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INTRODUCTION

The problem of a square beam under axial compression is of

both practical and theoretical interest. Professor J. M. Goodier

in his paper entitled "Compression of Rectangular Blocks, and the

Bending of Beams by Non-linear Distribution of Bending Forces" [3J

has foujid an approximate stress function which satisfies the boundary-

conditions and the conditions of equilibrium but which does not nec-

essarily give compatible strains, and from which stresses at points

of a rectangular beam under compression can be calculated. In the

discussion of that paper, Dr. Max M. Frocht suggested the pos-

sibility of solving this kind of problem by photoelastic methods.

This is what was done for this report, i. e. , an investigation was

miade of the stress distribution in a square beam which is under action

of a pair of colinear forces. Although it is possible to find stresses

at any point, the stress distributions along horizontal and vertical

axes are of special interest, since these are the critical sections.

A BRIEF REVIEW OF THE THEORY OF
TWO-DIMENSIONAL PHOTOELASTICITY

Certain Optical Fundamentals Used in Photoelasticity

The electromagnetic-wave theory, or simply the wave theory,

is used to depict the behavior of light. Light is considered as a wave

whose direction of vibration is perpendicular to its path and whose



amplitude can be expressed as ,

a = A sin wt , ' ^ '

where A is the maximum amplitude, and w is the circular •

frequency of radiation.

The velocity with which light propagates depends upon the

material through which it passes. For certain material the veloc-

ity may further depend upon the plane in which light vibrates, i. e.
,

light miay propagate with different velocities in different planes.

Each monochromatic light is specified by the frequency with which

it vibrates and it is distinguished from the other through the sense

of color. On the contrary, white light is made up of a number of

constituent vibrations poses sing different frequencies. When a cer-

tain color is spoken of, it is customary to refer to wave length (X- ),

instead of frequency (f), since the former is related to the latter

where c is the velocity of light in a vacuum. ;, ,

Another convenient way to represent light is by a vector which

has the magnitude of the amplitude and the direction of the vibration.

This vector is called the light vector. Thus monochromatic light is

represented by a single light vector, while white light is composition

of a number of light vectors.

Light is said to be refracted when its velocity changes as it

passes fromi one medium into another. The ratio of the velocities

with which light travels in the two consecutive media is called the index

of refraction.
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One of the most important optical properties emiployed in the

photoelastic method is polarization of light. Polarization means

that the vibration of light is modified in a certain manner. Three

kinds of polarization are very important to photoelasticity and are

mentioned here: . ,

Plane Polarization . Light is said to be plane-polarized when

it is constrained to vibrate in only parallel planes, i. e. , vibration

is allowed in only one direction. In this case, the light vector has

a constant direction, though its magnitude may change.

Circ\ilar Polarization. For circularly polarized light the

light vector rotates around the line of propagation and has a con-

stant magnitude. Circularly polarized light may be resolved into

components in any two directions at right angles with the compon-

ents having the same amplitude always.

Elliptical Polarization. This is essentially similar to cir-

cular polarization except that the magnitude of the light vector

changes periodically during the rotation. Elliptical polarization is

seldom! used in photoelasticity.

Polarization of light is usually achieved by passing natural

light or monochromatic light through a plate of crystal or a com-

bination of crystal plates. The device used in this experiment to

produce polarized light will be introduced later, -_

The Photoelastic Effect

Double Refraction or Birefrigence . Certain materials

transmit only light vibrating in two selected perpendicular planes.



i. e. , they polarize light in these planes and, in general, the velocity

of transmission is not the same in the two planes. This phenomenon

is referred to as "double refraction" or "birefringence. " Materials

used in photoelasticity must become birefringent when they are stressed.

Basic Optica l Laws of Two- dimensional Photoelasticity.

Almost all transparent materials such as glass, celluloid, Bake-

lite, and many other synthetic resins, becomie doubly refracting

when they are subjected to stress. For normal incidence on flat

plates subjected to plane stress within the elastic limit, there are

two laws governing the relationships between the transmission of

light and stress:

First, at any point in a stressed transparent plate, the axes

of polarization of light passing through the solid are parallel to the

direction of the principal stresses in the plane of the platej

Secondly, the difference of the velocities of the two oppositely

polarized rays at the point is proportional to the difference of these

two principal stresses. ''.

Thus by employing a suitable polariscope, information about

the directions of the principal stresses and also the difference in

their magnitudes can be obtained for any point. The directions of

the principal stresses are shown by the isoclinic fringe patterns.

The difference in the magnitudes of the principal stresses, which is

twice the maximiim shear, is given by the isochromatic fringe pat-

terns. These are the basic data on which the stress analyses are to

be made, with the help of the theory of elasticity.
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INVESTIGATION OF A MODEL -- OBTAINING
RAW TEST DATA

The Polariscope: The Chapman 8-inch research polariscope,

of which a picture is given in Fig. I, was used in this experiment.

There is a dual lamp housing which contains a white light source

and a monochromatic light source. The white light comes from a

ribbon filament incandescent lamp, but the monochromatic light is

obtained from a high intensity mercury vapor lamp equipped with

glass filter passing the green light of 5461A wave length.

All components and controls of this equipment are miounted

on a single rigid steel tube that extends the length of the polar i-

I

scope. The polarizer, the analyser, and the quarter-wave plates

are all removable. Polariser and analyser can be coupled to rotate

simultaneously. This last arrangement makes it possible to watch

the movement of the isoclinic fringes.

'

! Preparation of a Model: The first thing for preparation of a

model is the selection of a material. Because of its ready availa-

bility, CR-39 was chosen for model material.

Some of the mechanical properties of CR-39 are given by

Heywood l4J as: elastic limit = 3, 000 psi, ultimate strength = 7, 000

psi, and Young's modulus = 250,000 psi.

I Although CR-39 is fairly sensitive to photoelastic effect, certain

disadvantages it possesses may not be overlooked. That it creeps

excessively is most undesirable and may often affect the quantita-

tive accuracy of investigation. It also possesses a certain amount
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of initial stresses which sometimes prove to be troublesome. In

spite of its very convenient form for the making of models, con-

siderable care in machining is required to make a good model,

for it is very prone to chipping; otherwise stresses may be '

developed on boundary by machining.

To make a model, the contour of the model was first out-

lined on a sheet of CR-39. For the purpose of this investigation,

two models were to be made: One was a square beam of 1-1/2

inch sides for investigation, and the other was a 4. 5 by 1. inch

rectangular beam for use of calibration of the material. The

Dremel Motor-Saw was used for rough cuts. The final rough cut

would leave a margin around the desired contour about one-

sixteenth inch wide. Then the model was secured to a suitable

brass template having a desired contour with doubly- coated ad-

hesive tape. The contour of the template used was rectangular.

Finishing cut was made by a high-speed milling machine, which,

in this experiment, is the Chapman Model Making Kit, Model 45.

This final machine operation is illustrated in Fig. 2. The last

step was to clean the finished models with trichloroethylene.

Loading Schemes . A pair of centered compressive forces

were needed for the square beam. As approximation, uniformly

distributed forces in width of one eighth of the depth of the beam

were used instead. In Fig. 3, a sketch of loading jig for this conn-

pressive loading is given. It was difficult to get the two opposite

forces exactly centered, and it shoxild be noted that stresses obtained

would vary according to the loading jig employed. In this experiment
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Fig. 4, Loading scheme for pure bending.
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two plexiglass pads were used to transmit the load. If stresses

of an actual beam are to be found by using a model, the loading

jig used on the model must be exactly similar to that used on

the actual beam. •'

.
.

For calibration, pure bending was used. The loading

scheme is given in Fig. 4. Four brass rollers were used to

transmit load.

Calibration for the Material . The pure bending m.ethod

was used. Fromi Strength of Materials the remotest fibre stress

is given by the flexure formula

' '•'.
_ Mh

max "21

where M is the applied moment, h is the depth of the beam, and

I is the m.oment of inertia of the cross section about the neutral

axis. But T is also equal to C times N, where C is
max

the stress-optical coefficient and N is the fringe order at top or

bottom of the beam, i. e. ,

'

r = ^ =CNmax 21 . .
•

>: .

from which

Mh ,

C = 2IN ••

The dark field isochromatic photograph for the calibration

(rectangular ) beam under pure bending is shown in Fig. 5. To

find N, a straight line was first obtained by plotting, for the

middle section of the beam, fringe orders against distance from

10
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the horizontal center line, and is shown in Fig. 6. Then N was

obtained by extrapolating the straight line to the boundary and

found to be 5, 55. The calculations for C are shown below

12

h =

b =

M =

N

C

height of beam = 1.04"

thickness of beam = 0. 267"

4— load tim^es distance between right (left)

adjacent rollers

_1_

2
-L(30 • 12.62) • 4- = 94.5 Ib- m.

5. 55

Mh
2IN

I2x 94. 5 X 1.04

2'^0. 267X1. 04^ 5. 55

= 370 psi/fringe

6 -

5 •

u *

u
O 3

C
•r-l

hi
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Distance from Center

0-9

5. 55

Edge

1-0

Fig. 6, Fringe order at edge by extrapolation.
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Is o chromatics. Circularly polarized monochromatic

light was used to obtain the isochromatic fringe patterns.

First, a dark field was obtained by crossed polarisers and

crossed quarter-wave plates with the axes of the former miake

an angle of 45 degrees with those of the latter. Then a light

field was obtained by rotating one of the quarter -wave plates

to be parallel to the other.

After the arrangement for the proper polariscope being

made, the model was loaded until enough isochromatic fringes

were produced. The loading was allowed to stand for awhile

until most creep occurred, and the fringe pattern did not change

appreciably. Then the isochromatic photographs were taken,

first for the dark field, and then for the light field. Kodak

Contrast Process Panchromatic Films were used. The expos-

ure time was one second. The photographs are shown in Fig. 7.

Isoclinics. Planely polarized white light was used for

investigating the isoclinic fringe patterns. Although the directions

of the principal stresses are independent of the miagnitude of load,

it was found that greater load miight be practically necessary to

bring out the isoclinics at regions where stresses were very srriall.

Otherwise, either somie of the isoclinics might be lost or appear

fuzzy in those regions. Photographs were taken for the isoclinic

patterns of parameters 5, 10, 15, 20, 25, 30, 35, 40, and 45 degrees.

»
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These are enough to give complete information of direction

of principal stresses when symmetry of the model and loading

are taken into consideration. All photographs were taken with

the film mentioned previously, but the exposure tim^e was two

seconds. The isoclinics of parameters 5 and 45 degrees are

shown in Fig. 8.

With the aid of an enlarger, the isoclinics of different

parameters were traced on one sheet of paper. This gave the

comiplete isoclinic fringe pattern, one fourth of which is shown

in Fig. 9, since the others can be obtained by reflecting it about

the vertical and horizontal axes. Two isotropic points are pre-

sented in Fig. 9, which, together with others obtained from sym.-

metry, make a total of six for the whole beam.

After the isoclinic fringe pattern was obtained, the stress

trajectories (isostatics ) were constructed by a graphical process

on the basis of isoclinics [z] . Shown in Fig. 10 are the iso-

statics in one quarter of the beam. The p set represents the

tensile stresses, while the q set represents the compressive

stresses. ';

i
, Fractional Fringe Order at Center . The directions of

principal stresses at center, which are vertical and horizontal,

are known from symnaetry. Hence the Tardy method of com-

pensation [33 was used to determine the fractional fringe order

at that point. It was found to be 4. 74 fringes. When P-Q curves

along the vertical and horizontal axes of symmetry, where P and
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iiiim

Fig. 9. Sketch of isoclinics.
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5° (85° ) Isoclinic

Fig. 10. Sketch of stress trajectories.
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Q are principal stresses, were drawn, it was' essential

to know the fringe order at center.

• SEPARATION OF STRESSES

^ ..-1 • I
. -

Graphical integration of the Lame-Maxwell equations and the

shear difference method were employed to separate principal stresses.

When symmetries of the model and loading were given full considera-

tion, it was necessary to manipulate and analyze data for only one

quarter of the square beam. For convenience of reference, that

quarter was divided into a grid, as shown in Fig. 12. In the sequel

two identical letters or numerals will stand for a section, and the inter-

secting point of a vertical and a horizontal section will be referred to

by a letter and a numeral. The dimensions of the beam are given

in Fig. 11. It is to be noted that the element of the grid in Fig. 12

is a square of side equal to one twentieth of the depth of the beam.

'
J

: Stresses on the Axes of Symmetry . The Lame-Maxwell equa-

tions were used to calc\alate the stresses on the axes of symmetry,

AB and CD in Fig. 11, with the radius of curvature being com^puted

graphically by using Fig. 10.

The stresses on the horizontal axis, namely, aa in Fig. 12,

was first to be calculated. B, which is a^Q , was chosen to be

the starting point, since the P stress is zero there. In this case,

one of the Laine-Maxwell equations to be used was .

ap Q - P
a s. (1)
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J L
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1. 5"-
-2. 44"

Fig. 11. Dimensions of the beam.
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Fig. 12. Grid system used in stress analysing.
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where sj is the distance measured along the p lines of principal

stress in the direction BO, and Pz is the radius of curvature of

the intersecting q line.

As an approximation, 9z can be written as

Act)

where' Asz is a small displacement along the q line, and A^

is the corresponding change in direction of the q line. Then ( l)

can be rewritten as

9P - (Q_P) A4>

. a Si ^ ' A S2

which, in increment form, is

AP = (Q- P)^^i- ^i?
_

(2)
A 52 - /

By using (2) the increment AP can be calculated at

points 9, 8, 7, ... and on the section aa. Adding AP pro-

perly to P will give P for the above- said points successively.

In the actual calculation Asx was taken as constant,

being

^ "" ~ To"1

A Si = -jTT- depth of the beam.

•1 ^

As2 was taken as length of the q line between the 5 degree and the

-5 degree isoclinics, which are the broken lines in Fig. 10.

Hence Aj) was computed to be

. ; At> = - 5° - 5° = -10° = - 0. 175 radian

The minus sign follows from the sign convention of the Lame-
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Maxwell Eq. [zj. The relations among /^ , Sj, and S2 are
(

illustrated by Fig. 13

4) = 85

Fig. 13. Relation among (j) , si, and S2 .

In Eq. (2) the ratio of Asj to As2 is needed. Thus they

can be nneasured from Fig. 10 and their ratio can be computed

immediately, instead of finding their lengths on the beam and

their ratio.

The values of (Q-P ) along aa are given in Fig. 14 in terms

of fringes. The complete calculations are given in a tabulated

form in Table 1.
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Fig. 14. Values of (P- Q),
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Table 1. Calculations of principal stresses along horizontal
symmetrical section.

24

A}) = -0. 175 rad Asj = 25 unit (= 1 cm)

Sta- Q-P Asz Asi . ,

-^c

—

— • Ap
AS2 ^

AP AP P Q
tion fringes unit fringes (mean) fringes fringes

10 + 0. 18 - 00

0.022
+ 0. 18

9 -0. 32 + 33 -0. 133 0.043
0. 060

0.022 -0. 298

8 -0.76 + 44 -0.0995 0.076
0.096

0.082 -0.678

7 -1.23 + 47 -0.0932 0. 115
0. 125

0. 178 -1.052

6 -1. 78 58 -0.0755 0. 134
0. 151

0. 303 -1.477

5 -2.47 64 -0.0685 0. 169

0. 172
0.454 -2.016

4 -3.05 72 -0.0609 0. 176
0. 186

0.626 -2.424

3 -3.7 83 -0.0528 0. 195
0. 174

0. 812 -2.888

2 -4. 22 122 -0. 359 0. 152
0. 118

0.986 -3. 234

1 -4. 58 + 240 -0.0182 0.084
0.042

1. 104 -3.476

-4. 74 + 00 1. 146 -3.594
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By a similar procedure, stresses along section 00, which

is OC in Fig. 11, can be found. The stresses of point O (a„ )

have been fo\ind in Table 1. Therefore it is used as a starting

point. Now the second equation of the Lame'-Maxwell equations

is used. It is written as .

30 _ Q - P
,

25

9S2 Pi ,.
.

where Pj is the radius of curvature of p line. Like Eq. (2)

it can be written in increment form

AQ = (Q- P) ^^ Acj) , (3)
A S2

Q can be found at points b„, c_, ... h^ by using a

similar argument to that employed previously. In this case

As2 is taken as constant, Asj is the length of the p line

between the 5 degree and the -5 degree isoclinics, and Ap is

10 degrees. These relations are also shown in Fig. 13.

i With the values of (Q-P ) obtained from Fig. 14 and

Asi and As2 measured from Fig. 10, AQ was computed from

Eq. (3). Then Q was obtained after AQ was found. Cal-

culations are tabulated in Table 2. It is to be noted that cal-

culations cannot be carried beyond point h„ since it is too

near the load, and the photoelastic data is not reliable there,

f

Stresses on a Horizontal Section. The shear dif-

ference method may be used to separate stresses on a hori-

zontal section. To give an illustration, section ii was worked
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Table 2. Calc\ilations of principal stresses along

vertical symmetrical section.

Aj) = +0. 175 As2 = 25 unit(-^")

Q-P ,: Asi
Asi "^

AQ AQ Q P
fringes unit fringes fringes fringes fringes

-4. 74 00

-0.042
-3.594 1. 146

b -4. 78 248 0.018 -0.084
-0. 135

-3.636 1. 144

c -4.90 116 0.038 -0. 185
-0. 244

-3. 771 1. 129

d -5. 10 74 0.059 -0. 301
-0. 380

-4.015 1.085

e -5.43 52 0.084 -0.457
-0. 596

-4. 395 1.035

f -6.04 36 0. 121 -0. 734
-0.937

-4.991 1.049

g -7.03 27 0. 162 - 1. 140
-1.550

-5.928 1. 102

h -8.5 19 0. 230 -1.960
-2.920

-7.478 1.022

i -10.65 12 0. 365 -3. 890 -10. 398 0. 152
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out only, and others can be obtained similarly. Cooridnate

system and notations are shown in Fig. 15. The origin of co-

ordinates coincides with ijo , x-axis with ii, and y-axis

points down.

r.
io r~ '"ii T~i2 rii ^4 T^Ts Ti; TT? Tig Tig

I J 1__J J 1_-J ± ±.

(T )xy :

(T ) ,
^ x' n-

1

'.-. •'. T )X n
AY

(T)

Fig. 15. Grid system for application of the shear
difference method at section ii.

O(iio)

In a typical element shown in Fig. 15, T and T are
} c " ' X xy

average stresses acting in the x-direction. Subscripts refer to

I

faces they are acting on. Summing the forces in the x-direction

yields an equation of equilibrium,

(T ) AY - (T ) AY - (T ) ^K + (T ) AX =
^ X n-

1

X ' n ^ xy r ^ xy s

which, rewritten, becomes

(T ) = (T ) -(It ) - (T )"]
^ X n-

1

X n \
^ xy r xy s

AX ?

AY •' (4)



28

Since the value of T can be computed at any point from

isochromatic and isoclinic data by the formula

P- Q
•xy

sin 2 9 ,

(T ) can be computed if (T ) is known and Ax and Ay are
^ X n-

1

^ "

properly chosen. In this problem. Ax and Ay were chosen to be

equal. (T ) was computed at -Y(r^_ ^
+ r^ ) along section rr.

So was (T ) along section ss. At ijo which is on the free
*• xy s

boundary, the value of T^ is zero. So(T^)^, n= 9, 8, 7,... 0,

can be computed successively.

I
' (P-Q) curves for sections rr, ii, and ss, which are

obtained from Fig. 7, are given in Fig. l6. The values of 4> ,

which is the angle between the x-axis and the p line, are obtained

from Fig. 9, and given in Fig. 17.

1

' The computations of T ^ along ii are tabulated in Table 3.

All stresses are expressed in term^s of fringe order. The normal

stress T along ii is plotted against distance in Fig. 18, which
X

.
.

reveals its variation more clearly.

I
; T at i„ is obtained to be 0. 24 fringes, which, at this special

point, is also the principal stress P. Hence the other principal stress

IS

Q = (Q - P) + P= (Q - P) + T

•10. 65+ 0. 24

10. 41 fringes
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Fig. 17, Normal stress T along section ii.

These valiaes compare with Q = -10. 398 and P = 0. 252

obtained previously and are very close. ' --'^
'

For points other than i , the principal stresses Q and P

can be deduced by use of the values of (Q-P ) and the relation

T = P cos^ 4) + Q sin^ 6

Since this is not essential, it has not been carried through, but it

can be done easily if desired,
'

'
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DISCUSSION AND CONCLUSION

I

It is to be noted that the isochromatics, isoclinics, and the

isostatics within the circular region of diameter equal to the depth

of beam are closely similar to those of a circular disk under com-

pression. It was difficult to determine these outside the circular

region, since there are only relatively smaller stresses as well as

stress differences. A glance at Fig. 9 reveals the congestion of

isoclinics along the boundary of the circular region. As a matter

of fact, when isoclinics were traced from the photographs of

isoclinics of different parameters, sometimies it was almost im-

possible to distinguish one from the other. This may suggest an

"isotropic ring" where principal stresses are equal or stresses

are zero. But this is not the case. Careful study shows that there

are only six isotropic points as were indicated previously. The

two on the horizontal axis of symmetry are negative isotropic points

and have non-interlocking isostatics in their neighborhood [_2J .

Others are positive isotropic points, where interlocking isostatics

occur.

t
i

' The accuracy of the graphic integration of the Lame'-Maxwell

equations depends largely on the accuracy of the 5-degree isoclinics.

A check has been afforded by finding the stresses at point i^, using

the shear difference method. In spite of the fact that the shear

difference method may also introduce errors, the result of the check

is reasonable. When further check is necessary, stresses on other
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horizontal sections can be worked the same way.

Now a comparison will be made between the tensile stresses

(T ) along the vertical symmetric axis and those on a cor-

responding axis of a circular disk under compression. The

latter stresses are constant, and referred to as Tq. The

numerical value of Tq will be computed for this experim.ent:

T = _1^ = 2x(20x 12.62) ^ ^^q ^^^
°

irdt 3, 14 X 1. 5 X o. 244

438
= j=^ fringes = 1. 185 fringes

where it is expressed in terms of fringe orders for convenience.

Then the ratios T over T„ can be calculated, using values of
X

P in Table 2, and are shown in Table 4.

Table 4. Ratios T /T„ along vertical axis.

Station abcdef gh
T /T .966 .965 .954 .915 .874 .885 .928 .861 .213
x

I It is to be seen that the maximum tensile stress of a square

beam under compression occurs at center and is 0. 966 of that of

a circular disk. T /T„ is also plotted against distance from center

in Fig. 18. It is seen that T drops sharply after passing h, and

will soon become compressive after passing i.
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Fig. 18. T / Tq along vertical axis.

The last thing to be mentioned is that by using the method

developed by Professor Muskhelishvili in applying the theory of

i

a complex variable to solve the plane stress problem, the problem

of a sqioare beam under compression can be solved exactly if an

exact mapping function which maps the square into a unit circle

can be found. Since this report stresses the application of the

method of photoelasticity, the writer has not tried to solve this

problem by the method just mentioned. Nevertheless, it would be

interesting to try to do so, and might also be rewarding.



36

ACKNOWLEDGMENT

The writer wishes to express his sincere thanks to

Professor F. J. McCormick for his guidance and suggestions

in writing this report.

.? v-.^ V,; ^^



37

REFERENCES

1.- Coker, E. G. and L. N. G. Filon. A Treatise on
Photoelasticity . Cambridge University

I
. . Press, 1957. -

-

2. Frocht, M. M. Photoelasticity . Volumes I and II,

New York: John Wiley and Sons, Inc. , 1948.

3. Goodier, J. M. "Compression of Rectangular Blocks,
and the Bending of Beams by Non-linear
Distribution of Bending Forces. "

; , ^ Trans, of ASME, Vol. 54, Apm 54-17, 1932.

4. Heywood, R. B. Design by Photoelasticity. London:
Chapman and Hall, Ltd. , 1952.

5. Jessop, H. J. and F. C. Harris. Photoelasticity .

New Yoi-k: Dover Publications, Inc. , 1949.

I
I



'

4

t

'
f

PHOTOELASTIC INVESTIGATION OF STRESSES OF
^ A SQUARE BEAM UNDER COMPRESSION

by

ALBERT CHANG- CHIH" YEN

B. S. , National Taiwan University, China, l96l

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Applied Mechanics

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1965



I 1 ' Among the many techniques of experimental stress analysis

the photoelastic method has been used more and more recently. In

this investigation its advantage, particularly in the analysis of

two-dimensional stress problems, is demonstrated through a practical

application in solving a specific problem. The problem of a square

beam under compression was chosen because of its theoretical and

practical interest. This problem, simple as it may look, has pre-

sented difficulties in acquiring a theoretical solution. Only approxi-

mate solutions have been obtained. However, it is seen that, with

relative ease, the problem was solved by the photoelastic m^ethod.

In spite of the errors which may have been accumulated during the

process of stress- separation, the results compare favorably with

known mathematical solutions for the same problem.

I i-.


