
SALES FORECASTING FOR A CENTRALIZED 
MEAT CUTTING FACILITY 

JAMES LEWIS MILLER III 

B. A., UNIVERSITY OF TEXAS AT EL PASO, 1964 

A MASTER'S THESIS 

submitted in partial fulfillment of the 

requirements for the degree 

MASTER OF SCIENCE 

in 

INDUSTRIAL ENGINEERING 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

1969 

Approved by: 

Major Professor 



TABLE OF CONTENTS 

INTRODUCTION AND DEFINITION OF THE PROBLEM 

TIME SERIES 

2.1 General Definition 

2.2 Classification of Economic Time Series 

2.3 Trends 

2.4 Classification of Time Series Movements 

2.5 Stationary and Non-Stationary Time Series 

2.6 The Autocovariance Function 

2.7 The Spectrum 

2.8 Objectives of Time Series Analysis 

2.9 Modern Time Series Analysis 

III. SPECTRAL THEORY 

3.1 An Analogy 

3.2 Power Spectra 

3.3 Estimation of the Spectra 

3.4 Spectral Windows 

3.5 Bandwidth of Spectral Windows 

3.6 Spectral Confidence Limits 

3.7 Transfer Functions 

3.8 Nyquist Frequency, Aliasing 

IV. PROCEDURES 

4.1 The Data 

4.2 The Matrix Approach to Regression Analysis 



CHAPTER PAGE 

4.3 Analysis of Variance in Matrix Terms 40 

4.4 Development of the Data Matrix 4l 

4.5 Systematic Approach to Spectral Analysis 43 

4.6 Models used 43 

4.7 Calculations of Confidence Limits and 

Bandwidth 45 

V. RESULTS 47 

5.1 Analysis of Store Data 47 

5.2 Analysis of Item Data 55 

5.3 Forecasts 57 

VI. CONCLUSIONS 62 

6.1 Store Data 62 

6.2 Item Data 63 

6.3 Forecasts 64 

VII. RECOMMENDATIONS FOR FUTURE WORK 66 

7.1 Cross-Spectral Analysis 66 

7.2 Analysis using other Spectral Windows 66 

7.3 Determining Effect of Advertising 66 

7.4 Implications for Store Management 67 

BIBLIOGRAPHY 68 

APPENDIX I. COMPUTER PROGRAMS 70 

APPENDIX II. FOURIER ANALYSIS 82 

APPENDIX III. PLOT OF FORECAST 84 

APPENDIX IV. SIGNIFICANCE TEST FOR 100 

APPENDIX V. ORIGINAL TIME SERIES OF GROSS SALES DATA 103 



LIST OF TABLES 

TABLE PAGE 

1. Bandwidth, Variance, and Equivalent Degrees 

of Freedom for Three Averaging Kernels 29 

2. Properties of Spectral Windows 29 

3. Summary of Regression Statistics for Store Data 52 

4. Summary of Regression Statistics for Item Data 56 

5. Sales Data Statistics 6l 



LIST OF FIGURES 

FIGURE PAGE 

1. Examples of Time Series 8 

2. Sample Autocorrelation Function 11 

3. Simple Periodogram 15 

4. Examples of Spectra 19 

5. Some Common Spectral Windows 30 

6. Perfect Transfer Function 34 

7. Actual Transfer Function 35 

8. Nyquist Frequency, Aliasing 36 

9. Flow Chart of System Used 

10. Spectrums of Total Dollar Sales 48 

11. Periodograms of Fourier Analysis 50 

12. Error Variance vs. Number of Parameters 54 

13. Spectrum of Item Data 58 

14. Behavior of Residuals 59 



CHAPTER I 

INTRODUCTION AND DEFINITION OF THE PROBLEM 

The subject of managerial control and allocation of resources presents 

myriad problems to any modern, mass-production oriented industry. 

Some of the same basic problems exist for all industries, whether 

the industry be involved in the production of steel, automobiles, 

refrigerators, or razors. Sales must be forecast with reasonable 

accuracy so that production schedules can be planned; orders for raw 

materials made; inventories built up or depleted as necessary; and work 

force estimates made. In short, management needs a tool which will 

provide it with a legitimate margin of safety with which they can 

anticipate the requirements of their operation at some time in the future. 

Many forecasting and data analysis techniques are available; from 

the continuation-of-trend method, through moving averages, to the 

sophisticated exponential smoothing and spectral analysis. The specific 

problem under consideration here is the application of spectral analysis 

to forecasting the demand of meat in a retail supermarket. All of the 

data used in this study is actual data obtained from Falleys Markets. 

Falleys supermarket chain, of Topeka, Kansas has been a pioneer in the 

establishment of a centralized meat-cutting facility. This concept 

removes the butcher-shops from each store and places the function and 

the work force under one supervisor in one facility. 

The problems which have not been solved by the move are: 

1. An accurate method of forecasting (predicting) demand for 

individual items; 



2. Analysis of inventory requirements by item; 

3. Determination of advertisement effect on sales (by item), on 

customer volume, total sales, and total meat sales. 

The production decisions are presently made as the result of analysis 

of daily orders from individual stores, to which managerial intuition and 

judgement is applied. From a strict management viewpoint the existing 

method would be more acceptable if the items in question were not 

perishable goods. Non-perishable goods, such as canned goods, paper 

goods, and cleaning supplies, to name a few, are controllable, inasmuch 

as monetary and quantity control can be accomplished through adjustments 

in ordering and store restocking schedules. Fresh meat products have 

limited shelf lives (i.e. the time during which they retain their 

original properties without spoilage or deterioration), are relatively 

expensive to purchase, and have a fairly low margin of profit (10-15 

percent). 

Because of these factors a method must be developed which will 

enable the meat market manager to accurately forecast his demand for 

individual items, as well as evaluate the effect that special sales 

have on the items. 

The hypothesis which this study attempts to prove or disprove is: 

1) That there are bi-weekly, semi-monthly, and monthly cycles in 

the data corresponding to the characteristics of the general population 

which might get paid on a weekly, bi-weekly, semi-monthly, or monthly 

basis. The Fally management informed this author that there was a 

definite weekly cycle. 

2) That spectral analysis can be successfully used to uncover the 



cycles in the data and, when combined with regression analysis, can 

provide an accurate model for forecasting purposes. 



CHAPTER II 

TIME SERIES 

2.1 GENERAL DEFINITION 

Time series are sequences, discrete or continuous, of quantitative 

data assigned to specific moments in time. They are observed and 

analyzed with respect to the statistics of their distribution in time. 

They may be simple and consist of a single numerically given observation 

at each sequence; or they may be multiple (or complex), in which case 

they will consist of a number of separate quantities tabulated according 

to a time common to all. 

An example of a simple, discrete time series is the closing price of 

General Motors on the New York Stock Exchange, tabulated daily. A simple, 

continuous time series would be daily temperature measurements. 

An example of a multiple, discrete time series is the closing price 

of all stocks on the New York Stock Exchange, tabulated daily. A 

multiple, continuous time series might be an infinite number of slightly 

different radar frequencies. 

The fields in which time series analysis is applied are roughly 

divided into two areas: (1) economics, sociology, and short-time 

biological data; (2) astronomical, meteorological, geophysical, and 

physical data. 

In the first category the time series are relatively short, discrete, 

and hinder drawing concrete conclusions based on a high degree of 

accuracy, i.e. the results may be accurate and significant within a 

very liberal error (confidence band). Additionally, since this type of 



time series is usually subject to human control, decisions, policy 

changes, etc., effects the statistical nature of the series and assume 

much importance. 

The second category is characterized by long runs of accurate data 

taken under comparatively stable, uniform external conditions. Because 

of the length of the data and the stability of conditions, decisions, 

policies, etc., exert very little influence on the performance of the 

phenomena. 

In this study we are primarily concerned with simple discrete data 

such as dollar sales per store per day, customer count per store per 

day, meat-dollar sales per store per day, and units sold per item per 

store per day. 

2.2 CLASSIFICATION OF ECONOMIC TIME SERIES 

2.2.1 Instantaneously recorded series are discrete series that can 

be thought of as being the values of a continuous time series at a 

specific point in time. The daily noon temperature reading in Glasgow, 

Montana is an example of such a series. Economic series which fall 

within this classification are price series, interest rate series, 

amount of equipment, debt, financial assets, etc. 

2.2.2 Accumulated series are those series which represent the sum 

(or "accumulation") of a variable since the previous reading was taken. 

Examples are national income, production and sales data, and volume of 

transaction data. 

The methods for analysis of both types are essentially the same, 

although certain problems arise which affect each one differently, e.g. 

the number of working days or shopping days per week, month, or year 



can greatly influence an accumulated series, but have a slight effect on 

an instantaneously recorded series. 

Granger [8] suggests a more subtle classification of economic 

series. It is: 

1. Series arising from micro-variables (those variables unable to 

affect economy-wide variables such as aggregate output, overall 

price index, and national income.) 

2. Series arising from macro-variables (all non-micro variables). 

Granger further states that "when we are considering the problem of how 

to analyze a single series the classification is not important: but when 

considering direction of casuality the classification is of considerable 

importance since the problem for macro-variables is more difficult than 

for micro-variables." [8] 

2.3 TRENDS 

One of the major problems throughout economic time series analysis 

is how to recognize, and what to do with, the various trends which 

occur. 

The first and most simple type of trend is the trend in mean. We 

can say that a series has a trend in mean if the series is exhibiting 

an oscillation about a continually increasing/decreasing value. Part of 

the difficulty in discovering a trend in mean is that if the data is 

not over a long enough period we may only be looking at a seasonal 

component of a cycle. Where cycles are extremely long we may encounter 

analytical difficulties, no matter how much data we have. 



The second trend is the trend in variance, which can be described 

as the extent to which the amplitude of oscillation about the mean is 

changing with time. This type of trend is often found in price and 

production data. 

A rather subtle type of trend is one in which the relative importance 

of a particular component, or a change in correlation between the current 

value and the previous value in the series, takes place. 

2.4 CLASSIFICATION OF TIME SERIES MOVEMENTS 

The characteristic movements of time series may be classified into 

three main types (or "components"). 

Long-term, or secular, movements refer to the general direction 

which a graph of the time series illustrates. This would be described 

as "growing", "expanding", "contracting", "unchanging", etc. See 

Figure 1(a). 

Cyclical movements, or cyclical variations, refer to long term 

oscillations about a trend line or curve. These cycles may or may not 

be regular, or periodic (i.e. they may not follow exactly the same 

patterns time after time). See Figure 1(b). 

Seasonal movements, or seasonal variations, refer to the identical 

(or nearly identical) behavior which a time series exhibits during cor-

responding units of time (days, weeks, months, or years), e.g. Christmas 

season shopping, sales of shotguns in the Fall, fishing rods in the 

Spring. See Figure 1(c). 



2.5 STATIONARY AND NON-STATIONARY TIME SERIES 

Two of the most important assumptions which are made about time 

series are: 

1. That the corresponding stochastic process is stationary; and 

2. That a stationary stochastic process can be described by the 

lower moments of its probability distribution. i.e. mean, 

variance, covariance function, and the Fourier transform of 

the covariance function, the power spectrum. 

Qualitatively speaking a series is said to be stationary if it contains 

no trends, and hence is in statistical equilibrium. 

Obviously, non-stationarity is characterized by a series exhibiting 

definite trends. It should be pointed out that the methods of analyzing 

non-stationary time series are essentially the same as for stationary 

series, but with the additions of techniques for removing or filtering 

out the non-stationary components. This filtering results in a series 

which can then be treated as a stationary one. 

(b) Long-Term Trend 
and Cyclical 
Movement 

(c) Long-term Trend, 
Cyclical and 
Seasonal Movements 

Figure 1 

SAMPLES OF TRENDS 

t 
(a) Long-Term Trend 



2.6 THE AUTOCOVARIANCH FUNCTION 

One assumption which we must make in statistical analysis is that 

the data points represented by X(t) (t=l,2,...,N) are independent, since 

they were generated by an independent source. We can then say that if 

the probability distribution f(x) associated with the data is normal, 

then the data set can be characterized by its mean, variance, and auto-

covariance function. 

In mathematical terms, 

The mean measures the "center of gravity" of the distribution, and the 

variance is a measure of the spread of the data points about the mean 

value. 

Generally speaking, neighboring values of a time series, 

(xt-l, x t-2,...) are found to be correlated. In this sense, they cannot 

logically be considered to be independent (i.e. for only a purely random 

series could they be independent). So, when we have a stationary, normal 

series we can also describe its autocovariance function, (acvf), which is 

the mean 

The acvf can be estimated as 



We consider that X(t) and are essentially equivalent, (for a discussion 

- 1 of the use of the divisor, N, see Section 3.3) where x = — / x is the 

N ^ ^ t 

mean of the time series and N is the total number of data points in the 

series. We use the autocovariance function, C(u), to provide information 

about the degree of linear relationship or product moment correlation 

between the random variable X(t) with the past and future behavior of 

the time series. 

If we wish to compare series with different scales it is convenient 

to normalize the acvf by dividing by C(0). The result is called the 

sample autocorrelation function (acf), which we define as 
r(u) C(u) C(0). 

A plot of r(u) against u is called a correlogram. (see Figure 2). 

The acvf and the acf are used to provide an indication of the manner 

in which the dependence in the series damps out with the lag or 

separation, u, between points in the series. 

2.7 THE SPECTRUM 

If our model is x(t) = a cosw1t + where is the error term, 

2 1 2 2 and a random independent series, then °x " y a ^E * Removing the 

2 2 periodic term, will reduce to o^. In a series which contains no 

periodic terms we cannot reduce the variance. Thus if x(t) can be 

regarded as a mixture of cosine waves, its variance can be decomposed 
1 2 into components of variance y a^, at the different frequencies, 



Figure 2 

SAMPLE AUTOCORRELATION 
FUNCTION, N=100 



It will be shown in Chapter III that if xt is a stationary stochastic 

process the variance is decomposed into contributions at a continuous 

the power spectrum of the stochastic process. It should also be pointed 

out that the spectrum and the autocovariance function are related 

according to the Fourier transform, where 

An important relationship which has been developed is that knowledge 

of the acvf is equivalent to knowledge of the spectrum of the process. 

In the analysis of a series of finite length it is preferable to 

use the spectrum rather than the acvf function. The reasons are: 

1. That estimates of the spectrum at neighboring frequencies are 

approximately independent; 

2. Because of 1, the interpretation of the spectrum is easier than 

that of the acvf; 

3. The physical properties of the spectrum (peaks, troughs, band-

width, etc.) are of importance to the analysis. 

2.8 OBJECTIVES OF TIME SERIES ANALYSIS 

Time series problems (and the implications for utilization of 

spectral analysis) can be classified into three major categories 

(1) model-building, (2) frequency response studies, and (3) a combin-

ation of (1) and (2). For purpose of this study (3) will be considered 

as the primary problem. Model buildings fall into three basic categories: 

range of frequencies, such that 



1. exploratory and sophisticated models, 

2. empirical and physical models, 

3. parametric and non-parametric models. 

Some of the most common uses for time series models are 

1. prediction and forecasting, 

2. estimation of transfer functions. 

3. filtering and control 

4. simulation and optimization 

5. generating new physical theories. 

The use of spectral analysis in frequency response studies is one of 

its most important applications. Through analysis of the spectrum of a 

stochastic process one can determine what cycles are present, frequencies 

of the cycles, periods, and relative contribution to the total variance 

of the system. Frequency response studies are usually made of physical 

systems such as radio frequencies, runways (vibration tests), and shock 

tests of airplane landing gear. 

2.9 MODERN TIME SERIES ANALYSIS 

Some significant early work was done by LaGrange [8], Buys-Ballot 

[3], and E. T. Whittaker [19], in the discovery of hidden periodicities. 

Perhaps the best known result of the pioneers in the field was the 

development of the periodogram method by Schuster in 1898-1906. The 

Schuster periodogram consists of the following functions. 



with data Xt, t=l,2,...N. IN(^) will peak at M = if the data contains 

a periodic of frequency and there will be subsidiary peaks at 

2d) , o 
o n 

Davis [5] provides many examples of estimated periodograms for random 

and economic series. The best known periodogram is that of Beveridge [2] 

from a long series of European wheat prices. (1500-1869). It (the 

Beveridge periodogram) indicates a possibly significant peak corresponding 

to a cycle of 15 years. The original series was non-stationary; but was 

detrended by forming a series y(t) from the original series x(t) by 

This transformation successfully removed the trends in mean and variance. 

The Beveridge periodogram may be found in Kendall's work [12]. 

Whittaker and Robinson [19] proved that the brightness or magnitude 

of a variable star at midnight on 600 successive days could be fitted 

by the sum of two periodic terms with periods of 24 and 29 days. Their 

equation was 



or 

had an appearance similar to a naturally occuring series. The model, 

(2.9.4) is the weighted sum of a random series, called the "moving 

average process". Model (2.9.5) is an example of an autoregressive 

process, in which the value of x(t) is assumed to have been formed 

from a linear sum of past values of the series together with an un-

connected independent term from the past. 

These models invariably produce smooth series which do not emphasize 

the variance of the series with any accuracy at all. 

Figure 3 
SAMPLE PERIODGRAM 

The reason for the smooth periodogram is as follows. 

If the data plotted in Figure 3 has a mean of zero, the length of 

the line ABC...Z will be a reflection of the "smoothness" of the data. 

The square of the length of ABC...Z is given by 



where J is the distance between readings. Further, 

where p is the correlation between and (assumed to be the same 

for all t.) We can see from (2.9.7) that the closer p becomes to 1 the 

smaller E[k] becomes. With the moving average or auto-regressive model, 

p can be made large and positive by the choice of aj and bj. 

Equation (2.9.6) can also be solved as 

where is the sum of a function of time plus an infinite moving average, 

assuming that the series started at T. 

For many years the linear cyclic model and the moving average model, 

were considered as the only possible alternatives in time series analysis. 

Hence, the problem for analyst was only one of determining which one 

among the three was the best to fit. 

In recent years the problems of fitting have become more complex 

and the above mentioned two models are no longer the only alternatives. 

There is now the auto-regressive model, which can be shown as 

and using the auto-regressive model and the spectral analysis discussed 

in Chapter III, the series can be considered as having been generated by 

more complicated and unspecified mechanism. 



The spectral theory used in this study is largely the result of 

theoretical work by Kolmogoroff [13], Wiener [20], and Cramer [4], and 

is basically generalizations of Fourier analysis. A leading individual 

in the transition from theoretical results to practical methods is 

J. S. Tukey, and his co-workers at Bell Telephone Laboratories. 

In order to improve the sampling properties in spectrum estimation, 

Tukey [16] and Bartlett [1] suggested an approach that emphasized the 

use of the weighted sample autocovariance function. Their work also 

revealed that spectral analysis has considerably simpler sampling 

properties than does the corresponding time-domain analysis. 

Some of the most recently developed techniques, principally by 

Hannan [9], [10] permit the derivation of asymptotically efficient 

coefficient estimators with relatively simple sampling properties. Wallis 

[17], [18] has used some of the new Hannon-developed techniques to study 

inventory problems. 



CHAPTER III 

SPECTRAL THEORY 

As we have stated earlier, a stationary stochastic process can be 

described by its autocovariance function. The power spectrum (hereafter 

called the "spectrum") is the Fourier transform of the autocovariance 

function. A plot of the spectrum shows how the variance of the stochastic 

process is distributed with frequency. 

3.1 AN ANALOGY 

Consider the total amount of sound (or noise) that we are receiving 

on a radio receiver. If we have pure noise we cannot distinguish any 

single, intelligible sound. But in an ideal situation with the receiver 

perfectly tuned we would get a pure tone with no residual noise due to 

other nearby frequencies or random signals. In a real situation we are 

able to tune the receiver to a primary frequency, but we also get amounts 

of static and random signals. 

Figure 4-a represents the "white noise" or a purely random signal. 

No one frequency exhibits any greater amplitude (variance) than any of the 

others. Figure 4-b is the ideal situation which shows those precise 

frequencies on which signals are being transmitted. Figure 4-c shows the 

actual situation in which the primary frequencies have greater amplitude 

than the other frequencies. Notice, however, that the entire range of 

frequencies does exhibit some amplitude. This would be the case in actual 

practice, and the type of spectrum with which we will be working in this 

study. 



c. ACTUAL 

Figure 4 

EXAMPLES OF SPECTRA 



Part of the problem becomes a matter of discrimination and identifi-

cation of the primary frequencies. This is discussed at length in this 

chapter. 

3.2 POWER SPECTRA 

If we have a discrete, stationary process Xt (t=l,2,...N), 

where X is the conjugate of X. 

Consider the generating process where 

2tr a periodic function, with period T = — . The angular frequency, measured 

in radians per time unit is given by 2iT(t)j. The angular frequency Mj is 

used to describe the periodicity of the function, and will hereafter be 

called frequency. 

Any term aje = a.(coso).t + isinai.t) of this generating process is 



The process described by equation (3.2.2) is a linear cyclic process 

with the mean removed, as each sample is a sum of periodic functions. 

The work of Cramer [4], Kolmogoroff [13], and Wiener [20] has given 

the following important results: 

1. The sequence of autocovariances, for a stationary process can 

always be represented in the form 

As the aj's take different values, the different series that may be 

generated by (3.2.2) arise. For any particular series the aj's are 

constant throughout the time span (of the series) and the totality of the 

a.'s determine their distribution. 

called a process of non-correlated increments. 

Equations (3.2.3) is called the spectral representation of the co-

variance function and F(tj) is the power spectral distribution function. 

Equation (3.2.4) is the Cramer representation of a stationary process, 

and the equality must be understood to hold as a limit in the mean square. 



For real process, (3.2.3) becomes 

where 

2 In the first case a. is the contribution to the total variance 

of the component with frequency . In the second case the contribution 

to the total variance by the frequencies in the range [M, M + dm) is 

dF(n)) . 

Since F(o)) is monotonically increasing, the decomposition is 

An important fact to note is that in spectral representation the 

variances of equation (3.2.2) and (3.2.4) are compared as 



Thus it can be shown that any stationary process can be decomposed 

into = X^(t) + X^(t), where X^(t) has an absolutely continuous power 

spectral distribution function. Equation (3.2.3) then becomes 

TT . 

Cramer's representation takes the following form for real processes 

If we have a series of finite length which has been generated by the 

real process, the series can be fitted by a finite Fourier series 

2-rr. 
where m = — , and the a. 's and b. 's are chosen to make X(N) = X at N J J 

t = 1,2,...N. As N the first thing that we notice is that 

- M. 0, and the series becomes an integral of the form J+l J 

This "evolution" from the sum of sine terms to an integral of a sine 

function over a band of periods is one of the most important advantages 

of spectral analysis over regular Fourier analysis. Through the use of 

an integral of a sine function we can mathematically approach and solve 

the problem of regularity and non-regularity which occurs in most economic 

data. 



This means that the infinite sequence [x^, t=l,...°°] can be exactly 

fitted by the mathematical function on the right hand side of equation 

(3.2.6) if the functions a(^), b(o)) are properly chosen. If contains 

a periodic element of period T (and a frequency of M = — ) then a(^), b(<jj) 

will have sharp peaks at M = but if contains no periodic elements, 

a(o)), b(t<j) will be smooth. 

One of the primary purposes of spectral analysis is to estimate those 

regularities or frequencies which appear to be most important. Me then 

use these estimates to predict the future values of the variable. The 

measure of importance which we attach to the component is dependent upon 

its relative contribution to the overall variance. For a variable con-

taining a periodic term, the importance of the term is the amount of 

variance reduction observed when the term is removed. This is actually 

our definition of a variable containing a periodic term, i.e. a frequency 

which, if subtracted from the variable will reduce the variance by a 

finite amount. If our model is X = acosa),t + e where e is a random t I t t 
2 1 2 2 independent series then o = a + c^ . By removing the periodic term 

2 2 
with frequency the variance becomes o " Cg-

The important frequencies will correspond to high, sharp peaks in 

the estimated spectrum and the height of the peak will provide us with an 

estimate of the amplitude (relative contribution to the overall variance). 

3.3 ESTIMATION OF THE SPECTRA 

All spectral estimates are of the form 



with data t=l,2,...N), and the weights are usually dependent upon 

M. The weights are called spectral windows, or "averaging kernels", and 

will be discussed at length in this chapter. 

There is presently substantial controversy as to whether Ĉ . should 

use the divisor N-k or just N. Parzen [15] and Tukey [16] use the 

divisor N, while Granger [8] uses N-k. The spectral values obtained 

in this study were obtained using N, per Parzen [15]. Parzen [15] shows 

that using N-k we obtain an unbiased estimator of the sample covariance; 

while we obtain a biased estimator using N alone. The biased estimator 

has two desirable features: 

1. We are estimating a positive definite function, 

2. It provides us with non-negatives values of the spectrum. 

Furthermore, in most cases the biased estimate has a lower mean square 

error than the unbiased estimator. However, the use of the N per Parzen 

was done as a matter of speed in computation and convenience after test 

results were compared using both divisors. The difference between the 

results was found to be negligible. 

For purposes of computation the Tukey-Hanning window was used in 

this study. It is 

The actual formulae used to estimate the spectrum are: (3.3.2) 



The L.'s are called the raw estimates of the spectrum, and the C 's J xx 
are the smoothed estimates. An alternative which could have been used 

in spectral estimation is the "Parzen window", which is 

If we use the Parzen window the spectral estimating formula becomes 

In the case of equation (3.3.5) the estimated covariance is computed 



This is contrasted to the computation of covariances in equation (3.3.2). 

The parameter M which appears in the formulae is the truncation point, 

or number of lags used. It may be considered to represent the number 

of frequency bands for which the spectrum is estimated. As M increases, 

the variance increases, and vice versa. 

The spectrum should be plotted on a logarithmic scale in order to 

show more detail in the spectrum over a wider range. 

3.4 SPECTRAL WINDOWS (AVERAGING KERNELS) 

The development of a "window" is due to the need for a mathematical 

device to isolate certain frequency bands under inspection, while providing 

a true picture of them. The degree of goodness and clarity of the bands 

is called resolution. The window performs the function of concentrating 

the power of the frequency under inspection about a main point of interest. 

This gives the greatest weight to the corresponding spectrum ordinate. 

There are many windows described in the literature, the four primary 

ones being the rectangular window, Barlett window, Parzen window, and the 

Tukey-Hanning window. The two most commonly used, Parzen and Tukey-Hanning 

window, are shown in Table 1. Figure 5 shows the Parzen and Tukey-Hanning 

windows for M equal to 6 lags. 

Notice the following details in Figure 5. 

1. The side lobes of both windows are small compared to the main 

lobes. 



2. The Parzen window is non-negative everywhere, while the Tukey-

Hanning window is not. [Note: since we are estimating a function, 

not a point, our interest is in the overall shape of the spectrum. 

Therefore the matter of non-negative versus negative estimates of 

the windows is insignificant. If negative estimates do appear 

they should be judged in comparison with the other point 

estimates of the spectrum] 

The degree of concentration, or focusing power, on the frequency of 

interest is measured by bandwidth. Me will define bandwidth as the width 

of a rectangle whose height and area correspond to those of the averaging 

kernel at the frequency of interest. It is 

and is measured in radians. 

Table 1 lists the properties of the spectral windows. The bias is 

inversely proportional to the number of lags in the Bartlett window, and 
2 

inversely proportional to the square of the lags (M ) with the Parzen and 

Tukey windows. In all cases the bias is reduced as M increases. 

For the same truncation point (number of lags) M, the Parzen window 

has a larger bias than the Tukey window, since the Parzen window is wider 

than the Tukey window. However the Parzen window has a smaller variance 

than the Tukey window for the same M. 

3.5 BANDWIDTH OF SPECTRAL WINDOWS 

In section 3.4 we defined bandwidth as "the width ...at the frequency 

of interest." 



TABLE 1 

BANDWIDTH, VARIANCE, AND EQUIVALENT DEGREES 
OF FREEDOM FOR THREE AVERAGING KERNELS^ 

(1) (2) (3) 
2 Averaging Kernel Bandwidth Variance/g (X) E.D.F. 

^At frequencies zero and +ir, the variance is doubled and the 
EDF is halved. The variance and EDF are for a normal process. 

TABLE 2 

PROPERTIES OF SPECTRAL WINDOWS 

Variance Degrees Standardized 
ratio of bandwidth 

Description Spectral window 1/T freedom b 



SOME COMMON SPECTRAL 
WINDOWS 

Figure $ 



One useful characteristic of a spectral window is that 

where (u) is the particular spectral lag window, and I is the integrated 

spectrum, since provides a measure of the reduction in variance due to 

smoothing by the spectral window. To obtain a small error variance 

we must choose (u) so that I is small. This can be accomplished by 

using a small M. Furthermore, in order to obtain a good estimate of the 

peak of the spectrum, the width of the spectral window must be the same 

order as the width of the peak. 

If we consider that the bandwidth in the frequency domain is 

rectangular with width, b, then the bandwidth becomes 

M So the bandwidths for the rectangular window in Table 2 is y, and is 

3M 
— for the Bartlett window. 

For convenience and ease of computation we define a "standardized 

bandwidth", b1, corresponding to M = 1, so that 



Since we have said that the variance is inversely proportional to 

the bandwidth (equations (3.3.6), (3.3.7)) it follows that 

3.6 SPECTRAL CONFIDENCE LIMITS 

If we assume that the spectrum is smooth with respect to the spectral 

window then the expected value of the smoothed spectral estimator 

and has a chi-square distribution. Thus, we can say that the degrees of 

freedom of the smoothed spectral estimate depend on the window, (u). 

The corresponding degrees of freedom for each window is shown in Table 2. 

It follows then that 



is a 100 (1 - )% confidence interval for T xx (f). It should be noted 

that the confidence limits are accurate only when the spectral window 

is sufficiently narrow so that no appreciable bias exists. 

Since we are plotting the spectrum on a logarithmic scale we must 

also compute the confidence limits as logarithmic values. The confidence 

limits for log rxx (f) are 

3.7 TRANSFER FUNCTIONS 

If we find, by a visual inspection, that the behavior of the spectrum 

is bad or erratic, we may want to digitally filter the data to improve 

Then the interval between 



the spectral estimates at the primary frequencies. The behavior may be 

due to leakage from the spectral window(s), or causing false peaks where 

there is insufficient power to justify them. When we apply some sort of 

a digital filter F[.] to a stationary process {Xc}, so that 

When we wish to estimate the trend component of a series by a 

means of filters we want to eliminate all frequencies except those 

near zero. The perfect transfer function would resemble the one shown 

in Figure 6. 



For finite M the coefficients aj of (3.3.15) cannot be chosen so 

that s( )) has the desired shape, so some kind of approximation must be 

used. We choose the aj's so that s(m) is the truncated Fourier series 

of the function p(oi), i.e. 

This type of filter provides a reasonable approximation to s( ) if M is 

large and M is not too small. For a small M and M not large the 

transfer function may be shaped as in Figure 7, with large side peaks 

which are important in the analysis. 

ACTUAL TRANSFER FUNCTION 

As cos j is flat near = 0 the usual shape of s( )), as defined by 

(3.3.15), will be of a major, first peak, followed by a series of smaller 

side peaks. The problem of approximating p(( ) then becomes one of con-

trolling the size of the side peaks. 



3.8 NYQUIST FREQUENCY, ALIASING 

Although economic data such as stock prices and commodity prices are 

recorded continuously, most economic data is, like the data used for this 

study, recorded periodically. The periodic sampling infers that the data 

is collected at equally spaced points in time. This creates a problem 

in correctly identifying the sources of mean square variation in the data. 

This problem is called "aliasing." 

If our time series x(t) contains a frequency of where k is the 

length of time between recordings (or the "period"), then x{t}, (a sample 

of X(t)) will contain no information about this frequency. The highest 

frequency about which we have any information is and it is known as the 

"Nyquist frequency". The power of this spectrum is recorded at = in 

FAST COSINE 

SLOW COSINE 

Figure 8 

NYQUIST FREQUENCY, "ALIASING" 

A fast cosine wave sample at regular intervals appears the same as a 

slow cosine wave. We can see from Figure 8 that the apparent contribution 

of any frequency is the result of superimposing the contributions of many 

frequencies which now becomes aliases of one another. If is the Nyquist 



CHAPTER IV 

PROCEDURES 

4.1 THE DATA 

The data used in this study was obtained from actual daily sales 

data of seven stores in Falleys supermarket chain. There are four (4) 

distinct types of data, as follows: 

1. Total sales per store per day, in dollars, 

2. Total customer count per store per day, 

3. Total meat sales per store per day, in dollars, and 

4. Shipments to the store per item per day, in units. 

The data in (4) reflects production and shipment data, rather than the 

actual number of each item sold per store per day. The documents were 

coded each day to indicate if the item was on sale, and the relative 

prominence of the item in the advertising. In addition, when the item 

was on sale, the sale price was included, but the normal price was never 

recorded. 

Falley's submitted the documents to KSU, where the data was transcribed 

onto punched cards. The data was arranged by item by day, and by store 

by day. The time series were visually inspected for errors and missing 

data. 

Plots of the raw data were obtained and inspected for evidence of 

trends and cycles. The behavior of the plots of (1), (2), and (3) was 

found to contain a periodic term of seven days duration with no growth 

pattern. Therefore, where missing data was discovered, the figures for 

the same day in the previous week was substituted. 



4.2 THE MATRIX APPROACH TO REGRESSION ANALYSIS 

We define Y as the "vector of observation", X as the "matrix of 

independent variables:, as the "vector of parameters to be estimated", 

and as the "vector of errors". Then from the store data the basic 

matrices might look like this for a linear model: 



By postmultiplication we obtain: 

An alternate form is to write it as 

The inverse of X'X can be shown as 



The effects of linear regression are additive and the solutions can 

always be written in this form, provided that X'X is non-singular and 

that the regression problem is properly expressed. 

The matrix approach to a linear model can be summarized as follows: 

1. The data is expressed as Y = X + , and 

2. The least squares estimates of ( ) i.e. of 

4.3 ANALYSIS OF VARIANCE IN MATRIX TERMS 

The general form of the analysis of variance is: 

where SS(b1|b0) is the sum of squares due to regression. 

Each of these sums of squares has 1 degree of freedom. Now, if we let 



in matrix terms, with 2 degrees of freedom. The analysis of variance 

table in matrix terms appears as follows: 

After regression analysis and spectral analysis of the regression 

residuals we might want to add cyclic components to the models. The 

4.4 DEVELOPMENT OF THE DATA MATRIX 

A hypothesized linear model might look as follows: 



data matrix would be expanded to look like this: 

42 

where 0 is the cyclic component measured in radians. If several cyclic 

components are discovered through the spectral analysis (i.e. weekly, 

biweekly, monthly) the data matrix would be expanded further 

Another method of developing the data matrix is through the use of 

an "01" dummy variable combination. This is accomplished by a nx7 

matrix where each of the independent variables represented a potential 

"zero-not zero" condition. The data matrix would appear as follows: 



In the gross sales data the x-matrix, above, would appear as a 308x7 

matrix in its completed form, the 7x7 modules being repeated until 

the last observations. 

4.5 SYSTEMATIC APPROACH TO SPECTRAL ANALYSIS. 

All of the detail work concerned with spectral analysis was ac-

complished through the use of the system described by Figure 9. The 

statistical analysis was all done by a computer, the IBM 360/50. 

The computer programs used to analyze the data were written in 

Fortran IV, and in Waterloo Fortran (because of the excellent diagnostics 

available.) A complete set of the programs may be found in Appendix I. 

4.6 MODELS USED 

Five different models were used and compared to determine which one 

best described the behavior of the data and should be used to forecast 

future behavior. These models were: 

1. Dummy variables 

2. Purely linear 

3. Linear with 1 frequency (the primary frequency) 

4. Linear with 2 frequencies (primary and 1st harmonic) 

5. Linear with 3 frequencies (primary, 1st and 2nd harmonic). 

A forecast model was developed for each regression model in order 

to demonstrate the behavior of the forecast residuals and to show 

how the addition or subtraction of terms to the model affected the 

behavior of the residuals. A summary of the results may be seen in 

TABLE 3, in Chapter V. 



ALL OPERATIONS 
INSIDE SOLID LINES 
ARE PERFORMED BY 
COMPUTER. 

"RT OF SYSTEM USED IN SPECTRAL ANALYSIS 



4.7 CALCULATION OF CONFIDENCE LIMITS AND BANDWIDTH 

Confidence limits and bandwidths for the spectrums are calculated 

according to sections 3.5 and 3.6, respectively. Confidence limits 

are calculated as 

The number of degrees of freedom is computed by the formula 

where T is the length of the time series, M is the number of lags, and 

b1 is the standardized bandwidth, which in this case is 1.33 for the 

Tukey-Hanning window. 

Bandwidth is computed as: 

Where b1 is the standardized bandwidth (1.33) and M is the number of 

lags. 

4.7.1 For the gross store data (total sales, customer count, meat 

sales) the parameters mentioned above are calculated as follows: 

1. Degrees of freedom: 



Note: M represents the number of lags required for optimum resolution 

of a spectrum. It is computed as M = , where aA is the incremental 

value between successive plots of the spectrum. 

Hence, 

4.7.2 Values are computed for the item data (pork steak, round 

steak, and whole fryers) as follows: 

All of the confidence limits are computed for 0.95 probability. 



CHAPTER V 

RESULTS 

The original hypothesis was that frequencies would be found indi-

cating the presence of weekly, bi-weekly, semi-monthly, and monthly 

cycles. The management of Falley's had stated that a weekly cycle 

was definitely in evidence, based on their analysis. 

The primary approach used for analysis of the data included re-

gression analysis and spectral analysis. Fourier analysis was used to 

complement the spectral analysis and validate the frequencies which 

appeared. Periodograms were analyzed for all of the store data. An 

explanation of the Fourier technique which was used can be seen in 

Appendix II. 

Detailed analysis of the data was accomplished in two phases: 

(1) Analysis of the store data (total sales, customer count, 

meat sales) for Store number Seven; 

(2) Item data for Store number Seven. 

The discussion of results is separated to correspond to the two phases. 

5.1 ANALYSIS OF THE STORE DATA. 

The spectral analysis disclosed only a strong cycle of seven days 

duration. This weekly cycle was found in all three sets of data (total 

sales, customer volume, meat sales) and substantiated by the periodogram 

from the Fourier analysis (see Figure 11). Because of the exceptional 
2 

strength at the frequency of the cycle, — radians, there were definite 

harmonics also present which corresponded to periods of 3 1/2 days and 

1 3/4 days (1st and 2nd harmonics, respectively). 



MODEL.: LINEAR TERM. 
PLUS 1 FREQUENCY 



MODEL: DUMMY VARIABLES 

MODEL LINEAR TERM 
PLUS PRIMARY FREQUENCY 

PLUS TWO HARMONICS 



LAGS 

DAILY 

Figure 11 

REPRESENTATIVE PERIODOGRAMS OF 
STORE DATA, USING TOTAL 

DOLLAR SALES 

WEEKLY 

STORE NUMBER 
SIX 

DAILY 

WEEKLY 

STORE NUMBER 
SEVEN 



There appears to be no growth trend in the data. Regression 

analysis reveals that the growth component, 1, is very small (10 to 

10 -3) for each set of data and varies minutely from model to model. 

If we examine the spectra for evidence of the biweekly and monthly 

cycles we find that there is none. This invalidates a major portion 

of the original hypothesis; that is, that bi-weekly and monthly frequenci 

do exist. 

A disproportionately large amount of time and effort was spent in 

analyzing the gross store data. This was done because the data exhibited 

more of the characteristics of true time series. (i.e. randomness, suf-

ficient amount of data, relatively stable conditions) which could be tied 

in later with advertising sales effect, through the use of cross-

correlation and cross spectral analysis. 

In order to determine whether or not the values for are actually 

insignificant, a t-test was performed on the values for total sales, 

customer count, and meat sales. The results of the t-test indicate 

that all of the values are definitely insignificant. See Appendix IV 

for a detailed explanation of the t-test. 

The linear regressions which were performed using the various 

models described in Section 4.5, gave increasingly better results (with 

respect to the correlation coefficient, r, and the coefficient of 

determination, r2) as terms were added. A summary of the statistics 

can be seen at TABLE 3. 

It is important to note that in all three instances the best values 
2 

of r and r were obtained through the use of the model with linear 

term plus three frequencies and the model using dummy variables. There 

was little difference between the results of the two models. 



TABLE 3 

SUMMARY OF REGRESSION STATISTICS 

STORE 

TOTAL SALES 

CUSTOMER COUNT 

MEAT SALES 



In all cases the model with only the linear terms ( ) provided 

very poor results, as one might expect after determining the presence of 

strong cyclic terms. There was a significant increase in accuracy 

where the terms associated with the primary frequency were added to the 

linear terms. The increase in accuracy is not great between the model 

using the linear term plus the primary and the model with the linear 

term, primary frequency, and 1st harmonic; nor is it great between the 

latter model and the model with the linear term, primary frequency, and 

first and second harmonic. 

Figure 10 shows a representative set of spectra for total dollar 

sales, with each model used. By inspection, the effect of additional 

terms becomes obvious. One can see the three peaks in the linear model; 

two peaks in the linear plus one frequency model; one peak in the linear 

plus two frequencies model; and no peaks in the linear plus three 

frequencies, or in the model using dummy variables. As stated before, 

the peaks are not significant and indicative of a frequency unless they 

protrude above the confidence limits. 
2 The error variance o2 decreases as each parameter is added to the 

regression (see Figure 12). As one would expect, a point is reached 

at which the addition of parameters begins to show less significant 
2 decreases in o2. This "point is different for each time series. 

2 From FIGURE 12 one can determine that o2 : E 

(1) for customer count, decreases very slightly after 2 parameters 

(2) for total sales, decreases substantially up to 7 parameters 

(the dummy variable regression) and slightly from 7 to 8 

parameters (linear term plus primary frequency, plus two 

harmonics); 



NUMBER OF PARAMETERS 

Figure 12 

PLOT OF RESIDUAL MEAN SQUARE 
VS. NUMBER OF VARIABLES 

FOR STORE #7 

TOTAL SALES 
CUSTOMERS 
MEAT SALES 



(3) for meat sales, behaves similarly to the customer count data. 

It is important to notice that the results obtained from the re-

gression using dummy variables are almost as good as the results of the 

regression which used the linear term plus the primary frequency plus 

two harmonics. Only one series of regression computations was required 

for the dummy variable results, while four series were required to 

obtained comparable results using the other method (adding 1 frequency 

each time). 

5.2 ANALYSIS OF ITEM DATA 

Spectral analysis was performed on the data for whole fryers, 

round steak, and pork steak. A linear regression and a regression 

using dummy variables was accomplished with each set of data, not 

including the variables relating to the sale (advertising). Additionally, 

a regression using dummy variables plus the sale variables was performed 

on the round steak data. A summary of the results of the spectral 

analyses can be seen at Table 4. 

In none of the cases did spectral analysis of the regression 

residuals disclose any significant frequencies. This was substantiated by 

Fourier analysis. The only significant results obtained from the item 

data was accomplished through the addition of the advertising variables 

to the regression using dummy variables. The results of that regression 

are astounding when compared to the results of the other regressions. 

As seen from Table 4 the coefficient of correlation is 0.0589 for the 

01 regression without advertising variables, 0.1305 for the linear 

regression, and 0.9449 for the 01 regression using the ad variables! 



TABLE 4 

SUMMARY OF REGRESSION STATISTICS 
FOR ITEM DATA 

STORE 

ROUND STEAK 

PORK STEAK 

WHOLE FRYER 

GROWTH COMPONENT 



The spectra for all of the regressions display a very similar 

shape which is indicative of a strong autocorrelation tendency in the 

data (see Figure 13). However, in all cases, the spectrum is well 

within the confidence limits, thus emphasizing the fact that there 

is nothing significant in the behavior of the residuals. 

5.3 FORECASTS. 

All of the models for gross sales data obtained through regression 

and spectral analysis were used to forecast behavior for an additional 

twelve weeks. As one would expect, the accuracy of the forecast 

increases as the model incorporates additional terms. See Appendix III 

for a representative plot which includes the actual data, forecasted 

data, and residuals. 

The residuals were examined for evidence of trends which would 

indicate whether there were any long-term time effects influencing the 

data. Examples of possible time effects are shown in Figure 14 as 

follows: 

1. Figure 14-(a) no assignable cause 

2. Figure 14-(b) variance not constant, and it increases with 

time. A weighted least squares analysis should have been 

made. 

3. Figure 14-(c) a linear term in time should have been used. 

4. Figure 14-(d) quadratic terms in time should have been in-

cluded in the model. 

Combinations and variations (such as opposite slopes) of these defects 

can and do occur. 



Figure 13 

A REPRESENTATIVE SPECTRUM 
OF THE ITEM DATA 

UPPER CONFIDENCE LIMIT 



Figure 

BEHAVIOR OF RESIDUALS 
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The general shape taken by the residuals obtained from forecasts 

using the various models corresponds to Figure 14-(a). This indicates 

inclusion of the necessary basic parameters in the model, as well as 

stable behavior of the data. 

Another indication of the relative goodness of the forecast is the 

mean absolute error, (MAE) (^]e)N). From TABLE 5 one can observe the 

decrease in MAE as terms are added, up to the dummy variable model. At 

that point there is a very slight increase in the MAE. The error for 

the total forecast, expressed as a percentage, decreases substantially 

from the linear model to the model with a linear term plus the primary 

frequency. It also shows an increase between the linear term plus 

three frequency model and the model using dummy variables. 

As one would expect the relative decrease in MAE between the linear 

model and the linear model plus 3 frequencies is greatest where there 

is the greatest variability (meat sales, coefficient of variation = .4829) 

and least where there is the least variability (customer count, coefficient 
2 

of deviation = .1993). The error variance, o^, also decreases as the 

terms are added. 

No forecasts were made for the item data because there was not 

sufficient data available to provide for a legitimate forecast. 



TABLE 5 

SALES DATA STATISTICS 

1. FORECAST SUMMARY 

MODEL TOTAL SALES 

CUSTOMER COUNT 

MEAT SALES 

2. DISTRIBUTION STATISTICS 

TOTAL SALES 
CUSTOMER COUNT 
MEAT SALES 

MEAN STD. DEVIATION COEFFICIENT OF 
VARIATION 

.3709 

.1993 

.4829 



CHAPTER VI 

CONCLUSIONS 

6.1 STORE DATA 

There is very little difference between the results of the model 

using the dummy variables and the model using the linear term plus 

three frequencies. The more accepted model in the industry is the one 

using dummy variables. In the opinion of this author, it is easier 

to develop, explain, and use. In this case the difference in the re-

sults between the two models does not justify the time and expense of 

implementing the spectral technique, in spite of the fact that good re-

sults were eventually obtained from the spectral analyses. If the 

primary intent of this study had been to identify and analyze frequency 

response s, such as in the case of communications engineering studies, 

spectral analysis would be justified. 

A logical explanation of the results of the approach using regression 

with dummy variables is that the cycle (in this case, weekly) is repeating 

itself and each value of the model ) reflects the same pro-

portionate part of each week's business. There is also a logical explan-

ation for the appearance of the linear term plus the primary frequency: 

the linear term is present because of the nature of the regression 

analysis, and the primary frequency appears because there is overwhelming 

evidence to indicate the presence of a legitimate weekly cycle. The only 

explanations of the presence of the two harmonics are 

(1) That the primary is so strong that the harmonics were a 

natural result, and 



(2) That there is substantial leakage due to using the Tukey-

Hanning window. 

Jenkins and Watts [11], in their discussion of window carpentry, state that 

the price which must be paid for optimal resolution and narrow bandwidth 

(such as we have used in this study) is that we get large side peaks 

(frequencies). The effect of these extra frequencies is to permit values 

of rxx (g) at frequencies away from the primary frequency to make large 

contributions to the bias of the primary frequency. They further state 

that the rectangular window, the Bartlett window, and the Tukey-Hanning 

window cause considerable trouble if the spectrum has a narrow peak (which 

is certainly the case for the spectra in this study). If side lobes are 

to be minimized, the Parzen window should be used, even though it is a 

wider window and requires more autocovariance terms to achieve a given 

bandwidth. 

6.2 ITEM DATA 

The only technique which produced any positive results is the 

regression using dummy variables, including the advertising variables. 

Spectral analysis, in this case, does not contribute to the development 

of a model. It does provide an accurate measure of the noiseness and 

unpredictability of the data under normal linear regression procedures. 

As previously mentioned the data is stratified and exhibits great 

variability, hence great instability. If we use the Coefficient of 

Variation,, as a measure of the variability of the item data we 

obtain values close to 1.00, indicating an extreme amount of variability 

(over almost the entire range of the distribution). This is in contrast 



with values of .36, .20, and .48 for total dollar sales, customer count, 

and meat sales, respectively. 

One important conclusion which should be emphasized is that 

spectral analysis makes a substantial contribution in the identification 

of assignable causes. Through examination of the spectrum one can 

determine those variables which should have been included in the re-

gression. For example, examination of a spectrum of the residuals 

from a linear regression of gross sales data reveals the presence of 

the primary frequency and the two harmonics. On the other hand, 

examination of the spectrum of the residuals from the regression 

using dummy variables reveals no more significant variables. 

6.3 FORECASTS 

The main conclusions reached by this author regarding forecasts of 

data using models developed through regression and spectral analysis 

are: 

(1) Given data which is basically Gaussian, accurate models 

can be developed and used successfully, 

(2) Regression models developed through the use of dummy 

variables are as accurate in predicting behavior of stable 

time series as are models developed through linear regression 

and addition of cyclic terms, and 

(3) The gross sales data used in this study is definitely pre-

dictable. This fact is not to startling to this author, 

but it joggles the professional pride of many store managers 

who have been wringing their hands and nodding their heads 



in anguish as they decry the incredible inpredictability of 

their business. 

The results of this study have definitely convinced this author 

that "it can be done!" The implications for the retail grocery business, 

as well as for military commissaries, is considerable. 



CHAPTER VII 

RECOMMENDATIONS FOR FUTURE WORK 

7.1 CROSS SPECTRAL ANALYSIS 

It seems almost a natural step to progress from spectral analysis 

to cross-spectral analysis. Through the use of cross spectral tech-

niques relationships can be determined between different variables, 

such as meat sales and hamburger sales, customer count and the size of 

the advertisement in the daily paper, dollar sales and customer count, 

etc. 

Further, lead-lag relationships between variables can be developed 

which incorporate phase angle and phase shifts. The true value of this 

type of statistical analysis is not fully realized until cross-spectral 

analysis is incorporated into the analysts box of tools. 

7.2 ANALYSIS USING OTHER SPECTRAL WINDOWS 

It would be quite interesting to evaluate the results of spectral 

analysis on the gross sales data, using different spectral windows. As 

mentioned in Section 6.1, one of the possible reasons for the harmonics in 

the spectrums could be that the Tukey-Hanning window allows too much 

leakage. Perhaps the use of a Parzen window or Bartlett window would 

provide considerably different results? 

7.3 DETERMINING EFFECT OF ADVERTISING 

There were some variables in the item data which were not used. One 

of the most important of these was a variable describing the classification 

of advertising, based on the prominence of the item in the daily adver-

tising. Analysis of this relationship could be accomplished using 



regression techniques and spectral analysis or cross-spectral analysis. 

7.4 IMPLICATIONS FOR STORE MANAGEMENT 

The accuracy and reliability of the forecasts form an excellent 

basis for detailed analysis of daily customer behavior. It is this 

author's contention that consistent, predictable patterns will be 

uncovered in customer arrival data. 

From an integration of daily predicted total volume and hourly 

arrival patterns accurate schedules can be derived well in advance 

for the efficient accomplishment of store functions such as stocking, 

warehousing and cashiering. GPSS/360 (General Purpose Simulation 

System) could be used to develop, evaluate, and test the effectiveness 

of such an integrated management system. 
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APPENDIX I 

COMPUTER PROGRAMS 

CONTENTS 

1. Main Program 

2. Parzen Auto & Cross Correlation Subroutine 

3. Parzen Spectral Density Subroutine 

4. Plot Subroutine 

5. Fourier Analysis 





MATRIX REGRESSION 





THIS PROCEDURE COMPUTES THE AUTO AND CROSS CORRELATION 
FUNCTIONS,R1(),R2(),CI(),AND CT(), FOR I=1,2,...M+1.The 

FUNCTION AT LAG M IS STORED AT I=M+1. THE TIME SERIES ARE 0F 
EQUAL LENGTH, N. , AND BOTH ARE STORED IN THE ARRAY Y(), 
ONE BEGINNING AT L1, AND THE OTHER AT L2. THE AUTO COR-
RELATION FUNCTIONS ARE NORMALIZED TO HAVE A VALUE 1 AT THE 
ORIGIN, AND THE CROSS CORRELATION FUNCTIONS ARE ALSO CON-
SISTENTLY NORMALIZED. THE NORMALIZING FACTORS ARE D1,D2, 
and D3. THE FUNCTIONS ARE ADDED INTO THE ARRAYS R1(), R2(), 
CI(),AND CT(), TO ALLOW POOLING OF COVARIANCES. 





SUBROUTINE PARZN2(R1, R2, RE, R, 0, NQ, M, NOSTOR, NO) 

THIS PROCEDURE COMPUTES N+l POINTS OF TWO ESTIMATED SPECTRAL 
DENSITY FUNCTIONS AND OF THE CO-SPECTRUM AND QUADATURE 
SPECTRUM FROM R1(l) AND R2(I), WHICH ARE THE AUTO-CORRE-
LATION FUNCTION OF TWO TIME SERIES. THE TRUNCATION POINT IS 

M, THE WEIGHTING KERNEL USED IS OMEGA(I). THE SINES AND 
COSINES NEEDED ARE COMPUTED RECURSIVELY. 

THIS D0 LOOP IS USED TO DEVELOP WEIGHTING VALUES, USING THE TURKEY 
WINDOW. SEE G R A N G E , PAGE 60. 





SUBROUTINE PLOT (NO,A,N,M,HL,NS,NOSTOR) 

DIMENSION OUT(1O1),YPR(11),ANG(9),A(1) 

SORT BASE VARIABLE IN ASCENDING ORDER 



FIND BASE VARIABLE PRINT POSITION 

FIND CROSS VARIABLES 

PRINT LINE AND CLEAR, OR SKIP 



PRINT CROSS VARIABLES NUMBERS 



THIS PROGRAM IS USED TO CALCULATE THE FOURIER COEFFICIENT. 

CONTINUE 
CALCULATE THE FOURIER COEFFICIENTS 



APPENDIX II 

FOURIER ANALYSIS 

Fourier Analysis was used to approximate and isolate the possible 

periodic and non-periodic functions in the store data. The periodic 

functions used in Fourier analysis are sine and cosine functions. They 

have the important properties that an approximation consisting of a 

given number of terms achieves the minimum square error between the 

singal and the approximation. They are also orthogonal, so the coef-

ficients may be determined independently of one another. 

The finite Fourier series may be represented as 

It (the series, s(t)) contains 2N constants, the A and B , which can be 

determined so that the discrete and continuous values coincide at points 

t = r A , that is s(t) = s ^ . Therefore, w e can say that the function s(t) 

provides an approximation to the original continuous function s(t) in the 

interval -T/2 t < T / 2 , w h e r e T is the period of the function. 

For the purpose of analysis w e obtained values for the coefficients 

and the amplitude. Phase representation was not considered in the scope 

of this study, although it can be computed quite easily. The coefficients 

are calculated as 



and the phase is calculated as 



APPENDIX III 

PLOT OF FORECASTS FOR 

TOTAL SALES 

KEY: 0 FORECAST DATA 
+ ACTUAL DATA 
* RESIDUALS 



Page 85-87 
Chart #1 
Forecast, using Linear Term Only 



F O R E C A S T , U S I N G T O T A L S A L E S D A T A 

R E S I D U A L S F R O M F O R E C A S T , U S I N G L I N E A R T E R M O N L Y 
STORE N U M B E R 7 

C H A R T 1 



5 4 . 0 0 0 0 + 



120.0000+ 



1 8 6 . 0 0 0 0 + 



2 5 2 . 0 0 0 0 + 



- 1 4 . 2 3 3 3 - 6 . 3 1 0 0 1 . 6 1 3 3 9 . 5 3 6 7 1 7 . 4 6 0 0 2 5 . 3 8 3 3 3 3 . 3 0 6 6 41.72299 4 9 . 1 5 3 2 5 7 . 0 7 6 5 

3 1 8 . 0 0 0 0 + 



Page 88-90 
Chart #2 
Forecast, using Linear 
Term, Plus 1 Frequency. 



CHART 2 

F O R E C A S T , U S I N G C U S T O M E R C O U N T DATA 

R E S I D U A L S F R O M F O R E C A S T , U S I N G L I N E A R T E R M , P L U S 1 F R E Q U E N C Y 
STORE N U M B E R 7 



5 4 . 0 0 0 0 + 



120.0000+ 



186.0000+ 



2 5 2 . 0 0 0 0 + 



3 1 8 . 0 0 0 0 + 

- 5 . 9 4 4 6 - 3 . 2 8 7 2 - 0 . 6 2 9 7 2 . 0 2 7 7 4 . 6 8 5 2 7 . 3 4 2 7 1 0 . 0 0 0 1 1 2 . 6 5 7 6 1 5 . 3 1 5 0 1 7 . 9 7 2 5 



Page 91-93 
Chart #3 
Forecast, using Linear 
Term Plus 2 Frequencies 



F O R E C A S T , U S I N G C U S T O M E R C O U N T DATA 

R E S I D U A L S FROM F O R E C A S T , U S I N G L I N E A R T E R M , P L U S 2 F R E Q U E N C I E S 
STORE NUMBER 7 

CHART 3 



5 4 . 0 0 0 0 + 



120.0000+ 



186.0000+ 



2 5 2 . 0 0 0 0 + 



3 1 8 . 0 0 0 0 + 

- 5 . 8 6 7 6 - 3 . 2 1 7 9 - 0 . 5 6 8 1 2 . 0 8 1 6 4 . 7 3 1 4 7 . 3 8 1 2 1 0 . 0 3 0 9 12.6807 1 5 . 3 3 0 5 1 7 . 9 8 0 2 



Page 94-96 
Chart #4 
Forecast, using Linear 
Term Plus 3 Frequencies. 



C H A R T 4 

F O R E C A S T , U S I N G C U S T O M E R C O U N T D A T A 

R E S I D U A L S F R O M F O R E C A S T , U S I N G L I N E A R T E R M , P L U S 3 F R E Q U E N C I E S 
STORE N U M B E R 7 



5 4 . 0 0 0 0 + 



120.0000+ 



1 8 6 . 0 0 0 0 + 



2 5 2 . 0 0 0 0 + 



3 1 8 . 0 0 0 0 + 

- 5 . 2 9 6 9 - 2 . 7 0 4 2 - 0 . 1 1 1 5 2 . 4 8 1 1 5 . 0 7 3 8 7 . 6 6 6 5 1 0 . 2 5 9 2 12.8519 1 5 . 4 4 4 6 1 8 . 0 3 7 3 



Pages 97-99 
Chart #5 
Forecast, using Dummy Variables. 



C H A R T 5 

F O R E C A S T , U S I N G TOTAL SALES DATA 

R E S I D U A L S F R O M F O R E C A S T , U S I N G D U M M Y V A R I A B L E S 
STORE N U M B E R 7 



5 4 . 0 0 0 0 + 



120.0000+ 



186.0000+ 



2 5 2 . 0 0 0 0 + 



3 18.0000+ 

- 3 3 . 0 1 7 2 - 2 3 . 2 1 5 5 - 1 3 . 4 1 3 8 - 3 . 6 1 2 1 6 . 1 8 9 6 1 5 . 9 9 1 3 2 5 . 7 9 3 0 3 5 . 5 9 4 7 4 5 . 3 9 6 4 5 5 7 1 9 8 1 



SIGNIFICANCE TEST FOR 

It is stated several times in this report that the growth com-

ponent, for the model is almost non-existant and definitely in-

significant for mathematical considerations. Therefore, to support the 

contention of insignificance, a t-test was performed. Development of 

the t-test is as follows: 

1. The standard error of b1 is the square root of the variance, 

that is 

2. If we assume that the variations of the observation about the 

lines are normal, it can be shown that we can assign 100(1-)% 

confidence limits for by calculating 

where t(n-np, l-l/2) is the (l-l/2) percentage points of 

a t-distribution with (n-np) degrees of freedom (the number 
2 

of degrees on which s is based). N is the number of data 

points, and np is the number of parameters involved. The 

test will be a two-sided test conducted at the 100(l-)% 

level in this form. 

The variance of b1 is given as: 



and is the (n,n) element of the (X'X) -1 matrix of dimensions n x n. 

So we can say that the standard error of b1 is 

So, if we want to test the significance, or, in this case, substantiate 

the insignificance of B1 we proceed as follows: HO: B1=0; Ha: B1 ^ 0 

1. Determine the critical value for t(,0.975), which is 1.960. 

2. Determine the (n,n) element for the (X'X) matrix. It is: 

So we do not reject the hypothesis 

3. Calculate a t value for each set of data, and compare t 

against the determined critical value. 

a. Total Sales 

Now we can state the hypothesis 



Now, after completing t-test of all of the values, we can say 

that is very definitely insignificant. In fact, only the value 

for Total Sales could find a significance level anywhere on the t-dis-

tribution table, that being at t ( , 0.30). 

So we do not reject the hypothesis 

Customer count 

So we do not reject the hypothesis 



APPENDIX V 

ORIGINAL TIME SERIES 

GROSS SALES DATA 
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The subject of this thesis is the applicability of spectral 

analysis to the development of forecasting models for retail grocery 

store data. The time series data is of two types: 

1. Daily gross sales; total dollar sales, customer count, 

and meat sales. 

2. Daily item sales from the product mix of the store's 

meat market. 

The original hypothesis was that spectral analysis would 

reveal the presence of weekly, bi-weekly, semi-monthly, and monthly 

cycles. The store management had emphasized the presence of a weekly 

cycle, but was unsure of other cycles. They had no accurate methods 

for forecasting. 

Spectral analysis revealed only one primary cycle, of seven 

days, plus the first and second harmonics, corresponding to 3 1/2 and 

1 3/4 days, respectively. 

The results obtained from spectral analysis were compared to 

results obtained from models using conventional matrix regression 

with dummy variables. The major conclusion reached is that in this 

case the results of both techniques differ slightly. Further, it is the 

opinion of this author that in cases where the data is Gaussian the 

matrix regression with the dummy variable approach is perferable to 

spectral analysis. 




