix either. 

The thermal resistance of spore-forming bacteria is well-documented.  This resistance has 

been attributed in the past to dipicolinic acid, but has more recently been found to be caused by 
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small, acid-soluble proteins that aid the cortex in reducing the water content of the cell (Jay and 

others 2005).  Montville and others (2005) determined that B. anthracis can have a D-value 

between 1.5-6.7 min at 90 °C in ultra-high temperature (UHT) pasteurized 2% milk while B. 

cereus can have a D-value as high as 12.8 min at 90 °C in UHT 2% pasteurized milk. 

4.4 Detection of Bacillus spp. 

Many different methods of detection have been used for Bacillus spp.  Typically, the 

plating method on mannitol-egg yolk-polymyxin (MYP) agar is used for enumeration (Mossel 

and others 1967; Hanson and others 2005; Huck and others 2007; Valero and others 2007; Wong 

and others 1988; Crielly and others 1994) and confirmation is usually performed with modified 

Voges-Proskauer (VP) broth (Mossel and others 1967) or with the presence or absence of rhizoid 

growth on nutrient agar (Hanson and others 2005; Byrne and others 2006).  Several researchers 

have used polymerase chain reaction or pulse field gel electrophoresis for further genetic 

sequencing of Bacillus spp. (Durak and others 2006; He and others 2008; Nakano and others 

2004; Perdue and others 2003; Ralyea and others 1998). 

While many researchers have used the plating method on MYP agar (FDA 2006), the 

Bacteriological Analytical Manual (BAM) recommends that either MYP or the most probable 

number (MPN) method be used for enumeration of Bacillus spp.  The Standard Methods for the 

Examination of Dairy Products (Wehr and Frank 2004) recommend the use of an aerobic plate 

count agar for Bacillus spp., but other bacteria can grow on this medium as well.  Another 

complication for detection and enumeration is that Bacillus spp. can be in both a vegetative and 

spore form. Visual evidence of sporulation can be observed through the use of a phase contrast 

microscope (Montville and others 2005) or using malachite green stain under general microscopy 

(Bischof and others 2007). 
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5. Surrogates for Research 
Since studies with pathogenic microorganisms can be extremely dangerous, researchers 

use surrogates that have very similar growth and resistance characteristics as the more hazardous 

microorganisms, but do not have the added danger to researchers.  Surrogates are extremely 

important to validation research because they can be used by companies or universities with pilot 

plants to conduct research with a lower level of risk (Sommers and others 2008).  

5.1 Surrogates for Bacillus anthracis 

Many investigations have been conducted to identify surrogates for B. anthracis.  

Naturally, the surrogate must be a spore-forming microorganism in order to simulate the 

resistance and growth properties of B. anthracis.  Researchers have conducted studies on B. 

cereus, B. mycoides, B. subtilis, and B. thuringiensis (Montville and others 2005; de Siano and 

others 2006; Rice and others 2005; Rose and others 2005).  Some of these studies have involved 

growth modeling while others investigated comparative resistance of these bacteria to heat, acid, 

or pressure.  The research concluded that B. cereus (ATCC 4342 and 9819), B. subtilis (ATCC 

6633), and B. thuringiensis (ATCC 35646) are good surrogates while other B. subtilis strains are 

not as good, but also adequate.  Researchers have found that twelve strains (total) of B. cereus 

and B. thuringiensis shared similar genetic sequences to that of the anthrax toxin producing gene 

in B. anthracis (Helgason and others 2000; Hu and others 2006). 

5.2 Gaps in Bacillus spp. research 

Research has focused on identifying Bacillus spp. surrogates that will have similar 

characteristics as B. anthracis.   Most studies comparing B. anthracis versus B. cereus were 

conducted in broth systems (peptone or tryptic soy broth solutions) (Montville and others 2005; 

de Siano and others 2006; Rice and others 2005; Rose and others 2005) instead of food matrices.  
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These studies generally determined the efficacy of chlorination (Rice and others 2005; Rose and 

others 2005) and thermal processing for reducing B. anthracis populations (Montville and others 

2005).  However, little research has focused on combinations of methods of destruction. 

6. Spore inoculum preparation 
Several methods have been used to produce spore inoculums for scientific research.  The 

lawn method, which utilizes colonies on agar, is used by several researchers (Black and others 

2008; Bowen and Turnbull 1992; Johnson and others 1984) to produce spores.  Others (Byrne 

and others 2006; Montville and others 2005) have utilized broth solutions such as brain heart 

infusion broth or tryptic soy broth for the growth of vegetative cells; sporulation is then caused 

by shocking the bacteria with chemicals, extreme temperatures, or by changing the pH.   

Recently, Microbiologics® (Saint Cloud, Minn.) released a new product of lyophilized 

spore pellets called EZ-Spores™, which contain 4.6 log of B. cereus per pellet according to the 

company’s guarantee (Microbiologics 2008).  The ability to simply dissolve the pellet in distilled 

water to form the inoculum makes spore inoculum preparation easier.  However, limited research 

has been performed using EZ-Spores™ in food matrices.   

7. Further Research 

Further research is needed to determine the efficacy of using the EZ-Spore™ pellets in a 

food matrix for validation research.  Furthermore, these pellets should also be researched to 

determine if they will be a suitable surrogate for B. anthracis.  The strain (ATCC 11778) of B. 

cereus used in the EZ-Spore™ pellets has not been determined as a strain that can grow at 

psychrotrophic temperatures, so this should also be determined through research in broth systems 

as well as food matrices. 

 19



CHAPTER 3 - INOCULATION AND RECOVERY OF BACILLUS 

CEREUS SPORES INOCULATED WITH EZ-SPORE™ PELLETS 

IN ULTRA-HIGH TEMPERATURE PASTEURIZED MILK: 

PRELIMINARY STUDY 1 

1. Introduction 
Bacillus spp. can be found in both spore and vegetative form in raw and high-

temperature-short-time (HTST) pasteurized milk, but has been found to resist high heat 

treatments that are slightly less than those used in ultra-high temperature (UHT) pasteurization of 

milk (Wong and others 1988).   It has been hypothesized that Bacillus spp. are the cause of sweet 

curdling in milk and other dairy products (Christiansson and others 1989).  If Bacillus cereus 

survives during pasteurization of milk and outgrowth occurs, B. cereus levels may be high 

enough to potentially cause foodborne illness. 

Therefore, detection and enumeration of Bacillus spp. in milk products is important when 

determining the potential source linked to a foodborne outbreak.  The Food and Drug 

Administration’s (FDA) Bacteriological Analytical Manual (BAM) recommends two different 

methods for enumerating Bacillus spp.: 1) standard plating method using mannitol-egg yolk-

polymyxin (MYP) agar and 2) most probable number (MPN) method with tryptic soy broth 

supplemented with polymyxin sulfate (TSB-P) (FDA 2006).   

To determine the effect of processing procedures on controlling pathogens, food products 

are often inoculated with high levels of a microorganism ranging from 4 to 7 log CFU/mL or g 

(Getty and others 2000).  Preparing an inoculum for validation research involves determining the 

amount of cells initially needed and the optimum growth phase of the cells prior to incorporating 

them into a food product.   
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Preparation of a spore inoculum can be achieved through several different methods 

including the lawn method (Johnson and others 1982) or the broth method (Byrne and others 

2006; Montville and others 2005).  Typically, B. cereus spores are produced in brain heart 

infusion (BHI) broth supplemented with manganese sulfate heptahydrate (MnSO4·7H2O) to 

increase populations to levels of 4 to 7 logs (de Siano and others 2006).  Doubling the 

concentration of BHI could potentially promote further growth to even higher levels by 

providing a more nutrient-rich environment.    

Recently, Microbiologics® (Saint Cloud, Minn.) released a new product of lyophilized 

spore pellets (B. cereus EZ-Spore™), which contains 4.6 log CFU per pellet of B. cereus 

(Microbiologics 2009).  These pellets could make inoculum preparation more efficient and 

consistent as cells would be in spore form versus a vegetative cell form, as well as there being a 

consistent spore concentration in each pellet.  Furthermore, deionized (DI) water is 

recommended for dissolving lyophilized EZ-Spores™ into solution prior to inoculation into a 

food matrix (Microbiologics 2009).  However, there is limited research on the use of B. cereus 

EZ-Spore™ pellets as an inoculum for food, especially milk products.   

UHT milk is an optimum food matrix for initially evaluating B. cereus EZ-Spore™ 

pellets as an inoculum.  UHT is shelf-stable and contains no background flora that would 

compete with detection and enumeration of B. cereus spores.  It also can be commercially 

purchased at varying fat contents.      

Therefore, the first objective of this study was to determine the feasibility of using B. 

cereus EZ-Spores™ as an inoculum in ultra-high temperature pasteurized skim and 2% milk.  A 

secondary objective was to evaluate the ability of three different spore production media: 1) BHI 

broth supplemented with manganese sulfate heptahydrate (BHI + MnSO4·7H2O), 2) twice the 
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recommended BHI broth supplemented with manganese sulfate heptahydrate (2xBHI + 

MnSO4·7H2O), and 3) deionized water (DI) to increase EZ-Spore™ populations prior to 

inoculation into UHT milk.  The third objective was to compare the three tube MPN and MYP 

plating method to recover and enumerate B. cereus in inoculated UHT skim and 2% milk. 

2. Materials and Methods 

2.1 Experimental Design   

Phase 1 consisted of inoculating UHT skim milk with B. cereus ATCC 11778 EZ-

Spore™ pellets that had been grown in BHI + 0.1% MnSO4·7H2O, whereas in Phase 2, UHT 2% 

milk was inoculated with EZ-Spore™ pellets that were grown in 2xBHI + 0.1% MnSO4.  For 

Phase 3, EZ-Spore™ pellets were dissolved in DI water prior to inoculating into UHT skim milk. 

For each phase, a replication consisted of two packages of the same lot of milk with duplicate 

enumerations for each package.  Three replications were completed for each phase.   

2.2 Inoculum Preparation 

Phase 1: Inoculum was prepared using B. cereus ATCC 11778 EZ-Spore™ technology 

(Microbiologics, St. Cloud, Minn.).  The EZ-Spore™ pellet was prepared according to 

manufacturer’s instructions (Microbiologics 2009) as follows:  one pellet was aseptically 

removed from the package and transferred to a sterile test tube containing 4 mL of sterile DI 

water heated to 35 °C.  The pellet mixture was vortexed for 5 s every 10 min over a 30 min 

period to allow the lyophilized pellet to dissolve.    

One mL of the dissolved pellet mixture was aseptically transferred to 9 mL of BHI broth 

(Becton Dickinson, Franklin Lakes, N.J.) supplemented with 0.1% manganese sulfate 

heptahydrate (BHI + MnSO4·7H2O), which was added prior to autoclaving (Remel, Lenexa, 

Kans.) (FDA 2006).  Inoculum was prepared in duplicate and incubated at 35 °C for 72 h.  
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Following incubation, two inoculum pellet mixtures in BHI broth were aseptically combined in a 

sterile 50 mL beaker and 5 mL of this combined inoculum was transferred into 100 mL UHT 

skim milk samples in duplicate.  To determine the initial inoculum level, 1 mL of inoculum was 

serially diluted and enumerated on MYP agar (Difco, Detroit, Mich.) and by MPN method using 

TSB supplemented with 0.1% polymyxin sulfate (TSB-P) (Difco, Detroit, Mich.). 

Phase 2:  The inoculum was again prepared using B. cereus ATCC 11778 EZ-Spore™ 

technology.  The pellet was aseptically removed from the package and transferred to a sterile test 

tube containing 4 mL of sterile DI water heated to 35 °C.  The pellet mixture was vortexed for 5 

s every 10 min over 30 min to allow the lyophilized pellet to dissolve.  One mL of the dissolved 

pellet mixture was aseptically transferred to 9 mL of twice the recommended brain heart infusion 

broth (74 g of dehydrated BHI per L of DI water instead of 37 g of dehydrated BHI per L of DI 

water) supplemented with 0.1% manganese sulfate heptahydrate (2xBHI + MnSO4·7H2O) that 

was added prior to autoclaving (FDA 2006).  Inoculum was prepared in duplicate and incubated 

at 35 °C for 72 h.  Following incubation, two inoculum pellet mixtures from BHI were 

aseptically combined in a sterile 50 mL beaker and 5 mL of this combined inoculum was 

transferred into 100 mL UHT 2% milk samples in duplicate. To determine the initial inoculum 

level, 1 mL of inoculum was serially diluted and enumerated using the MPN and MYP methods. 

Phase 3:  The last portion of this preliminary study involved the comparison of the EZ-

Spores™ (Microbiologics, St. Cloud, Minn.) dissolved in DI water as an inoculum and to see if it 

yielded similar populations as inoculums grown in BHI + MnSO4·7H2O and 2xBHI + 

MnSO4·7H2O .  The EZ-Spore™ pellet was prepared according to manufacturer’s instructions 

(Microbiologics 2006) as follows:  one pellet was aseptically removed from the package and 

transferred to a sterile test tube containing 4 mL of sterile DI water heated to 35 °C.  The pellet 
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mixture was vortexed for 5 s every 10 min over 30 min to allow the lyophilized pellet to 

dissolve.  Following this, the final inoculum for each of the milk samples was prepared by 

combining two of the dissolved pellet solutions together into a sterile test tube for a combined 

total of 10 mL of inoculum.  Five mL of this combined inoculum was transferred into 100 mL 

UHT skim milk samples in duplicate. To determine the initial inoculum level, 1 mL of inoculum 

was serially diluted and enumerated using the MPN and MYP methods. 

2.3 Milk Sample Preparation, Inoculation, and Sampling 

 Ultra-high temperature pasteurized skim and 2% milk samples were purchased at a local 

grocery store over a period of three weeks. UHT pasteurized milk is considered a shelf stable 

product and was utilized so that background microflora would not interfere with detection and 

enumeration of B. cereus.  Different fat concentrations (skim and 2%) were used to determine if 

fat concentration has any effect on detection and enumeration of B. cereus.   

Each replication consisted of duplicate packages from the same lot and different lots were 

used.  Each package of UHT skim or 2% milk was aseptically opened and 100 mL of milk was 

aseptically transferred to a sterile 250 mL round bottom boiling flask (Pyrex, Lowell, Mass.) that 

contained a small x-shaped magnetic stir bar (VWR International, West Chester, Pa.).   

Prior to inoculation, milk was stored at 4 °C to remove the need for temperature 

adjustment.  Following the addition of the 5 mL of inoculum, flasks were then covered with 

sterile aluminum foil and stored at 4 °C over a 3 h sampling period.  To determine population 

levels, sampling was performed at 0, 45, 90, 135, and 180 min after inoculation for Phases 1 and 

3 and at 0, 60, 120, and 180 min after inoculation for Phase 2.  After a sample was removed at 

each time point, the flask was immediately placed back in the refrigerator (4 °C) for storage until 

the next sampling period.  Although, different sampling times were utilized, no differences in 
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populations were observed due to the short storage time.  No growth was expected in the 3 h 

storage time.  The multiple sampling times were used to gain more data points for each 

replication of the experiment. 

2.4 Enumeration Procedure 

 For all phases, three tube MPN and MYP methods were used for enumeration of B. 

cereus in UHT pasteurized milk (FDA 2006).  Inoculated milk samples were removed from 

refrigeration and stirred for 30 s on a stirring plate to allow for proper mixing prior to sampling.  

Three 1 mL samples were removed from each boiling flask containing milk and placed in three 

separate MPN test tubes containing 9 mL of TSB with 0.1% polymyxin sulfate (TSB-P).  Flasks 

containing inoculated milk samples were returned to refrigeration until the next sampling time.   

Each MPN test tube was vortexed for 3 to 4 s on high speed and then shaken vigorously 

based on the BAM recommendation (FDA 2001) prior to serial dilution.  During each sampling 

time, 1 mL of the milk sample was transferred into one test tube containing 9 mL of 0.1% 

peptone (Becton Dickinson, Franklin Lakes, N.J.).  This procedure was repeated twice more to 

perform the three tube MPN method.  Following this single dilution, 1 mL was removed from the 

peptone dilution blank and serially diluted for each of the three MPN tubes (containing 9 mL of 

TSB-P) to the 10-7 dilution.  MPN tubes were incubated at 35 °C for 48 h.  Sample tubes were 

removed from the incubator and the turbidity of the dilutions was recorded.  B. cereus 

populations were then determined using the three tube MPN chart (FDA 2006).   

The MYP plating method involved serial dilution of the milk samples seven times (to the 

10-7 level) before plating.   A small amount (0.1 mL) of each dilution was placed on each plate 

and then spread-plated.  One mL of the UHT milk was placed over four plates (0.25 mL per 
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plate) for the non-diluted sample to allow for a detection limit of 1 CFU/mL.  MYP plates were 

then incubated at 35 °C for 48 h and colonies were counted. 

2.5 Spore confirmation 

Confirmation of spore production for all phases was performed using malachite green dye 

and a counterstain of 0.25%.  Safranin O (Remel, Lenexa, KS) was utilized to visualize 

vegetative Gram positive cells under general microscopy (ASM 2002).  Ten fields were 

evaluated and a percentage was calculated from these 10 fields to determine the amount of cells 

that were in spore form. 

2.6 Statistical Analysis 

Mean and standard deviations of populations, as well as levels of significance were 

determined using LS Means in SAS Version 9.0 (SAS Institute, Cary, N.C.).  The fixed effects 

for statistical analysis were media type, replications, and replication by media type.  The random 

effect for this study was sampling time.  Differences (p<0.05) were determined for sampling 

times by media type and media type by type of milk.  

3. Results and Discussion 

3.1 Initial Inoculum Populations 

For Phase 1, mean B. cereus EZ-Spore™ populations for the initial inoculum grown in 

BHI + MnSO4·7H2O were 3.2 and 3.1 log CFU/mL as determined by the MPN and MYP plating 

method, respectively.  However, for Phase 2, mean B. cereus EZ-Spore™ populations for the 

initial inoculum grown in 2xBHI + MnSO4·7H2O were 4.9 and 3.4 log CFU/mL on MPN and 

MYP, respectively.  Mean B. cereus EZ-Spore™ populations dissolved in DI water for Phase 3 

were 3.0 and 2.8 log CFU/mL as determined by the MPN and MYP plating method, respectively.  
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Furthermore, the initial inoculum level for 2xBHI + MnSO4·7H2O was greater (p<0.05) than 

BHI + MnSO4·7H2O and DI water for the MPN method.  No differences (p>0.05) were observed 

among media and DI water for initial inoculum populations using MYP plating method for all 

three phases.  These results are as expected because double concentration of BHI would cause 

the bacteria to grow at a greater rate in the presence of a growth inhibitor such as MnSO4·7H2O.  

Brain heart infusion is used as a growth medium for a pure inoculum and is quite useful to 

rapidly grow bacterial cultures (Liu and Ream 2008, Byrne and others 2006; Montville and 

others 2005). 

Although, EZ-Spore™ populations produced in DI water were fairly low at 3.0 log 

CFU/mL, the level was sufficient enough for detection and enumeration throughout the sampling 

time.  When EZ-Spore™ pellets are dissolved in DI water and then inoculated into a food matrix, 

the cells are in spore form versus vegetative form.  By growing B. cereus spp. in a nutrient broth 

such as BHI, there may also be the possibility for the presence of vegetative cells since BHI is 

used to grow vegetative cell cultures (Liu and Ream 2008).  This hypothesis was validated by the 

staining results that were obtained in this experiment.   Phase 1 (BHI + MnSO4·7H2O) produced 

no spores and Phase 2 (2xBHI + MnSO4·7H2O) produced only 8% spores in the inoculum as 

compared to the 100% for Phase 3 (DI water).  This means that only EZ-Spore™ pellets 

dissolved in DI water were actually spores, whereas the other two media (BHI + MnSO4·7H2O 

and 2xBHI + MnSO4·7H2O) produced vegetative cells and some spores. 

3.2 Phase 1:  Bacillus cereus Populations and Confirmation of Spore Presence in UHT 

Skim Milk 

Control samples (non-inoculated milk) determined that no B. cereus was present in the 

UHT skim milk prior to inoculation for either enumeration method.  For Phase 1, B. cereus 
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inoculum (from EZ-Spore™ pellets dissolved in DI water) was grown in BHI + MnSO4·7H2O 

and inoculated into UHT skim milk.  Mean B. cereus populations in UHT skim milk enumerated 

by MPN method ranged from 3.8 to 4.4 log CFU/mL during 3 h of storage at 4 °C (Table 1).  

The MYP populations were lower (p<0.05) than the MPN method at each sampling period with 

populations ranging from 2.1 to 2.4 log CFU/mL in UHT skim milk.  However, no growth 

(p>0.05) was observed for either enumeration method during 3 h of storage at 4 °C.  This was 

expected because the 3 h time period at 4 °C would not be sufficient for significant growth of B. 

cereus.   

Table 1. Phase 1: Bacillus cereus meana populations and standard deviations in UHT skim 
milk inoculated with  EZ-Spore™  pellets grown in BHI + MnSO4•7H2Ob and enumerated 
using the three tube MPN and MYP plating method (n=6). 

Time (min after 
inoculation) MPNc (log CFU/mL) MYPd (log CFU/mL) 

0 3.8±0.2ex 2.1±0.2ey 
45 4.0±0.6ex 2.2±0.2ey 
90 4.4±0.7ex  2.3±0.1ey 
135 4.3±0.1ex 2.4±0.0ey 
180 4.2±0.7ex 2.4±0.0ey 

aMean populations were determined for 3 replications. 
bBHI + MnSO4·7H2O = brain heart infusion broth (BHI) supplemented with manganese sulfate 
heptahydrate produced from EZ-Spore™ pellets dissolved in DI water. 
cMPN = most probable number. 
dMYP = mannitol-egg yolk-polymyxin.  
eMeans with different superscripts within a column are not significantly different (p>0.05). 
xyMeans with different superscripts within a row are not significantly different (p>0.05). 

3.3 Phase 2:  Bacillus cereus Populations and Spore Confirmation in UHT 2% Milk 

Control samples (non-inoculated milk) determined that no B. cereus was present in the 

UHT 2% milk prior to inoculation using either MYP or MPN enumeration method.  Phase 2 of 

this study consisted of EZ-Spore™ inoculum produced in 2xBHI + MnSO4·7H2O that was added 

to UHT 2% milk.   Mean B. cereus populations enumerated by MPN method were approximately 

4.7 log CFU/mL during 3 h storage (4 °C) of  UHT 2% milk (Table 2). The MYP populations 
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were approximately 2.3 log CFU/mL during the 3 h of storage and were lower (p<0.05) than the 

MPN method during all sampling periods.  Again, no growth (p>0.05) was observed for either 

enumeration method during the 3 h of storage (4 °C) of UHT 2% milk. The MPN populations 

were also greater (p<0.05) in Phase 2 than in Phase 1 because of the greater concentration of BHI 

in the initial inoculum production media. 

Table 2. Phase 2: Bacillus cereus meana populations and standard deviations in UHT 2% 
milk inoculated with  EZ-Spore™  pellets grown in 2xBHI + MnSO4•7H2Ob and 
enumerated using the three tube MPN and MYP plating method (n=6). 

Time (min after 
inoculation) MPNc (log CFU/mL) MYPd (log CFU/mL) 

0 4.8±0.6ex 2.2±0.2ey 
60 4.8±0.4ex 2.3±0.1ey 
120 4.6±0.8ex 2.4±0.1ey 
180 4.6±0.8ex 2.4±0.1ey 

aMean populations were determined for 3 replications. 
b2xBHI + MnSO4·7H2O = twice the recommended brain heart infusion broth (BHI) 
supplemented with manganese sulfate heptahydrate produced from EZ-Spore™ pellets dissolved 
in DI water. 
cMPN = most probable number. 
dMYP = mannitol-egg yolk-polymyxin.  
eMeans with different superscripts within a column are not significantly different (p>0.05). 
xyMeans with different superscripts within a row are not significantly different (p>0.05). 
 

3.4 Phase 3:  Bacillus cereus Populations and Spore Confirmation in UHT Skim Milk 

The inoculum for Phase 3 was prepared by simply dissolving EZ-Spore™ pellets in DI 

water followed by inoculation into UHT skim milk. Mean B. cereus populations using the MPN 

method ranged from 3.5 to 3.8 log CFU/mL during 3 h storage of UHT skim milk at 4 °C (Table 

3). Populations enumerated on MYP were lower (p<0.05) than the MPN method with 

populations ranging from 2.5 to 3.1 log CFU/mL for the UHT skim milk.  Again, no growth 

(p>0.05) was observed for either enumeration method during 3 h storage of UHT skim milk at 4 

°C.  
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Table 3. Phase 3: Bacillus cereus mean populations and standard deviations of UHT skim 
milk inoculated with EZ-Spore™ pelletsa and enumerated using the three tube MPN and 
MYP plating (n=6). 

Time (min after 
inoculation) MPNb (log CFU/mL) MYPc (log CFU/mL) 

0 3.8±0.2dx 2.5±0.3dy 
45 3.8±0.2dx 2.7±0.2dy 
90 3.5±0.2dx 2.9±0.2dy 
135 3.5±0.2dx 3.1±0.5dy 
180 3.5±0.2dx 3.1±0.4dy 

aEZ-Spore™ pellets dissolved in sterile 35 °C DI water. 
bMPN = most probable number 
cMYP = mannitol-egg yolk-polymyxin 
dMeans with different superscripts within a column are not significantly different (p>0.05). 
xyMeans with different superscripts within a row are not significantly different (p>0.05). 
 
 

Bacillus cereus populations in UHT skim and 2% milk using either recovery method did 

not change (p>0.05) throughout 3 h of storage for all three phases.  One would not expect growth 

to occur in this short of a time period.  Bacillus cereus can grow at refrigeration temperatures 

(Larsen and Jorgensen 1999).  Research has shown that B. cereus in milk can grow more than 1 

log CFU/mL during a week’s storage at a refrigeration temperature of 8 °C (Christiansson and 

others 1989).  The consistency of our results throughout the different sampling periods 

demonstrates the accuracy and reliability of MPN and MYP to detect and recover B. cereus in 

UHT milk samples. 

A significant difference was observed between the two enumeration (MPN and MYP) 

methods at all sampling times for all phases with MPN method recovering more (p<0.05) B. 

cereus than the MYP plating method.  As much as a 2.0 log CFU/mL difference was observed 

between the MPN and MYP method for Phases 1 (BHI + MnSO4·7H2O) and 2 (2xBHI + 

MnSO4·7H2O ) of this study while Phase 3 (DI water) observed up to a 1.2 log CFU/mL 

difference.  This effect might be due to the fact that the MPN method is more of an enrichment 
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procedure since it is involves the use of tryptic soy broth (TSB) (a typical enrichment medium).  

The MPN tubes contain TSB, a medium typically used to grow pure cultures and polymyxin 

sulfate is used as a selective agent for Bacillus spp.  In contrast, the MYP plates do not contain 

additional ingredients that would provide nutrient for recovery or enrichment, as is evident by 

TSB’s use to grow an inoculum (Benkerroum and others 2004).     

4. Conclusions 

 
 Results from this preliminary study show that B. cereus vegetative cells and spores in 

UHT skim and 2% milk are detected and recovered more (p<0.05) via the three tube MPN 

method than on MYP.  The method of dissolving EZ-Spore™ pellets only in DI water for 

preparation of an inoculums was validated since the populations were similar to other growth 

methods (BHI + MnSO4·7H2O and 2x BHI + MnSO4·7H2O).  It is the preferred inoculum 

preparation method because it also guarantees that the inoculum is composed of spores and not 

of vegetative cells.   

Results from this study show that B. cereus can be recovered and enumerated in UHT 

skim and 2% milk using the MPN method recommended by FDA.  However, further research is 

needed to determine if B. cereus can be recovered and enumerated in raw and high-temperature-

short-time (HTST) pasteurized milk.  While the constituents are the same in both UHT and 

HTST milk, the latter contains background microflora, which could cause potential issues 

concerning enumeration.   
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CHAPTER 4 - PRELIMINARY STUDY 2:  COMPARING EZ-

SPORE™ PELLETS TO OTHER BACILLUS CEREUS GROWTH 

AND SPORE PRODUCTION METHODS FOR INOCULUM 

 

1. Introduction 
Food products are often inoculated with high levels of a microorganism ranging from 4 to 

7 log CFU/mL or g to determine the effect of processing procedures on controlling pathogens 

(Getty and others 2000).  Preparing an inoculum for validation research involves determining the 

amount of cells initially needed and the optimum growth phase of the cells prior to incorporating 

them into a food product.  Generally, microorganisms are grown in tryptic soy broth (TSB) or 

brain heart infusion (BHI) broth prior to inoculation into food matrices (Benkerroum and others 

2004; Liu and Ream 2008).  These growth media allow for optimum levels of microorganisms 

for conducting validation research.   

Recently, Microbiologics® (Saint Cloud, Minn.) released a new product of lyophilized 

spore pellets that contains 4.6 log CFU per pellet of Bacillus cereus EZ-Spore™ (Microbiologics 

2009).  These pellets could make inoculum preparation more efficient and consistent as cells 

would be in spore form versus a vegetative cell form; an additional advantage is that the pellets 

provide a known specific concentration of spores. However, there is limited research on 

optimum media for growth of B. cereus from EZ-Spore™ pellets and what conditions are needed 

for sporulation.  Deionized (DI) water is the recommended solvent for dissolving lyophilized EZ-

Spores™ into solution prior to inoculation into a food matrix (Microbiologics 2009). 

Typically, B. cereus spores are produced in BHI broth supplemented with manganese 

sulfate heptahydrate (MnSO4·7H2O) to increase populations to levels of 4 to 7 log (de Siano and 
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others 2006).  Manganese sulfate heptahydrate is used to cause sporulation of the bacteria by 

creating a difficult environment for vegetative cells to survive (Black and others 2008). Our 

preliminary research demonstrated that an inoculum prepared by dissolving EZ-Spore™ pellets 

in DI water and then growing them in a medium of double the concentration of BHI plus 

MnSO4·7H2O increased the initial population by approximately 1.5 log CFU/mL when compared 

to an inoculum of only EZ-Spore™ pellets dissolved in DI water.  However, the inoculum with 

BHI plus MnSO4·7H2O only produced vegetative cells and not spores.  

Yang and others (2008) have also shown that by heating B. cereus to 60 °C, vegetative 

cells are able to go from a vegetative cell to spore form.  Therefore, the objective of this study 

was to compare populations of B. cereus EZ-Spore™ pellets dissolved in DI water and then 

grown in BHI supplemented with manganese sulfate heptahydrate (MnSO4·7H2O) or twice the 

BHI supplemented (2xBHI + MnSO4·7H2O) and heated shocked for 12 min to 50 °C or 12 min 

to 60 °C to the EZ-Spores™ populations produced by only dissolving in DI water.   

2. Materials and Methods 

2.1 Experimental Design 

 One EZ-Spore™ pellet was used for each sample, with duplicate samples being used for 

each replication in both of the growth media at both temperatures.  Duplicate MPN tubes were 

used for enumeration of populations for each sample.  The experiment was replicated three times 

(n=6) for each media at each temperature.  All averages and standard deviations were determined 

using Microsoft Excel 2007 (Redmond, Wash.).  
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2.2 Media Preparation 

The first medium, BHI broth supplemented with manganese sulfate heptahydrate 

(MnSO4·7H2O), was produced by suspending 37 g of dehydrated BHI broth (Becton Dickinson, 

Franklin Lakes, N.J.) per liter of DI water and supplementing with 0.1% MnSO4·7H2O (Remel, 

Lenexa, Kans.) prior to autoclaving.  The second medium, 2xBHI + MnSO4·7H2O, was produced 

by using twice the concentration of dehydrated BHI broth (74 g dehydrated BHI per L of DI 

water) supplemented with 0.1% MnSO4·7H2O, which was added prior to autoclaving. 

2.3 Culture Preparation and Spore Production 

Bacillus cereus (ATCC 11778) EZ-Spore™ (Microbiologics, St. Cloud, Minn.) pellets 

were prepared according to instructions from the manufacturer (Microbiologics 2006). One pellet 

was aseptically removed from the package and transferred to a sterile test tube containing 4 mL 

of sterile DI water heated to 35 °C.  The pellet mixture was vortexed for 5 s every 10 min over a 

30 min time period to allow the lyophilized pellet to dissolve.    

An amount of 1 mL of the dissolved pellet mixture was then transferred to a tube 

containing 9 mL of BHI + MnSO4·7H2O or 2xBHI + MnSO4·7H2O.  Lastly, pellet mixtures in 

BHI + MnSO4·7H2O were incubated at 37 °C for 24 h while pellet mixtures in the 2xBHI + 

MnSO4·7H2O medium were stored at 37 °C for 48 h.  Twenty-four hours is the typical period 

used to grow cultures; however, manganese sulfate heptahydrate slows bacterial growth so 

incubation time was extended to 48 h.  This extended incubation period was used to determine if 

a longer incubation time would aid in a higher spore population. 

Following incubation, test tubes with the two media-containing cultures were removed 

from the incubator and heated in a water bath (Model N-12, Precision Scientific Co., Chennai, 

India).  Both cultures were heated gradually (1 °C increase every 2 min from 37 °C to 50 °C and 
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60 °C for 12 min) to cause sporulation of the vegetative cells (Yang and others 2008).  

Temperature was monitored using a mercury thermometer that was inserted into a non-

inoculated sample of each media (BHI + MnSO4·7H2O or 2xBHI + MnSO4·7H2O).   

2.4 Enumeration and Determination of Spore Concentration 

  Following heating for spore production, cultures in each media were enumerated using 

MPN method for B. cereus, which uses tryptic soy broth (TSB) (Becton Dickinson, Franklin 

Lakes, N.J.) with 0.1% polymyxin sulfate (MP Biomedicals, Solon, Ohio) (TSB-P) (FDA 2001).  

Three 1 mL samples were added to the first MPN tubes (9 mL tubes) and serially diluted four 

times.  Test tubes were then incubated at 37 °C for 72 h.  After 72 h incubation, MPN tubes were 

removed and enumerated according to the three-tube MPN chart (FDA 2006). 

2.5 Spore confirmation 

Confirmation of spore production was performed using malachite green.  A counterstain 

of 0.25% Safranin O (Remel, Lenexa, Kans.) was used to visualize vegetative Gram positive 

cells under general microscopy (ASM 2002).  Ten fields were evaluated and a percentage was 

calculated from these 10 fields to determine the amount of cells that were in spore form. 

3. Results and Discussion 
 Results showed that 2xBHI + MnSO4·7H2O is able to produce more B. cereus spores 

and/or vegetative cells when combined with heating at 60 °C for 12 min (Table 4).  The medium 

2xBHI + MnSO4·7H2O achieved 3.1 log CFU/mL at 60 °C for 12 min while populations were 

2.6 log CFU/mL for B. cereus produced in BHI + MnSO4·7H2O and heated to the same 

temperature (Table 4).  Concentrations for samples grown in BHI + MnSO4·7H2O and 2xBHI + 

MnSO4·7H2O at 50 °C for 12 min were 2.5 and 2.4 log CFU/mL, respectively. 

 35



From our previous studies, inoculum of an EZ-Spore™ pellet dissolved in DI water was 

3.0 log CFU/mL with the MPN method.  EZ-Spore™ cultures dissolved in DI water displayed 

spores with no vegetative cells using malachite green stain under microscopy, whereas no spores 

were observed by heating the EZ-Spore™ pellet mixture in either BHI + MnSO4·7H2O and 

2xBHI + MnSO4·7H2O to 50 °C for 12 min or by heating cultures grown in BHI + MnSO4·7H2O 

to 60 °C for 12 min (Table 5).  The staining procedure did show that spores were produced in 

BHI + MnSO4·7H2O and 2xBHI + MnSO4·7H2O when heated to 60 °C for 12 min; however, 

they were not found in high quantities (approximately 42% and 44%, respectively (Table 5)).  

This may be due to the 2xBHI + MnSO4·7H2O medium allowing cells to be in a nutrient rich 

environment prior to heating, which makes them sporulate more easily instead of being damaged 

or destroyed by heating because MnSO4·7H2O aids in sporulation.  It was observed that a lower 

temperature (50 °C) for 12 min does not provide adequate heating to cause sporulation of 

vegetative cells. 

Table 4. MPNa method meanb and standard deviations of B. cereus populations (log 
CFU/mL) grown in various media and heated to 50 or 60 °C for 12 min (n=6). 

 50 °C for 12 min 60 °C for 12 min 
BHI+ MnSO4·7H2Oc 2.5±0.4 log CFU/mL 2.6 ±0.3 log CFU/mL 

2xBHI + MnSO4·7H2Od 2.4±0.0 log CFU/mL 3.1±0.5 log CFU/mL 
aMPN=most probable number. 
bCompare populations to 3.0±0.2 log CFU/mL for EZ-Spore™ dissolved in DI water. 
cBHI + MnSO4·7H2O = brain heart infusion broth (BHI) supplemented with manganese sulfate 
heptahydrate produced from EZ-Spore™ pellets dissolved in DI water. 
d2xBHI + MnSO4·7H2O = twice the recommended brain heart infusion broth (BHI) 
supplemented with manganese sulfate heptahydrate produced from EZ-Spore™ pellets dissolved 
in DI water. 
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Table 5. Percentagea of inoculum in spore form based on four inoculum preparation 
methodsb (n=30). 

 50 °C for 12 min 60 °C for 12 min
BHI+ MnSO4·7H2Oc 0% 42% 

2xBHI + MnSO4·7H2Od 0% 44% 
aPercentage is based on the average of ten fields of view per replication. 
bCompare populations to 100% spores for EZ-Spore™ dissolved in DI water. 
cBHI + MnSO4·7H2O = brain heart infusion broth (BHI) supplemented with manganese sulfate 
heptahydrate produced from EZ-Spore™ pellets dissolved in DI water. 
d2xBHI + MnSO4·7H2O = twice the recommended brain heart infusion broth (BHI) 
supplemented with manganese sulfate heptahydrate produced from EZ-Spore™ pellets dissolved 
in DI water. 
 

 

4. Conclusions 
While spores were observed in BHI + MnSO4·7H2O and 2xBHI + MnSO4·7H2O when 

heated to 60°C for 12 min based on microscopy using malachite green stain, the bacteria that 

were heated caused some bacteria to sporulate while others stayed in the vegetative cell form.  

While the inoculum produced in 2xBHI + MnSO4·7H2O and heated to 60 °C for 12 min showed 

similar populations to EZ-Spore™ pellets dissolved in DI water, the inoculum did not produce a 

high concentration of spores.  Furthermore, the heating might have damaged some of the cells, 

which would make for an inadequate inoculum for validation research.  EZ-Spore™ pellets also 

allow the researcher to know the cells in the inoculum are in spore form without having to grow 

the culture and sporulate the cells for a period of time prior to inoculation into a food matrix.   

Results of this study confirm that dissolving EZ-Spore™ pellets in DI water to prepare an 

inoculum provides a consistent level (3.0±0.2 log CFU/mL) of B. cereus spores for validation 

research. Manufacturers of EZ-Spore™ pellets recommended preparation procedure of 

dissolving pellets in DI water allows researchers to know that the inoculum contains spores 

rather than vegetative cells. This procedure is also less time consuming and more cost effective 
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as there is not additional media preparation or extended incubation of cultures (Microbiologics 

2006).  
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CHAPTER 5 - DETECTION AND RECOVERY OF BACILLUS 

CEREUS SPORES IN RAW AND HIGH-TEMPERATURE-

SHORT-TIME PASTEURIZED MILK 

 

1. Introduction 

Bacillus cereus has been linked to foodborne outbreaks in many different foods.  The 

diarrheal syndrome is associated with meat and dairy products while the emetic toxin is linked to 

starchy products such as cereals and rice (Jay and others 2005).  In fact, Shehata and Collins 

(1972) found that as much as 36% of raw milk samples in one study contained psychrotrophic 

Bacillus spp.  Bacillus spp. can be found in both the spore and vegetative form in raw and high-

temperature-short-time (HTST) pasteurized milk.  Bacterial spores also contain a polar charge on 

the exterior of the spore coat (Singleton 2004).  This is potentially important because spores will 

attach to the fat cells rather than the free water of the milk, which could cause insulation or 

shielding by the fat.  It has been hypothesized that Bacillus spp. are the cause of sweet curdling 

in milk and other dairy products (Larsen and Jorgensen 1999).  Studies have also shown that B. 

cereus has the potential to produce toxin in milk at 4 °C during a two-week shelf life test (Larsen 

and Jorgensen 1999; Christiansson and others 1989).  Christiansson and others (1989) reported 

that 28% of B. cereus naturally found in milk could grow and produce toxin in skim milk after 7 

days at 8 °C. However, no naturally occurring foodborne outbreaks have been reported in milk 

due to B. cereus. A risk assessment performed by Wein and Liu (2005) determined that a spore-

forming pathogenic microorganism, Clostridium botulinum, could have devastating effects on 

the U.S. dairy supply and public health of consumers if the microorganism or toxin were to be 

intentionally introduced into the dairy supply.   
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 The U.S. federal government has highly prioritized the defense of the food supply.  

Following the attacks of September 11, 2001, the Public Health Security and Bioterrorism 

Preparedness and Response Act was implemented by the Food and Drug Administration to grant 

FDA more powers to protect the food supply (GAO 1999; Strongin 2002).  In 2004, President 

George W. Bush signed Homeland Security Presidential Directive 9, which established “a 

national policy to defend the agriculture and food system against terrorist attacks” (OPS 2004).     

In 2004, the National Center for Food Protection and Defense (NCFPD) was created at 

the University of Minnesota as a Center of Excellence under the Department of Homeland 

Security.  The NCFPD divides food defense research into eight areas, one of which is detection 

and diagnostics (NCFPD 2006b).  Detection is important in the event of a bioterrorist attack for 

several reasons.  First, in order to treat those who become ill, the microorganism must be 

detected and typed for correct treatment to be administered.  Second, the microorganism must 

also be detected and typed from its original agricultural or food source so that companies may 

initiate recalls and decontaminate and dispose of the food appropriately.  Third, spore-forming 

bacteria need more extreme measures for their destruction than other vegetative foodborne 

pathogens such at Salmonella spp. and Listeria monocytogenes, and spore formers may have 

differing resistance to antimicrobial agents and other microbial intervention strategies (Jay and 

others 2005). 

The Food and Drug Administration’s (FDA) Bacteriological Analytical Manual (BAM) 

(FDA 2000) sets specific recommendations that describe procedures and media needed for 

detection, enumeration, and determination of various bacteria in foods.  The BAM recommends 

two different methods for detection and enumeration of Bacillus spp.: 1) standard plating method 

using mannitol-egg yolk-polymyxin (MYP) agar, a selective medium and 2) most probable 
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number (MPN) method using tryptic soy broth supplemented with 0.1% polymyxin sulfate 

(TSB-P), an enrichment medium.  However, FDA does not specifically recommend either of the 

methods over the other for detection and enumeration of Bacillus spp. for any specific foods 

matrixes.  Thus, either method for the detection and enumeration of B. cereus could be used. 

To determine the ability of a microorganism to grow or survive during food processing 

and storage, an inoculum of a specific organism is introduced into food.  Preparation of a spore 

inoculum can be achieved through several different methods.  The lawn method, which utilizes 

colonies on agar to produce spores, has been used by several researchers (Black and others 2008; 

Bowen and Turnbull 1992; Johnson and others 1982).  Other scientists (Byrne and others 2006; 

Montville and others 2005) utilize broth solutions such as brain heart infusion broth or tryptic 

soy broth for the growth of vegetative cells and then cause sporulation by shocking the bacteria 

with chemicals, extreme temperatures, or by pH change.   

Recently, Microbiologics® (Saint Cloud, Minn.) released a new product of lyophilized 

spore pellets called EZ-Spores™, which contain 4.6 log CFU of B. cereus per pellet.  The 

company markets these pellets by stating that the “EZ-Spore™ preparations provide a 

guaranteed concentration of 4.6 log CFU per pellet” of spores (Microbiologics 2008).  

Preliminary studies were performed 1) to ascertain the ability of the FDA recommended media 

(MYP and MPN) to detect spores in ultra-high temperature (UHT) pasteurized milk and 2) to 

determine the best method for producing a spore inoculum with EZ-Spores™ using different 

media and heating methods.   

Results of the first preliminary study showed that the MPN method had greater ability 

(p<0.001) than the MYP method at detecting B. cereus spores and vegetative cells in UHT skim 

and 2% milk.  Results from a second study showed that dissolving EZ-Spore™ pellets in 
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deionized (DI) water consistently resulted in an inoculum containing only spores.  EZ-Spore™ 

pellets dissolved in DI water and then grown in brain heart infusion broth supplemented with 

manganese sulfate heptahydrate (BHI + MnSO4·7H2O) or twice the recommended brain heart 

infusion broth supplemented with manganese sulfate heptahydrate (2xBHI + MnSO4·7H2O) and 

heated (to cause sporulation) to 60 °C for 12 min contained B. cereus populations of 2.6 log 

CFU/ml and 3.1 log CFU/mL, respectively, by the MPN method.  EZ-Spore™ pellets that were 

only dissolved in DI water had similar populations of 3.0 log CFU/mL by MPN method.  

However, staining with malachite green confirmed that inoculum grown in BHI + MnSO4·7H2O 

and 2xBHI + MnSO4·7H2O and  heated to 60 °C for 12 min contained >40% spores while 

staining the EZ-Spore™ pellets that were only dissolved in DI water showed 100% spores. 

While our research demonstrated the ability of EZ-Spore™ pellets dissolved in sterile DI 

water to produce an inoculum that contains only spores and that both MYP and MPN media were 

able to detect and enumerate B. cereus in UHT skim and 2% milk, limited research has focused 

on the potential use of EZ-Spore™ pellets as an inoculum for raw and pasteurized milk.  It has 

been determined that B. cereus can survive the pasteurization process used for milk (Hanson and 

others 2005).   

Therefore, the objective of this study was to compare the results of the MYP or MPN 

methods for detection and enumeration of B. cereus in raw and high-temperature-short-time 

(HTST) pasteurized skim, 2%, and whole milk.  A secondary objective was to determine the 

ability of B. cereus to maintain similar populations at refrigeration temperatures (4 °C) in raw 

and HTST pasteurized milk over a 96 h storage time.  The different types of milk were used to 

determine if a significant difference in B. cereus populations was observed in the different media 

due to background microflora or varying levels of fat. 
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2. Materials and Methods 

2.1 Experimental Design  

Nine treatments included: raw milk (inoculated with B. cereus EZ-Spores™ pellets 

(ATCC 11778) and non-inoculated); HTST pasteurized skim, 2%, and whole milk (inoculated 

with B. cereus EZ-Spores™ pellets and non-inoculated); and TSB (Difco, Detroit, Mich.) 

inoculated with B. cereus EZ-Spores™ pellets.  The TSB was added to simulate a nutrient rich 

system so that spores can germinate and the vegetative form can grow. Raw milk samples were 

obtained from the Kansas State University dairy farm while HTST pasteurized samples were 

purchased from the Kansas State University processing facility at Call Hall. The raw samples 

were collected immediately prior to processing by the dairy plant personnel while all HTST milk 

samples were collected directly after processing. All milk samples were immediately stored at 4 

°C after they were obtained.  Every milk sample was enumerated in duplicate for each 

replication.  Three replications of each experiment were completed. 

2.2 Preparation of Spore Inoculum 

The EZ-Spore™ pellets (Microbiologics, St. Cloud, Minn.) were prepared according to 

instructions from the manufacturer (Microbiologics 2008).  One pellet was aseptically removed 

from the package and transferred to a sterile test tube containing 5 mL of sterile deionized (DI) 

water heated to 35 °C.  The pellets were vortexed for 5 s every 10 min over a 30 min period to 

allow the lyophilized pellet to dissolve.  Following this, the final inoculum for each of the milk 

samples was prepared by combining two of the dissolved pellet solutions together into a sterile 

test tube for a combined total of 10 mL of inoculum.  Following inoculation, 1 mL of inoculum 

was serially diluted and enumerated using the spread plate technique (0.1 mL per plate) on 

 43



mannitol-egg yolk-polymyxin (MYP) agar (Difco, Detroit, Mich.).  It was also enumerated using 

the most probable number (MPN) method using TSB-P (Difco, Detroit, Mich.). 

2.3 Milk Sample Preparation 

Raw or HTST milk (100 mL) was aseptically transferred from a half-gallon (1.89 L) jug 

to a sterile 250 mL (Pyrex, Lowell, Mass.) round bottom boiling flask containing an x-shaped stir 

bar (VWR International, West Chester, Pa.).  Milk was then inoculated with 5 mL of B. cereus 

inoculum and placed in a refrigerator (4 °C) for 15 min to allow for milk to equilibrate before the 

first sample was taken.  The milk was refrigerated at 4 °C throughout the process except for the 

times of sampling. 

2.4 Sampling and Enumeration  

 All milk treatments and the TSB treatment were removed from the refrigerator and the 

flasks were placed on a stir plate for 30 s to allow for even distribution of spores and other 

constituents prior to sampling.  Two 1 mL samples were removed and serially diluted four times 

(to the 10-4 level) in a 0.1% peptone solution for enumeration by MYP and three 1 mL samples 

were removed and serially diluted four times for the three tube MPN method.  The boiling flasks 

were returned to the refrigerator until the next sampling time.  Each test tube was vortexed for 3-

4 s on high speed before being transferred to the next dilution.  Samples were plated (1 mL per 

Petrifilm™) on APC Petrifilm™ at four different dilution levels with duplicate plates for each 

dilution. 

Samples were stored at 4 ˚C for 96 h for each of the five milk samples and enumerated at 

0, 48, and 96 h (times represent time after inoculation) to simulate the short holding period of 

milk from producers.  APC Petrifilm™ (3M, St. Paul, Minn.) was incubated at 35 °C for 24 h 
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while the MYP plates were stored at 35 °C for 48 h and the MPN tubes were incubated at 35 °C 

for 72 h (Beuchat et al. 1998; FDA 2006).   

2.5 Enumeration and Confirmation of Bacteria 

 Three different types of media were used for this study.  Aerobic plate count (APC) 

Petrifilm™ was used for the enumeration of all aerobic mesophilic microorganisms in milk 

based on the recommendation by the “Standard Methods for the Examination of Dairy Products” 

(Wehr and Frank 2004).  A direct plating method using MYP agar and a three tube MPN method 

was used for enumerating B. cereus in milk samples (FDA 2006).    

Populations for the MYP method were determined by counting all typical B. cereus 

colonies (pink with crater morphology).  All varying types of colonies on MYP were then 

confirmed using BBL Gram-Positive crystal (BD, Franklin Lakes, N.J.), which contains 29 

biochemical tests for Gram-positive bacteria in a miniaturized kit.  BBL Gram-Positive 

crystals™ were inoculated per manufacturer instructions and incubated for 24 h at 35 °C (BD 

2009). 

The confirmation of bacteria in the MPN tubes was performed by spreading 0.5 mL of 

the MPN diluent onto MYP.  The MYP was then incubated for 24 h at 35 °C and then all 

colonies of different morphology that grow on the MYP plates were transferred to the BBL 

Gram-Positive crystal™ for confirmation.  BBL Gram-Positive Crystals™ were inoculated per 

manufacturer instructions and incubated for 24 h at 35 °C (BD 2009).   Enumeration of the MPN 

tubes for B. cereus populations was determined by using the 3-tube MPN chart (FDA 2006).  

Only the tubes confirmed to have B. cereus were used for enumeration.  Confirmation was 

performed using the BBL Gram-Positive Crystals™ ID book, which can confirm over 1,000 

Gram positive taxa. 
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2.7 Statistical Analysis 

This experiment was a split plot with a half block design.  Data were analyzed using 

PROC MIXED in SAS Version 9.0 (SAS Institute, Cary, N.C.).  Levels of significance were not 

determined for sampling times, but were found for media versus milk.  Therefore, the data for all 

sampling times was pooled together and the fixed effects for statistical analysis were media and 

milk.  The random effect for this experiment was time.  Differences (p < 0.05) were tested for 

sampling times by media type and media type by milk type using LS Means in SAS Version 9.0. 

Due to inconsistency in one replication for the APC Petrifilm counts, only data from two 

replications were analyzed.   

 

3. Results and Discussion 
Combined B. cereus EZ-Spore™ populations for the initial inoculum were 3.49 and 4.13 

log CFU/mL by MPN and MYP standard plating methods, respectively, when simply suspended 

in sterile DI water.  While the MYP plating method enumerated more B. cereus from the 

inoculum than the MPN method, no difference (p>0.05) was detected. 

For both inoculated and non-inoculated milk treatments and TSB treatments, no 

differences (p>0.05) were observed in B. cereus populations among all sampling times (0, 48, 

and 96 h). Therefore, data at 0, 48, and 96 h for each treatment were pooled to eliminate time as 

a variable. Christiansson and others (1989) reported that 28% of B. cereus naturally found in 

milk could grow and produce toxin in skim milk after 7 d at 8 °C.  However, our study held the 

milk at 4 °C, which could be the reason for the lack of growth over the 96 h (5 d) storage time.  

The USDA Pathogen Modeling Program has shown that it would take B. cereus (in vegetative 

form) 360.9 h (approximately 15 d) to increase by three logs at 5 °C (USDA 2006). 
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Bacillus cereus populations in inoculated milk treatments ranged from 3.15 to 2.37 log 

CFU/mL using the MYP plating method while the non-inoculated treatments ranged from 1.16 to 

0.15 log CFU/mL for the same enumeration method (Figure 1).  B. cereus populations for the 

three tube MPN method, inoculated and non-inoculated treatments ranged from 3.43 to 1.20 log 

CFU/mL and 3.48 to 1.71 log CFU/mL, respectively.  As expected, means were slightly greater 

for the MPN method on both inoculated and non-inoculated milk treatments compared to means 

for the MYP plating method.  However, the inoculated TSB results showed that the MYP plating 

method enumerated greater populations than the MPN method, which is not what would be 

expected.  The only difference (p<0.05) found due to fat content was between inoculated whole 

and inoculated skim milk using the MPN method.  The inoculated whole milk treatment 

averaged 3.40 log CFU/mL while inoculated skim milk averaged 2.76 log CFU/mL of B. cereus 

for the combined sampling times.  However, no research has reported that milk with higher fat 

content has a greater B. cereus population than low fat milk or that fat concentration has any 

effect on recovery rate of spores or vegetative cells (Black and others 2008; Novak and others 

2005). Singleton (2004) reported that bacterial spores contain polar charge on the exterior that 

which could lead to attachment to hydrophobic substances (milk fat).  This effect was not 

observed in our research.  

B. cereus mean populations ranged from 3.11 to 2.72 log CFU/mL for inoculated 

treatments during the 96 h of refrigerated storage using the MYP plating method while B. cereus 

mean populations ranged from 2.91 to 2.72 log CFU/ml for inoculated treatments using the MPN 

enumeration method (Table 6 and Table 7).  In contrast, mean B. cereus populations from non-

inoculated treatments ranged from 0.87 to 0.67 log CFU/mL and 2.83 to 2.21 log CFU/mL 

during the 96 h storage time for the MYP and MPN methods, respectively (Tables 6 and 7).  
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These results are expected because the inoculated treatments should have greater populations of 

B. cereus than the non-inoculated treatments.  A study by Shehata and Collins (1972) found that 

36% of raw milk samples contained psychrotrophic Bacillus spp. 

The overall mean B. cereus population for the three-tube MPN method (2.59 log 

CFU/mL) for all milk treatments was greater (p<0.05) than the MYP plating method (1.89 log 

CFU/mL).  The MPN method is more of an enrichment procedure since it is involves the use of 

TSB (a typical enrichment medium).  The MPN tubes contain TSB, a medium typically used to 

grow pure cultures and polymyxin sulfate is used as a selective agent for Bacillus spp.  In 

contrast, the MYP plates do not contain additional ingredients that would provide nutrient for 

recovery or enrichment, as is evident by TSB’s use to grow an inoculum (Benkerroum and others 

2004).  Therefore, the enrichment medium in MPN may have allowed for additional recovery 

and enumeration of B. cereus in milk.   

This significant difference may also be due to the fact that one can count B. cereus 

colonies specifically on MYP but cannot differentiate in the MPN tubes without the aid of 

confirmation testing since the MPN tubes are enumerated based on presence or absence of 

turbidity.  However, if the MPN method is performed correctly in conjunction with confirmation 

methods, then the MPN method results in greater counts.  Thus, the MPN method should be the 

preferred method for validation research involving HTST milk. 

All MPN tubes that were used for enumeration in this study tested positive for B. cereus 

during confirmation.  Other microorganisms confirmed with BBL Gram positive crystals and 

found on MYP included Streptococcus agalactiae, S. salivarius, S. uberis, S. pyrogenes, S. 

avium, Enterococcus faecalis, E. faecium, B. subtilis, and Oerskovia spp.  However, all of these 

colonies were distinguishable from B. cereus on MYP and were not enumerated for B. cereus 
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populations.  When confirming turbid MPN tubes by BBL Gram positive crystals, B. cereus was 

detected in addition to B. subtilis, B. megaterium, and S. agalactiae.    

For both inoculated and non-inoculated milk treatments and TSB treatments, no 

differences (p>0.05) were observed in total aerobic populations among all sampling times (0, 48, 

and 96 h). Therefore, data at 0, 48, and 96 h for each treatment were pooled to eliminate time as 

a variable (Figure 2). This is probably due to microorganisms’ inability to rapidly grow at 

refrigeration temperatures (4 °C).  Also, the 96 h may not be enough time for the bacteria to 

show significant growth, especially since the shelf life of HTST milk is about two weeks.  The 

96 h period was used to simulate the time after pasteurization, as well as shipping time and time 

at the store.  Other studies have reported that milk needs to be held for 7 to 9 d for significant 

growth to occur (Schaffner and others 2003; Carey and others 2005).  

Total aerobic populations for inoculated milk sample populations were between 5.02 to 

2.40 log CFU/mL, while non-inoculated milk populations ranged from 4.24 and 1.21 log 

CFU/mL during storage (pooled data) (Table 8).  No difference (p>0.05) was observed due to fat 

level in the different milk treatments.  Bacterial populations in Class 1 raw milk may be as high 

as 5 log CFU/mL before commingling and 5.4 log CFU/mL after commingling and must be 

below 20,000 CFU/mL following pasteurization (FDA 2005b).  The populations from this study 

show that this milk (non-inoculated) meets this criteria. 

 



Figure 1. Meana and standard errorb of Bacillus cereus populations (log CFU/mL) from mannitol-egg yolk-polymyxin (MYP) 
plating and three-tube most probable number (MPN) methods for inoculatedc and non-inoculated raw and high-temperature-
short-time pasteurized milk of various fat contents as well as tryptic soy broth (TSB) (n=18). 
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aMean populations at 0, 48, and 96 h for each treatment were pooled due to no significance (p>0.05) among sampling times. 
bStandard error at 0, 48, and 96 h for each treatment were pooled due to no significance (p>0.05) among sampling times. 
cInoculated with dissolved EZ-Spore™ pellets. Initial inoculum 3.49 and 4.13 log CFU/mL by MPN and MYP standard plating 
methods, respectively.  
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Table 6. Mean and standard deviations of Bacillus cereus populations (log CFU/mL) in varying mediums during 96 h of 
storage at 4 °C and enumerated on mannitol-egg yolk-polymyxin agar (n=6). 
Sampling 

Time 

Inoculated Milk Samples Growth 

Medium 

Non-Inoculated Milk Samples 

 Raw Skim Milk 2% Fat 

Milk 

Whole 

Milk 

Tryptic soy 

broth 

Raw Skim Milk 2% Fat 

Milk 

Whole 

Milk 

0 h 4.20±1.14a 3.40±0.86a 2.68±0.17a 2.67±0.26a 2.60±0.17a 0.10±0.00a 1.07±0.59a 1.64±1.47ab 0.78±0.42a 

48 h 2.49±0.13b 2.36±0.21a 2.52±0.10a 2.46±0.07a 2.39±0.08ab 0.03±0.04a 1.33±0.18a 0.97±0.35b 0.67±0.29a 

96 h 2.78±0.25b 3.46±1.21a 2.47±0.12a 2.80±0.15a 2.12±0.20b 0.19±0.18a 1.07±0.34a 2.80±0.24a 0.87±0.27a 
abMeans with similar superscripts within a column are not significantly different (p>0.05). 
 

Table 7. Mean and standard deviations Bacillus cereus populations (log CFU/mL) in varying mediums during 96 h of storage 
at 4 °C and enumerated with the most probable number method (n=6). 
Sampling 

Time 

Inoculated Milk Samples Growth 

Medium 

Non- Inoculated Milk Samples 

 Raw Skim Milk 2% Fat 

Milk 

Whole 

Milk 

Tryptic soy 

broth 

Raw Skim Milk 2% Fat 

Milk 

Whole 

Milk 

0 h 3.36±0.02a 2.66±0.63a 3.05±0.41a 3.48±0.36a 1.52±0.04a 3.83±0.28a 2.31±0.22a 2.66±0.00a 2.52±0.14a 

48 h 3.36±0.22a 2.80±0.37a 3.14±0.15a 3.14±0.29a 1.17±0.73a 3.27±0.59a 1.89±0.45a 1.76±0.21b 1.90±0.22b 

96 h 3.58±0.36a 2.81±0.36a 3.25±0.25a 3.58±0.36a 1.33±0.85a 3.35±0.42a 2.53±0.84a 1.59±0.04b 1.33±0.15b 
abMeans with similar superscripts within a column are not significantly different (p>0.05). 
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Figure 2. Meana and standard errorb aerobic plate count populations (log CFU/mL) on APC Petrifilm™ for inoculatedc and 

non-inoculated raw and high-temperature-short-time pasteurized milk of various fat contents as well as tryptic soy broth 

(TSB) (n=12). 
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aMean populations at 0, 48, and 96 h for each treatment were pooled due to no significance (p>0.05) among sampling times. 
bStandard error at 0, 48, and 96 h for each treatment were pooled due to no significance (p>0.05) among sampling times. 
cInoculated with dissolved EZ-Spore™ pellets. Initial inoculum 3.49 and 4.13 log CFU/mL by MPN and MYP standard plating 
methods, respectively.  
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Table 8. Mean and standard deviations aerobic plate count populations (log CFU/mL) in varying mediums during 96 h of 
storage at 4 °C and enumerated with the APC Petrifilm™ method (n=4). 
Sampling 

Time 

Inoculated Milk Samples Growth 

Medium 

Non- Inoculated Milk Samples 

 Raw Skim Milk 2% Fat 

Milk 

Whole 

Milk 

Tryptic soy 

broth 

Raw Skim Milk 2% Fat 

Milk 

Whole 

Milk 

0 h 5.45±1.55a 2.74±0.09a 2.76±0.03a 2.49±0.31a 2.82±0.02a 4.90±1.00a 1.68±0.21a 1.77±0.34a 1.12±0.33a 

48 h 3.70±0.03a 2.94±0.20a 2.80±0.10a 2.72±0.02a 2.10±0.55a 4.18±0.41a 1.92±0.40a 1.32±0.57a 1.00±0.15a 

96 h 4.58±0.70a 3.03±0.40a 2.88±0.17a 2.79±0.02a 2.27±0.29a 4.39±0.41a 1.96±0.44a 1.70±0.47a 1.49±0.48a 
abMeans with similar superscripts within a column are not significantly different (p>0.05). 
 
 

 

 

 

 

 

 

 

 



4. Conclusions 
Results from previous research show that the EZ-Spore™ pellets dissolved in deionized 

water can provide a B. cereus spore inoculum for validation research that would be at a 

reasonable log CFU/mL level consisting of spores.  However, results from this study 

demonstrate that further research is needed to determine if this strain is a representative strain 

that can be used for psychrotrophic B. cereus.  The EZ-Spore™ pellets were useful in the 

preparation of a spore inoculum for inoculation into a milk matrix. They produce an inoculum 

that could allow for detection of bacterial growth as well as reduction, and all cells were spores.   

Neither MYP plating nor three-tube MPN method were selective for B. cereus alone.  

Both methods allowed for growth of other types of bacteria.  However, both methods can still 

differentiate other species of Bacillus as well as other microorganisms in conjunction with proper 

confirmation methods.  

While both media are expensive, the MYP method is more practical for using in the food 

industry than MPN for several reasons.  The first is that it is less labor intensive and the standard 

plating method is typically used in the food industry.  It also requires less time for 

microbiological testing because when combined with confirmation testing, the MYP method 

requires two days while the MPN method requires five days.  By the time confirmation is 

obtained using the MPN method (approximately 5 d), the milk will have already been distributed 

to consumers and perhaps consumed.   

However, populations using MPN were statistically greater than MYP for raw and HTST 

milk. The enrichment properties in MPN allow for recovery and detection of injured cells, which 

are extremely important to enumerate when conducting validation research.  So for validation 
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research, the MPN method should be used instead of the MYP method due to its greater 

population recovery.   

As expected, the APC Petrifilm™ results showed that this recommended method (Wehr 

and Frank 2004) does not allow for detection of B. cereus spores.  The APC Petrifilm™ method 

would not aid in detection of B. cereus and it could still pass through standards set by the PMO 

(FDA 2005b).  B. cereus can also survive the pasteurization process and low levels would be 

allowed into the food supply (Hanson and others 2005). 
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CHAPTER 6 - CONCLUSIONS 

Research performed on ultra-high temperature (UHT) pasteurized, raw, and high-

temperature-short-time (HTST) pasteurized milk all showed that the most probable number 

(MPN) method enumerated greater (p<0.05) populations of Bacillus cereus in milk than the 

mannitol-egg yolk-polymyxin (MYP) agar method.  However, culture confirmation is critical to 

correctly determine populations for both methods. 

For inoculated and uninoculated milk treatments and TSB treatments, no differences 

(p>0.05) were observed in B. cereus populations among all sampling times (0, 48, and 96 h) at 4 

°C. In addition, no differences were found for total aerobic plate populations on the APC 

Petrifilm™ for the same treatments among all sampling times (0, 48, and 96 h) at 4 °C. 

EZ-Spore™ pellets did consistently provide the inoculum population that was expected 

(approximately 3.0 log CFU/mL).  Our research has shown that EZ-Spore™ pellets do produce a 

consistent inoculum level and that the inoculum is composed of 100% spores.  However, further 

research is needed to determine if this strain is a good representative strain for other B. cereus 

strains with regards to heat-resistance and ability to survive or even grow at refrigerated 

temperatures (4 °C). 

The MYP method should be used by the dairy industry for B. cereus testing.  The MYP 

method is less labor intensive and is a standard plating method that is typically used in the food 

industry.  It also requires less time for microbiological testing because when combined with 

confirmation testing, the MYP method requires two days while the MPN method requires five 

days.  By the time that the enumeration and confirmation is completed using the MPN method, 

milk will have already been distributed to consumers and partially consumed.   
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However, B. cereus populations in inoculated UHT skim and 2%, raw, and HTST skim, 

2%, and whole milk using MPN for enumeration were greater (p<0.05) than MYP. The 

enrichment properties in MPN allow for recovery and detection of potentially injured cells, 

which are extremely important to enumerate.  Therefore, when conducting validation research 

the MPN method should be used instead of the MYP method due to its greater population 

recovery.   
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APPENDIX A 

Below is the SAS statistical analysis program (SAS Version 9.0, SAS Institute, Inc., Cary, NC) 

and data that was used to determine differences among milk and TSB treatments APC counts on 

APC Petrifilm.  The first column is a code where the number represents the replication.  The 

second column represents the time of the sample (0=0 h, 48=48 h, and 96=96 h).  The third 

column represents the milk and TSB treatment (R=Inoculated Raw milk, NR=Non-inoculated 

Raw milk, 0=Inoculated skim milk, N0=Non-inoculated skim milk, 2=Inoculated 2% milk, 

N2%=Non-inoculated 2% milk, 4=Inoculated whole milk, N4=Non-inoculated whole milk, and 

TSB=Tryptic soy broth).  The fourth column represents the medium (APC=APC Petrifilm).  The 

fifth column represents the log CFU/mL average count of the duplicate Petrifilm.  The period 

represents missing data. 

 

SAS Statistical Analysis Program 

Data labels; 
input Sample Time Milk $ Media $ logcfu; 
datalines; 
2 0 R APC . 
3 0 R APC 6.999565488 
2 0 NR APC 3.829303773 
3 0 NR APC . 
2 0 0 APC 2.86923172 
3 0 0 APC 2.619093331 
2 0 N0 APC 1.602059991 
3 0 N0 APC 1.439332694 
2 0 2 APC 2.781755375 
3 0 2 APC 2.792391689 
2 0 N2 APC 1.322219295 
3 0 N2 APC 1.703291378 
2 0 4 APC 2.799340549 
3 0 4 APC 1.995635195 
2 0 N4 APC 0.602059991 
3 0 N4 APC 1.311753861 
2 0 T APC . 
3 0 T APC 2.841046465 
2 48 R APC 3.67669361 
3 48 R APC 3.73239376 
2 48 NR APC 3.767155866 
3 48 NR APC 3.926856709 
2 48 0 APC 2.806179974 
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3 48 0 APC 2.744292983 
2 48 N0 APC 2.51851394 
3 48 N0 APC 1.380211242 
2 48 2 APC 2.703291378 
3 48 2 APC 2.959041392 
2 48 N2 APC 1.352182518 
3 48 N2 APC 2.11058971 
2 48 4 APC 2.703291378 
3 48 4 APC 2.698970004 
2 48 N4 APC 0.77815125 
3 48 N4 APC 1.021189299 
2 48 T APC . 
3 48 T APC 1.550228353 
2 96 R APC 3.880813592 
3 96 R APC 5.276461804 
2 96 NR APC 3.73239376 
3 96 NR APC 4.638489257 
2 96 0 APC 2.658011397 
3 96 0 APC 2.748188027 
2 96 N0 APC 2.40654018 
3 96 N0 APC 1.51851394 
2 96 2 APC 2.694605199 
3 96 2 APC 3.146128036 
2 96 N2 APC 1.230448921 
3 96 N2 APC 2.16879202 
2 96 4 APC 2.792391689 
3 96 4 APC 2.748188027 
2 96 N4 APC 0.77815125 
3 96 N4 APC 2.139879086 
2 96 T APC . 
3 96 T APC 1.973127854 
; 
run; 
proc glm data=Labels; 
class Sample Time Milk Media; 
model logcfu=Milk; 
run; 
proc mixed data=Labels; 
class Sample Time Milk Media; 
model logcfu=Milk; 
lsmeans Milk/pdiff; 
run; 
 
Data labels; 
input Sample Time Milk $ Media $ logcfu; 
datalines; 
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APPENDIX B 

Below is the SAS statistical analysis program (SAS Version 9.0, SAS Institute, Inc., Cary, NC) 

and data that was used to determine differences among milk and TSB treatments B. cereus 

populations.  The first column is a code where the number represents the replication.  The second 

column represents the time of the sample (0=0 h, 48=48 h, and 96=96 h).  The third column 

represents the milk and TSB treatment (R=Inoculated Raw milk, NR=Non-inoculated Raw milk, 

0=Inoculated skim milk, N0=Non-inoculated skim milk, 2=Inoculated 2% milk, N2%=Non-

inoculated 2% milk, 4=Inoculated whole milk, N4=Non-inoculated whole milk, and 

TSB=Tryptic soy broth).  The fourth column represents the medium (MYP=Mannitol-egg yolk-

polymyxin agar standard plating method and MPN=Three tube most probable number method).  

The fifth column represents the log CFU/mL average count of the duplicate MYP plates or MPN 

tubes.  Periods represent missing data. 

 

SAS Statistical Analysis Program 

Data labels; 
input Sample Time Milk $ Media $ logcfu; 
datalines; 
1 0 R MYP . 
2 0 R MYP 3.06069784 
3 0 R MYP 5.33243846 
1 0 NR MYP 0.1 
2 0 NR MYP 0.1 
3 0 NR MYP . 
1 0 0 MYP 4.759667845 
2 0 0 MYP 3.021189299 
3 0 0 MYP 2.408239965 
1 0 N0 MYP 1.653212514 
2 0 N0 MYP 0.477121255 
3 0 N0 MYP . 
1 0 2 MYP 2.462397998 
2 0 2 MYP 2.929418926 
3 0 2 MYP 2.638489257 
1 0 N2 MYP 3.975431809 
2 0 N2 MYP 0.1 
3 0 N2 MYP 0.954242509 
1 0 4 MYP 2.666517981 
2 0 4 MYP 3.041392685 
3 0 4 MYP 2.298853076 
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1 0 N4 MYP 1.204119983 
2 0 N4 MYP 0.1 
3 0 N4 MYP 1.041392685 
1 0 T MYP 2.771587481 
2 0 T MYP . 
3 0 T MYP 2.432969291 
1 48 R MYP . 
2 48 R MYP 2.614897216 
3 48 R MYP 2.357934847 
1 48 NR MYP 0.1 
2 48 NR MYP 0.1 
3 48 NR MYP 0.1 
1 48 0 MYP 2.037426498 
2 48 0 MYP 2.627365857 
3 48 0 MYP 2.424881637 
1 48 N0 MYP 1.612783857 
2 48 N0 MYP 1.255272505 
3 48 N0 MYP 1.113943352 
1 48 2 MYP 2.525044807 
2 48 2 MYP 2.658964843 
3 48 2 MYP 2.374748346 
1 48 N2 MYP 1.531478917 
2 48 N2 MYP 0.77815125 
3 48 N2 MYP 0.602059991 
1 48 4 MYP 2.440909082 
2 48 4 MYP 2.562292864 
3 48 4 MYP 2.369215857 
1 48 N4 MYP 1.113943352 
2 48 N4 MYP 0.301029996 
3 48 N4 MYP 0.602059991 
1 48 T MYP 2.465382851 
2 48 T MYP . 
3 48 T MYP 2.309630167 
1 96 R MYP . 
2 96 R MYP 3.021189299 
3 96 R MYP 2.530199698 
1 96 NR MYP 0.1 
2 96 NR MYP 0.1 
3 96 NR MYP 0.477121255 
1 96 0 MYP 5.423245874 
2 96 0 MYP 2.40654018 
3 96 0 MYP 2.540329475 
1 96 N0 MYP 1.556302501 
2 96 N0 MYP 1.041392685 
3 96 N0 MYP 0.602059991 
1 96 2 MYP 2.276461804 
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2 96 2 MYP 2.606381365 
3 96 2 MYP 2.517195898 
1 96 N2 MYP . 
2 96 N2 MYP 0.301029996 
3 96 N2 MYP 0.77815125 
1 96 4 MYP 2.602059991 
2 96 4 MYP 2.77815125 
3 96 4 MYP 3.011570444 
1 96 N4 MYP 1.230448921 
2 96 N4 MYP 0.477121255 
3 96 N4 MYP 0.903089987 
1 96 T MYP 2.324282455 
2 96 T MYP . 
3 96 T MYP 1.919078092 
1 0 R MPN 3.380211242 
2 0 R MPN 3.322219295 
3 0 R MPN 3.380211242 
1 0 NR MPN 3.380211242 
2 0 NR MPN 4.041392685 
3 0 NR MPN 4.079181246 
1 0 0 MPN 2.361727836 
2 0 0 MPN 3.662757832 
3 0 0 MPN 1.968482949 
1 0 N0 MPN 1.963787827 
2 0 N0 MPN 2.380211242 
3 0 N0 MPN 2.579783597 
1 0 2 MPN 3.380211242 
2 0 2 MPN 2.380211242 
3 0 2 MPN 3.380211242 
1 0 N2 MPN 0.1 
2 0 N2 MPN 2.662757832 
3 0 N2 MPN 2.662757832 
1 0 4 MPN 3.380211242 
2 0 4 MPN 3.041392685 
3 0 4 MPN 4.041392685 
1 0 N4 MPN 0.1 
2 0 N4 MPN 2.380211242 
3 0 N4 MPN 2.662757832 
1 0 T MPN 0.1 
2 0 T MPN 1.477121255 
3 0 T MPN 1.556302501 
1 48 R MPN 3.380211242 
2 48 R MPN 3.662757832 
3 48 R MPN 3.041392685 
1 48 NR MPN 3.380211242 
2 48 NR MPN 4.041392685 
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3 48 NR MPN 2.380211242 
1 48 0 MPN 2.633468456 
2 48 0 MPN 2.380211242 
3 48 0 MPN 3.380211242 
1 48 N0 MPN 2.361727836 
2 48 N0 MPN 1.176091259 
3 48 N0 MPN 2.146128036 
1 48 2 MPN 3.380211242 
2 48 2 MPN 3.041392685 
3 48 2 MPN 3 
1 48 N2 MPN 1.556302501 
2 48 N2 MPN 1.968482949 
3 48 N2 MPN 1.633468456 
1 48 4 MPN 3.380211242 
2 48 4 MPN 3.380211242 
3 48 4 MPN 2.662757832 
1 48 N4 MPN 1.556302501 
2 48 N4 MPN 2.176091259 
3 48 N4 MPN 1.968482949 
1 48 T MPN 1.963787827 
2 48 T MPN 0.1 
3 48 T MPN 1.544068044 
1 96 R MPN 3.662757832 
2 96 R MPN 4.041392685 
3 96 R MPN 3.041392685 
1 96 NR MPN 2.968482949 
2 96 NR MPN 4.041392685 
3 96 NR MPN 3.041392685 
1 96 0 MPN 3.380211242 
2 96 0 MPN 2.662757832 
3 96 0 MPN 2.380211242 
1 96 N0 MPN 3.380211242 
2 96 N0 MPN 3.041392685 
3 96 N0 MPN 1.176091259 
1 96 2 MPN 3.662757832 
2 96 2 MPN 3.041392685 
3 96 2 MPN 3.041392685 
1 96 N2 MPN 1.556302501 
2 96 N2 MPN 1.633468456 
3 96 N2 MPN 1.633468456 
1 96 4 MPN 3.662757832 
2 96 4 MPN 4.041392685 
3 96 4 MPN 3.041392685 
1 96 N4 MPN 1.963787827 
2 96 N4 MPN 2.176091259 
3 96 N4 MPN 2.380211242 
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1 96 T MPN 2.361727836 
2 96 T MPN 0.1 
3 96 T MPN 1.62324929 
; 
run; 
proc glm data=Labels; 
class Sample Time Milk Media; 
model logcfu=Milk Media; 
run; 
proc mixed data=Labels; 
class Sample Time Milk Media; 
model logcfu=Milk Media Milk*Media; 
lsmeans Milk Media Milk*Media/pdiff; 
run; 
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