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Abstract

Variable selection is one of the most popular tools for analyzing high-dimensional genomic

data. It has been developed to accommodate complex data structures and lead to structured

sparse identification of important genomics features. We focus on the network and interaction

structure that commonly exist in genomic data, and develop novel variable selection methods

from both frequentist and Bayesian perspectives.

Network-based regularization has achieved success in variable selections for high-dimensional

cancer genomic data, due to its ability to incorporate the correlations among genomic fea-

tures. However, as survival time data usually follow skewed distributions, and are contami-

nated by outliers, network-constrained regularization that does not take the robustness into

account leads to false identifications of network structure and biased estimation of patients’

survival. In the first project, we develop a novel robust network-based variable selection

method under the accelerated failure time (AFT) model. Extensive simulation studies show

the advantage of the proposed method over the alternative methods. Promising findings

are made in two case studies of lung cancer datasets with high dimensional gene expression

measurements.

Gene-environment (G×E) interactions are important for the elucidation of disease eti-

ology beyond the main genetic and environmental effects. In the second project, a novel

and powerful semi-parametric Bayesian variable selection model has been proposed to in-

vestigate linear and nonlinear G×E interactions simultaneously. It can further conduct

structural identification by distinguishing nonlinear interactions from main-effects-only case

within the Bayesian framework. The proposed method conducts Bayesian variable selection

more efficiently and accurately than alternatives. Simulation shows that the proposed model

outperforms competing alternatives in terms of both identification and prediction. In the



case study, the proposed Bayesian method leads to the identification of effects with important

implications in a high-throughput profiling study with high-dimensional SNP data.

In the last project, a robust Bayesian variable selection method has been developed for

G×E interaction studies. The proposed robust Bayesian method can effectively accom-

modate heavy-tailed errors and outliers in the response variable while conducting variable

selection by accounting for structural sparsity. Spike and slab priors are incorporated on

both individual and group levels to identify the sparse main and interaction effects. Exten-

sive simulation studies and analysis of both the diabetes data with SNP measurements from

the Nurses’ Health Study and TCGA melanoma data with gene expression measurements

demonstrate the superior performance of the proposed method over multiple competing al-

ternatives.

To facilitate reproducible research and fast computation, we have developed open source

R packages for each project, which provide highly efficient C++ implementation for all the

proposed and alternative approaches. The R packages regnet and spinBayes, associated with

the first and second project correspondingly, are available on CRAN. For the third project,

the R package robin is available from GitHub and will be submitted to CRAN soon.
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Chapter 1

Introduction

Due to the rapid advance of high-throughput biotechnologies, enormous amounts of omics

data have been collected at various levels of biological systems. A representative example is

the genotyping analysis performed by microarray technologies. The data from genotyping

can be considered as a matrix with columns corresponding to variables, such as SNPs, and

rows corresponding to samples. This data matrix has the “large p, small n” nature, that

is, the number of genetic features measured is much larger than the sample size. This high-

dimensionality of the high-throughput data has brought new challenges to the statistical

modeling. Since only a small subset of the genetic features is associated with the clinic

outcome of interest, an important question to answer is “How to identify the important

features from a large-scale candidate pool?”. With genetic features treated as variables in

a statistical model, this question can be reformulated as a variable section problem. The

least absolute shrinkage and selection operator (LASSO) is one of the most popular variable

selection methods for analyzing high-dimensional data (Tibshirani, 1996). By shrinking

the coefficients towards zero, the LASSO can effectively exclude irrelevant variables from

the model and produce sparse estimation of the coefficients. The term sparsity refers to

the phenomena of 0’s among the estimated coefficients. Over the past decades, plenty of

variants of LASSO, along with other variable selection methods have been developed for high-

dimensional data. Here we provide a brief overview for popular variable selection methods
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in omics studies from both frequentist and Bayesian perspectives.

1.1 Penalized Variable Selection

Penalization or regularization has become one of the most popular frameworks for selecting

important features in omics studies. Let Y be a vector of the disease outcome, where Y can

be a continuous disease phenotype (e.g. body weight in obesity studies), categorical disease

status (e.g. cancer stages) or survival time of patients. Let X be the design matrix of

the p-dimensional genomics features. X can be various omics measurements such as SNPs,

DNA methylation and gene expressions, among others. The penalized regression model can

be expressed as

L(β;Y,X) +

p∑
j=1

pλ(|βj|) (1.1)

where L(β;Y,X) is the loss function that measures the lack of fit of the model, and pλ(·) is

a penalty function indexed by the regularization parameters λ ≥ 0. The penalty function

imposes shrinkage on the coefficient vector β = (β1, . . . , βp)
>. βj is the coefficient correspond-

ing to the jth feature in the high-dimensional genomics data. By minimizing the penalized

loss function (1.1), variable selection can be achieved with penalized estimation simultane-

ously. In other words, variables whose regression coefficients are shrunk to zero (βj = 0) are

automatically excluded from the model. The well-known LASSO (Tibshirani (1996)) is a

penalized least square regression with `1 penalty, which adopts the form as follows

‖Y −Xβ‖2
2 + λ

p∑
j=1

|βj| (1.2)

Fan and Li (2001) proposes three criteria for a good penalty function. In brief, a desired

penalty function should result in a estimator that is continuous (continuity), while setting

small estimated coefficients to zero (sparsity) and maintaining nearly unbiased estimates for

large coefficients (unbiasedness). While LASSO meets the sparsity and continuity criteria,

it leads to biased estimates, especially for the large coefficients, therefore fails to achieve

2



unbiasedness. This leads to developments of penalties for nearly unbiased variable selection,

including the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), the minimax

concave penalty (MCP) (Zhang, 2010) and adaptive LASSO (Zou, 2006). The penalties are

defined as follows

SCAD: pλ,γ(βj) =



λ|βj| |βj |≤λ

−β2
j−2γλ|βj |+λ2

2(γ−1)
λ<|βj |≤γλ

1
2
(γ + 1)λ2 |βj |>γλ

MCP: pλ,γ(βj) =


λ|βj| − (2γ)−1β2

j |βj |≤γλ

1
2
γλ2 |βj |>γλ

Adaptive LASSO: pλ,γ(βj) = λ(|β(0)
j |−γ)|βj|

where γ > 2 for SCAD, γ > 1 for MCP and γ > 0 for adaptive LASSO. β
(0)
j is the

initial estimate of β. These penalties have been demonstrated to have attractive properties

theoretically and practically. Together with LASSO, they are considered as the family of

baseline penalization methods.

In order to take complex data structures into consideration, more advanced penalty

functions have been developed. For example, grouping structures exist in many statistical

modeling problems, such as a group of dummy variables for a categorical factor or a set of

basis functions in nonparametric modeling. For selecting grouped variables, Yuan and Lin

(2006) proposes the group LASSO method, with the penalty defined as

pλ(β) = λ
G∑
g=1

√
Lg‖βg‖2 (1.3)

where βg is a coefficient vector of length Lg (β = (β>1 , ..., β
>
G)>). The term

√
Lg ad-

justs the penalty for the varying group sizes, and ‖·‖2 is the euclidean norm. Following

3



Yuan and Lin (2006), other baseline penalization methods have also been extended to the

group setting (Huang et al., 2012). Another example of complex data structure is the high

correlation among genetic features in omics data, which have been widely observed and

reported. The elastic net (Zou and Hastie (2005)) and the fused-lasso (Tibshirani et al.

(2005)) are two popular choices for analyzing correlated genomic features. The elastic net

uses a combination of the `1 and `2 penalties (λ1‖β‖2
2 + λ2|β|), which encourages a group-

ing effect and tends to drop or select highly correlated predictors together. The fused-lasso

(λ1

∑p
j=1 |βj|+ λ2

∑p
j=2 |βj − βj−1|) induces smoothness among the coefficients of neighbor-

ing features. An application example of the fused-lasso is the DNA copy number variations

(CNVs) data. The CNVs form block structures along their gemonic location, and the fused-

lasso can promote this type of block structure on the penalized estimates. In order to utilize

the correlation information in a more efficient and flexible way, the network-constrained

regularization approaches have been developed, such as Li and Li (2008) and Huang et al.

(2011), among many others. In particular, Huang et al. (2011) develops the sparse Laplacian

shrinkage (SLS) penalty, which is built upon the combination of MCP (Zhang, 2010) and

Laplacian quadratic that is associated with a graph. The SLS penalty takes the form

p∑
j=1

pλ1,γ(βj) + λ2

∑
1≤j<k≤p

|ajk|(βj − sgn(ajk)βk)
2 (1.4)

where pλ1,γ(βj) is the MCP penalty with tuning parameter λ1, and regularization parameter

γ (Zhang, 2010), and |ajk| is the measure of connection intensity between variables xj and xk.

The MCP penalty in (1.4) promotes sparsity in the model, and the second term encourages

smoothness among the coefficient profiles of the related covariates. As shown in Huang

et al. (2011), the penalty in (1.4) is capable of taking correlation structure into account

without introducing extra bias. They also show that in high dimension settings with p� n

under certain assumptions, SLS is selection consistent and equivalent to the oracle Laplacian

shrinkage estimator with high probability. Recently, as multi-layer high-dimensional omics

data has become available, these popular penalization methods have also been adopted to

integrate multi-omics data (Du et al. (2020); Jiang et al. (2019); Li et al. (2020)).
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In the analysis of omics data, it is not uncommon to encounter model mis-specification

and heterogeneity problems, like heavy-tailed errors and outliers in response variables and the

contamination in predictors. Such challenges demand the development of robust methods

that can accommodate data contamination and can be insensitive to model specification.

For penalized regression, a practical way to obtain robustness is to adopt the “robust loss

function + penalty” form. Wu and Ma (2015) surveys some broadly adopted robust loss

functions, including check loss function, the least absolute deviation (LAD) loss function,

rank-based loss function and their variants. The high computational burden resulting from

the nonsmoothness of the loss functions is a major limitation of robust methods, especially

when it comes to the analysis of high-dimensional data. The LAD loss function, as a special

case of quantile-based loss functions, is especially appealing for omics studies due to its

computational convenience (Wu and Ma (2015); Huang et al. (2007); Wu et al. (2018a)).

The LAD-based penalization can be expressed as

n∑
i=1

|yi − x>i β|+
p∑
j=1

pλ(|βj|) (1.5)

For a contaminated observation with yi significantly deviating from x>i β̂, the predicted value

from model (2.1), the `1 based loss down-weighs such a deviation, while the non-robust loss,

for example, least square based loss, results in a much larger deviation.

1.2 Bayesian Variable Selection

O’Hara and Sillanpää (2009) classifies different Bayesian variable selection approaches into

four categories (1) adaptive shrinkage (2) indicator model selection (3) stochastic search

variable selection (SSVS) and (4) model space approach. In particular, the first category,

adaptive shrinkage, has a tight connection with the frequentist variable selection methods.

From a Bayesian perspective, the LASSO estimates can be interpreted as posterior mode

estimates when the regression parameters have independent and identical Laplace priors

π(β) =
∏p

j=1
λ
2

exp
{
− λ |βj|

}
(Tibshirani (1996)). Specifically, with a independent priori
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π(σ2) on σ2, the posterior distribution can be expressed as

π(β, σ2|y) = π(σ2)(σ2)
−(n−1)

2 exp(− 1

2σ2
‖Y −Xβ‖2

2 − λ
p∑
j=1

|βj|)

The maximum a posteriori probability (MAP) estimate for β is equivalent to the LASSO

estimate in (1.2), for any fixed value of σ2. Park and Casella (2008) proposes a fully Bayesian

analysis for lasso regression, the Bayesian LASSO, by adopting a conditional Laplace prior

on β

π(β|σ2) =

p∏
j=1

λ

2σ
exp

{
− λ

σ
|βj|

}
They also demonstrate that this conditional Laplace prior guarantees the unimodality of

the posterior distribution. Although this fully Bayesian analysis produces similar shrinkage

on individual coefficients as the LASSO, it cannot set a posterior estimate to zero exactly.

Kyung et al. (2010) extends this fully Bayesian framework to a more general form that can

accommodate the group LASSO (Yuan and Lin, 2006), the fused LASSO (Tibshirani et al.,

2005) and the elastic net (Zou and Hastie, 2005). In particular, the group lasso can be

represented by adopting a multivariate Laplace prior

π(βg|σ2) ∝ exp
{
−
√
Lgλ

σ
‖βg‖2

}
(1.6)

where βg and Lg are defined at the same way as in (1.3) and

√
Lgλv

σ
is the scale parameter of

the multivariate Laplace. These methods share the same drawback as the Bayesian LASSO

in the lack of the model selection property. This difficulty can be overcome by borrowing

strength from the spike-and-slab priors (Mitchell and Beauchamp, 1988) that have been

widely used in other Bayesian variable selection methods, such as indicator model selection

and SSVS. The spike-and-slab priors on βj(j = 1, . . . , p) can be expressed in a general form

βj|φj
ind∼ φjπ1(βj) + (1− φj)π0(βj)
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where π1(·) is a flat “slab distribution” for modeling large effects, π0(·) is a “spike distribu-

tion” either exactly at or concentrated around zero for modeling negligibly small effects, and

φj ∈ {0, 1} is a auxiliary indicator variable. If φj = 1, βj∼π1(βj) indicates the presence of

the jth genetic effect in the model. The opposite occurs when φj = 0. Conventionally, π1(·)

is set to a normal distribution with large variance. The choices of π0(·) leads to the different

variable selection methods. The SSVS method proposed by George and McCulloch (1993)

adopts a mixture prior of two normal distributions (φjN(0, cjτ
2
j ) + (1− φj)N(0, τ 2

j )), where

the spike part (the second density) has a small variance τ 2
j and centers around zero. Kuo

and Mallick (1998) adopts a point mass mixture prior where the π0 is defined as δ0(βj), so

that coefficients of unimportant effects can be set to zero in the spike part.

Many methods have been developed to combine the point mass mixture prior and Laplace

shrinkage for variable selection. Yuan and Lin (2005) proposes an empirical Bayesian vari-

able selection method with prior βj|φj
ind∼ φj

λ
2

exp(−λ|βj|) + (1 − φj)δ0(βj). Zhang et al.

(2014a) generalizes this strategy to group variable selection. Xu and Ghosh (2015) proposes

a sparse group selection method to select variables both at the group level and (within group)

individual level. In Zhang et al. (2014a) and Xu and Ghosh (2015), a multivariate Laplace

distribution is used as the slab part for imposing shrinkage at the group level:

βg|φg, σ2 ∼ φg M-Laplace(0,
σ√
Lgλ

) + (1− φg)δ0(βg)

where the density function of a L-dimensional multivariate Laplace distribution is

M-Laplace(x|0, C−1) ∝ CL exp(−C‖x‖2)

Roc̆ková and George (2018) adopts a mixture prior of two Laplace distributions in SSVS

method. Specifically, they defines π0(βj) = λ1
2

exp(−λ1|βj|) with λ1 small and π0(βj) =

λ0
2

exp(−λ0|βj|) with λ0 large. It is worth noting that there are other priors that can be

incorporated within the spike and slab form, such as the Zellner’s g-prior (Zhang et al.

(2016)). They can also be used for variable selection purposes.
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To tackle the challenges of heterogeneity, robust Bayesian variable selection methods have

also been developed. Sha et al. (2006) proposes a Bayesian variable selection approach for

censored survival data under the accelerated failure time (AFT) models. The robustness of

the model is obtained by adopting a log-t distribution for the failure time (survival time).

Another example of leveraging the heavy-tailed t distribution for robustness is the study

in Yi and Xu (2008). They develop a variant of Bayesian LASSO for quantitative trait

loci (QTL) mapping by assigning t distribution priors on β. Ren et al. (2020b) adopts a

Bayesian formulation of the least absolute deviation (LAD) regression to accommodate data

contamination and long-tailed distributions in the phenotype in Gene-environment studies.

1.3 Other Variable Selection Methods

We focus on penalization and Bayesian variable selection here since the two are the foci of this

dissertation. It is worth noting that there exists a diversity of variable selection methods that

are also applicable in analyzing omics data. For example, boosting and random forest are

popular machine learning techniques for feature selection. In random forest, the importance

measures of variables can guide the decision of whether a variable should be included in

the model or not (Breiman, 2001). Boosting is an ensemble procedure that combines the

outputs of many weak learners to produce a powerful strong learner. In omics study, weak

learners can be individual SNP, gene expression and other genetic features. In each iteration,

boosting selects the variables having the largest correlation with residuals corresponding to

the current active set of selected predictors (the weak learners), and then fits the new model

to recompute the residuals. Variable selection in boosting is achieved because the algorithm

largely ignores non-informative predictors when fitting the models. The prediction power

has improved significantly in boosting through aggregating multiple weak learners (Friedman

(2001)).

8



1.4 Works in this dissertation

In Chapter 2, we develop a novel robust network-based variable selection method under

the accelerated failure time (AFT) model for survival time in cancer genomic studies. We

consider a least absolute deviation (LAD) loss function, where the `1 form introduces robust-

ness by down weighing the deviation of the outlier. The computational cost of the proposed

methods is much lower compared to other high dimensional variable selection methods for

survival outcomes. To identify important genomic signatures while accommodating corre-

lations under survival outcomes, we develop robust network-based penalization under the

AFT model with Kaplan-Meier weights. The proposed penalty function is of an “MCP +

L1” form, where MCP encourages sparsity and the L1 term incorporate network structures by

promoting the smoothness among pairwise coefficient profiles of correlated gene expressions.

We develop an effective algorithm that borrows strength from majorization-minimization

(MM) within the coordinate descent (CD) framework. Extensive simulation studies show

the advantage of the proposed method over the alternative methods. Two case studies of

lung cancer datasets with high dimensional gene expression measurements demonstrate that

the proposed approach has identified markers with important implications.

In Chapter 3, we explore Bayesian variable selection for Gene-Environment (G×E) inter-

actions. We propose a novel and powerful semi-parametric Bayesian variable selection model

that can investigate linear and nonlinear G×E interactions simultaneously. To accommodate

possible nonlinear effects of environment factor, we first consider a partially linear varying

coefficient model where the varying coefficient functions capture the possible non-linear G×E

interaction, and the linear part models the G×E interactions with linear assumptions. The

changing of basis with B splines is adopted to separate the coefficient functions with vary-

ing, non-zero constant and zero forms, corresponding to cases of nonlinear interaction, main

effect only (no interaction) and no genetic interaction at all. Instead of using conventional

Bayesian Lasso and Bayesian Group Lasso to impose penalty on individual and group levels,

we adopt spike-and-slab priors with the slab parts coming from Laplace distributions, to

shrink coefficients of irrelevant covariates to zero. Highly efficient Gibbs sampler has been
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developed to carry out the computation. Simulation shows that the proposed model out-

performs competing alternatives in terms of both identification and prediction. In the case

study, the proposed Bayesian method leads to the identification of effects with important

implications in a high-throughput profiling study with high-dimensional genetic variants.

Built upon our existing work in both robust network-constrained variable selection (Chap-

ter 2) and robust penalization for G×E interactions (Wu et al., 2018a), we develop a novel

robust Bayesian variable selection method to dissect G×E interactions in Chapter 4. Out-

liers and data contamination in disease phenotypes of G×E studies have been commonly

encountered, leading to the development of a broad spectrum of robust penalization meth-

ods. Nevertheless, within the Bayesian framework, the issue has not been taken care of in

existing studies. In this study, we propose a Bayesian method that can effectively accom-

modate heavy–tailed errors and outliers in the response variable while conducting variable

selection by accounting for structural sparsity. In particular, the spike–and–slab priors have

been imposed on both individual and group levels to identify important main and interaction

effects. An efficient Gibbs sampler has been developed to facilitate fast computation. Exten-

sive simulation studies and analysis of both the diabetes data with SNP measurements from

the Nurses Health Study and TCGA melanoma data with gene expression measurements

demonstrate the superior performance of the proposed method over multiple competing al-

ternatives.
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Chapter 2

Robust Network-Based

Regularization and Variable Selection

for High-Dimensional Genomic Data

in Cancer Prognosis

2.1 Introduction

In cancer research, profiling studies have been extensively conducted to identify prognos-

tic markers that may contribute to the development and progression of cancer. Important

prognostic markers have the potential to shed deep insight in elucidating the genetic basis

of cancer, and provide assistance in cancer prevention, diagnosis and treatment selection.

The generation of unprecedented amount of high dimensional genomics data from the high-

throughput profiling studies has led to the development of extensive regularized variable

selection methods (Fan and Lv (2010)). The genomics features, such as gene expressions

and single nucleotide polymorphism (SNPs), are treated as variables within the regulariza-

tion (or penalization) framework. As the correlations among genomics features have been

widely recognized, multiple studies have developed network based regularization methods to
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accommodate interconnections among these features, including gene expressions (Li and Li

(2008)), SNPs (Ren et al. (2017)), copy number variations (Peng et al. (2012)) and DNA

methylations (Sun and Wang (2012)). Recently, network based penalization has also been

adopted to integrate multi-omics data (Jiang et al. (2019)).

The network based methods have unique strength to effectively capture correlations by

incorporating prior biological information via the network (or graph) structure, where the

vertices of networks are the genomic features and the edges of the networks denote certain

regulatory relationship among the features. Incorporation of the network structure in regu-

larized variable selection has led to significant improvement in both identification accuracy

and predictive performance, as demonstrated in aforementioned studies, as well as many

other studies. Nevertheless, these methods have limitations. First, network–constrained reg-

ularization methods under survival outcomes have not received much attention. As mark-

ers identified under patients’ survival have important implications in cancer prognosis, the

network–based regularized variable selection will improve accuracy in both identifying prog-

nostic markers and predicting patients’ survival. However, the disease outcome investigated

from published studies are mainly continuous (Li and Li (2008); Peng et al. (2012)), binary

(Huang et al. (2018); Min et al. (2018); Ren et al. (2017); Sun and Wang (2012, 2013))

and multi-nomial (Tian et al. (2014)). Markers identified from these studies, though impor-

tant, cannot be treated as potential prognostic markers directly. Second, existing network

(or graph) based methods lack robust properties, which are critical to accommodate data

contamination and long-tailed distributions. In studies that investigate the regulations of be-

tween CNVs and gene expressions (Peng et al. (2012)), as gene expressions may have heavy

tailed distributions (especially at high expression levels) or be contaminated, inference of

gene regulatory relationship based on non-robust methods might be biased.

We use the lung squamous cell carcinoma (LUSC) data collected by The Cancer Genome

Atlas (TCGA) as a motivating example. For the 461 subjects analyzed in this study, five

subjects have survival time 150.13, 151.15, 154.20, 156.54 and 173.69 months, respectively,

while the rest 456 subjects have survival times ranging from 0.03 to 139.98 months. Figure

2.1 shows the plots of both empirical density function of the log survival time as well as the
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corresponding best-fitted normal density. The deviation from normal is observed. Moreover,

the Kolmogorov-Smirnov test yields a pvalue less than 0.01, which suggests a significant

difference from normal distribution. Such a pattern may happen for multiple reasons. For

example, when multiple cancer subtypes exist, the largest subtype can be viewed as be-

ing “contaminated” by small subtypes. Contamination of survival can also be caused by

misclassification of causes of death (Rampatige et al. (2013)) and unreliable extraction of

survival times from medical records (Fall et al. (2008)). Without taking robustness into

consideration, non-robust network based methods will lead to biased estimation and thus

false identification of network structure, even in the presence of only one contaminated ob-

servation. As shown in Wu and Ma (2015), for high-dimensional genomic data, the robust

variable selection methods are still not well developed, which is particularly true for the

network–constrained approaches, possibly due to the extra complexity from incorporating

network structure to accommodate interconnections among genomic features.
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Figure 2.1: Distribution of log(survival time) in the TCGA LUSC dataset.
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In this study, we propose a robust network–based regularization and variable selection

method for high-dimensional genomics data in cancer prognosis. Our method has the follow-

ing novel features to distinguish itself from existing ones. First, we adopt the least absolute

deviation (LAD) loss function to accommodate heavy-tailed distribution and data contam-

ination. Although no robust loss function universally outperforms the rest, the LAD loss

function, as a special case of quantile-based loss functions, is especially appealing for high-

dimensional data due to its L1 form (Wu and Ma (2015); Huang et al. (2007); Wu et al.

(2018a)). Other robust loss functions, including exponential square loss (Wang et al. (2013b))

and rank based loss (Wu et al. (2015)), do not enjoy such a computational convenience for

data with high-dimensionality. Second, as our goal is to robustly identify important ge-

nomic signatures while accommodating correlations under survival outcomes, we develop

robust network based penalization under the accelerated failure time (AFT) model with

Kaplan-Meier weights. The proposed penalty function is of an “MCP + L1” form, where

MCP, the Minimax Concave Penalty, encourages sparsity (Zhang (2010)) and the L1 term

promotes network structure. Besides, although the weighted LAD estimator has been in-

vestigated in Huang et al. (2007), the strength of its regularized counterpart has not been

fully explored, especially for network structure estimation and identification. Third, we de-

velop an effective algorithm within the coordinate descent framework. On the contrary, the

computational cost for many robust variable selection methods are prohibitively high under

complicated data and model settings (Wu and Ma (2015)). The advantage of our method

over alternatives has been convincingly demonstrated in both simulation studies and two

case studies. To the best of our knowledge, identifying important genomic features in cancer

prognostic studies through robust penalization by incorporating network structures has not

been reported before. It is also noting that our method is not restricted to cancer survival

only. Instead, it can be readily extended to other types of response, such as the continuous

disease phenotypes.
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2.2 Statistical Methods

We consider the AFT model for cancer prognosis. For high-dimensional genomics data,

the AFT model is adopted over the Cox model and other alternatives due to its lower

computational cost. From now on, we use gene expression as a representative example of

genomics features.

2.2.1 The LAD Regression for Censored Data

Denote the ith subject by using the subscript i. Let (Ti, Xi, Zi) (i = 1, . . . , n) be n in-

dependent and identically distributed random vectors, where Ti is the logarithm of sur-

vival time, Xi = (xi1, xi2 . . . , xip)
T is the p–dimensional vector of gene expressions, and

Zi = (zi0, zi1 . . . , ziq)
T is the (q+ 1)–dimensional vector of which the first component zi0 = 1

and the last q components are clinical/environmental covariates. Usually, q and p are of low

and high dimensionality, respectively. The AFT model postulates that

Ti = Ziα +Xiβ + εi

α = (α0, α1, . . . , αq)
T where α0 is the intercept and the last q components are the regression

coefficients for the clinical covariates. β = (β1, . . . , βp)
T is the regression coefficient vector

for the gene expressions, and εi is the error term with an unspecified distribution. Denote

Ci as the logarithm of the censoring time. Under right censoring, we observe (Yi, δi, Zi, Xi),

where Yi = min(Ti, Ci), and δi = I(Ti ≤ Ci) is the indicator of event. Without loss of

generality, we assume that {(Yi, δi, Zi, Xi), i = 1, . . . , n} have been sorted with respect to Yi

in an ascending order.

We adopt the Kaplan-Meier weights for censoring. Let F̂n be the Kaplan–Meier estimator

of the distribution function F of T . Then by following Stute and Wang (1993), we have
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F̂n(y) =
∑n

i=1 vi1{Yi ≤ y}, where the Kaplan–Meier weights vi (i = 1, . . . , n.) are defined as

v1 =
δ1

n
, vi =

δi
n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1
)δj , i = 2, . . . , n.

To accommodate data contamination, consider the weighted LAD loss function

L(α, β) =
1

n

n∑
i=1

vi|Yi − Ziα−Xiβ | (2.1)

The robustness comes from the L1 form of the loss function. For a contaminated observation

with Yi significantly deviating from Ziα̂ + Xiβ̂, the predicted value from model (2.1), the

L1 based loss down-weighs such a deviation, while the non-robust loss, for example, least

square based loss, results in a much larger deviation.

2.2.2 Robust Network-based Penalized Identification

As only a small subset of gene expressions is associated with cancer prognosis, and the total

number of gene expressions is much larger than the sample size, identification of important

prognostic markers is of a “large p, small n” nature, and can be achieved through regularized

variable selection. Consider the regularized loss function:

Q(α, β) = L(α, β) + P (β;λ, γ), (2.2)

where λ and γ are tuning parameters. A nonzero component of regularized estimate β̂

indicates that the corresponding gene expression is associated with cancer prognosis. One

possible choice for the penalty function is

P (β;λ, γ) =

p∑
m=1

ρλ1,γ(|βm|),

where ρλ1,γ(t) = λ1

∫ |t|
0

(1 − x
γλ1

)+dx is the Minimax Concave Penalty (MCP) with tuning

parameter λ1 and regularization parameter γ (Zhang (2010)).
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The effects of gene expressions are represented by β, the vector of regression coefficients.

We impose MCP on β, and components of non-zero regularized estimate suggests that the

corresponding gene expressions are associated with cancer prognosis. A major disadvantage

of this penalty is that correlations among gene expressions are not considered. Multiple

studies, including aforementioned ones, have shown that failure to accommodate correlations

results in biased estimation and false identification of important effects. To overcome this

issue, we use a network structure to describe the interconnections among gene expressions.

In the gene expression network, a node corresponds to a gene expression, and two nodes

are connected by the edge if corresponding gene expressions are associated statistically or

biologically. We propose the following penalty function to incorporate network information:

P (β;λ, γ) =

p∑
m=1

ρλ1,γ(|βm|) + λ2

∑
1≤m<k≤p

|amk||βm − sgn(amk)βk|, (2.3)

where ρλ1,γ(·) is the MCP defined above, βm is the coefficient corresponding to the m-th

gene expression and amk measures the strength of connection between the m-th and k-

th gene expression. The first term of (2.3) imposes MCP on all the p components of β,

thus it encourages sparsity in the regularized estimate. The second term promotes the

smoothness among pairwise coefficient profiles of correlated gene expressions. It encourages

their regression coefficients to be of similar magnitude. The extent of “encouragement” is

adjusted by amk. The penalty shares certain similarity with the sparse Laplacian penalty

(Huang et al. (2011)). However, it also has remarkable difference due to the L1 form, which

is adopted for the “consistency” purposes with the weighted LAD loss function.

In (2.3), |amk| is the network adjacency which plays a critical role in quantifying the

strength of connection between two nodes. We consider the approach from Zhang and Hor-

vath (2005) to specify adjacency. Denote rmk as the Pearson correlation coefficient between

the mth and kth gene expression. Let A = (amk, 1 ≤ m, k ≤ p) be the adjacency matrix,

where amk = rαmk · I{|rmk| > r} with α = 5. A properly defined network adjacency mea-

sure can keep the sign of rmk, retain strong correlations and tune down weak ones (that are

possibly noises). We choose the power transformation and the value of α following existing
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studies (Huang et al. (2011); Zhang and Horvath (2005)). We calculate the cutoff r based

on Fisher transformation zmk = 0.5log((1 + rmk)/(1 − rmk)). If the correlation between

mth and kth gene expressions is 0,
√
n− 3zmk approximately follows N(0, 1), which can

then be adopted to calculate a threshold δ for
√
n− 3zmk. Then the threshold for rmk is

r = exp(2δ/
√
n− 3)−1)/(exp(2δ/

√
n− 3)+1). The network is weighted and sparse. Please

refer to Huang et al. (2011) and Zhang and Horvath (2005) for more details. There are al-

ternative ways of constructing network adjacency. For instance, biological information (like

pathway) is used to define adjacency in some studies. We conjecture that they are equally

applicable. As our objective is not to compare different network constructions, we focus on

this specific network structure.

2.2.3 Computation

Consider the following iterative algorithm:(a) initialize α̂ and β̂; (b) update α̂ as the mini-

mizer of (2.1) with β fixed at β̂; (c) update β̂ as the minimizer of (2.2) with α fixed at α̂;

(d) iterate step (b) and (c) until convergence. The non-convexity of MCP in the penalty

function (2.3) makes that computation of step (c) particularly challenging. Here, we develop

an effective algorithm that borrows strength from MM (majorization-minimization) within

the coordinate descent (CD) framework. More specifically, the nonconvex MCP in (2.3) is

replaced by its majorization function to create a surrogate regularized loss function first,

then optimization is conducted over the surrogate loss function with respect to one predictor

at a time, and cycled through all predictors untill convergence.

We define a majorization function for the MCP function ρλ1,γ(|β|) at the d-th iteration

(d = 1, 2, ...) as

φ
β
(d−1)
m

(|βm|) = ρλ1,γ(|β(d−1)
m |) + ρ′λ1,γ(|β

(d−1)
m |+)(|βm| − |β(d−1)

m |), m = 1, . . . , p

where β
(d−1)
m is the value of βm at the end of the (d-1)-th iteration, and ρ′λ1,γ(|βm|+) is the

limit of ρ′λ1,γ(t) as t→ |βm| from the above. ρ′λ1,γ(|βm|+) exists for all βm due to the piecewise
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differentiability of MCP. We can see that

φ
β
(d−1)
m

(|βm|) ≥ ρλ1,γ(|βm|) for all m

where the equality holds when βm = β
(d−1)
m . Hence, φ

β
(d−1)
m

, m = 1, ..., p majorizes the MCP

function ρλ1,γ(|β|). Subsequently, the regularized loss function in (2.2) is majorized at the

d-th iteration by

Qβ(d−1)(α, β) = L(α, β) +

p∑
m=1

φ
β
(d−1)
m

(|βm|) + λ2

∑
1≤m<k≤p

|amk||βm − sgn(amk)βk|

Next, we update the value of β at the d-th iteration by minimizing the surrogate regularized

loss function:

β(d) = argmin
β

Qβ(d−1)(α, β) (2.4)

This minimization can be conducted within the coordinate descent framework. With α and

β−m held fixed at the current estimate, we have

β(d)
m = argmin

βm

{ 1

n

n∑
i=1

vi|Yi − Ziα−
∑
j 6=m

Xijβj −Ximβm |

+
∑
j 6=m

φ
β
(d−1)
j

(|βj|) + φ
β
(d−1)
m

(|βm|)

+ λ2

∑
j 6=m

∑
j<k≤p

|ajk||βj − sgn(ajk)βk|+ λ2

∑
m<k≤p

|amk||βm − sgn(amk)βk|
}

= argmin
βm

{ 1

n

n∑
i=1

vi|Yi − Ziα−
∑
j 6=m

Xijβj −Ximβm |+ ρ
′

λ1,γ
(|β(d−1)

m |+)|βm|

+ λ2

∑
m<k≤p

|amk||βm − sgn(amk)βk|
}

Therefore, (2.4) can be equivalently expressed as a minimization problem for weighted me-

dian regression. We re-write (2.4) as

β(d)
m = argmin

βm

{
1

n+1+p−m
∑n+1+p−m

i=1 wim|uim|
}

(2.5)
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where

u
(d)
im =



Yi−Ziα−
∑p
j 6=mXijβ

(d−1)
j

Xim
− βm i=1,2,...,n

0− βm i=n+1

sgn(amk)βk − βm i=n+2,...,n+1+p−m

(2.6)

and

w
(d)
im =



1
n
vi|Xim| i=1,2,...,n

ρ
′

λ1,γ
(|β(d−1)

m |+) i=n+1

λ2|amk| i=n+2,...,n+1+p−m

(2.7)

where m and k follow the same definition as in (2.3). The minimizer of (2.5) is the

weighted median of (n + 1 + p − m) pseudo observations. Similarly, we can update the

(q + 1)–dimensional vector α(d) component-wisely by minimizing the loss function (2.1) us-

ing weighted median regression. Specifically, for each l = 0, . . . , q, update α
(d)
l using the

weighted median in (2.1) with β and α−l held fixed. With fixed tuning parameters, the

coordinate descent algorithm is described in Table 2.1

Table 2.1: Coordinate descent algorithm.
Algorithm Coordinate descent for the robust penalized network–based regularization

Initialize d = 0, α(0) and β(0)

Repeat

update α(d+1) component-wisely using weighted median regression

for m = 1, 2, . . . , p

compute um and wm via (2.6) and (2.7)

update β
(d+1)
m using the weighted median in (2.5)

m← m+ 1

end for

d← d+ 1

until convergence

Selection of proper tuning parameters is crucial to the proposed method. Here, we have

tuning parameters λ1 and λ2, as well as a regularization parameter γ. In MCP, γ balances

between the concavity and unbiasedness. As suggested by Zhang (2010) and other studies,

in our numerical study, we experiment γ with a sequence of values, including 1.5, 3, 5, 7 and
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10, and find that the results not sensitive to the choice of γ. Therefore, we set γ=5. We

choose the optimal pair of tuning parameters (λ1, λ2) via a two-dimensional grid search on

independent testing data sets. That is, we first obtain regularized estimates from training

data, then evaluate prediction performance over independently generated testing data. In

simulation, the tunings determined from V-fold cross validation are very close to those based

on independent testing data, but computationally more intensive. In real data analysis, we

use cross validation to choose optimal tuning parameters since independent testing data

sets are not available. In both simulation study and case study, convergence has been

achieved in a small to moderate number of iterations. We compute the CPU time of running

100 replicates of simulated 300 × 500 gene expression data with AR structure and fixed

tuning parameters on a regular laptop. The CPU time in seconds are 53.0 (LAD Network),

36.1 (LAD MCP), 34.9 (LAD LASSO), 39.1 (Network), 24.3 (MCP) and 24.7 (LASSO),

respectively.

To facilitate computation, we implement the proposed method, as well as the alternatives

in C++ and provide the R package regnet with detailed documentation and examples (Ren

et al. (2019b)).

2.3 Simulation

To demonstrate the utility of the proposed approach, we evaluate the performance through

simulation study. In particular, we consider right censored survival data under the acceler-

ated failure time (AFT) model. We generate datasets for different correlation structures and

correlation levels, each with 300 subjects. For each subject, we simulate 5 clinical covariates

and the expression of 500 genes, from multivariate normal distributions with marginal means

equal to zero and variances equal to one. Among the 500 genes, there are 100 clusters with 5

genes per cluster. For the gene expression, we consider three correlation structures. (1) the

auto-regression (AR) structure, in which gene i and j within the same cluster have correlation

coefficients ρ|i−j|, and they are independent cluster–wisely. We consider ρ = 0.2, 0.5 and 0.8,

representing weak, moderate and strong correlation respectively. (2) banded correlation
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structure where the ith and jth genes have ρ = 0.5 if |i− j| = 1 and ρ = 0 otherwise. Gene

expressions in different clusters are independent. (3) banded correlation structure where the

ith and jth genes have correlation coefficient 0.5 if |i− j| = 1, 0.25 if |i− j| = 2 and 0 other-

wise. 10% of clusters are randomly selected to have nonzero regression coefficients generated

from Unif[0.2, 0.8]. For the clinical covariates, we simply use a multivariate normal distribu-

tion with ρ = 0.7 in all scenarios. All clinical covariates have non-zero coefficients generated

independently from Unif[0.2, 0.8]. The log event times are generated under the AFT model

with random errors from N(0, 1) (Error1), T(1) (Error2), 85%N(0,1) + 15%Cauchy(0, 1)

(Error3) or 75%N(0,1) + 25%Cauchy(0, 1) (Error4). The log censoring times are generated

from uniform distribution. The average censoring rate is about 30%. We choose the tun-

ing parameters based upon the prediction performance of the corresponding model in an

independently simulated validation dataset.

For comparison, besides the developed robust network-constrained approach (LAD Network),

we also consider two robust approaches, robust MCP (LAD MCP) and robust LASSO

(LAD LASSO), as well as three non-robust approaches, Network (Huang et al. (2011)),

MCP and LASSO. All the robust methods adopt the weighted LAD loss function, while

non-robust methods adopt the weighted least square loss. In particular, robust MCP is

equivalent to the proposed approach when λ2 = 0 in (2.3). Similarly, Network reduces to

MCP when the tuning parameter corresponding to the Laplacian term is 0. Comparison

between robust and non-robust methods has fully demonstrated the advantage of not only

robustness in accommodating data contamination in survival response, but also the net-

work based penalty from LAD Network in accommodating interconnections among genetic

measurements. Simulation results for the gene expression data under AR structure are tab-

ulated in Table 2.2. We can observe that from the upper panel of Table 2.2 where ρ = 0.5,

LAD Network has better performance than LAD MCP and LAD LASSO for all four error

types. For example, under Error2, LAD Network identifies 31.63(sd 13.55) out of the 50

true positives, with a relatively small number of false positives 14.93(sd 9.85). LAD MCP

identifies a lower number of true positives 23.1(sd 9.64) with a higher number of false pos-

itives 56.17(sd 81.31). LAD LASSO has a true positives 30.33(sd 6.57), but a much higher
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Table 2.2: Simulation for gene expression data (n, p) = (300, 505). 50 genes have nonzero
regression coefficients. 5 clinical covariates are not subject to selection. The gene expressions
have AR structure with ρ = 0.5 (upper panel) and ρ = 0.8 (lower panel). mean(sd) of true
positives (TP) and false positives (FP) based on 100 replicates.

LAD Network LAD MCP LAD LASSO Network MCP LASSO

AR ρ = 0.5

Error1 TP 44.90(5.65) 40.67(4.59) 38.90(5.19) 40.07(4.70) 28.53(3.92) 48.27(1.20)

FP 9.77(7.59) 8.63(8.16) 121.93(36.26) 8.13(5.37) 7.67(3.96) 75.57(10.64)

Error2 TP 31.63(13.55) 23.10(9.64) 30.33(6.57) 1.57(2.84) 1.50(2.76) 4.07(6.35)

FP 14.93(9.85) 56.17(81.31) 103.17(49.89) 3.37(7.73) 3.27(7.94) 11.40(19.09)

Error3 TP 43.68( 7.64) 36.28( 5.79) 34.88( 7.74) 20.03(12.84) 15.42(9.45) 31.83(16.71)

FP 16.05(29.77) 12.64(20.27) 114.35(57.49) 9.81( 6.57) 7.97(5.47) 60.73(33.39)

Error4 TP 39.03(10.15) 31.57(4.70) 34.10(6.26) 11.83(10.91) 9.73(8.51) 20.57(16.26)

FP 14.33(11.20) 13.50(19.47) 109.87(40.55) 8.93(8.02) 7.67(7.77) 38.83(30.69)

AR ρ = 0.8

Error1 TP 46.93(5.77) 41.00(6.36) 43.70(4.94) 49.60(0.62) 23.93(2.97) 48.27(1.14)

FP 5.27(6.35) 2.43(2.58) 94.20(38.45) 12.00(8.39) 7.70(5.38) 61.67(15.77)

Error2 TP 43.80(12.34) 23.93(5.46) 38.57(5.9) 10.97(15.16) 4.77(7.68) 9.47(10.68)

FP 15.07(13.55) 14.20(22.23) 101.42(41.99) 18.50(33.77) 16.07(64.74) 21.82(25.00)

Error3 TP 47.23(7.11) 37.07(5.93) 43.90(4.37) 33.33(20.10) 15.47(10.68) 30.60(18.05)

FP 4.53(5.06) 11.87(35.83) 91.37(24.94) 27.93(40.69) 19.07(66.48) 49.33(27.36)

Error4 TP 44.37(10.23) 32.30(5.03) 44.30(3.28) 32.57(19.21) 13.63(8.72) 28.27(14.97)

FP 10.17(9.43) 6.03(8.22) 105.00(32.13) 26.90(20.39) 10.73(6.20) 47.60(26.05)

false positives 103.17(sd 49.89). Compared with non-robust methods, the proposed method

has significant advantage when heterogeneity exists in the data (Error2, Error3 and Error4).

When there is no heterogeneity (Error1), performance of the proposed method is comparable

to that of the non-robust Network method and outperforms MCP and LASSO.

As correlation increases, the proposed one outperform other alternatives more signifi-

cantly. As what we can observe from the lower panel of Table 2.2 where ρ = 0.8 under AR

structure, LAD Network achieves ideal true positives and satisfactory false positives. For

example, LAD Network has a TP 43.8(sd 12.34) and a FP 15.07(sd 13.55) for Error 2 and a
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TP 47.23(sd 7.11) and a FP 4.53(sd 5.05) for Error 3, outperforming all other alternatives.

To further examine the performance of the proposed approach, we also conduct simulation

under banded structures. Results are summarized in Table A.1 in the Appendix A. The pro-

posed LAD Network delivers a consistent performance under different covariance structures:

it outperforms robust alternatives when moderate to strong correlation exists among genetic

variants, and it has significant advantage over non-robust methods when heterogeneity exists

in the data.

In the second set of simulation, we consider more realistic correlation structures. Specif-

ically, We generate gene expression datasets based on correlation structure extracted from

real data in cancer studies. 500 genes are selected from Non-small cell lung cancer (NSCLC)

data and Lung squamous cell carcinoma (LUSC) data, respectively. Two gene expression

datasets, each with 300 subjects, are simulated with a multivariate normal distribution with

marginal means zero and correlation matrix computed from genes selected from NSCLC

data and LUSC data, respectively. 10% of genes are assigned to have nonzero regression

coefficients generated from Unif[0.2, 0.8]. The 500 genes from real data are selected in a

way that they form group-wise correlation structure. Unlike the first set of simulation where

there are 5 genes per cluster, the clusters in this setting form more closely to real data based

upon the calculated correlation coefficient. Results are shown in Table A.2 and A.3 in the

Appendix A. In Table A.2, under Error 3, LAD Network has the highest TP, 43.00(6.79),

and the lowest FP, 3.14(3.91), among all the six approaches. The superior performance has

also been observed under other heavy-tailed distributions. With standard normal error (Er-

ror 1), LAD Network is comparable with the non-robust Network method, and outperforms

the other two non-robust methods. Similar patterns have also been observed from Table

A.3. The conclusions from the simulations based on real gene expression data are consistent

with the ones we have from the first setting.

In the third set of simulation, we examine whether the proposed one demonstrates supe-

rior performance over the alternatives on simulated single-nucleotide polymorphism (SNP)

data. We consider two schemes to simulate SNP data. With the first SNP generating

scheme, the SNP data are simulated by dichotomizing expression values of each gene at
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the 1st and 3rd quartiles, with the 3–level (2,1,0) for genotypes (AA,Aa,aa) respectively,

where the gene expresison values are generated under the first set of simulation. Results

are given in Table A.4 and A.5 under AR structure and banded structure respectively in

the Appendix A. Under the second approach, the SNP genotype data are simulated based

on a pairwise linkage disequilibrium (LD) structure. Let q1 and q2 be the minor allele fre-

quencies (MAFs) of two alleles A and B for two adjacent SNPs. We denote LD as δ, and

the frequencies of four haplotypes are calculated as pAB = q1q2 + δ, pAb = q1(1 − q2) − δ,

paB = (1−q1)q2−δ, and pab = (1−q1)(1−q2)+δ. Under Hardy-Weinberg equilibrium, SNP

genotype (AA, Aa, aa) at locus 1 can be generated from a multinomial distribution with

frequencies (q2
1, 2q1(1− q1), (1− q1)2). Based on the conditional genotype probability matrix

( Cui et al. (2008)), we can simulate the genotypes for locus 2. With MAFs 0.3 and pairwise

correlation r = 0.6, we have δ = r
√
q1(1− q1)q2(1− q2). The simulation results based on LD

structure are given in Table A.6 in the Appendix A. Under both SNP generating schemes,

the patterns are similar as those observed from the gene expression data.

2.4 Real Data Analysis

We analyze lung cancer data with gene expression measurements from two studies, separately.

The first dataset is from the study of Xie et al. (2011), and the second one is the Lung

squamous cell carcinoma (LUSC) data from TCGA (https://cancergenome.nih.gov/).

2.4.1 Non-small cell lung cancer (NSCLC) data

In the USA, lung cancer is the most common cause of cancer death. About 80% to 85% of

lung cancers are non-small cell lung cancer (NSCLC). To identify genetic markers associated

with the prognosis of NSCLC, gene profiling studies have been extensively conducted. As

individual studies usually have small sample sizes, we follow the study of Xie et al. (2011)

and collect data from four independent studies with gene expression measurements. After

matching clinical variables and gene expression data, we have total 348 subjects and 22,283
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gene expressions. Among the 348 subjects, 180 died during follow up, with survival times

ranging from 0.03 to 204 months (median 26.19 months). To reduce the computational cost,

we rank the probes by their variations and select the top 700 for downstream analysis. We

include five clinical covariates, age, gender, smoking history, tumor stage and chemotherapy.

Age is a normalized continuous variable, and dummy variables are created for categorical

variables: smoking history, tumor stage and chemotherapy.

We apply all the methods to the lung cancer dataset. First, we conduct the logrank test

to evaluate the prediction performance after splitting the patient group into training and

testing sets. By dichotomizing the patients according to the median risk scores from the

testing set, two risk groups can be created. Larger log rank test statistic indicates more sig-

nificant survival difference between the low-risk and high-risk groups, thus better prediction

performance. The log-rank statistics are 206.5 (LAD Network), 130.7 (LAD MCP), 132.7

(LAD LASSO), 77.0 (Network), 11.1 (MCP) and 133.0 (LASSO), respectively. The proposed

method has the best predictive performance, as indicated by the log-rank test statistic.

As a representative example, we examine the sub-network of gene PCLAF, PCNA Clamp

Associated Factor. PCLAF is identified by five methods (all methods except MCP) as one

of the most important genes. PCLAF encodes a PCNA-binding protein and is a regulator

of DNA repair during DNA replication. It has been found to be overexpressed in various

tumors, including lung tumor tissues (Hosokawa et al. (2007); Kato et al. (2012b); Yu et al.

(2001)). Figure 2.2 shows the sub-network of PCLAF, where the red nodes indicate the

probe of PCLAF. Thickness of the edges denotes the strength of correlation between genes.

Comparing different methods, it can be clearly observed that the proposed approach has

identified much more highly correlated prognostic genes, since the interconnections among

genes have been accommodated by the approach that incorporates the network structure

information. Eight genes are directly connected to PCLAF in the sub-network identified by

the proposed approach. They are TOP2A, ASPM, SELENBP1, MAD2L1, CDC20, PRC1,

TYMS and DLGAP5. All of them are positively correlated to PCLAF, except SELENBP1.

PRC1 (Protein regulator of Cytokinesis 1) has the highest correlation with PCLAF (r=0.83).

It is interesting that PCLAF and PRC1 are located closely on Chromosome 15. Similar as
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Figure 2.2: Sub-network for PCLAF.

PCLAF, PRC1 is overexpressed in lung cancer cells. Higher level of PRC1 is found to

be associated with poor survival of lung cancer patients (Hanselmann et al. (2017); Zhan

et al. (2017)).However, none of the alternative methods capture this important prognostic

marker in the PCLAF network. In addition, TOP2A (DNA Topoisomerase II Alpha) (Hou

et al. (2017); Huang et al. (2015)), CDC20 (Cell Division Cycle 20) (Kato et al. (2012a);

Wang et al. (2013c)), DLGAP5 (DLG Associated Protein 5) (Schneider et al. (2017); Shi

et al. (2017)) and MAD2L1 (MAD2 mitotic arrest deficient-like 1) (Shi et al. (2016)) have

been identified as negative prognostic markers in NSCLC by recent studies. Studies report

that the over-expression of TYMS (thymidylate synthase) (Chamizo et al. (2015); Wang

et al. (2013a)) and ASPM (Kuo et al. (2015)) are related to drug-resistance in advanced

NSCLC. Among the genes, SELENBP1 (selenium-binding protein 1) is negatively correlated
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with PCLAF and other genes in the network. Selenium-binding proteins are known to play

important roles in cancer prevention effects of selenium. Down-regulation of SELENBP1 is

associated with poor prognosis in NSCLC patients (Tan et al. (2016); Zeng et al. (2013)).

Overall, the proposed approach identifies more informative prognostic markers.

We also examine the biological similarity of the identified genes by the Gene Ontology

(GO) analysis. An obvious difference between the proposed method and the alternatives is

observed. The GO analysis results are provided in Figure A.1 in the Appendix.

2.4.2 Lung squamous cell carcinoma (LUSC) data

Lung squamous cell carcinoma (LUSC) is one of the most common types of NSCLC. It

comprises 25–30% of all lung cancer cases (Zappa and Mousa (2016)). LUSC is more strongly

correlated with cigarette smoking history than most other subtypes of NSCLC (Kenfield et al.

(2008)). We analyze TCGA (The Cancer Genome Atlas) data on the prognosis of LUSC

(The Cancer Genome Atlas Research Network (2012)). We consider four clinical covariates:

age at diagnosis, gender, smoking history and tumor stage. The total number of genes is

20,499 and the sample size is 461. 203 died during follow-up among all the subjects. The

survival times range from 0.03 to 173.69 months, with a median of 17.84 months. Similar as

the NSCLC study, we select the top 700 genes for further analysis.

We applied the six methods to the working dataset. The log-rank statistics are 155.0

(LAD Network), 116.9 (LAD MCP), 102.8 (LAD LASSO), 76.4 (Network), 40.6 (MCP) and

96.1 (LASSO), respectively. The proposed method has the largest log-rank statistic and thus

superior prediction performance.

We use the sub-network of gene IRS4 (Insulin receptor substrate 4) as a representative

example. IRS4 is identified by five methods (all expect Network) as a prognostic gene. IRS4

plays a tumor-promoting role in NSCLC (Hoxhaj et al. (2013); Weischenfeldt et al. (2017)).

The proposed method identifies 13 genes in the sub-network of IRS4 (Figure 2.3). Ten genes

are uniquely identified by the proposed method, and the rest three (PSMD10, CMTX5 and

LOC158602) are also identified by other methods. Both PSMD10 (Proteasome 26S Subunit,
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Figure 2.3: Sub-network for IRS4.

Non-ATPase 10) and CMTX5 (also known as PRPS1, phosphoribosyl pyrophosphate syn-

thetase 1) are positively correlated with IRS4 and have been reported as oncogenes (He et al.

(2017); Luo et al. (2016)). Among the 13 genes in IRS sub-network, three of them (PSMD10,

CMTX5, PHEX) are located on chromosome X, the same as IRS4. LOC158602 is a gene

with unknown function, but highly correlated with both PSMD10 and CMTX5. DRG1 (De-

velopmentally regulated GTP binding protein 1) is only identified by the proposed method.

DRG1 plays important roles in regulating cell growth. Overexpression of DRG1 leads to

chromosome missegregation and promotes tumor progression in NSCLC (Lu et al. (2016)).

GSR (glutathione reductase) is one of enzymes in the glutathione (GSH) metabolism sys-

tem, which is a major redox regulatory systems in mammals that support increased tumor

growth (Tobe et al. (2015)). It has been reported that GSH levels in cells, regulated by
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GSH-synthesising enzymes such as GSR, is associated with resistance to epidermal growth

factor receptor (EGFR) inhibitors in NSCLC (Li et al. (2016)). In this network, GSR has

a strong correlation with RIT1 (Ras Like Without CAAX 1) (r=0.69). RIT1 encodes a

RAS-family small GTPase. It has been reported as an oncogene. Mutations in RIT1 may

also induce resistance to EGFR inhibition, but in a MEK-dependent manner (Berger et al.

(2014)).

To further investigate the biological similarity of the identified genes, the GO analysis

is conducted for the LUSC data. The results are provided in Figure A.1, which suggests

moderate similarity.

2.5 Discussion

In cancer genomics studies, much effort has been devoted to developing variable selection

methods to identify important genomics features associated with survival outcomes (Tib-

shirani (1997); Huang and Ma (2010); Sha et al. (2006)). In recent decades, it has been

recognized that network (or graph) based regularization methods are particularly effective

in accommodating the correlation among genomic variants in a number of studies, neverthe-

less, their development and application in cancer survival studies are quite limited. Besides,

although the lack of robustness might lead to biased estimation and false identification of

sparse network structures, robust network–based variable selection has not received much

attention in cancer prognosis studies. Motivated by the limitations of existing studies and

analysis of the cancer genetic data, we have proposed a robust network constrained regular-

ization and variable selection method to accommodate correlations among gene expressions

in the search of important prognostic markers. The proposed method outperforms alterna-

tives, both robust and non-robust, under a diversity of simulation setups. In the analysis

of cancer prognosis data with high-dimensional gene expression measurements, it leads to

biologically sensible findings and improved prediction.

Our method significantly distinguishes from and complements existing ones in the fol-

lowing aspects. We adopt a weighted LAD objective function to accommodate data con-
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tamination, with Kaplan-Meier weights for censoring. To incorporate the interconnections

among gene expressions, we propose a network-constrained penalty of the “MCP+L1” form,

and develop an efficient algorithm within the coordinate descent framework. The MM step

is critical for the formulation of the convex surrogate objective function, which naturally

leads to a weighted median regression problem. The effectiveness of smoothing the non-

convex penalty function has been demonstrated in Peng and Wang (2015) and studies alike.

To achieve high computational efficiency, we adopt AFT model for cancer prognosis in this

study. Cox proportional hazard model can also be used in cancer genomic studies (Huang

and Liang (2018, 2019)), but has higher computational cost than AFT model in general.

Here we describe the correlation among genomic variants through network structures. We

acknowledge that, first, different network structures can be constructed (Huang et al. (2011))

and, second, there exists a variety of ways to incorporate correlations in penalized estimation

and identification, not necessarily through network based penalty functions. For example,

the spatial correlation among CNVs can be taken into account by using the adaptive fused

LASSO penalty (Gao and Huang (2010a)). Also, in addition to the data-driven approach,

network structures can be constructed based on prior biological knowledge (Jiang et al.

(2017); Li and Li (2008); Min et al. (2018); Sun and Wang (2012)). Comparisons to other

network structures and structures other than networks are not the focus of this project, thus

not pursued. We also acknowledge that Bayesian methods can be robust depending on the

prior distribution assumptions. For example, Sha et al. (2006) consider AFT models with the

t prior distribution. Note that the robustness of our proposed method is not only restricted

to certain type of heavy–tailed distribution or data contamination, and Sha et al. (2006) will

not lead to networks among genomic variants. Moreover, comparisons between frequentist

and Bayesian methods is beyond of the scope of this project, and will be postponed to the

future.

The proposed algorithm for LAD Network under survival response is essentially a first or-

der method. The first order method, such as gradient descent and proximal gradient descent,

can enjoy a linear convergence rate when the objective function has strong convexity (Boyd

and Vandenberghe (2004)). The LAD Network loss function is, however, not differentiable
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and not strongly convex, which poses challenge on establishing the rate of convergence. We

conjecture that the rate of convergence of LAD Network can be shown by following that

of the subgradient method (Bertsekas (2010)). It is also worth noting that Wu and Lange

(2008) has given a detailed discussion of LASSO in LAD regression, although the rate of

convergence has not been provided. The iteration cost of our algorithm is not cheap, due to

the MM step and the sorting step for solving weighted median regression. From a practical

point of view, the fast convergence of our algorithm is guaranteed by the C++ core module

of R package regnet. In addition, Gao and Huang (2010b) has investigated estimation and

selection consistency of LAD LASSO, which is important for developing consistency prop-

erties of LAD Network case. In this project, we focused on the development of statistical

methodology. Investigations on the theoretical properties will be conducted in future studies.

Regularized objective function of robust penalization methods share a common structure

of “robust objective function + penalty function” (Wu and Ma (2015)). The computational

advantage of the proposed method roots in the L1 form of the objective function. It is

conjectured that the robustness can be achieved by coupling the penalty function with other

robust loss functions, such as the exponential squared loss (Wang et al. (2013b)) and rank

based loss (Wu et al. (2015)). However, since additional tunings and smoothing are demanded

for these loss functions, the computational expenses are even high under low dimensional

settings.

In this study, we focus on prognostic outcomes. Extension of our method to continuous

disease phenotypes can be made readily by changing Kaplan-Meier weights to equal weights.

In addition, the proposed method is not limited to the analysis of gene expression measure-

ment. The network structure has been widely adopted to describe correlations among other

genomics features, such as SNPs (Ren et al. (2017)), CNVs (Peng et al. (2012)) and DNA

methylations (Sun and Wang (2012)), where robust network based penalization is also of

great interest.
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Chapter 3

Semi-parametric Bayesian variable

selection for gene-environment

interactions

3.1 Introduction

It has been widely recognized that the genetic and environmental main effects alone are

not sufficient to decipher an overall picture of the genetic basis of complex diseases. The

Gene-Environment (G×E) interactions also play vital roles in dissecting and understanding

complex diseases beyond the main effects (Hunter (2005); Hutter et al. (2013)). Significant

amount of efforts have been made to conducting analysis for the investigation of the asso-

ciations between disease phenotypes and interaction effects marginally, especially in GWAS

(Mukherjee et al. (2011)). As the disease etiology and prognosis are generally attributable

to the coordinated effects of multiple genetic and environment factors, as well as the G×E

interactions, joint analysis has provided a powerful alternative to dissect G×E interactions.

From the statistical modeling perspective, the interactions can be described as the prod-

uct of variables corresponding to genetic and environmental factors. With the main G and E

effects, as well as their interactions, the contribution of genetic variants to disease phenotype
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Figure 3.1: Non-linear G×E effect of SNP rs1106380 from the Nurses’ Health Study (NHS)
data. The blue dashed lines represent the 95% credible region.

can be expressed as a linear function of the environmental factor. Such a linear interaction

assumption does not necessarily hold true in practice. Taking the Nurses’ Health Study

(NHS) data analyzed in this article as an example, we are interested in examining how the

SNP effects on weight are mediated by age as the environmental factor. The range of sub-

jects’ age in the NHS data is from 41 to 68. As reported, for type 2 diabetes, the average

age for the onset is 45 years (Centers for Disease Control and Prevention (2020)). Therefore,

the presence of rs1106380×age interaction is roughly within such a range. We fit a Bayesian

marginal model to SNP rs1106380 by using a non-parametric method to model the G×E

interaction while accounting for effects from clinical covariates. A 95% credible region has

also been provided. Figure 3.1 clearly suggests that the linear interaction assumption is vio-

lated. Mis–specifying the form of interactions will lead to biased identification of important

effects and inferior prediction performance.

The non-linear G×E interactions have been first conducted in marginal analysis, including

Ma et al. (2011) and Wu and Cui (2013a). Motivated by the set based association analysis,

the modeling strategy has been adopted to investigate how genetic variants in a set, such as

the gene set, pathways or networks, are mediated by one or multiple types of environmental
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exposures to influence disease risk. The set–based modeling incorporating the nonlinear

G×E interactions is essentially a joint analysis with high-dimensional covariates. Recently,

penalized variable selection methods have emerged as a promising tool to capture G×E

interactions that might be only weak or moderate individually, but that are strong collectively

(Du et al. (2020); Wu et al. (2013, 2014, 2015, 2018c); Zhou et al. (2020b)).

Penalization methods have been first coined in Tibshirani (1996), which has also pointed

out the connection between penalization and the corresponding Bayesian variable selection

methods. In particular, the LASSO estimate can be interpreted as the posterior mode

estimate when identical and independent Laplace prior has been imposed on each component

of the coefficient vector under penalized least square loss. Park and Casella (2008) has

further refined the prior as a conditional Laplace prior within the fully Bayesian framework

to guarantee the unimodality of the posterior distribution. As LASSO belongs to the family

of penalized estimate induced by the `q norm penalty with q=1, the Bayesian counterpart of

penalization methods have been generalized to accommodate more complex data structure

with other penalty functions, such as elastic net, fused LASSO and group LASSO. These

extensions can also be formulated within the Bayesian framework with a similar rationale of

specifying priors (Kyung et al. (2010)).

As penalization is tightly connected to Bayesian methods, the development of novel

Bayesian variable selection will significantly broaden the scope of variable selection methods

for G×E interaction studies, which will provide us fresh perspectives and promising results

not offered by the existing studies. However, our limited literature review indicates that

Bayesian variable selection has not been thoroughly conducted in existing G×E studies, es-

pecially for nonlinear interactions. For example, Liu et al. (2015) has developed a Bayesian

mixture model to identify important G×E and G×G interaction effects through indicator

model selection. Variable selection has been achieved by examining the posterior inclusion

probability. However, this study cannot handle nonlinear interactions. More pertinent to

the penalization, Li et al. (2015) has developed a Bayesian group LASSO for non-parametric

varying coefficient models, where the non-linear interaction is expressed as a linear combi-

nations of Legendre polynomials, and the identification of G×E interactions amounts to the
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shrinkage selection of polynomials on the group level using multivariate Laplace priors. Li

et al. (2015) has been built upon the Laplace prior adopted in Bayesian LASSO, therefore

the coefficients cannot be shrunken to zero exactly in order to achieve the ”real” sparsity,

Accounting for nonlinear effects in G×E studies has deeply rooted in structured variable

selection for high dimensional data (Zhang et al. (2011)). An efficient selection procedure

is expected to not only accurately pinpoint the form of nonlinear interactions, but also

avoid modeling the main-effect-only case (corresponding to the non-zero constant effects) as

nonparametric ones, since this type of misspecification may over–fit the data and result in

loss of efficiency. To the best of our knowledge, automatic structure identification involv-

ing nonlinear effects has not been conducted in Bayesian G×E studies. To overcome the

aforementioned limitations, we develop a novel semi-parametric Bayesian variable selection

method for G×E interactions. We consider both linear and nonlinear interactions simulta-

neously. The interactions between a genetic factor and a discrete environmental factor are

modeled parametrically, while the nonlinear interactions are modeled using varying coeffi-

cient functions. In particular, we conduct automatic structure identification via Bayesian

regularization to separate the cases of G×E interactions, main-effect-only and no genetic ef-

fects at all, which more flexibly captures the main and interaction effects. Besides, to shrink

the coefficients of unimportant linear and nonlinear effects to zero exactly, we adopt the

spike-and-slab priors in our model. The spike-and-slab priors have recently been shown as

effective when being incorporated in Bayesian hierarchical framework for penalization meth-

ods, including the spike–and–slab LASSO (Roc̆ková and George (2018); Tang et al. (2017)),

Bayesian fused LASSO (Zhang et al. (2014a)) and Bayesian sparse group LASSO (Xu and

Ghosh (2015)). It leads to sparsity in the sense of exact 0 posterior estimates which are not

available in Bayesian LASSO type of Bayesian shrinkage methods including Li et al. (2015).

Motivated by the pressing need to conduct efficient Bayesian G×E interaction studies

accounting for the nonlinear interaction effects, the proposed semi-parametric model sig-

nificantly advances from existing Bayesian variable selection methods for G×E interactions

in the following aspects. First, compared to studies that solely focus on linear (Liu et al.

(2015)) or non-linear effects (Li et al. (2015)), the proposed one can accommodate both
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types of effects concurrently, thus more comprehensively describe the overall genetic archi-

tecture of complex diseases. Second, to the best of our knowledge, for G×E interactions,

automatic structure discovery has been considered in the Bayesian framework for the first

time. Compared to Li et al. (2015), one of the very few (or perhaps the only) literature

in Bayesian variable selection for non-linear effects, our method is more fine tuned for the

structured sparsity by distinguishing whether the genetic variants have nonlinear interac-

tion, main effects only and no genetic effects at all, with the forms of coefficient functions

being varying, non-zero constant and zero respectively. Third, borrowing strength from the

spike–and–slab priors, we efficiently perform Bayesian shrinkage on the individual and group

level simultaneously. In particular, with B–spline basis expansion, the identification of non-

linear interaction is equivalent to the selection of a group of basis functions. We develop

an efficient MCMC algorithm for semi–parametric Bayesian hierarchical model. We show in

both simulations and a case study that the exact sparsity significantly improves accuracy in

identification of relevant main and interaction effects, as well as prediction. For fast com-

putation and reproducible research, we implement the proposed and alternative methods in

C++ and encapsulate them in a publicly available R package spinBayes (Ren et al. (2019c)).

The rest of the article is organized as follows. In Section 3.2, we formulate the semi-

parametric Bayesian variable selection model and derive a Gibbs sampler to compute the

posterior estimates of the coefficients. We carry out the simulation studies to demonstrate

the utility of our method in Section 3.3. A case study of Nurses’ Health Study (NHS) data

is conducted in Section 3.4.

3.2 Data and Model Settings

3.2.1 Partially linear varying coefficient model

We denote the ith subject using subscript i. Let (Xi, Yi, Zi, Ei,Wi), i = 1, . . . , n be inde-

pendent and identically distributed random vectors. Yi is the response variable. Xi is the

p-dimensional design vector of genetic factors, and Zi and Ei are the continuous and dis-
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crete environment factors, respectively. The clinical covariates are denoted by q-dimensional

vector Wi. In the NHS data, the response variable is weight, and Xi represents SNPs. We

consider age and the indicator of history of hypertension for Zi and Ei, correspondingly.

Height and total physical activity are used as clinical covariates, so q is 2. Now consider the

following partially linear varying coefficient model

Yi = β0(Zi) +

p∑
j=1

βj(Zi)Xij +

q∑
t=1

αtWit + ζ0Ei +

p∑
j=1

ζjEiXij + εi (3.1)

where βj(·) is a smoothing varying coefficient function, αt is the coefficient of the tth clin-

ical covariates, ζ0 is the coefficient of the discrete E factor, and ζj is the coefficient of the

interaction between the jth G factor Xj = (X1j, . . . , Xnj)
> and Ei. The random error

εi ∼ N(0, σ2).

Here only two environmental factors, Zi and Ei, are considered for the simplicity of

notation. Their interactions with the G factor are modeled as non–linear and linear forms,

respectively. The model can be readily extended to accommodate multiple E factors.

3.2.2 Basis expansion for structure identification

As we discussed, distinguishing the case of main-effect-only from nonlinear G×E interac-

tion is necessary since mis-specification of the effects cause over-fitting. The following basis

expansion is necessary for the separation of different types of effects. We approximate the

varying coefficient function βj(Zi) via basis expansion. Let qn be the number of basis func-

tions

βj(Zi) ≈
qn∑
k=1

B̃jk(Zi)γ̃jk = B̃j(Zi)
>γ̃j

where B̃j(Zi) = (B̃j1(Zi), . . . , B̃jqn(Zi))
> is a set of normalized B spline basis, and γ̃j =

(γ̃j1, . . . , γ̃jqn)> is the coefficient vector. By changing of basis, the aforementioned basis
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expansion is equivalent to

βj(·) ≈
qn∑
k=1

B̃jk(·)γ̃jk
.
= γj1 + B̃j∗(·)>γj∗

where B̃j∗(Zi) = (B̃j2(Zi), . . . , B̃jqn(Zi))
>. γj1 and γj∗ = (γj2, . . . , γjqn)> correspond to the

constant and varying components of βj(·), respectively. The intercept function can be ap-

proximated similarly as β0(·) ≈
∑qn

k=1 B̃0k(·)η̃k
.
= η1 + B̃0∗(·)>η∗. Define γj = (γj1, (γj∗)

>)>,

η = (η1, (η∗)
>)>, Bj(Zi) = (1, (B̃j∗(Zi))

>)>
.
= (Bj1(Zi), . . . , Bjqn(Zi))

> and B0(Zi) =

(1, (B̃0∗(Zi))
>)>. Collectively, model (3.1) can be rewritten as

Yi = B0(Zi)
>η +

p∑
j=1

Bj(Zi)
>γjXij +

q∑
t=1

αtWit + ζ0Ei +

p∑
j=1

ζjEiXij + εi

= B0(Zi)
>η +

p∑
j=1

(Xijγj1 + U>ij γj∗) +W>
i α + E>i ζ0 + T>i ζ + εi

where Uij = (Bj2(Zi)Xij, . . . , Bjqn(Zi)Xij)
>, α = (α1, . . . , αq)

>, Ti = (Xi1Ei, . . . , XipEi)
>,

and ζ = (ζ1, . . . , ζp)
>. Note that basis functions have been widely adopted for modeling

the functional type of coefficient in general semi-parametric models, as well as functional

regression analysis (Huang et al. (2002, 2004); Zhu et al. (2010)). For a comprehensive

review of literature in this area, please refer to Morris (Morris et al. (2007)).

3.2.3 Semi-parametric Bayesian variable selection

The proposed semi-parametric model is of “large p, small n” nature. First, not all the

main and interaction effects are associated with the phenotype. Second, we need to further

determine for the genetic variants, whether they have nonlinear interactions, or main effect

merely, or no genetic contribution to the phenotype at all. Therefore, variable selection is

demanded.

From the Bayesian perspective, variable selection falls into the following four categories:

(1) indicator model selection, (2) stochastic search variable selection, (3) adaptive shrinkage

and (4) model space method (O’Hara and Sillanpää (2009)). Among them, adaptive shrink-
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age methods solicit priors based on penalized loss function, which leads to sparsity in the

Bayesian shrinkage estimates. For example, within the Bayesian framework, LASSO and

group LASSO estimates can be understood as the posterior mode estimates when univariate

and multivariate independent and identical Laplace priors are placed on the individual and

group level of regression coefficients, respectively (Li et al. (2015); Park and Casella (2008)).

The proposed one belongs to the family of adaptive shrinkage Bayesian variable selection.

For convenience of notation, we first define the approximated least square loss function as

follows:

L̃(η, γ, α, ζ0, ζ) = ‖Y −B0η −
p∑
j=1

Xjγj1 −
p∑
j=1

Ujγj∗ −Wα− Eζ0 − Tζ‖2

where Y = (Y1, . . . , Yn)>, B0 = (B0(Z1), . . . , B0(Zn))>, Uj = (U1j, . . . , Unj)
>, W = (W1, . . . ,Wn)>

and T = (T1, . . . , Tn)>. Let θ = (η>, γ>, α>, ζ0, ζ
>)> be the vector of all the parameters.

Then the corresponding penalized loss function is

L̃(η, γ, α, ζ0, ζ) + λe

p∑
j=1

|ζj|+ λc

p∑
j=1

|γj1|+ λv

p∑
j=1

‖γj∗‖2 (3.2)

The formulation of (3.2) has been primarily driven by the need to accommodate linear

and nonlinear G×E interaction while avoiding mis-specification of the main-effect-only as

nonlinear interactions. Here γj1 is the coefficient for the main effect of the jth genetic factor

Xj, and the `2 norm of the spline coefficients ‖γj∗‖2 is corresponding to the varying parts of

βj(·). If ‖γj∗‖2 = 0, then there is no nonlinear interaction between Xj and continuous envi-

ronment factor Z. Furthermore, if γj1 = 0, then Xj has no main effect and is not associated

with the phenotype. Similarly, the linear interaction between Xj and the discrete environ-

ment factor E is determined by ζj. ζj=0 indicates that there is no linear interaction. Overall,

the penalty functions in (3.2) provide us the flexibility to achieve identification of structured

sparsity through variable selection. Note that the main effects of environmental exposures

Z and E are of low dimensionality, thus they are not subject to selection. Therefore, for the

current G×E interaction study, we are particular interested in conducting Bayesian variable

40



selection on both the individual level of γj1 and ζj (j = 1, . . . , p), and the group level of

γj∗ (j = 1, . . . , p).

Laplacian shrinkage on individual level effects. Following the fully Bayesian analy-

sis for LASSO proposed in Park and Casella (2008), we impose the individual-level shrinkage

on genetic main effects and linear G×E interactions by adopting i.i.d. conditional Laplace

prior on γj1 and ζj (j = 1, . . . , p)

π(γ11, . . . , γp1|σ2) =

p∏
j=1

λc
2σ

exp
{
− λc
σ
|γj1|

}
π(ζ1, . . . , ζp|σ2) =

p∏
j=1

λe
2σ

exp
{
− λe

σ
|ζj|
} (3.3)

The above Laplace priors can be expressed as scale mixture of normals (Andrews and Mallows

(1974))

π(γj1|τ 2
cj, σ

2)
ind∼ N(0, σ2τ 2

cj)

τ 2
cj

ind∼
λ2
c

2
exp

{
− λ2

c

2
τ 2
cj

}
π(ζj|τ 2

ej, σ
2)

ind∼ N(0, σ2τ 2
ej)

τ 2
ej

ind∼
λ2
e

2
exp

{
− λ2

e

2
τ 2
ej

}
(3.4)

It is easy to show that, after integrating out τ 2
cj and τ 2

ej, (3.4) leads to the same priors in

(3.3).

Laplacian shrinkage on group level effects. Kyung et al. (2010) extended the

Bayesian LASSO to a more general form that can represent the group LASSO by adopting

a multivariate Laplace prior. We follow the strategy and let the prior for γj∗ (j = 1, . . . , p)

be

π(γj∗|σ2) ∝ exp
{
−
√
Lλv
σ
‖γj∗‖2

}
(3.5)

where L = qn−1 is the size of the group, (
√
Lλv
σ

)−1 is the scale parameter of the multivariate

Laplace and
√
L terms adjusts the penalty for the group size.

√
L can be dropped from the

formula when all the groups have the same size. In this study, we use the same number of
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basis functions for all parameters, and thus L is the same for all groups. For completeness,

we still include
√
L in (3.5) for possible extension to varying group sizes in the future. Similar

to the (3.4), this prior can be expressed as a gamma mixture of normals

π(γj∗|τ 2
vj, σ

2)
ind∼ NL(0, σ2τ 2

vjIL)

τ 2
vj

ind∼ Gamma
(L+ 1

2
,
Lλ2

v

2

) (3.6)

where L+1
2

is the shape parameter and Lλ2

2
is the rate parameter of the Gamma distribution.

After integrating out τ 2
vj in (3.6), the conditional prior on γj∗ has the desired form in (3.5).

Priors in (3.4) and (3.6) can lead to a similar performance as the general LASSO model

in (3.2), by imposing individual shrinkage on γj1 and ζj and group level shrinkage on γj∗,

respectively.

Spike-and-slab priors on both individual and group level effects. Compared

with (3.2), priors in (3.4) and (3.6) cannot shrink the posterior estimates to exact 0. Li et al.

(2015) has such a limitation since multivariate Laplace priors have been imposed on the

group level effects. One of the significant advancements of our study over existing Bayesian

G×E interaction studies, including Li et al. (2015), is the incorporation of spike–and–slab

priors to achieve sparsity. For γj∗, we have

γj∗|φvj, τ 2
vj, σ

2 ind∼ φvjNL(0, diag(σ2τ 2
vj, . . . , σ

2τ 2
vj)) + (1− φvj)δ0(γj∗)

φvj|πv
ind∼ Bernoulli(πv)

τ 2
vj|λv

ind∼ Gamma(
L+ 1

2
,
Lλ2

v

2
)

(3.7)

where δ0(γj∗) denotes a point mass at 0L×1 and πv ∈ [0, 1]. We introduce a latent binary

indicator variable φvj for each group j, (j = 1, . . . , p). φvj facilitates the variable selection

by indicating whether or not the jth group is included in the final model. Specifically, when

φvj = 0, the coefficient vector γj∗ has a point mass density at zero which implies all predictors

in the jth group are excluded from the final model. This is equivalent to concluding that

the jth G factor Xj does not have an interaction effect with the environment factor Z. On
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the other hand, when φvj = 1, the prior in (3.7) reduces to the prior in (3.6) and induces the

same behavior as Bayesian group LASSO. Thus, the coefficients in vector γj∗ have non-zero

values and the jth group is included in the final model. Note that, after integrating out φvj

and τ 2
vj in (3.7), the marginal prior on γj∗ is a mixture of a multivariate Laplace and a point

mass at 0L×1 as follows

π(γj∗|σ2) ∼ πv M-Laplace(0,
σ√
Lλv

) + (1− πv)δ0(γj∗) (3.8)

When πv = 1, (3.8) is equivalent to (3.5). Fixing πv = 0.5 makes the prior essentially non-

informative since it gives the equal prior probabilities to all sub-models. Instead of fixing

πv, we assign it a conjugate beta prior πv ∼ Beta(rv, wv) with fixed parameters rv and wv.

The value of λv controls the shape of the slab part of (3.8) and determines the amount of

shrinkage on the γj∗. For computation convenience, we assign a conjugate Gamma hyperprior

λ2
v ∼ Gamma(av, bv) which can automatically accounts for the uncertainty in choosing λv

and ensure it is positive. We set av and bv to small values so that the priors are essentially

non-informative.

Remark : The form in (3.8) shows that our prior combines the strength of the Laplacian

shrinkage and the spike–and–slab prior. The Laplacian shrinkage is used as the slab part of

the prior, which captures the signal in the data and provides the estimation for large effects.

Compared with (3.5), the additional spike part (point mass at zero) in (3.8) shrinks the

negligibly small effects to zeros and achieve the variable selection.

Likewise, for γj1 and ζj (j = 1, . . . , p) corresponding to the individual level effects, the

spike-and-slab priors can be written as

γj1|φcj, τ 2
cj, σ

2 ind∼ φcjN(0, σ2τ 2
cj) + (1− φcj)δ0(γj1)

φcj|πc
ind∼ Bernoulli(πc)

τ 2
cj|λc

ind∼ Gamma(1,
λ2
c

2
)

(3.9)
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and

ζj|φej, τ 2
ej, σ

2 ind∼ φejN(0, σ2τ 2
ej) + (1− φej)δ0(ζj)

φej|πe
ind∼ Bernoulli(πe)

τ 2
ej|λe

ind∼ Gamma(1,
λ2
e

2
)

(3.10)

We assign conjugate beta prior πc ∼ Beta(rc, wc) and πe ∼ Beta(re, we), and Gamma priors

λ2
c ∼ Gamma(ac, bc) and λ2

e ∼ Gamma(ae, be). An inverted gamma prior for σ2 can maintain

conjugacy. The limiting improper prior π(σ2) = 1/σ2 is another popular choice. Parameters

η, α and ζ0 may be given independent flat priors.

3.2.4 Gibbs sampler

The binary indicator variables can cause an absorbing state in the MCMC algorithm which

violates the convergence condition (Carlin and Chib (1995)). To avoid this problem, we

integrate out the indicator variables φc, φv and φe in (3.7), (3.9) and (3.10). We will show

that, even though φc, φv and φe are not part of the MCMC chain, their values still can be

easily computed at every iterations. Let µ = E(Y ), the joint posterior distribution of all the
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unknown parameters conditional on data can be expressed as

π(η, α, ζ0, γj1,τ
2
c , πc, λc, γj∗, τ

2
v , πv, λv, ζj, πe, λe, τ

2
e , σ

2|Y )

∝(σ2)−
n
2 exp

{
− 1

2σ2
(Y − µ)>(Y − µ)

}
× exp

(
− 1

2
η>Σ−1

η0 η
)

exp
(
− 1

2
α>Σ−1

α0α
)

exp
(
− 1

2σ2
ζ0

ζ2
0

)
×

p∏
j=1

(
πv(2πσ

2τ 2
vj)
−L

2 exp
(
− 1

2σ2τ 2
vj

γ>j∗γj∗

)
I{γj∗ 6=0} + (1− πv)δ0(γj∗)

)

× (λ2
v)
av−1 exp(−bvλ2

v)

p∏
j=1

(
Lλ2

v

2

)L+1
2

(τ 2
vj)

L+1
2
−1 exp

(
− Lλ2

v

2
τ 2
vj

)

× πγv−1
v (1− πv)wv−1

×
p∏
j=1

(
πc(2πσ

2τ 2
cj)
− 1

2 exp
(
− 1

2σ2τ 2
cj

γ2
j1

)
I{γj1 6=0} + (1− πc)δ0(γj1)

)

× (λ2
c)
ac−1 exp(−bcλ2

c)

p∏
j=1

λ2
c

2
exp

(
− λ2

c

2
τ 2
cj

)

× πγc−1
c (1− πc)wc−1

×
p∏
j=1

(
πe(2πσ

2τ 2
ej)
− 1

2 exp
(
− 1

2σ2τ 2
ej

ζ2
j

)
I{ζj 6=0} + (1− πe)δ0(ζj)

)

× (λ2
e)
ae−1 exp(−beλ2

e)

p∏
j=1

λ2
e

2
exp

(
− λ2

e

2
τ 2
ej

)

× πγe−1
e (1− πe)we−1

× (σ2)−s−1 exp(− h

σ2
)

Let µ(−η) = E(Y )−B0η, representing the mean effect without the contribution of β0(Zi).
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The posterior distribution of η conditional on all other parameters can be expressed as

π(η|rest)

∝ π(η)π(y|·)

∝ exp
(
− 1

2
η>Σ−1

η0 η
)

exp
(
− 1

2σ2
(Y − µ)>(Y − µ)

)
∝ exp

(
− 1

2
η>Σ−1

η0 η −
1

2σ2
(Y −B0η − µ(−η))

>(Y −B0η − µ(−η))
)

∝ exp
(
η>(Σ−1

η0 +
1

σ2
B>0 B0)η − 2

σ2
(Y − µ(−η))

>B0η
)

Hence, the full conditional distribution of m is multivariate normal N(µη,Ση) with mean

µη =
(

Σ−1
η0 +

1

σ2
B>0 B0

)−1( 1

σ2
(Y − µ(−η))

>B0

)>
and variance

Ση =
(

Σ−1
η0 +

1

σ2
B>0 B0

)−1

The full conditional distribution of α and ζ0 can be obtained in similar way.

α|rest ∼ Nq(µα, Σα)

where µα = Σα( 1
σ2 (Y − µ(−α))

>W )> and Σα = (Σ−1
α0 + 1

σ2W
>W )−1

ζ0|rest ∼ N(µζ0 ,Σζ0)

where µζ0 = Σζ0(
1
σ2 (Y − µ(−ζ0))

>E) and Σζ0 = (1/σ2
ζ0

+
∑n
i=1 E

2
i

σ2 )−1.

Denote µ(−γj∗) = E(Y ) − Ujγj∗ and lvj = π(γj∗ 6= 0|rest), the conditional posterior

distribution of γj∗ is a multivariate spike-and-slab distribution:

γj∗|rest ∼ lvjN(µγj∗ , σ
2Σγj∗) + (1− lvj)δ0(γj∗) (3.11)
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where µγj∗ = Σγj∗U
>
j (Y − µ(−γj∗)) and Σγj∗ = (U>j Uj + 1

τ2vj
IL)−1. It is easy to compute that

lvj is equal to

lvj =
πv

πv + (1− πv)(τ 2
vj)

L
2 |Σγj∗|−

1
2 exp

(
− 1

2σ2‖Σ
1
2
γj∗U

>
j (Y − µ(−γj∗))‖2

2

)
The posterior distribution (4.10) is a mixture of a multivariate normal and a point mass at 0.

Specifically, at the gth iteration of MCMC, γ
(g)
j∗ is drawn from N(µγj∗ , Σγj∗) with probability

lvj and is set to 0 with probability 1 − lvj. If γ
(g)
j∗ is set to 0, we have φ

(g)
vj = 0. Otherwise

φ
(g)
vj = 1.

Likewise, the conditional posterior distributions of γj1 and ζj are also spike-and-slab

distributions. Let µγj1 = Σγj1X
>
j (Y −µ(−γj1)) and Σγj1 = (X>j Xj+

1
τ2cj

)−1, the full conditional

distribution of γj1 is

γj1|rest ∼ lcjN(µγj1 , σ
2Σγj1) + (1− lcj)δ0(γj1)

where

lcj = π(γj1 6= 0|rest)

=
πc

πc + (1− πc)(τ 2
cj)

1
2 (Σγj1)

− 1
2 exp

(
− 1

2σ2 Σγj1‖(Y − µ(−γj1))>Xj‖2
2

)
Let µζj = Σζj(Y − µ(−ζj))

>Tj and Σζj = (T>j Tj + 1
τ2ej

)−1, the full conditional distribution of

ζj is

ζj|rest ∼ lejN(µζj , σ
2Σζj) + (1− lej)δ0(ζj)

where

lej = π(ζj 6= 0|rest)

=
πe

πe + (1− πe)(τ 2
ej)

1
2 (Σζj)

− 1
2 exp

(
− 1

2σ2 Σζj‖(Y − µ(−ζj))
>Tj‖2

2

)
At the gth iteration, the values of φ

(g)
cj and φ

(g)
ej can be determined by whether the γ

(g)
j1 and

ζ
(g)
j are set to 0 or not, respectively. We list the conditional posterior distributions of other
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unknown parameters here. The details can be found in the Supplementary Materials.

(τ 2
vj)
−1|rest ∼


Inverse-Gamma(L+1

2
, Lλ2v

2
) if γj∗ = 0

Inverse-Gaussian(Lλ2
v,
√

Lλ2vσ
2

‖γj∗‖22
) if γj∗ 6= 0

(τ 2
cj)
−1|rest ∼


Inverse-Gamma(1, λ2c

2
) if γj1 = 0

Inverse-Gaussian(λ2
c ,
√

λ2cσ
2

γ2j1
) if γj1 6= 0

(τ 2
ej)
−1|rest ∼


Inverse-Gamma(1, λ2e

2
) if ζj = 0

Inverse-Gaussian(λ2
e,
√

λ2eσ
2

ζ2j
) if ζj 6= 0

λ2
v, λ

2
c and λ2

e all have Gamma posterior distributions

λ2
v|rest ∼ Gamma(av +

p(L+ 1)

2
, bv +

L
∑p

j=1 τ
2
vj

2
)

λ2
c |rest ∼ Gamma(ac + p, bc +

∑p
j=1 τ

2
cj

2
)

λ2
e|rest ∼ Gamma(ae + p, be +

∑p
j=1 τ

2
ej

2
)

πv, πc and πe have beta posterior distributions

πv|rest ∼ Beta(rv +

p∑
j=1

I{γj∗ 6=0}, wv +

p∑
j=1

I{γj∗=0})

πc|rest ∼ Beta(rc +

p∑
j=1

I{γj1 6=0}, wc +

p∑
j=1

I{γj1=0})

πe|rest ∼ Beta(re +

p∑
j=1

I{ζj 6=0}, we +

p∑
j=1

I{ζj=0})

Last, the full conditional distribution for σ2 the posterior distribution for σ2 is Inverse-
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Gamma(µσ2 , Σσ2) where

µσ2 = s+
n+

∑
I{γj1 6=0} + L

∑
I{γj∗ 6=0} +

∑
I{ζj 6=0}

2

Σσ2 = h+
(Y − µ)>(Y − µ) +

∑p
j=1

(
(τ 2
cj)
−1γ2

j1 + (τ 2
vj)
−1γ>j∗γj∗ + (τ 2

ej)
−1ζ2

j

)
2

Under our priors setting, conditional posterior distributions of all unknown parameters have

closed forms by conjugacy. Therefore, efficient Gibbs sampler can be used to simulate from

the posterior distribution.

To facilitate fast computation and reproducible research, we have implemented the pro-

posed and all the alternative methods in C++ from the R package spinBayes (Ren et al.

(2019c)) on CRAN.

3.3 Simulation

We compare the performance of the proposed method, Bayesian spike and slab variable

selection with structural identification, termed as BSSVC-SI, to four alternatives termed as

BSSVC, BVC-SI, BVC and BL, respectively. BSSVC is the proposed method but without

implementing structural identification. It does not distinguish the nonzero constant effect

from the nonlinear effect. Specifically, in BSSVC, coefficients of qn basis functions of βj are

treated as one group and are subject to selection at the group level. Comparison of BSSVC-

SI with BSSVC demonstrate the importance of structural identification in the detection

of interaction effects. BVC-SI is similar to the proposed method, except that it does not

adopt the spike-and-slab prior. BVC does not use the spike-and-slab prior and does not

distinguish the constant and varying effects. All these three alternative methods, BSSVC,

BVC-SI and BVC, are different variations of the proposed BSSVC-SI, aiming to evaluate

the strength of using the spike-and-slab prior and demonstrate the necessity of including

structural identification. The last alternative BL is the well-known Bayesian LASSO (Park

and Casella (2008)). BL assumes all interactions are linear. Details of the alternatives,
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including the prior and posterior distributions, are available in the Supplementary Materials.

We consider four examples in our simulations. Under all four settings, the responses are

generated from model (3.1) with n = 500, p = 100 and q = 2. Note that, the dimension of

regression coefficients to be estimated after basis expansion is larger than the sample size

(n = 500). For example, when the number of basis function qn = 5, the effective dimension

of regression coefficient is 604. In each example, we assess the performance in terms of

identification, estimation, and prediction accuracy. We use the integrated mean squared

error (IMSE) to evaluate estimation accuracy on the nonlinear effects. Let β̂j(z) be the

estimate of a nonparametric function βj(z), and {zm}
ngrid
m=1 be the grid points where βj is

assessed. The IMSE of β̂j(z) is defined as IMSE (β̂j(z)) = 1
ngrid

∑ngrid
m=1

{
β̂j(zm)− βj(zm)

}2

.

Note that IMSE(β̂j) reduces to MSE(β̂j) when βj is a constant. Identification accuracy is

assessed by the number of true/false positives. Prediction performance is evaluated using

the mean prediction errors on an independently generated testing dataset under the same

settings.

Example 1

We first generate a n × p matrix of gene expressions, where n = 500 and p = 100, from

a multivariate normal distribution with zero mean vector. We consider an auto-regression

(AR) correlation structure for gene expression data, in which gene j and k have correlation

coefficient ρ|j−k|, with ρ = 0.5. For each observation, we simulate two clinical covariates from

a multivariate normal distribution with ρ = 0.5. The continuous and discrete environment

factors Zi and Ei are simulated from a Unif[0, 1] distribution and a binomial distribution,

respectively. The random error ε ∼ N(0, 1).

The coefficients are set as µ(z) = 2 sin(2πz), β1(z) = 2 exp(2z − 1), β2(z) = −6z(1− z),

β3(z) = −4z3, β4(z) = 0.5, β5(z) = 0.8, β6(z) = −1.2, β7(z) = 0.7, β8(z) = −1.1, α1 = −0.5,

α2 = 1, ζ0 = 1.5, ζ1 = 0.6, ζ2 = 1.5, ζ3 = −1.3, ζ4 = 1, ζ5 = −0.8. We set all the rest of the

coefficients to 0.

Example 2

We examine whether the proposed method demonstrates superior performance over the

alternatives on simulated single-nucleotide polymorphism (SNP) data. The SNP genotype
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data Xi are simulated by dichotomizing expression values of each gene at the 1st and 3rd

quartiles, with the 3–level (2,1,0) for genotypes (AA,Aa,aa) respectively, where the gene

expression values are generated from Example 1.

Example 3

In the third example, we consider a different scheme to simulate SNP data. The SNP

genotype data are simulated based on a pairwise linkage disequilibrium (LD) structure.

For the two minor alleles A and B of two adjacent SNPs, let q1 and q2 be the minor allele

frequencies (MAFs), respectively. The frequencies of four haplotypes are calculated as pAB =

q1q2 + δ, pab = (1− q1)(1− q2) + δ, pAb = q1(1− q2)− δ, and paB = (1− q1)q2 − δ, where δ

denotes the LD. Under Hardy-Weinberg equilibrium, SNP genotype (AA, Aa, aa) at locus 1

can be generated from a multinomial distribution with frequencies (q2
1, 2q1(1− q1), (1− q1)2).

Based on the conditional genotype probability matrix (Cui et al. (2008)), we can simulate

the genotypes for locus 2. With MAFs 0.3 and pairwise correlation r = 0.6, we have

δ = r
√
q1(1− q1)q2(1− q2).

Example 4

In the last example, we consider more realistic correlation structures. Specifically, we use

the real data analyzed in the next section. To reduce the computational cost, we use the

first 100 SNPs from the case study. For each simulation replicate, we randomly sample 500

subjects from the dataset. The same coefficients and error distribution are adopted.

Posterior samples are collected from a Gibbs Sampler running 10,000 iterations in which

the first 5,000 are burn-ins. The Bayesian estimates are the posterior medians. To estimate

the prediction errors, we compute the mean squared error in 100 simulations. For both

BSSVC-SI and BSSVC, we consider the median probability model (MPM) (Barbieri and

Berger (2004); Xu and Ghosh (2015)) to identify predictors that are significantly associated

with the response variable. Suppose we collect G posterior samples from MCMC after burn-

ins. The jth predictor is included in the regression model at the gth MCMC iterations if the

indicator φ
(g)
j = 1. Thus, the posterior probability of including the jth predictor in the final
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model is defined as

pj = π̂(φj = 1|y) =
1

G

G∑
g=1

φ
(g)
j , j = 1, . . . , p (3.12)

A higher posterior inclusion probability pj can be interpreted as a stronger empirical

evidence that the jth predictor has a non-zero coefficient and therefore is associated with

the response variable. The MPM model is defined as the model consisting of predictors

that have posterior inclusion probability at least 1
2
. When the goal is to select a single

model, Barbieri and Berger (2004) recommends using MPM due to its optimal prediction

performance.

Table 3.1: Simulation results. (n, p, q) = (500, 100, 2). mean(sd) of true positives (TP)
and false positives (FP) based on 100 replicates.

BSSVC-SI BSSVC

Varying Constant Nonzero Varying Constant Nonzero

Example 1 TP 3.00(0.00) 4.93(0.25) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.20(0.41) 0.00(0.00) 0.00(0.00) 5.00(0.26) 0.00(0.00) 0.10(0.31)

Example 2 TP 3.00(0.00) 5.00(0.00) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.20(0.41) 0.00(0.00) 0.03(0.18) 5.00(0.26) 0.00(0.00) 0.03(0.18)

Example 3 TP 3.00(0.00) 4.97(0.18) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.03(0.18) 0.07(0.37) 0.00(0.00) 5.03(0.18) 0.00(0.00) 0.10(0.31)

Example 4 TP 3.00(0.00) 4.97(0.18) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.17(0.38) 0.03(0.18) 0.00(0.00) 5.10(0.31) 0.00(0.00) 0.13(0.35)

Table 3.1 summarized the results on model selection accuracy. The identification perfor-

mance for the varying and nonzero constant effects corresponding to the continuous environ-

ment factor, and nonzero effect (linear interaction) corresponding to the discrete environment

factor are evaluated separately. We can observe that the proposed model has superior perfor-

mance over BSSVC. BSSVC fails to identify any nonzero constant effect and has high false

positive for identifying varying effect since it lacks structural identification to separate main-

effect-only case from the varying effects. On the other hand, BSSVC-SI identifies most of the

52



true effects with very lower false positives. For example, considering the MPM in Example

1, BSSVC-SI identifies all 3 true varying effects in every iteration, with a small number of

false positives 0.20(sd 0.41). It also identifies 4.93(sd 0.25) out of the 5 true constant effects

without false positives. Besides, all the 5 true nonzero effects are identified without any

false positives. We demonstrate the sensitivity of BSSVC-SI for variable selection to the

choice of the hyper-parameters for πv, πc and πe and the the choice of the hyper-parameters

for λv, λc and λe in the Appendix. The results are tabulated in Table C.2 and Table B.2,

respectively. Both tables show that the MPM model is insensitive to different specification

of the hyper-parameters. An alternative way for selecting variables with posterior inclusion

probability is to use a FDR-based method (Morris et al. (2007); Storey (2003)), which con-

trol the overall average Bayesian FDR rate by selecting variables with marginal inclusion

probability larger than certain threshold. The results of FDR-based variable selection is

summarized in (Table B.3). Overall the MPM and FDR models have very similar results in

all four examples. The alternatives BVC-SI and BVC are not included here due to the lack

of variable selection property. Li et al. (2015) adopts a method that is based on 95% credible

interval (95%CI) for selecting important varying effects. In the Appendix, we show that,

even adopting the 95%CI-based selection method, the identification performance of BVC-SI

and BVC are unsatisfied, especially in terms of selecting a large number of false positives

(Table B.4).

We also examine the estimation performance. We show the results from Example 1

(Table 3.2) here. The IMSE for all true varying effects, MSE for constant and nonzero

effects, as well as the total squared errors for all coefficient estimates and prediction errors

are provided in the Table. We observe that, across all the settings, the proposed method

has the smallest prediction errors and total squared errors of coefficients estimates than all

alternatives. For example, in Table 3.2, the BSSVC-SI has the smallest total squared errors

0.268(sd 0.080) and prediction error 1.159(0.066) among all the approaches. The key of the

superior performance lies in (1) accurate modeling of different types of main and interaction

effects, and (2) the spike and slab priors for achieving sparsity. Compared with BVC-SI

which has (1) but does not spike and slab prior, BSSVC-SI performs better when estimating
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both varying and constant coefficients. For example, the IMSE and MSE on β0(Z) and α1

are 0.049 (sd 0.017) and 0.004 (sd 0.004), respectively. While BVC-SI yields 0.067(sd 0.030)

and 0.008(0.010), correspondingly. Besides, compared with BSSVC which adopts the spike

and slab priors without considering structured Bayesian variable selection, BSSVC-SI has

comparable estimation performance on coefficients even though BSSVC overfits the data.

In addition, similar patterns have been observed in Table B.6, Table B.7 and Table B.8 for

Examples 2, 3 and 4 respectively, in the Appendix.

As a demonstrating example, Figure B.1 shows the estimated varying coefficients of the

proposed model for the gene expression data in Example 1. Results from the proposed

method fit the underlying trend of varying effects reasonably well. Following Li et al. Li

et al. (2015), we assess the convergence of the MCMC chains by the potential scale reduction

factor (PSRF) (Brooks and Gelman (1998); Gelman and Rubin (1992)). PSRF values close

to 1 indicate that chains converge to the stationary distribution. Gelman et al. (2004)

recommend using PSRF≤ 1.1 as the cutoff for convergence, which has been adopted in our

study. We compute the PSRF for each parameter and find all chains converge after the

burn-ins. For the purpose of demonstration, Figure C.1 shows the pattern of PSRF after

burn-ins for each parameter in Figure B.1. The figure clearly shows the convergence of the

proposed Gibbs sampler.

We conduct sensitivity analysis on how the smoothness specification of the parameters in

the B spline affects variable selection. The results summarized in Table B.5 in the Appendix

shows that the proposed model is insensitive to the smoothness specification as long as the

choices on number of spline basis are sensible. In simulation, we set the degree of B spline

basis O = 2 and the number of interior knots K = 2, which makes qn = 5.

Computation feasibility is an important practical consideration for high-dimensional

Bayesian variable selection methods. We examine the computational cost of the proposed

method for finishing 10,000 MCMC iterations under different combinations of sample sizes

and SNP numbers. We focus on SNP numbers since the increase is computationally more

challenging than that of the covariate numbers due to basis expansion. The results summa-

rized in Table B.9 show that the proposed method is highly computationally efficient. For
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Table 3.2: Simulation results in Example 1. Gene expression data (n, p, q) = (500, 100,
2). mean(sd) of the integrated mean squared error (IMSE), mean squared error (MSE), total
squared errors for all estimates and prediction errors based on 100 replicates.

BSSVC-SI BSSVC BVC-SI BVC BL

IMSE

β0(Z) 0.049(0.017) 0.050(0.017) 0.067(0.030) 0.066(0.028) 0.806(0.039)

β1(Z) 0.052(0.028) 0.027(0.019) 0.090(0.051) 0.107(0.051) 0.139(0.060)

β2(Z) 0.035(0.020) 0.026(0.014) 0.045(0.023) 0.050(0.021) 0.252(0.049)

β3(Z) 0.033(0.025) 0.024(0.019) 0.081(0.057) 0.106(0.062) 0.256(0.062)

MSE

α1 0.004(0.004) 0.004(0.005) 0.008(0.010) 0.008(0.011) 0.012(0.015)

α2 0.004(0.005) 0.004(269) 0.009(0.013) 0.009(0.013) 0.011(0.012)

ζ0 0.033(0.025) 0.024(0.019) 0.081(0.057) 0.106(0.062) 0.032(0.045)

ζ1 0.004(0.005) 0.003(0.004) 0.007(0.008) 0.006(0.007) 0.026(0.043)

ζ2 0.011(0.014) 0.009(0.011) 0.017(0.016) 0.017(0.016) 0.055(0.067)

ζ3 0.008(0.011) 0.008(0.010) 0.017(0.024) 0.017(0.022) 0.055(0.052)

ζ4 0.014(0.017) 0.019(0.028) 0.020(0.025) 0.020(0.023) 0.042(0.052)

ζ5 0.009(0.013) 0.010(0.016) 0.020(0.030) 0.024(0.032) 0.048(0.052)

Total 0.268(0.080) 0.304(0.132) 2.181(0.373) 2.119(0.363) 4.916(0.564)

Pred.

Error 1.159(0.066) 1.167(0.067) 2.112(0.175) 2.075(0.170) 9.417(0.914)

example, when sample size n = 1500 and the number of gene p = 300, the CPU time for

10,000 iterations is approximately 121 seconds. Please note that the number of regression

coefficients to be estimated after basis expansion is on the order of qnp + p, where qn is the

number of basis functions. The term qnp gives the number of spline coefficients of nonlinear

G×E interactions and p is the number of linear G×E interactions. In this example, the

number of regression coefficients to be estimated is approximately 1800, higher than the

sample size n = 1500. The efficient C++ implementation of the Gibbs sampler is an impor-

tant guarantee for the computational scalability. The proposed method can be potentially

applied to larger datasets with a reasonable computation time.
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3.4 Real Data Analysis

We analyze the data from Nurses’ Health Study (NHS). We use weight as the response and

focus on SNPs on chromosome 10. We consider two environment factors. The first is age

which is continuous and is known to be related to the variations in the obesity level. The

second is the binary indicator of whether an individual has a history of hypertension (hbp),

which is a sensible candidate for a discrete environment factor. In addition, we consider

two clinical covariates: height and total physical activity. In NHS study, about half of the

subjects are diagnosed of type 2 diabetes (T2D) and the other half are controls without the

disease. We only use health subjects in this study. After cleaning the data through matching

phenotypes and genotypes, removing SNPs with minor allele frequency (MAF) less than 0.05

or deviation from Hardy–Weinberg equilibrium, the working dataset contains 1716 subjects

with 35099 SNPs.

For computational convenience prescreening can be conducted to reduce the feature space

to a more attainable size for variable selection. For example, Li et al. (2015) use the single

SNP analysis to filter SNPs in a GWA study before downstream analysis. Machine learning

has also being used for screening important genetic variants in T2D studies (Jung et al.

(2020)). In this study, we follow the procedure described in Ma et al. (2011) and Wu and

Cui (2013a) to screen SNPs. Specifically, we use three likelihood ratio tests with weight as

the response variable to evaluate the penetrance effect of a variant under the environmental

exposure. The three likelihood ratio tests have been developed to test whether the interaction

effects are nonlinear, linear, constant or zero, respectively. The SNPs with p-values less than

a certain cutoff (0.005) from any of the tests are kept. 269 SNPs pass the screening.

We analyze the data by using the proposed method as well as BSSVC, the alternative

without structural identification. As methods BVC-SI, BVC and BL show inferior perfor-

mance in simulation, they are not considered in real data analysis. The proposed method

identifies three SNPs with constant effects only, eleven SNPs with varying effects and six-

teen SNPs with interactions with the hbp indicator. The BSSVC identifies twelve SNPs

with varying effects and 10 SNPs with interactions with the hbp indicator. The Identifi-
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cation results for varying and constant effects are summarized in Table 3.3. In this table,

we can see that the three SNPs (rs11014290, rs2368945 and rs10787374) that are identified

as constant effects only by BSSVC-SI are also selected by BSSVC. However, due to lack of

structural identification, BSSVC identified them as SNPs with varying effects. The proposed

method identifies rs1816002, a SNP located within gene ADAMTS14 as an important SNP

with varying effect. ADAMTS14 is a member of ADAMTS metalloprotease family. Stud-

ies have shown that two members in the family, ADAMTS1 and ADAMTS13 are related

to the development of obesity (Liu et al. (2012); Porter et al. (2005)), which suggests that

ADAMTS14 may also have implications in obesity. The alternative method BSSCV fails

to identify this important gene. The varying effect of the DIP2C gene SNP rs4880704 is

identified by both BSSVC-SI and BSSVC. DIP2C (disco interacting protein 2 homolog C)

has been found a potential epigenetic mark associated with obesity in children (Fradin et al.

(2017)) and plays an important role in the association between obesity and hyperuricemia

(Li et al. (2013)). The identification results for nonzero effects (representing the interactions

with the binary indicator of a history of hypertension (hbp)) are summarized in Table 3.4.

The interaction between rs593572 in gene KCNMA1 and hbp is identified by the proposed

method. KCNMA1 (potassium calcium-activated channel subfamily M alpha 1) has been

reported as an obesity gene that contributes to excessive accumulation of adipose tissue

in obesity (Jiao et al. (2011)). Interestingly, the main effect of KCNMA1 is not identified,

which suggests that KCNMA1 only has effect in the hypertension patients group. This result

could be partially explained by the observation of significant association between the genetic

variation in the KCNMA1 and hypertension (Tomás et al. (2008)).

The eleven varying coefficients of age that are identified by BSSVC-SI and the intercept

are shown in Figure B.3 in the Appendix. All estimates have clear curvature and cannot be

appropriately approximated by a model assuming linear effects. It is difficult to objectively

evaluate the selection performance with real data. The prediction performance may provide

partial information on the relative performance of different methods. Following Yan and

Huang (2012) and Li et al. (2015), we refit the models selected by BSSVC-SI and BSSVC

by Bayesian LASSO. The prediction mean squared errors (PMSE) based on the posterior
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Table 3.3: Identification results for varying and constant effects.

BSSVC-SI BSSVC

SNP Gene V(Age) C V(Age)

rs11014290 PRTFDC1 -1.864 Varying

rs2368945 RPL21P93 1.494 Varying

rs4880704 DIP2C Varying Varying

rs1106380 CACNB2 Varying Varying

rs2245456 MALRD1 Varying

rs17775990 OGDHL Varying Varying

rs7922576 ZNF365 Varying Varying

rs1816002 ADAMTS14 Varying

rs2784761 RPL22P18 Varying Varying

rs181652 AC005871.1 Varying

rs10765108 DOCK1 Varying

rs2764375 LINC00959 Varying Varying

rs10787374 RPS6P15 2.020 Varying

rs11006525 MRPL50P4 Varying

rs1698417 AC026884.1 Varying

rs7084791 PPP1R3C Varying

rs12354542 BTF3P15 Varying

median estimates are computed. The PMSEs are 90.66 and 95.21 for BSSVC-SI and BSSVC,

respectively. We also compute the prediction performance of BVC-SI, BVC and BL, based

on the models selected by the 95% CI-based method. The PMSE is 106.26 for BVC-SI,

110.19 for BVC and 107.82 for BL. The proposed method outperforms all the competitors.

3.5 Discussion

The importance of G×E interactions in deciphering the genetic architecture of complex dis-

eases have been increasingly recognized. A considerable amount of effort has been developed

to dissect the G×E interactions. In marginal analysis, statistical testing of G×E interactions

prevails, which spans from the classical linear model with interactions in a wide range of stud-
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Table 3.4: Identification results for nonzero effect corresponds to the discrete environment
effect.

BSSVC-SI BSSVC

rs10740217 CTNNA3 -1.06 -1.18

rs10787374 RPS6P15 -1.56 -1.42

rs10795690 AC044784.1 1.23

rs10829152 ANKRD26 1.29 1.73

rs10999234 PRKG1 1.97

rs11187761 PIPSL 1.04

rs11245023 C10orf90 -0.92

rs11250578 ADARB2 -1.62

rs12267702 LYZL1 1.30 0.96

rs17767748 BTRC 1.18 1.15

rs2495763 PAX2 -1.33 -1.12

rs4565799 MCM10 -0.84 -0.98

rs593572 KCNMA1 1.70

rs685578 AL353149.1 -1.13

rs7075347 AL357037.1 1.00

rs7911264 HHEX -1.30

rs796945 RNLS 1.89

rs9419280 LINC01168 1.57

rs997064 PCDH15 1.31

ies, such as case-control study, case only study and the two-stage screening study, to more

sophisticated models, such as empirical Bayesian models, non- and semi-parametric models

(Cornelis et al. (2011)). On the other hand, the joint methods, especially the penalized vari-

able selection methods, for G×E interactions, have been motivated by the success of gene set

based association analysis over marginal analysis, as demonstrated in Wu and Cui (2013b),

Wu et al. (2012) and Schaid et al. (2012). Recently, multiple penalization methods have

been proposed to identify important G×E interactions under parametric, semi-parametric

and non-parametric models recently (Wu et al. (2014, 2015, 2018a,c)).

Within the Bayesian framework, non-linear interaction has not been sufficiently consid-
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ered for G×E interactions. Furthermore, incorporation of the structured identification to

determine whether the genetic variants have non-linear interaction, or main-effect-only, or no

genetic influences at all is particularly challenging. In this study, we have proposed a novel

semi-parametric Bayesian variable selection method to simultaneously pinpoint important

G×E interactions in both linear and nonlinear forms while conducting automatic structure

discovery. We approximate the nonlinear interaction effects using B splines, and develop a

Bayesian hierarchical model to accommodate the selection of linear and nonlinear G×E in-

teractions. For the nonlinear effects, we achieve the separation of varying, non-zero constant

and zero coefficient functions through changing of spline basis, corresponding to cases of G×E

interactions, main effects only (no G×E interactions) and no genetic effects. This automatic

separation of different effects, together with the identification of linear interaction, lead to

selection of important coefficients on both individual and group levels. Within our Bayesian

hierarchical model, the group and individual level shrinkage are induced through assigning

spike-and-slab priors with the slab parts coming from a multivariate Laplace distribution

on the group of spline coefficients and univariate Laplace distribution on the individual co-

efficient, correspondingly. We have developed an efficient Gibbs sampler and implemented

in R with core modules developed in C++, which guarantees fast computation in MCMC

estimation. The superior performance of the proposed method over multiple alternatives has

been demonstrated through extensive simulation studies and a case study.

The cumulative evidence has indicated the effectiveness of penalized variable selection

methods to pinpoint important G×E interactions. Bayesian variable selection methods, how-

ever, have not been widely adopted in existing G×E studies. The proposed semi-parametric

Bayesian variable selection method has the potential to be extended to accommodate a di-

versity forms of complex interaction structures under the varying index coefficient models

and models alike, as summarized in Ma and Song (2015). Other possible extensions in-

clude Bayesian semi-parametric interaction analysis for integrating multiple genetic datasets

(Li et al. (2019)). Investigations of all the aforementioned extensions are postponed to the

future.
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Chapter 4

Robust Bayesian variable selection for

gene-environment interactions

4.1 Introduction

Deciphering the genetic architecture of complex diseases is a challenging task, as it demands

the elucidation of the coordinated function of multiple genetic factors, their interactions, as

well as gene-environment interactions. How the genetic contributions to influence the varia-

tions in the disease phenotypes are mediated by the environmental factors reveals a unique

perspective of the disease etiology beyond the main genetic effects and their interactions (or

epistasis) (Hunter (2005); Simonds et al. (2016)). Till now, G×E interaction analyses have

been extensively conducted, especially within the framework of genetic association studies,

to search for the important main and interaction effects that are associated with the disease

trait (Mukherjee et al. (2011)).

With the availability of a large amount of genetic factors, such as SNPs or gene expres-

sions, G×E interactions are of high dimensionality even though the preselected environmen-

tal factors are usually low dimensional. Therefore, the genetic association studies essentially

aim to “find a needle from a haystack”. Such a “large dimensionality, small sample size”

problem can also be effectively addressed using penalization and Bayesian variable selection
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methods (Fan and Lv (2010); Wu and Ma (2015)), and a surging amount of G×E studies

have recently been conducted along this line (Zhou et al. (2020a)).

A prominent trend among these studies is to incorporate robustness in penalized identifi-

cation of main and interaction in order to accommodate data contamination and heavy-tailed

distributions in the disease phenotypes. Take the datasets analyzed in this article for exam-

ple. The disease outcomes of interest are weight from the Nurses Health Study (NHS) and

(log-transformed) Breslows depth from The Cancer Genome Atlas (TCGA) Skin Cutaneous

Melanoma (SKCM) data. We plot the two in Figure 4.1, where the long tails can be clearly

observed. In practice, such a heavy-tailed distribution is frequently encountered and arise

due to multiple reasons. For instance, some phenotypes have skewness in nature. For the

subjects recruited for the NHS, their ages are in the range from 41 to 68 as the average age

for the onset of type 2 diabetes is 45 (Centers for Disease Control and Prevention (2020)).

The subjects weight among this age group does have a right-skewed tendency. In addition,

in the study of complex diseases such as cancer, even patients of similar profiles may have

different subtypes as rigorous accrual of patients is usually not affordable. The data from

the major disease subtype can be viewed as being contaminated by other subtypes or out-

liers. As nonrobust approaches cannot efficiently accommodate data contamination and long

tailed distributions, which inevitably leads to biased estimates and false identifications, the

robust penalization methods have thus been extensively developed for G×E studies (Wu and

Ma (2015); Zhou et al. (2020a)).

Note that the interconnections between penalization and Bayesian methods has already

been established in literature. For instance, it has been pointed out in Park and Casella

(2008) that within the Bayesian framework, regularized estimate under LASSO is equivalent

to the posterior mode of regression coefficients when the same conditional Laplace prior is

placed on each regression coefficient independently. Such an interconnection can be further

generalized to the Bayesian counterparts of group LASSO, fused LASSO and elastic net

(Kyung et al. (2010)). Despite such a deep connection and remarkable successes of robust

penalization-based analysis, robust Bayesian methods have not been investigated for gene-

environment interactions by far. In fact, our literature search indicates that only limited
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Figure 4.1: Distribution of the outcome variables for the NHS (left) and SKCM (right)
data.

number of Bayesian variable selection methods have been developed for G×E studies, and

none of them is robust (Zhou et al. (2020a)).

Driven by the urgent need to conduct robust Bayesian analysis for gene-environment

interactions, we propose robust Bayesian variable selection methods tailored for interaction

analysis. To illustrate, before we discuss the proposed joint study, let us first consider a

marginal conceptual model: Outcome ∼ Es + G + G×(Es), where G and Es denote one

G factor and several E factors, respectively. The term G×(Es) represents the interaction

between the G factor and all the environmental variables. With a slight abuse of notation,

the last two terms in the conceptual model can be rewritten as G×(1, Es), which is a group

of main genetic and G×E interaction effects with respect to the G factor. Therefore, to

determine whether the genetic factor is associated with the phenotype, and if so, to further

examine which effects from the group are associated with the phenotype, essentially amount

to a sparse group (or bi-level) variable selection problem. The sparse group selection remains

and becomes even more challenging for our G×E study when a large number of G factors are

jointly analyzed. Therefore, within the Bayesian framework, the proposed method should
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aim to incorporate robustness and bi-level selection simultaneously.

We adopt a Bayesian formulation of the least absolute deviation (LAD) regression to

accommodate data contamination and long-tailed distributions in the phenotype. Such a

formulation is a special case of the Bayesian quantile regression (Yu and Moyeed (2001)).

The LAD loss has been a very popular choice for developing robust penalization methods due

to computational simplicity when being coupled with complex penalty functions, including

the network-constrained penalty (Ren et al. (2019a); Wu et al. (2018b)) and sparse group

penalty (Wu et al. (2018a)). Interestingly, its computational convenience has also been

revealed within the Bayesian framework as efficient Gibbs sampler can be constructed when

the loss is combined with LASSO, group LASSO and elastic net penalties (Li et al. (2010)).

Furthermore, following the strategy of eliciting the prior for bilevel selection from a nonrobust

Bayesian method (Xu and Ghosh (2015)), we have developed the Bayesian LAD sparse

group LASSO for robust G×E interaction studies. The spike-and-slab priors have been

imposed on both the individual and group level to ensure the shrinkage of posterior estimates

corresponding to unimportant main and interaction effects to zero exactly. Such a prior lead

to the real sparsity and is superior over Laplacian shrinkage in terms of identification and

prediction results (George and McCulloch (1993); Roc̆ková and George (2018); Tang et al.

(2017)).

In this study, our objective is to conduct robust Bayesian variable selection for G×E

interactions, which has been well motivated from the success of penalization methods (espe-

cially those robust ones) in G×E studies and a lack of robust interaction analysis within the

Bayesian framework. The significance of the proposed study lies in the following aspects.

First, it advances from existing Bayesian G×E studies by incorporating robustness to accom-

modate data contamination and heavy-tailed distributions in the disease phenotype. Second,

on a broader scope, although robust Bayesian quantile regression based variable selection has

been proposed under LASSO, group LASSO and elastic net, the more complicated sparse

group (or bi-level) structure, which is of particular importance in high dimensional data

analysis in general (Breheny and Huang (2009)), has not been examined by far. We are

among the first to develop robust Bayesian sparse group LASSO for bi-level variable selec-
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tion. Third, unlike existing Bayesian regularized quantile regression methods which build

upon the priors under Laplacian type of shrinkage, we conduct efficient Bayesian regulariza-

tion on both the individual and group levels by borrowing strength from the spike-and-slab

priors, thus leading to better identification and prediction performance over the competing

alternatives, as demonstrated in extensive simulation studies and case studies of NHS data

with SNP measurements and TCGA melanoma data with gene expression measurements.

To facilitate reproducible research and fast computation using our MCMC algorithm, we

implement the proposed and alternative approaches in C++, which are available from an

open source R package robin that will be available at CRAN soon.

4.2 Data and Model Settings

Use subscript i to denote the ith subject. Let (Xi, Yi, Ei,Wi), (i = 1, . . . , n) be independent

and identically distributed random vectors. Yi is a continuous response variable representing

the disease phenotype. Xi is the p–dimensional vector of G factors. The environmental fac-

tors and clinical covariates are denoted as the k-dimensional vector Ei and the q-dimensional

vector Wi, respectively. Considering the following model:

Yi =

q∑
t=1

αtWit +
k∑

m=1

θmEim +

p∑
j=1

γjXij +

p∑
j=1

k∑
m=1

ζjmEimXij + εi

=

q∑
t=1

αtWit +
k∑

m=1

θmEim +

p∑
j=1

(
γjXij +

k∑
m=1

ζjmEimXij

)
+ εi

=

q∑
t=1

αtWit +
k∑

m=1

θmEim +

p∑
j=1

(
U>ij βj

)
+ εi,

(4.1)

where αt’s, θm’s, γj’s and ζjm’s are the regression coefficients for the clinical covariates,

environmental factors, genetic factors and G×E interactions, respectively. We define βj =

(γj, ζj1, . . . , ζjk)
> ≡ (βj1, . . . , βjL)> and Uij = (Xij, XijEi1 . . . , XijEik)

> ≡ (Uij1, . . . , UijL)>,

where L = k + 1. The coefficient vector βj represents all the main and interaction effects

corresponding to the jth genetic measurement. The εi’s are random errors. Without loss
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of generality, we assume that the data have been properly normalized so that the intercept

can be omitted. Denote Ui = (U>i1 , . . . , U
>
ip)>, α = (α1, . . . , αq)

>, θ = (θ1, . . . , θk)
> and

β = (β>1 , . . . , β
>
p )>. The vector β is of length p × L. Then model (4.1) can be written in a

more concise form as

Yi = W>
i α + E>i θ + U>i β + εi (4.2)

4.2.1 Bayesian LAD Regression

The least absolute deviation (LAD) regression is well known for its robustness to heavy-

tailed errors or outliers in response. To construct a Bayesian formulation of LAD regression,

we assume that εi’s are i.i.d random variables from the Laplace distribution with density

f(εi|ν) =
ν

2
exp {−ν|εi|} i = 1, . . . , n, (4.3)

where ν−1 is the scale parameter of the Laplace distribution. Let Y = (Y1, . . . , Yn)>. With

clinical covariates W = (W1, . . . ,Wn)>, environment factors E = (E1, . . . , En)>, and ge-

netic main effects and G×E interactions U = (U1, . . . , Un)>, the likelihood function can be

expressed as

f(Y |W,E,U, α, θ, β, ν) =
n∏
i=1

ν

2
exp {−ν |Yi − µi|} , (4.4)

where µi = W>
i α + E>i θ + U>i β.

Based on Kozumi and Kobayashi (2011), the Laplace distribution is equivalent to the

mixture of an exponential and a scaled normal distribution. Specifically, let z and ũ be

the standard normal and exponential random variables, respectively. If a random variable ε

follows the Laplace distribution with parameter ν, then it can be represented as follows

ε = ν−1κ
√
ũz, (4.5)

where κ =
√

8 is a constant. Therefore, the response Yi can be rewritten as Yi = µi +

ν−1κ
√
ũizi, where zi ∼ N(0, 1) and ũi ∼ Exp(1). Let u = ν−1ũ. Then u follows the
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exponential distribution Exp(ν−1). We thus have the following hierarchical representation

of the Laplace likelihood:

Yi = µi + ν−
1
2κ
√
uizi,

ui|ν
ind∼ ν exp (−νui) ,

zi
ind∼ N(0, 1).

This hierarchical representation allows us to express the likelihood function as a multivariate

normal distribution, which is critical to construct a Gibbs sampler for efficient sampling of

the regression coefficients corresponding to main and interaction effects robustly.

Remark : The Laplace distribution in Bayesian LAD regression can be treated as a special

case of the asymmetric Laplace distribution (ALD) in Bayesian quantile regression (Yu and

Moyeed (2001); Yu and Zhang (2005)). In Bayesian quantile regression, we assume that εi

follows the asymmetric Laplace distribution with density

f(εi|τ, ν) = τ(1− τ)ν exp {−νρτ (εi)} i = 1, . . . , n, (4.6)

where the check loss function is ρτ (εi) = εi {τ − I(εi < 0)} for the τth quantile (0 < τ < 1).

Note that, when τ = 0.5, the ALD in (4.6) reduces to a symmetric Laplace distribution

defined in (4.3). Yu and Moyeed (Yu and Moyeed (2001)) have shown that maximizing

a likelihood function under the asymmetric Laplace error distribution (4.6) is equivalent to

minimizing the check loss function in quantile regression. Kozumi and Kobayashi (2011) have

proposed a Gibbs sampling algorithm for Bayesian quantile regression based on a location-

scale mixture representation of the ALD. Specifically, with ũ and z defined as above, the

asymmetric Laplace error in (4.6) can be represented as

ε = ν−1ψz + ν−1κ
√
ũz, (4.7)

where

ψ =
1− 2τ

τ(1− τ)
and κ =

√
2

τ(1− τ)
.
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When τ = 0.5, we have ψ = 0 and κ =
√

8, and equation (4.7) reduces to the Laplace error

in (4.5).

4.2.2 Bayesian sparse group variable selection for G×E interac-

tions

The proposed Bayesian sparse group variable selection method is motivated by the following

considerations. In model (4.1), the coefficient vector βj corresponds to the main and interac-

tion effects with respect to the jth genetic variant. Whether the genetic variant is associated

with the phenotype or not can be determined by whether βj = 0. A zero coefficient vector

suggests that the variant does not have any effect on the disease outcome. If βj 6= 0, then

a further investigation on the presence of the main effect, or the interaction or both is of

interest, which can be facilitated by examining the nonzero component in βj. Therefore,

a tailored robust Bayesian variable selection method for G×E studies should accommodate

the selection on both group (the entire vector of βj) and individual (each component of βj)

levels at the same time.

In order to impose sparsity on both group and individual level to identify important main

and interaction effects, we conduct the decomposition of βj by following the reparmetrization

from Xu and Ghosh (2015). Specifically, βj is defined as

βj = V
1
2
j bj,

where bj = (bj1, . . . , bjL)> and V
1
2
j = diag {ωj1, . . . , ωjL} , ωjl ≥ 0 (l = 1, ..., L). To determine

whether the jth genetic variant has any effect at all, we conduct group-level selection on bj

by adopting the following multivariate spike–and–slab priors

bj|φbj
ind∼ φbj NL (0, IL) + (1− φbj)δ0(bj),

φbj|π0
ind∼ Bernoulli(π0),

(4.8)

where IL is an identity matrix, δ0(bj) denotes a point mass at 0L×1 and π0 ∈ [0, 1]. We
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introduce a latent binary indicator variable φbj for each group j(j = 1, . . . , p) to tackle the

group–level selection. In particular, when φbj = 0, the coefficient vector bj has a point mass

density at zero and all predictors representing the main and interaction effects in the jth

group are excluded from the model, indicating that the jth genetic variant is not associated

with the phenotype. On the other hand, when φbj = 1, the components in coefficient vector

bj have non-zero values.

To further determine whether there is an important main genetic effect, G×E interaction

or both, we impose sparsity within the group j by assigning the following spike–and–slab

priors on each ωjl (j = 1, . . . , p and l = 1, . . . , L)

ωjl|φwjl
ind∼ φwjl N

+
(
0, s2

)
+ (1− φwjl)δ0(ωjl),

φwjl|π1
ind∼ Bernoulli(π1),

(4.9)

where N+ (0, s2) denotes a normal distribution, N (0, s2), truncated below at 0. When the

binary indicator variable φwjl = 0, ωjl is set to zero by the point mass function δ0(ωjl). Within

the jth group, when the component ωjl = 0, we have βjl = 0 and the corresponding Ujl is

excluded from the model, even when bj 6= 0. This implies that the jth genetic variant does

not have the main effect (if l=1) or the interaction effect with the (l − 1)th environment

factor (if l > 1). The βjl is non-zero if and only if the vector bj 6= 0 and the individual

element ωjl 6= 0.

In (4.8) and (4.9), π0 and π1 control the sparsity on the group and individual level,

respectively. Their values should be carefully tuned. Fixing their values at 0.5 makes the

prior essentially non-informative since equal prior probabilities are given to all the sub-

models. Instead of fixing π0 and π1, we assign conjugate beta priors π0 ∼ Beta(a0, b0) and

π1 ∼ Beta(a1, b1), which can automatically account for the uncertainty in choosing π0 and π1.

We fixed parameters a0 = b0 = a1 = b1 = 1, so that the priors are essentially non-informative.

For computation convenience, we assign a conjugate Inverse–Gamma hyperprior on s2

s2 ∼ Inv-Gamma(1, η)
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η is estimated with the Monte Carlo EM algorithm (Park and Casella (2008); Xu and Ghosh

(2015)). For the gth EM update,

η(g) =
1

Eη(g−1)

[
1
s2
|Y
] ,

where the posterior expectation of 1
s2

is estimated from the MCMC samples based on t(g−1).

To maintain conjugacy, we place a Gamma prior on ν,

ν ∼ Gamma(c, d).

We set c and d to small values.

70



4.2.3 Gibbs sampler

The joint posterior distribution of all the unknown parameters conditional on data can be

expressed as

π(α, θ, bj, ωjl,ν, ui, π0, π1, s
2|Y )

∝
n∏
i=1

(2πκ2ν−1ui)
− 1

2 exp

−
(
Yi −W>

i α− E>i θ −
∑p

j=1

(
U>ij βj

))2

2κ2ν−1ui


×

n∏
i=1

ν exp(−νui) νc−1 exp {−dν}

× exp
(
− 1

2
θ>Σ−1

θ0 θ
)

exp
(
− 1

2
α>Σ−1

α0α
)

×
p∏
j=1

(
π0(2π)−

L
2 exp

{
−1

2
b>j bj

}
I{bj 6=0} + (1− π0)δ0(bj)

)

×
p∏
j=1

L∏
l=1

(
π12(2πs2)−

1
2 exp

{
−
ω2
jl

2s2

}
I{ωjl>0} + (1− π1)δ0(ωjl)

)
× πa0−1

0 (1− π0)b0−1

× πa1−1
1 (1− π1)b1−1

× (s2)−2 exp(− η

s2
).

Define the coefficient vector without the jth group as β(j) = (β>1 , . . . , β
>
j−1, β

>
j+1, . . . , β

>
p ) and

the corresponding part of the design matrix as U(j). Likewise, define the coefficient vector

without the lth element in the jth group as β(jl) and the corresponding design matrix as

U(jl). Let lbj = p(bj 6= 0|rest), then the conditional posterior distribution of bj is a multivariate

spike–and–slab distribution:

bj|rest ∼ lbj NL(µbj , Σbj) + (1− lbj) δ0(bj), (4.10)
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where Σbj =
(
νκ−2

∑n
i=1 u

−1
i V

1
2
j UijU

>
ijV

1
2
j + IL

)−1

, µbj = Σbjνκ
−2
∑n

i=1 u
−1
i V

1
2
j Uij ỹij and

ỹij = yi −W>
i α− E>i θ − U>(j)β(j). The lbj can be derived as

lbj =
π0

π0 + (1− π0)|Σbj |−
1
2 exp

{
−1

2
‖Σ

1
2
bj
νκ−2

∑n
i=1 u

−1
i V

1
2
j Uij ỹij‖2

2

} .
The posterior distribution (4.10) is a mixture of a multivariate normal and a point mass at 0.

Specifically, at the gth iteration of MCMC, b
(g)
j is drawn from N(µbj , Σbj) with probability lbj

and is set to 0 with probability 1− lbj. If b
(g)
j is set to 0, we have φ

b(g)
j = 0, which suggests that

the jth genetic variant is not associated with the phenotype at the gth iteration. Otherwise,

φ
b(g)
j = 1.

In addition to the multivariate spike–and–slab distribution on the group level, on the

individual level, the conditional posterior distribution of ωjl is also spike-and-slab. Let

lwjl = p(ωjl 6= 0|rest), we have

ωjl|rest ∼ lwjl N+(µωjl , σ
2
ωjl

) + (1− lwjl)δ0(ωjl),

where σ2
ωjl

=
(

1
s2

+ νκ−2
∑n

i=1 u
−1
i U2

ijlb
2
jl

)−1
, µωjl = σ2

ωjl
νκ−2

∑n
i=1 u

−1
i bjlUijlỹijl and ỹijl =

yi −W>
i α− E>i θ − U>(jl)β(jl). It can be shown that

lwjl =
π1

π1 + (1− π1)1
2
s(σ2

ωjl
)−

1
2 exp

{
−1

2
σ2
ωjl

(
νκ−2

∑n
i=1 u

−1
i bjlUijlỹijl

)2
}[

Φ
(
µωjl
σωjl

)]−1 ,

where Φ(·) is the cumulative distribution function of the standard normal random variable.

At the gth iteration, the value of φ
w(g)
jl can be determined by whether the ω

(g)
jl is set to 0 or

not. Recall that φ
w(g)
jl = 0 implies that the jth genetic variant does not have the main effect

(if l=1) or the interaction effect with the (l − 1)th E factor (if l > 1).

The full conditional distribution for ui is Inverse-Gaussian:

ui|rest ∼ Inverse-Gaussian(µui , λui),
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where the shape parameter λui = 2ν, mean parameter µui =
√

2κ2

(Yi−ỹi)2 and ỹi = Yi−W>
i α−

E>i θ − U>i β.

With the conjugate Inverse–Gamma prior, the posteriors of s2 is still an Inverse–Gamma

distribution

s2|rest ∼ Inv-Gamma

(
1 +

1

2

∑
j,l

I{ωjl 6=0}, η +
1

2

∑
j,l

ω2
jl

)
.

With conjugate Beta priors, π0 and π1 have beta posterior distributions

π0|rest ∼ Beta

(
a0 +

p∑
j=1

I{bj 6=0}, b0 +

p∑
j=1

I{bj=0}

)
,

π1|rest ∼ Beta

(
a1 +

∑
j,l

I{ωjl 6=0}, b1 +
∑
j,l

I{ωjl=0}

)
.

Last, the full conditional distribution for ν is Gamma distribution

ν|rest ∼ Gamma (sν , rν) ,

where the shape parameter sν = c + 3n
2

and the rate parameter rν = d +
∑n

i=1 ui +

(2κ2)−1
∑n

i=1 u
−1
i ỹi

2. Under our prior setting, conditional posterior distributions of all un-

known parameters have closed forms by conjugacy. Therefore, efficient Gibbs sampler can

be constructed for the posterior distribution.

To facilitate fast computation and reproducible research, we have implemented the pro-

posed and all the alternative methods in C++

4.2.4 A summary of proposed and alternative methods

All the methods under comparison can be grouped according to three criteria: with or with-

out robustness, with or without spike-and-slab priors, and the types of structured sparsity

(individual-, group- and bi-level) accommodated through variable selection. We first de-

scribe the robust Bayesian methods with spike-and-slab priors: RBSG–SS, RBG–SS and

RBL–SS, which have all been proposed for the first time. Among them, RBSG–SS is the
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golden method developed for conducting robust sparse group variable selection for G×E

interactions with spike-and-slab priors on both the group and individual levels. Besides,

RBG–SS and RBL–SS are robust Bayesian group level and individual level selection with

spike–and–slab priors, respectively. The spike–and–slab prior has only been imposed on the

group level in RBG–SS. Compared to RBSG–SS, it does not induce within group sparsity.

On the other hand, RBL–SS conducts individual-level selection without accounting for group

structure. An immediate family of robust methods related to the three are RBSG, RBG and

RBL, which do not adopt spike–and–slab priors and cannot shrink coefficients corresponding

to the main and interaction effects to zero exactly. While RBG and RBL can be directly

derived based on Li et al. (2010), RBSG, robust Bayesian sparse group selection, has not

been investigated in existing studies so far.

We have also included six non-robust methods for comparison. Among them, BSG–SS,

BG–SS and BL–SS are the non–robust counterparts of RBSG–SS, RBG–SS and RBL–SS,

respectively. In particular, the BSG–SS conducts (non–robust) Bayesian sparse group selec-

tion with spike-and-slab priors on group and individual level simultaneously, while variable

selection has only been conducted on group (individual) level through RBG–SS (RBL–SS)

under the spike–and–slab priors. In addition, BSG, BG and BL can be viewed as the bench-

marks without incorporating spike–and–slab priors corresponding to BSG–SS, BG–SS and

BL–SS. They can also be considered as the non–robust counterpart corresponding to RBSG,

RBG and RBL. All the six non–robust alternatives can be readily derived based on existing

studies.

For clarification, we list all the methods under comparison in Table C.1 in the Appendix.

Our contribution includes developing the 4 robust Bayesian variable selection approaches,

RBSG–SS, RBG–SS, RBL–SS and RBSG among the first time. For all the rest of the

approaches, a modification to the methods from the references provided in Table C.1 by

including clinical covariates is necessary. Otherwise, these methods cannot be adopted for a

direct comparison with the four newly developed ones.
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4.3 Simulation

We comprehensively evaluate the proposed and alternative methods through simulation stud-

ies. Under all the settings, the responses are generated from model (4.1) with n = 500, q =

3, p = 100 and k = 5, which leads to a total of 105 main effects, 500 interactions and 3

additional clinical covariates. Thus, the actual dimension of coefficient vector is 608, higher

than the sample size (n = 500). The genetic main effects and G×E interactions form 100

groups with group size L = 6. Within each one of the following examples, we consider six

different error distributions for εi’s: N(0, 1)(Error 1), Laplace(µ,b) with the mean µ = 0

and the scale parameter b = 2 (Error 2), 10%Laplace(0,1) + 90%Laplace(0,
√

5) (Error 3),

90%N(0,1) + 10%Cauchy(0, 1) (Error 4), t-distribution with 2 degrees of freedom (t(2))

(Error 4), LogNormal(0,1) (Error 5). All of them are heavy-tailed distributions except the

first one.

We assess the performance in terms of identification and prediction accuracy. For meth-

ods incorporating spike–and–slab priors, we consider the median probability model (MPM)

(Barbieri and Berger (2004); Xu and Ghosh (2015)) to identify important effects. In partic-

ular, for the proposed RBSG–SS, we define φjl = φbjφ
w
jl for the lth predictor in the jth group.

At the gth MCMC iterations, this predictor is included in the model if the indicator φ
(g)
jl is

1. Suppose we have collected G posterior samples from the MCMC after burn-ins, then the

posterior probability of including the lth predictor from the jth group in the final model is

pjl = π̂(φjl = 1|y) =
1

G

G∑
g=1

φ
(g)
jl , j = 1, . . . , p and l = 1, . . . , L. (4.11)

A higher posterior inclusion probability pjl can be interpreted as a stronger empirical ev-

idence that the corresponding predictor has a non-zero coefficient and is associated with

the phenotype. The MPM model is defined as the model consisting of predictors with at

least 1
2

posterior inclusion probability. When the goal is to select a single model, Barbieri

and Berger (Barbieri and Berger (2004)) recommends using MPM because of its optimal

prediction performance. Meanwhile, the 95% credible interval (95%CI) (Li et al. (2015)) is
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adopted for methods without spike–and–slab priors.

Prediction performance is evaluated using the mean prediction errors on an independently

generated testing dataset under the same data generating model over 100 replicates. For all

robust approaches, the prediction error is defined as mean absolute deviations (MAD). MAD

can be computed as 1
n

∑n
i=1 |yi − ŷi|. The prediction error for non–robust ones is defined as

the mean squared error (MSE), i.e., 1
n

∑n
i=1 (yi − ŷi)2.

Example 1

We generate a n × p matrix of gene expressions with n = 500 and p = 100, from

a multivariate normal distribution with marginal mean 0 and marginal variance 1. We

consider an auto-regression (AR) correlation structure for gene expression data, in which

gene j and h have correlation coefficient ρ|j−h|, with ρ = 0.3 (1 6 j, h 6 p). For E factors,

five continuous variables are generated from a multivariate normal distribution with marginal

mean 0, marginal variance 1 and AR correlation structure with ρ = 0.5. We then dichotomize

one of them at 0 to create a binary variable. Thus, there are four continuous and one binary E

factor. At last, we simulate three clinical covariates from a multivariate normal distribution

and AR correlation structure with ρ = 0.5, and dichotomize one of them at 0 to create a

binary clinical covariate.

For the clinical covariates and environmental main effects, their coefficients αt’s and

θm’s are generated from Uniform[0.8, 1.5]. For genetic main effect and G×E interactions,

we randomly selected 25 βjl’s in 9 groups to have non-zero values that are generated from

Uniform[0.3, 0.9]. All other βjl’s are set to zeros.

Example 2

We assess the performance under single-nucleotide polymorphism (SNP) data. The SNPs

are obtained by dichotomizing the gene expression values at the 1st and 3rd quartiles, with

the 3–level (0,1,2) for genotypes (aa,Aa,AA) respectively. Here, the gene expressions are

generated from Example 1.

Example 3

Consider simulating the SNP data under a pairwise linkage disequilibrium (LD) structure.

Let the minor allele frequencies (MAFs) of two neighboring SNPs with risk alleles A and
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B be r1 and r2, respectively. The frequencies of four haplotypes are as pAB = r1r2 + δ,

pab = (1 − r1)(1 − r2) + δ, pAb = r1(1 − r2) − δ, and paB = (1 − r1)r2 − δ, where δ denotes

the LD. Assuming Hardy-Weinberg equilibrium and given the allele frequency for A at

locus 1, we can generate the SNP genotype (AA, Aa, aa) from a multinomial distribution

with frequencies (r2
1, 2r1(1 − r1), (1 − r1)2). The genotypes at locus 2 can be simulated

according to the conditional genotype probability matrix in Cui et al. (2008). We have

δ = rp
√
r1(1− r1)r2(1− r2) with MAFs 0.3 and pairwise correlation rp = 0.6.

Example 4

A more practical correlation structure is adopted in this example. We extract the first

100 SNPs from the NHS data analyzed in the case study, so the correlation is based on the

real data. For each simulation replicate, we randomly sample 500 subjects from the dataset.

The same coefficients and error distributions from the first 3 examples are adopted.

Table 4.1: Simulation results in Example 1. (n, q, k, p) = (500, 2, 5, 100). mean(sd) of
true positives (TP), false positives (FP) and prediction errors (Pred) based on 100 replicates.

RBSG–SS RBG–SS RBL–SS BSG–SS BG–SS BL–SS

Error 1 TP 24.97(0.18) 25.00(0.00) 24.93(0.25) 24.97(0.18) 25.00(0.00) 24.93(0.25)

N FP 1.30(1.24) 29.60(2.42) 1.30(1.44) 0.47(0.68) 29.00(0.00) 0.43(0.73)

Pred 0.83(0.03) 0.86(0.03) 0.84(0.04) 1.07(0.07) 1.13(0.07) 1.08(0.08)

Error 2 TP 21.66(1.72) 24.84(0.55) 18.58(2.14) 19.98(1.95) 24.58(0.86) 15.54(2.04)

L FP 1.32(1.33) 30.96(4.27) 1.62(1.64) 1.82(1.53) 30.98(4.83) 0.92(0.94)

Pred 2.15(0.10) 2.17(0.09) 2.24(0.12) 9.32(0.97) 8.98(0.79) 10.09(1.08)

Error 3 TP 21.28(2.24) 24.80(0.73) 18.14(2.68) 19.00(2.61) 24.40(1.09) 14.24(2.39)

Mix.L FP 1.48(1.34) 30.64(4.23) 1.42(1.63) 2.04(1.73) 30.20(4.73) 1.18(1.16)

Pred 2.29(0.12) 2.32(0.11) 2.41(0.12) 11.11(1.12) 10.59(0.95) 12.02(1.12)

Error 4 TP 23.80(1.30) 24.93(0.37) 21.80(1.94) 16.20(6.45) 21.83(5.24) 12.53(5.79)

t2 FP 0.53(0.86) 29.47(2.56) 0.20(0.41) 3.73(4.61) 35.77(23.92) 1.93(2.49)

Pred 1.50(0.14) 1.52(0.13) 1.53(0.14) 12.48(6.56) 12.34(7.27) 13.35(6.72)

Error 5 TP 24.33(0.76) 25.00(0.00) 22.93(1.20) 22.93(1.26) 25.00(0.00) 18.00(2.17)

logNor FP 0.26(0.45) 29.00(0.00) 0.13(0.35) 4.30(3.40) 34.80(8.11) 1.23(1.55)

Pred 1.16(0.10) 1.18(0.10) 1.18(0.10) 4.75(1.24) 4.78(1.23) 5.18(1.34)
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Table 4.2: Simulation results in Example 1. (n, q, k, p) = (500, 2, 5, 100). mean(sd) of
true positives (TP), false positives (FP) and prediction errors (Pred) based on 100 replicates.

RBSG RBG RBL BSG BG BL

Error 1 TP 21.87(1.38) 24.67(0.76) 21.97(1.40) 22.93(1.34) 24.93(0.37) 23.07(1.23)

FP 2.63(1.94) 55.33(15.76) 3.07(2.35) 2.43(1.77) 83.47(20.07) 11.20(4.34)

Pred 1.15(0.05) 1.37(0.06) 1.15(0.05) 1.73(0.12) 2.29(0.19) 2.21(0.17)

Error 2 TP 14.48(2.04) 23.06(1.96) 14.42(2.12) 15.18(2.06) 24.02(1.48) 15.48(2.30)

FP 0.64(0.85) 32.26(7.41) 0.74(0.88) 2.20(1.55) 85.78(20.06) 14.06(4.41)

Pred 2.57(0.11) 2.85(0.13) 2.57(0.11) 12.43(1.15) 15.92(1.68) 16.55(1.69)

Error 3 TP 13.74(2.65) 22.52(2.38) 13.80(2.66) 14.30(2.70) 23.92(1.37) 14.62(2.69)

FP 0.68(0.68) 34.24(8.93) 0.80(0.83) 2.74(1.48) 97.40(19.78) 15.96(4.30)

Pred 2.71(0.12) 3.00(0.14) 2.71(0.12) 14.36(1.35) 18.52(1.70) 19.25(1.84)

Error 4 TP 16.90(3.12) 21.83(3.04) 16.90(3.36) 11.70(5.86) 20.70(5.74) 12.07(5.44)

FP 0.33(0.48) 27.97(8.48) 0.27(0.45) 3.10(2.64) 88.50(28.58) 14.83(5.52)

Pred 1.85(0.15) 2.10(0.17) 1.85(0.15) 16.25(9.88) 22.78(17.05) 24.20(18.91)

Error 5 TP 16.26(2.28) 23.42(2.01) 16.42(2.16) 13.80(3.37) 23.24(2.25) 14.24(3.05)

FP 0.32(0.62) 29.38(7.54) 0.32(0.65) 3.00(2.14) 94.72(27.12) 16.26(4.84)

Pred 2.20(0.14) 2.49(0.17) 2.21(0.14) 15.94(4.43) 20.73(5.12) 21.66(5.48)

We have collected the posterior samples from the Gibbs sampler running 15,000 iterations

while discarding the first 7,500 samples as burn-ins. The Bayesian estimates are calculated

using the posterior medians. Simulation results for the gene expression data in Example 1

are tabulated in Table (4.1) and (4.2). We can observe that the performance of methods

that adopt spike–and–slab priors in Table (4.1) is consistently better than methods without

spike–and–slab priors in Table (4.2). Although, methods without spike–and–slab priors

have slightly lower FPs than their counterparts with spike–and–slab priors under some error

distributions, they tend to have much lower TPs and higher prediction errors under all the

error distributions. For example, under Error2, RBSG identifies 14.48(SD 2.04) out of the

25 true positives, much lower than the true positives of 21.66(SD 1.72) from RBSG–SS.

Meanwhile, its false positives 0.64(SD 0.85) is only slightly lower than the FP of RBSG–SS

(1.32(SD 1.33)). The prediction error of RBSG, 2.57 with a SD of 0.11, is also inferior than
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that of the RBSG–SS (2.17(SD 0.10)). Such an advantage can also be observed by comparing

other methods in Table (4.1) with their counterparts (without spike–and–slab priors) from

Table (4.2).

Among all the methods with spike–and–slab priors, as shown in Table (4.1), the proposed

RBSG–SS has the best performance in both identification and prediction in the presence of

data contamination and heavy–tailed errors. Under the mixture Laplace error (Error 3),

RSGB–SS identifies 21.28(SD 2.24) true positives, with a small number of false positives,

1.48(SD 1.34). RBG–SS has a true positive of 24.80(SD 0.73), however, the number of false

positives, 30.64(SD 4.23), is much higher. This is due to the fact that RBG–SS only conducts

group level selection and does not impose the within-group sparsity. Compared to RBSG–

SS, RBL–SS ignores the group structure, leading to fewer true positives of 18.14(SD2.68).

In terms of prediction, RBSG–SS has the smallest L1 error, 2.29(0.12), among all the 3

robust methods with spike–and–slab priors. Although the difference in prediction error

between RBSG–SS and RBG–SS is not distinct, considering the much smaller number of

false positive main and interaction effects, we can fully observe the advantage of RSGB–SS

over RBG–SS in prediction.

Moreover, a cross–comparison between the robust and non–robust methods further demon-

strates the necessity of developing robust Bayesian methods. For instance, under the error

of t distribution with 2 degrees of freedom (Error 4), RBSG–SS has identified 23.80(SD

1.30) true main and interaction effects with only 0.53(SD 0.86) false positives. Its direct

non–robust competitor, BSG–SS, leads to a true positive of 16.20(SD 6.45) with 3.73(SD

4.61) false effects. The superior performance of RBSG–SS over the other two non–robust

methods, BG–SS and BL–SS, is also clear. Although a comparison between the prediction

errors of robust and non–robust methods is not feasible as the two are computed under the

L1 and least square errors, the identification results convincingly suggest the advantage of

robust methods over non-robust ones,

Similar patterns have been observed in Table C.3, C.4, C.5, C.6, C.7 and C.8 for Examples

2, 3 and 4, respectively, in the Appendix. Overall, based on the investigations over all

the methods through comprehensive simulation studies, we can establish the advantage of
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conducting robust Bayesian bi–level selection incorporating spike–and–slab priors.

We demonstrate the sensitivity of RBSG–SS for variable selection to the choice of the

hyper–parameters for π0, and π1 in the Appendix. The results are tabulated in Table C.2,

showing that the MPM model is insensitive to different specification of the hyper-parameters.

Following Li et al. Li et al. (2015), we assess the convergence of the MCMC chains by the po-

tential scale reduction factor (PSRF).Brooks and Gelman (1998); Gelman and Rubin (1992)

PSRF values close to 1 indicate that chains converge to the stationary distribution. Gelman

et al. Gelman et al. (2004) recommend using PSRF≤ 1.1 as the cutoff for convergence,

which has been adopted in our study. We compute the PSRF for each parameter and find

all chains converge after the burn-ins. For the purpose of demonstration, Figure C.1 shows

the pattern of PSRF the first five groups of coefficients in Example 1 under Error 2. The

figure clearly shows the convergence of the proposed Gibbs sampler.

4.4 Real Data Analysis

4.4.1 Nurses’ Health Study (NHS) data

Nurses’ Health Study (NHS) is one of the largest investigations into the risk factors for ma-

jor chronic diseases in women. As part of the the Gene Environment Association Studies

initiative (GENEVA), the NHS provides SNP genotypes data as well as detailed information

on dietary and lifestyle variables. Obesity level is one of the most important risk factors

for Type 2 diabetes mellitus (T2D), a chronic disease determined by both genetic and en-

vironmental factors. In this study, we analyze the NHS type 2 diabetes data to identify

genetic factors that are associated with obesity via genetic main effect or gene-environment

interactions. We use weight as the response and focus on SNPs on chromosome 10. We

consider five environment factors, including the total physical activity (act), glycemic load

(gl), cereal fiber intake (ceraf), alcohol intake (alcohol) and a binary indicator of whether an

individual has a history of high cholesterol (chol). All these environmental exposures have

been suggested to be associated with obesity and diabetes (Hu et al. (2001)). In addition,
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we consider three clinical covariates: height, age and a binary indicator of whether an in-

dividual has a history of hypertension (hbp). In NHS study, about half of the subjects are

diagnosed of type 2 diabetes and the other half are controls without the disease. We only

use health subjects in this study. After cleaning the data through matching phenotypes and

genotypes, removing SNPs with minor allele frequency (MAF) less than 0.05 or deviation

from Hardy–Weinberg equilibrium, the working dataset contains 1732 subjects with 35099

SNPs.

For computational convenience prescreening can be conducted to reduce the feature space

to a more attainable size for variable selection. For example, Li et al. Li et al. (2015) use

the single SNP analysis to filter SNPs in a GWA study before downstream analysis. In this

study, we use a marginal linear model with weight as the response variable to evaluate the

penetrance effect of a variant under the environmental exposure. The marginal linear model

use a group of genetic main effect and G×E interactions of a SNP as the predictors, and test

whether this SNP has any effect, main or G×E interaction, at all. The SNPs with p-values

less than a certain cutoff (0.001) for any effect, main or interaction, from the test are kept.

253 SNPs pass the screening.

The proposed approach RBSG-SS identifies 22 main SNP effects and 45 G×E interactions.

The detailed estimation results are provided in Table C.9 in the Appendix. We observe that

the proposed method identifies main and interaction effects of SNPs with important implica-

tions in obesity. For example, two important SNPs, rs6482836 and rs10741150, that located

within gene DOCK1 are identified. DOCK1 (Dedicator Of Cytokinesis 1) has been reported

as a putative candidate for obesity related to adiponectin and triceps skinfold by previous

studies (Kim et al. (2019); Vaughan et al. (2015)). RBSG-SS identifies the main effect of

rs6482836 and its interaction with the E factor act. Physical activity plays an important role

in the prevention of overweight and obese (Wareham et al. (2005)). This result suggests that

the expression level of DOCK1 in an individual may influence the effect of physical activity

in obesity prevention. RBSG-SS also identifies the interaction between rs10741150 and the

E factor chol, suggesting that the effect of cholesterol level can be mediated by DOCK1.

Interestingly, a previous study has shown that the expression level of DOCK5, an important
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paralog of DOCK1, is increased in individuals exposed to a diet high in saturated fatty acids

(El-Sayed Moustafa et al. (2012)). Our results provide more evidence of the importance of

DOCK1 in diet-induced obesity. Another example is the SNP rs11196539, located within

gene NRG3. NRG3(Neuregulin 3) has been found to be associated with both the basal

metabolic rate (BMR) and body mass index (BMI) (Lee et al. (2016)). RBSG-SS identifies

its interaction with the E factors, gl and alcohol. Both glycemic load and alcohol intake are

important dietary variables associated with obesity. The continued intake of high-glycemic

load meals leads to an increased risk of obesity (Brand-Miller et al. (2002)). The increasing

alcohol consumption is associated with a decline in body mass index in women (Nanchahal

et al. (2000)), however, heavy drinking can increase risk of the metabolic syndrome (Baik

and Shin (2008)). Our results suggest that further investigation of NRG3 may help explain

the mechanism of the effects of glycemic load and alcohol intake on obesity. For the environ-

ment main effects, two E factors, chol and gl, have positive coefficients, and the other three,

act, ceraf and alcohol, have negative coefficients, which are consistent with findings in the

previous literature.

In addition to the proposed approach, we also conduct analysis using the alternatives

RBL-SS, BSG-SS and BL-SS. As other alternative methods show inferior performance in

simulation, they are not considered in real data analysis. Detailed estimation results are

provided in Table C.10, C.11 and C.12 in the Appendix. In Table 4.3, we provide the

numbers of main G effects and interactions identified by different approaches and their

overlaps. We can observe that the proposed method identifies different main G effects and

more significantly different interactions from those identified by the alternatives. To further

investigate the biological similarity of the identified genes, we conduct the the Gene Ontology

(GO) analysis. We observe that there is an obvious difference between the proposed method

and the three alternatives. The GO analysis results are provided in Figure C.2.

With real data, it is difficult to objectively evaluate the selection performance. The

prediction performance may provide additional information on the relative performance of

different methods. Following Yan and Huang (2012) and Li et al. (2015), we refit the models

selected by RBSG-SS and RBL-SS by the Robust Bayesian Lasso, and refit the models
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selected by BSG-SS and BL-SS by the Bayesian Lasso. For the comparison between the

robust methods, the prediction mean absolute deviations (PMAD) are computed based on

the posterior median estimates. The PMADs are 8.64 and 8.88 for RBSG-SS and RBL-SS,

respectively. The proposed method outperforms than the competitor. For the comparison

between the non-robust methods, the prediction mean squared errors (PMSE) are computed.

The PMSEs are 128.39 and 137.77 for BSG-SS and BL-SS, respectively. The sparse group

method outperforms than the individual selection method.

4.4.2 TCGA skin cutaneous melanoma data

In this case study, we analyze the Cancer Genome Atlas (TCGA) skin cutaneous melanoma

(SKCM) data. TCGA ia a cancer genomics program organized by the National Cancer

Institute (NCI) and the National Human Genome Research Institute (NHGRI). It publishes

high quality clinical, environmental, and genetic data. For this study, we use the level-3

gene expression data of SKCM downloaded from the cBio Cancer Genomics Portal (Cerami

et al. (2012); Krauthammer et al. (2015)). Our goal is to identify genes that have genetic

main effect or G×E interaction effects on the Breslow’ thickness, an important prognostic

variable for SKCM (Marghoob et al. (2000)). The log-transformed Breslows depth is used as

the response variable and four E factors are considered, age, AJCC pathologic tumor stage,

gender and Clark level. Data are available on 294 subjects and 20,531 gene expressions. We

adopt the same screening method used in the first case study to select 109 genes for further

analysis.

The proposed approach RBSG-SS identifies 16 main SNP effects and 32 G×E interactions.

The detailed estimation results are provided in Table C.13 in the Appendix. One important

gene identified is CXCL6 (C-X-C Motif Chemokine Ligand 6), a chemokine with neutrophil

chemotactic and angiogenic activites. It has been reported that CXCL6 plays an important

role in melanoma growth and metastasis (Verbeke et al. (2011)). RBSG-SS identifies its main

effect and its interactions with E factors, stage and Clark level. This suggests that CXCL6

can have different effects at different stages of melanoma. Another important finding is the
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gene MAGED4, one of member in MAGE(Melanoma-associated antigen) family. MAGE

family contains genes that are highly attractive targets for cancer immunotherapy (Zhang

et al. (2014b)). MAGED4 has been found to be an potential target for glioma immunotherapy

(Sang et al. (2011)). RBSG-SS identifies the main effect of MAGED4 and its interaction

with the E factor tumor stage, suggesting that MAGED4 may also play an important role

in SKCM and its effect may change over different tumor stages. For the main effects of the

E factors, Clark level and tumor stage have positive coefficients, and age and gender have

negative coefficients, which match observations in the literature.

Analysis is further conducted using the three alternatives, and the comparison results

are summarized in Table 4.3. Detailed estimation results are provided in Table C.14, C.15

and C.16 in the Appendix. As for the previous case study, the proposed approach identifies

different sets of main and G×E interaction effects from those identified by the alternatives.

We also investigate the biological similarity of the identified genes by GO analysis (Figure

C.2). The results show that there is an obvious difference between the proposed method

and the three alternatives. Prediction performance is also evaluated. The PMADs are 0.69

and 0.83 for RBSG-SS and RBL-SS, respectively. The proposed approach again has better

prediction performance than RBL-SS. The PMSEs are 0.93 and 1.05 for BSG-SS and BL-

SS, respectively. The sparse group method still outperforms than the individual selection

method.

4.5 Discussion

In this study, we have developed robust Bayesian variable selection methods for gene-

environment interaction studies. The robustness of our methods comes from Bayesian formu-

lation of LAD regression. In G×E studies, the demand for robustness arises in heavy-tailed

distribution/ data contamination in both the response and predictors, as well as model

misspecification. We have focused on the first case, which is frequently encountered in prac-

tice. Investigations of the robust Bayesian methods accommodating the other two cases are

interesting and will be pursued in the future.
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Table 4.3: The numbers of main G effects and interactions identified by different approaches
and their overlaps.

NHS Main G effects Interactions

RBSG-SS RBL-SS BSG-SS BL-SS RBSG-SS RBL-SS BSG-SS BL-SS

RBSG-SS 22 20 16 13 45 21 17 10

RBL-SS 29 20 16 39 14 14

BSG-SS 29 25 34 22

BL-SS 27 42

SKCM Main G effects Interactions

RBSG-SS RBL-SS BSG-SS BL-SS RBSG-SS RBL-SS BSG-SS BL-SS

RBSG-SS 16 10 14 13 32 11 18 10

RBL-SS 17 12 14 33 15 24

BSG-SS 22 15 29 14

BL-SS 20 33

Recently, penalization has emerged as a power tool for dissecting G×E interactions Zhou

et al. (2020a). Our literature review suggests that Bayesian variable selection methods, al-

though tightly related to penalization, has not been fully explored for interaction analyses,

let alone the robust ones. We are among the first to conduct robust G×E analysis within the

Bayesian framework. The proposed Bayesian LAD sparse group LASSO are not only specif-

ically tailored for G×E studies, and but also generally applicable for problems incorporating

the bi-level structure in a broader context, such as simultaneously selection of prognostic

genes and pathways Liu et al. (2019). The spike-and-slab priors have been incorporated to

further improve identification and prediction performances. As a byproduct, the Bayesian

LAD LASSO and group LASSO, both with spike-and-slab priors, have also been investigated

for the first time. The computational feasibility of the Gibbs samplers are guaranteed by

the R package robin, with the core modules of the MCMC algorithms developed in C++.

In G×E studies, the form of interaction effects can be linear, nonlinear, and both linear

and nonlinear, resulting in parametric Wu et al. (2018a); Zhou et al. (2019a,b), nonparamet-

ric Li et al. (2015); Wu et al. (2018c) and semiparametric variable selection methods Ren
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et al. (2020a); Wu et al. (2014, 2015) to dissect G×E interactions, respectively. The proposed

study can be potentially generalized to these studies within robust Bayesian framework. For

example, variable selection for multiple semiparametric G×E studies can be formulated as

a combination of individual and group level selection problem, where the robust Bayesian

methods based on sparse group, group and individual level selection are directly applicable.

The proposed robust Bayesian framework has paved the way for the future investigations.
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Summary

This dissertation focuses on developing penalized variable selection methods, from both fre-

quentist and Bayesian perspectives, to conduct efficient variable selection of high dimensional

omics data with complicated network and interaction structures.

Incorporation of the correlation structure as networks within the framework of penalized

variable selection, can lead to more accurate identification of important omics features and

improved prediction (Li and Li (2008) and Huang et al. (2011)). However, the existing

network–based methods lack robust properties, which are critical to accommodate data

contamination and longtailed distributions in survival time data. In Chapter 2, we develop

a novel robust network-based variable selection method under the AFT model for survival

time in cancer genomic studies. Our method significantly distinguishes from existing ones

in (1) we adopt a weighted LAD objective function to accommodate data contamination,

with Kaplan-Meier weights for censoring; (2) to incorporate the interconnections among gene

expressions, we propose a network-constrained penalty of the “MCP+L1” form, and develop

an efficient algorithm within the coordinate descent framework. The paper associated with

this study is published at the Genetic Epidemiology (Ren et al. (2019a)).

Gene–environment (G×E) interactions plays an important in elucidating the disease eti-

ology for complex diseases, such as cancer, Type 2 Diabetes and asthma. Many studies

have demonstrated the advantages of penalization methods in detecting G×E interactions

from frequentist point of view (Wu et al. (2019)). Bayesian variable selection, however, has

not been widely developed for interaction studies. In Chapter 3, we have proposed a novel

semi-parametric Bayesian variable selection method to simultaneously pinpoint important

G×E interactions in both linear and nonlinear forms while conducting automatic structure

discovery. The superior performance of the proposed method over multiple alternatives has

been demonstrated through extensive simulation studies and a case study. This work is
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published at Statistics in Medicine (Ren et al. (2020a)).

In the last part of the dissertation, we have developed a novel robust Bayesian variable

selection method to dissect G×E interactions in genomic studies. The proposed Bayesian

LAD sparse group method can effectively accommodate heavy-tailed errors and outliers in the

response variable while conducting variable selection by accounting for structural sparsity.

To the best of our knowledge, we are among the first to conduct robust G×E analysis within

the Bayesian framework. The proposed method are not only specifically tailored for G×E

studies, but also generally applicable for problems incorporating the bi-level structure in a

broader context.

To facilitate reproducible research and fast computation, we have developed open source

R packages for each project, which provide highly efficient C++ implementation for all

the proposed and alternative approaches. The R packages regnet (Ren et al. (2019b)) and

spinBayes (Ren et al. (2019c)), associated with the first and second project correspondingly,

are available on CRAN. For the third project, the R package robin is available from GitHub

and will be submitted to CRAN soon.
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Appendix A

Appendices for Chapter 2

A.1 Additional simulation results
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Table A.1: Simulation for gene expression data (n, p) = (300, 505). 50 genes have nonzero
regression coefficients. 5 clinical covariates are not subject to selection. The gene expressions
have Banded.1 (upper panel) or Banded.2 structure (lower panel) with ρ = 0.5. mean(sd) of
true positives (TP) and false positives (FP) based on 100 replicates.

LAD Network LAD MCP LAD LASSO Network MCP LASSO

Banded.1 ρ = 0.5

Error1 TP 41.30(6.26) 36.87(3.16) 32.80(6.73) 35.37(4.41) 27.93(2.35) 45.30(2.38)

FP 13.43(10.74) 8.57(8.39) 105.53(45.21) 8.37(3.65) 8.63(6.67) 85.40(10.19)

Error2 TP 24.93(9.84) 19.77(15.93) 26.93(12.59) 2.00(5.55) 2.47(8.90) 3.17(5.34)

FP 23.00(24.92) 79.87(124.43) 105.27(67.09) 11.93(44.98) 17.97(79.54) 14.10(33.67)

Error3 TP 39.63(9.88) 32.00(4.88) 33.70(6.93) 18.77(10.76) 16.87(9.36) 30.17(14.13)

FP 11.80(9.28) 17.97(31.91) 111.17(46.28) 9.40(6.98) 7.03(4.06) 60.30(32.13)

Error4 TP 36.03(11.87) 30.43(5.37) 30.33(7.91) 12.97(11.78) 11.40(10.67) 22.80(16.40)

FP 11.90(10.46) 21.57(29.67) 109.40(48.10) 8.23(8.18) 6.73(7.25) 52.83(36.92)

Banded.2 ρ = 0.5

Error1 TP 43.63(7.89) 42.43(3.22) 33.53(9.72) 34.20(4.34) 25.20(4.13) 47.40(1.69)

FP 8.07(7.72) 10.83(14.28) 101.17(48.16) 9.17(4.89) 10.07(4.64) 80.93(12.3)

Error2 TP 31.77(11.31) 26.60(10.75) 33.33(5.57) 3.43(8.64) 3.27(7.98) 6.27(8.48)

FP 24.73(43.87) 100.50(119.98)129.90(45.73) 17.00(69.35) 15.03(61.68) 19.40(24.64)

Error3 TP 41.40(8.58) 35.50(5.47) 33.50(7.66) 15.17(11.58) 12.37(8.46) 29.93(15.21)

FP 12.97(27.18) 10.80(17.94) 114.40(54.39) 8.80(8.26) 7.33(5.57) 61.27(30.46)

Error4 TP 37.57(11.66) 32.87(5.69) 34.03(7.3) 14.87(13.23) 11.83(10.39) 26.33(16.11)

FP 9.60(8.62) 19.00(31.61) 113.30(50.56) 9.30(9.34) 7.97(7.45) 55.17(33.04)
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Table A.2: Simulation for gene expression data using correlations calculated from LUSC
data. (n, p) = (300, 505). 50 genes have nonzero regression coefficients. 5 clinical covariates
are not subject to selection. mean(sd) of true positives (TP) and false positives (FP) based
on 100 replicates.

LAD Network LAD MCP LAD LASSO Network MCP LASSO

Error1 TP 46.88(3.61) 46.29(2.89) 40.47(6.29) 45.66(2.21) 43.42(2.38) 48.09(1.18)

FP 1.28(2.00) 3.83(4.83) 1.97(2.69) 1.44(1.92) 1.58(2.20) 13.27(3.66)

Error2 TP 33.65(6.54) 32.59(8.21) 33.69(5.54) 11.02(7.35) 18.25(7.12) 18.14(8.35)

FP 9.92(23.64) 28.03(45.27) 13.27(14.75) 23.94(52.35) 73.50(71.82) 17.14(21.58)

Error3 TP 43.00(6.79) 41.63(5.95) 41.15(6.03) 30.24(11.93) 28.81(8.41) 39.35(9.46)

FP 3.14(3.91) 5.58(6.60) 3.85(6.80) 5.52(12.42) 12.43(29.37) 21.83(11.31)

Error4 TP 40.91(6.53) 40.02(5.67) 39.72(5.82) 22.99(11.13) 23.39(8.16) 35.02(9.72)

FP 3.07(3.41) 8.60(10.37) 3.12(6.07) 7.07(22.44) 18.22(37.61) 26.29(25.11)

Table A.3: Simulation for gene expression data using correlations calculated from NSCLC
data. (n, p) = (300, 505). 50 genes have nonzero regression coefficients. 5 clinical covariates
are not subject to selection. mean(sd) of true positives (TP) and false positives (FP) based
on 100 replicates.

LAD Network LAD MCP LAD LASSO Network MCP LASSO

Error1 TP 43.10(6.57) 43.32(3.41) 41.01(6.91) 47.12(3.08) 39.67(3.12) 45.91(1.65)

FP 1.40(2.00) 3.02(3.77) 5.68(9.65) 0.83(1.44) 1.44(2.27) 23.01(12.09)

Error2 TP 36.44(9.83) 33.73(6.75) 34.46(5.28) 25.23(6.41) 11.27(3.03) 19.72(5.92)

FP 13.80(25.85) 34.36(55.80) 23.14(42.02) 43.94(34.98) 15.86(18.95) 14.23(8.96)

Error3 TP 41.51(8.41) 39.23(6.68) 38.17(6.52) 38.20(10.43) 24.93(9.19) 35.45(8.77)

FP 4.75(6.41) 11.10(12.24) 13.47(20.48) 13.66(37.16) 8.64(34.40) 22.71(21.76)

Error4 TP 42.13(7.50) 38.58(6.86) 39.72(6.14) 34.56(10.60) 19.90(9.03) 30.23(9.58)

FP 7.03(9.27) 13.33(25.09) 16.63(28.77) 30.02(72.28) 13.17(42.50) 19.57(27.40)
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Table A.4: Simulation for SNP data (n, p) = (300, 505) under AR structures. 50 genes
have nonzero regression coefficients. 5 clinical covariates are not subject to selection. The
SNPs have AR structure with ρ = 0.5 (upper panel) and ρ = 0.8 (lower panel). mean(sd) of
true positives (TP) and false positives (FP) based on 100 replicates.

LAD Network LAD MCP LAD LASSO Network MCP LASSO

AR ρ = 0.5

Error1 TP 39.97(9.05) 39.77(3.54) 34.50(6.24) 33.50(6.60) 29.83(6.88) 46.03(2.30)

FP 8.83(5.80) 9.33(7.71) 106.03(37.94) 9.13(6.26) 8.77(5.17) 84.53(11.25)

Error2 TP 23.23(10.57) 22.43(10.93) 27.43(8.64) 5.17(9.41) 6.93(14.32) 6.10(8.79)

FP 23.93(40.56) 57.97(95.48) 110.17(66.55) 32.03(86.43) 45.67(126.72) 23.67(39.83)

Error3 TP 37.03(10.07) 36.17(4.53) 34.30(6.39) 16.17(11.50) 15.07(10.51) 28.30(16.74)

FP 9.00(6.44) 15.93(26.06) 107.77(43.29) 8.50(5.76) 8.30(5.45) 58.40(34.86)

Error4 TP 38.13(7.35) 34.17(6.01) 34.90(7.04) 10.63(10.55) 9.83(9.89) 19.90(17.49)

FP 10.17(6.86) 27.17(41.85) 109.70(45.23) 6.73(6.10) 6.07(6.49) 40.63(41.16)

AR ρ = 0.8

Error1 TP 46.87(5.11) 45.30(2.87) 42.87(6.06) 48.70(1.42) 26.07(3.49) 48.73(1.01)

FP 3.80(2.96) 3.47(2.66) 104.20(30.42) 10.00(7.89) 6.67(3.39) 60.00(12.99)

Error2 TP 38.80(10.71) 26.17(6.93) 35.93(4.16) 5.97(10.07) 6.10(12.41) 5.70(7.53)

FP 12.20(8.02) 44.20(83.64) 105.40(32.2) 35.30(89.14) 43.57(111.1) 25.77(42.43)

Error3 TP 46.70(6.02) 39.90(5.94) 43.17(3.65) 33.23(16.9) 18.10(9.78) 33.97(15.77)

FP 6.77(5.88) 6.10(10.6) 105.63(28.03) 18.97(16.06) 20.83(65.59) 60.93(29.47)

Error4 TP 42.87(10.92) 36.03(6.83) 42.17(4.47) 25.93(16.99) 13.43(8.39) 29.33(15.39)

FP 5.67(4.56) 10.30(21.71) 120.90(48.61) 19.77(13.39) 7.57(6.82) 50.30(31.1)
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Table A.5: Simulation for SNP data (n, p) = (300, 505) under banded structures. 50
genes have nonzero regression coefficients. 5 clinical covariates are not subject to selection.
The SNPs have Banded.1 (upper panel) or Banded.2 structure (lower panel) with ρ = 0.5.
mean(sd) of true positives (TP) and false positives (FP) based on 100 replicates.

LAD Network LAD MCP LAD LASSO Network MCP LASSO

Banded.1 ρ = 0.5

Error1 TP 39.17(9.57) 36.87(8.19) 30.13(8.40) 31.80(3.95) 26.57(4.39) 43.97(3.18)

FP 9.10(5.92) 13.53(21.54) 91.63(43.74) 8.27(5.30) 8.53(6.22) 81.93(12.6)

Error2 TP 19.17(9.70) 18.30(13.42) 25.43(8.69) 2.83(7.39) 3.60(9.97) 3.17(5.17)

FP 14.93(13.16) 57.30(93.44) 97.63(51.97) 17.30(60.78) 24.20(89.50) 13.10(27.14)

Error3 TP 33.33(10.57) 32.47(4.61) 29.97(8.37) 14.60(13.06) 12.83(11.25) 24.40(17.98)

FP 8.00(4.61) 18.57(38.32) 101.23(52.47) 8.13(7.21) 6.63(6.19) 53.10(37.71)

Error4 TP 33.53(13.54) 29.43(8.05) 31.00(6.77) 11.43(8.63) 10.83(7.73) 24.40(12.76)

FP 16.37(12.94) 18.30(36.76) 108.90(39.14) 7.07(7.91) 6.53(5.78) 56.57(30.96)

Banded.2 ρ = 0.5

Error1 TP 41.23(8.78) 40.57(3.30) 34.23(7.57) 32.23(6.74) 27.77(5.10) 45.93(1.76)

FP 10.83(7.68) 9.17(7.45) 113.63(46.59) 9.63(6.7) 9.30(4.23) 84.00(12.91)

Error2 TP 21.10(7.69) 20.53(13.05) 27.27(8.2) 1.60(1.96) 1.63(2.11) 3.03(4.19)

FP 17.27(10.43) 76.43(122.77) 93.57(49.76) 5.10(10.5) 5.00(10.3) 11.40(15.40)

Error3 TP 35.60(9.11) 34.90(4.48) 34.20(5.11) 15.30(10.17) 14.37(9.68) 28.67(16.14)

FP 10.60(7.02) 15.63(38.21) 117.63(38.53) 9.80(7.23) 9.50(7.10) 66.77(37.00)

Error4 TP 38.50(8.44) 36.47(5.17) 33.20(7.07) 12.43(10.86) 11.80(10.26) 21.80(18.26)

FP 18.77(13.23) 41.57(69.17) 109.73(42.16) 11.13(26.16) 12.90(30.37) 45.90(38.12)
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Table A.6: Simulation for SNP data based on the linkage disequilibrium (LD) structure.
(n, p) = (300, 505). 50 genes have nonzero regression coefficients. 5 clinical covariates are
not subject to selection. mean(sd) of true positives (TP) and false positives (FP) based on
100 replicates.

LAD Network LAD MCP LAD LASSO Network MCP LASSO

Error1 TP 46.47(4.62) 42.94(5.09) 43.10(3.54) 46.25(2.17) 44.94(2.62) 45.93(2.03)

FP 4.30(6.29) 9.43(16.91) 28.10(13.34) 2.59(3.12) 2.85(4.23) 21.52(5.25)

Error2 TP 38.22(7.42) 34.44(7.76) 27.45(4.70) 23.90(5.28) 12.15(9.04) 10.34(9.56)

FP 18.84(18.76) 46.88(69.94) 49.31(16.43) 95.05(59.21) 36.10(82.64) 20.73(22.59)

Error3 TP 45.38(4.71) 40.16(5.59) 39.12(5.01) 26.16(15.89) 27.16(13.09) 33.03(13.71)

FP 5.85(6.66) 11.17(23.56) 35.25(12.73) 10.22(32.97) 25.37(77.51) 36.70(18.09)

Error4 TP 42.65(6.21) 39.28(5.35) 36.40(5.03) 21.66(15.24) 25.14(12.31) 28.30(14.80)

FP 5.99(5.63) 17.00(31.33) 39.82(14.83) 13.95(38.37) 44.58(108.55) 36.91(21.17)
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A.2 Biological similarity analysis

GO enrichment analysis was conducted using the R package GOSim. GO biological processes

that are associated with identified genes are divided into four categories: positive regulation

(P), negative regulation (N), regulation (R, without a well-defined direction) and other (O).

The proportions of genes that involve in the four categories of processes are computed for

each methods. The results are provided in Figure A.1.
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Figure A.1: Gene Ontology (GO) analysis: proportions of genes that have the four cate-
gories of processes with different approaches. Left: NSCLC data. Right: LUSC data. A1:
LAD Network. A4: LAD MCP. A3: LAD LASSO. A4: Network. A5: MCP. A6: LASSO.
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Appendix B

Appendices for Chapter 3

B.1 Hyper-parameters sensitivity analysis

We demonstrate the sensitivity of BSSVC-SI for variable selection to the choice of the hy-

perparameters for πv, πc and πe. We consider five different Beta priors: (1) Beta(0.5, 0.5)

which is a U-shape curve between (0, 1); (2) Beta(1, 1) which is a essentially a uniform

prior; (3) Beta(2, 2) which is a quadratic curve; (4) Beta(1, 5) which is highly right-skewed;

(5) Beta(5, 1) which is highly left-skewed. As a demonstrating example, we use the same

setting of Example 2 to generate data. Table C.2 shows the identification performance of the

median thresholding model (MPM) with different Beta priors. For all choices of Beta priors,

the MPM model is very stable for both the proposed model BSSVC-SI and the alternative

BSSVC. Also BSSVC-SI correctly identifies almost all true effects with low false positives in

all cases. Therefore, we simply use Beta(1, 1) as the prior for πv, πc and πe in this study.

We also evaluate the sensitivity of BSSVC-SI to the choice of the Gamma hyperpriors

on λv, λc and λe. We test the shape parameter of the Gamma prior for five different

values: {0.1, 0.5, 1, 2, 5}. This ranges from highly skewed exponential shape to highly diffuse

unimodal shape. We fix the rate parameter at {1, 2, 5} and test different combinations of

shape and rate parameters on a two-dimensional grid. In Table B.2, we show the simulation

results of some representative cases under the scenarios of Example 2. BSSVC-SI model has
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stable performance with high TP and low FP for different Gamma priors. Similar patterns

are observed for all other cases. In this study, we use Gamma(1, 1) for λv, λc and λe under

all scenarios.

Table B.1: Sensitivity analysis. (n, p, q) = (500, 100, 2). mean(sd) of true positives (TP)
and false positives (FP) based on 100 replicates.

BSSVC-SI BSSVC

Varying Constant Nonzero Varying Constant Nonzero

Beta(0.5, 0.5) TP 3.00(0.00) 5.00(0.00) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.07(0.25) 0.00(0.00) 0.00(0.00) 5.07(0.25) 0.00(0.00) 0.03(0.18)

Beta(1, 1) TP 3.00(0.00) 5.00(0.00) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.07(0.25) 0.00(0.00) 0.03(0.18) 5.00(0.00) 0.00(0.00) 0.10(0.31)

Beta(2, 2) TP 3.00(0.00) 4.93(0.25) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.20(0.48) 0.00(0.00) 0.00(0.00) 4.97(0.18) 0.00(0.00) 0.10(0.31)

Beta(1, 5) TP 3.00(0.00) 4.97(0.18) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.17(0.46) 0.00(0.00) 0.00(0.00) 5.00(0.00) 0.00(0.00) 0.03(0.18)

Beta(5, 1) TP 3.00(0.00) 5.00(0.00) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.27(0.52) 0.07(0.25) 0.03(0.18) 5.07(0.25) 0.00(0.00) 0.27(0.58)
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Table B.2: Sensitivity analysis. (n, p, q) = (500, 100, 2). mean(sd) of true positives (TP)
and false positives (FP) based on 100 replicates.

BSSVC-SI BSSVC

Varying Constant Nonzero Varying Constant Nonzero

Gamma(0.1, 1) TP 3.00(0.00) 4.93(0.26) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.20(0.41) 0.07(0.26) 0.00(0.00) 5.00(0.00) 0.00(0.00) 0.07(0.26)

Gamma(0.5, 2) TP 3.00(0.00) 5.00(0.00) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.07(0.26) 0.00(0.00) 0.00(0.00) 5.00(0.00) 0.00(0.00) 0.00(0.00)

Gamma(1, 1) TP 3.00(0.00) 5.00(0.00) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.07(0.25) 0.00(0.00) 0.03(0.18) 5.00(0.00) 0.00(0.00) 0.10(0.31)

Gamma(1, 5) TP 3.00(0.00) 4.93(0.26) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.07(0.26) 0.00(0.00) 0.07(0.26) 5.00(0.00) 0.00(0.00) 0.07(0.26)

Gamma(2, 5) TP 3.00(0.00) 4.93(0.26) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.13(0.35) 0.07(0.26) 0.00(0.00) 4.93(0.26) 0.00(0.00) 0.00(0.00)

Gamma(5, 1) TP 3.00(0.00) 5.00(0.00) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.20(0.41) 0.00(0.00) 0.00(0.00) 5.07(0.26) 0.00(0.00) 0.20(0.41)
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B.2 FDR-based variable selection

The FDR-based variable selection selects variables with posterior inclusion probability larger

than certain threshold that is chosen to control the overall Bayesian FDR rate. Specifically,

a threshold ψα can be determined for flagging the set of predictors Ψψα = {j : pj > ψα}

as significant, for a given overall FDR bound α ∈ (0, 1). The threshold ψα is chosen in

a way that we expect less than 100α% of the predictors in set Ψψα are false positive on

average. To compute threshold ψα, we first sort the {pj, j = 1, . . . , p} in descending order

to obtain {p(j), j = 1, . . . , p}. To compute threshold ψα, we first sort the {pj, j = 1, . . . , p}

in descending order to obtain {p(j), j = 1, . . . , p}. Then ψα = p(ξ) with ξ = max{j∗ :

1
j∗

∑j∗

j=1(1− p(j)) 6 α}. The (1− pj) is interpreted as the estimate of the local FDR (Storey

(2003)) that measures the probability of including the jth predictor when the jth predictor

is not in the true model.

Table B.3: Simulation results for FDR-based variable selection. (n, p, q) = (500, 100, 2).
mean(sd) of true positives (TP) and false positives (FP) based on 100 replicates.

BSSVC-SI BSSVC

Varying Constant Nonzero Varying Constant Nonzero

Example 1 TP 3.00(0.00) 4.93(0.25) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.17(0.38) 0.07(0.25) 0.00(0.00) 5.20(0.41) 0.00(0.00) 0.13(0.35)

Example 2 TP 3.00(0.00) 5.00(0.00) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.10(0.31) 0.10(0.31) 0.03(0.18) 5.23(0.50) 0.00(0.00) 0.13(0.35)

Example 3 TP 2.97(0.18) 4.97(0.18) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.03(0.18) 0.17(0.46) 0.00(0.00) 5.10(0.31) 0.00(0.00) 0.10(0.31)

Example 4 TP 3.00(0.00) 5.00(0.00) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 0.07(0.25) 0.00(0.00) 0.07(0.25) 5.13(0.35) 0.00(0.00) 0.20(0.41)
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B.3 Variable selection based on 95% credible interval

Alternatives BVC-SI and BVC lack for the variable selection property. In order to create

sparsity on the coefficients estimated by these three methods, we consider a 95% credible

interval based method used in Li et al. (2015). Specifically, a varying effect is included in the

final model if at least one of its spline coefficients has a two-sided 95% credible interval that

does not cover zero. Similarly, a constant effect is included in the final model if two-sided

95% credible interval od its spline coefficient does not cover zero. The same rule applies to

the linear interaction effects. The results are tabulated in Table B.4.

Table B.4: Simulation results. (n, p, q) = (500, 100, 2). mean(sd) of true positives (TP)
and false positives (FP) based on 100 replicates.

BVC-SI BVC

Varying Constant Nonzero Varying Constant Nonzero

Example 1 TP 2.98(0.15) 4.73(0.45) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 1.89(1.40) 0.42(0.69) 4.07(2.27) 6.13(1.18) 0.00(0.00) 3.16(2.02)

Example 2 TP 3.00(0.00) 4.76(0.48) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 3.27(2.38) 0.36(0.57) 5.13(2.32) 6.78(1.52) 0.00(0.00) 4.20(2.21)

Example 3 TP 3.00(0.00) 4.78(0.42) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 2.09(1.86) 0.24(0.53) 4.33(2.32) 6.04(1.30) 0.00(0.00) 3.42(2.11)

Example 4 TP 3.00(0.00) 4.78(0.52) 5.00(0.00) 3.00(0.00) 0.00(0.00) 5.00(0.00)

FP 3.33(1.98) 0.24(0.43) 6.47(2.66) 6.51(1.36) 0.00(0.00) 5.07(2.61)
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B.4 Sensitivity analysis on smoothness specification

Let O denotes the degree of B spline basis, and K denotes the number of interior knots.

Huang et al. (2002, 2004) show that n1/(2O+3) is the optimal order of the number of spline

knots K. For quadratic and cubic splines corresponding to O = 2 and 3 respectively, We

conduct a sensitivity analysis for the proposed model under the setting of Example 2 for

K ∈ [1, 4]. Table B.5 shows that K = 1 leads to unsatisfactory performance, especially for

prediction. When K ≥ 2, different values of K lead to similar performance under O = 2 and

O = 3. This suggests the model performance is insensitive with respect to the smoothness

specification. We conduct a sensitivity analysis for the proposed model under the setting of

Example 2 given K ∈ [1, 4],

Table B.5: Sensitivity analysis on smoothness specification. (n, p, q) = (500, 100, 2).
mean(sd) of true positives (TP), false positives (FP) and prediction error based on 100
replicates.

O = 2 Varying Constant Nonzero

K TP FP TP FP TP FP Pred.Error

1 2.97(0.18) 0.20(0.55) 4.87(0.35) 0.10(0.31) 4.97(0.18) 0.03(0.18) 1.998(0.152)

2 3.00(0.00) 0.03(0.18) 5.00(0.00) 0.00(0.00) 5.00(0.00) 0.00(0.00) 1.172(0.071)

3 3.00(0.00) 0.00(0.00) 5.00(0.00) 0.03(0.18) 5.00(0.00) 0.13(0.43) 1.140(0.093)

4 3.00(0.00) 0.07(0.25) 4.93(0.25) 0.00(0.00) 5.00(0.00) 0.00(0.00) 1.200(0.118)

O = 3 Varying Constant Nonzero

K TP FP TP FP TP FP Pred.Error

1 3.00(0.00) 0.17(0.38) 4.87(0.35) 0.03(0.18) 5.00(0.00) 0.00(0.00) 1.676(0.159)

2 3.00(0.00) 0.00(0.00) 5.00(0.00) 0.03(0.18) 5.00(0.00) 0.03(0.18) 1.089(0.054)

3 3.00(0.00) 0.00(0.00) 4.97(0.18) 0.03(0.18) 5.00(0.00) 0.00(0.00) 1.185(0.072)

4 3.00(0.00) 0.00(0.00) 5.00(0.00) 0.03(0.18) 5.00(0.00) 0.03(0.18) 1.156(0.078)
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B.5 Additional simulation results

Table B.6: Simulation results in Example 2. SNP genotype data (n, p, q) = (500, 100, 2).
mean(sd) of the integrated median mean squared error (IMSE), median mean squared error
(MSE), total squared errors for all estimates and prediction errors based on 100 replicates.

BSSVC-SI BSSVC BVC-SI BVC BL

IMSE

µ(Z) 0.043(0.013) 0.043(0.012) 0.055(0.024) 0.055(0.022) 200.857(3.626)

β1(Z) 0.042(0.020) 0.021(0.012) 0.069(0.031) 0.085(0.031) 181.351(4.523)

β2(Z) 0.027(0.018) 0.021(0.012) 0.044(0.025) 0.049(0.025) 25.653(10.366)

β3(Z) 0.030(0.026) 0.026(0.022) 0.074(0.034) 0.094(0.038) 136.250(5.223)

MSE

α1 0.011(0.012) 0.012(0.013) 0.022(0.023) 0.022(0.022) 0.065(0.083)

α2 0.003(0.003) 0.003(0.004) 0.007(0.009) 0.007(0.008) 0.023(0.033)

ζ0 0.033(0.025) 0.024(0.019) 0.081(0.057) 0.106(0.062) 135.875(3.861)

ζ1 0.005(0.005) 0.006(0.007) 0.009(0.013) 0.008(0.013) 0.025(0.036)

ζ2 0.008(0.009) 0.006(0.008) 0.019(0.023) 0.019(0.022) 0.065(0.104)

ζ3 0.009(0.015) 0.009(0.013) 0.017(0.023) 0.019(0.025) 0.065(0.070)

ζ4 0.009(0.014) 0.011(0.019) 0.011(0.015) 0.010(0.014) 0.045(0.080)

ζ5 0.006(0.007) 0.006(0.008) 0.020(0.028) 0.024(0.030) 0.065(0.086)

Total 0.227(0.083) 0.253(0.104) 2.020(0.260) 1.931(0.228) 548.430(13.003)

Pred.

Error 1.160(0.071) 1.169(0.064) 2.196(0.180) 2.155(0.154) 7.870(0.445)
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Table B.7: Simulation results in Example 3. SNP genotype data based on the linkage
disequilibrium (LD) structure (n, p, q) = (500, 100, 2). mean(sd) of the integrated median
mean squared error (IMSE), median mean squared error (MSE), total squared errors for all
estimates and prediction errors based on 100 replicates.

BSSVC-SI BSSVC BVC-SI BVC BL

IMSE

µ(Z) 0.046(0.015) 0.045(0.014) 0.060(0.023) 0.058(0.022) 200.784(3.630)

β1(Z) 0.059(0.025) 0.025(0.013) 0.112(0.045) 0.120(0.045) 182.705(6.130)

β2(Z) 0.035(0.018) 0.023(0.017) 0.051(0.024) 0.054(0.025) 28.617(12.114)

β3(Z) 0.032(0.019) 0.027(0.018) 0.083(0.049) 0.105(0.051) 142.424(15.015)

MSE

α1 0.003(0.005) 0.003(0.004) 0.006(0.009) 0.006(0.009) 0.017(0.020)

α2 0.005(0.006) 0.004(0.006) 0.010(0.015) 0.009(0.013) 0.024(0.026)

ζ0 0.010(0.013) 0.008(0.011) 0.024(0.034) 0.023(0.033) 0.075(0.095)

ζ1 0.008(0.014) 0.008(0.015) 0.012(0.016) 0.011(0.014) 0.051(0.093)

ζ2 0.010(0.014) 0.008(0.012) 0.024(0.035) 0.025(0.035) 0.088(0.092)

ζ3 0.009(0.008) 0.010(0.009) 0.024(0.034) 0.024(0.032) 0.102(0.114)

ζ4 0.013(0.017) 0.022(0.022) 0.026(0.034) 0.023(0.030) 0.064(0.090)

ζ5 0.017(0.026) 0.038(0.034) 0.032(0.039) 0.030(0.036) 0.050(0.065)

Total 0.307(0.107) 0.407(0.141) 2.176(0.219) 2.015(0.207) 559.260(24.011)

Pred.

Error 1.203(0.064) 1.209(0.068) 2.164(0.137) 2.088(0.132) 7.683(0.424)
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Table B.8: Simulation results in Example 4. SNP genotype from T2D data (n, p, q) =
(500, 100, 2). mean(sd) of the integrated median mean squared error (IMSE), median mean
squared error (MSE), total squared errors for all estimates and prediction errors based on
100 replicates.

BSSVC-SI BSSVC BVC-SI BVC BL

IMSE

µ(Z) 0.051(0.019) 0.051(0.019) 0.066(0.021) 0.064(0.020) 202.409(4.069)

β1(Z) 0.032(0.015) 0.018(0.011) 0.052(0.027) 0.068(0.030) 181.747(6.418)

β2(Z) 0.015(0.010) 0.014(0.009) 0.029(0.021) 0.033(0.020) 24.012(3.920)

β3(Z) 0.023(0.018) 0.019(0.013) 0.051(0.027) 0.066(0.030) 137.823(6.639)

MSE

α1 0.003(0.003) 0.003(0.004) 0.007(0.013) 0.007(0.013) 0.021(0.031)

α2 0.003(0.004) 0.003(0.005) 0.005(0.005) 0.005(0.004) 0.013(0.016)

ζ0 0.007(0.014) 0.007(0.016) 0.015(0.015) 0.014(0.014) 0.098(0.157)

ζ1 0.004(0.006) 0.004(0.005) 0.008(0.013) 0.008(0.011) 0.050(0.086)

ζ2 0.009(0.009) 0.006(0.007) 0.019(0.022) 0.018(0.020) 0.030(0.044)

ζ3 0.007(0.010) 0.007(0.009) 0.012(0.018) 0.012(0.021) 0.040(0.057)

ζ4 0.004(0.004) 0.004(0.004) 0.006(0.008) 0.006(0.008) 0.026(0.033)

ζ5 0.003(0.003) 0.003(0.004) 0.013(0.014) 0.014(0.014) 0.043(0.059)

Total 0.178(0.052) 0.194(0.049) 1.751(0.194) 1.648(0.157) 550.070(12.987)

Pred.

Error 1.141(0.073) 1.147(0.064) 2.164(0.134) 2.109(0.125) 8.575(0.458)
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B.6 Computational cost

Table B.9: Computational cost analysis for BSSVC-SI under the setting of Example 1. p:
number of genes. time: CPU time (in seconds) for 10,000 MCMC iterations. The number of
regression coefficients to be estimated after basis expansion is approximately qnp + p, where
qn is the number of basis function. In this study, qn = 5.

n = 500 n = 1500 n = 3000

# of genes time # of genes time # of genes time

p = 100 11.707 p = 300 121.396 p = 600 552.043

p = 200 24.878 p = 600 236.571 p = 900 834.645

p = 300 36.372 p = 900 341.366 p = 1200 988.939
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B.7 The estimated varying coefficient functions
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Figure B.1: Simulation study in Example 1 for the proposed method (BSSVC-SI). Red line:
true parameter values. Black line: median estimates of varying coefficients for BSSVC-SI.
Blue dashed lines: 95% credible intervals for the estimated varying coefficients.
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B.8 Assessment of the convergence of MCMC chains
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Figure B.2: Potential scale reduction factor (PSRF) against iterations for varying coeffi-
cient functions in Figure B.1. Black line: the PSRF. Red line: the threshold of 1.1. The γ̂j1
to γ̂j5, (j = 0, . . . , 3), represent the five estimated spline coefficients for the varying coefficient
function βj, respectively.

127



B.9 Additional results for real data analysis
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Figure B.3: Real data analysis for the proposed method (BSSVC-SI). Black line: median
estimates of varying coefficients for BSSVC-SI. Blue dashed lines: 95% credible intervals for
the estimated varying coefficients.
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B.10 Posterior inference for the BSSVC-SI method

B.10.1 Priors

Y |η, γ11, . . . , γp1,γ1∗, . . . , γp∗, α1, . . . , αq, ζ0, ζ1, . . . , ζp, σ
2

∝ (σ2)−
n
2 exp

{
− 1

2σ2
(Y − µ)>(Y − µ)

}
η ∼ Nqn(0, Ση0)

α ∼ Nq(0, Σα0)

ζ0 ∼ N(0, σ2
ζ0

)

γj1|πc, τ 2
cj, σ

2 ∼ πcN(0, σ2τ 2
cj) + (1− πc)δ0(γj1), j = 1, . . . , p

τ 2
cj|λc ∼

λ2
c

2
exp(−

λ2
cτ

2
cj

2
), j = 1, . . . , p

γj∗|πv, τ 2
vj, σ

2 ∼ πvNL(0, Diag(σ2τ 2
vj, . . . , σ

2τ 2
vj)) + (1− πv)δ0(γj∗), j = 1, . . . , p

τ 2
vj|λv ∼ Gamma(

L+ 1

2
,
Lλ2

v

2
), j = 1, . . . , p

ζj|πe, τ 2
ej, σ

2 ∼ πeN(0, σ2τ 2
ej) + (1− πe)δ0(ζj), j = 1, . . . , p

τ 2
ej|λe ∼

λ2
e

2
exp(−

λ2
eτ

2
ej

2
), j = 1, . . . , p

σ2 ∼ (σ2)−s−1 exp(− h

σ2
)

Consider the following conjugate gamma priors for λ2
c , λ

2
v and λ2

e

λ2
c ∼ Gamma(ac, bc), λ2

v ∼ Gamma(av, bv) and λ2
e ∼ Gamma(ae, be)

and conjugate beta priors for πc, πv and πe

πc ∼ Beta(rc, wc), πv ∼ Beta(rv, wv) and πe ∼ Beta(re, we)
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B.10.2 Gibbs Sampler

π(η|rest)

∝ π(η)π(y|·)

∝ exp
(
− 1

2
η>Σ−1

η0 η
)

exp
(
− 1

2σ2
(Y − µ)>(Y − µ)

)
∝ exp

(
− 1

2
η>Σ−1

η0 η −
1

2σ2
(Y −B0η − µ(−η))

>(Y −B0η − µ(−η))

)

∝ exp

(
η>Σ−1

η0 η +
1

σ2
η>B>0 B0η −

2

σ2
(Y − µ(−η))

>(B0η)

)

∝ exp

(
η>
(

Σ−1
η0 +

1

σ2
B>0 B0

)
η − 2

σ2
(Y − µ(−η))

>B0η

)

where B0 = (B0(Z1), . . . , B0(Zn))>. Hence, the full conditional distribution of η is multi-

variate normal with mean

µη =
(

Σ−1
η0 +

1

σ2
B>0 B0

)−1( 1

σ2
(Y − µ(−η))

>B0

)>
and variance

Ση =
(

Σ−1
η0 +

1

σ2
B>0 B0

)−1

Similarly, the full conditional distribution of α is N(µα,Σα) with

µα =
(

Σ−1
α0 +

1

σ2
W>W

)−1( 1

σ2
(Y − µ(−α))

>W
)>

and variance

Σα =
(

Σ−1
α0 +

1

σ2
W>W

)−1

where W = (W1, . . . ,Wn)>. And the full conditional distribution of ζ0 is N(µζ0 ,Σζ0) with

µζ0 =
(

1/σ2
ζ0

+
1

σ2

n∑
i=1

E2
i

)−1( 1

σ2

n∑
i=1

(yi − µ(−ζ0))Ei

)
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and variance

Σζ0 =
(

1/σ2
ζ0

+
1

σ2

n∑
i=1

E2
i

)−1

The full conditional distribution of γj∗

π(γj∗|rest)

∝ π(γj∗|τ 2
vj, σ

2)π(y|·)

∝ (σ2)−
n
2 exp

(
− 1

2σ2
(Y − Ujγj∗ − µ(−γj∗))

>(Y − Ujγj∗ − µ(−γj∗))

)

×

(
πv(2πσ

2τ 2
vj)
−L

2 exp
(
− 1

2σ2τ 2
vj

γ>j∗γj∗

)
I{γj∗ 6=0} + (1− πv)δ0(γj∗)

)
(B.1)

where Uj = (U1j, . . . , Unj)
> is a n× L matrix.

lvj = π(γj∗ 6= 0|rest)

=
πv

πv + (1− πv)(τ 2
vj)

L
2 |Σγj∗|−

1
2 exp

(
− 1

2σ2‖Σ
1
2
γj∗U

>
j (Y − µ(−γj∗))‖2

2

)
Hence, the full conditional distribution of γj∗ is a spike and slab distribution

γj∗|rest ∼ lvjN(µγj∗ , σ
2Σγj∗) + (1− lvj)δ0(γj∗)

with mean

µγj∗ = Σγj∗U
>
j (Y − µ(−γj∗))

This posterior distribution is a mixture of a multivariate normal and a point mass at 0. To

sample from this posterior distribution at the gth iteration, we follow the steps:

• Generate u from Unif[0,1]

• If u ≤ lvj

– Generate t from N(µγj∗ , σ
2Σγj∗)
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– set γ
(g)
j∗ = t and φ

(g)
vj = 1

• If u > lvj

– set γ
(g)
j∗ = 0 and φ

(g)
vj = 0

Note that, when we sample γ
(g)
j∗ , we also compute the value of φ

(g)
vj . The full conditional

distribution of γj1 can be expressed as

π(γj1|rest)

∝ π(γj1|τ 2
cj, σ

2)π(y|·)

∝ (σ2)−
n
2 exp

(
− 1

2σ2
(Y −Xjγj1 − µ(−γj1))

>(Y −Xjγj1 − µ(−γj1))

)

×

(
πc(2πσ

2τ 2
cj)
− 1

2 exp
(
− 1

2σ2τ 2
cj

γ2
j1

)
I{γj1 6=0} + (1− πc)δ0(γj1)

)

Let Σγj1 = (X>j Xj + 1
τ2cj

)−1, we have

lcj = π(γj1 6= 0|rest)

=
πc

πc + (1− πc)(τ 2
cj)

1
2 (Σγj1)

− 1
2 exp

(
− Σγj1

2σ2 ‖(Y − µ(−γj1))>Xj‖2
2

)
Hence, the full conditional distribution of γj1 is a spike and slab distribution

γj1|rest ∼ lcjN(µγj1 , σ
2Σγj1) + (1− lcj)δ0(γj1)

with mean

µγj1 = Σγj1X
>
j (Y − µ(−γj1))
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The full conditional distribution of ζj, j = 1, . . . , p

π(ζj|rest)

∝ π(ζj|τ 2
j , σ

2)π(y|·)

∝ (σ2)−
n
2 exp

(
− 1

2σ2
(Y − Tjζj − µ(−ζj))

>(Y − Tjζj − µ(−ζj))
)

×

(
πe(2πσ

2τ 2
ej)
− 1

2 exp
(
− 1

2σ2τ 2
ej

ζ2
j

)
I{ζj 6=0} + (1− πe)δ0(ζj)

)

Let Σζj = (T>j Tj + 1
τ2ej

)−1, we have

lej = π(ζj 6= 0|rest)

=
πe

πe + (1− πe)(τ 2
ej)

1
2 (Σζj)

− 1
2 exp

(
−

Σζj
2σ2 ‖(Y − µ(−ζj))

>Tj‖2
2

)
Hence, the full conditional distribution of ζj is a spike and slab distribution

ζj|rest ∼ lejN(µζj , σ
2Σζj) + (1− lej)δ0(ζj)

where

µζj = ΣζjT
>
j (Y − µ(−ζj))

Now, we derive the full conditional distribution for τ 2
vj, τ

2
cj and τ 2

ej.

π(τ 2
vj|rest)

∝ π(τ 2
vj|λv)π(γj∗|τ 2

vj, σ
2)

∝ (τ 2
vj)

L+1
2
−1 exp

(
− τ 2

vj

Lλ2
v

2

)
×

(
πv(2πσ

2τ 2
vj)
−L

2 exp
(
− 1

2σ2τ 2
vj

γ>j∗γj∗

)
I{γj∗ 6=0} + (1− πv)δ0(γj∗)

)
(B.2)
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When γj∗ = 0, B.2 is equal to

(1− πv)(τ 2
vj)

L+1
2
−1 exp

(
− τ 2

vj

Lλ2
v

2

)
Therefore, when γj∗ = 0, the posterior distribution for (τ 2

vj)
−1 is Inverse-Gamma(L+1

2
, Lλ2v

2
).

When γj∗ 6= 0, B.2 is equal to

π(τ 2
vj|rest)

∝ (1− πv)(2πσ2τ 2
vj)
−L

2 (τ 2
vj)

L+1
2
−1 exp

(
− τ 2

vj

Lλ2
v

2

)
exp

(
− 1

2σ2τ 2
vj

γ>j∗γj∗

)

∝ (1− πv)(2πσ2)−
L
2 (τ 2

vj)
− 1

2 exp

(
− τ 2

vj

Lλ2
v

2
− ‖γj∗‖

2
2

2σ2τ 2
vj

)

Therefore, when γj∗ 6= 0, the posterior distribution for (τ 2
vj)
−1 is Inverse-Gaussian(Lλ2

v,√
Lλ2vσ

2

‖γj∗‖22
). Together

(τ 2
vj)
−1|rest ∼


Inverse-Gamma(L+1

2
, Lλ2v

2
) if γj∗ = 0

Inverse-Gaussian(Lλ2
v,
√

Lλ2vσ
2

‖γj∗‖22
) if γj∗ 6= 0

Similarly, the posterior distribution for (τ 2
cj)
−1 is

π(τ 2
cj|rest)

∝ π(τ 2
cj|λc)π(γj1|τ 2

cj, σ
2)

∝ λ2
c

2
exp

(
− τ 2

cj

λ2
c

2

)
×

(
πc(2πσ

2τ 2
cj)
− 1

2 exp
(
− 1

2σ2τ 2
cj

γ2
j1

)
I{γj1 6=0} + (1− πc)δ0(γj1)

)
(B.3)
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When γj1 = 0, B.3 is equal to

(1− πc)
λ2
c

2
exp

(
− τ 2

cj

λ2
c

2

)
Therefore, when γj1 = 0, the posterior distribution for (τ 2

cj)
−1 is Inverse-Gamma(1, λ2c

2
).

When γj1 6= 0, B.3 is equal to

π(τ 2
cj|rest)

∝ (1− πc)(2πσ2τ 2
cj)
− 1

2
λ2
c

2
exp

(
− τ 2

cj

λ2
c

2

)
exp

(
− 1

2σ2τ 2
cj

γ2
j1

)

∝ (τ 2
cj)
− 1

2 exp

(
− τ 2

cj

λ2
c

2
−

γ2
j1

2σ2τ 2
cj

)

Therefore, when γj1 6= 0, the posterior distribution for (τ 2
cj)
−1 is Inverse-Gaussian(λ2

c ,
√

λ2cσ
2

γ2j1
).

Together

(τ 2
cj)
−1|rest ∼


Inverse-Gamma(1, λ2c

2
) if γj1 = 0

Inverse-Gaussian(λ2
c ,
√

λ2cσ
2

γ2j1
) if γj1 6= 0

The posterior distribution (τ 2
ej)
−1

π(τ 2
ej|rest)

∝ π(τ 2
ej|λe)π(ζj|τ 2

ej, σ
2)

∝ λ2
e

2
exp

(
− τ 2

ej

λ2
e

2

)
×

(
πe(2πσ

2τ 2
ej)
− 1

2 exp
(
− 1

2σ2τ 2
ej

ζ2
j

)
I{ζj 6=0} + (1− πe)δ0(ζj)

)
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Following the similar arguments, we have

(τ 2
ej)
−1|rest ∼


Inverse-Gamma(1, λ2e

2
) if ζj = 0

Inverse-Gaussian(λ2
e,
√

λ2eσ
2

ζ2j
) if ζj 6= 0

Now, we derive the full conditional distribution for λ2
v and τ 2

cj. The posterior distribution

for λ2
v:

π(λ2
v|rest)

∝ π(λ2
v)

p∏
j=1

π(τ 2
vj|λ2

v)

∝ (λ2
v)
av−1 exp(−bvλ2

v)

p∏
j=1

(
Lλ2

v

2

)L+1
2

exp

(
− Lλ2

v

2
τ 2
vj

)

∝ (λ2
v)
av+

p(L+1)
2
−1 exp

(
− (bv +

L
∑p

j=1 τ
2
vj

2
)λ2

v

)

the posterior distribution for λ2
v is Gamma(av + p(L+1)

2
, bv +

L
∑p
j=1 τ

2
vj

2
).

π(λ2
c |rest)

∝ π(λ2
c)

p∏
j=1

π(τ 2
cj|λ2

c)

∝ (λ2
c)
ac−1 exp(−bcλ2

c)

p∏
j=1

λ2
c

2
exp

(
− λ2

c

2
τ 2
cj

)

∝ (λ2
c)
ac+p−1 exp

(
− (bc +

∑p
j=1 τ

2
cj

2
)λ2

c

)

the posterior distribution for λ2
c is Gamma(ac+p, bc+

∑p
j=1 τ

2
cj

2
). Similarly, the full conditional

distribution for λ2
e is Gamma(ae + p, be +

∑p
j=1 τ

2
ej

2
).

Next, we derive the full conditional distribution for πv, πc and πe. The posterior distri-
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bution for πv

π(πv|rest)

∝ π(πv)

p∏
j=1

π(γ2
j∗|πv, τ 2

vj, σ
2)

∝ πrv−1
v (1− πv)wv−1

×
p∏
j=1

(
πv(2πσ

2τ 2
vj)
−L

2 exp
(
− 1

2σ2τ 2
vj

γ>j∗γj∗

)
I{γj∗ 6=0} + (1− πv)δ0(γj∗)

)

∝ π
rv+

∑p
j=1 I{γj∗6=0}−1

v (1− πv)wv+
∑p
j=1 δ0(γj∗)−1

the posterior distribution for πv is Beta(rv +
∑p

j=1 I{γj∗ 6=0}, wv +
∑p

j=1 δ0(γj∗)).

π(πc|rest)

∝ π(πc)

p∏
j=1

π(γ2
j1|πc, τ 2

cj, σ
2)

∝ πrc−1
c (1− πc)wc−1

×
p∏
j=1

(
πc(2πσ

2τ 2
cj)
− 1

2 exp
(
− 1

2σ2τ 2
cj

γ2
j1

)
I{γj1 6=0} + (1− πc)δ0(γj1)

)

∝ π
rc+

∑p
j=1 I{γj1 6=0}−1

c (1− πc)wc+
∑p
j=1(δ0(γj1))−1
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the posterior distribution for πc is Beta(rc +
∑p

j=1 I{γj1 6=0}, wc +
∑p

j=1 δ0(γj1)).

π(πe|rest)

∝ π(πe)

p∏
j=1

π(ζ2
j |πe, τ 2

ej, σ
2)

∝ πre−1
e (1− πe)we−1

×
p∏
j=1

(
πe(2πσ

2τ 2
ej)
− 1

2 exp
(
− 1

2σ2τ 2
ej

ζ2
j

)
I{ζj 6=0} + (1− πe)δ0(ζj)

)

∝ π
re+

∑p
j=1 I{ζj 6=0}−1

e (1− πe)we+
∑p
j=1(δ0(ζj))−1

the posterior distribution for πe is Beta(re +
∑p

j=1 I{ζj 6=0}, we +
∑p

j=1 δ0(ζj)). Last, the full

conditional distribution for σ2

π(σ2|rest)

∝π(σ2)π(y|·)
p∏
j=1

π(γj1|πc, τ 2
cj, σ

2)π(γj∗|πv, τ 2
vj, σ

2)π(ζj|πe, τ 2
j , σ

2)

∝(σ2)−s−1 exp(− h

σ2
)(σ2)−

n
2 exp

(
− 1

2σ2
(Y − µ)>(Y − µ)

)
×

p∑
j=1

(
πc(2πσ

2τ 2
cj)
− 1

2 exp
(
− 1

2σ2τ 2
cj

γ2
j1

)
I{γj1 6=0} + (1− πc)δ0(γj1)

)

×
p∑
j=1

(
πv(2πσ

2τ 2
vj)
−L

2 exp
(
− 1

2σ2τ 2
vj

γ>j∗γj∗

)
I{γj∗ 6=0} + (1− πv)δ0(γj∗)

)

×
p∑
j=1

(
πe(2πσ

2τ 2
ej)
− 1

2 exp
(
− 1

2σ2τ 2
ej

ζ2
j

)
I{ζj 6=0} + (1− πe)δ0(ζj)

)

∝(σ2)−(s+
n+L

∑
I{γj∗6=0}+

∑
I{ζj 6=0}+

∑
I{γj1 6=0}

2
)−1

× exp

(
− 1

σ2

(
h+

(Y − µ)>(Y − µ) +
∑p

j=1(τ 2
cj)
−1γ2

j1 + (τ 2
vj)
−1γ>j∗γj∗ + (τ 2

j )−1ζ2
j

2

))
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the posterior distribution for σ2 is Inverse-Gamma(µσ2 , Σσ2) where

µσ2 = s+
n+ L

∑p
j=1 I{γj∗ 6=0} +

∑p
j=1 I{ζj 6=0} +

∑p
j=1 I{γj1 6=0}

2

Σσ2 = h+
(Y − µ)>(Y − µ) +

∑p
j=1(τ 2

cj)
−1γ2

j1 + (τ 2
vj)
−1γ>j∗γj∗ + (τ 2

j )−1ζ2
j

2

B.11 Posterior inference for the BSSVC method

B.11.1 Priors

Y |η, γ1, . . . , γp,α1, . . . , αq, ζ0, ζ1, . . . , ζp, σ
2

∝ (σ2)−
n
2 exp

{
− 1

2σ2
(Y − µ)>(Y − µ)

}
η ∼ Nqn(0, Ση0)

α ∼ Nq(0, Σα0)

ζ0 ∼ N(0, σ2
ζ0

)

γj|πc, τ 2
vj, σ

2 ∼ πvNqn(0, Diag(σ2τ 2
vj, . . . , σ

2τ 2
vj)) + (1− πv)δ0(γj), j = 1, . . . , p

τ 2
vj|λv ∼ Gamma(

qn + 1

2
,
qnλ

2
v

2
), j = 1, . . . , p

ζj|πe, τ 2
ej, σ

2 ∼ πeN(0, σ2τ 2
ej) + (1− πe)δ0(ζj), j = 1, . . . , p

τ 2
ej|λe ∼

λ2
e

2
exp(−

λ2
eτ

2
ej

2
), j = 1, . . . , p

σ2 ∼ (σ2)−s−1 exp(− h

σ2
)

Consider the following conjugate gamma priors for λ2
v and λ2

e

λ2
v ∼ Gamma(av, bv) and λ2

e ∼ Gamma(ae, be)
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and conjugate beta priors for πv and πe

πv ∼ Beta(rv, wv) and πe ∼ Beta(re, we)

B.11.2 Posterior distribution

π(η|rest) ∼ Nqn(µη, Ση) where

µη =
(

Σ−1
η0 +

1

σ2
B>0 B0

)−1( 1

σ2
(Y − µ(−η))

>B0

)>
Ση =

(
Σ−1
η0 +

1

σ2
B>0 B0

)−1

π(α|rest) ∼ Nq(µα,Σα) where

µα =
(

Σ−1
α0 +

1

σ2
W>W

)−1( 1

σ2
(Y − µ(−α))

>W
)>

Σα =
(

Σ−1
α0 +

1

σ2
W>W

)−1

π(ζ0|rest) ∼ N(µζ0 ,Σζ0) where

µζ0 =
(
σ−1
ζ0 +

1

σ2

n∑
i=1

E2
i

)−1( 1

σ2

n∑
i=1

(yi − µ(−ζ0))Ei

)

Σζ0 =
(

1/σ2
ζ0

+
1

σ2

n∑
i=1

E2
i

)−1

γj|rest ∼ lvjN(µγj , σ
2Σγj) + (1− lvj)δ0(γj) where

µγj = ΣγjU
>
j (Y − µ(−γj))

Σγj = (U>j Uj +
1

τ 2
vj

Iqn)−1

lvj =
πv

πv + (1− πv)(τ 2
vj)

qn
2 |Σγj |−

1
2 exp

(
− 1

2σ2‖Σ
1
2
γjU

>
j (Y − µ(−γj))‖2

2

)
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ζj|rest ∼ lejN(µζj , σ
2Σζj) + (1− lej)δ0(ζj) where

µζj = ΣζjT
>
j (Y − µ(−ζj))

Σζj = (T>j Tj +
1

τ 2
ej

)−1

lej =
πe

πe + (1− πe)(τ 2
ej)

1
2 (Σζj)

− 1
2 exp

(
−

Σζj
2σ2 ‖(Y − µ(−ζj))

>Tj‖2
2

)
At the gth iteration, the values of φ

(g)
vj and φ

(g)
ej can be determined by whether the γ

(g)
j and

ζ
(g)
j are set to 0 or not, respectively.

(τ 2
vj)
−1|rest ∼


Inverse-Gamma( qn+1

2
, qnλ2v

2
) if γj = 0

Inverse-Gaussian(qnλ
2
v,
√

qnλ2vσ
2

‖γj‖22
) if γj 6= 0

(τ 2
ej)
−1|rest ∼


Inverse-Gamma(1, λ2e

2
) if ζj = 0

Inverse-Gaussian(λ2
e,
√

λ2eσ
2

ζ2j
) if ζj 6= 0

λv and λe all have Gamma posterior distributions

λ2
v ∼ Gamma(av +

p(qn + 1)

2
, bv +

qn
∑p

j=1 τ
2
vj

2
)

λ2
e ∼ Gamma(ae + p, be +

∑p
j=1 τ

2
ej

2
)

πv and πe have beta posterior distributions

πv ∼ Beta(rv +

p∑
j=1

I{γj 6=0}, wv +

p∑
j=1

δ0(γj))

πe ∼ Beta(re +

p∑
j=1

I{ζj 6=0}, we +

p∑
j=1

δ0(ζj))
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σ2 ∼ Inverse-Gamma(µσ2 ,Σσ2) where

µσ2 = s+
n+ qn

∑p
j=1 I{γj 6=0} +

∑p
j=1 I{ζj 6=0}

2

Σσ2 = h+
(Y − µ)>(Y − µ) +

∑p
j=1(τ 2

vj)
−1γ>j γj + (τ 2

cj)
−1ζ2

j

2

B.12 Posterior inference for the BVC-SI method

B.12.1 Priors

Y |η, γ11, . . . , γp1,γ1∗, . . . , γp∗, α1, . . . , αq, ζ0, ζ1, . . . , ζp, σ
2

∝ (σ2)−
n
2 exp

{
− 1

2σ2
(Y − µ)>(Y − µ)

}
η ∼ Nqn(0,Ση0)

α ∼ Nq(0,Σα0)

ζ0 ∼ N(0, σ2
ζ0

)

γj1|τ 2
cj, σ

2 ∼ N(0, σ2τ 2
cj), j = 1, . . . , p

τ 2
cj|λc ∼

λ2
c

2
exp(−

λ2
cτ

2
cj

2
), j = 1, . . . , p

γj∗|τ 2
vj, σ

2 ∼ NL(0, diag(σ2τ 2
vj, . . . , σ

2τ 2
vj)), j = 1, . . . , p

τ 2
vj|λv ∼ Gamma(

L+ 1

2
,
Lλ2

v

2
), j = 1, . . . , p

ζj|τ 2
ej, σ

2 ∼ N(0, σ2τ 2
ej), j = 1, . . . , p

τ 2
ej|λ ∼

λ2
e

2
exp(−

λ2
eτ

2
ej

2
), j = 1, . . . , p

σ2 ∼ (σ2)−s−1 exp(− h

σ2
)
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Consider the following conjugate gamma priors for λ2
c , λ

2
v and λ2

e

λ2
c ∼ Gamma(ac, bc), λ2

v ∼ Gamma(av, bv) and λ2
e ∼ Gamma(ae, be)

B.12.2 Gibbs Sampler

π(η|rest) ∼ Nqn(µη, Ση) where

µη =
(

Σ−1
η0 +

1

σ2
B>0 B0

)−1( 1

σ2
(Y − µ(−η))

>B0

)>
Ση =

(
Σ−1
η0 +

1

σ2
B>0 B0

)−1

π(α|rest) ∼ Nq(µα,Σα) where

µα =
(

Σ−1
α0 +

1

σ2
W>W

)−1( 1

σ2
(Y − µ(−α))

>W
)>

Σα =
(

Σ−1
α0 +

1

σ2
W>W

)−1

π(ζ0|rest) ∼ N(µζ0 ,Σζ0) where

µζ0 =
(

1/σ2
ζ0 +

1

σ2

n∑
i=1

E2
i

)−1( 1

σ2

n∑
i=1

(yi − µ(−ζ0))Ei

)

Σζ0 =
(

1/σ2
ζ0

+
1

σ2

n∑
i=1

E2
i

)−1
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The full conditional distribution of γj

π(γj∗|rest)

∝ π(γj∗|τ 2
vj, σ

2)π(y|·)

∝ exp

(
− 1

2
(σ2τ 2

vj)
−1γ>j∗γj∗ −

1

2σ2
(Y − Ujγj∗ − µ(−γj∗))

>(Y − Ujγj∗ − µ(−γj∗))

)

∝ exp

(
− 1

2σ2

(
(τ 2
vj)
−1γ>j∗γj∗ + γ>j∗U

>
j Ujγj∗ − 2(Y − µ(−γj∗))

>(Ujγj∗)
))

∝ exp

(
− 1

2σ2

(
γ>j∗

(
(τ 2
vj)
−1 + U>j Uj

)
γj∗ − 2(Y − µ(−γj∗))

>Ujγj∗

))

where Uj = (U1j, . . . , Unj)
>. Hence, the full conditional distribution of γj∗ is multivariate

normal with mean

µγj∗ =
(

(τ 2
vj)
−1IL + U>j Uj

)−1(
(Y − µ(−γj∗))

>Uj

)>
and variance

Σγj∗ = σ2
(

(τ 2
vj)
−1IL + U>j Uj

)−1

Similarly, the full conditional distribution of γj1 is normal distribution with mean

µγj1 =
(

(τ 2
cj)
−1 +X>j Xj

)−1(
(yi − µ(−γj1))

>Xj

)
and variance

Σγj1 = σ2
(

(τ 2
cj)
−1 +X>j Xj

)−1
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Let Dτe = diag(τ 2
e1, . . . , τ

2
ep). The full conditional distribution of ζ = (ζ1, . . . , ζp)

>

π(ζ|rest)

∝ π(ζ|τ 2
e1, . . . , τ

2
ep, σ

2)π(y|·)

∝ exp

(
− 1

2
(σ2Dτe)

−1ζ>ζ − 1

2σ2
(Y − Tζ − µ(−ζ))

>(Y − Tζ − µ(−ζ))

)

∝ exp

(
− 1

2σ2

(
D−1
τe ζ

>ζ + ζ>T>Tζ − 2(Y − µ(−ζ))
>Tζ

))

∝ exp

(
− 1

2σ2

(
ζ>(D−1

τe + T>T )ζ − 2(Y − µ(−ζ))
>Tζ

))

where T = (T1, . . . , Tn)>. The full conditional is Np(µζ , σ
2Σζ) with

µζ =
(
D−1
τe + T>T

)−1(
(Y − µ(−ζ))

>T
)>

and variance

Σζ =
(
D−1
τe + T>T

)−1

Now, we derive the full conditional distribution for τ 2
ej and λ2

e.

π(τ 2
vj|rest)

∝ π(τ 2
vj|λv)π(γj∗|τ 2

vj, σ
2)

∝ (τ 2
vj)

L+1
2
−1 exp

(
− τ 2

vj

Lλ2
v

2

)
(τ 2
vj)
−L

2 exp

(
− 1

2
(σ2τ 2

vj)
−1γ>j∗γj∗

)

∝ (τ 2
vj)
− 1

2 exp

(
− τ 2

vj

Lλ2
v

2
− ||γj∗||

2
2

2σ2τ 2
vj

)

the posterior distribution for (τ 2
vj)
−1 is Inverse-Gaussian(Lλ2

v,
√

Lλ2vσ
2

||γj∗||22
). Similarly, the pos-

terior distribution for (τ 2
cj)
−1 is Inverse-Gaussian(λ2

c ,
√

λ2cσ
2

γ2j1
), and the posterior distribution
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for (τ 2
ej)
−1 is Inverse-Gaussian(λ2

e,
√

λ2eσ
2

ζ2j
).

π(λ2
v|rest)

∝ π(λ2
v)

p∏
j=1

π(τ 2
vj|λ2

v)

∝ (λ2
v)
av−1 exp(−bvλ2

v)

p∏
j=1

(
Lλ2

v

2

)L+1
2

exp

(
− Lλ2

v

2
τ 2
vj

)

∝ (λ2
v)
av+

p(L+1)
2
−1 exp

(
− (bv +

L
∑p

j=1 τ
2
vj

2
)λ2

v

)

the posterior distribution for λ2
c is Gamma(ac+p, bc+

∑p
j=1 τ

2
cj

2
). Similarly, the full conditional

distribution for λ2
e is Gamma(ae + p, be +

∑p
j=1 τ

2
ej

2
). Last, the full conditional distribution for

σ2

π(σ2|rest)

∝ π(σ2)π(y|·)
p∏
j=1

π(γj1|πc, τ 2
cj, σ

2)π(γj∗|πv, τ 2
vj, σ

2)π(ζj|πe, τ 2
ej, σ

2)

∝ (σ2)−s−1 exp(− h

σ2
)(σ2)−

n
2 exp

(
− 1

2σ2
(Y − µ)>(Y − µ)

)
× (σ2)−

p
2 exp

(
− 1

2σ2

p∑
j=1

(τ 2
cj)
−1γ2

j1

)

× (σ2)−
pL
2 exp

(
− 1

2σ2

p∑
j=1

(τ 2
vj)
−1γ>j∗γj∗

)

× (σ2)−
p
2 exp

(
− 1

2σ2

p∑
j=1

(τ 2
ej)
−1ζ2

j

)

∝ (σ2)−(s+n+2p+pL
2

)−1

× exp

(
− 1

σ2

(
h+

(Y − µ)>(Y − µ) +
∑p

j=1(τ 2
cj)
−1γ2

j1 + (τ 2
vj)
−1γ>j∗γj∗ + (τ 2

ej)
−1ζ2

j

2

))
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the posterior distribution for σ2 is Inverse-Gamma(µσ2 , Σσ2) where

µσ2 = s+
n+ 2p+ pL

2

Σσ2 = h+
(Y − µ)>(Y − µ) +

∑p
j=1(τ 2

cj)
−1γ2

j1 + (τ 2
vj)
−1γ>j∗γj∗ + (τ 2

ej)
−1ζ2

j

2

B.13 Posterior inference for the BVC method

B.13.1 Priors

Y |η, γ1, . . . , γp, α1, . . . , αq, ζ0, ζ1, . . . , ζp, σ
2 ∝ (σ2)−

n
2 exp

{
− 1

2σ2
(Y − µ)>(Y − µ)

}
η ∼ Nqn(0,Ση0)

α ∼ Nq(0,Σα0)

ζ0 ∼ N(0, σ2
ζ0

)

γj|τ 2
vj, σ

2 ∼ Nqn(0, diag(σ2τ 2
vj, . . . , σ

2τ 2
vj)), j = 1, . . . , p

τ 2
vj|λv ∼ Gamma(

qn + 1

2
,
qnλ

2
v

2
), j = 1, . . . , p

ζj|τ 2
ej, σ

2 ∼ N(0, σ2τ 2
ej), j = 1, . . . , p

τ 2
ej|λe ∼

λ2
e

2
exp(−

λ2
eτ

2
ej

2
), j = 1, . . . , p

σ2 ∼ (σ2)−s−1 exp(− h

σ2
)

Consider the following conjugate gamma priors for λ2
v and λ2

e

λ2
v ∼ Gamma(av, bv) and λ2

e ∼ Gamma(ae, be)
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B.13.2 Gibbs Sampler

π(η|rest) ∼ Nqn(µη, Ση) where

µη =
(

Σ−1
η0 +

1

σ2
B>0 B0

)−1( 1

σ2
(Y − µ(−η))

>B0

)>
Ση =

(
Σ−1
η0 +

1

σ2
B>0 B0

)−1

π(α|rest) ∼ Nq(µα,Σα) where

µα =
(

Σ−1
α0 +

1

σ2
W>W

)−1( 1

σ2
(Y − µ(−α))

>W
)>

Σα =
(

Σ−1
α0 +

1

σ2
W>W

)−1

π(ζ0|rest) ∼ N(µζ0 ,Σζ0) where

µζ0 =
(

1/σ2
ζ0 +

1

σ2

n∑
i=1

E2
i

)−1( 1

σ2

n∑
i=1

(yi − µ(−ζ0))Ei

)

Σζ0 =
(

1/σ2
ζ0

+
1

σ2

n∑
i=1

E2
i

)−1

γj|rest ∼ Nqn(µγj , σ
2Σγj) where

µγj = ΣγjU
>
j (Y − µ(−γj))

Σγj = (U>j Uj +
1

τ 2
vj

Iqn)−1

ζj|rest ∼ N(µζj , σ
2Σζj) where

µζj = ΣζjT
>
j (Y − µ(−ζj))

Σζj = (T>j Tj +
1

τ 2
ej

)−1
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The posterior distribution for (τ 2
vj)
−1 is Inverse-Gaussian(qnλ

2
v,
√

qnλ2vσ
2

||γj ||22
). Similarly, the

posterior distribution for (τ 2
ej)
−1 is Inverse-Gaussian(λ2

e,
√

λ2eσ
2

ζ2j
). λv and λe all have Gamma

posterior distributions

λ2
v ∼ Gamma(av +

p(qn + 1)

2
, bv +
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j=1 τ
2
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2
)

λ2
e ∼ Gamma(ae + p, be +

∑p
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2
ej

2
)

σ2 ∼ Inverse-Gamma(µσ2 ,Σσ2) where
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n+ p+ pqn
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(
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−1γ>j γj + (τ 2
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j

)
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Appendix C

Appendices for Chapter 4

C.1 Summary of methods.

Table C.1: Summary of the proposed and alternative methods.

Methods Reference

Robust

RBSG-SS Robust Bayesian sparse group selection
with spike–and–slab priors

proposed for the first time

RBG-SS Robust Bayesian group selection with
spike–and–slab priors

proposed for the first time

RBL-SS Robust Bayesian Lasso with spike–and–slab
priors

proposed for the first time

RBSG Robust Bayesian sparse group selection proposed for the first time

RBG Robust Bayesian group Lasso Li et al. (2010)

RBL Robust Bayesian Lasso Li et al. (2010)

Non-robust

BSG-SS Bayesian sparse group Lasso with
spike–and–slab priors

Xu and Ghosh (2015)

BG-SS Bayesian group Lasso with spike–and–slab
priors

Xu and Ghosh (2015);
Zhang et al. (2014a)

BL-SS Bayesian Lasso with spike–and–slab priors Xu and Ghosh (2015);
Zhang et al. (2014a)

BSG Bayesian sparse group Lasso Xu and Ghosh (2015)

BG Bayesian group Lasso Kyung et al. (2010)

BL Bayesian Lasso Park and Casella (2008)

Note: We constructed the models that can be applied to G×E settings based on the references.
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C.2 Hyper-parameters sensitivity analysis

We demonstrate the sensitivity of RBSG-SS for variable selection to the choice of the hyper-

parameters for π0, and π1. We consider five different Beta priors: (1) Beta(0.5, 0.5) which

is a U-shape curve between (0, 1); (2) Beta(1, 1) which is a essentially a uniform prior; (3)

Beta(2, 2) which is a quadratic curve; (4) Beta(1, 5) which is highly right-skewed; (5) Beta(5,

1) which is highly left-skewed. As a demonstrating example, we use the same setting of Ex-

ample 1 to generate data under the Error 2. Table C.2 shows the identification performance

of the median thresholding model (MPM) with different Beta priors. For all choices of Beta

priors, the MPM model is very stable. Also RBSG-SS correctly identifies most of the true

effects with low false positives in all cases. Therefore, we simply use Beta(1, 1) as the prior

for π0, and π1 in this study.

Table C.2: Sensitivity analysis for RBSG-SS using Example 1. mean(sd) of true positives
(TP), false positives (FP) and prediction errors (Pred) based on 100 replicates.

TP FP Pred

Beta(0.5, 0.5) 21.31(1.67) 1.71(1.50) 2.19(0.11)

Beta(1, 1) 21.66(1.72) 1.32(1.33) 2.17(0.10)

Beta(2, 2) 21.13(2.10) 1.47(1.16) 2.18(0.10)

Beta(1, 5) 20.82(1.71) 1.38(1.30) 2.17(0.10)

Beta(5, 1) 21.58(1.75) 2.22(1.52) 2.19(0.09)
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C.3 Assessment of the convergence of MCMC chains
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Figure C.1: Potential scale reduction factor (PSRF) against iterations for the first five
groups of coefficients in Example 1. Black line: the PSRF. Red line: the threshold of 1.1.
The β̂j1 to β̂j6 represent the six estimated coefficients for the main and interaction effects in
the jth group, (j = 0, . . . , 5), respectively.
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C.4 Additional simulation results

Table C.3: Simulation results in Example 2. (n, q, k, p) = (500, 2, 5, 100). mean(sd) of
true positives (TP), false positives (FP)and prediction errors (Pred) based on 100 replicates.

RBSG-SS RBG-SS RBL-SS BSG-SS BG-SS BL-SS

Error 1 TP 24.87(0.35) 25.00(0.00) 24.53(0.51) 24.83(0.38) 25.00(0.00) 24.53(0.51)

N FP 1.63(1.16) 31.40(3.38) 2.30(1.86) 1.13(1.04) 29.20(1.10) 0.60(0.85)

Pred 0.85(0.03) 0.86(0.03) 0.86(0.03) 1.09(0.06) 1.13(0.06) 1.10(0.07)

Error 2 TP 22.23(1.76) 24.67(0.76) 19.23(1.72) 19.97(1.63) 24.47(0.90) 15.27(1.91)

L FP 1.90(1.30) 35.73(7.83) 2.10(1.40) 2.33(1.42) 34.13(7.44) 1.73(1.39)

Pred 2.24(0.14) 2.18(0.11) 2.38(0.16) 10.21(1.27) 9.13(0.94) 11.30(1.83)

Error 3 TP 21.50(1.48) 25.00(0.00) 17.43(2.13) 18.73(2.02) 25.00(0.00) 13.10(1.54)

Mix.L FP 2.13(1.14) 35.20(6.77) 1.90(1.37) 2.90(1.71) 34.00(6.88) 1.37(0.96)

Pred 2.39(0.18) 2.29(0.11) 2.52(0.22) 12.46(1.67) 10.40(0.94) 13.04(1.35)

Error 4 TP 23.58(1.49) 25.00(0.00) 21.04(2.29) 15.94(5.34) 23.18(3.50) 12.08(4.60)

t2 FP 0.80(0.93) 30.32(3.27) 0.78(1.07) 7.46(27.02) 53.50(58.05) 3.56(8.91)

Pred 1.85(0.16) 1.82(0.13) 1.92(0.17) 25.65(55.13) 25.63(67.60) 30.67(87.77)

Error 5 TP 24.12(1.00) 25.00(0.00) 21.82(1.90) 18.04(3.64) 24.24(1.88) 13.12(2.99)

logNor FP 0.90(1.02) 29.48(1.64) 0.82(0.90) 2.72(1.75) 36.12(12.21) 1.48(1.25)

Pred 1.81(0.13) 1.82(0.12) 1.89(0.15) 14.85(6.53) 12.87(5.94) 15.19(6.43)
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Table C.4: Simulation results in Example 2. (n, q, k, p) = (500, 2, 5, 100). mean(sd) of
true positives (TP), false positives (FP) and prediction errors (Pred) based on 100 replicates.

RBSG RBG RBL BSG BG BL

Error 1 TP 24.20(0.61) 25.00(0.00) 24.23(0.57) 24.33(0.61) 25.00(0.00) 24.30(0.60)

N FP 2.93(1.86) 54.80(17.34) 3.30(1.97) 1.87(1.61) 56.20(10.30) 5.77(2.56)

Pred 1.14(0.05) 1.32(0.06) 1.15(0.05) 1.74(0.12) 2.13(0.14) 2.01(0.15)

Error 2 TP 14.00(2.27) 22.20(2.33) 13.63(2.66) 13.70(2.29) 23.63(1.61) 14.20(1.97)

L FP 0.60(0.85) 31.40(12.07) 0.83(1.05) 1.33(1.18) 62.77(24.90) 8.80(4.54)

Pred 2.57(0.13) 2.77(0.14) 2.58(0.14) 12.18(1.15) 14.42(1.40) 14.91(1.43)

Error 3 TP 12.40(2.03) 22.47(1.17) 12.27(1.87) 12.43(1.77) 23.20(1.49) 13.37(2.13)

Mix.L FP 0.57(0.77) 29.33(5.54) 0.60(0.93) 1.47(1.31) 59.80(13.17) 8.17(3.04)

Pred 2.69(0.11) 2.86(0.11) 2.69(0.10) 13.59(1.05) 16.32(1.46) 16.93(1.60)

Error 4 TP 15.98(2.92) 23.04(2.78) 16.10(3.12) 10.20(5.31) 20.52(5.81) 11.08(5.00)

t2 FP 0.26(0.53) 27.36(6.21) 0.30(0.65) 2.34(3.56) 65.04(30.70) 9.38(6.26)

Pred 2.19(0.16) 2.35(0.16) 2.21(0.17) 26.27(53.26) 34.08(78.47) 34.95(79.04)

Error 5 TP 16.48(2.69) 23.48(1.58) 16.30(2.63) 11.96(3.66) 22.26(3.70) 12.70(3.50)

logNor FP 0.32(0.59) 28.72(5.89) 0.34(0.59) 1.40(1.21) 62.34(20.52) 8.34(3.77)

Pred 2.20(0.14) 2.41(0.14) 2.20(0.13) 15.79(5.97) 18.90(6.61) 19.53(6.65)
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Table C.5: Simulation results in Example 3. (n, q, k, p) = (500, 2, 5, 100). mean(sd) of
true positives (TP), false positives (FP)and prediction errors (Pred) based on 100 replicates.

RBSG-SS RBG-SS RBL-SS BSG-SS BG-SS BL-SS

Error 1 TP 24.00(0.91) 25.00(0.00) 22.13(1.57) 24.33(0.66) 25.00(0.00) 22.83(1.37)

N FP 1.85(1.46) 33.40(5.21) 1.87(1.36) 1.27(1.34) 29.60(1.83) 0.77(1.04)

Pred 0.86(0.03) 0.86(0.03) 0.89(0.03) 1.11(0.07) 1.13(0.07) 1.17(0.10)

Error 2 TP 17.63(2.37) 24.73(0.69) 14.37(2.54) 15.00(2.32) 23.73(1.46) 11.00(1.95)

L FP 2.50(1.41) 33.27(5.14) 2.67(1.99) 2.60(1.43) 30.67(6.69) 1.87(1.53)

Pred 2.33(0.12) 2.15(0.10) 2.40(0.17) 10.37(1.01) 9.01(0.81) 10.71(0.94)

Error 3 TP 17.23(1.77) 24.80(0.61) 14.47(2.21) 15.10(2.29) 23.67(1.77) 11.03(1.38)

Mix.L FP 2.27(1.78) 32.20(6.94) 1.63(1.43) 2.13(1.70) 30.93(5.48) 1.17(1.34)

Pred 2.39(0.13) 2.24(0.10) 2.45(0.13) 11.98(1.45) 10.32(1.04) 12.37(1.41)

Error 4 TP 23.63(1.19) 24.67(0.92) 20.13(2.19) 15.07(4.69) 22.67(3.68) 11.40(4.01)

t2 FP 1.30(1.12) 29.13(2.67) 1.17(0.95) 3.37(1.88) 29.93(9.48) 2.37(1.97)

Pred 1.48(0.13) 1.45(0.11) 1.55(0.14) 12.66(12.40) 10.10(8.77) 12.75(11.83)

Error 5 TP 24.80(0.48) 25.00(0.00) 23.57(1.43) 20.30(2.83) 24.87(0.51) 15.87(2.32)

logNor FP 0.33(0.55) 29.60(1.83) 0.40(1.04) 3.00(1.66) 32.93(5.86) 2.33(1.63)

Pred 1.19(0.10) 1.21(0.10) 1.21(0.11) 6.055(1.77) 5.47(1.73) 6.54(1.75)

155



Table C.6: Simulation results in Example 3. (n, q, k, p) = (500, 2, 5, 100). mean(sd) of
true positives (TP), false positives (FP) and prediction errors (Pred) based on 100 replicates.

RBSG RBG RBL BSG BG BL

Error 1 TP 21.27(1.17) 25.00(0.00) 21.30(1.06) 22.23(0.94) 25.00(0.00) 22.13(1.28)

N FP 1.97(1.56) 45.40(11.68) 2.03(1.56) 1.23(1.33) 43.60(10.41) 3.37(2.03)

Pred 1.08(0.04) 1.21(0.05) 1.07(0.04) 1.57(0.12) 1.87(0.13) 1.79(0.13)

Error 2 TP 17.63(2.37) 24.73(0.69) 14.37(2.54) 15.00(2.32) 23.73(1.46) 11.00(1.95)

L FP 2.50(1.41) 33.27(5.14) 2.67(1.99) 2.60(1.43) 30.67(6.69) 1.87(1.53)

Pred 2.33(0.12) 2.15(0.10) 2.40(0.17) 10.37(1.01) 9.01(0.81) 10.71(0.94)

Error 3 TP 8.43(2.18) 16.70(3.29) 8.70(2.00) 7.97(2.04) 18.60(3.07) 8.27(1.78)

Mix.L FP 0.33(0.71) 17.70(4.60) 0.43(0.73) 0.60(0.72) 33.60(10.63) 3.70(2.34)

Pred 2.54(0.11) 2.69(0.12) 2.55(0.11) 12.33(1.15) 14.30(1.40) 14.55(1.40)

Error 4 TP 13.77(2.18) 21.20(2.06) 13.67(2.04) 9.67(3.74) 20.60(4.79) 9.77(3.76)

t2 FP 0.43(0.63) 22.80(3.98) 0.57(0.63) 1.03(1.13) 38.00(12.21) 4.47(2.50)

Pred 1.73(0.12) 1.85(0.13) 1.73(0.13) 11.78(9.05) 13.94(11.84) 14.22(12.41)

Error 5 TP 19.10(1.86) 24.87(0.73) 19.10(1.60) 15.27(2.94) 24.07(1.70) 15.07(2.88)

logNor FP 0.20(0.48) 31.13(5.96) 0.23(0.57) 1.10(1.16) 43.93(11.82) 3.83(2.21)

Pred 1.45(0.08) 1.61(0.09) 1.46(0.08) 6.13(1.13) 7.19(1.24) 7.16(1.29)
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Table C.7: Simulation results in Example 4. (n, q, k, p) = (500, 2, 5, 100). mean(sd) of
true positives (TP), false positives (FP) and prediction errors (Pred) based on 100 replicates.

RBSG-SS RBG-SS RBL-SS BSG-SS BG-SS BL-SS

Error 1 TP 24.93(0.37) 25.00(0.00) 24.93(0.25) 25.00(0.00) 25.00(0.00) 24.90(0.31)

N FP 1.33(0.99) 30.60(3.84) 1.47(1.25) 1.00(1.02) 29.20(1.10) 0.33(0.61)

Pred 0.84(0.02) 0.88(0.02) 0.85(0.03) 1.10(0.04) 1.20(0.06) 1.11(0.05)

Error 2 TP 20.80(2.65) 23.60(1.47) 17.24(2.96) 18.58(3.46) 23.04(1.64) 14.08(3.26)

L FP 1.32(1.22) 30.76(4.93) 1.66(1.29) 1.98(1.53) 27.72(5.49) 1.42(1.25)

Pred 2.25(0.11) 2.22(0.08) 2.37(0.12) 10.32(1.25) 9.53(0.75) 11.43(1.20)

Error 3 TP 20.56(2.73) 23.69(1.38) 16.53(3.20) 17.56(3.49) 22.80(1.65) 12.67(3.39)

Mix.L FP 1.40(1.30) 30.04(5.46) 1.78(1.82) 1.76(1.28) 27.60(5.24) 1.22(1.43)

Pred 2.38(0.13) 2.35(0.10) 2.51(0.16) 12.04(1.40) 11.12(0.96) 13.32(1.44)

Error 4 TP 24.60(0.93) 24.67(0.92) 23.77(1.57) 20.10(6.38) 22.27(5.10) 15.63(6.69)

t2 FP 0.40(0.56) 29.13(2.97) 0.47(0.73) 1.83(1.90) 28.13(9.22) 1.17(1.15)

Pred 1.48(0.09) 1.52(0.09) 1.51(0.11) 11.54(6.94) 11.33(6.95) 12.64(6.74)

Error 5 TP 23.16(1.68) 24.96(0.28) 19.60(2.14) 15.64(3.76) 23.44(1.83) 11.60(2.75)

logNor FP 1.08(1.16) 29.16(1.33) 0.72(0.83) 2.20(1.83) 30.56(7.43) 1.48(1.43)

Pred 1.56(0.14) 1.53(0.13) 1.63(0.15) 10.98(5.80) 9.45(5.38) 11.38(6.03)
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Table C.8: Simulation results in Example 4. (n, q, k, p) = (500, 2, 5, 100). mean(sd) of
true positives (TP), false positives (FP) and prediction errors (Pred) based on 100 replicates.

RBSG RBG RBL BSG BG BL

Error 1 TP 21.47(1.87) 24.40(1.07) 21.67(1.81) 22.70(1.64) 24.87(0.51) 22.53(1.85)

N FP 3.17(2.51) 56.00(20.03) 3.33(2.59) 2.30(1.66) 66.33(14.04) 6.57(2.62)

Pred 1.26(0.06) 1.44(0.07) 1.27(0.06) 2.40(0.27) 2.83(0.24) 2.75(0.30)

Error 2 TP 9.08(2.54) 19.38(3.12) 9.20(2.60) 9.68(2.41) 20.82(2.93) 10.80(2.65)

L FP 0.78(0.86) 30.30(10.26) 0.84(0.89) 2.18(1.48) 65.94(19.60) 8.62(3.38)

Pred 2.67(0.08) 2.89(0.09) 2.67(0.09) 13.54(0.87) 16.38(1.19) 16.87(1.27)

Error 3 TP 8.51(2.31) 18.71(3.37) 8.62(2.33) 9.02(2.33) 20.60(2.76) 10.58(2.50)

Mix.L FP 0.56(0.69) 25.29(7.94) 0.56(0.66) 1.87(1.36) 56.87(15.55) 7.38(2.91)

Pred 2.79(0.11) 3.00(0.12) 2.79(0.12) 15.34(1.29) 18.66(1.69) 19.30(1.88)

Error 4 TP 13.30(3.32) 21.93(2.72) 13.47(3.33) 10.93(4.30) 20.97(4.76) 11.97(4.43)

t2 FP 0.50(0.57) 29.07(9.28) 0.40(0.50) 1.70(1.39) 60.03(20.56) 7.90(3.92)

Pred 2.03(0.12) 2.22(0.12) 2.03(0.12) 15.20(7.98) 18.61(12.19) 19.41(13.39)

Error 5 TP 14.38(2.64) 22.36(2.22) 14.40(2.70) 10.12(3.53) 20.84(3.74) 10.56(3.39)

logNor FP 0.30(0.58) 25.16(4.36) 0.22(0.46) 0.88(1.12) 36.52(12.60) 3.70(2.57)

Pred 1.84(0.15) 1.99(0.17) 1.84(0.15) 11.23(5.54) 13.02(5.80) 13.18(5.90)

158



C.5 Estimation results for data analysis

Table C.9: Analysis of the NHS T2D data using RBSG-

SS.

SNP Gene chol act gl ceraf alcohol

3.503 -3.447 0.752 -3.364 -2.639

rs10741150 DOCK1 -0.948

rs10765059 TCERG1L -0.531 0.877

rs10786611 RF00019 0.668 0.723 0.530

rs10884466 RNA5SP326 -0.466 0.643

rs10885423 NRG3 -0.715

rs10886442 GRK5 0.805

rs11196539 NRG3 -0.608 -0.801

rs11198590 CACUL1 -0.494 0.994 -0.687

rs11259039 FRMD4A 1.016

rs1194657 THAP12P3 0.798

rs1219508 RPS15AP5 -0.742

rs12265854 SLC16A12 0.397

rs12414552 TCERG1L 0.667 0.470 0.585 -0.690

rs12767723 SLC25A18P1 0.820 -0.515

rs12772559 TACR2 0.938 0.510

rs12774333 LRMDA -0.599

rs12775160 FOXI2 -0.651 -0.501 0.647

rs16916794 SLC39A12 -0.552 0.511 0.455

rs16920092 PLXDC2 -0.843

rs17094114 GFRA1 -0.615

Continued on the next page
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Table C.9: Continued from the previous page.

SNP Gene chol act gl ceraf alcohol

rs2492664 OR6L1P 0.695 -0.737

rs2784767 PLAC9 -0.540

rs2814322 GRID1 -0.830

rs3740063 ABCC2 -0.966

rs3763722 LARP4B 0.332 -1.156 0.866

rs4411238 PRKG1 0.537

rs4578341 CHST15 -0.822 0.602

rs4747517 ITIH5 -1.468 0.920

rs4749926 IL2RA -0.840 -0.815

rs4917817 PYROXD2 -0.624 0.594

rs4918904 XRCC6P1 0.997

rs6482836 DOCK1 -0.957 1.067

rs7070789 GPAM -1.245 -0.791

rs7072255 ANTXRLP1 0.800

rs7077721 SNRPD2P1 0.858 0.774

rs7896554 NACAP2 0.840 -0.630 -0.565

rs7897847 LGI1 0.962

rs870753 CFAP58 -0.783

rs881726 GFRA1 1.001
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Table C.10: Analysis of the NHS T2D data using RBL-

SS.

SNP Gene chol act gl ceraf alcohol

1.354 -0.430 -0.778 -2.424 -4.000

rs1041168 PLPP4 0.463

rs10741150 DOCK1 -1.126

rs10786611 RF00019 0.632

rs10794069 ADAM12 0.524

rs10824802 MBL2 0.553

rs10884466 RNA5SP326 -0.439 0.503

rs10885423 NRG3 -1.060

rs10886047 MIR3663HG -0.410

rs10886442 GRK5 1.087

rs10998780 ATP5MC1P7 0.150

rs11003665 RNA5SP318 0.632

rs11013740 KIAA1217 0.852

rs11196539 NRG3 -0.624

rs11198590 CACUL1 -0.628

rs11202221 BMPR1A 0.815

rs11259039 FRMD4A 1.021

rs11595123 AKR1E2 1.079

rs11813505 KIAA1217 1.301

rs1194657 THAP12P3 0.663

rs1219508 RPS15AP5 -0.886

rs12265854 SLC16A12 0.596

Continued on the next page
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Table C.10: Continued from the previous page.

SNP Gene chol act gl ceraf alcohol

rs12269237 RF00017 0.884

rs12414552 TCERG1L 0.594

rs12414627 PNLIPRP1 -0.551

rs12767723 SLC25A18P1 0.962

rs12772559 TACR2 0.906

rs12774333 LRMDA -0.449

rs12775160 FOXI2 -0.560

rs1573137 SORCS3 0.615

rs16916794 SLC39A12 -0.803 0.528

rs16920092 PLXDC2 -0.655

rs17094114 GFRA1 -0.563

rs2291314 PLPP4 0.536

rs2420979 TACC2 -1.091

rs2492664 OR6L1P 0.655 -0.363

rs2664339 RNU6-543P -0.501

rs2666236 IATPR 0.689

rs2784767 PLAC9 -0.452 0.730

rs2814322 GRID1 -0.806

rs2842129 DYNC1I2P1 -0.662

rs2900814 SNRPD2P1 -0.643

rs3740063 ABCC2 -0.885

rs3763722 LARP4B 1.036

rs4411238 PRKG1 0.399
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Table C.10: Continued from the previous page.

SNP Gene chol act gl ceraf alcohol

rs4578341 CHST15 -0.582 0.479

rs4747009 LRRC20 0.710

rs4747517 ITIH5 -0.905

rs4749926 IL2RA -0.607

rs4752432 PLPP4 0.725

rs4917817 PYROXD2 -0.506

rs4934762 PCAT5 -0.560

rs6482836 DOCK1 -0.709

rs7070789 GPAM -0.820

rs7072255 ANTXRLP1 0.811

rs7077721 SNRPD2P1 0.702

rs7894809 PCGF5 0.501

rs7896554 NACAP2 0.850 -0.953

rs7897847 LGI1 0.929

rs7903853 FRMD4A -1.185

rs7920351 TCERG1L -0.713

rs881726 GFRA1 0.675

rs943213 DOCK1 -0.939

Table C.11: Analysis of the NHS T2D data using BSG-

SS.

SNP Gene chol act gl ceraf alcohol

2.045 -2.049 -2.204 -1.796 -4.436
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Table C.11: Continued from the previous page.

SNP Gene chol act gl ceraf alcohol

rs1041168 PLPP4 0.638

rs10765059 TCERG1L 0.709

rs10786611 RF00019 0.773 0.556

rs10829671 EBF3 -0.505

rs10884466 RNA5SP326 -0.563 0.625

rs10886442 GRK5 1.038

rs10998780 ATP5MC1P7 0.704

rs11017821 TCERG1L 0.665

rs11198590 CACUL1 -0.698 0.905 0.568

rs11200996 CCSER2 0.508

rs11259039 FRMD4A 1.174

rs1219508 RPS15AP5 -0.787

rs12265854 SLC16A12 0.681 -0.494

rs12269237 RF00017 0.684

rs12414552 TCERG1L 0.480

rs12764378 ARID5B -0.420

rs12767723 SLC25A18P1 0.638 -0.559

rs12775160 FOXI2 -0.762 0.893

rs1361709 PCDH15 -0.852

rs1395465 RN7SL63P 0.292

rs16916794 SLC39A12 -0.614 0.580 0.622

rs16920092 PLXDC2 -0.692

rs17094114 GFRA1 -0.676

Continued on the next page

164



Table C.11: Continued from the previous page.

SNP Gene chol act gl ceraf alcohol

rs17469499 KIAA1217 -0.527

rs2472737 RET 0.629

rs2577356 GFRA1 0.875

rs2784767 PLAC9 -0.569 0.537

rs2792708 GPAM 0.488

rs2900814 SNRPD2P1 -0.460

rs2926458 RNU6-463P -0.680

rs3763722 LARP4B -1.251 1.186

rs4411238 PRKG1 0.619

rs4747517 ITIH5 -1.257

rs4752432 PLPP4 0.956

rs4917817 PYROXD2 -0.626 0.630

rs4922535 GDF10 -0.601 -0.649

rs4934762 PCAT5 -0.640

rs4934858 NRP1 0.281

rs6482836 DOCK1 -0.773

rs7070789 GPAM -0.642

rs7072255 ANTXRLP1 0.723

rs7085788 RHOBTB1 -0.720

rs7086058 RN7SKP143 -0.507

rs716168 VTI1A -0.570

rs7894809 PCGF5 0.642

rs7895870 RN7SKP167 -0.867

Continued on the next page

165



Table C.11: Continued from the previous page.

SNP Gene chol act gl ceraf alcohol

rs7896554 NACAP2 1.097 -0.477

rs7917422 HTR7 0.794

rs881726 GFRA1 0.933

Table C.12: Analysis of the NHS T2D data using BL-SS.

SNP Gene chol act gl ceraf alcohol

3.095 -2.406 -2.373 -1.716 -3.721

rs1041168 PLPP4 0.670

rs10508670 KIAA1217 0.773

rs10765059 TCERG1L 0.445

rs10829671 EBF3 -0.717

rs10884466 RNA5SP326 -0.528

rs10998780 ATP5MC1P7 1.195

rs11017821 TCERG1L 0.307

rs11198590 CACUL1 1.273

rs11200996 CCSER2 0.509

rs11202221 BMPR1A 0.954

rs11259039 FRMD4A 1.020

rs11594070 ATE1-AS1 -0.401

rs1194657 THAP12P3 0.681

rs12248205 CDH23 -0.938

rs12256982 ZMIZ1 0.152

rs12265854 SLC16A12 0.661 -0.830

Continued on the next page

166



Table C.12: Continued from the previous page.

SNP Gene chol act gl ceraf alcohol

rs12269237 RF00017 0.864

rs12412976 RPLP1P10 0.592 -0.590

rs12414552 TCERG1L 0.549

rs12414627 PNLIPRP1 -0.572

rs12764378 ARID5B -0.564

rs12767723 SLC25A18P1 1.062

rs12775160 FOXI2 -0.636

rs1361709 PCDH15 -0.729

rs1395465 RN7SL63P 0.562

rs1573137 SORCS3 0.869

rs16916794 SLC39A12 -0.430 0.862

rs16920092 PLXDC2 -0.508

rs17094114 GFRA1 -0.734

rs17469499 KIAA1217 -0.680

rs2384105 SNRPEP8 -0.738

rs2420979 TACC2 -0.629

rs2472737 RET 0.553

rs2577356 GFRA1 0.739

rs2784767 PLAC9 -0.593 0.576

rs2792708 GPAM 0.568

rs2900814 SNRPD2P1 -0.157

rs2926458 RNU6-463P -0.527

rs3763722 LARP4B -1.002 1.151
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Table C.12: Continued from the previous page.

SNP Gene chol act gl ceraf alcohol

rs4411238 PRKG1 0.461

rs4747009 LRRC20 1.016

rs4747517 ITIH5 -1.695

rs4752432 PLPP4 0.787

rs4917817 PYROXD2 -0.637 0.751

rs4934762 PCAT5 -0.771

rs4934858 NRP1 0.496

rs6482836 DOCK1 -0.899

rs7069001 WDFY4 -0.942

rs7070789 GPAM -1.154 -0.771

rs7077718 DNMBP -0.661

rs7085788 RHOBTB1 -0.721

rs7086058 RN7SKP143 -0.872

rs716168 VTI1A -0.662

rs7894809 PCGF5 0.828

rs7895870 RN7SKP167 -1.295

rs7896554 NACAP2 0.989

rs7917422 HTR7 0.663 1.306

rs7920351 TCERG1L -1.059

rs809836 LYZL1 1.109

rs881726 GFRA1 0.922

rs915216 DUSP5 1.102
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Table C.13: Analysis of the TCGA SKCM data using

RBSG-SS.

Gene clark stage age gender

0.834 0.228 -0.116 -0.183

AHNAKRS 0.107

ANKRD28 0.134 0.138

ASH2L -0.297

BTD -0.312

C1ORF140 -0.002 0.246 -0.083 -0.022 0.092

CD44 0.070

CHP1 0.107 0.045

CXCL6 0.126 -0.120 -0.095

DLG6 0.113 -0.015 0.067 0.185 -0.142

DOK5 -0.066

ETNK2 0.152

FILIP1 -0.030

JADE1 -0.147

JPH4 0.115

KBF2 -0.032 0.182 0.034 -0.026

LRRN2 -0.061

MAGED4 -0.098 -0.020

NHSL2 -0.088

PITPNA 0.151 -0.051 -0.012 -0.033 0.008

SOX8 0.088 -0.212

TMEM145 0.048

Continued on the next page
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Table C.13: Continued from the previous page.

Gene clark stage age gender

TMEM159 0.160 -0.121 -0.042 0.189

WBSCR27 0.070 0.126

Table C.14: Analysis of the TCGA SKCM data using

RBL-SS.

Gene clark stage age gender

0.926 -0.062 -0.011 0.388

AHNAKRS 0.084

ANKRD28 0.191 0.207

ASH2L -0.258

BAIAP2 0.043

BTD -0.309 -0.255

C1ORF140 0.129

C1ORF54 -0.102

CHP1 0.081 -0.111

CPXM1 0.005

CSNK2A2 -0.003

CYP1B1-AS1 0.104

DAP 0.036 -0.116

DLG6 0.242

ETNK2 0.109

FHL5 0.220

FILIP1 -0.016
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Table C.14: Continued from the previous page.

Gene clark stage age gender

GAMT 0.082

IL11RA -0.087

IQCK -0.090

JADE1 -0.161

JPH4 0.159

KDM6B -0.142

LRFN2 0.096

MAGED4 -0.130

MAPE -0.191

MPD1 -0.078

NHSL2 -0.144 -0.306

PAX1 0.171 0.217

PBX2 0.141 0.130

PITPNA 0.161 -0.056

RNPEPL1 0.052

SLC12A5 -0.081

SOX8 0.140 -0.091

STPG1 0.184

TMEM145 0.222

TMEM159 0.123

TNFAIP1 0.283

TP53TG1 0.102 -0.063

WBSCR27 0.090 0.126
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Table C.15: Analysis of the TCGA SKCM data using

BSG-SS.

Gene clark stage age gender

0.487 0.163 0.048 0.087

AHNAKRS 0.120

ANKRD28 0.138

ARMC9 0.008

ASH2L 0.019 -0.194 -0.107

BTD -0.303 -0.138

C14ORF2 0.251

C1ORF140 0.100 0.024 0.029

CD44 0.125

CHP1 0.123

CPXM1 -0.047

CXCL6 0.032

DLG6 0.093 0.204 -0.061

DOK5 -0.052

ETNK2 0.094

FILIP1 -0.049

GAMT -0.004

IL11RA -0.045

JADE1 -0.149

JPH4 0.110

KBF2 -0.077

LRRN2 -0.073
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Table C.15: Continued from the previous page.

Gene clark stage age gender

MAGED4 -0.122

MAPE -0.217

NHSL2 -0.026

PBX2 0.133 0.155

PHP1B -0.076

PITPNA 0.150 0.077 0.038 -0.039

SOX8 0.103 -0.148

STPG1 0.197

TMEM145 0.015 -0.045 0.147

TMEM159 0.140 0.113

TNFRSF4 0.077

TP53TG1 0.072

WBSCR27 0.015 0.092

ZFP62 -0.010

Table C.16: Analysis of the TCGA SKCM data using

BL-SS.

Gene clark stage age gender

0.545 0.308 0.080 0.047

AHNAKRS 0.102

ANKRD28 0.180 0.134

ASH2L -0.185

BTD -0.386
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Table C.16: Continued from the previous page.

Gene clark stage age gender

C14ORF2 0.126

C1ORF140 0.199

CELSR2 0.112

CHP1 0.080

CPXM1 -0.067

CSNK2A2 -0.026

CYP1B1-AS1 0.104

DAP -0.139

DLG6 0.088 0.236

ETNK2 0.206 -0.089

FHL5 0.076

FILIP1 -0.062

GAMT 0.058

IL11RA -0.056

IQCK -0.098

JADE1 -0.203

JPH4 0.101

KBF2 -0.089

KDM6B -0.173

LRFN2 0.109

LRRN2 -0.091

MAGED4 -0.113

MAPE -0.114
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Table C.16: Continued from the previous page.

Gene clark stage age gender

MPD1 -0.100

NHSL2 -0.035

PAX1 0.050

PBX2 0.126 0.072

PHP1B -0.054

PIP4K2C -0.101

PITPNA 0.193

PTP4A3 -0.138

RNPEPL1 0.171

SAA2 0.021 -0.058

SLC12A5 -0.112

SOX8 0.132 -0.084

TIE1 -0.093

TMEM145 0.188

TMEM159 0.174 0.181

TP53TG1 0.156 -0.030

WBSCR27 0.048 0.105

C.6 Biological similarity analysis

We carried out an examination of the Gene Ontology (GO) biological processes which provide

us with a deeper insight on the differences of the markers identified by different methods. We

totally identified 77 unique genes using our proposed method along with three other methods

for the NHS data. We conducted the GO enrichment analysis using the R package GOSim

and found these genes involve in a total of 158 GO biological processes, the p-values of which
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are smaller than 0.1 in the GO enrichment analysis. Then we divided the 158 processes into

four categories: positive regulation (P), negative regulation (N), regulation (R, without a

well-defined direction) and other (O). We computed the proportions of genes that involve in

the four categories of processes for each of the four methods. Similarly for the TCGA SKCM

data, 109 genes were identified by our method along with three other alternative methods.

GO enrichment analysis showed that they involve in 183 biological processes, with p-values

smaller than 0.1. The results for NHS and TCGA SKCM are provided in Figure C.2, which

shows an obvious difference between our proposed method and the three alternatives in both

datasets.
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Figure C.2: Gene Ontology (GO) analysis: proportions of genes that have the four cate-
gories of processes with different approaches. Left: NHS data. Right: TCGA SKCM data.
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C.7 Posterior inference

C.7.1 RBG-SS

Hierarchical model specification

yi = W>
i α + E>i θ + U>i β + ν−

1
2κ
√
uizi i = 1, . . . , n

ui|ν
ind∼ ν exp (−νui) i = 1, . . . , n

zi
ind∼ N(0, 1) i = 1, . . . , n

ν ∼ Gamma (c1, c2)

α ∼ Nq(0, Σα0)

θ ∼ Nk(0, Σθ0)

βj|φj, sj
ind∼ φj NL (0, sjIL) + (1− φj)δ0(βj) j = 1, . . . , p

φj|π0
ind∼ Bernoulli(π0) j = 1, . . . , p

π0 ∼ Beta (a0, b0)

sj|η ∼ Gamma

(
L+ 1

2
,
η

2

)
j = 1, . . . , p

η ∼ Gamma (d1, d2)

Gibbs Sampler

• ui|rest ∼ Inverse-Gaussian(µui , λui), where the shape parameter λui = 2ν, mean pa-

rameter µui =
√

2κ2

(yi−ỹi)2 and ỹi = yi −W>
i α− E>i θ − U>i β.

• ν|rest ∼ Gamma (sν , rν), where the shape parameter sν = c1 + 3n
2

and the rate param-

eter rν = c2 +
∑n

i=1 ui + (2κ2)−1
∑n

i=1 u
−1
i ỹi

2.
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• α|rest ∼ N(µα, Σα), where

µα = Σανκ
−2

n∑
i=1

u−1
i Wi(yi − E>i θ − U>i β)

Σα =

(
νκ−2

n∑
i=1

u−1
i WiW

>
i + Σ−1

α0

)−1

• θ|rest ∼ N(µθ, Σθ), where

µθ = Σθνκ
−2

n∑
i=1

u−1
i Ei(yi −W>

i α− U>i β)

Σθ =

(
νκ−2

n∑
i=1

u−1
i EiE

>
i + Σ−1

θ0

)−1

• βj|rest ∼ ljN(µβj , Σβj) + (1− lj)δ0(βj) where

µβj = Σβjνκ
−2

n∑
i=1

u−1
i Uij ỹij

Σβj =

(
νκ−2

n∑
i=1

u−1
i UijU

>
ij +

1

sj
IL

)−1

lj =
π0

π0 + (1− π0)s
L
2
j |Σβj |−

1
2 exp

{
−1

2
‖Σ

1
2
βj
νκ−2

∑n
i=1 u

−1
i Uij ỹij‖2

2

}
and ỹij is defined as ỹij = yi −W>

i α− E>i θ − U>(j)β(j).

• The posterior of sj is

s−1
j |rest ∼


Inverse-Gamma(L+1

2
, η

2
) if βj = 0

Inverse-Gaussian(η,
√

η
‖βj‖22

) if βj 6= 0

• π0|rest ∼ Beta
(
a0 +

∑p
j=1 I{βj 6=0}, b0 +

∑p
j=1 I{βj=0}

)
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• η|rest ∼ Gamma (sη, rη), where sη = p+p×L
2

+d1 and the rate parameter rη =
∑p
j=1 sj

2
+

d2.

C.7.2 RBL-SS

Hierarchical model specification

yi = W>
i α + E>i θ + U>i β + ν−

1
2κ
√
uizi

ui|ν
ind∼ ν exp (−νui)

zi
ind∼ N(0, 1)

ν ∼ Gamma (c1, c2)

α ∼ Nq(0, Σα0)

θ ∼ Nk(0, Σθ0)

βjl|φjl, sjl
ind∼ φjl N (0, sjl) + (1− φjl)δ0(βjl) j = 1, . . . , p; l = 1, . . . , L

φjl|π1
ind∼ Bernoulli(π1) j = 1, . . . , p; l = 1, . . . , L

sjl|η ∼ Gamma
(

1,
η

2

)
j = 1, . . . , p; l = 1, . . . , L

π1 ∼ Beta (a1, b1)

η ∼ Gamma (d1, d2)

Gibbs Sampler

• ui|rest ∼ Inverse-Gaussian(µui , λui), where the shape parameter λui = 2ν, mean pa-

rameter µui =
√

2κ2

(Yi−ỹi)2 and ỹi = yi −W>
i α− E>i θ − U>i β.

• ν|rest ∼ Gamma (sν , rν), where the shape parameter sν = c1 + 3n
2

and the rate param-

eter rν = c2 +
∑n

i=1 ui + (2κ2)−1
∑n

i=1 u
−1
i ỹi

2.
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• α|rest ∼ N(µα, Σα), where

µα = Σανκ
−2

n∑
i=1

u−1
i Wi(Yi − E>i θ − U>i β)

Σα =

(
νκ−2

n∑
i=1

u−1
i WiW

>
i + Σ−1

α0

)−1

• θ|rest ∼ N(µθ, Σθ), where

µθ = Σθνκ
−2

n∑
i=1

u−1
i Ei(Yi −W>

i α− U>i β)

Σθ =

(
νκ−2

n∑
i=1

u−1
i EiE

>
i + Σ−1

θ0

)−1

• βjl|rest ∼ ljlN(µβjl , σ
2
βjl

) + (1− ljl)δ0(βjl) where

µβjl = σ2
βjl
νκ−2

n∑
i=1

u−1
i Uijlỹijl

σ2
βjl

=

(
νκ−2

n∑
i=1

u−1
i U2

ijl +
1

sjl

)−1

ljl =
π1

π1 + (1− π1)s
1
2
jl(σ

2
βjl

)−
1
2 exp

{
−1

2
σ2
βjl

(νκ−2
∑n

i=1 u
−1
i Uijlỹijl)2

}
and ỹijl is defined as ỹijl = yi −W>

i α− E>i θ − U>(jl)β(jl).

• The posterior of sjl is

s−1
jl |rest ∼


Inverse-Gamma(1, η

2
) if βjl = 0

Inverse-Gaussian(η,
√

η
β2
jl

) if βjl 6= 0

• π1|rest ∼ Beta
(
a1 +

∑
j,l I{βjl 6=0}, b1 +

∑
j,l I{βjl=0}

)
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• η|rest ∼ Gamma (sη, rη), where sη = p×L+d1 and the rate parameter rη =
∑
j,l sjl

2
+d2.

C.7.3 RBSG

Hierarchical model specification

yi = W>
i α + E>i θ + U>i β + ν−

1
2κ
√
uizi

ui|ν
ind∼ ν exp (−νui)

zi
ind∼ N(0, 1)

ν ∼ Gamma (c1, c2)

α ∼ Nq(0, Σα0)

θ ∼ Nk(0, Σθ0)

βj|rj, ωjl
ind∼ NL(0, Vj), where Vj = diag

{( 1

rj
+

1

ωjl

)−1
, l = 1, 2, . . . , L

}

rj, ωj1, . . . , ωjL|η1, η2 ∝
L∏
l=1

[
(ωjl)

− 1
2

(
1

rj
+

1

ωjl

)− 1
2

]
(rj)

− 1
2 exp

(
−η1

2
rj −

η2

2

L∑
l=1

ωjl

)

η1, η2 ∝ η
p
2
1 η

pL
2 exp {−d1η1 − d2η2}

σ2 ∼ 1/σ2

Gibbs Sampler

• ui|rest ∼ Inverse-Gaussian(µui , λui), where the shape parameter λui = 2ν, mean pa-

rameter µui =
√

2κ2

(Yi−ỹi)2 and ỹi = yi −W>
i α− E>i θ − U>i β.

• ν|rest ∼ Gamma (sν , rν), where the shape parameter sν = c1 + 3n
2

and the rate param-

eter rν = c2 +
∑n

i=1 ui + (2κ2)−1
∑n

i=1 u
−1
i ỹi

2.
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• α|rest ∼ N(µα, Σα), where

µα = Σανκ
−2

n∑
i=1

u−1
i Wi(Yi − E>i θ − U>i β)

Σα =

(
νκ−2

n∑
i=1

u−1
i WiW

>
i + Σ−1

α0

)−1

• θ|rest ∼ N(µθ, Σθ), where

µθ = Σθνκ
−2

n∑
i=1

u−1
i Ei(Yi −W>

i α− U>i β)

Σθ =

(
νκ−2

n∑
i=1

u−1
i EiE

>
i + Σ−1

θ0

)−1

• βj|rest ∼ N(µβj , Σβj) where

µβj = Σβjνκ
−2

n∑
i=1

u−1
i Uij ỹij

Σβj =

(
νκ−2

n∑
i=1

u−1
i UijU

>
ij + V −1

j

)−1

and ỹij is defined as ỹij = yi −W>
i α− E>i θ − U>(j)β(j).

• r−1
j |rest ∼ Inv-Gaussian(η1,

√
η1σ2

‖βj‖22
)

• ω−1
jl |rest ∼ Inv-Gaussian(η2,

√
η2σ2

β2
jl

)

• η1|rest ∼ Gamma (sη1 , rη1), where sη1 = p
2
+1 and the rate parameter rη1 =

∑p
j=1 rj

2
+d1.

• η2|rest ∼ Gamma (sη2 , rη2), where sη2 = p × L + 1 and the rate parameter rη2 =∑
j,l ωjl

2
+ d2.
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C.7.4 RBG

Hierarchical model specification

yi = W>
i α + E>i θ + U>i β + ν−

1
2κ
√
uizi i = 1, . . . , n

ui|ν
ind∼ ν exp (−νui) i = 1, . . . , n

zi
ind∼ N(0, 1) i = 1, . . . , n

ν ∼ Gamma (c1, c2)

α ∼ Nq(0, Σα0)

θ ∼ Nk(0, Σθ0)

βj|sj
ind∼ NL (0, sjIL) j = 1, . . . , p

sj|η ∼ Gamma

(
L+ 1

2
,
η

2

)
j = 1, . . . , p

η ∼ Gamma (d1, d2)

Gibbs Sampler

• ui|rest ∼ Inverse-Gaussian(µui , λui), where the shape parameter λui = 2ν, mean pa-

rameter µui =
√

2κ2

(yi−ỹi)2 and ỹi = yi −W>
i α− E>i θ − U>i β.

• ν|rest ∼ Gamma (sν , rν), where the shape parameter sν = c1 + 3n
2

and the rate param-

eter rν = c2 +
∑n

i=1 ui + (2κ2)−1
∑n

i=1 u
−1
i ỹi

2.
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• α|rest ∼ N(µα, Σα), where

µα = Σανκ
−2

n∑
i=1

u−1
i Wi(yi − E>i θ − U>i β)

Σα =

(
νκ−2

n∑
i=1

u−1
i WiW

>
i + Σ−1

α0

)−1

• θ|rest ∼ N(µθ, Σθ), where

µθ = Σθνκ
−2

n∑
i=1

u−1
i Ei(yi −W>

i α− U>i β)

Σθ =

(
νκ−2

n∑
i=1

u−1
i EiE

>
i + Σ−1

θ0

)−1

• βj|rest ∼ N(µβj , Σβj) where

µβj = Σβjνκ
−2

n∑
i=1

u−1
i Uij ỹij

Σβj =

(
νκ−2

n∑
i=1

u−1
i UijU

>
ij +

1

sj
IL

)−1

and ỹij is defined as ỹij = yi −W>
i α− E>i θ − U>(j)β(j).

• s−1
j |rest ∼ Inverse-Gaussian(η,

√
η
‖βj‖22

)

• η|rest ∼ Gamma (sη, rη), where sη = p+p×L
2

+d1 and the rate parameter rη =
∑p
j=1 sj

2
+

d2.
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C.7.5 RBL

Hierarchical model specification

yi = W>
i α + E>i θ + U>i β + ν−

1
2κ
√
uizi

ui|ν
ind∼ ν exp (−νui)

zi
ind∼ N(0, 1)

ν ∼ Gamma (c1, c2)

α ∼ Nq(0, Σα0)

θ ∼ Nk(0, Σθ0)

βjl|sjl
ind∼ N (0, sjl) j = 1, . . . , p; l = 1, . . . , L

sjl|η ∼ Gamma
(

1,
η

2

)
j = 1, . . . , p; l = 1, . . . , L

η ∼ Gamma (d1, d2)

Gibbs Sampler

• ui|rest ∼ Inverse-Gaussian(µui , λui), where the shape parameter λui = 2ν, mean pa-

rameter µui =
√

2κ2

(Yi−ỹi)2 and ỹi = yi −W>
i α− E>i θ − U>i β.

• ν|rest ∼ Gamma (sν , rν), where the shape parameter sν = c1 + 3n
2

and the rate param-

eter rν = c2 +
∑n

i=1 ui + (2κ2)−1
∑n

i=1 u
−1
i ỹi

2.

• α|rest ∼ N(µα, Σα), where

µα = Σανκ
−2

n∑
i=1

u−1
i Wi(Yi − E>i θ − U>i β)

Σα =

(
νκ−2

n∑
i=1

u−1
i WiW

>
i + Σ−1

α0

)−1
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• θ|rest ∼ N(µθ, Σθ), where

µθ = Σθνκ
−2

n∑
i=1

u−1
i Ei(Yi −W>

i α− U>i β)

Σθ =

(
νκ−2

n∑
i=1

u−1
i EiE

>
i + Σ−1

θ0

)−1

• βjl|rest ∼ N(µβjl , σ
2
βjl

) where

µβjl = σ2
βjl
νκ−2

n∑
i=1

u−1
i Uijlỹijl

σ2
βjl

=

(
νκ−2

n∑
i=1

u−1
i U2

ijl +
1

sjl

)−1

and ỹijl is defined as ỹijl = yi −W>
i α− E>i θ − U>(jl)β(jl).

• s−1
j |rest ∼ Inverse-Gaussian(η,

√
η
β2
jl

)

• η|rest ∼ Gamma (sη, rη), where sη = p×L+d1 and the rate parameter rη =
∑
j,l sjl

2
+d2.
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C.7.6 BSG-SS

Hierarchical model specification

Y ∝ (σ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(yi −W>
i α− E>i θ − U>i β)2

}

α ∼ Nq(0, Σα0)

θ ∼ Nk(0, Σθ0)

βj = V
1
2
j bj, where V

1
2
j = diag{ωj1, . . . , ωjL}

bj|φbj
ind∼ φbj NL (0, IL) + (1− φbj)δ0(bj)

φbj|π0
ind∼ Bernoulli(π0)

π0 ∼ Beta (a0, b0)

ωjl|φwjl
ind∼ φwjl N

+
(
0, s2

)
+ (1− φwjl)δ0(ωjl)

φwjl|π1
ind∼ Bernoulli(π1)

π1 ∼ Beta (a1, b1)

s2 ∼ Inverse-Gamma (1, η)

σ2 ∼ 1/σ2

Gibbs Sampler

• α|rest ∼ N(µα, Σα), where

µα = Σα(σ2)−1

n∑
i=1

Wi(yi − E>i θ − U>i β)

Σα =

(
1

σ2

n∑
i=1

WiW
>
i + Σ−1

α0

)−1
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• θ|rest ∼ N(µθ, Σθ), where

µθ = Σθ(σ
2)−1

n∑
i=1

Ei(yi −W>
i α− U>i β)

Σθ =

(
1

σ2

n∑
i=1

EiE
>
i + Σ−1

θ0

)−1

• bj|rest ∼ ljN(µbj , Σbj) + (1− lj)δ0(bj) where

µbj = Σbj(σ
2)−1

n∑
i=1

V
1
2
j Uij ỹij

Σbj =

(
1

σ2

n∑
i=1

V
1
2
j UijU

>
ijV

1
2
j + IL

)−1

lbj =
π0

π0 + (1− π0)|Σbj |−
1
2 exp

{
− 1

2σ4‖Σ
1
2
bj

∑n
i=1 V

1
2
j Uij ỹij‖2

2

}
and ỹij is defined as ỹij = yi −W>

i α− E>i θ − U>(j)β(j).

• ωjl|rest ∼ lwjl N+(µωjl , σ
2
ωjl

) + (1− lwjl)δ0(ωjl) where

µωjl = σ2
ωjl

(σ2)−1

n∑
i=1

bjlUijlỹijl

σ2
ωjl

=

(
1

σ2

n∑
i=1

U2
ijlb

2
jl +

1

s2

)−1

lwjl =
π1

π1 + (1− π1)1
2
s(σ2

ωjl
)−

1
2 exp

{
−
σ2
ωjl

2σ4 (
∑n

i=1 bjlUijlỹijl)
2

}[
Φ
(
µωjl
σωjl

)]−1

and ỹijl is defined as ỹijl = yi −W>
i α− E>i θ − U>(jl)β(jl).

• s2|rest ∼ Inv-Gamma
(

1 + 1
2

∑
j,l I{ωjl 6=0}, η + 1

2

∑
j,l ω

2
jl

)
• π0|rest ∼ Beta

(
a0 +

∑p
j=1 I{βj 6=0}, b0 +

∑p
j=1 I{βj=0}

)
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• π1|rest ∼ Beta
(
a1 +

∑
j,l I{ωjl 6=0}, b1 +

∑
j,l I{ωjl=0}

)
• η is estimated with the EM approach used in the proposed method. For the gth EM

update η(g) = 1

E
η(g−1) [ 1

s2
|Y ]

.

• σ2|rest ∼ Inv-Gamma(n
2
,

∑n
i=1 ỹi

2

2
), where ỹi = yi −W>

i α− E>i θ − U>i β.

C.7.7 BGL-SS

Hierarchical model specification

Y ∝ (σ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(yi −W>
i α− E>i θ − U>i β)2

}

α ∼ Nq(0, Σα0)

θ ∼ Nk(0, Σθ0)

βj|φj, σ2, sj
ind∼ φj NL

(
0, σ2sjIL

)
+ (1− φj)δ0(βj) j = 1, . . . , p

φj|π0
ind∼ Bernoulli(π0) j = 1, . . . , p

π0 ∼ Beta (a0, b0)

sj|η
ind∼ Gamma

(
L+ 1

2
,
η

2

)
j = 1, . . . , p

η ∼ Gamma (d1, d2)

σ2 ∼ 1/σ2
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Gibbs Sampler

• α|rest ∼ N(µα, Σα), where

µα = Σα(σ2)−1

n∑
i=1

Wi(yi − E>i θ − U>i β)

Σα =

(
1

σ2

n∑
i=1

WiW
>
i + Σ−1

α0

)−1

• θ|rest ∼ N(µθ, Σθ), where

µθ = Σθ(σ
2)−1

n∑
i=1

Ei(yi −W>
i α− U>i β)

Σθ =

(
1

σ2

n∑
i=1

EiE
>
i + Σ−1

θ0

)−1

• βj|rest ∼ ljN(µβj , σ
2Σβj) + (1− lj)δ0(βj) where

µβj = Σβj

n∑
i=1

Uij ỹij

Σβj =

(
n∑
i=1

UijU
>
ij +

1

sj
IL

)−1

lj =
π0

π0 + (1− π0)s
L
2
j |Σβj |−

1
2 exp

{
− 1

2σ2‖Σ
1
2
βj

∑n
i=1 Uij ỹij‖2

2

}
and ỹij is defined as ỹij = yi −W>

i α− E>i θ − U>(j)β(j).

• The posterior of sj is

s−1
j |rest ∼


Inverse-Gamma(L+1

2
, η

2
) if βj = 0

Inverse-Gaussian(η,
√

ησ2

‖βj‖22
) if βj 6= 0
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• π0|rest ∼ Beta
(
a0 +

∑p
j=1 I{βj 6=0}, b0 +

∑p
j=1 I{βj=0}

)
• η|rest ∼ Gamma (sη, rη), where sη = p+p×L

2
+d1 and the rate parameter rη =

∑p
j=1 sj

2
+

d2.

• σ2|rest ∼ Inv-Gamma(
n+L

∑p
j=1 I{βj 6=0}

2
,

∑n
i=1 ỹi

2+
∑p
j=1(sj)

−1β>j βj

2
), where ỹi = yi−W>

i α−

E>i θ − U>i β.

C.7.8 BL-SS

Hierarchical model specification

Y ∝ (σ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(yi −W>
i α− E>i θ − U>i β)2

}

α ∼ Nq(0, Σα0)

θ ∼ Nk(0, Σθ0)

βjl|φjl, σ2, sjl
ind∼ φjl N

(
0, σ2sjl

)
+ (1− φjl)δ0(βjl) j = 1, . . . , p; l = 1, . . . , L

φjl|π1
ind∼ Bernoulli(π1) j = 1, . . . , p; l = 1, . . . , L

sjl|η
ind∼ Gamma

(
1,
η

2

)
j = 1, . . . , p; l = 1, . . . , L

π1 ∼ Beta (a1, b1)

η ∼ Gamma (d1, d2)

σ2 ∼ 1/σ2
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Gibbs Sampler

• α|rest ∼ N(µα, Σα), where

µα = Σα(σ2)−1

n∑
i=1

Wi(yi − E>i θ − U>i β)

Σα =

(
1

σ2

n∑
i=1

WiW
>
i + Σ−1

α0

)−1

• θ|rest ∼ N(µθ, Σθ), where

µθ = Σθ(σ
2)−1

n∑
i=1

Ei(yi −W>
i α− U>i β)

Σθ =

(
1

σ2

n∑
i=1

EiE
>
i + Σ−1

θ0

)−1

• βjl|rest ∼ ljlN(µβjl , σ
2
βjl

) + (1− ljl)δ0(βjl) where

µβjl = σ2
βjl

(σ2)−1

n∑
i=1

Uijlỹijl

σ2
βjl

= σ2

(
n∑
i=1

U2
ijl +

1

sjl

)−1

ljl =
π0

π0 + (1− π0)s
1
2
jl(σ

2
βjl

)−
1
2 (σ2)−

1
2 exp

{
−
σ2
βjl

2σ4 (
∑n

i=1 Uijlỹijl)
2

}

and ỹijl is defined as ỹijl = yi −W>
i α− E>i θ − U>(jl)β(jl).

• The posterior of sjl is

s−1
jl |rest ∼


Inverse-Gamma(1, η

2
) if βjl = 0

Inverse-Gaussian(η,
√

ησ2

β2
jl

) if βjl 6= 0
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• π1|rest ∼ Beta
(
a1 +

∑
j,l I{βjl 6=0}, b1 +

∑
j,l I{βjl=0}

)
• η|rest ∼ Gamma (sη, rη), where sη = p×L+d1 and the rate parameter rη =

∑
j,l sjl

2
+d2.

• σ2|rest ∼ Inv-Gamma(
n+

∑
j,l I{βjl 6=0}

2
,

∑n
i=1 ỹi

2+
∑
j,l(s

−1
jl )β2

jl

2
), where ỹi = yi−W>

i α−E>i θ−

U>i β.

C.7.9 BSG

Hierarchical model specification

Y |α, θ, β, σ2 ∝ (σ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(yi −W>
i α− E>i θ − U>i β)2

}

α ∼ Nq(0, Σα0)

θ ∼ Nk(0, Σθ0)

βj|ωjl, rj
ind∼ NL(0, σ2Vj), where Vj = diag

{( 1

rj
+

1

ωjl

)−1
, l = 1, 2, . . . , L

}

rj, ωj1, . . . , ωjL|η1, η2 ∝
L∏
l=1

[
(ωjl)

− 1
2

(
1

rj
+

1

ωjl

)− 1
2

]
(rj)

− 1
2 exp

(
−η1

2
rj −

η2

2

L∑
l=1

ωjl

)

η1, η2 ∝ η
p
2
1 η

pL
2 exp {−d1η1 − d2η2}

σ2 ∼ 1/σ2

Gibbs Sampler

• α|rest ∼ N(µα, Σα), where

µα = Σα(σ2)−1

n∑
i=1

Wi(yi − E>i θ − U>i β)

Σα =

(
1

σ2

n∑
i=1

WiW
>
i + Σ−1

α0

)−1
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• θ|rest ∼ N(µθ, Σθ), where

µθ = Σθ(σ
2)−1

n∑
i=1

Ei(yi −W>
i α− U>i β)

Σθ =

(
1

σ2

n∑
i=1

EiE
>
i + Σ−1

θ0

)−1

• βj|rest ∼ N(µβj , Σβj) where

µβj = Σβj(σ
2)−1

n∑
i=1

Uij ỹij

Σβj = σ2

(
n∑
i=1

UijU
>
ij + V −1

j

)−1

and ỹij is defined as ỹij = yi −W>
i α− E>i θ − U>(j)β(j).

• r−1
j |rest ∼ Inv-Gaussian(η1,

√
η1σ2

‖βj‖22
)

• ω−1
jl |rest ∼ Inv-Gaussian(η2,

√
η2σ2

β2
jl

)

• η1|rest ∼ Gamma (sη1 , rη1), where sη1 = p
2
+1 and the rate parameter rη1 =

∑p
j=1 rj

2
+d1.

• η2|rest ∼ Gamma (sη2 , rη2), where sη2 = p × L + 1 and the rate parameter rη2 =∑
j,l ωj

2
+ d2.

• σ2|rest ∼ Inv-Gamma(n+p×L
2

,
∑n
i=1 ỹi

2+
∑p
j=1 β

>
j V
−1
j βj

2
), where ỹi = yi −W>

i α − E>i θ −

U>i β.
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C.7.10 BGL

Hierarchical model specification

Y ∝ (σ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(yi −W>
i α− E>i θ − U>i β)2

}

α ∼ Nq(0, Σα0)

θ ∼ Nk(0, Σθ0)

βj|σ2, sj
ind∼ NL

(
0, σ2sjIL

)
j = 1, . . . , p

sj|η
ind∼ Gamma

(
L+ 1

2
,
η

2

)
j = 1, . . . , p

η ∼ Gamma (d1, d2)

σ2 ∼ 1/σ2

Gibbs Sampler

• α|rest ∼ N(µα, Σα), where

µα = Σα(σ2)−1

n∑
i=1

Wi(yi − E>i θ − U>i β)

Σα =

(
1

σ2

n∑
i=1

WiW
>
i + Σ−1

α0

)−1

• θ|rest ∼ N(µθ, Σθ), where

µθ = Σθ(σ
2)−1

n∑
i=1

Ei(yi −W>
i α− U>i β)

Σθ =

(
1

σ2

n∑
i=1

EiE
>
i + Σ−1

θ0

)−1
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• βj|rest ∼ N(µβj , σ
2Σβj) where

µβj = Σβj

n∑
i=1

Uij ỹij

Σβj =

(
n∑
i=1

UijU
>
ij +

1

sj
IL

)−1

and ỹij is defined as ỹij = yi −W>
i α− E>i θ − U>(j)β(j).

• s−1
j |rest ∼ Inverse-Gaussian(η,

√
ησ2

‖βj‖22
)

• η|rest ∼ Gamma (sη, rη), where sη = p+p×L
2

+d1 and the rate parameter rη =
∑p
j=1 sj

2
+

d2.

• σ2|rest ∼ Inv-Gamma(n+p×L
2

,
∑n
i=1 ỹi

2+
∑p
j=1(sj)

−1β>j βj

2
), where ỹi = yi −W>

i α − E>i θ −

U>i β.

C.7.11 BL

Hierarchical model specification

Y ∝ (σ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(yi −W>
i α− E>i θ − U>i β)2

}

α ∼ Nq(0, Σα0)

θ ∼ Nk(0, Σθ0)

βjl|σ2, sjl
ind∼ N

(
0, σ2sjl

)
j = 1, . . . , p; l = 1, . . . , L

sjl|η
ind∼ Gamma

(
1,
η

2

)
j = 1, . . . , p; l = 1, . . . , L

η ∼ Gamma (d1, d2)

σ2 ∼ 1/σ2
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Gibbs Sampler

• α|rest ∼ N(µα, Σα), where

µα = Σα(σ2)−1

n∑
i=1

Wi(yi − E>i θ − U>i β)

Σα =

(
1

σ2

n∑
i=1

WiW
>
i + Σ−1

α0

)−1

• θ|rest ∼ N(µθ, Σθ), where

µθ = Σθ(σ
2)−1

n∑
i=1

Ei(yi −W>
i α− U>i β)

Σθ =

(
1

σ2

n∑
i=1

EiE
>
i + Σ−1

θ0

)−1

• βjl|rest ∼ N(µβjl , σ
2
βjl

) where

µβjl = σ2
βjl

(σ2)−1

n∑
i=1

Uijlỹijl

σ2
βjl

= σ2

(
n∑
i=1

U2
ijl +

1

sjl

)−1

and ỹijl is defined as ỹijl = yi −W>
i α− E>i θ − U>(jl)β(jl).

• s−1
j |rest ∼ Inverse-Gaussian(η,

√
ησ2

β2
jl

)

• η|rest ∼ Gamma (sη, rη), where sη = p×L+d1 and the rate parameter rη =
∑
j,l sjl

2
+d2.

• σ2|rest ∼ Inv-Gamma(n+p×L
2

,
∑n
i=1 ỹi

2+
∑
j,l s
−1
jl β

2
jl

2
), where ỹi = yi −W>

i α−E>i θ−U>i β.
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