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Abstract

This dissertation consists of three essays on product quality in commercial aviation. Since

the mid-1990s, major airlines that serve the U.S. domestic market have increasingly found it

appealing to form alliances. Amidst the recent emergence of airline alliance formation, this

dissertation has sought to answer questions on the product quality implications of policies

regarding cooperation among airlines in the U.S. domestic air travel industry. A challenge

that empirical work faces in studying the relationship between airline alliances and product

quality is to find reasonable measure(s) of product quality.

The first essay sheds light on whether the route network integration that comes with an

airline alliance provides sufficient extra incentive to partner carriers to improve their flight

routing quality. Evidence suggests that routing quality for Delta/Continental/Northwest’s—

our alliance of interest—products decreases in markets where pre-alliance competition among

alliance partners exists, resulting in substantial negative welfare effects for passengers. In

fact, routing quality for Delta/Continental/Northwest products decreased by 0.256% below

the mean routing quality of the entire sample’s products. More interestingly, the codeshare

effects in specific markets where the alliance firms competed prior to the alliance, are also

negatively associated with routing quality of the alliance firms’ products, resulting in a fall

in consumer utility of $0.5 per consumer.

The second essay explores the potential relationship between on-time performance and

airline code-sharing. Although flight delay has always received much attention, we are

unaware of any empirical research that measures the on-time performance effects of airline

alliances. We empirically investigate the on-time performance effects of the largest U.S.

domestic alliance that began in June 2003—an alliance between Delta Air Lines, Northwest

Airlines and Continental Airlines. We find evidence that code-sharing improves alliance



partners’ on-time performance and that the size of the alliance effect on on-time performance

depends on pre-alliance competition in a market, with the effect being larger in markets

where the partners competed in prior to the alliance.

Using a structural econometric model, the third essay attempts to provide an alternative

explanation to a long-standing question: why are airlines late? Airlines usually claim that

air travel delays are out of their control, placing the blame on adverse weather or air traffic

control as the most common reasons. Despite these claims, data on causes of flight delay

reveal that the share of delay caused by weather and air traffic control has been on the

decline while the share of delay caused by airlines has been on the rise. This suggests that

on-time performance improvement is well within the reach of carriers. We investigate why

airlines have little or no incentive to improve on-time performance. We also measure the

cost of delay borne by consumers in terms of how much monetary value they are willing to

pay to avoid delay. We find that consumers are willing to pay $0.78 for every minute of

arrival delay which after extrapolation, amounts to consumer welfare effects of $1.76 billion.

Our findings suggest that airlines have little to no incentive because their markups do not

increase when they improve on-time performance. In fact, the marginal increase in price

resulting from on-time performance improvement is offset by an increase in marginal cost

causing a zero net effect on markup.
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Chapter 1

Airline Alliance and Product Quality:

The Case of the U.S. Domestic

Airline Industry

1.1 Introduction

Airline alliance formation has a long history in the international air travel market and has

been hailed by some economists for providing airlines with the opportunity to extend their

networks overseas when the alliance agreement is entered with a foreign airline (Pels, 2001;

Brueckner and Whalen, 2000). Airline alliance partners in international air travel link up

their existing complementary networks and build a new network providing an interlining

service to their passengers1. Park (1997) and Hassin and Shy (2004), among others, show

that alliance formations on these kinds of networks are welfare improving.

However, unlike international aviation, alliance formation in the U.S. domestic air travel

market may involve parallel or overlapping networks. In this instance, the cooperation

between alliance partners encompasses markets in which they actually compete. These

1Park (1997)
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overlapping markets have been a source of concern for policy analysts. They argue that

cooperation in these markets is likely to reduce the competitive pressure on the alliance

partners, and therefore curbs the incentive to improve product quality.

The objective of this paper is to estimate the product quality effects of an airline al-

liance, particularly in markets the partners competed prior to the alliance formation. The

literature on airline alliances is vast, spanning from why they exist2 to how they affect prices

(Brueckner and Whalen, 2000; Zou et al., 2011), costs (Gayle and Le, 2013; Goh and Yong,

2006) and market entry (Gayle and Xie, 2014; Lin, 2008). However, questions on potential

product quality effects of airline alliances remained unanswered. This is surprising given

the increasing customer’s awareness of service quality in air travel. Perhaps, this vacuum

results from the difficulty to find a reasonable measure of service/product quality. From

a passenger’s viewpoint, service quality entails a combination of various attributes, some

of which are tangible and others intangible or subjective. These subjective attributes are

difficult to measure since every individual passenger might have a wide range of percep-

tions vis-à-vis service quality. In this paper, we examine the relationship between airline

alliance and product quality by empirically investigating the Delta/Northwest/Continental

codeshare alliance.

1.2 Delta/Northwest/Continental Codeshare Alliance

The codeshare alliance between Delta Air Lines, Northwest Airlines and Continental Air-

lines of August 23, 2003 represented the largest domestic codeshare agreement ever approved

in the United States. This agreement involves code sharing, reciprocal frequent-flyer pro-

grams and reciprocal access to airport lounges. In a press release on the alliance, the U.S.

Department of Justice (DoJ) believed that:

2Among others, Tarola (2007) argue that airline alliances in the U.S. soared over the years because of
the increased competition from low-cost carriers, following the Airline Deregulation Act of 1978.

2



“The codeshare agreement could result in lower fares and better service for passengers”3

However, it is worth mentioning that this approval came with some strings attached

due to some anti-competitive concerns expressed by the U.S. Department of Transporta-

tion (DoT). First, regulators worry about the large number of markets in which potential

partners’ service overlap since these carriers are direct competitors on some segments of

their respective networks that overlap. Thus, an alliance between them, which often re-

quires optimal integration of their route networks may involve collusion (explicit or tacit)

on prices and/or service levels in the partners’ overlapping markets. A review of the pro-

posed alliance by the DoT shows that the three airlines’ service overlap in 3,214 markets,

accounting for approximately 58 million annual passengers. This large number of overlap-

ping markets contrasts vividly to the next largest alliance at that time, between United

Airlines and US Airways with overlapping service in only 543 markets, accounting for 15.1

million annual passengers. Secondly, the combined market share of the three airlines at the

time of the proposed alliance, was 35 percent—18 percent for Northwest and Continental

combined, and 17 percent for Delta—measured by domestic revenue passenger miles. Again,

this seems substantial when compared to the 23 percent market share of the United/US Air-

ways alliance. The above two main concerns prompted the DoT to impose some conditions

meant to limit potential collusion, size of market presence, joint marketing efforts that could

prevent competition from other carriers, hoarding of airport facilities, and crowding-out of

other airlines from computer reservation system displays4.

On a separate evaluation, the DoJ banned any conduct the alliance carriers could use

to collude on fares or otherwise reduce competition among themselves. Specifically, the

carriers are forbidden from code sharing on each other’s flights wherever they offer compet-

ing nonstop service, such as service between their hubs. The carriers are also required to

continue to act independently when setting award levels or other benefits of their respec-

3U.S. Department of Justice (2003). ”Department of Justice Approves Northwest/Continental/Delta
Marketing Alliance with Conditions.” www.justice.gov/atr/public/press releases/2003/200645.htm

4U.S. Department of Transportation (2003). ”Review Under 49 U.S.C. 41720 of Delta, Northwest,
Continental Agreements.” www.gpo.gov/fdsys/pkg/FR-2003-03-06/pdf/03-5450.pdf
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tive frequent-flier programs. Although the DoJ anticipated lower fares as a result of the

codeshare agreement, it is difficult to predict what would happen to product quality.

1.3 Measuring Airline Product Quality

To examine the relationship between airline alliance formation and product quality, it is

essential to find a reasonable measure of product quality. Product quality is like beauty

in the eyes of the beholder and hence a matter of perception (Rhoades and Waguespack,

2004). As such, its measurement constitutes a challenge for empirical work. One measure of

quality used by airline carriers is quality ratings. However, most quality ratings in the air-

line industry are based on subjective surveys about consumer opinions5 and consumers are

usually asked to evaluate the sum of all service interactions with a specific airline. Nonethe-

less, when an airline alliance is involved, things get more complex since an airline alliance’s

services are not an individual service activity but rather a group activity characterized by a

set of service complexities (Janawade, 2011). Hence, it is assumed that service complexities

in an airline alliance context, can be difficult to define and measure. This issue can be well

understood, when passengers book flights from one airline, but might experience services

from a partner airline (Janawade, 2011).

The literature on the quality effects of airline alliances is very limited. In this vein, Tsan-

toulis and Palmer (2008) look at service quality effects of a co-brand alliance. Their measure

of service quality is based on an index constructed using some technical and functional as-

pects of quality. In their paper, the choice of these technical and functional components

to include in the index, and their relative weighting, was informed by a panel of so-called

experts. Goh and Uncles (2003), on the other hand, carry out an empirical study of the

perceptions that business travelers have of the benefits of global alliances. To measure qual-

5Some studies have used the SERVQUAL service quality model. This entails the use of a questionnaire
that measures both the customer expectations of service quality in terms of five quality dimensions, and
their perceptions of the service they receive. When customer expectations are greater than their perceptions
of received delivery, service quality is deemed low.
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ity, they use a cross-sectional self-completion survey that was administered to a sample of

Australian business travelers.

Tiernan et al. (2008) investigate the service quality of E.U. and U.S. members of main air-

line alliances. They consider three measures of airline service quality: on-time flight arrival

percentage, percentage of flights not canceled and percentage of passengers filing baggage

reports (bags lost, damaged, delayed or pilfered). Their examination of the international

airline alliances indicates no significant differences in the quality of service indicators.

Unlike other measures of quality in airline alliance studies, which are based on a sub-

jective approach, our measure of air travel product quality is typically constructed using

itinerary distance data. Following Chen and Gayle (2013), we refer to this measure as Rout-

ing Quality which is defined as the ratio of nonstop fight distance to the product’s itinerary

fight distance used to get passengers from the origin to destination. Distance-based mea-

sure for product quality has been used by some studies.6 These studies used this measure

as a proxy for itinerary convenience/inconvenience. Based on our routing quality measure,

a nonstop flight between the origin and destination will have the shortest itinerary flight

distance. Hence, air travel products that require intermediate airport stop(s) that are not

on a straight path between the origin and destination, will have an itinerary flight distance

that is longer than the nonstop flight distance. Our rationale for choosing this measure is

that the greater the itinerary flight distance of an intermediate stop product relative to the

nonstop flight distance, the lower the routing quality of this intermediate stop product. A

limitation with our measure of routing quality is that it does not capture any delays the

passenger may have experienced.

6See Reiss and Spiller (1989), Borenstein (1989), Ito and Lee (2007), Färe et al. (2007) and Gayle (2007,
2013)
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1.4 Definitions and Data

1.4.1 Definitions

A market is a directional, round-trip air travel between an origin city and a destination city

during a specific time period. By directional, we mean that a round-trip air travel from

Miami to Las Vegas is a distinct market from a round-trip air travel from Las Vegas to

Miami. This directional definition of a market controls for origin city fixed effects that may

influence market demand (Berry et al., 2006; Gayle, 2007). An itinerary, which also refers

to a ticket, is a planned route from an origin city to a destination city.

An itinerary comprises one or more flight coupons, each coupon typically representing

travel on a particular flight segment between two airports. Each flight itinerary has, by

definition, a single ticketing/marketing carrier (the airline that issues and sells the ticket

for the seat) and one or more operating carriers (the airline whose aircraft and crew are

used to operate the flight). An air travel product is defined as a unique combination of

ticketing carrier, operating carrier(s) and itinerary. Following Gayle (2008) and Ito and Lee

(2007), we focus on three types of air travel products: pure online; traditional codeshare;

and virtual codeshare. Figure 1.1 depicts a pure online air travel product using an itinerary

that requires travel from Miami (MIA) to Las Vegas (LAS) with one intermediate stop

in Dallas (DFW). Thus, for a pure online product, the same airline is the ticketing and

operating carrier on all segments of the trip. In Figure 1.1, the itinerary is marketed by

Delta Air Lines and both segments of the itinerary are also operated by Delta Air Lines.

Figure 1.1: Pure Online Product
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An air travel product is said to be code-shared if the operating and ticketing carriers

for that itinerary differ. In this case, we consider two types of codeshare products: (1)

traditional codeshare; and (2) virtual codeshare. We define a traditional codeshare product

as one having a single ticketing carrier, but multiple operating carriers, one of which is the

ticketing carrier.

Figure 1.2 shows an illustration of a traditional codeshare air travel product for an

itinerary that requires travel from Miami (MIA) to Las Vegas (LAS) with one intermediate

stop in Dallas (DFW). Delta Air Lines is the ticketing/marketing carrier for both segments

and only operates the first leg of the itinerary (Miami to Dallas), while Northwest Airlines

operates the Dallas-Las Vegas segment.

Figure 1.2: Traditional Codeshare Product

A virtual codeshare air travel product is defined as having the same operating carrier for

all segments of the itinerary, however the ticketing carrier is different from the operating

carrier. An illustration of a virtual codeshare product is shown in Figure 1.3 with an

itinerary that requires travel from Miami (MIA) to Las Vegas (LAS) with one intermediate

stop in Dallas (DFW). The connecting itinerary is entirely operated by Northwest Airlines

but solely marketed by Delta Air Lines.

1.4.2 Data

We use data from the Airline Origin and Destination Survey (DB1B) collected by the Office

of Airline Information of the Bureau of Transportation Statistics. The data are quarterly
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Figure 1.3: Virtual Codeshare Product

and represent a 10 percent sample of airline tickets from reporting carriers. A record in

this survey represents a flight itinerary. Each record or itinerary contains information on;

(i) the identities of origin, destination, and intermediate stop(s) airports on an itinerary;

(ii) the identities of ticketing and operating carriers on the itinerary; (iii) the price of

the ticket; (iv) the number of passengers who bought the ticket at that price; (v) total

itinerary distance flown from origin to destination; and (vi) the nonstop distance between

the origin and destination. The DB1B data does not include passenger-specific information,

that would facilitate the estimation of a richer demand model than the one we use based on

available data. Also missing, is information on ticket restrictions such as advance-purchase

and length-of-stay requirements. Given that the Delta/Northwest/Continental alliance was

formed in August of 2003, the third and fourth quarters of 2002 represent the pre-alliance

period whereas the third and fourth quarters of 2004 represent the post-alliance period7.

The raw DB1B data set contains millions of itineraries for each quarter. For example, the

third quarter of 2002 consists of 7,759,221 observations. In order to construct our data set,

we place some restrictions on the raw data. First, we restrict our analysis to U.S. domestic

flights operated by U.S. domestic carriers. Second, we only consider, passengers purchasing

round-trip, coach class tickets. Third, inflation-adjusted fares less than $25 or greater than

$2,000 are excluded. Excluding real fares that are too low gets rid of discounted fares that

may be due to passengers using their frequent-flier miles to offset the full price of the trip or

employee travel tickets. Similarly, excluding fares that are too high gets rid of first-class or

7Using data from the same quarters for both years will control for potential seasonal effects in demand.
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business-class tickets. Fourth, we also limit our analysis to air travel products possessing at

least 9 passengers per quarter to exclude products that are not part of the regular offerings

by an airline. Fifth, we restrict our analysis to itineraries with the following characteristics:

(i) within the 48 states in U.S. mainland; (ii) no more than two intermediate stops; and

(iii) with a single ticketing carrier.

Finally, in the spirit of Aguirregabiria and Ho (2012), the selection of markets focuses

on air travel amongst the 65 largest U.S. cities. The size of these cities is based on the

Census Bureau’s Population Estimates Program (PEP), which produces estimates of U.S.

population. Data are drawn from the category “Cities and Towns.” We use the size of

population in the origin city as a proxy for potential market size. We group cities that

belong to the same metropolitan areas and share the same airport. Table 1.1 presents a

list of the cities and corresponding airport groupings. Given that there are often multiple

records for the same itinerary because different passengers paid different prices, we construct

the price and quantity variables by averaging the airfares and aggregating the number of

passengers, respectively, based on our product definition, and then collapse the data by

product. Therefore, in the collapsed dataSET that we use for analyses, a product appears

only once during a given time period. Our final working data set includes a total of 55

metropolitan areas (“cities”) and 63 airports representing 153,794 air travel products bought

by over 22.8 million passengers across 11, 534 different directional city-pair markets.

Table 1.2 presents pre- and post-alliance service levels (number of passengers). While

service levels decreased for some carriers, Delta, Northwest and Continental actually experi-

enced an increase in service levels of 4.8 percent, 15.87 percent and 64.69 percent respectively

over the pre-post alliance periods.
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Table 1.1: Cities, airports and population
City, State Airports City Population

2002 2004
New York1 LGA, JFK, EWR 8,606,988 8,682,908
Los, Angeles, CA LAX, BUR 3,786,010 3,796,018
Chicago, IL ORD, MDW 2,886,634 2,848,996
Dallas, TX2 DAL, DFW 2,362,046 2,439,703
Houston, TX HOU, IAH, EFD 2,002,144 2,058,645
Phoenix, AZ3 PHX 1,951,642 2,032,803
Philadelphia, PA PHL 1,486,712 1,514,658
San Antonio, TX SAT 1,192,591 1,239,011
San Diego, CA SAN 1,251,808 1,274,878
San Jose, CA SJC 896,076 901,283
Denver-Aurora, CO DEN 841,722 848,227
Detroit, MI DTW 922,727 924,016
San Francisco, CA SFO 761,983 773,284
Jacksonville, FL JAX 758,513 778,078
Indianapolis, IN IND 783,028 787,198
Austin, TX AUS 671,486 696,384
Columbus, OH CMH 723,246 735,971
Charlotte, NC CLT 577,191 614,446
Memphis, TN MEM 674,478 681,573
Minneapolis-St. Paul, MN MSP 660,771 653,872
Boston, MA BOS 585,366 607,367
Baltimore, MD BWI 636,141 641,004
Raleigh-Durham, NC RDU 503,524 534,599
El Paso, TX ELP 574,337 582,952
Seattle, WA SEA 570,166 570,961
Nashville, TN BNA 544,375 570,068
Milwaukee, WI MKE 589,975 601,081
Washington, DC DCA, IAD 564,643 579,796
Las Vegas, NV LAS 506,695 534,168
Louisville, KY SDF 553,049 558,389
Portland, OR PDX 537,752 533,120
Oklahoma City, OK OKC 518,516 526,939
Tucson, AZ TUS 501,332 517,246
Atlanta, GA ATL 419,476 468,839
Albuquerque, NM ABQ 464,178 486,319
Kansas City, MO MCI 443,390 458,618
Sacramento, CA SMF 433,801 446,295
Long Beach, CA LGB 470,398 470,620
Omaha, NE OMA 399,081 426,549
Miami, FL MIA 371,953 378,946
Cleveland, OH CLE 468,126 455,798
Oakland, CA OAK 401,348 394,433
Colorado Springs, CO COS 369,945 388,097
Tulsa, OK TUL 390,991 382,709
Wichita, KS ICT 354,306 353,292
St. Louis, MO STL 347,252 350,705
New Orleans, LA MSY 472,540 461,915
Tampa, FL TPA 315,151 320,713
Santa Ana, CA SNA 341,411 339,319
Cincinnati, OH CVG 322,278 331,717
Pittsburg, PA PIT 327,652 320,394
Lexington, KY LEX 262,706 274,581
Buffalo, NY BUF 287,469 281,757
Norfolk, VA ORF 238,343 241,979
Ontario, CA ONT 164,734 168,068
1 New York-Newark-Jersey
2 Dallas-Arlington-Fort Worth-Plano, TX
3 Phoenix-Temple-Mesa, AZ
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Table 1.2: Airlines # of passengers pre- and post-alliance

Code Airline # of Passengers
2002

Q3-Q4
2004

Q3-Q4

AA American Airlines(a) 1,931,322 1,938,342
AQ Aloha Air Cargo 1,909,012 1,784
AS Alaska Airlines(a) 1,491,700 334,158
B6 JetBlue Airways 1,441,918 219,431
CO Continental Air Lines(a) 877,425 919,919
DL Delta Air Lines(a) 839,691 1,382,877
F9 Frontier Airlines(a) 737,908 252,340
FL AirTran Airways(a) 723,832 233,486
G4 Allegiant Air 327,628 6,070
HA Hawaiian Airlines 194,920 –
HP America West Airlines 151,134 789,576
N7 National Airlines 130,970 –
NJ Vanguard Airlines 99,145 –
NK Spirit Air Lines 72,343 40,370
NW Northwest Airlines(a) 53,305 899,116
QX Horizon Air 47,506 –
RP Chautauqua Airlines 12,008 –
SM Sunworld International Airlines 11,631 –
SY Sun Country Airlines 4,126 31,272
TZ ATA Airlines(a) 2,272 251,231
UA United Air Lines(a) 600 1,583,078
US US Airways(a) 334 704,561
WN Southwest Airlines 287 2,090,517
YX Midwest Airlines 32 92,513

Total 11,061,049 11,770,641

Note: All carriers offer pure online itinerary

(a) Carrier is involved in codeshare product

Table 1.3 shows that among the airlines offering a codeshare products, Delta, Northwest

and Continental account for a whopping 38.91 percent of all codeshare products in our

sample.

Table 1.4 reports the number of codeshare tickets sold by type. It shows that 58.18

percent of Delta codeshare products are virtual in nature. Virtual codeshare tickets represent

85.60 percent and 76.91 percent of Northwest and Continental codeshare product offerings
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Table 1.3: Airlines Involved in Codeshare Products

Code Airline
% of codeshare
products

UA United Air Lines 26.64
NW Northwest Airlines 21.21
US US Airways 19.28
CO Continental Air Lines 14.96
AA American Airlines 5.70
AS Alaska Airlines 3.89
TZ ATA Airlines 3.64
DL Delta Air Lines 2.74
FL AirTran Airways 1.86
F9 Frontier Airlines 0.08

100.00

Table 1.4: Frequency of Codeshare Tickets

Code Airline Number of tickets
%

virtual
Traditional Virtual Total

UA United Air Lines 528 1,076 1,604 67.08
NW Northwest Airlines 184 1,093 1,277 85.60
US US Airways 196 965 1,161 83.12
CO Continental Air Lines 208 693 901 76.91
AA American Airlines 221 122 343 35.57
AS Alaska Airlines 77 157 234 67.09
ATA ATA Airlines 205 14 219 6.39
DL Delta Air Lines 69 96 165 58.18
FL AirTran Airways 102 10 112 8.93
F9 Frontier Airlines 0 5 5 100.00

Total 1,790 4,231 6,021

Note: Data are from the third and fourth quarters of 2002 and 2004, U.S. Bureau of Transporta-

tion Statistics DB1B database. Data include round-trip, coach-class tickets with less than three

intermediate stops per itinerary.

respectively. In Table 1.5, we summarize our data according to the three types of air travel

product groupings described in Section 1.4.1. We denote a connection between two flights

with an arrow. For example, DL/DL→ DL/DL denotes a connecting itinerary between two
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Table 1.5: Classification of Cooperative Agreements in Data Set

Observations Passengers
Product Classification Example Frequency Percent Frequency Percent

1. Pure online DL/DL → DL/DL 147,773 96.09 22,603,001 98.99
2. Virtual codeshare DL/NW → DL/NW 4,231 2.75 177,286 0.78
3. Traditional codeshare DL/DL → DL/NW 1,790 1.16 51,403 0.23

Total 153,794 100.00 22,831,690 100.00

Note: Data are from the third and fourth quarters of 2002 and 2004, U.S. Bureau of Transportation Statistics DB1B database. Data

include round-trip, coach-class tickets with less than three intermediate stops per itinerary. Examples denote connecting itineraries

between marketing carrier i.e. Delta (DL) and operating carrier(s)—DL and NW.

flights in which both the marketing and operating carrier is Delta Air Lines.

Likewise, DL/NW → DL/NW denotes a connecting itinerary where both segments are

marketed by Delta and both segments operated by NW. Finally DL/DL→ DL/NW denotes

a connecting itinerary between two flights in which the marketing carrier for both segments

is Delta which also operates the first leg of the trip and NW operates the second segment

of the trip.

Our working sample shows that, of the 153,794 itineraries, close to 4 percent—accounting

for .23 million passengers—involve at least one code-shared segment. Table 1.5 shows that

the overwhelming majority of passengers—about 99 percent—in our sample travel on pure

online itineraries. This is expected and consistent with the literature8 since whenever an

operating carrier is involved in a virtual code-shared product with a given ticketing carrier

in a market, the same ticketing carrier is probably offering its own pure online product in

the same market. Importantly, we observe that among code-shared itineraries, virtual code

sharing is twice more prevalent than traditional code sharing.

Figure 1.4 shows the increase in code sharing activity over the sample time span, third

and fourth quarters of 2002 and 2004, and consistent with Tables 1.4 and 1.5, airline carriers

show an apparent inclination to engage more in virtual as opposed to traditional code

8See Ito and Lee (2007)
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sharing.

Figure 1.4: Frequency of Domestic Codeshare Tickets, 2002:Q3-Q4 and 2004:Q3-Q4

Table 1.6 presents the summary statistics for variables used in our demand estimation.

The price variable is measured in constant year 1999 U.S. dollars. The Origin Presence

variable represents the number of cities an airline serves from any given origin city with

direct origin-destination flights. Thus, on average, airlines serve approximately 28 distinct

cities with direct flights from the market origin city. We describe the rest of the variables

in Table 1.7 and in the demand model section (1.5.1).

1.5 The Model

Air travel demand is specified based on a discrete choice framework. The estimation of air

travel demand is of particular interest since it permits us to confirm whether consumers’

choice behavior is consistent with our presumption that the better the routing quality, the
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Table 1.6: Summary Statistics

Variable Mean Std. Dev. Min Max

Price(a) 162.36 59.5342 27.11 1,593.51
Quantity 148.4563 457.616 9 12,349
Observed Product Share .000221 .00085 1.04e-06 .0482414
Origin presence 28.0691 26.9782 0 145
Destination presence 28.0480 26.9259 0 146
Nonstop (dummy variable) .150 .357 0 1
Itinerary distance flown (miles)(b) 1,542.992 701.483 67 4,084
Nonstop flight distance (miles) 1,364.168 653.058 67 2,724
Routing Quality(c) .8853 .1291 .3388 1
Traditional Codeshare .012 .107 0 1
Virtual Codeshare .028 .164 0 1
Pure Online 0.96 0.194 0 1
N comp nonstop 2.367 2.575 0 21
N comp connect 15.092 12.407 0 96

Number of Products 153,794
Number of Markets(d) 11,534
(a) Adjusted for inflation

(b) Reported as “market miles flown” in the DB1B database

(c) Defined as the ratio of non-stop distance to itinerary distance

(d) A market is an origin-destination-time period combination

more desirable the itinerary to the passenger. Following Chen and Gayle (2013), we estimate

pre-alliance cross-price elasticities of demand between any pair of the three alliance partners

in markets where they directly competed. These cross-price elasticities gauge the pre-alliance

competition intensity among the alliance partners in various markets. We later estimate a

reduced-form regression of routing quality to identify the alliance routing quality effects.

1.5.1 Demand

The nested logit model is used to specify air travel demand. Here, a typical passenger i

may either buy one of J products (air travel products), j = 1, . . . , J or otherwise choose the

outside good 0 (j = 0), for example driving or using another transportation means. Thus,
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passenger i makes a choice among Jmt + 1 alternatives in market m during time period

t. The nested logit model classifies products into G groups, and one additional group for

the outside good. Therefore, products are organized into G + 1 mutually exclusive groups.

Figure 1.5 illustrates the choice set faced by a typical passenger. Note that a group is a set

of products offered by an airline within a market.

Figure 1.5: The Choice Set

The passenger solves the following utility maximization problem:

Max
j∈{0,1,··· ,Jmt}

Uijmt = δjmt + σςimtg + (1− σ)εijmt (1.1)

δjmt = xjmtβ + αpjmt + ηj + υt + originm + destm + ξjmt (1.2)

where Uijmt is passenger i’s utility from choosing product j; δjmt is the mean level of utility

across passengers that choose product j; ςimtg represents a random component of utility

common across all products within the same group; εijmt is an independently and identically

distributed (across products, consumers, markets and time) random error term assumed to

have an extreme value distribution.

In Equation (1.2), xjmt represents a vector of observed non-price product characteristics

described below; pjmt is the price; ηj captures airline-specific fixed effects; υt captures time

period fixed effects; originm and destm are origin and destination city fixed effects and
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ξjmt, the unobserved (by the researcher) component of product characteristics that affects

consumer utility.

The vector xjmt includes Routing Quality9, Origin Presence, which is a measure of

the size of an airlines airport presence, product-level zero-one codeshare dummy variables

(traditional and virtual codeshare) and a zero-one dummy variable that equals to unity only

if the product uses a nonstop flight to get passengers from the origin to destination. The

origin city presence variable is measured by the number of different cities an airline provides

service to using nonstop flights from the relevant market origin to destination cities.

The vector β measures the passenger’s marginal utilities associated with the product

characteristics. The parameter α captures the marginal utility of price. The parameter

σ lies between 0 and 1 and measures the correlation of consumer utility across products

belonging to the same airline. The correlation of preferences increases as σ approaches 1.

In the case where σ is equal to 0, the model collapses to the standard logit model where

products compete symmetrically. For notational convenience, we drop the market and time

subscripts to complete the derivation of the model.

Let there be Gg products in group g. If product j is in group g, then the conditional

probability of choosing product j given that group g is chosen, is given by:

Sj/g =
e(1−σ)

−1δj

Dg

where, Dg =
∑
j∈Gg

e(1−σ)
−1δj (1.3)

The probability of choosing group g or group g’s predicted share is given by:

Sg =
D1−σ
g

D1−σ
0 +

∑G
g=1D

1−σ
g

(1.4)

The outside good is the only good in group 0. Therefore, D1−σ
0 = eδ0 . We normalize

9Note that including Routing Quality in our demand model is paramount since a positive estimate on
this variable would empirically validate that consumers’ choice behavior is consistent with the fact that
better routing quality is associated with a more desirable itinerary.
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the mean utility of the outside good to zero. This implies D1−σ
0 = 1. Equation (1.4) can be

rewritten as:

Sg =
D1−σ
g

1 +
∑G

g=1D
1−σ
g

(1.5)

The unconditional probability of choosing product j or the market share of product j is:

Sj = Sj/g × Sg =
e(1−σ)

−1δj

Dg

×
D1−σ
g

1 +
∑G

g=1D
1−σ
g

or Sj =
e(1−σ)

−1δj

Dσ
g

[
1 +

∑G
g=1D

1−σ
g

] (1.6)

Therefore, the demand for product j is given by:

dj = M × Sj(x,p, ξ;α, β, σ) (1.7)

where M is a measure of market size—the population in the origin city. The predicted

market share of product j is Sj while x, p and ξ are vectors of observed non-price product

characteristics, price, and the unobserved vector of product characteristics. α, β and σ are

parameters to be estimated. The estimation strategy of the demand parameters (α, β, σ)

is such that the observed market shares Sjmt are equal to the market shares predicted by

the model Sjmt. Empirical industrial organization shows that the model presented above

results in a linear equation:

ln(Sjmt)− ln(S0mt) = xjmtβ−αpjmt +σln(Sjmt/g) + ηj + υt + originm + destm + ξjmt (1.8)

where Sjmt is the observed within group share of product j computed from the data by

Sjmt =
qjmt

M
where qjmt is the quantity of air travel product j sold and M is the population

of the origin city. S0mt = 1−
∑

j∈Jm Sjmt is the observed share of the outside good. Sjmt/g
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is the observed within-group share of product j and the other variables are described as

in equation (1.2). Equation (1.8) can be estimated using Two Stage Least Squares (2SLS)

since price pjmt and Sjmt/g are endogenous.

The instruments we use for the 2SLS estimation are: (1) number of competitors’ products

in the market; (2) number of competing products offered by other airlines with an equivalent

number of intermediate stops; (3) number of other products offered by an airline in a

market; and (4) average number of intermediate stops across products offered by an airline

in a market. The rationale for using these instruments is discussed in Gayle (2007, 2013)

Instruments (1) - (3) are motivated by supply theory, which predicts that a product’s price

and within-group product share are affected by changes in its markup. Instruments (1) and

(2) capture the degree of competition facing a product, which in turn affects the size of a

product’s markup. The use of instrument (3) is justified by the fact that, all else constant,

as an airline offers more substitute products in a given market, the more capable the airline

is to charge a higher markup on each of these products. The intuition for instrument (4) is

as follows. Since we are using the nested logit demand model, we group products by airline.

So, instrument (4) is likely to be correlated with the within group share because passengers

may prefer a set of products offered by a particular airline to other airlines’ products owing

to differences in number of intermediate stops associated with the products.

1.5.2 Routing Quality Equation

To evaluate the effects of the Delta/Northwest/Continental alliance on the routing quality of

the alliance firms’ products, we use a reduced-form regression of Routing Quality. Possible

alliance effects on routing quality are identified using a difference-in-differences strategy.

This strategy enables us to compare pre-post alliance periods’ changes in routing quality

of products offered by the alliance firms, relative to changes in routing quality of products

offered by non-alliance firms over the same pre-post alliance periods. Given that the alliance
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was formed in August 2003, we use the third and fourth quarters of 2002 as the pre-alliance

period while the third and fourth quarters of 2004 are used as the post-alliance period.

The empirical model specification in equation (1.9) is similar to that used by Chen and

Gayle (2013)10 .The baseline reduced-form specification of the Routing Quality equation is

as follows and variables are defined in Table 1.7:

Routing Qualityjmt =

θ0 + θ1OriginPresencejmt + θ2DestinationPresencejmt

+θ3NonStopF lightDistancejmt + θ4N comp connectjmt

+θ5N comp nonstopjmt + θ6T
dnc
t + θ7DNCjmt + θ8T

dnc
t ×DNCjmt

+ηj + υt + originm + destm + µjmt
(1.9)

In equation (1.9), while the presence variables are supposed to control for the size of an

airline’s presence at the endpoint airports of the market, the NonStopF lightDistance vari-

able controls for the effect of distance between the origin and destination. N comp connect

and N comp nonstop are used to control for the level of product-type-specific competition

faced by a given product in a market.

The coefficient on T dnct in equation (1.9), θ6, explains how routing quality of products

offered by airlines other than Delta, Northwest or Continental changes over the DL/NW/CO

pre-post alliance periods. θ7, which is the coefficient on DNCjmt, tells us whether the routing

quality of Delta, Northwest or Continental products systematically differs from the routing

quality of products offered by other airlines. θ8, the coefficient on the interaction variable

T dnct ×DNCjmt, identifies whether routing quality of products offered by any of the alliance

carriers changed differently relative to routing quality changes of products offered by other

airlines over the DL/NW/CO pre- and post-alliance periods. Thus, θ8 captures changes in

routing quality in DL/NW/CO products due to the alliance.

10They used this model specification to identify merger quality effects. Furthermore, using almost identical
specifications to Chen and Gayle (2013) makes it easy to the reader to compare results across papers
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Table 1.7: Description of Routing Quality Determinants

Variable Definition

Routing quality Itinerary’s direct distance divided by the travel’s distance

Origin presence
Number of cities an airline serves from origin city
with direct origin & destination (O&D) flights

Destination presence
Number of cities an airline serves with direct O&D flights
going into the destination city.

Nonstop Flight Distance Direct flight distance (in miles)

N comp connect
Number of connecting itineraries offered by an airline’s
competitors in the market

N comp nonstop
Number of direct itineraries offered by an airline’s
competitors in the market

T dnct

Time period dummy variable, equals unity for
post-alliance period.

DNCjmt
Dummy for products marketed and operated by Delta, Northwest
and Continental or any combination of the alliance carriers

MKT dncbm

Market-specific dummy variable, equals unity for O&D
markets in which any two of three alliance carriers competed
(each offering their own substitute products) prior to alliance.

1.6 Empirical Results

1.6.1 Demand Results

We estimate the demand equation (1.8) and report the results in Table 1.8. As mentioned

above, price and within-group product shares Sjmt/g are endogenous variables in the demand

equation. Thus, OLS estimation in column 1 of Table 1.8 produces biased and inconsistent

estimates of the price coefficient and σ. We re-estimate the demand equation using 2SLS

and perform a Hausman exogeneity test. The Hausman test rejects the exogeneity of price
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and within-group product share at conventional levels of statistical significance. First-

stage reduced-form regressions where we regress pjmt and ln(Sjmt/g) against the instruments

suggest that the instruments explain variations in the endogenous variables. We find that the

R2 measures for the regressions of price against the instruments and within-group product

share against the instruments are 0.0544 and 0.4202 respectively. While we control for

carrier-specific effects in both models, we suppress the estimates in Table 1.8 for brevity

and since the use of instruments is justified, we only discuss the 2SLS estimates. The

coefficient estimate on the price variable has the expected sign. Thus, an increase in the

product’s price reduces the probability that a typical passenger will choose the product.

The coefficient estimate on ln(Sjmt/g), which is an estimate of σ should lie between

zero and one. σ measures the correlation of consumers’ preferences for products offered

for sale by the same airline. Here, the estimate is 0.1088 and is closer to zero indicating

that passenger’s choice behavior shows weak levels of brand loyalty to airlines. Airlines use

customer loyalty programs to strengthen relationships with their customers but as pointed

by Dowling and Uncles (1997), the launch of a loyalty program does not provide exceptional

advantages mostly when any potential gain differential can be quickly eroded by competitive

forces. This might explain the weak level of brand loyalty.

The importance of serving a large number of non-stop routes out of a given city is mea-

sured by the Origin Presence variable. The positive coefficient estimate on Origin Presence

shows that, ceteris paribus, more customers choose airlines that have large operations out

of the origin city. Similar findings were obtained by Chen and Gayle (2013) Gayle and Le

(2013) and Berry (1990) among others. A possible explanation has to do with benefits of

marketing devices such as frequent-flyer programs.

The positive coefficient estimate on the Nonstop variable suggests that direct flights are

associated with higher levels of utility compared to connecting flights. Thus, ceteris paribus,

passengers prefer products with nonstop flight itineraries to those with intermediate stop(s)
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Table 1.8: Demand Estimation
Regressors OLS 2SLS

Price .000741*** – .01165***
(.00004) (.00051)

ln(Sjmt/g) .537825*** .10882***
(.00175) (.00659)

Origin Presence .01238*** .00959***
(.00011) (.00023)

Nonstop Dummy .82532*** 1.12242***
(.00705) (.01077)

Routing Quality 1.78093*** 1.93739***
(.01894) (.02704)

Traditional Codeshare – .30573*** – .66719***
(.02045) (.02925)

Virtual Codeshare – .70304*** – .97949***
(.01342) (.02055)

Constant – 10.4485*** – 9.0109***
(.03101) (.08215)

Carrier Fixed Effects Yes Yes
Quarter and Year fixed effects Yes Yes
Market Origin fixed effects Yes Yes
Market Destination fixed effects Yes Yes

R2 0.6964 0.4013
Endogeneity Test. H0: Price and ln(Sjmt/g) are exogenous
Wu-Hausman: F(2, 153652)= 3371.11*** (p = 0.0000)

Note: Standard errors are in parentheses.

***p < 0.01; **p < 0.05; *p < 0.10

when traveling from origin to destination. Furthermore, consumers are willing to pay up to

$96.35 extra,11 on average, to obtain a product with a nonstop itinerary in order to avoid

products with intermediate stop(s).

Consumers show preference for products with itinerary fight distances as close as possible

11This is obtained by dividing the coefficient estimate on the Nonstop dummy variable by the coefficient
estimate on Price.
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to the nonstop flight distance between the origin and destination. This result is explained

by the positive coefficient estimate on the Routing Quality variable and underscores our

premise that consumers’ choice behavior is consistent with the fact that better routing

quality is associated with a more passenger-desirable itinerary. Furthermore, consumers are

willing to pay up to $2.38 extra,12 on average, for each percentage point increase that the

nonstop flight distance is of the actual itinerary flight distance.

The demand effects of each type of code sharing are identified by interpreting the co-

efficient estimates on the codeshare variables (Traditional and V irtual). The coefficient

estimates on codeshare variables measure utility differentials vis-à-vis the Pure Online prod-

uct type. The negative coefficient estimates strongly suggest that traditional and virtual

code sharing result in lower consumer utility levels. A drawback of a code-shared product,

unlike a pure online product, is the change in operating carrier(s) across trip segments (tra-

ditional) or that the ticketing carrier differs from the operating carrier (virtual). Consumers

may perceive the cooperation between two carriers less attractive than flying on a single

airline. The demand model yields a mean own-price elasticity of demand estimate of −2.03.

This estimate falls well within the range for estimated own-price elasticity of demand in the

airline industry. In fact, Berry and Jia (2010) find own-price elasticity estimates ranging

from −1.89 to −2.10 while Gayle and Wu (2011)’s estimates range from −1.65 to −2.39.

In the spirit of Chen and Gayle (2013), we estimate mean cross-price elasticities of

demand between any two of the three alliance partners in the pre-alliance period. The de-

mand model yields mean cross-price elasticity of demand estimates of 0.00021 between Delta

and Northwest products, 0.000197 between Delta and Continental products, and 0.000165

between Northwest and Continental products. We later use the cross-price elasticities of

demand to proxy the intensity of pre-alliance competition between alliance firms’ products.

This competition intensity measure is essential for the formulation and estimation of our

12This is obtained by dividing the coefficient estimate on the Routing Quality variable by the coefficient
estimate on Price.
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disaggregated reduced-form routing quality equation (1.10) specified in section 1.7.

1.6.2 Routing Quality Results - Aggregated Analysis

Table 1.9 presents coefficient estimates of the reduced-form routing quality equation (1.9).

There are 2 columns of coefficient estimates. Coefficient estimates in the first column corre-

spond to the baseline model, and those in the second column, evaluate how routing quality

changes in markets the alliance partners competed prior to the alliance. The coefficient

estimate of the constant term across specifications is approximately 0.86. This means that,

assuming all determinants of routing quality in the regressions are held at zero, the mean

routing quality measure across all products in the sample is approximately 0.86. Thus,

nonstop flight distances between origin cities and destination cities are on average 86% of

the flight distances associated with product itineraries used by passengers in the sample

markets.

Presence variables : The effects on routing quality of serving a large number of non-stop

routes into and out of a given city is measured by the Destination and Origin Presence

variables, respectively. The positive coefficient estimates on both presence variables show

that, ceteris paribus, for each additional city that an airline connects to either endpoints of

a market using nonstop service, routing quality of the airline’s products within the market

will increase by approximately 0.06%.

Nonstop distance : The positive coefficient estimate on this variable indicates that products

with longer nonstop flight distance between a market’s origin and destination, tend to have

better routing quality.

Number of competing products with intermediate stop(s) in a market: The negative co-

efficient estimate on N comp connect indicates that the higher the number of competing

products with intermediate stop(s) a given product faces, the better its routing quality.

Number of competing non-stop products in a market: The coefficient estimate on N comp nonstop
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Table 1.9: Routing Quality Estimation: Aggregated Analysis

Regressors Specification 1 Specification 2

Constant .8562*** .8614***
(.0041) (.0041)

Origin Presence .00058*** .00057***
(.000014) (.000014)

Destination Presence .00058*** .00057***
(.000014) (.000014)

Nonstop Distance .000069*** .00007***
(7.76e-07) (9.07e-07)

N comp connect – .00038*** – .0004***
(.00005) (.00005)

N comp nonstop – .00017 – .0002
(.0002) (.0002)

DNCjmt – .1383*** – .1367***
(.00212) (.00211)

T dnct .00356*** .00359***
(.00075) (.00075)

T dnct ×DNCjmt – .00259*** – .0165***
(.00118) (.00348)

MKT dnc – .0277***
(.00151)

T dnct ×DNCjmt ×MKT dnc .0144***
(.00341)

Carrier Fixed Effects Yes Yes
Quarter and Year fixed effects Yes Yes
Market Origin fixed effects Yes Yes
Market Destination fixed effects Yes Yes

R2 0.2457 0.2474

Note: Standard errors are in parentheses.

***p < 0.01; **p < 0.05; *p < 0.10
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is not significant, implying that there on significant effect on the routing quality of a product

as the product faces increasing number of products with no intermediate stops.

1.6.3 Persistent Differences in Routing Quality of Products of-

fered by the Alliance Partners

These persistent differences in routing quality are captured by the coefficient estimate (ap-

proximately −14%) on the DNC dummy variable. This suggests that ceteris paribus,

the mean routing quality of products offered by Delta, Northwest and Continental is 14

points less than the mean routing quality across all products in the sample. Holding all

determinants of routing quality at their sample mean values, the mean routing quality

measure of DL/NW/CO products is 0.8359.13 Thus, nonstop flight distances between ori-

gins and destinations are on average only 83.59% of the flight distances associated with

Delta/Northwest/Continental product itineraries used by passengers.

1.6.4 Routing Quality Effects of the DL/NW/CO Alliance

The positive coefficient estimate on T dnct indicates that routing quality of products offered by

airlines other than Delta, Northwest and Continental increased by 0.36% above the sample

mean routing quality from pre- to post-alliance periods. In other words, non-DL/NW/CO

itinerary flight distances decreased relative to nonstop flight distances by 0.36% over the

relevant pre-post alliance periods.

The coefficient estimate on the interaction variable T dnct ×DNCjmt represents the difference-

in-differences estimate that identifies whether routing quality of products offered by any of

13This is computed using specification 1:
RoutingQualitydnc = .8562 − .1383 + 0.00058(28.4106) + 0.00058(28.2689) + 0.000069(1321.997) −
0.00038(14.898)− 0.00017(2.295)

where the numbers in parentheses are means of the regressors for DL/NW/CO products, while the other
numbers are the coefficient estimates.
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the allied carriers changed differently relative to routing quality changes of products offered

by other airlines over the DL/NW/CO pre- and post-alliance periods. It captures changes

in routing quality in DL/NW/CO products due to the alliance. The estimate is negative,

suggesting that the alliance caused the mean routing quality in DL/NW/CO products to

fall over the pre- and post-alliance periods. However, over the pre-post alliance periods,

routing quality of products offered by the Delta/Northwest/Continental trio witnessed a

net increase of 0.097% (0.356%−0.259%) even though this increase is less than the increase

in routing quality witnessed by the other airline by 0.259%.

1.6.5 Routing Quality Effects based on Existence of Pre-alliance

Competition between Alliance Firms

As defined in table 1.7, MKT dnc is a market-specific dummy variable that equals unity for

origin and destination markets in which any two of the three alliance partners competed

prior to the alliance. MKT dnc is used in specification (2) in the second column of Table 1.9.

We include this dummy variable to find out whether the alliance effects on routing quality

differ in markets where the alliance partners competed prior to the alliance. Our dataset

shows that there is a total of 2896 directional origin-destination combinations prior to the

DL/NW/CO alliance. Table 1.10 shows that all three carriers simultaneously competed in

1624 (56.1%) of these directional origin-destination combinations prior to the alliance.

Table 1.10: Number of overlapping directional O&D combinations with pre-alliance competition

Number of O&Ds
Delta Air Lines (DL) / Northwest Airlines (NW) 1,924
Delta Air Lines (DL) / Continental Air Lines (CO) 1,896
Northwest Airlines (NW) / Continental Air Lines (CO) 1,669
Delta Air Lines (DL) / Northwest Airlines (NW) / Continental Air Lines (CO) 1,624

The effects of the DL/NW/CO alliance on routing quality in markets where the alliance

firms competed before the alliance is determined by summing the coefficients on interaction
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variables T dnct × DNCjmt and T dnct × DNCjmt ×MKT dnc in Specification 2 (column 2 in

Table 1.9). Specification 2 suggests that the DL/NW/CO alliance is associated with 0.21%

(| − 0.0165 + 0.0144|) decline in routing quality of products offered by the alliance firms

in the markets where they competed with each other prior to their alliance. This result

is consistent with the premise that routing quality decreases in markets where the alliance

firms competed prior to alliance because of the decrease in competitive pressure.

Our structural demand estimates from equation (1.8) can be used to monetize consumer

welfare effects of the routing quality decrease associated with the DL/NW/CO alliance. We

estimate in section (1.6.1) that consumers are willing to pay $2.38 extra, on average, for

each percentage point increase that the nonstop flight distance is of the actual itinerary

flight distance.

So, in markets where the alliance firms competed prior to the alliance, routing quality

effects of the alliance imply that each consumer’s utility falls by an average of $0.5 (= 0.21×

$2.38).14 These consumer welfare effects can be substantial given the origin city population

sizes in our sample. The coefficient estimate on the interaction variable T dnct ×DNCjmt in

Specification 2 of Table 1.9 captures the alliance routing quality effects in markets where the

alliance partners did not compete prior to the alliance. Evidence shows that each consumer

experienced a fall in utility as a result of routing quality deterioration equivalent to $3.93

(= 1.65× $2.38).

14As pointed out by Chen and Gayle (2013), this method of calculating welfare effects fails to consider
second-order welfare effects that can occur due to routing quality influencing other variables such as price
that in turn may affect welfare.
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1.7 Routing Quality Equation: Disaggregated Analy-

sis

To allow for the possibility that the market effects of an alliance may depend on the identity

of the partner carriers code sharing a given product, we replace the product-specific dummy

variable (DNCjmt) in equation (1.9) with three variables: DNjmt, DCjmt and NCjmt. Recall

that DNCjmt is a dummy variable equals to 1 for itineraries marketed and operated by

one or any combination of the alliance firms. We define the three variables as follows:

DNjmt is a dummy variable equals to 1 for products marketed and operated by Delta and

Northwest, whereas DCjmt equals 1 for products marketed and operated by Delta and

Continental. Similarly, NCjmt equals 1 for products marketed and operated by Northwest

and Continental. Therefore, DNjmt is a dummy variable for code-shared products between

Delta and Northwest, DCjmt is a dummy variable for code-shared products between Delta

and Continental. NCjmt is analogously defined if the product is codeshared by Northwest

and Continental.

The above disaggregation is important in two aspects. First, it permits us to identify

routing quality changes in markets where two of the three partner carriers competed prior

to the alliance. This is relevant because Northwest and Continental have been operating

as codeshare partners since their 1998 codeshare agreement and were joined by Delta in

August 2003. Secondly, this pairwise disaggregation makes it convenient to use our measure

of pre-alliance competition intensity since cross-price elasticities of demand can only be

computed for a pair of firms. So, measures of pre-alliance competition intensity will clearly

vary across markets. Consequently, the sign on DNCjmt in equation (1.9) is ambiguous a

priori since it might be capturing the overall routing quality effect on DL/NW/CO products

whereby masking existing pairwise competitive effects among the alliance firms. As such the

prevailing total effect on routing quality may depend on the degree of competition intensity
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among any pair of the alliance partners.

The baseline model for our disaggregated analysis is specified as follows:

Routing Qualityjmt =

θ0 + θ1OriginPresencejmt + θ2DestinationPresencejmt

+θ3NonStopF lightDistancejmt + θ4N comp connectjmt

+θ5N comp nonstopjmt + θ6T
dnc
t + φ1DNjmt + φ2DCjmt

+φ3NCjmt + φ4T
dnc
t ×DNjmt + φ5T

dnc
t ×DCjmt + φ6T

dnc
t ×NCjmt

+ηj + υt + originm + destm + µjmt
(1.10)

To identify whether routing quality of products offered by any pair of alliance firms

changed differently relative to routing quality changes of products offered by other airlines

over the pre- and post-alliance periods, we interact the variables DNjmt, DCjmt and NCjmt

with the time period dummy variable T dnct which equals unity for post-alliance period.

1.7.1 Routing Quality Results: Disaggregated Analysis

Table 1.11 reports the results of the disaggregated model in equation (1.10). There are 4

columns, each representing a different specification of equation (1.10). The first column re-

ports the baseline specification and the other three columns incrementally assess how various

factors influence the routing quality change from each pair of alliance partners. Since the

coefficient estimates on measured determinants of Routing Quality across specifications are

similar to those in Table 1.9, we start by focusing our attention on the persistent differences

in routing quality of products offered by each pair of the alliance partners.
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Table 1.11: Routing Quality Estimation - Disaggregated Analysis
Regressors Specification 1 Specification 2 Specification 3 Specification 4

Constant .8347*** .8366*** .8374*** .8377***
(.00397) (.00398) (.00398) (.00398)

Origin Presence .00057*** .00056*** .00055*** .00055***
(.000014) (.000014) (.000014) (.000014)

Destination Presence .00058*** .00057*** .00056*** .00056***
(.000014) (.000014) (.000014) (.000014)

Nonstop Distance .000069*** .000075*** .000075*** .000075***
(7.76e-07) (9.00e-07) (9.00e-07) (9.00e-07)

N comp connect – .00032*** – .00030*** – .00028*** – .00029***
(.000047) (.000047) (.000047) (.000047)

N comp nonstop – .00023 – .00057 – .00061 – .00059
(.0002) (.0002) (.0002) (.0002)

T dnct .0034*** .0035*** .0035*** .0035***
(.00075) (.00075) (.00075) (.00075)

DNjmt – .04382*** – .04380*** – .04370*** – .04361***
(.00138) (.00138) (.00138) (.00138)

DCjmt – .0575*** – .0568*** – .0569*** – .0570***
(.00139) (.00139) (.00140) (.00140)

NCjmt – .08714*** – .0859*** – .0860*** – .0860***
(.00142) (.00143) (.00143) (.00143)

MKT dnbm – .00256* – .00250* – .00234
(.00146) (.00146) (.00146)

MKT dcbm – .00723*** – .00758*** – .00782***
(.0014) (.0014) (.0014)

MKT ncbm – .00907*** – .00902*** – .00893***
(.00154) (.00154) (.00154)

T dnct ×DNjmt – .00241*** – .01552*** – .01525*** – .01546***
(.0015) (.0028) (.0029) (.0029)

T dnct ×DCjmt – .00688*** – .00994*** – .00953*** – .00922***
(.0015) (.00283) (.00283) (.00283)

T dnct ×NCjmt .00805*** – .0092*** – .0085*** – .00825***
(.0015) (.0027) (.0027) (.0027)

T dnct ×DNjmt ×MKT dn .0152 *** .0156*** .01586***
(.0026) (.0027) (.0027)

T dnct ×DCjmt ×MKT dc .0037 – .00026 – .00075
(.0026) (.0026) (.0028)

T dnct ×NCjmt ×MKT nc .0189*** .0171*** .0144***
(.0026) (.0026) (.0027)

T dnct ×DNjmt ×MKT dnbm × Edn
bm – 4.5483*** – 6.901**

(1.6177) (2.9226)
T dnct ×DCjmt ×MKT dcbm × Edc

bm 13.468*** 16.921***
(1.8891) (3.4705)

T dnct ×NCjmt ×MKT ncbm × Enc
bm 5.7119*** 20.4406***

(.1.2687) (2.4955)
T dnct ×DNjmt ×MKT dnbm × (Edn

bm)2 475.4573
(495.9267)

T dnct ×DCjmt ×MKT dcbm × (Edc
bm)2 – 810.4011

(706.189)
T dnct ×NCjmt ×MKT ncbm × (Enc

bm)2 – 1810.178***
(264.0295)

R2 0.2471 0.2484 0.2487 0.2490
The equations are estimated using ordinary least squares. Fixed effects are included in each specification but were not reported for brevity.

Note: Standard errors are in parentheses.

***p < 0.01; **p < 0.05; *p < 0.10
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The coefficient estimates on the dummy variables terms DNjmt, DCjmt and NCjmt are

approximately −0.044, −0.057 and −0.086 respectively, indicating that assuming all deter-

minants of routing quality in the regressions are held constant, the mean routing quality

measure of products offered by Delta and Northwest is 4.4 points less than the mean routing

quality measure across all products in the sample. The two other coefficient estimates can

be interpreted similarly for the DL/NW and NW/CO pairs. However, these results show

that the change in mean routing quality is largest for NW/CO products.15

The coefficient estimate on T dnct is positive and similar to the one in the aggregated

analysis, suggesting that the routing quality of products offered by airlines other than

Delta, Northwest or Continental increased by 0.34% above the sample average over the

DL/NW/CO pre-post alliance periods. Thus, non-DL/NW, non-DL/CO and non-NW/CO

itinerary flight distances decreased relative to nonstop flight distances by 0.34% over the

relevant pre-post alliance periods. The coefficient estimate on the three interaction variables

T dnct ×DNjmt, T
dnc
t ×DCjmt and T dnct ×NCjmt represent the difference-in-differences esti-

mates that identify whether routing quality of products offered by any pair of the alliance

firms changed differently relative to routing quality changes of products offered by other

airlines over the DL/NW/CO pre- and post-alliance periods. It captures changes in routing

quality in DL/NW, DL/CO and NW/CO products respectively due to the alliance. The

estimate is negative for the first two carrier pairs, suggesting that the alliance caused their

products’ mean routing quality to fall over the pre- and post-alliance periods. However

NW/CO products mean routing quality actually increased by 0.81%.

In summary, coefficient estimates in Specification 1 of Table 1.11 suggest that overall,

across all markets in the sample, the airline pairs DL/NW and DL/CO are associated with

a decline in routing quality of their products, but the NW/CO pair is associated with an

increase in routing quality of its products. Given that these quality effects are likely to

15Perhaps because their strategic cooperation started in 1998, couple of years prior to the three-way
alliance.
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differ across markets based on certain pre-alliance characteristics of a market, we include

market-specific dummy variables to find out whether the alliance effects on routing quality

differ in markets where each of the carrier pairs competed prior to the three-way alliance. To

motivate this scenario, we present the number of directional O&D combinations where each

carrier pair directly competed prior to the three-way alliance in Table 1.10. The numbers

are substantial and specifications 2, 3 and 4 explore this scenario.

1.7.2 Alliance Effects on Routing Quality based on Existence of

Pre-alliance Competition between alliance Firms - Disag-

gregated Analysis

In specification 2 of Table 1.11, we include three zero-one market-specific dummy variables:

MKT dnbm, MKT dcbm and MKT ncbm. MKT dnbm takes the value of one only for origin-destination

markets in which Delta and Northwest competed prior to the alliance. Likewise MKT dcbm

takes the value of one only for origin-destination markets in which Delta and Continental

competed prior to the alliance and MKT ncbm is defined similarly for origin-destination markets

in which Northwest and Continental competed prior to the alliance.

The alliance-specific variables in specification 2 indicate that the DL/NW and DL/CO

carrier pairs are associated with 0.032% (| − 0.01552 + 0.0152|) and 0.994% (| − 0.00994|)

declines, respectively, in routing quality of products offered by the carriers in markets where

they competed directly prior to the alliance. However the NW/CO carrier pair witnessed

a 0.97% (| − 0.0092 + 0.0189|) increase in routing quality of products offered by NW and

CO in markets where they competed with each other prior to the alliance. These results

are obtained by summing the coefficients on the interaction variables T dnct × DNjmt and

T dnct × DNjmt ×MKT dnbm in the case of carrier pair DL/NW. We sum T dnct × DCjmt and

T dnct × DCjmt × MKT dcbm in the case of carrier pair DL/CO and finally for carrier pair
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NW/CO, we sum T dnct ×NCjmt and T dnct ×NCjmt ×MKT ncbm.

In our aggregated analysis, we can monetize the consumer welfare effects of routing qual-

ity changes associated with the DL/NW/CO alliance using our structural demand estimates

from equation (1.8). We recall from section (1.6.1) that consumers are willing to pay $2.38

extra, on average, for each percentage point increase that the nonstop flight distance is of the

actual itinerary flight distance. Therefore, in markets where the carrier pairs competed prior

to the alliance, routing quality effects of the alliance imply that each consumer’s utility falls

by an average of $0.08 (= 0.032×$2.38) in the case for DL/NW and $2.37 (= 0.994×$2.38)

in the case for DL/CO. However, in the case of NW/CO, each consumer’s utility actually

increases by an average of $2.38 (= 0.97× $2.38).

The coefficient estimates on the interaction variables T dnct ×DNjmt, T
dnc
t ×DCjmt and

T dnct × NCjmt in specification 2 in Table 1.11 capture the alliance routing quality effects

in markets where the carrier pairs did not compete prior to the alliance. Evidence shows

that each consumer experiences a fall in utility as a result of routing quality deterioration

equivalent to $3.69 (= 1.552 × $2.38) in the case for DL/NW and $2.37 (= 0.994 × $2.38)

in the case for DL/CO and $2.20 (= 0.92× $2.38) in the case of NW/CO.

1.7.3 Alliance Effects on Routing Quality based on Pre-alliance

Competition Intensity between the Alliance Firms

Using our disaggregated model in equation (1.10), we examine whether the effect of an

alliance on product quality varies with the intensity of pre-alliance competition16 between

products of the alliance firms. The estimated demand model was used to compute pre-

alliance cross-price elasticities between Delta and Northwest products, Delta and Continen-

tal products and Northwest and Continental products. The variables Edn
bm, Edc

bm and Enc
bm

denote pre-alliance cross-price elasticities of demand between Delta and Northwest prod-

16Measured using cross-price elasticity of demand
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ucts, Delta and Continental products and Northwest and Continental products, respectively.

The elasticities in each of these variables vary across origin-destination markets in which

the firms forming the pair directly competed prior to the three-way alliance. A cross-price

elasticity between the firms’ products will only exist in markets where they are competitors

prior to the alliance. The pre-alliance cross-elasticity variables discussed above are used to

construct the following interaction variables:

T dnct ×DNjmt ×MKT dnbm × Edn
bm (1.11)

T dnct ×DNjmt ×MKT dnbm × (Edn
bm)2 (1.12)

T dnct ×DCjmt ×MKT dcbm × Edc
bm (1.13)

T dnct ×DCjmt ×MKT dcbm × (Edc
bm)2 (1.14)

T dnct ×NCjmt ×MKT ncbm × Enc
bm (1.15)

T dnct ×NCjmt ×MKT ncbm × (Enc
bm)2 (1.16)

We incrementally add these variables to the routing quality regression to obtain Speci-

fications 3 and 4 in Table 1.11.

Delta/Northwest Pair: The segment of the regression equation in Specification 4 that

relates to routing quality effects of the Delta/Northwest pair in markets where they directly

competed prior to the alliance is given by:

∆RoutingQualitydn = −0.01546 + 0.01586− 6.901(Edn
bm) (1.17)

where the variables T dnct , DNjmt and MKT dnbm each takes the value of one. The term (Edn
bm)2

was suppressed because of statistical insignificance. This sign pattern of the coefficients

in equation (1.17) suggests that the Delta/Northwest pair increased routing quality of its
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products when the pre-alliance competition intensity is less than 0.000058
(−0.01546+0.01586

6.901

)
in markets where the two airlines directly competed in prior to the alliance. For pre-alliance

competition intensity values above 0.000058, routing quality for Delta/Northwest products

decreases in all markets they competed prior to the alliance.

Delta/Continental Pair: The segment of the regression equation in Specification 4 that

relates to routing quality effects of the Delta/Continental pair in markets where they directly

competed prior to the alliance is given by:

∆RoutingQualitydc = −0.00922 + 0.00075 + 16.921(Edc
bm) (1.18)

where the variables T dnct , DCjmt and MKT dcbm each takes the value of one. The term (Edc
bm)2

was suppressed because of statistical insignificance. This sign pattern of the coefficients in

equation (1.18) suggests that the Delta/Continental pair decreased routing quality of its

products when the pre-alliance competition intensity is less than 0.00059
(−0.00922+0.00075

16.921

)
in

markets where the two airlines directly competed in prior to the alliance. For pre-alliance

competition intensity values above 0.00059, routing quality for Delta/Continental products

increases in markets they competed prior to the alliance.

The Northwest/Continental Pair: The segment of the regression equation in Specifica-

tion 4 that relates to routing quality effects of the Northwest/Continental Pair in markets

where they directly competed prior to the alliance is given by:

∆RoutingQualitync = −0.00922 + 0.00075 + 16.921(Enc
bm)− 1810.179(Enc

bm)2 (1.19)

where the variables T dnct , BCjmt and MKT ncbm each takes the value of one. This sign pattern

of the coefficients in equation (1.19) suggests the effect of the alliance on routing quality

varies in an inverted U-shaped manner with pre-alliance competition intensity (measured by

cross-elasticity) between the two airlines, where the maximum turning point in the inverted
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U-shaped relationship occurs at a cross-elasticity 0.0056
(

20.4406
2×1810.178

)
. Specifically, the alliance

appears to have increased routing quality more in markets where the pre-alliance cross-

elasticities between the two NW/CO products are lower, up to an intermediate pre-alliance

cross-elasticity of 0.0056. Markets with pre-alliance cross-elasticity between NW and CO of

0.0056, experienced the largest increase in routing quality of 6.39%.

1.8 Conclusion

This paper investigates the routing quality implications of the Delta, Northwest, Continental

codeshare alliance with a particular focus on the alliance effects in markets where the alliance

partners competed prior to the alliance.

Examining the alliance partners’ products altogether (aggregated analysis), the empirical

results show that the alliance decreased routing quality of DL/NW/CO products by 0.256%

below the mean routing quality of the entire sample products. More interestingly, the

alliance effects in specific markets where the alliance firms directly competed prior the

alliance, are also negatively associated with routing quality of the alliance firms’ products,

resulting in a fall in consumer’s utility of $0.5 per consumer. This result supports the

premise that routing quality decreases in markets where the alliance firms competed prior

to the alliance because of the decrease in competitive pressure in those markets.

We also investigate alliance partners in pairs (disaggregated analysis) to allow for the

possibility that the alliance effects in specific pre-alliance markets may differ depending on

the degree of pre-alliance competition intensity between the alliance firms. Based on the

entire sample, products offered by the carriers pairs DL/NW and DL/CO had a decrease

in routing quality due the alliance (0.24% and 0.69%, respectively). However, the NW/CO

pairs products witnessed a rise in routing quality of 0.81% due to the alliance. These results

are also true in markets where the carriers competed prior to the alliance.
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Chapter 2

Airline Code-sharing and its Effects

on On-Time Performance

2.1 Introduction

The public outcry and media coverage that ensued in the 1980s over increasing air traffic

delays attracted congressional attention on airline on-time performance (OTP). Since 1988,

the U.S. Department of Transportation’s (DOT) Bureau of Transportation Statistics (BTS)

tracks the on-time performance of domestic flights operated by large air carriers. It is now

mandatory for airlines with at least one percent of all domestic traffic to disclose flight–by–

flight information on delays (Mayer and Sinai, 2003).

Interestingly, even with this flight-by-flight data disclosure, the DOT’s Office of Aviation

Enforcement and Proceedings1 showed that the most prevailing consumer air travel com-

plaint in the year 2000, stems from flight problems namely cancellations, delays and missed

connections. In fact, 1 out of 4 flights was either delayed, canceled or diverted (Rupp et al.,

2006). According to Mayer and Sinai (2003), in 2000, flights that arrived at their destination

1US Department Of Transportation Office of Aviation Enforcement and Proceedings (2001). USD-
TOAEP Feb. 2001 p. 34

39



within 15 minutes of their scheduled arrival time and without being canceled or diverted,

accounted for less than 70 percent.

Given the concerns over OTP and the recent trend of airline alliance formation as a

dominant feature of the airline industry, a new and interesting question is: how do airline

alliances affect partners’ OTP? Answering this question would shed light on whether the

recent emergence of airline alliances has made problems related to airline OTP better or

worse.

Airline alliances vary from limited cooperation, such as reciprocal frequent flyer pro-

grams, to more enhanced agreements, such as code sharing.2 A codeshare agreement (CSA)

is a reciprocal agreement between two or more airlines, through which one airline can sell

seats on its codeshare partners’ flights using its own reservation code.3

Airline alliance formation has a long history in the international air travel market but this

practice is a relatively new phenomenon among U.S. domestic carriers. Since the mid-1990s,

major airlines that serve the U.S. domestic market have increasingly found it appealing to

form alliances. In 1995, Northwest and Hawaiian Airlines announced their intention to

create an alliance (Ito and Lee, 2005) and in the first half of 1998, the six largest US

carriers4 followed suit with their own codeshare alliance proposals (Bamberger et al., 2001)

This practice proliferated with the implementation of subsequent alliance partnerships such

as Alaska/Hawaiian in October 2001, American West/Hawaiian in October 2002, United/US

Airways in January 2003 and Delta/Northwest/Continental in June 2003, among others.

For illustration purposes, a CSA between Alaska Airlines (AS) and Hawaiian Airlines

(HA) for instance, allows Alaska Airlines (referred to as the “ticketing carrier” or “marketing

carrier”) to market and sell seats on thousands of flights operated by Hawaiian Airlines

2US General Accounting Office (1999)
3The International Air Transport Association (IATA) uses two-character codes to identify all airlines;

for example the code DL is assigned to Delta Air Lines.
4Continental Airlines and Northwest Airlines made alliance announcement in January 1998; Delta Air

Lines/United Airlines and American Airlines/US Airways followed in April 1998.
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(referred to as the “operating carrier”) and vice-versa. In this example, Alaska Airlines may

place its code (AS) on this Hawaiian’s flight and sell tickets for seats on this flight as if Alaska

Airlines operates the flight. So, this same flight will be listed twice in computer reservation

systems, once under Alaska Airlines’ code (AS) and again under Hawaiian Airlines’ code

(HA). Therefore, under a CSA, partner airlines are able to expand their flight offerings

without adding planes.

We make the following argument. Alliance partners typically coordinate in an attempt

to achieve seamless integration of their route networks, which potentially result in more

travel-convenient routing across partner carriers’ networks. The interdependence across

partner carriers’ networks caused by the alliance may in turn influence each partner’s OTP.

It is not clear a priori whether the alliance will improve or worsen a given partner’s OTP.

On the one hand, a carrier may have a greater incentive to provide better OTP when it

joins a codeshare alliance because its OTP not only affects the timeliness of connections

within its own network, but also affects the timeliness of connections between its network

with its partner carriers’ networks. On the other hand, a carriers’ OTP could worsen after

joining a codeshare alliance since an extra source of a carrier’s delay can be due to its

partner carriers’ delay. While not attempting to study the incentives to form an alliance,

the primary objective of this paper is to evaluate the net impact of a codeshare alliance on

partner carriers’ OTP.

Concerns over poor on-time performance may therefore be exacerbated or improved by

airline alliances. Few authors have explored and analyzed the relationship between airline

alliances and service quality, both theoretically and empirically. The empirical literature has

been largely inconclusive, with some studies suggesting that airline alliances increase product

quality (Hassin and Shy, 2004; Gayle and Thomas, 2015), others suggesting that airline

alliances decrease product quality (Gayle and Yimga, 2014; Goh and Uncles, 2003), and

some studies found no relationship between airline alliances and product quality (Tiernan
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et al., 2008; Tsantoulis and Palmer, 2008). At the center of these diverging empirical results,

reside two main issues: (1) the difficulty in defining quality in a way that is mathematically

tractable (Prince and Simon, 2009) and (2) the sensitivity of results to assumptions of a

particular theoretical model (Park, 1997).

With respect to the first issue, some measures of service quality have been explored.

Goh and Uncles (2003) empirically study the perceptions that business travelers have of the

benefits of global alliances. To measure quality, they use a cross-sectional self-completion

survey that was administered to a sample of Australian business travelers. Tsantoulis and

Palmer (2008) examine service quality effects of a co-brand alliance where service quality is

proxied by a quality index they constructed based on some technical and functional aspects

of quality. Gayle and Yimga (2014) empirically investigated the routing quality effects5

of the Delta/Northwest/Continental codeshare alliance, while Gayle and Thomas (2015)

investigated the routing quality effect of global alliances, antitrust immunity, and domestic

mergers.

Another service quality measure is an airline’s on-time performance. Almost no research

has been conducted to examine the impact of a codeshare alliance on the on-time perfor-

mance of its partner members. An exception is the work by Tiernan et al. (2008). They

investigate the service quality of E.U. and U.S. members of main airline alliances. Three

specific measures of airline service quality were used in their study: on-time flight arrival

percentage, percentage of flights not canceled and percentage of passengers filing baggage

reports (bags lost damaged, delayed or pilfered). Their examination of the international

airline alliances indicates no significant differences in the quality of service indicators.

Apart from Tiernan et al. (2008) who looked at the linkage between on-time performance

and airline alliance,6 most studies on on-time performance have focused on its relationship

5Routing Quality is defined as the ratio of nonstop fight distance to the product’s itinerary fight distance
used to get passengers from the origin to destination.

6Their study looked at international airline alliances which contrasts from ours, based on the U.S.
domestic air travel market.
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with competition (Mayer and Sinai, 2003; Mazzeo, 2003; Rupp et al., 2006), multimarket

contact (Prince and Simon, 2009), prices (Forbes, 2008) and entry or threat of entry (Prince

and Simon, 2014), among others.

To examine whether and how codeshare partners’ product quality provision change in

response to a codeshare agreement, we focus on the Delta Air Lines (DL), Northwest Airlines

(NW) and Continental Airlines (CO) Codeshare Alliance. We choose this codeshare alliance

for the following reasons: (i) it involves three major carriers in the U.S. domestic airline

industry; (ii) the alliance was the largest ever approved in the history of the U.S. commercial

aviation; and (iii) the alliance turned out to be the most contentious alliance in the U.S.

domestic airline industry.

In this paper, we specifically assess how Delta Air Lines (DL), Northwest Airlines (NW)

and Continental Airlines’ (CO) on-time performance change in response to their codeshare

agreement of August 23, 2003. We find that the codeshare agreement (CSA) improved OTP

for the alliance firms, and that this improvement occurs in both markets where the codeshare

partners had competed prior to the CSA and markets where they did not. However, the

OTP effects are larger in markets they competed prior to the CSA.

The rest of the paper is organized as follows. The next section provides an overview of

the Delta, Northwest, Continental codeshare alliance. Section 2.3 describes the data used

for analysis. Section 2.4 discusses the research methodology and estimation technique used

to analyze the OTP effects of the alliance. Results are presented and discussed in Section

2.5, while concluding remarks are gathered in Section 2.6.

2.2 Delta/Northwest/Continental Codeshare Alliance

In August 2002, Delta Air Lines, Northwest Airlines and Continental Airlines submitted the

largest domestic codeshare agreement proposal in the United States. This agreement grants
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some privileges to the partner airlines like reciprocal frequent-flyer programs and reciprocal

access to airport lounges. The partner airlines’ managers claimed that the CSA will generate

benefits to consumers such as increased flight frequencies, broader travel options, improved

frequent flyer programs and better route connections. They also claimed that cost savings

from the alliance members will be passed on to consumers in terms of lower airfares.

Despite initial assurances by the partner airlines, policy makers have expressed a great

deal of skepticism when appraising the Delta/Northwest/Continental alliance proposal,

which policy makers believed did not adhere to certain antitrust laws and regulations be-

cause of its potential to yield anti-competitive effects:

“The Department has determined that the agreements, if implemented

as presented by the three airlines, could result in a significant adverse im-

pact on airline competition, unless the airlines formally accept and abide

by certain conditions that are intended to limit the likelihood of competitive

harm. If the airlines choose to implement the agreements without accept-

ing those conditions, the department will direct its Aviation Enforcement

office to institute a formal enforcement proceeding regarding the matter”7

Likewise, the General Accounting Office (GAO) stressed the adverse effects of alliances on

competition:

“[Proposed alliances] will reduce competition on hundreds of domestic

routes if the alliance partners do not compete with each other or compete

less vigorously than they did when they were unaffiliated... It will be crit-

ical to determine if an airline retains or reduces incentives for alliance

partners to compete on price”8

7Department of Transportation. Office of the Secretary Termination Review Under 49 U.S.C. 41720 of
the Delta/Northwest/Continental Agreements. Federal Register. Vol 68, No.15. Thursday, January 23,
2003. Notices

8US General Accounting Office. Aviation Competition: Proposed Domestic Airline Alliances Raise
Serious Issues. 1998
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The three-way alliance between Delta, Northwest and Continental was the largest do-

mestic alliance at the time, accounting for almost 30% of domestic origin-destination pas-

sengers (Ito and Lee, 2005). Given this recent trend towards increased alliance formation

and the fact that at the time, carriers comprising the three largest US alliances (Conti-

nental/Northwest/Delta, United/US Airways and American/Alaska) accounted for approx-

imately two thirds of all domestic origin and destination passenger traffic, we posit that

there could be legitimate policy apprehensions regarding the impact of these cooperative

agreements on on-time performance delivery.

Using data on OTP and factors that are likely to influence OTP, this paper uses a

reduced-form regression analysis to investigate whether partner airlines’ OTP is impacted

by them being in a CSA. While arguments can be made to support both views, there is

currently no empirical evidence that supports either.

2.3 Data

We use data gathered and published by U.S. Department of Transportation (DOT) Bureau of

Transportation Statistics (BTS). The BTS requires all U.S. domestic carriers with revenues

from domestic passenger flights of at least one percent of total industry revenues to report

flight on-time performance data. The data cover scheduled-service flights between points

within the United States.

The data frequency is monthly. A record in this survey represents a flight. Each record

or fight9 contains information on the operating carrier, the origin and destination airports,

miles flown, flight times, and departure/arrival delay information.

In this paper, a market simply means directional air travel between an origin and a

destination city during a specific period. By directional, we mean that an air travel trip

9Some flights could be segments of itineraries with intermediate stop(s).
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from Miami to Las Vegas is a distinct market from an air travel trip from Las Vegas to Miami.

This controls for the number of passengers traveling between the origin and destination.10

Moreover, because on-time performance is only measured for individual flights, we re-

stricted our analysis to nonstop service. We collect monthly data for every non-stop domestic

flight for the third and fourth quarters of 2002 and 2004 for 19 U.S. carriers. Table 2.1 re-

ports a list of carriers in the data sample. All variables are constructed from the original

data set of 6,274,848 flights in the sample. We omitted all canceled and diverted flights.

Table 2.1: Airlines in Sample

Code Airline

AA American Airlines
AS Alaska Airlines
B6 JetBlue Airways
CO Continental Air Lines
DH Independence Air
DL Delta Air Lines
EV Atlantic Southwest
FL AirTran Airways
HA Hawaiian Airlines
HP America West Airlines
MQ American Eagle
NW Northwest Airlines
CO Comair
OO SkyWest
RU ExpressJet
TZ ATA Airlines
UA United Air Lines
US US Airways
WN Southwest Airlines

Given that the Delta/Northwest/Continental codeshare alliance was formed in August

of 2003, the third and fourth quarters of 2002 represent the pre-alliance period whereas the

third and fourth quarters of 2004 represent the post-alliance period (using data from the

10See Berry et al. (2006), Berry et al. (2006) and Gayle (2007). However, unlike these studies, some flights
could be segments of itineraries with intermediate stop(s).
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same quarters for both years will control for potential seasonal effects in OTP). We choose

this particular time period to balance the “before” and “after” periods around the codeshare

event and avoid data right after the September 11th terrorist attacks.

To enable a more manageable-sized data set, we place some restrictions on the raw data.

We follow the same procedures used by Aguirregabiria and Ho (2012) for the selection of

markets. We focus on air travel amongst the 63 largest U.S. cities. Table 2.2 presents a list

of the cities and corresponding population sizes. Incomplete data reporting in addition to

missing/incorrect on-time performance data slightly reduces the sample.

We use the geometric mean of the populations at the origin and destination to help

measure the impact of potential market size. Unlike Aguirregabiria and Ho (2012), we do

not group cities that belong to the same metropolitan areas and share the same airport

for two reasons: (1) airport grouping will lessen the heterogeneity in OTP data and (2)

observations in dataset may not be products but are individual flights, most of which are

segments on itineraries with intermediate stop(s).

2.3.1 On-Time Performance (OTP) Measures

We directly use measures of on-time performance from the U.S. DOT BTS’ dataset. Ac-

cording to the U.S. DOT, flights that don’t arrive at (depart from) the gate within 15

minutes of scheduled arrival (departure) time are late arrivals (departures). This represents

performance measured against airlines’ published schedules. The three main measures are

arrival delay, the percentage of flights arriving at least 15 minutes late and the percentage

of flights arriving at least 30 minutes late. We construct the first OTP measure based on

the arrival delay of a flight, i.e. the difference between scheduled and actual arrival time.
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Table 2.2: Cities, airports and population
City, State Airports City Population

2002 2004
New York1 LGA, JFK, EWR 8,606,988 8,682,908
Los, Angeles, CA LAX, BUR 3,786,010 3,796,018
Chicago, IL ORD, MDW 2,886,634 2,848,996
Dallas, TX2 DAL, DFW 2,362,046 2,439,703
Houston, TX HOU, IAH, EFD 2,002,144 2,058,645
Phoenix, AZ3 PHX 1,951,642 2,032,803
Philadelphia, PA PHL 1,486,712 1,514,658
San Antonio, TX SAT 1,192,591 1,239,011
San Diego, CA SAN 1,251,808 1,274,878
San Jose, CA SJC 896,076 901,283
Denver-Aurora, CO DEN 841,722 848,227
Detroit, MI DTW 922,727 924,016
San Francisco, CA SFO 761,983 773,284
Jacksonville, FL JAX 758,513 778,078
Indianapolis, IN IND 783,028 787,198
Austin, TX AUS 671,486 696,384
Columbus, OH CMH 723,246 735,971
Charlotte, NC CLT 577,191 614,446
Memphis, TN MEM 674,478 681,573
Minneapolis-St. Paul, MN MSP 660,771 653,872
Boston, MA BOS 585,366 607,367
Baltimore, MD BWI 636,141 641,004
Raleigh-Durham, NC RDU 503,524 534,599
El Paso, TX ELP 574,337 582,952
Seattle, WA SEA 570,166 570,961
Nashville, TN BNA 544,375 570,068
Milwaukee, WI MKE 589,975 601,081
Washington, DC DCA, IAD 564,643 579,796
Las Vegas, NV LAS 506,695 534,168
Louisville, KY SDF 553,049 558,389
Portland, OR PDX 537,752 533,120
Oklahoma City, OK OKC 518,516 526,939
Tucson, AZ TUS 501,332 517,246
Atlanta, GA ATL 419,476 468,839
Albuquerque, NM ABQ 464,178 486,319
Kansas City, MO MCI 443,390 458,618
Sacramento, CA SMF 433,801 446,295
Long Beach, CA LGB 470,398 470,620
Omaha, NE OMA 399,081 426,549
Miami, FL MIA 371,953 378,946
Cleveland, OH CLE 468,126 455,798
Oakland, CA OAK 401,348 394,433
Colorado Springs, CO COS 369,945 388,097
Tulsa, OK TUL 390,991 382,709
Wichita, KS ICT 354,306 353,292
St. Louis, MO STL 347,252 350,705
New Orleans, LA MSY 472,540 461,915
Tampa, FL TPA 315,151 320,713
Santa Ana, CA SNA 341,411 339,319
Cincinnati, OH CVG 322,278 331,717
Pittsburg, PA PIT 327,652 320,394
Lexington, KY LEX 262,706 274,581
Buffalo, NY BUF 287,469 281,757
Norfolk, VA ORF 238,343 241,979
Ontario, CA ONT 164,734 168,068
1 New York-Newark-Jersey
2 Dallas-Arlington-Fort Worth-Plano, TX
3 Phoenix-Temple-Mesa, AZ
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Following Prince and Simon (2009), our analysis is conducted at the carrier-route-month-

year level, so we use the average arrival delay11 over all of a carrier’s flights, on a particular

route, during a month and year.

The second OTP measure is constructed from the arrival delay indicator in the dataset

for flights arriving at the gate at least 15 minutes late. We use this arrival delay indicator

to compute the proportion of a carrier’s flights on a route in a month that arrived at least

15 minutes late.

The third OTP measure uses the 30 minutes and more arrival delay indicator. Similar

to the second measure, we use this arrival delay indicator to compute the proportion of a

carrier’s flights on a route in a month that arrived at least 30 minutes late. We use analogous

measures for departure OTP. The same 15- and 30-minute rules apply to departure delay.

Table 2.3 summarizes OTP measures. Overall, arrival delays are longer than departure

delays for all measures, supporting the findings from the Bureau of Transportation Statistics

(2011) that indicate that on-time arrival performance has the greatest impact on passengers.

Also, arrival measures tend to vary more than departure measures.

Table 2.3: On-Time Performance Summary Statistics

Obs. Mean Std. Dev. Min Max
Arrival
Arrival Delay (in minutes) 31748 10.71 8.94 0 440
Fraction of flights arriving at least 15 minutes late (%) 31748 12.13 9.47 0 100
Fraction of flights arriving at least 30 minutes late (%) 31748 6.59 6.10 0 100

Departure
Departure Delay (in minutes) 31748 9.20 8.90 0 415
Fraction of flights departing at least 15 minutes late (%) 31748 10.22 8.94 0 100
Fraction of flights departing at least 30 minutes late (%) 31748 5.85 5.75 0 100

Note: Early arrivals/departures are counted as zero delays

Figure A.1 and A.2 in the Appendix display the frequency of observations in 15-minute

intervals around their scheduled arrival (departure) time. It is surprising to note that a

11Early arrivals are counted as zero delays.
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sizeable portion of the flights in our sample were “early”—55.4 percent of flights arrived

at their gate prior to the scheduled arrival time while 47.6 percent of flights departed from

their gate prior to the scheduled departure time. This is indicative of a certain amount of

slack that may be built into the airlines’ schedules. Prince and Simon (2009) suggests that

this may be done strategically by airlines. On the other hand, 17.6 percent of flights in

the dataset arrived 15 minutes or more late while 14.7 percent departed from their gate 15

minutes or more late.

Tables 2.4 and 2.5 summarize OTP by month. For all measures, the percentage of flights

arriving late peaks in winter. We only consider flights arriving at their destination and do

not include cancellations or diversions even though cancellations tend to rise during the

winter months in the face of severe weather (Bureau of Transportation Statistics, 2011).

Throughout our study, early arrivals are treated as a delay of zero minutes rather

than as a negative delay. Counting early arrivals and departures as zero delays assumes

that passengers derive disutility from late arrivals/departures but no utility from early ar-

rivals/departures.

Tables 2.6 & 2.7 summarize OTP by carrier. Hawaiian Airlines performs better than

all carriers on arrival delay minutes, while Independence Air has the worst arrival delay

minutes. Northwest Airlines has the shortest departure delay minutes while SkyWest has

the longest departure delay minutes.

2.3.2 Collapsing the Data

Given that in a specific month, an airline can operate a specific origin-destination multiple

times, with different OTP values, we construct our OTP measures by averaging the OTP

values for a given origin-destination for a given carrier in a given month and year. We

then collapse the data by carrier-origin-destination-month-year combinations. Explanatory

variables are averaged and collapsed using the same approach. Our final working data

50



set has 31,748 usable observations, where an observation is at the level of carrier-origin-

destination-month-year combination.

Table 2.4: Mean Values of Arrival Delay Measures by Month

year Month
Mean Arrival
Delay (minutes)

Percentage of flights
delayed more than 15 minutes

Percentage of flights
delayed more than 30 minutes

2002 July 10.9 13.9 7.8
August 9 11.9 6.3
September 6.1 8 4.2
October 7.5 11 5.2
November 7.4 10.6 4.9
December 11.8 14.8 8.1

2004 July 15.2 14.1 8.4
August 13.3 13.9 7.6
September 7.9 7.9 4.2
October 9.4 11 5.4
November 11.6 12.2 6.5
December 15.8 16.8 9.9

Note: Early arrivals are counted as zero delays

Table 2.5: Mean Values of Departure Delay Measures by Month

Year Month
Mean Departure
Delay (minutes)

Percentage of flights
delayed more than 15 minutes

Percentage of flights
delayed more than 30 minutes

2002 July 9.6 12.3 6.9
August 7.9 10.3 5.7
September 5.1 6.5 3.7
October 5.9 8.2 4.3
November 5.9 7.7 4.1
December 10.2 12.8 7.2

2004 July 13.2 12.3 7.5
August 11.3 11.1 6.6
September 6.9 7 4
October 7.7 8.7 4.7
November 9.9 10.1 5.8
December 14.2 14.8 9

Note: Early departures are counted as zero delays

2.4 Empirical Method and Estimation

To examine whether partner firms’ on-time performance is impacted by their participation in

a codeshare alliance, we estimate reduced-form regression equations of the various measures
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Table 2.6: Airlines’ Mean Arrival Delay

Code Airline
Arrival Delay
(minutes)

Proportion of Flights
Arrivingat Least
15 Minutes Late (%)

Proportion of Flights
Arriving at Least
30 Minutes Late (%)

HA Hawaiian Airlines 0.0 0.00 0.00
WN Southwest Airlines 8.9 13.92 7.41
UA United Air Lines 9.4 8.83 5.00
NW Northwest Airlines 9.5 14.88 7.15
US US Airways 9.8 13.62 7.45
B6 JetBlue Airways 10.0 12.17 6.61
AA American Airlines 10.7 10.46 6.27
DL Delta Air Lines 10.7 13.19 6.60
CO Continental Air Lines 11.1 12.85 6.76
TZ ATA Airlines 11.1 12.84 7.08
AS Alaska Airlines 11.2 12.33 6.65
HP America West Airlines 11.2 9.64 4.63
RU ExpressJet 12.9 13.28 7.70
OH Comair 13.3 12.86 7.68
EV Atlantic Southwest 13.4 5.05 3.15
FL AirTran Airways 14.0 5.73 3.99
MQ American Eagle 14.4 13.38 8.09
OO SkyWest 16.2 7.73 5.23
DH Independence Air 17.5 13.01 8.59

Note: Early arrivals are counted as zero delays

of OTP described above. Possible codeshare alliance effects on OTP are identified using

a difference-in-differences strategy. This strategy enables us to compare pre-post alliance

periods’ changes in OTP of flights operated by the alliance firms, relative to changes in OTP

of flights operated by non-alliance firms over the same pre-post alliance periods.

We specify our empirical model of product quality effects due to code-sharing. On-time

performance (OTP) is used to proxy product quality. We specify a linear regression model

in which an OTP measure is a function of: (1) timing of implementation of the codeshare

alliance; (2) carrier and airport characteristics; and (3) market structure characteristics.

Furthermore, we also examine whether the effect of code-sharing on OTP depends on the

existence of pre-alliance competition between alliance firms. Variables are defined in Table

2.8.

The baseline reduced-form specification of the arrival OTP of flight f in market m in
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Table 2.7: Airlines’ Mean Departure Delay

Code Airline
Departure Delay
(minutes)

Proportion of Flights
Departing at Least
15 Minutes Late (%)

Proportion of Flights
Departing at Least
30 Minutes Late (%)

NW Northwest Airlines 7.0 9.75 5.55
CO Continental Air Lines 7.6 7.69 4.58
TZ ATA Airlines 7.8 9.01 5.09
UA United Air Lines 7.8 7.03 4.35
DL Delta Air Lines 8.3 9.25 5.13
US US Airways 8.5 11.37 6.42
AA American Airlines 8.8 8.39 5.4
HA Hawaiian Airlines 8.8 12.53 12.5
RU ExpressJet 8.9 8.47 5.63
B6 JetBlue Airways 9.3 11.36 5.33
HP America West Airlines 9.5 6.97 3.89
WN Southwest Airlines 9.7 16.57 8.33
AS Alaska Airlines 10.8 11.81 6.69
MQ American Eagle 11.9 11.23 7.06
FL AirTran Airways 12.2 5.61 3.62
OH Comair 12.3 12.18 7.5
EV Atlantic Southwest 13.2 5.4 3.38
DH Independence Air 16.6 12.63 8.3
OO SkyWest 17.0 7.66 5.13

Note: Early departures are counted as zero delays

time period t is as follows:

OTPfmt = α + βXfmt + γZmt + δWfmt + λf + ηt + originm + destm + εfmt. (2.1)

where Xfmt represent flight characteristics, Zmt include market characteristics, Wfmt is

a vector of dummy variables representing the codeshare effects. λf ’s are airline specific

fixed effects, ηt’s are time specific fixed effects, origin and destination airport specific fixed

effects are denoted by originm and destm, εfmt is the unobserved part of OTP. The reduced-

form OTP regression is estimated using Ordinary Least Squares (OLS). We provide further

description of the explanatory variables in the following section.

53



Table 2.8: Variable Definitions and Summary Statistics

Variable Definition Mean Std. Dev.

Codeshare Event

T dnct

Time period dummy variable, equals unity
for post-alliance period.

0.566 0.496

Flight, airport and market characteristics

DPRESCOST
Number of different cities that an airline flies to from
the destination city of the market using nonstop flight

30.171 30.84

OPRESCOST
Number of different cities that an airline offers
flights from going into the origin city of the market

30.095 30.792

INTOHUB
Dummy Variable = 1 if destination is a hub for
that carrier (list of hub/airline combination in Table 2.9)

0.387 0.487

OUTOFHUB
Dummy Variable = 1 if origin is a hub for that
carrier (list of hub/airline combination in Table 2.9)

0.387 0.487

DISTANCE
Nonstop flying distance (in miles) between the origin
and destination.

937.118 635.545

RELSPEED
Carrier mean speed across its flights in a market
as a ratio of market average speed(a) 1 0.016

MKT dnc
Market-specific dummy variable, equals unity
for O&D(b) markets in which any two of three allied
carriers competed prior to alliance.

0.022 0.146

MKTSIZE
(logged) Geometric mean of the populations
at both endpoint airports

13.483 0.536

DNCfmt

Zero-one dummy variable that takes the value one
when the carrier is one of the three alliance carriers,
DL, NW, or CO.

0.264 0.441

Market Structure

MONOMKT
Dummy Variable = 1 if only 1 airline serves
the directional city-pair market non-stop

0.43 0.495

NUMCOMP Number of competitors in a market 1.817 0.877
(a)Speed is measured as distance divided by flight air time
(b)O&D = origin and destination.
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2.5 Empirical Results

2.5.1 Estimates from Reduced-form Arrival OTP Equation

In this section, we present empirical analyses of the impact of code-sharing on OTP. We

start with on-time arrival performance since it has greatest impact on passengers (Bureau

of Transportation Statistics, 2011).

Determinants of Arrival OTP

Airport congestion has an influential role in determining on-time performance.12 One way

to control for airport congestion is controlling for hubbing. Effective hubbing implies that

flights from different origin airports known as “spokes” of a network arrive at the “hub”

airport roughly at the same time. The aircraft at the hub waits for these spoke flights and

facilitates the transfer of passengers and baggage. Subsequently, flights depart from the hub

airport in quick sequence back out along the spokes.

Essentially, passengers departing from any non-hub origin to other destinations in the

network generally proceed first to the hub. Table 2.9 shows that 14 out of the 19 carriers

possess at least one hub and 11 have at least 3 hubs. These airlines co-ordinate arrivals and

departures at their hubs in order to minimize delays for passengers continuing through the

hub to final destinations on spokes other than the one on which they originated. We include

a control for hub airlines (INTOHUB). This measure is carrier-specific and captures the

effect of effective hubbing on arrival OTP. INTOHUB is a dummy variable that equals

unity if destination airport is a hub for that carrier. As expected, regression results in

Table 2.10 reveal that INTOHUB is a predictor of arrival OTP. The coefficient estimate

on INTOHUB is negative and statistically significant suggesting shorter arrival delays for

carriers flying into their hubs. Carriers flying into their hubs have a greater incentive to

12Flores-Fillol (2010) and Rupp and Sayanak (2008), among others, investigate this relationship.
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make sure that passengers get to their intermediate stop on time for their connecting flights

since the cost of a missing flight may be quite substantial from rebooking passengers onto

new connections to handling missed connection luggage. The disutility13 experienced by the

passenger in terms of inconvenience and frustration may result in loss of future business.

Table 2.9: Airline Carriers and Their Hubs
Code Carrier Hub Airports

AA American Airlines Dallas, O’Hare, Miami, New York, Los Angeles
AS Alaska Airlines Seattle, Portland, Los Angeles, San Francisco
B6 JetBlue Airways New York
CO Continental Air Lines Houston, Cleveland, Newark

DL Delta Air Lines
Atlanta, Cincinnati, New York, Boston, Los Angeles,
Minneapolis, Detroit, Seattle

EV Atlantic Southwest
Dallas, O’Hare, Atlanta, Detroit, Cleveland, Houston,
Denver, Kansas City, Newark, Dulles

HP America West Airlines Los Angeles, Phoenix
MQ American Eagle Dallas, O’Hare, Miami, New York
NW Northwest Airlines Minneapolis. Detroit, Memphis

OO SkyWest
O’Hare, Seattle, Portland, Los Angeles, San Francisco,
Detroit, Minneapolis, Denver, Houston, San Francisco, Phoenix

TZ ATA Airlines O’Hare, Indianapolis

UA United Air Lines
Houston, O’Hare, San Francisco, Houston,
Denver, Los Angeles, Newark

US US Airways Cleveland, Philadelphia, Phoenix, Washington

WN Southwest Airlines
Atlanta, Washington, Chicago, Dallas, Los Angeles,
Las Vegas, Houston, Phoenix, Oakland

Mazzeo (2003) finds interestingly that flights out of the hub have a longer than scheduled

flight time on average, whereas flights into the hub do not. He partly attributes these

differences to the logistical difficulties associated with turning around large banks of flights

at busy hub airports. We were able to obtain similar results from an estimation not shown

in this paper.

Since carriers often have hubs of different sizes, a particular airport might be a ma-

jor hub for the airline while another airport might be a medium-size hub. However, the

13It is difficult to make a reliable welfare statement about the relationship between OTP and congestion
in the absence of data on demand.
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INTOHUB variable does not capture the heterogeneity in hub sizes for a given carrier

since it is a dummy variable. Thus, to capture this heterogeneity in carrier’s hub sizes,

we also include a continuous variable DPRESCOST which counts the number of different

cities that an airline serves using nonstop flight from the destination city of the market. In-

cluding DPRESCOST controls for (dis)economies of scope and hubbing effects associated

with offering multiple routes from the same destination airport. The coefficient estimate

on DPRESCOST is negative and statistically significant as expected. A carrier’s arrival

delay decreases with the size of its hub to which it transports passengers. The incentive for

(hub) carriers to improve arrival OTP on flights into their hubs is stronger for larger hubs.

Table 2.10: Arrival On-Time Performance Estimation Results

Variables
Arrival Delay
in Minutes
(1)

Arrival Delay
in Minutes
(2)

% of Flights
Arriving
at Least 15
Minutes Late
(3)

% of Flights
Arriving
at Least 15
Minutes Late
(4)

% of Flights
Arriving
at Least 30
Minutes Late
(5)

% of Flights
Arriving
at Least 30
Minutes Late
(6)

INTOHUB -1.3499*** -1.3478*** -1.1886*** -1.1787*** -0.7450*** -0.7502***
(0.2065) (0.2066) (0.1585) (0.1586) (0.1079) (0.1079)

DPRESCOST -0.0208*** -0.0208*** 0.0083*** 0.0079*** 0.0018 0.002
(0.0037) (0.0037) (0.0029) (0.0029) (0.0019) (0.0019)

MKTSIZE 20.6967*** 21.0915*** 17.8731*** 18.0976*** 12.2403*** 12.4839***
(5.4601) (5.4639) (4.1912) (4.1936) (2.8517) (2.8538)

DISTANCE -0.0022*** -0.0022*** -0.0001 -0.0001 -0.0006*** -0.0006***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

RELSPEED -37.0368*** -37.3472*** 4.3097 4.0099 3.8671** 3.7672**
(3.4189) (3.4205) (2.6244) (2.6253) (1.7857) (1.7866)

MONOMKT 0.6765*** 0.6999*** 6.1969*** 6.2091*** 3.2302*** 3.2455***
(0.1934) (0.1938) (0.1484) (0.1488) (0.1010) (0.1012)

NUMCOMP -0.0609 -0.0373 -3.0513*** -3.0253*** -1.7877*** -1.7826***
(0.1188) (0.1191) (0.0912) (0.0914) (0.0620) (0.0622)

DNCfmt 1.4607*** 1.3976*** 0.6141*** 0.5186** -0.4826*** -0.4771***
(0.2733) (0.2755) (0.2098) (0.2115) (0.1427) (0.1439)

T dnct 4.2784*** 4.2674*** 2.9316*** 2.9217*** 2.0867*** 2.0827***
(0.1695) (0.1696) (0.1301) (0.1301) (0.0885) (0.0886)

T dnct ×DNCfmt -1.4460*** -1.3132*** -0.4744** -0.3517* -0.6666*** -0.6198***
(0.2507) (0.2555) (0.1925) (0.1961) (0.1310) (0.1335)

MKT dnc 0.5691 0.0625 0.5453**
(0.5150) (0.3953) (0.2690)

T dnct ×DNCfmt ×MKT dnc -2.1015*** -2.0021*** -0.6964*
(0.7669) (0.5886) (0.4005)

Constant -226.7955*** -231.6940*** -224.3223*** -227.0041*** -155.5177*** -158.6174***
(71.4461) (71.4932) (54.8431) (54.8718) (37.3152) (37.3417)

No. of Obs. 31748 31748 31748 31748 31748 31748
R2 0.23 0.23 0.41 0.41 0.35 0.35

The equations are estimated using ordinary least squares. Fixed effects are included in each specification but were not reported for brevity.

Note: Standard errors are in parentheses. ***p < 0.01; **p < 0.05; *p < 0.10
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Columns 3 through 6 of Table 2.10 re-estimate the model using different measures of

OTP—the percentage of flights arriving at least 15 minutes late and the percentage of

flights arriving at least 30 minutes late. These other measures look at delay over a certain

threshold.

The coefficient estimate on DPRESCOST is positive and statistically significant when

the dependent variable is the percentage of flights arriving at least 15 minutes late. The

coefficient estimate on DPRESCOST in columns 3 and 4 of Table 2.10 indicates that for

flights over a certain delay threshold (15 minutes and more), an airline’s OTP worsens with

increases in the number of distinct cities that an airline has nonstop flights to, going out

of the destination airport. In other words, for flights into destination airport that are at

least 15 minute late, carriers’ arrival OTP worsens, the larger the scale of operations at

the destination airport. This result is potentially driven by logistical difficulties associated

with turning around large banks of flights. The same reasoning applies when we use the

percentage of flights arriving at least 30 minutes late as the dependent variable, however

the estimates on DPRESCOST in columns 3 and 4 of Table 2.10 are not statistically

significant.

In addition, we also control for market size (MKTSIZE), measured as the (logged)

geometric mean of the populations at both market endpoints. The net impact of market

size on OTP may either be negative or positive. On one hand, larger market sizes may

be associated with higher demand for air travel and thus more airport congestion resulting

in more delays. On the other hand, in larger markets airlines have more incentive to be

on time because more people will be affected if they are not, resulting in future loss of

business. Thus, in the latter case, arrival OTP may improve with increasing market size.

Therefore, we argue that MKTSIZE captures the net effect of these conflicting forces. The

coefficient estimate on MKTSIZE is positive and statistically significant, suggesting that

larger markets are associated with worse arrival on-time performance. Thus, the airport
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congestion effect dominates.

On-time performance is also influenced by flight distance and the relative speed of the

flight. The variable DISTANCE represents the flight’s distance in miles. The parameter

estimate on DISTANCE is negative and statistically significant, suggesting that carriers

have some ability to “make time up in the air” on longer flights. This ability to “make time

up in the air” improves arrival OTP.

We also include a measure for the carrier’s relative speed (RELSPEED) defined as

the average speed of a carrier’s flights in the market divided by the average speed of all

flights in the market. RELSPEED captures how fast a carrier is, relative to the typical

carrier’s velocity in a market. The parameter estimate on RELSPEED is negative and

statistically significant, suggesting that airline carriers with above-average flying speed tend

to have better arrival OTP.

Building on extant research exploring the relationship between service quality and com-

petitive conditions, we investigate how route competition affects carriers’ arrival OTP.14 We

control for route-level competition by including a measure of market structure (MONOMKT ),

which is a monopoly dummy variable that equals one if there is only one carrier serving a

given market. The coefficient estimate on MONOMKT is positive and statistically sig-

nificant. This result is consistent with our expectations, suggesting that arrival delays are

greater on less competitive routes. This result is also consistent with findings by Mazzeo

(2003) and Rupp et al. (2006) who posit that airlines provide worse on-time performance

on less competitive routes.

To go a step further, consider how the degree of market competitiveness, as measured

by the number of competitors (NUMCOMP ) in a given market, affects the arrival OTP.

NUMCOMP represents a more heterogeneous measure of market structure compared to

the MONOMKT dummy variable. As expected, arrival OTP improves with increasing

14Studies by Mazzeo (2003) and Rupp et al. (2006) examine this relationship.
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number of competitors. Though the coefficient estimate on NUMCOMP has the expected

sign, it is not statistically significant in columns 1 and 2 of Table 2.10.

Codeshare Effects on Arrival On-Time Performance

The remaining rows of Table 2.10 contain the key variables of interest in evaluating the

codeshare effects of a codeshare agreement on arrival OTP. We also focus on changes in

arrival OTP in certain types of markets—markets where any two of the three alliance firms

had competed prior to the alliance.

To examine persistent differences in OTP of flights operated by the alliance partners,

we include a dummy variable DNCfmt which equals unity for flights operated by any of the

alliance carriers. The coefficient estimate on DNCfmt is positive and statistically significant

in columns 1–4 in Table 2.10, indicating that throughout the sample period the mean arrival

delay of flights operated by Delta, Northwest and Continental is greater than the mean

arrival delay of flights operated by other carriers in the sample.

We also define a dummy variable T dnct to help identify the OTP effects of the codeshare

alliance. T dnct is a time period dummy variable, which equals unity in the post-alliance

period. The positive coefficient estimate on T dnct measures, on average, how arrival delay

changes over the pre-post codeshare alliance period for flights that are not associated with

Delta, Northwest or Continental Airlines. The positive coefficient estimate on T dnct indicates

that the mean arrival delay of flights operated by airlines other than Delta, Northwest and

Continental airlines increased (OTP worsens) from pre- to post-alliance periods.

Finally, we include the interaction between the DNCfmt and T dnct variables. The coeffi-

cient estimate on this new variable T dnct ×DNCfmt represents the difference-in-differences

estimate that identifies whether arrival delay of flights operated by any of the alliance carri-

ers changed differently relative to arrival delay of flights operated by other airlines over the

pre- and post-alliance periods. It captures changes in arrival delay in DL/NW/CO flights
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(relative to non-DL/NW/CO flights) due to the alliance. The estimate is negative, suggest-

ing that the alliance caused the mean arrival delay for DL/NW/CO flights to fall compared

to the mean arrival delay for non-DL/NW/CO flights over the pre– and post–alliance peri-

ods. In a nutshell, the codeshare alliance is associated with improved arrival OTP for the

alliance firms relative to other carriers.

This result is supported by Table A.1 in the Appendix. Table A.1 reports mean arrival

(departure) delay minutes before and after the alliance for alliance partners versus other

carriers. Table A.1 indicates that even though OTP worsens overall over the pre-post

alliance periods for all carriers on average, the increase in delay minutes is smaller for the

alliance partners’ flights. We test for the difference in mean arrival (departure) delay minutes

between alliance partners and other carriers. All tests of difference in means are statistically

significant at 1% level.

Codeshare Effects on Arrival OTP based on Existence of Pre-alliance Competi-

tion between Alliance Firms

To examine whether changes in partner carriers’ arrival OTP are explained by the existence

of pre-alliance competition between alliance firms, we construct and include a market-specific

dummy variable, MKT dnc that equals to one for origin-destination markets in which any two

of the three alliance partners competed prior to the alliance. Thus, we are able to examine

whether the codeshare effects on OTP differ in markets where the alliance partners competed

prior to the alliance. Columns 2, 4 and 6 in Table 2.10 reproduce the baseline arrival OTP

regressions with the inclusion of the market dummy variable and some interactions with

this dummy variable.

The effects of the DL/NW/CO codeshare alliance on OTP in markets where the alliance

firms competed before the alliance is determined by summing the coefficients on the in-

teraction variables T dnct ×DNCfmt and T dnct ×DNCfmt ×MKT dnc in Specification 2 and
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doing the same for Specifications 4 and 6 (columns 2, 4 and 6 in Table 2.10). Summing the

coefficients yields a negative estimate, indicating an improvement in arrival OTP of flights

operated by the alliance firms in the markets where they competed with each other prior to

their alliance.

The coefficient estimate on the interaction variable T dnct ×DNCfmt in columns 2, 4 and

6 of Table 2.10, has a different interpretation. In fact, the coefficient estimate captures

changes in arrival delay in DL/NW/CO flights due to the codeshare alliance in markets

they did not compete prior to the alliance. The coefficient estimate on T dnct ×DNCfmt in

columns 2, 4 and 6 of Table 2.10, is negative and statistically significant at conventional

levels of significance, suggesting that the codeshare alliance also improved arrival on-time

performance in markets where the alliance firms did not compete prior to alliance. Thus,

evidence shows that the alliance caused the alliance firms to improve arrival OTP regardless

of whether they competed or not in markets prior to the alliance, but the partners’ arrival

OTP improvements are relatively larger in markets that the partners competed in prior to

the alliance.

2.5.2 Estimates from Reduced-form Departure OTP Equation

To further isolate the source of delays, we investigate the effect of code-sharing on departure

delay. Similar to arrival OTP, we consider three different measures of departure OTP. In

Table 2.11, we report results for the three measures of departure delay in the data. We also

control for flight and market structure characteristics as well as airline, month, year and

airport-specific fixed effects.

Determinants of Departure OTP

We now analyze factors that influence airlines’ departure OTP, with the ultimate goal of

understanding how this OTP measure is influenced by a codeshare alliance. To control for
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Table 2.11: Departure On-Time Performance Estimation Results

Variables
Departure Delay
in Minutes
(1)

Departure Delay
in Minutes
(2)

% of Flights
Departing
at Least 15
Minutes Late
(3)

% of Flights
Departing
at Least 15
Minutes Late
(4)

% of Flights
Departing
at Least 30
Minutes Late
(5)

% of Flights
Departing
at Least 30
Minutes Late
(6)

OUTOFHUB 0.8131*** 0.8090*** 1.2659*** 1.2491*** 0.8167*** 0.8035***
(0.1803) (0.1803) (0.1441) (0.1442) (0.1011) (0.1011)

OPRESCOST 0.0238*** 0.0240*** 0.0287*** 0.0294*** 0.0127*** 0.0132***
(0.0032) (0.0033) (0.0026) (0.0026) (0.0018) (0.0018)

DISTANCE -2.98e-5 -2.83e-5 -0.0006*** -0.0006*** -0.0005*** -0.0005***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

MKTSIZE 18.5741*** 18.7712*** 25.8526*** 26.4670*** 13.7093*** 14.1043***
(4.7830) (4.7869) (3.8244) (3.8262) (2.6817) (2.6829)

MONOMKT 0.4188** 0.4313** 4.9897*** 5.0294*** 2.8408*** 2.8667***
(0.1694) (0.1698) (0.1355) (0.1358) (0.0950) (0.0952)

NUMCOMP 0.0438 0.0455 -2.4309*** -2.4319*** -1.4493*** -1.4535***
(0.1041) (0.1043) (0.0832) (0.0834) (0.0583) (0.0585)

DNCfmt -0.6325*** -0.6173** -1.0298*** -0.9519*** -1.0913*** -1.0239***
(0.2394) (0.2413) (0.1914) (0.1929) (0.1342) (0.1353)

T dnct 2.9635*** 2.9608*** 2.6752*** 2.6689*** 1.9002*** 1.8973***
(0.1485) (0.1485) (0.1187) (0.1187) (0.0832) (0.0832)

T dnct ×DNCfmt -1.3356*** -1.3065*** -0.7249*** -0.6581*** -0.6411*** -0.6118***
(0.2197) (0.2239) (0.1756) (0.1789) (0.1232) (0.1255)

MKT dnc 0.486 1.6518*** 1.1398***
(0.4509) (0.3604) (0.2527)

T dnct ×DNCfmt ×MKT dnc -0.4129 -0.8777 -0.3321
(0.6715) (0.5367) (0.3764)

Constant -237.3860*** -239.9722*** -325.2973*** -333.3471*** -171.8417*** -177.0110***
(62.4722) (62.5240) (49.9509) (49.9755) (35.0266) (35.0426)

No. of Obs. 31748 31748 31748 31748 31748 31748
R2 0.24 0.24 0.45 0.45 0.35 0.35

The equations are estimated using ordinary least squares. Fixed effects are included in each specification but were not reported for brevity.

Note: Standard errors are in parentheses. ***p < 0.01; **p < 0.05; *p < 0.10

airport congestion, we include the OUTOFHUB dummy variable that equals one if the ori-

gin airport is a hub for that carrier.15 Similarly to INTOHUB in Table 2.10, OUTOFHUB

captures the hubbing effect on departure OTP. For all three measures of departure OTP, the

hubbing effect is positive and statistically significant, indicating that airlines produce poor

departure OTP on flights originating from their hubs. Flights originating from an airline’s

hub are often spoke flights that are heading to passengers’ final destination (spoke airport).

At spoke airports, there are no interdependencies between airlines’ aircrafts since few arrive

or depart and passengers do not connect, hub carriers may have less incentive to improve

15See list of hub/airline combination in Table 2.9
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OTP (Mayer and Sinai, 2003).

Given its binary nature, OUTOFHUB fails to capture heterogeneity in airline’s hub

sizes. To solve this problem, we include a more reasonable measure of hubbing effects

(OPRESCOST ) in the departure delay regressions. OPRESCOST counts the number of

different cities that an airline offers flights from, going into the origin city of the market

using a nonstop flight. The coefficient estimate on OPRESCOST is positive and statisti-

cally significant for all measures of departure delay as expected. In particular, a carrier’s

departure delay increases with the size of its hub from which it departs.

The negative coefficient on DISTANCE in the departure OTP regression in Table

2.11 suggests that longer flights tend to have shorter departure delays. On longer flights,

carriers have an incentive to depart on time to minimize the likelihood of late arrival (or

late departure for a subsequent connecting flight). Even though carriers departing late can

“make time up” during a flight, there is a downside to that. “Making time up” means

accelerating which end up burning substantially more fuel and adding thousands of dollars

to the overall flight expense. Thus, carriers have an incentive to reduce departure delay so

as to avoid additional costs in “making time up.” Some studies show that pilots do try to

make up time in the air, but only for delays that fall into a particular sweet spot.

Recall that market size is measured as the (logged) geometric mean of the populations

at both market endpoints. The coefficient estimate on MKTSIZE in the departure delay

regression is positive and statistically significant suggesting that larger markets deteriorate

departure OTP. Thus, the airport congestion argument prevails just like in the arrival delay

results.

The market structure variables show similar results to arrival delay regressions. Once

again, the coefficient estimate on the monopoly dummy variable MONOMKT is positive

and statistically significant, while the coefficient on the number of competitors in a given

market NUMCOMP , is negative and statistically significant for two of the departure delay
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measures. These results are consistent with the premise that less competitive markets tend

to have poor departure OTP because of less competitive pressure. Borenstein and Netz

(1999) show that before airlines choose their departure time, they take into consideration

the number of other non-stop competitors on a route.

Codeshare Effects on Departure OTP

The remaining rows of Table 2.11 display key variables of interest that examine the code-

share effects of the Delta/Northwest/Continental codeshare alliance on the partner carriers’

departure OTP. Changes in departure OTP are investigated in markets where any two of

the three alliance firms had competed prior to the alliance.

Similarly to the arrival OTP regressions, we include a dummy variable DNCfmt which

equals unity for flights operated by any of the alliance carriers to examine persistent differ-

ences in departure OTP of flights offered by the alliance partners. The coefficient estimate

on DNCfmt is negative and statistically significant across estimations, indicating that the

mean departure delay of flights operated by Delta, Northwest and Continental airlines is

less than the mean departure delay of flights operated by other carriers in the sample.

The time period dummy T dnct has a positive coefficient estimate suggesting that the mean

departure OTP of flights operated by airlines other than Delta, Northwest and Continental

airlines increased (OTP worsens) from pre- to post-alliance periods.

The coefficient estimate on the interaction variable T dnct ×DNCfmt represents the difference-

in-differences estimate that identifies whether departure OTP of flights operated by any of

the alliance carriers changed differently relative to departure OTP of flights operated by

other airlines over the pre- and post-alliance periods. The coefficient estimate is negative

and statistically significant across estimations, suggesting that the alliance caused the de-

parture OTP for DL/NW/CO flights to increase relative to the mean departure OTP for

non-DL/NW/CO flights over the pre- and post-alliance periods. In a nutshell, the codeshare
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alliance improved departure OTP for the alliance firms relative to other carriers.

Codeshare Effects on Departure OTP based on Existence of Pre-alliance Com-

petition between Alliance Firms

Columns 2, 4 and 6 in Table 2.11 reproduce the baseline departure OTP regressions with the

inclusion of the MKT dnc dummy variable. The effects of the Delta/Northwest/Continental

codeshare alliance on departure OTP in markets where the alliance firms competed before

the alliance formation is determined by summing the coefficients on the interaction variables

T dnct ×DNCfmt and T dnct ×DNCfmt ×MKT dnc in Specification 2 and doing the same for

Specifications 4 and 6 (columns 2, 4 and 6 in Table 2.11). Even though the coefficient

estimates on T dnct ×DNCfmt×MKT dnc have the same sign as in the arrival delay regression,

they are not statistically significant.

The coefficient estimate on the interaction variable T dnct ×DNCfmt in columns 2, 4 and

6 of Table 2.11, has a different interpretation. In fact, the coefficient estimate captures

changes in departure OTP in DL/NW/CO flights due to the codeshare alliance in mar-

kets they did not compete prior to the alliance. The coefficient estimate is negative and

statistically significant at conventional levels of significance, suggesting that the codeshare

alliance improved departure OTP in markets where the alliance firms did not compete prior

to alliance.

Thus, evidence shows that the alliance caused the alliance firms to improve departure

OTP regardless of whether they competed or not in different markets prior to the alliance.

2.6 Conclusion

This study builds on the existing literature linking airline alliance and product quality, but

is the first to empirically link airline codeshare alliance to OTP. Airline carriers typically
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coordinate to seamlessly integrate their route networks which potentially result in more

travel-convenient route network connections across partner carriers. While not attempting

to study the incentives to form an alliance, the question that this research intends to shed

light on is whether the route network integration that comes with the alliance provides

sufficient extra incentive to partner carriers to improve their OTP.

We made use of airline OTP data to measure service quality and examine the above

relationship. After controlling for carrier, airport and market structure characteristics, we

find strong evidence that the Delta/Northwest/Continental codeshare alliance improved

both arrival and departure OTP for the alliance firms.

We then explore OTP effects of code-sharing based on the existence of pre-alliance

competition between the alliance firms. We find that the alliance firms improved OTP in

both markets where the partners competed prior to the alliance, and markets where they did

not compete prior. However, the arrival OTP effects of code-sharing are larger in markets

where the partners competed in prior to the alliance.
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Chapter 3

Modelling the Impact of Airline

Product Quality on Airlines’ and

Passengers’ Choice Behavior

3.1 Introduction

Punctuality is certainly a key performance indicator in the airline industry and carriers with

excellent on-time performance record use it as a marketing tool by prominently displaying

it on their websites. Given the increased competition that followed the deregulation of

the airline industry in 1978, many carriers have resorted to product quality differentiation

as a key to long-term profitability. Although airlines generally compete based on pricing,

flight on-time performance is a very important indicator of airline service quality which

drives customer satisfaction and loyalty. For example in the 1990s American Airlines ran

ads calling itself “The On-Time Machine.”1 Likewise, airlines that produce excessive flight

delays receive a great deal of negative publicity.

1Boozer et al. (1990)
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In 1987, the U.S. Congress passed the flight on-time disclosure rule amidst chronic air

traffic delays that stirred public outcry and media coverage. The disclosure rule made it

mandatory for airlines with at least one percent of all domestic traffic to publish flight-by-

flight delay data. Airlines are required to track and report five segments of travel time for

each of their flights to the Federal Aviation Administration (FAA): i) departure delay, ii)

taxi-out, iii) air time, iv) taxi-in, and v) arrival delay.

Remarkably, even with the flight on-time disclosure rule, the industry’s on-time perfor-

mance is still far below satisfactory levels. A report from the U.S. Department of Trans-

portation’s (DOT) Office of Aviation Enforcement and Proceedings2 revealed that the most

prevailing consumer air travel complaint in the year 2000, stems from flight problems namely

cancellations, delays and missed connections. In fact, 1 out of 4 flights was either delayed,

canceled or diverted (Rupp et al., 2006). According to Mayer and Sinai (2003), in 2000,

flights that arrived at their destination within 15 minutes of their scheduled arrival time and

without being canceled or diverted, accounted for less than 70 percent. Even more recently,

the Bureau of Transportation statistics (BTS) showed that 23.02% of U.S. domestic flights

were delayed3 in 2014, an increase from 14.69% in 2012. The BTS maintains an archive of

monthly and yearly on-time performance data that is also accessible through the Internet.4

Thus, passengers’ most common source of frustration are flight delays.

In the midst of these delay statistics, airlines usually claim that air traffic delays are

out of their control, placing the blame on adverse weather or air traffic control as the most

common culprits.5 A good portion of delay can be attributed to extreme weather, air traffic

control and security checks (U.S. DOT, 2015). In June 2003, the Air Carrier On-Time

2U.S. Department of Transportation Office of Aviation Enforcement and Proceedings (USDTOAEP)
Feb. 2001 p. 34

3A flight is considered delayed if it arrived at (or departed) the gate 15 minutes or more after the
scheduled arrival (departure) time.

4The BTS archived data are located at http://www.transtats.bts.gov/homedrillchart.asp
5http://www.washingtonpost.com/lifestyle/travel/what-to-do-when-airlines-blame-flight-problems-on-

circumstances-beyond-our-control/2015/02/12/7298b264-a57f-11e4-a7c2-03d37af98440 story.html
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Reporting Advisory Committee defined five broad categories for the cause of any flight

delay:

1. Air Carrier: The cause of the cancellation or delay was due to circumstances within

the airline’s control (e.g. maintenance or crew problems, aircraft cleaning, baggage

loading, fueling, etc).

2. Extreme Weather: Significant meteorological conditions (actual or forecasted) that, in

the judgment of the carrier, delay or prevent the operation of a flight (e.g. tornado,

blizzard, hurricane, etc.). Weather delays are also included in the National Aviation

System and late-arriving aircraft categories.

3. National Aviation System (NAS): Delays and cancellations attributable to the na-

tional aviation system that refer to a broad set of conditions—non-extreme weather

conditions, airport operations, heavy traffic volume, air traffic control, etc.

4. Late-arriving Aircraft: A previous flight with same aircraft arrived late, causing the

present flight to depart late.

5. Security: Delays or cancellations caused by evacuation of a terminal or concourse,

re-boarding of aircraft because of security breach, inoperative screening equipment

and/or long lines in excess of 29 minutes at screening areas.

Although some of these factors are uncontrollable, airlines still have a substantial level

of control over their on-time performance. An airline can schedule a longer flight time to

absorb potential delays on the taxiways or choose a longer layover on the ground to buffer

against the risk of a late incoming aircraft (Mayer and Sinai, 2003). Figure 3.1 shows the

declining shares of flight delay caused by weather and air traffic control (NAS) while at the

same time the shares of delay caused by late-arriving aircraft and air carrier, continue to

70



rise. Figures 3.1 and 3.2 indicate that on-time performance improvement potential within

the reach of airlines is feasible.

The objective of this paper is twofold. First, we examine the monetary value that

consumers place on on-time performance. In order to make our case about consumers valuing

improved OTP, we estimate a discrete choice demand model which allows us to quantify

the opportunity cost of delays to consumers. Thus, incorporating on-time performance into

our demand model affords us the advantage of measuring how much on-time performance

matters to consumers. How much are they willing to pay for better on-time performance or

for each minute of delay?

Figure 3.1: Causes of Delay by Percent Share of Total Delay Minutes

Second, if consumers do value on-time performance, to what extent are airlines willing

to provide improved on-time performance? How does improved on-time performance affect

airlines’ markup in an oligopoly world, a strategic environment where firms are competing

with each other? One way to answer these questions is by examining how airlines product

markups respond to changes in on-time performance. We use the variation in product
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Figure 3.2: Weather’s Share of Total Delay Minutes

markups to measure the incentive a given airline has to improve on-time performance.

The rationale for using markups as a reasonable measure of airlines’ incentive is that

investing in on-time performance is costly but if the improvement can lead to prices suffi-

ciently higher than the increase in costs, which means an increase in markup, then improving

on-time performance might be a worthwhile proposition for airlines. Using markups allows

us to analyze airlines incentive without directly estimating the cost of improving on-time

performance in a sense—a unique feature that sets our methodology apart from others in

the literature. Therefore, airlines only care about how the improvement will affect their

markup, in other words, what are their returns for investing in on-time performance?

Over the last three decades, empirical studies on air travel have neglected to incorporate

service quality into air travel demand estimation, specifically the incorporation of delay-

based quality of service measures. The first model to incorporate service quality, proxied by

flight frequency, in a demand model is from De Vany (1975). Anderson and Kraus (1981),

Ippolito (1981), Abrahams (1983) and De Vany (1975) estimated air travel demand models

with schedule delay6 as a measure of service quality. We contribute to this literature.

6Defined as the sum of frequency delay and stochastic delay. Frequency delay is the gap between one’s
desired and the nearest offered departure time while stochastic delay is time lost due to the nearest offered
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A novel feature of this study is that we model demand on a passenger origin-destination7

demand rather than flight segment only. Previous demand studies, based on origin-destination

data, have been unable to incorporate flight delay8 and studies that have incorporated delay

(Abrahams, 1983; Anderson and Kraus, 1981; De Vany, 1975; Douglas and Miller, 1974; Ip-

polito, 1981), model demand on a service segment rather than passenger origin-destination

basis. But much air travel is done in several segments rather than non-stop. In fact, our

dataset shows that only 17 percent of itineraries are non-stop flights. Travelers demand

air transportation between a directional origin and destination pair and not segment-by-

segment. Given the importance of on-time performance to consumers,9 it is only reasonable

that a demand model incorporates such information. This, not only help to predict pas-

sengers’ behavioral intentions but provides a structure for the measurement of consumer

welfare effects of flight delay.

After estimating the demand model, we specify the supply-side assuming that prices are

set according to a static differentiated products Bertrand-Nash equilibrium with multiprod-

uct firms. With the static Bertrand-Nash assumption, we derive product-specific markups

and recover product-level marginal costs. With the estimated markups and marginal costs

in hand, we are able to specify and estimate markup and marginal cost functions. Both

functions allow us to measure on-time performance effects on markup and marginal cost.

Several conclusions emerge from the empirical analysis. First, other things equal, con-

sumers value on-time performance and are willing to pay for it. Our demand estimates

show that consumers are willing to pay $0.78 per minute late to avoid delay. We also found

that, from a strategic perspective, airlines do not have enough incentive to invest in on-time

performance because the change in markup is small and statistically insignificant. Further-

departure being unavailable.
7Tickets are issued for the entire itinerary which may include intermediate airport.
8Origin-destination passenger data contain no information on routings’ on-time performance.
9Our demand estimates show that passengers are willing to pay $0.78 on average for each additional

minute of flight delay to avoid delay.
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more, since markup is a function of price and marginal cost, we decompose the effects of

on-time performance on markup by separately estimating price and marginal cost functions.

We found that on-time performance affects price and marginal cost similarly in terms of co-

efficient magnitudes. This suggests that a marginal improvement in on-time performance

raises price and marginal cost by almost the same amount resulting in a zero net effect on

markup.

3.2 Literature Review

Researchers have written extensively on airline flight delays. The literature on flight delays

abounds in both operations management and economics. The operations management lit-

erature uses models that attempt to explain flight delays from an operational standpoint

of running an airline. Shumsky (1995) contributed to the literature of airline scheduling

performance analysis by examining US air carriers’ response to the on-time disclosure rule

of 1987. The rule creates incentives for the carriers to improve their on-time performance

by either reducing the amount of time to complete a flight or lengthening the amount of

time scheduled for a flight. Shumsky (1995) shows that although actual flight times have

fluctuated, scheduled flight times have increased significantly. Ramdas and Williams (2006)

investigate the tradeoff between aircraft utilization and on-time performance using queu-

ing theory and found out that flight delays increase with increasing aircraft utilization and

Sohoni et al. (2011) develop a stochastic integer programming model that achieves desired

trade-off between service level and profitability. They use two service-level metrics for an

airline schedule. The first one is similar to the on-time performance measure of the U.S.

Department of Transportation and the second metric, called the network service level, is

geared toward completion of passenger itineraries.

In the economics literature, researchers have tried to explain variations in flight delays
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by estimating how flight delay relates to airline hub size and airport concentration (Mayer

and Sinai, 2003), competition (Mayer and Sinai, 2003; Rupp et al., 2006; Mazzeo, 2003),

multimarket contact (Prince and Simon, 2009), prices (Forbes, 2008) and entry or threat of

entry (Prince and Simon, 2014), among others. Mayer and Sinai (2003) found that as origin

(destination) airport concentration increases, flight delays originating (arriving) from (to)

that airport decrease.

On the other hand, for both origin and destination airports, flight delays increase with

increasing airport hub size. Mazzeo (2003) found out that the prevalence and duration of

flight delays are significantly greater on routes where only one airline provides direct service.

Rupp and Holmes (2006) examined the determinants of flight cancellations such as revenue,

competition, aircraft utilization, and airline network. Prince and Simon (2009) tested the

mutual forbearance hypothesis (Edwards, 1955) using different measures of on-time perfor-

mance. This hypothesis suggests that firms that meet in multiple markets compete less

aggressively because they recognize that a competitive attack in any one market may call

for response(s) in all jointly contested markets. They conclude that multimarket contact

increases delays and that the effect is substantially larger in less competitive markets.

Forbes (2008) examines the effect of air traffic delays on airline fares and found out

that prices fall by $1.42 on average for each additional minute of flight delay, and that

the price response is substantially larger the more competitive the markets are. Prince

and Simon (2014) examine whether entry and entry threats by Southwest Airlines cause

incumbent airlines to improve their on-time performance as a way to protect their market

share. Surprisingly, their results show that incumbents’ delays increase with entry and entry

threats by Southwest Airlines. They provide two possible explanations for their findings: 1)

incumbents worsen on-time performance in an effort to cut costs in order to compete against

Southwest’s low costs/prices; or 2) incumbents worsen on-time performance to differentiate

away from Southwest, a top-performing airline in on-time performance.
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3.3 Dataset Construction and Definitions

3.3.1 Dataset Construction

We construct our dataset using data from two sources that span from the first quarter of 2002

to the fourth quarter of 2012 for 20 U.S. carriers.10 First, we use data from the Airline Origin

and Destination Survey (DB1B) collected by the Office of Airline Information of the Bureau

of Transportation Statistics. The data are quarterly and represent a 10 percent sample

of airline tickets from reporting carriers. Each record or itinerary contains the following

information; (i) the identities of origin, destination, and intermediate stop(s) airports on

an itinerary; (ii) the identities of ticketing and operating carriers on the itinerary; (iii)

the price of the ticket; (iv) the number of passengers who bought the ticket at that price;

(v) total itinerary distance flown from origin to destination; and (vi) the nonstop distance

between the origin and destination. Regrettably, passenger-specific information, that would

facilitate the estimation of a richer demand model than the one we use, is not available.

Information on ticket restrictions such as advance-purchase and length-of-stay requirements

are unavailable as well.

Second, we also use the U.S. Department of Transportation (DOT) Bureau of Trans-

portation Statistics (BTS) On-Time Performance data set to construct product quality

variables. All U.S. domestic carriers with revenues from domestic passenger flights of at

least one percent of total industry revenues must report flight on-time performance data.

The data frequency is monthly and covers scheduled-service flights between points within

the United States. So, a record in this survey represents a flight. Each record or fight con-

tains information on the operating carrier, the origin and destination airports, miles flown,

flight times, and departure/arrival delay information. Previous demand studies, based on

origin-destination data, have been unable to incorporate delay data because of the challenge

10See Table 3.1 for list of carriers in sample
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of matching the data sources described above. The challenge is that origin-destination pas-

senger data contain no information on routings’ on-time performance. To construct product

quality variables from the on-time performance data, we take the average departure (ar-

rival) delay measure for each carrier at any given origin (destination) airport in a quarter

for a given year. This aggregated on-time performance data is then matched to the DB1B

dataset. The matching process is done at all airports of the passengers’ itineraries. In this

study, we only focus on on-time performance at the itinerary final destination. In order to

construct our data set, we place some restrictions on the raw data:

(i) We confine our analysis to U.S. domestic flights operated by US domestic carriers.

(ii) We only focus on passengers purchasing round-trip, coach class tickets.

(iii) We exclude real airfares less than $25 or greater than $2,000. Dropping real airfares

that are too low gets rid of discounted airfares from passengers using their frequent-

flyer miles to offset the full price of the trip or employee travel tickets. Likewise,

excluding real airfares that are too high gets rid of first-class or business-class tickets.

(iv) Our analysis is limited to air travel products possessing at least 9 passengers to exclude

products that are not part of the regular offerings by an airline.

(v) Our analysis focuses on itineraries: (1) within the 48 states in US mainland; (2) no

more than one intermediate stop; and (3) with a single ticketing carrier.

(vi) Following Aguirregabiria and Ho (2012), markets selection focuses on air travel amongst

the 65 largest US cities. City size is based on the Census Bureau’s Population Esti-

mates Program (PEP), which publishes estimates of U.S. population. Data are drawn

from the category “Cities and Towns.” We use the size of population in the origin city

as a proxy for potential market size. Unlike Aguirregabiria and Ho (2012), we do not
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group cities that belong to the same metropolitan areas and share the same airport

since airport grouping will lessen the heterogeneity in on-time performance.

(vii) Given that there are often multiple records for the same itinerary because different

passengers paid different prices, we construct the price and quantity variables by

averaging the airfares and aggregating the number of passengers respectively based

on our product definition and then collapse the data by product. So, in the collapsed

data that we use for analyses, a product appears only once during a given time period.

Our final working dataset includes a total of 65 airports representing 1,346,384 air travel

products bought across 156,750 different directional city-pair markets.

3.3.2 Definitions

A market is a directional, round-trip between an origin and destination city during a specific

time period. By directional, we mean that a round-trip air travel from Chicago to Boston

is a distinct market from a round-trip air travel from Boston to Chicago. This directional

definition of a market controls for heterogeneity in demographics across origin cities that

may affect air travel demand (Berry et al., 2006; Gayle, 2007).

An itinerary is a planned route from an origin city to a destination city. It entails one or

more flight coupons, each coupon typically representing point-to-point travel between two

airports that could be on a particular flight segment.

An air travel product is defined as a unique combination of ticketing carrier, operating

carrier(s) and itinerary. Following Gayle (2007) and Ito and Lee (2007), we focus on three

types of air travel products: pure online; traditional codeshare; and virtual codeshare.

For a pure online product, the same airline is the ticketing and operating carrier on all

segments of the trip. For example, a two-segment ticket with both segments marketed by

Delta Air Lines and both segments of the itinerary are also operated by Delta Air Lines. An
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Table 3.1: Airlines in Sample

Code Airline
AA American Airlines
AQ Aloha Airlines
AS Alaska Airlines
B6 JetBlue Airways
CO Continental Air Lines
DH Independence Air
DL Delta Air Lines
F9 Frontier Airlines
FL AirTran Airways
HA Hawaiian Airlines
HP America West Airlines
NW Northwest Airlines
OO SkyWest
TZ ATA Airlines
UA United Air Lines
US US Airways
VX Virgin America Inc.
WN Southwest Airlines
XE ExpressJet Airlines
YX Midwest Airlines

air travel product is said to be code-shared if the operating and ticketing carriers for that

itinerary differ. We consider two types of codeshare products: (1) Traditional Codeshare;

and (2) Virtual Codeshare.

A traditional codeshare product has a single ticketing carrier, but multiple operating

carriers, one of which is the ticketing carrier. For example, a connecting itinerary operated

by Delta Air Lines (DL) and Northwest Airlines (NW) but marketed solely by Delta Air

Lines (DL) is a traditional codeshare product. A virtual codeshare air travel product has

the same operating carrier for all segments of the itinerary, but the ticketing carrier is

different from the operating carrier. For example, a connecting itinerary operated entirely

by Northwest Airlines (NW) but marketed solely by Delta Air Lines (DL) is a virtual

codeshare product
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For proper identification of the different types of product—pure online, traditional code-

share, and virtual codeshare—we recode regional feeder carriers to have their major carriers’

code.11 For instance, a product that involves Delta Air Lines (DL) and Comair Delta Con-

nection (OH), where one of them is the ticketing carrier and the other the operating carrier,

Comair Delta Connection is recoded as Delta Air Lines (DL). Without recoding, this prod-

uct would mistakenly be considered a codeshare product because the ticketing and operating

carriers are different.

3.4 Product Quality Variables

3.4.1 On-Time Performance Measures

Delay-based measures are obtained using on-time performance from the DOT BTS’ dataset.

According to the US DOT, flights that don’t arrive at (depart from) the gate within 15

minutes of scheduled arrival (departure) time are late arrivals (departures). This represents

performance measured against airlines’ published schedules. For example, if your flight is

scheduled to arrive at 3:30 p.m. and does not get in until 3:44 p.m., it is not late. With this

measurement standard, 81.9 percent of flights arrived on time in April 2015.12 However,

if we count all flights that arrive after their scheduled arrival time including when they

are one minute late, the industry’s “true” on-time performance drops to about 60 percent.

In this study, we focus on arrival on-time performance at destination. The three main

measures are arrival minutes late, the percentage of flights arriving at least 15 minutes late

and the percentage of flights arriving at least 30 minutes late. Table 3.2 summarizes on-

time performance by carrier and Hawaiian Airlines (HA) tops all carriers across on-time

performance measures. Figure 3.3 shows that overall, airlines performed the worst in 2007.

11The International Air Transport Association (IATA) uses two-character codes to identify all airlines;
for example the code DL is assigned to Delta Airlines.

12U.S. Department of Transportation (2015)
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Table 3.2: Airlines’ Mean Arrival Delay (2002:Q1—2012:Q4)

Code Airlines Minutes Late
% Flights Arriving
at Least 15 Minutes
Late

% Flights Arriving
at Least 30 Minutes
Late

HA Hawaiian Airlines 4.75 8.06 3.66
AQ Aloha Airlines 9.23 17.30 8.10
VX Virgin America Inc. 9.90 13.53 8.54
WN Southwest Airlines 9.96 18.27 10.17
HP America West Airlines 10.67 21.06 10.55
US US Airways 11.09 19.72 11.21
AS Alaska Airlines 11.84 19.96 11.41
F9 Frontier Airlines 12.02 23.08 11.70
DL Delta Air Lines 12.15 21.17 11.93
CO Continental Air Lines 12.90 21.72 12.41
NW Northwest Airlines 12.92 24.20 13.06
FL AirTran Airways 13.22 21.82 13.14
UA United Air Lines 13.31 21.21 13.21
TZ ATA Airlines 13.40 21.65 12.95
OO SkyWest 13.42 20.32 13.39
XE ExpressJet Airlines 13.48 24.34 14.16
AA American Airlines 13.71 22.61 13.93
YX Midwest Airlines 13.87 23.04 13.30
B6 JetBlue Airways 15.14 22.98 14.61
DH Independence Air 15.49 25.16 15.59

Overall Mean 12.12 20.56 11.85

Figure 3.3: Overall Airline On-Time Performance (2002–2012)
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3.4.2 Routing Quality Measure

We include the distance-based measure, Routing Quality, into our analysis following the

literature.13 Routing Quality is defined as the ratio of nonstop fight distance to the product’s

itinerary fight distance used to get passengers from the origin to destination. Based on

our routing quality measure, a nonstop flight between the origin and destination will have

the shortest itinerary flight distance. Hence, air travel products that require intermediate

airport stop(s) that are not on a straight path between the origin and destination, will have

an itinerary flight distance that is longer than the nonstop flight distance. Our rationale

for choosing this measure is that the longer the itinerary flight distance of an intermediate-

stop product relative to the nonstop flight distance, the lower the routing quality of the

intermediate-stop product.

3.4.3 Creation of Other Variables

In the collapsed and matched dataset, we create more variables to include in the demand

model. The observed product share variable is created by dividing quantity sold by the

market size. Measured non-price product characteristic variables include: Nonstop and

Origin Presence. Nonstop is an indicator variable that takes the value one if a product

has no intermediate stop. This variable constitutes one measure of the travel inconvenience

embodied in a product’s itinerary since passengers would prefer a non-stop product to one

with intermediate stop(s). The Origin Presence variable counts the number of different

cities that an airline provides service to via a nonstop flight from the origin airport of the

market.

We include dummy variables for quarter, year, origin, destination, and carrier to capture

unobserved product characteristics that vary across time periods, origins, destinations, and

13Reiss and Spiller (1989); Borenstein (1989); Ito and Lee (2007); Färe et al. (2007) Gayle (2007, 2013).
Chen and Gayle (2013) and Gayle and Yimga (2014) use routing quality as defined in this paper.
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carriers that cannot be measured directly.

We create indicator variables for the different product types—pure online, traditional

codeshare, and virtual codeshare. Table 3.3 presents summary statistics for variables used

in our analysis.

Table 3.3: Summary Statistics

Variables Mean Std. Dev. Min Max

Price(a) 169.224 57.539 50.371 1679.103
Quantity 139.975 453.431 9 11266
Observed Product Share 0.00023 0.001 1.07E-06 0.095
Origin presence 17.510 23.281 0 142
Nonstop (dummy variable) 0.174 0.379 0 1
Itinerary distance flown (miles)(b) 1510.806 702.375 47 3982
Nonstop flight distance (miles) 1340.965 652.289 47 2724
Routing Quality(c) 0.890 0.129 0.337 1
Traditional Codeshare 0.016 0.124 0 1
Virtual Codeshare 0.029 0.167 0 1
Pure Online 0.955 0.206 0 1
Arrival On-Time Performance Variables:

Minutes Late 12.30 4.88 0 68.43
% flights arriving at least 15 minutes late 21.15 7.25 0 100
% flights arriving at least 30 minutes late 12.27 5.21 0 100

Number of Products 1,346,384
Number of Markets(d) 156,750
(a) Adjusted for inflation
(b) Reported as “market miles flown” in the DB1B database
(c) Defined as the ratio of non-stop distance to itinerary distance
(d) A market is an origin-destination-time period combination

3.5 The Model

3.5.1 Demand

The nested logit model is used to specify air travel demand. A typical passenger i may

either buy one of J products (air travel products), j = 1, ..., J , or otherwise choose the
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outside good 0 (j = 0) for example, driving or using another transportation means. Thus,

passenger i makes a choice among Jmt + 1 alternatives in market m during time period t.

The nested logit model classifies products into G groups, and one additional group for the

outside good. Therefore, products are organized into G+ 1 mutually exclusive groups. The

passenger solves the following utility maximization problem:

Max
j∈{0,1,··· ,Jmt}

Uijmt = δjmt + σςimtg + (1− σ)εijmt (3.1)

δjmt = xjmtβ + αpjmt + ηj + υt + originm + destm + ξjmt (3.2)

where Uijmt is passenger i’s utility from choosing product j; δjmt is the mean level of utility

across passengers that choose product j; ςimtg represents a random component of utility

common across all products within the same group; εijmt is an independently and identically

distributed (across products, consumers, markets and time) random error term assumed to

have an extreme value distribution.

In Equation (3.2), xjmt represents a vector of observed non-price product characteristics

described below; pjmt is the price; ηj captures airline-specific fixed effects; υt captures time

period fixed effects; originm and destm are origin and destination city fixed effects and

ξjmt, the unobserved (by the researcher) component of product characteristics that affects

consumer utility.

The vector xjmt includes Routing Quality14, Origin Presence which is a measure of

the size of an airlines airport presence, product-level zero-one codeshare dummy variables

(traditional and virtual codeshare) and a zero-one dummy variable that equals to unity only

if the product uses a nonstop flight to get passengers from the origin to destination. The

origin city presence variable is measured by the number of different cities an airline provides

14Note that including Routing Quality in our demand model is paramount since a positive estimate on
this variable would empirically validate that consumers’ choice behavior is consistent with the fact that
better routing quality is associated with a more desirable itinerary.
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service to using nonstop flights from the relevant market origin to destination cities.

The vector β measures the passenger’s marginal utilities associated with the product

characteristics. The parameter α captures the marginal utility of price. The parameter

σ lies between 0 and 1 and measures the correlation of consumer utility across products

belonging to the same airline. The correlation of preferences increases as σ approaches

1. In the case where is 0, the model collapses to the standard logit model where products

compete symmetrically. For notational convenience, we drop the market and time subscripts

to complete the derivation of the model.

Let there be Gg products in group g. If product j is in group g, then the conditional

probability of choosing product j given that group g is chosen, is given by:

Sj/g =
e(1−σ)

−1δj

Dg

where, Dg =
∑
j∈Gg

e(1−σ)
−1δj (3.3)

The probability of choosing group g or group g’s predicted share is given by:

Sg =
D1−σ
g

D1−σ
0 +

∑G
g=1D

1−σ
g

(3.4)

The outside good is the only good in group 0. Therefore, D1−σ
0 = eδ0 . We normalize the

mean utility of the outside good to zero. This implies D1−σ
0 = 1. Equation (3.4) can be

rewritten as:

Sg =
D1−σ
g

1 +
∑G

g=1D
1−σ
g

(3.5)

The unconditional probability of choosing product j or the market share of product j is:

Sj = Sj/g × Sg =
e(1−σ)

−1δj

Dg

×
D1−σ
g

1 +
∑G

g=1D
1−σ
g

or Sj =
e(1−σ)

−1δj

Dσ
g

[
1 +

∑G
g=1D

1−σ
g

] (3.6)
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Therefore, the demand for product j is given by:

dj = M × Sj(x,p, ξ;α, β, σ) (3.7)

where M is a measure of market size—the population in the origin city. The predicted

market share of product j is Sj while x, p and ξ are vectors of observed non-price product

characteristics, price, and the unobserved vector of product characteristics. α, β and σ are

parameters to be estimated.

3.5.2 Product Markups and Product Marginal Costs

We assume that carriers simultaneously choose prices as in a static Bertrand-Nash model

of differentiated products. Let each carrier f offer for sale a set Ffm of products in market

m. Firm f ’s variable profit in market m is given by:

πfm =
∑
j∈Ffm

(pjm −mcjm)qjm (3.8)

where qjm = djm(p) in equilibrium, qjm is the quantity of travel tickets for product j sold

in market m, djm(p) is the market demand for product j in equation (3.7), p is a vector

of prices for the J products in market m, and mcjm is the marginal cost of product j in

market m. The corresponding first-order conditions are:

∑
r∈Ffm

(prm −mcrm)
∂sr
∂pj

+ sjm(x,p, ξ;α, β, σ) = 0 for all j = 1, ..., J (3.9)

which can be rewritten in matrix notation as:

(p−mc)× (Ω ∗∆) + s(p) = 0 (3.10)
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where p, mc and s(·) are J × 1 vectors of product prices, marginal costs, and predicted

product shares respectively, while Ω ∗ ∆ is an element-by-element multiplication of two

matrices. ∆ is a J × J matrix of first-order derivatives of model predicted product market

shares with respect to prices, where element ∆jr = ∂sr(·)
∂pj

. Ω is a J×J matrix which describes

carriers ownership structure of the products. For example, let Ωjr denote an element in Ω,

where

Ωjr =

 1 if there exists f : {j, r} ⊂ Ff

0 otherwise

That is, Ωjr = 1 if products j and r are offered for sale by the same carrier, otherwise

Ωjr = 0. Based on equation (3.10), the markup equation can be obtained as:

markup = p−mc = − (Ω ∗∆)−1 × s(p) (3.11)

With computed product markups in hand, product marginal costs can be recovered simply

by subtracting computed markup from price, i.e.

mc = p−markup (3.12)

3.5.3 Estimation of Demand and Marginal Cost Functions

The estimation strategy of the demand parameters (α, β, σ) is such that the observed

market shares Sjmt are equal to the market shares predicted by the model Sjmt. Empirical

industrial organization shows that the model presented above results in a linear equation:

ln(Sjmt)− ln(S0mt) = xjmtβ−αpjmt+σln(Sjmt/g)+ηj +υt+originm+destm+ ξjmt (3.13)

where Sjmt is the observed within group share of product j computed from the data by

Sjmt =
qjmt

M
where qjmt is the quantity of air travel product j sold and M is the population
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of the origin city. S0mt = 1−
∑

j∈Jm Sjmt is the observed share of the outside good. Sjmt/g

is the observed within-group share of product j and the other variables are described as in

Equation (3.2). Equation (3.13) can be estimated using Two Stage Least Squares (2SLS)

since price pjmt and Sjmt/g are endogenous.

After recovering the product marginal cost using equation (3.12), we use the following

linear specification for the marginal cost function:

m̂cjmt = τo + τ1OTPjmt + τ2Wjmt + ψj + µt + originm + destm + εmcjmt (3.14)

where OTPjmt is the carrier’s on-time performance, Wjmt is a vector of observed marginal

cost-shifting variables, τ1 and τ2 are the associated vectors of parameters to be estimated.

ψj is an airline-specific component of marginal cost captured by airline fixed effects. µt are

time fixed effects captured by quarter and year dummy variables. originm and destm are

sets of origin and destination dummy variables respectively. Finally, εmcjmt is an unobserved

random component of marginal cost. τ1 would tell us by how much marginal cost would

change if airlines improve arrival delay by one minute, ceteris paribus. Likewise, we specify

markup and price equations and present the results in Tables 3.5 and 3.7.

3.5.4 Instruments for Endogenous Variables in Demand Equation

We exploit the fact that the set of product choices offered by airlines in a market is predeter-

mined at the time of exogenous shocks to demand while the non-price characteristics of an

airlines products are primarily determined by the route network structure of the airline.15

The instruments we use for the Two-stage Least Squares estimation are: (1) number

of competitors products in the market; (2) number of competing products offered by other

15Unlike price and within group product share, airline route network structure is fixed in the short run,
which mitigates the influence of demand shocks on the menu of products offered and their associated non-
price characteristics (Gayle and Xie, 2014)
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airlines with an equivalent number of intermediate stops; (3) number of other products

offered by an airline in a market; and (4) average number of intermediate stops across

products offered by an airline in a market. The rationale for using these instruments is

discussed in Gayle (2007, 2013). Instruments (1)-(3) are motivated by supply theory, which

predicts that a product’s price and within-group product share are affected by changes in

its markup.

Instruments (1) and (2) capture the degree of competition facing a product, which in

turn affects the size of a product’s markup. The use of instrument (3) is justified by the

fact that, all else constant, as an airline offers more substitute products in a given market,

the more capable the airline is to charge a higher markup on each of these products. The

intuition for instrument (4) is as follows. Since we are using the nested logit demand model,

we group products by airline. So, instrument (4) is likely to be correlated with the within

group share because passengers may prefer a set of products offered by a particular airline

to other airlines’ products owing to differences in number of intermediate stops associated

with the products.

3.6 Empirical Results

3.6.1 Demand Results

We estimate the demand equation using both Ordinary Least Square (OLS) and Two-stage

Least Squares (2SLS). Table 3.4 shows the demand regression results. As stated in section

(3.5.3), price pjmt and within-group product share Sjmt/g are endogenous variables in the

demand equation. Thus, OLS estimation produces biased and inconsistent estimates of the

price coefficient and σ. A Hausman test confirms by rejecting the exogeneity of price and

within-group product share at conventional levels of statistical significance.

89



Table 3.4: Demand Estimation Results
Variables OLS 2SLS 2SLS 2SLS

(1) (2) (3) (4)

Price 0.0003*** -0.0260*** -0.0253*** -0.0254***
(1.53e-5) (0.0003) (0.0003) (0.0003)

ln(Sjmt/g) 0.4168*** 0.0265*** 0.0364*** 0.0333***
(0.0006) (0.0028) (0.0027) (0.0027)

Origin Presence 0.0122*** 0.0209*** 0.0208*** 0.0208***
(4.34e-5) (0.0002) (0.0002) (0.0002)

Nonstop 0.9815*** 0.7979*** 0.7943*** 0.7958***
(0.0025) (0.0066) (0.0065) (0.0065)

Routing Quality 1.8128*** 1.9659*** 1.9604*** 1.9714***
(0.0071) (0.0131) (0.0128) (0.0129)

Codeshare -0.7206*** -1.0022*** -0.9915*** -1.0069***
(0.0038) (0.0074) (0.0072) (0.0073)

Arrival On-Time Performance
Minutes late -0.0113*** -0.0204***

(0.0002) (0.0003)
% flights late more than 15 minutes -0.0204***

(0.0003)
% flights late more than 30 minutes -0.0333***

(0.0004)
Constant -10.6091*** -6.6820*** -6.5121*** -6.5424***

(0.0117) (0.0556) (0.0558) (0.0558)

Carrier Fixed Effects YES YES YES YES
Quarter and Year fixed effects YES YES YES YES
Market Origin fixed effects YES YES YES YES
Market Destination fixed effects YES YES YES YES
No. of Obs. 1,346,384 1,346,384 1,346,384 1,346,384
Endogeneity Test. H0: Price and ln(Sjmt/g) are exogenous
Wu-Hausman:

F(2, 1346218)= 43738.7***
(p = 0.0000)

F(2, 1346218)= 42988***
(p = 0.0000)

F(2,1346218)= 43449.3***
(p = 0.0000)

Note: Standard errors are in parentheses.

***p < 0.01; **p < 0.05; *p < 0.10
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To confirm the validity of instruments used in the 2SLS regression, we estimate first-

stage reduced-form regressions for each of the endogenous variables. First-stage reduced-

form regressions where we regress pjmt and Sjmt/g against the instruments suggest that the

instruments explain variations in the endogenous variables. R2 measures for the regressions

of price and within-group product share against the instruments are 0.0544 and 0.4202

respectively. Since the use of instruments is justified, we only discuss the 2SLS estimates.

The coefficient estimate on the price variable has the expected negative sign. All else

equal, an increase in the product’s price reduces the probability that a typical passenger

will choose the product. The coefficient estimate on ln(Sjmt/g), which is an estimate of σ

should lie between zero and one. σ measures the correlation of consumers’ preferences for

products offered for sale by the same airline.

Given that we nest products by airlines and that σ is statistically significant, this suggests

that passenger choice behavior shows some level of brand-loyalty to airlines. However, since

the estimate of σ is closer to zero than it is to one, this brand-loyal behavior is not very

strong. Even though airlines use customer loyalty programs to strengthen relationships

with their customers loyalty program, such programs do not provide exceptional advantages

mostly when any potential gain differential can be quickly eroded by competitive forces

(Dowling and Uncles, 1997).

The coefficient estimate on Origin presence is positive. This result is consistent with

our expectations and suggests that travelers prefer to fly with airlines, ceteris paribus, that

offer services to more destinations from the travelers’ origin city. Chen and Gayle (2013),

Gayle and Le (2013) and Berry (1990) among others, obtained similar findings.

The positive coefficient estimate on the Nonstop variable suggests that direct flights are

associated with higher levels of utility compared to connecting flights. Since we only consider

nonstop products and products with one intermediate stop, passengers prefer products with

nonstop flight itineraries to those with one intermediate stop when traveling from origin to
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destination. In fact, consumers are willing to pay up to $30.69 extra,16 on average, to obtain

a product with a nonstop itinerary in order to avoid products with intermediate stop.

The demand effects of code sharing are identified by interpreting the coefficient esti-

mates on the Codeshare variable. The coefficient estimate on Codeshare measures utility

differentials vis-à-vis the Pure Online product type and suggests that code-shared products

are less preferred compared to pure online products. This may be the case because of the

streamlined nature of pure online products. An airline offering such products tend to better

organize its flights and schedules to minimize layover time, as well as efficiently organize its

own gates at airports (Gayle and Xie, 2014). It is well documented that codeshare partners

try to streamline flights across carriers to minimize layover times and facilitate smoother

connections, however this result suggests that codeshare streamlining has not achieved par-

ity with pure online products (Gayle, 2013). Consumers may perceive cooperation between

two carriers less attractive than flying on a single airline.

The positive coefficient estimate on Routing Quality suggests that passengers prefer

the most direct route to the destination. Consumers show preference for products with

itinerary fight distance as close as possible to the nonstop flight distance between the origin

and destination. So, consumer choice behavior is consistent with the premise that better

routing quality is associated with a more passenger-desirable itinerary. In fact, consumers

are willing to pay up to $75.60 extra,17 on average, for each percentage point increase that

the nonstop flight distance is of the actual itinerary flight distance.

The negative coefficient estimates on the on-time performance measures indicate that

consumer choice behavior is consistent with our expectations that products with longer

arrival delays at the destination airport are less desirable. The ratio of coefficient estimates of

“Minutes Late” and price in column 2 of Table 3.4 suggests that consumers are willing to pay

16This is obtained by dividing the coefficient estimate on the Nonstop dummy variable by the coefficient
estimate on Price from column 2 of Table 3.4.

17This is obtained by dividing the coefficient estimate on the Routing Quality variable by the coefficient
estimate on Price from column 2 of Table 3.4
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$0.78 on average for each additional minute of flight arrival delay to avoid delay. This implies

substantial welfare effects knowing that on average an airline carries about 140 passengers,

is 12 minutes late and that our dataset consists of 1,346,384 products. So, extrapolating

the consumer welfare effects due to arrival minutes late amounts to approximately $1.76

billion.18

This extrapolation is very conservative since it only accounts for delay at the final des-

tination. In reality, costs borne by passengers range from potential loss of business due

to late arrival at a meeting; partial loss of social activity (Cook et al., 2009) including

missed connections, cancelled flights, disrupted ground travel plans, forgone pre-paid hotel

accommodations, and missed vacation times (Schumer and Maloney, 2008).

Studies that have examined consumers’ reactions to product problems (Curren and

Folkes, 1987; Folkes, 1984) show that passengers would be less willing to fly an airline again

when delays are perceived to be controllable (caused by poor management for instance) than

when they are perceived to be uncontrollable (due to bad weather for instance). Also, even

when passengers may think that a delay may had arisen from an uncontrollable mechanical

failure, they still nevertheless believe that the airline could take action to solve the problem

(e.g., substitute another plane), and so refuse to fly that airline again (Folkes et al., 1987).

3.7 Markup, Marginal Cost and Price Results

3.7.1 Product Markup Regression Results

Table 3.5 shows the estimation results for a reduced-form product markup equation. Here,

we examine the impact of arrival on-time performance on product markups. The sign and

magnitude of the coefficient on “minutes late” suggests that arrival delay only marginally

affects product markups and this effect is not statistically significant. This indicates that

18Welfare costs to consumers = $0.78× 12× 1, 346, 384× 140
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improving on-time performance has no effect on product markup. We find in Tables 3.6 and

3.7 that this result is driven by the fact that on-time performance improvement costs offset

price increases, resulting in a zero net effect on product markups.

All other control variables in Table 3.5 have the expected sign and are statistically

significant. First, we know from our demand results that passengers prefer airlines with

large presence at the origin airport. Thus, we expect the coefficient estimate on the Origin

Presence variable to be positive indicating that the size of an airline’s presence at the

origin airport of a market is positively related to markup. As suggested by Borenstein

(1989), airlines have higher market power at their hub airports and are able to charge

higher markups on flights out of their hub airports.

Second, markups are greater on nonstop products compared to products with interme-

diate stop all else constant, as indicated by the positive coefficient estimate on the Nonstop

variable in Table 3.5.

The positive coefficient estimate for RoutingQuality indicates that the greater the rout-

ing quality of the itinerary, the higher the markup charged by the carrier, all else constant.

This is consistent with our demand results showing that consumers prefer streamlined travel

and are willing to pay more for travel that uses convenient routing.

Examining the effect of codesharing on markups, we find that the coefficient estimate

for the codeshare variable is negative and statistically significant. Thus, all else constant,

markups are lower on virtual and/or traditional codeshare products relative to pure online

products. Overall, these results suggest that airlines charge lower markups on codeshare

products compared to pure online products because consumers show a weaker preference

for this type of products compared to pure online products.
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Table 3.5: Estimation Results for Reduced-form Markup Regression

Variables
Coefficient
Estimate

Robust
Standard Errors

Minutes Late -3.23e-05 4.39e-05
Origin Presence 0.001*** 1.58e-05
Nonstop 0.046*** 6.66e-04
Routing Quality 0.017*** 7.43e-04
codeshare -0.018*** 3.47e-04
Constant 38.561*** 1.14e-03

Operating carrier effects YES
Origin city effects YES
Destination city effects YES
Quarter and Year effects YES

***p < 0.01

3.7.2 Marginal Cost Regression Results

We report the marginal cost equation estimation results in Table 3.6. As expected, arrival

on-time performance is inversely related to marginal cost. A one-minute reduction in delay

would cause marginal cost to increase by $0.30 since airline would have incur some costs in

order to improve on-time performance

From an operating cost perspective, airlines desire shorter scheduled flights to keep wages

of both flight attendants and pilots low (Mayer and Sinai, 2003). Thus, airlines have an

incentive to reduce their scheduled flight times, and the tradeoff that comes with this decision

is increased delays, higher customer waiting times and customer dissatisfaction. Mayer and

Sinai (2003) argue that it is also conceivable that having more business customers dissatisfied

due to delays could generate a higher goodwill cost.

The positive coefficient estimate for Origin Presence mc suggests that larger origin

presence increases the marginal cost. However, marginal cost increases at a diminishing

rate—the squared term of OriginPresence mc has a negative coefficient—all else constant.

An airline’s marginal cost increases initially with increases in the number of distinct cities
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Table 3.6: Estimation Results for Marginal Cost Regression

Variables
Coefficient
Estimate

Robust
Standard Errors

Minutes Late -0.303*** 0.009
Distance 0.036*** 8.32e-05
Origin Presence mc 0.687*** 0.008
(Origin Presence mc)2 -0.001*** 8.01e-05
Destination Presence mc 0.644*** 0.007
(Destination Presence mc)2 -0.001*** 6.94e-05
Constant 62.703*** 0.450

Operating carrier effects YES
Origin city effects YES
Destination city effects YES
Quarter and Year effects YES

***p < 0.01

that an airline has nonstop flights from, going into the origin airport, but eventually declines

with further increases in the number of cities. Another interpretation of this result is that,

cost efficiency gains due to economies of passenger-traffic density can be achieved when the

size of an airline’s airport presence exceeds some threshold level.

Similarly, the coefficient estimates onDestinationPresence mc and (OriginPresence mc)2

suggest that an airline’s marginal cost increases initially with increases in the number of

distinct cities that an airline has nonstop flights to, going out of the destination airport, but

the marginal cost increases at a decreasing rate. As expected, marginal cost increases with

distance flown, all else constant. A plausible explanation is that covering longer distances

requires more fuel.

3.7.3 Price Regression Results

Table 3.7 presents the estimation results for a reduced-form price equation. We examine the

impact of arrival on-time performance on airfares. The sign and magnitude of the coefficient
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on “minutes late” suggests that arrival delay is inversely related to prices (Forbes, 2008).

This estimate implies that each additional minute of delay reduces the price for airline travel

by $0.31. In other words, airlines can charge $0.31 for each additional minute reduction in

arrival delay.

Table 3.7: Estimation Results for Price Regression

Variables
Coefficient
Estimate

Robust
Standard Errors

Minutes Late -0.310*** 0.009
Origin Presence mc 0.685*** 0.008
(Origin Presence mc)2 -0.001*** 8.02e-05
Destination Presence mc 0.642*** 0.007
(Destination Presence mc)2 -0.001*** 6.95e-05
Routing Quality 7.909*** 0.412
Distance 0.037*** 7.92e-05
Codeshare -3.734*** 0.247
Constant 94.294*** 0.554

Operating carrier effects YES
Origin city effects YES
Destination city effects YES
Quarter and Year effects YES

***p < 0.01

The coefficient estimates on the presence variables and their respective squared terms

show that airlines charge higher prices the larger their presence at the origin and destination

airports but these prices increase at a diminishing rate, all else constant. This is consistent

with the presence of economies of passenger-traffic density that we found in the estimation

of the marginal cost function previously discussed.

The routing quality variable is associated with higher price. This relationship is sup-

ported by our demand model estimation that shows that passengers prefer streamlined

travel and are willing to pay more for travel that uses convenient routing. As expected, the

estimated coefficient on the distance variable suggests price increases with longer itinerary
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distances. Not surprising given that we found that itinerary distance is positively related

to marginal cost.

It appears that codeshare itineraries are associated with lower prices relative to pure

online itineraries. Consumers may perceive cooperation between two carriers less attractive

than flying on a single airline.

3.8 Conclusion

Researchers have long been interested in explaining why airlines are late. To answer this

question, most researchers have resorted to a reduced form estimation approach where they

explain variations in on-time performance through a set of explanatory variables. This

approach yields a set of parameters that describes the marginal impact of an explanatory

variable on on-time arrival performance. In contrast, we use a structural estimation ap-

proach.

The objective of this paper is twofold. First, using a demand model, we measure the

cost of delay borne by consumers in terms of how much monetary value they are willing to

pay to avoid delay. We find that consumers are willing to pay $0.78 for every minute of

arrival delay which after extrapolation amounts to consumer welfare effects of $1.76 billion.

Second, with consumers having a preference for flights that arrive at destination on time, we

measure the incentive for airlines to provide on-time arrivals using a methodology that does

not require cost data to draw inference on changes in cost associated with improvement in

on-time performance. Our findings suggest that airlines have little to no incentive because

their markups do not increase when they improve on-time performance. In fact, the marginal

increase in price resulting from on-time performance improvement is offset by an increase

in marginal cost.

Stronger conclusions may be drawn from future work about the underlying mechanisms
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through which product quality may impact product markups. On-time performance is one

among other product quality dimensions such as mishandled baggage, oversales, consumer

complaints, in-flight amenities etc. Examining changes in these other quality dimensions

along with on-time performance may provide insights about how airlines engage in overall

quality differentiation in a strategic environment where firms are competing with each other.

99



Bibliography

Abrahams, M. (1983). A service quality model of air travel demand: an empirical study.

Transportation Research Part A: General, 17(5):385–393.

Aguirregabiria, V. and Ho, C.-Y. (2012). A dynamic oligopoly game of the us airline indus-

try: Estimation and policy experiments. Journal of Econometrics, 168(1):156–173.

Anderson, J. E. and Kraus, M. (1981). Quality of service and the demand for air travel.

The Review of Economics and Statistics, pages 533–540.

Bamberger, G. E., Carlton, D. W., and Neumann, L. R. (2001). An empirical investigation

of the competitive effects of domestic airline alliances. Technical report, National Bureau

of Economic Research.

Berry, S., Carnall, M., and Spiller, P. T. (2006). Airline hubs: costs, markups and the

implications of customer heterogeneity. Competition policy and antitrust.

Berry, S. and Jia, P. (2010). qtracing the woes: An empirical analysis of the airline industry,

ramerican economic journal: Microeconomics.

Berry, S. T. (1990). Airport presence as product differentiation. The American Economic

Review, pages 394–399.

Boozer, R. W., Wyld, D. C., and Grant, J. (1990). Using metaphor to create more effective

sales messages. Journal of Services Marketing, 4(3):63–71.

Borenstein, S. (1989). Hubs and high fares: dominance and market power in the us airline

industry. The RAND Journal of Economics, pages 344–365.

100



Borenstein, S. and Netz, J. (1999). Why do all the flights leave at 8 am?: Competition

and departure-time differentiation in airline markets. International Journal of Industrial

Organization, 17(5):611–640.

Brueckner, J. K. and Whalen, W. T. (2000). The Price Effects of International Airline

Alliances*. The Journal of Law and Economics, 43(2):503–546.

Chen, Y. and Gayle, P. (2013). Mergers and product quality: Evidence from the airline

industry.

Cook, A., Tanner, G., Williams, V., and Meise, G. (2009). Dynamic cost indexing–managing

airline delay costs. Journal of air transport management, 15(1):26–35.

Curren, M. T. and Folkes, V. S. (1987). Attributional influences on consumers’ desires to

communicate about products. Psychology & Marketing, 4(1):31–45.

De Vany, A. S. (1975). The effect of price and entry regulation on airline output, capacity

and efficiency. The Bell Journal of Economics, pages 327–345.

Douglas, G. W. and Miller, J. C. (1974). Quality competition, industry equilibrium, and

efficiency in the price-constrained airline market. The American Economic Review, pages

657–669.

Dowling, G. R. and Uncles, M. (1997). Do Customer Loyalty Programs Really Work?

Research Brief, 1.

Edwards, C. D. (1955). Conglomerate bigness as a source of power. In Business concentration

and price policy, pages 331–359. Princeton University Press.
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Appendix A

Supplemental Materials for Chapter 2

Table A.1: Mean On-time performance summary pre- and post-alliance
PRE POST

All
Carriers

Codeshare
partners

All
Carriers

Codeshare
partners

Arrival Delay (in minutes) 8.5 9.3 12.4 11.5

Departure Delay (in minutes) 7.7 6.8 11.2 8.5
Note: All tests of difference in means are statistically significant at 1% level
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Figure A.1: Histogram of Departure Minutes Late

Figure A.2: Histogram of Arrival Minutes Late
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