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INTRODUCTION

The emergence of techniques to directly manipulate
raster images brings out a basic duality in the nature of
Computer Graphics. The view of images as collections of
vector line segments must share ground with the view that
they are a collection of pixels. The effort reported here
attempts to further develop the raster view, improving the

quality and usefulness of extreme bitmap magnifications.

The Vector - Raster Duality

The vector view rises out of the human visualization of
objects. outlines of shapes are segmented into small
straight elements, which are described numerically by the

coordinates of their endpoints.

The raster of pixels is an accommodation to the nature
of devices that print or display the image. A raster holds-
the color of each point on a surface as a pixel value. The
points are sequenced along sfraight, parallel scan lines.
When the pixels are limited to two values, such as black and
white, the raster may be called a bitmap to emphasize its

boolean nature.
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At first the raster was strictly an output mechanism,
with the conversion from vector to pixel form delayed until
the final stage of processing. Editing and manipulation of
the image in raster form was considered impractical. But
new techniques were gradually devised such as those created
by developers at the Xerox PARC (Ref 1), who have vigorously

pursued the processing of rasterized images.

Today there is an intermingling of vector and raster
techniques in most computer graphic machines. Somewhere
between input and output there is usually a conversion from
vector to raster form. A few machines still use pure-vector
designs, with some form of Cartesian input device and an X-Y
output plotter. This report describes a pure raster
magnifier, based on bitmap input from a simple text terminal

and raster output to high-resolution printers.

Manipulation in raster form is discouraged by factors
such as storage space, complexity of operations, and the -
difficulty of returning to vectors (Ref 2). But overcoming
.these factors yields designs that are closer to a maéhine's
natural way of imaging. Limits to the complexity of shapes
dissolve away. Cumbersome numerical processing of vectors
is replaced by efficient boolean logic. Interactive work
that requires mainframe power 1in vector designs become

practical in smaller machines.
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By developing a procedure for extreme magnification of
bitmaps, with edges kept smooth, this report hopes to
realize a small part of the overall solution. One more
piece of the task, previously limited to vector processing,

can now be done more efficiently, in raster form.

The realm of the binary pixel is growing fast, with the
proliferation of dot matrix printers, closely linked to the
video raster graphic displays on inexpensive machines.
Meanwhile laser-based printing technology 1s making 300
dot-per-inch resolution easily attainable. A major
transformation 1is taking place, with a quantum increase in
device capabilities and storage economy. This is fertile

ground for the development of bitmap processing designs.

Design Objectives:

This project will develop and implement a procedure to
magnify the bitmap representation of of an image. The

procedure will meet the following requirements:

1. The aliasing effect which normally emphasizes the boxy
shape of magnified pixels along edge lines is to be

~reduced by this procedure.

2. The shapes and proportions apparent in the original
image are to be maintained in the magnified image, even

at extremely large magnification factors.



I-4

3. The design is to wutilize machine resources to best
advantage, and allow fast, interactive operation on a

time-shared minicomputer.

The Successive Contouring Procedure

The procedure described here is a fast, empirical scanning
mechanism that transforms a binary bitmap into a magnified
bitmap of twice its original dimensions. It recognizes bit
patterns in a neighborhood covering 24 pixels, and correctly
reproduces elementary shapes in the image. True rectangular
corners are Xept sharp, while the stairsteps of sloping
contours are filled and rounded. Thin lines are kept intact

and line endings retain their original length.

The procedure can easily be repeated in successive
iterations to achieve extreme magnifications to hundreds of
times the original area. The test implementation operates
in fixed allocated memory with an upper limit of 640 X 640
pixels. This allows the magnification of a 40 X 40 bitmap

to 256 times its area by four successive iterations.

The Successive Contouring Procedure should be used in
any graphic machine that supports raster devices with
different pixel densities. It can take advantage of the
high resolution of graphics printers copying from relatively
coarse video screens. It may be possible to reducp. very

large bitmaps to one fourth or even one sixteenth their
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original size for storage, and reliably reconstruct them on

retrieval.

The internal design of this procedure has elements in
common with previous methods reported in recent years.
However, it applies these in a unique combination, together
with a number of original implementation techniques. The
combined result is a new procedure of some value to the

Computer Graphics discipline.

In magnifying a raster image, this procedure has no
information about the intended result other than the coarse
input raster. By definition, the input 1is 1less accurate
than the output is expected to be. The procedure must
create new information by some form of inference. This is a
departure from processing methods which start with a vector

definition of the image.

When a human looks at a coarse raster, a sense of
recognition can occur with surprisingly little detail in the
image. The human screens that image down through an
absolutely astounding volume of patterns, recalled from
previous experience. There are no words for the number of
bits involved, or the scaling and translation operations
that take place behind the eyes. But within milliseconds,

some kind of match occurs and the recognition is realized.
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The Successive Contouring Procedure incorporates that
sense of recognition tc an infinitessimal degree. It limits
the volume of patterns to be recalled by restricting the
scanning window to a small size. Still the recognition of
these simple patterns provides an intelligent and useful
magnification of the image. What was accomplished is a
small step on the scale of human capabilities, but a
structure has been established that others may wish to

extend.

The third objective was the most challenging. This was
tc be an efficient, practical program that others may wish
to incorporate into existing systems. And if they do, it
would not require extensive modifications. The C Language
was chosen for portability and-intimate control of machine
operations. The program's core of raster manipulation
functions can be reapplied without modification. Sample
input and output functions are provided as prototypes for

typical applications.

Review of Related Literature

There is a great deal of prior research in areas related to
this project. Many of the authors cited may rightfully
regard parts of this work as specific applications of their

own published ideas.
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The question of smoothing edges in a raster image has
been addressed by Gupta and Sproull (Ref 3) in the situation
where the object is a collection of numerically defined
vectors. They determine the intensity of grey-scale pixels
as a function of nearness and thickness of all lines passing

through the pixel neighborhood.

Kajiya and Ullner (Ref 4) described a synthetic image
approach to grey-scale pixel evaluation suitable for the
display of high gquality text. Turkowski (Ref 5) applied a
table lookup to the point-to-line distance for anti aliasing
in his Coordinate Transformation method. Both of these
works also dealt with accurately-defined objects, which is

not the case with the project described here.

A closer relationship to this project can be found in
previous works dealing with the derivation of an enhanced
grey-scale raster from a grey-scale raster. Many o©f the
technigques described by Lev, Zucker, and Rosenfeld (Ref 6)
can be adapted to the special case of two-valued pixel
processing., They suggested an iterative metheod of
processing pixels, taking into account nearby pixels having-
similar grey levels. This work was later categorized as the
EDLN (Edge and Line weights) method by Chin and Yeh (Ref 7)
in a description of iterative picture processing methods.
In the process of defining the location of an edge in a

grey-scale raster, they identified 12 ways that an edge can



pass through a 3 X 3 neighborhood of pixels.

The application of a box filter to avoid Moire effects
in the raster display of texture patterns was described by
Norton, Rockwood and Skolmoski (Ref 8). In clamping
oscillatory effects to an average value, they pointed out
the importance of dealing with the periodic intervals
inherent in the display device. Another method of averaging
pixel values in a neighborhood to define a central pixel

value was described by Lee (Ref 9) as a Sigma Filter.

Additional related sources, too numerous to mention here

are detailed in the bibliography at the end of the List of

References.



METHODOLOGY

In this project, the objective is arbitrary
magnification of a raster of two-valued pixels to a larger
two=-valued raster. Edge smoothing is to be incorporated
with accurate reproduction of meaningful shapes and
proportions. By distilling some of the principles described
in the references and simplifying from the grey scale to
two-valued pixels, a method can be derived to accomplish the

task.

Conventional Low-Pass Filtering

A theoretical approach to smooth-contoured raster
densification might apply digital filtering in two
dimensions. Rows and columns of pixels are viewed as
spacial step functions which are modified by a low pass
filter. The result is an array of functions with ramp-like
characteristics, to which threshold decisions are applied at
the closer intervals of the oﬁtput raster. This is
illustrated in Figure 1 below, which shows an amplitude’
function of a row of pixels and a filtered version of the

same function.
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Pixel Step Function: i I | i I
Low-pass Ramp IntegraN'\—
Output pixel samples: III IIIIIII

Figure 1

Low-pass filtering of a pixel row

and resultant high density output

In order to smooth out stairsteps in the edges the
filtered functions have to be calculated along both
horizontal and vertical scan 1lines, and their values
combined in a surface function. Then the pixels near corner
patterns can be distinguished by their values in the surface
function. To illustrate this, Figure 2 shows a typical set
of values for the sum of vertical and horizontal samples in
the vicinity of a contour stairstep. The blank pixeis have

minimum value, and those marked X have the maximum value.
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Intermediate values are marked in the range from 1 to 9.

l111111111111111
2 2 2 2 22 2 2 2222222
The line shows 1 2|6 78888 8881888288 8
the original 12/]7899999999999 99
edge locus 12|89 X XXXXXXXXXXXX
1 2|89 X XXXXXXXXXIXIXX
12189 X XXXXXXXXXXXX
1 2|89 X XXXHEXXXXXXXX
1111111111112 3|89 X XXXXXXXXXXIXX
2 2 2 2 2 2 2 2 2 2 2 2 3 48 9 X XX X XX XXXXXXX
8 8 8688883868888 8 XXXXXXXXXXXXXXX
9 9999999 99999 9 XXYXAXXXXYXXXIXIXXXXX
A XX XXXHAXXXXXAXXAXXXXXIXIXXXXXXXX
X XXXXXXXXXXXXXXXXXXXXXXXXXXXX
Figure 2
Surface function as a simple sum
of H & V ramp-filtered scan lines
There are several ways to interpret this surface
function. A simple threshold of 2 will round both inside

and outside corners, but also bloat the object out by one
pixel layer all around. A threshold of 9 will round both
types of corner, but strip off a pixel 1layer from every

contour surface.

If contour position and proportions are important, a
threshold of 3 or 4 will £ill inside corners, while 7 or 8
will round off outside corners. Smoothing of both types of
corner without bloating or shrinkage requires a
discontinuous interpretation of the surface function, wusing

a lookup table.



An Empirical Method would be Better

The overall chance of achieving the objectives of the
project with this approach was found to be very slim.
Unfortunately, the math processing lcad would becomne
exponentially burdensome as the magnification is increased,
and the question of shape recognition had not even been
approached. All we had was an unconditional rounding of all
corners. This would lead to excessive rounding of parts not
meant to be round. It became obvious that radical
simplifications were needed before intelligent shape
recognition could be added to the interpretation of the

image.

Since the mathematical approach led to an arbitration of
its results, it seemed Jjustifiable to pursue a more
empirical approach instead. A 1lot was learned from the
close-up analysis of contour features in the low-pass
filtering method. The idea of a lookup table to generate
results seemed to have promise, but the computation of ramp
functions across all scan lines seemed wasteful. An
interesting discovery was that in a small neighborhood of
pixels there are very few shapes that an intersecting
contour line can assume. In fact there are only four that

this project needs to deal with.
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WALL CORNER STAIRSTEP END

Figure 3

Elementary shapes of a Contour

Within a Small Neighborhood

Of course the four shapes described in Figure 3 can
occur in any position and orientation in the input raster
area being scanned. A corner is distinguished by extending
straight for some distance (at least three input pixels) in
both directions. The height of a stairstep is only one or
two pixels of the input raster. Stairsteps do not have
corners. An end is‘only one or two pixels thick, and is not

considered to have corners either.

Now that an elementary shape vocabulary is established,
decisions can be made on the disposition of each shape in

the contouring process.

A wall should be unchanged, in its original position.
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A corner, assumed part of a rectangle, is not filled.
A stairstep, assumed part of a diagonal, is filled.
An end is kept to its original length, rounded off.

These arbitrary definitions were the first great
simplification of the problem. They seemed intuitively
sound, but a working program would have to be applied to
real examples to determine whether they provide intelligent
shape recognition. The goal is not to recognize complex
patterns in the image, but just to distinguish between the
minute elements of shape that should be rounded and those

that should be kept scuare.

The second great simplificgtion of the problem was the
decision to enforce alignment of the magnified raster with
the pixels of the input raster. Various integer ratios of
size were considered in an effort to allow straightforward
determination of results. The choice of successive binary
expansions emerged as clearly offering‘ the best

computational advantage.

Each expansion of a raster would exactly double its
linear dimensions and quadruple its area in pixels. To
achieve some other scale factor a raster . .could be doubled
beyond the desired size and then linearly scaled back down.
The repeated application of doubling can be more efficient

than a single mathematical transformation. This is possible



because the doubling can be done without math.

The elimination of math was accomplished by the third
great simplification of the problem. The small vocabulary
of elementary contour shapes represented a set of patterns
which could all be recognized within a small neighborhood of
pixels. This led to a decision to process the raster
through a small sliding window rather than a blanket matrix
computation. Once all the possible patterns were predicted
and their translations specified, the transformation became

boolean rather than arithmetic.

With these three simplifications made, a practical
Successive Contouring algorithm had been identified. But
numerous details had to be worked out before an operable
demonstration model could be built. First the size of the
sliding window had to be determined and integrated with a
workable scanning mechanism. A 4 X 4 pixel window would
just barely contain the required contour shapes. But it
would also contain 16 pixels, having 64 thousand possible
combinations of states. This window would be translated to
an 8 X 8 block of 64 output pixels. The simplest-
translation of a 4 X 4 window would then involve a table
having 64000 entries of 64 bits each. But still, patterns

could not be resolved correctly at the window boundaries.

The pursuit of radical simplification had brought the

design all the way :from pure math to pure mass recall of
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answers. Somewhere along the way there must have been an
optimal solution. It was now evident that a significant new
insight was needed. In the process of evaluating the
feasibility of 3 X 3 and even 2 X 2 sliding windows, I hit

upon the "bullseye" method of raster scanning.

Bullseye Scanning

The bullseye is a concentric arrangement of graduated
windows. The algorithm slides along, reading only the
smallest window in the -center. It reads pixels in the
surrounding layer only if the contents of the small window
do net fully identify the type of pattern in view. Then it
goes to the third layer only if the inner two layers do not
resolve the pattern. The design started with two layers,

and later was extended to three.

The inner window is a 2 X 2 pixel neighborhood in the
space of the input raster. It must be advanced in such a
way that it generates a raster twice its density. It must
generate a 4 X 4 output cell for the area of the inner
window. But even a small 2 X 2 window has boundary
problens. Shapes overlapping its borders will not be
recognized. In some designs the window has a center pixel
and it is advanced only one pixel at a time (Ref 9). The
chosen solution for this design will also advance the - input

window one pixel at a time. Instead of deriving a 4 X 4
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output window all at once it will create a 2 X 2 output
window at each position, advancing the output window two

pixels at a time.

The conceptual position of the output window on the
image will be directly over the intersection of the four
pixels of the input window. This is illustrated below, in
Figure 4. The four output pixels cover one fourth the area
of the four input pixels, but since the window covers four
intersections, there will be sixteen output pixels. It is
easier to think of this as a raster densification type of
operation, since you can visuallize both input and output
rasters over the same image area. Each input pixel 1is

simply cracked inte quarters which remain in place.

The input pixels ABCD are the

inner window of the bullseye.

Their values in most cases can
determine the values of output
pixels 0123. Sometimes outer

layer pixels surrounding ABCD

have to be examined as well.

Figure 4

Positioning of output pixels

on the input raster.
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The power of this scanning mechanism is that the inner
window can resolve most of the shapes encountered without
referring to the outer layers of the bullseye. Here are the

sixteen possible combinations:
All white and all black - Leave as is.
Walls - top, bottom, left or right - kept as is.
Diagonals - Part of chain - becomes all black.
One black - depends on outer pixels.
One white - depends on outer pixels.

Each of these descriptions refers to more than one of
the ©possible input patterns: All sixteen patterns are
illustrated in Figure 5, with the proposed translations

depending on whether corners should be rounded.
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Figure 5

Examples of pixel translations

For each input pattern, the "rounded" result is that
which is based only on the innermeost window, without any
reference to the other layers. Where "square" results are
given, the outer layers are first checked to see if thé rest

of the pattern calls for a square corner. 1£f mot, the
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result is rounded. The process of rounding a corner is
nothing more than biting off a single pixel at a point.
Figure 6, on the next page illustrates the operation of the
algorithm in a situation where only rounded results are
involved. Figure 7 includes some corners that are kept

square.

Discussion of Details

Before proceeding to the actual implementation or any
more examples, a little further discussion is needed on the
details of Figures 3 through 7. These establish the basic
logical structure on which the entire implementation will be’

built.

On the image examples given in Figures 6 and 7, the
individual pixels are purposely enlarged, separated and
drawn with characteristic shapes for close examination.

However, their arrangement in the pictures illustrates the
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Pixel Image Transformations
with Rounded Elementary Shapes
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Figure 7

Pixel Image Transformations
with some Corners Kept Square
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exact behavior of the translations in Figure 5.

No theoretical proof is offered that the translations
and the four elementary shapes in Figure 3 will correctly
deal with all images. Instead, the implementation will be
used on a variety of subjects to determine how closely the
translations duplicate more general shapes. This may also
lead to enlightened observations of the inner nature of

pixel representations.

We can see already that the transformation has a
generally pleasing effect on the grossly approximated bit
maps of Figure 6 and 7. The 7 X 5 letter in Figure 6 is
typical of inexpensive dot-matrix printers. No parts of the
pattern call for the retention of square corners and the
rounded result 1is used 1in every output window. If the
result were again put through the same translation, further
smoothing of contours would be achieved without losing the

original proportions of the shape.

Figure 7 starts with a higher-grade character, typical
of 9 X 7 dot matrix printers. In this case a few of the
corners need to be kept square, and the algorithm must be
"aware of its surroundings" while translating pixels within
the window. This is done by reference to the outer layers

of the bullseye when the inner window has one odd pixel.
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These examples illustrate some of the more subtle
requirements that will be imposed on the implementation.
First of all, the same algorithm has to apply to an entire
image. It must deal with square and rounded shapes as they
come. In other words if the patterns of Figures 6 and 7
were side by side in the same image, the rounding decisions

should still lead to the same results.

Another duality involved here is that of black and white
reversal. If a white shape appears on a background of black
pixels, it should be transformed in the same way that a
shape in black pixels on white would be. This is
illustrated by the white area inside the loop of the 'R' in
Figure 7. When rounding off the contour of a black area,
the corner pixel becomes white. When rounding off the

contour of a white area, the corner pixel becomes black.

The question of densification versus magnification of an
image is simply a matter of output scaling. Figures 6 and 7
illustrate that the two outputs have exactly the same
arrangement of pixels. Both of these were producedrby the
same transformation. The size of the result will always be
determined in part by the pixel size on the output device.
Each implementation will have to account for this in the

establishment of magnification factors.

Perhaps the most surprising translation in Figure 5 1is

that of two diagonal black pixels to all black. This is an
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area for potential future extension. The current design
caters to efficiency and the unbroken representation of thin
black lines. This can be seen in the upper right corner of
the 'R' in Figure 7, and each bend of the 'S'. In each case
the input window contains two black  pixels touching
diagonally, as if part of a chain. The output square of
black pixels creates by inference a new input pixel at the

midpoint of the chain.

The upper left corner of the 'R' represents an input
pattern seen as a "corner" of black pixels. Nested one
pixel down and to the right is another corner pattern of
white pixels. At the scan position that detects the outer
corner, the window contains one black pixel. At the scan
position that detects the inner corner, it contains cne
white pixel. 1In both these cases the outer layers of the
bullseye are progressively scanned to determine if the given
area is truly a corner pattern. If the sides do not extend
for three pixels .in both directions, it is assumed to be
part of a stairstep or an end, and rounded off. In either
case the odd pixel in the input window is known to be at the

tip of the pattern.

'The white area below the loop of the 'R' is seen as an
end, because it is less than three pixels wide. Thus it is
rounded off by turning the tip pixels black. The rules for

the end pattern are dictated by the arbitrary behavior of
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small integers. An end that is one pixel wide cannot be
rounded because the result is only two pixels wide. An
example of this is the bottom of the vertical in the 'R'. An
end that is two pixels wide is rounded off, keeping its
original length. An end that is three pixels wide 1is seen

as two corners of a rectangular shape, and not rounded off.

The general chances for this set of transformations to
produce useful results seemed very good. But the purely
theoretical prediction of its results on large patterné is
an exercise in tedium. An actual implementation of this
algorithm would greatly accelerate the discovery of its true
behaviors. A language was selected and the design of a
crude graphic workstation was developed to test out the

performance of the algorithm,.

The workstation program described in the next section
will operate in a wide variety of system environments on a
bit map input expressed in a simple text form. Its output
is either in the same plain text format or a binary file, to
generate a raster graphic 1image on a Hewlett .Packard
LaserJet printer. Any terminal and text editor can create
bit maps to be processed, and display output. With the
magnifications possible, the input can be very small, and

easily produced.
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DESCRIPTION

The Successive Contouring Procedure was implemented in a
C Language function named dbl(¢). A program named grow was
built around it to deal with practical problems and test out
its features. The grow program has an interp() function to
gather pixel data from a text terminal or a file., It has a
paint() function to send magnified pixel data back to a
terminal, file, or a printer. Its main¢) function is a
short 1list of calls to the other functions with appropriate

arguments. Main() can be changed and recompiled easily to

implement various test conditions.

A complete listing of the grow program with all its
functions is in Appendix 1. This appendix should be
examined in conjunction with the following description,

since the amount of detail involved is significant.

There are two functions in the grow program, which are
not called directly by main(). The dbl() function internally
calls on the fiddler() function to perform its detailed bit
manipulations. The fiddler() knows all the translations of
the inner window and the first surrounding 1layer in the
bullseye. If the fiddler() cannot resolve a shape, it calls
on the fringe() function, which knows how to interpret the

outermost layer surrounding the bullseye.
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The jobs that the dbl() function does for itself are the
interpretation of arguments and the operation of the window
scanning mechanism. The arguments to dbl() define the
desired boundaries of the input and output raster areas. The
output area usually overlaps the input area to save on
memory space. The dbl(¢) function works from bottom to top,
and works best if the upper 1left corners of both areas

coincide.

The dbl(¢) function uses a set of four 32-bit registers
as a bit working area. Before each call to the fiddler(),
all the required pixel bits are shifted into position in the
working registers. The dbl(¢) function copies integers from
the raster into the shifting registers in such a way that

the bit streams seem to flow like water.

The main raster array is a monolithic mass of unsigned
short integers (16 bits each). The raster size currently
defined is 40 entries wide(640 bits) by 640 rows deep, which

is suitable for the printers at hand.

The fiddler() function uses only the 4 X 4 bit square
processing zone at the low end of the registers. The upper
register bits are just a staging area for dbl() to keep the
bits flowing. The 4 X 4 processing zone contains the inner
window and one more layer of the bullseye. The fiddler()

uses shifting and bitwise logic to assemble a numeric value
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indexes a switch to implement the appropriate translation.
The results are written directly back to the main raster by
the fiddler(). The main raster and its index variables are

external for direct access by all functions.

When the fiddler() encounters a possible corner pattern
it builds a five bit index number from certain parts of the
surrounding layer and reads a glokal array corner rnd or
corner fil for further instructions. A 0 tells fiddler() to
zero the odd pixel (white); a 1 tells it to set the pixel
(black); and a 2 tells it to call fringe() for help. If
fiddler() has to call fringe() it assembles the arguments
from the positions of the outer bits of interest, relative
to the processing zone.

The diagram at the left may help
illustrate second order
The BULLSEYE processing by showing all three

layers of the bullseye for a
typical corner pixel situation.

+|+[+

The values of the pixels marked
+ with a + are applied by the
fiddler () to corner rnd.

-
|

The relative positions of pixels"
Figure 8 marked - are sent by fiddlery)
to the fringe(¢) function.
Fringe() returns a simple true or false result to
fiddler(). It makes the determination by reading bits

directly from the main raster. This avoids a lot of extra

baggage in the working. registers for infrequently used data.
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The fiddler() never sees the contents of the outermost bits.

Another glcbal variable named square is set on request
from the command 1line by main(). The fiddler() function
reads it to see if second order processing is desired. If
not, it runs entirely on the inner window, rounding all

corners.,

This program is set up for demonstration purposes to
read and write an elementary pixel definition language on
any text terminal. A video character cell represents two
pixels stacked vertically. On the typical terminal screen
this gives 48 rows of 80 pixels with a nearly square aspect
ratio, The simplest way to apply the program is to write
the pixels in a file on the host system and send the result
right to the screen. A 24 X 40 pixel input will fill up the

screen on output.
The pixel definition language uses only four characters:
o - for a white top and black bottom
8 - for a black top and bottom
~ = for a black top and white bottom
space - for a white tqp and bottom

The available matrix printer is a C.Itoch Model 8510B.

To print grow output, I simply downlecad an appropriate set
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of bit patterns into the four useful characters. With
adjustments to the spacing modes the printer can produce a
variety of bit maps in text mode directly from the screen
output of the paint¢) function. The matrix printer allows

about 1000 pixels per line at highest density.

The laser printer is a Hewlett Packard LaserJet, with
300 pixels per inch resolution. I wrote a special driver
function named print() to operate its raster graphics
features directly. The driver takes the pixel data directly
from the main raster array in the grow program. It sends a
stream of bytes segmented and delimited by the appropriate

LaserJet escape codes.

Any additional drivers developed will tend to resemble
either paint() or print() depending on whether a text mode
approach is practical. Considerable flexibility is afforded
for other extensions and modifications to the program. A
variety of useful parameters are served by the core
functions, allowing easy adaptation through rewrites of the
main() function. Within the internal translation meéhanism,
the bulk of the intelligence is kept in the simple character
arrays corner_fil and corner rnd. Sweeping as well as
subtle changes can be made in the operation of dbl() by

substituting values in these arrays.

The grow program should compile and run without

modification on systems with a standard C Compiler and the
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stdio.h library. It processes text supplied to its standard
input and streams the magnified result to its standard
output. Files and access to devices can be handled in the

normal manner by the operating system.



EVALUATION

The grow program has been debugged and operated on
numerous test patterns, many of which are displayed in this
section. It meets all of the objectives I required of it,
in faithfulness to shapes and proportions. The
discrimination of square corners is effective in the great
majority of cases. Grow seems to round off where it looks

gocd and Keep square corners where they belong.

There is a clear limit to grow's intelligence when it
comes to inferring the large-scale shapes of objects. It
can best be described in terms- of available line slopes. A
crude pixel magnification could be said to have four
possible line slopes: up, right, down, and left. In doing
its brickwork around stairsteps, grow seems to be able to
create about a dozen new slopes representable by smooth
lines. The best slopes are 26.6 and.63.4 degfees above and
below the horizontal. These eight slopes move two pixels in
one direction for every one pixel in the other. Next are
the four diagonals at 45 degrees. They tend to remain a

little knobby, but uniform.

The limit of grow's intelligence, then, is about 16 line

slopes. Anything not on one of its 16 favorite angles is
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made from a patchwork of short lines which end up where a
line of the desired angle would. The algorithm seems to
behave curiously like a sailboat. It would be Jjust as
difficult to improve on this as it is to explain why it

occurs. So I will attempt neither at this time.

The other side of the performance question is speed and
economy of resources. I had taken serious measures in the
choice of language and the program design to get the most
efficient possible use of time and resources. This was one
of my first concerns in the early testing of the program. I
was happy to find that this program frankly moves like
lightning. Let me qualify that. If I 1look at my watch
right after +typing in the command, the output will be in
progress before I know what time it is. Even running up to
three consecutive passes, accumulating a megapixel of output

takes only about ten seconds.

The remaining pages in this section contain exhibits to
illustrate the bevavior of grow on sample images. Various
specialized printing techniques are used to help illustrate
the positioning of individual pixels in the results.-
Further details on the exact printing method for each figure
can be found in the List of Figures at the beginning of the

report.
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E:i Original

2X Magnification

4X Magnification

8X Magnification

Pixels represented by
a beaded pattern, 23/inch

Figure 9

i ification steps from
is illustrates three successive magni _ _
Th;im;ie 7X9 dot text character. There.may be some question
gbout the correctness of the shape obtained, but it has far
more information than the original.



Original derived from
2X Magnification in
Figure 9

2X Magnification

4X Magnifications
Left: 300 dots/inch
Right: 23 dots/inch

Figure 10

In this case we start with an image already magnified, and
touch it up a little bit. Serifs are added to ends as well
as the corner point. One pixel is erased under the bridge
to allow it to be kept sgquare. The little "R" at the bottom
is identical to the largest eXcept in the size of its dots.
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:mmmm mommw TR 0000, e
ﬂﬂ ﬂﬂm m!m.
0 ey oo,
2 e, P00 e 20000 Brdod n
o, o, %00 riginal bitmap of
", ey oan five line slopes
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2X Magnification

4X Magnification

Figure 11

A few lines of assorted slopes go through two stages of
magnification. Again the pixel size is grossly enlarged
for examination of the dot patterns involved.



Text original in

2 pixel cell format
AAADADAOA0000000 O O O
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AAAAADAONOOOO0 O O O

A A A AAAvooo f'e)
o) ooAOAAAA
o) ovoAAA A
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OoA/\ A
oor”
oA
OA

8X Magnification
printed at 150 dots/inch

Figure 12 .

An arbitrary pattern of curved lines with a "shakey" input
pattern. The input is shown in the crude text language
defined for this project. The output line is the result of
three doublings, and is typically eight pixels thick.



Original in

bead pattern .

23 dots/inch 2X magnificatiion
68 dots/inch

8X Magnification
150 dots/inch

Figure 13

Given a picture with a meaningful shape, the algorithm
certainly doesn't lose the meaning. It also keeps lines
unbroken, although they get a little knobby in places.
The last kitty has 64 times as many pixel as the first.
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8888888 8 Original from "banner" program
8 g 8 Printed in text format
g g 2 12 dots/inch

8 8 8

888888

8 8 8 8 8

8 8 8 8 8

888888 8 8 8

8 8 8 8 8

8 8 8 8 8

888888 8 888888 888888

8X magnification
75 dots/inch

Figure 14

Most systems have a banner printing program. Successive
Contouring makes an improvement in this one's appearance.
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2X Magnification 8X Magnification
68 dots/inch 150 dots/inch

Figure 15

A few pieces of music notation pose a difficult challenge.
The algorithm cannot make the classic shapes we are used
to seeing from a crude dot pattern.
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Figure 16

Circles seem to be handled very well. Each pattern here is
a circle of circles which duplicates the basic pixel

pattern from which all the circles were built. A dozen
little dots go a long way. The top row illustrates
densification, in which the size of pixels decreases as much
as their numbers multiply. In the bottom row, all pixels
are the same size.
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Figure 17A - Anomalous Subwindow Objects Magnitied 1024 times in area (32X)
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Figure 17B - Very Small Objects Magnified 256 times in ares (16X}

e

Figure 17C - Repeating Subwindow Patterns Magnified 64 times in area (8X)



Extreme magnifications:

The middle iris is a direct
enlargement without using
the grow program, to show
the effect of expanding
pixel areas. The 1iris on
the right shows the result
of four passes through the
dbl() function.

Original 6X 16X

Figure 18



CONCLUSIONS

Based on the results achieved, this report concludes
that bitmaps can be magnified efficiently with improved edge
smoothness, and correctly proportioned shapes. These
conclusions will be discussed along with some interesting

observations about the manipulation of bitmaps.

Edge Smoothness

Every bitmap image is rippled along sloping edges, and
perfect smoothness 1is never achieved. When an ordinary
enlargement is made of a bitmap, the edge smoothness stays
the same in proportion to the size of the object. But the
area occupied by each original pixel takes on a boxy,
objectionable appearance when enlarged to visible size.
Since the pixels themselves are not enlarged, the edge
smootheness of the enlarged image is not as good as it

potentially could be.

For pleasing results, the enlargement should be
accompanied by an improvement in the degree of edge
smoothness. As the image grows, the relative size o©¢f the
pixels becomes smaller and able to better conform to the
edges. The locus of the "intended" edge through the.area of

the. original pixel must be estimated on the basis of
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surrounding pixel values. Then the fragments of each

original pixel area can be redistributed along that edge.

The edge locus estimation becomes complex and burdensome
at extreme magnifications. But it was found that an exact
doubling of the bitmap dimensions greatly simplifies the
problem. Each pixel area is just split into four quarters,
with only sixteen possible results. It was further
determined that the major decisions were limited to corner
junctures along the edge. Each decision was simply whether
a corner pixel should be broken off for a rounding effect or
kept square. The doubling procedure was found to be
accurate and efficient, and extreme magnifications could be

made by successive applications of doubling.

Successive doubling also avoided the need  for
conventional 1low-pass filtering techniques in the rounding
of corners. A method was briefly examined to sample a ramp
integral of the pixel step functions along rows and columns.
Although it would have worked, the compounding of
mathematical steps was too extreme at large magnifications.
In effect, all the considerations of edge 1locus estimation
and corner rounding were applied empirically in the

translations that generate each 2X2 pixel output cell.

The degree of accuracy achieved was good, but limited.
It was found that there is some residual ripple along
certain edge slopes. For example, an angular diamond carving

effect can be observed along some of the edges in Figures
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11, 15 and 18. Each residual protrusion is the rounded
remnant of an original pixel that was poorly aligned with
the intended edge. Improvements can be made in these areas
by building additional patterns into the existing program
structure. The cost of increasing smoothness would be some

loss of operating speed.

Speed and Efficiency

This implementation has shown that intelligent
magnification of a bitmap can be accomplished with minimal
pattern recognition. The inference of intended edge lines
from coarse pixel patterns can be done efficiently and
accurately. The procedure developed makes Jjudgements of
elementary shapes in the image, based on the scanning of a
quite limited neighborhood. The experience has brought to

light a few interesting characteristics of bitmaps.

Just as the increase in size of a scanning window
exponentially compounds the number of possible patterns
contained, an extremely small window can  surprisingly
decrease the number of possible batterns. This effect was
used in the selection of a basic scanning window only two
pixels square. When an edge happens to pass through a
window this size, the portion viewed is so microscopic that
normally-visible shapes don't even need to be considered.
It was learned that every possible contour shape -on this

scale can be described as one of four elementary types:



wall, stairstep, corner, end.

With only sixteen possible input patterns in the basic
window, the program could be built to switch to a different
case of actions for each one. Half of these cases lead
directly to fixed output patterns with no further processing
needed. The more interesting cases are handled individually
by scanning pixels in two concentric surrounding layers.
The first laver is carried along in machine registers,
together with the basic 2X2 window. Repeated references to
memory are kept to a minimum. In a small number of scan
positions on the image (typically 1less than 1%), it is
necessary to examine pixels in the second surrounding layer.
These pixels are scanned directly from memory. The
conditional scanning of concentric layers around a small
window has been dubbed "bullseye scanning". It has achieved
high speed, combined with a flexible sensitivity to

neighboring pixel patterns.

The C Programming Language was found to have several
advantages over Pascal for this application. It allowed
pixel values to be logically manipulated individualiy, and
also moved around in bulk as unsigned integers. The
scanning mechanism benefits from C's ability to configure
machine registers and use their fast bitwise shifting
capability. It was possible to implement one of the most
heavily-used translation functions as a simple index into an

array of characters, because the language could assemble the
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index by reading boolean pixels as binary numerics. There
were many other instances in the procedure where types had
to be cast as other types, and the corresponding Pascal code

would have been cumbersome.

Shapes and Proportions

The results obtained indicate that the shape of the
magnified image 1is an exact duplicate of the large=-scale
appearance of the original. Some magnification procedures,
such as low-pass filtering, would have a tendency to bloat
or shrink the image, by adding or stripping 1layers of
pixels. By exactly doubling the size at each step, the
Successive Contouring Procedure is able to lock the output
grid to the input grid, and never have fractional output

pixels.

On the other hand, the small-scale appearance of the
image is sometimes radically <changed by ‘successive
doublings. As illustrated in Figure 17, a tiny cluster of
pixels, on the order of the scanning window size can grow
into unexpected shapes under extreme magnificatién. It
seems interesting that a small window is faithful to large
shapes and devastating to the tiny scraps. It would also be
interesting to compare Figure 17 with the way these patterns

are perceived by the human visual system.



C =49

Potential Applications

The Successive Contouring Procedure can be profitably
applied in numerous existing raster-based graphics systems.
One example would be in machines that print pictures both on
a coarse video screen and on a high-resolution matrix
printer. Typically, the system is optimized for the screen,
and the printer 1is served as an afterthought. Successive
Contouring can be added to such a system to exploit the full

capability of the printer.

Systems which transmit graphic images in serial data
streams could enjoy drastic reductions in transmission time
if the picture is sent in low resolution form and densified
at the receiving end. Further development in this area
could 1lead to a reduction procedure that is exactly
reversible by the Successive Contouring Procedure. In
combination, the two procedures would provide a general
purpose method of compacting raster images by extreme

ratios.

The North American Presentation Level Protocol @ Syntax
(NAPLPS) is an image communications language supporting both
raster and vector representations of pictures. ©One of its
formats is a mosaic representation of a bitmap in which each
character cell is two pixels wide and three pixels high.
The cell value is represented as one of 64 plain text ASCII
characters. The Mosaic character set receives iittle

attention today because of the coarse, checkered appearance
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of its displays. If the Successive Contouring Procedure
were implemented in NAPLPS workstations to densify Mosaic
displays, the Mosaic code would be rediscovered as a slick
vehicle for any bitmap image. Since NAPLPS is a recent
development in Computer Graphics, a brief tutorial
description is provided in Appendix 2 of this report. The
complete NAPLPS Language is defined by the ANSI Standard

X3.110-1983 (Ref 10).

Another NAPLPS mechanism is a pure bit map definition
feature, which happens to be similar to the protocol used by
the print() function to put a raster on the HP LaserJet.
With some modifications to its drivers, the grow program
could become a general purpose enlarging server to a NAPLPS
workstation. It would specialize in processing images that

are already rasterized.

The grow program is prepared for easy extension to
interactive use. It runs fast enough to be applied
effectively as part of a graphics editor. A few minor
changes to main() would allow it to recurrently process
input commands while keeping the main raster active. In
fact the interp() function already has parameters to OR,’
exclusive-OR, and erase data into the raster as well as

overwrite it.

The stored font files for’typesetter programs take up
huge blocks of space for every size of every text character

in a variety of styles. With contoured densification, it
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would be practical to store them in one fourth or even one
sixteenth the space they now require. They could be

magnified to full size on first use within each print job.

Readers of this report will probably think of many
potential applications of this procedure not mentioned or
even thought of here. Applications of raster and bitmap
processing seem to be multiplying rapidly. Perhaps the grow
program will contribute to the trend and begin to appear in

various forms in many places.
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Describes segmentation, topological connection,
shape descriptors and spacial relationships.
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to the contours in the picture.

Filtering Edges for Grey-Scale Displays
Satish Gupta, Carnegie Mellon University
Robert F. Sproull, Carnegie Mellon University
Computer Graphics, Vol 15, #3, Aug 81, page 1
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J. Kajiya, California Institute of Technology

M. Ullner, California Institute of Technology
Computer Graphics Vol 15, #3, Aug 81, page 7

Compares various earlier methods of anti-aliasing,
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and interpolation of intensity between pixels.
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Anti-~Aliasing through Coordinate Transformations

Kenneth Turkowski, CADLINC, Inc. Palo Alto
Computer Graphics Vol 16, #3, July 82

Explains the smooth raster display of lines and
polygons through a Point Spread Function
implemented as a table lookup. The method is
described as a continuous analvtic convolution of
object space, which is rendered into image space.

Iterative Enhancement of Noisy Images
A. Lev, S. W. Zucker, A. Rosenfeld
IEEE Transactions SMC-7, 1977, page 435

Examines the correlations of grey levels among
neighboring pixels, and methods of determining if
nearby pixels are part of the same region on the
image.

Edge Preserving Smoothing
Roland T. Chin, Chia-Lung Yeh
Computer Vision Graph Image Proc Vol 23, 1983, page 67

Describes a class of iterative nonlinear noise
cleaning filters, based on local weighted.averaging
of pixel values to approximate the ideal image.
Contrasts ordinary averaging with "K Nearest
Neighbor" averaging and "Edge and Line Weights"
method. Relates EDLN method to previous work
described in Ref 6.

Clamping: Method of Antialiasing Textured Surfaces
Alan Norton, IBM Research Center

Alyn P. Rockwood, Evans & Sutherland Computing
Philip T. Skolmoski, Evans & Sutherland Computing
Computer Graphics Vol 16, #3 July B2, page 1
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bound of the filtering process. Freguencies above
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of Moire pattern effects in the display of periodic
textures.
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Explains the use of averaging the values of
neighboring pixels in the raster-to-raster
transformation of an image.

North American Presentation Level Protocol Syntax
ANSI Standard X3.110-1983
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This is the definitive reference on NAPLPS
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commands and Section 5.4 on the Mosaic Character
Set.

The entries below, marked "Bib" are sources related to the
subject, but not specifically mentioned in the report.

Bib 11

Bib 12
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Contour Filling in Raster Graphics
Theo Pavlidis, Bell Laboratories at Murray Hill, NJ
Computer Graphics Vol 15, #3, Aug 8l, page 29

Describes methods of filling areas in raster

images, including parity schemes and Line Adjacency
Graphs. The LAG segments the horizontal scan line
into nodes by changes in color. Branches are defined
at intervals where ajacent scan lines have matching
color. Nodes are ordered by their vertical
coordinates to produce a directed graph, which is
traversed during the area filling process.

Parallel Processing Image Synthesis & Anti Aliasing
Richard Weinberg, Univ of Minnesota, Cray Research
Computer Graphics Vol 15 #3, Aug 81, page 55

Describes antialiasing in the synthesis of images
based on calculated polygons. Several methods of
partitioning are included, especially the partition
of image space with a distributed z buffer.

Image Enhancement Using HSHTF
Hassan J. Eghbali, Shiraz University, Iran
Computer Graphics Vol 5, 1980, page 23

Describes several specialized methods of processing
raster images to enhance their visual impact,
including High Sequency Ordered Hadamard Transform
filtering. Methods involve the mapping of grey
levels to alternate values to sharpen the

-appearance of edges and "eye modeling", which

preconditions the image for the human visual
system.
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Computer Graphics Vol 15 #3, Aug 81, page 63

Describes improvements in the raster display of
vectors and text characters through the use of grey
scale processing.

Bib 15 Waveform segmentation and Edge Preserving Smoothing
K. Prazdny, Fairchild Inc.
Computer Vision Image Proc Vol 23 #3, Sep 83, page 327

Describes the segmentation of waveform patterns and
methods of smoothing edges in a grey scale raster
representation of an image.

Bib 16 Subpixel Edge Estimation
Peter D. Hyde, University of Maryland
Pattern Recognition Vol 16 #4, 1983, page 413

Compares several methods of estimating the locus of
an edge passing through a pixel. Points out the
simplicity of the Least Sgquares Estimation method.

Bib 17 Characterizing Textures by Eigenfilters
F. Ade, Swiss Federal Institute of Technology
Signal Processing Vol 5 #5, Sep 83, page 451

Describes the application of a 3 X 3 window of
pixels in the scanning and processing of a raster
containing texture patterns. The grey values of
all 9 pixels are combined in a new value assigned
to the center pixel.

Bib 18 False Contour Removal by Random Blurring
Seiichi Nishihara, University of Tsukuba
Computer Graphics IP Vol 20 #4, Dec 82, page 391

Degcribes the elimination of false contours and
spurrious brightness discontinuities for more
natural appearance of video pictures.
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Minsco Suk, University of Korea
Pattern Recognition Vol 16 #5, 1983, page 469

Describes the application of a 2 X 2 pixel window
in the scanning of a raster image.

Bib 20 Azriel Rosenfeld's List
Azriel Rosenfeld, Ctr for Automation Res. U of M4
Computer Vision Graph, Image Proc Vol 26 #3, Jun 84

A survey of picture processing research papers
through 1983. Organized by related areas of
interest, such as Filtering and Smoothing.



APPENDIX 1 - Description and Text of the Grow Program

The GROW Program operates the dbl() function in the data environment

described in Figure 19, below.

The dbl() function performs the main

doubling of the bitmap in the Raster Array, calling on the fiddler()

and fringe() functions for detailed work.

External interface to the

devices and files is provided by the interp(), paint(), and print()
functions, under control of the main() function (dashed lines).

TEXT INTERFACE

RASTER GRAPHICS INTERFACE

< >
interp paint | |print | _ _ _ _ _ _ _ _ ]
_ _ _ | main ()
| | | [
INPUT MAGNIFIED I
AREA AREA o
INPUT dbl ()
AREA < Vi /
SCAN | 1473 .l
MAIN RASTER ARRAY ] INPUT OUTPUT
BITS leé BIT LOAD RASTER ADDRESSES
FROM RASTER or
INPUT WORDS SHFT N"BULLSEYE"
AREA PROCESSING
\ ZONE /
Y |
R3
R2
R1
RO

32-BIT SHIFT REGISTERS »>> \ /

k,L
fiddler() |K--=-

"OUTPUT WORDS WRITTEN AT k,1

A\ REL
BOOLEAN ADDR
RESULT

/

iy
.| fringe () |K===-
-

OUTER BITS READ NEAR ADDR i,J

. Figure 19
Data Flow Diagram of the GROW Program




/* This program is designed to test and demonstrate a Successive

*% Contouring Algorithm to eliminate aliasing (jaggies) in a raster
#* image when its resolution is multiplied. A very rudimentary

*#* mechanism is used to produce pixel arrays on a text terminal

*#% and apply the contouring algorithm to them. A simple output

** driver produces the demo results on a laser printer with raster
** graphics capability or in the text form used for input.

i

#include <stdio.h>

unsigned short ras[641][41]; /* Main raster array for image enlargement #/

/* The main raster array stores 641 rows of 656 bits, representing

** a rectangle about 2.16 inches square at the maximum

** output resolution of 300 dots per inch. The array size is limited

#* in this case by the capacity of the printer used.

7

int i, j, k, 1; /* i,j - source point indices; k,1 - destination #*/

int height, width; /# Dynamic size of original image */

int h mag, w mag; /#* Dynamic size of magnified image #*/

int n; /* counting variable for bit-shift position #/

int mag = 1; /* Magnification factor - set to 1, 2, 4, or 8 */

int corner rnd[s32j = {1,0,1,0,1,0,0,0,1,0,2,0,0,0,2,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

int corner fil[32j = {¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
¢,2,0,0,0,2,0,1,0,0,0,1,0,1,0,1};

/* Corner arrays are used in the manner of functions to return

#* boolean-interpreted results. They are second order functions

** which are applied only where a corner pattern appears in the

**% .pixel processing zone. The corner rnd result indicates

** whether to bite off an outside corner. The corner fil result

*#* indicates whether to fill in an inside corner.

*/



char square; /* Used as boolean global flag to indicate whether

**
* &
* %
* &
* %
* %

*/

the second-order cornering desision should be applied. When it

is zero the inside corners are filled in and outside corners are
bitten off, for an overall rounding effect. When it is nonzero
then the square shape of corners is determined by the corner arrays,
based on the states of selected surrounding pixels. Square is
controlled by user keyboard input for each doubling of a raster.

dbl(vs, hs, ve, he, Ve, He) /* double a bit array #*/
int vs, hs, ve, he, Ve, He;

/*
* ok
ok &
* %
* K
* %
* %

*/
{

/* vs, hs, ve and he are the v & h start & end points */
/* Ve and He are the end points of the enlarged array */
This function applies the Successive Contouring Algorithm, which
doubles the density or the size of a raster array without magnifying
the shape of individual pixels within the original raster. The source
and destination points may be the same, in which case the transformation
is done "in place". This is possible because the arrays are read
and written from the end back to the beginning. The source should be
positioned in the upper left corner (start) of the destination array.

register unsigned long RO, R1, R2, R3;

/*
&k
* %
* A
**
* ok
*
& *
#* %
£

Four 32-bit unsigned registers are used as a working area for
bitwise operations. Four horizontal pixel rows are shifted through
these registers in parallel, while the transformation is applied

to the low four bits of the registers. Each bit in the array is
examined sixteen times - once in each position of the 4 X 4 bit

.processing zone, covering the low 4 bits of the registers.

Each time a new 16-bit row segment is loaded in a register, the

high four bits of the previous segment remain in the processing

zone. This provides bitwise continuity from one raster entry to
the next.



*/

for(i=(ve+l), k=Ve; i>=(vs+3); i--, k-=2) /* Convert rows from bottom to top #*/

J*
*
*
*/
{

This outer loop processes one row of input pixels and generates
two double-length rows of output pixels on each pass. During
each pass it also reads neighboring rows of the input array.

RO = R1 = R2 = R3 = 07 /* clear registers at beginning of each row */
for (j=he, 1l=He; j>=hs; j=--) /* scan right to left across one row */
/* This loop processes one 16-bit input raster entry in each pass,
** conceptually loaded in R1, while three vertically-aligned
## neighboring entries are carried in RO, R2 and R3.
*/
{ R3|=((unsigned long)ras[i-3][j])<<4; /* Load top border row */
R2 |=( (unsigned long)ras[i-2][j])<<4; /* Load top main row */
Rl[={((unsigned long)ras[i-1][j])<<4; /* Load bottom main row #*/
RO |=((unsigned long)ras[i][j])<<4; /* Load bottom border row #*/
/* When loading 16-bit entries into the 32-bit registers, they
** are converted by the cast mechanism to unsigned long values
*#* before being shifted left four bits. Thus, no high bits
#* are lost in the shift.
*#* The result is ORed into the registers alongside the remaining
** four bits left by the previous pass.
*f
if (R1 || R2) /* Process only if main rows have painted pixels #*/
{ for (n=0; n<16; n++) /* produce a 2 X 16-bit output segment #*/
{ fiddler(R0O, R1, R2, R3); /# Transform 4X4 processing zone #*/
RO >>= 1; /* shift bottom border row to next bit position #*/
Rl >>= 1; /#* shift bottom main row to next bit position #/
R2 >»>= 1; /* shift top main row to next bit position #*/
R3 >>= 1; /* shift top border row to next bit position #*/
if (n==7) 1l-=-; /#* index next output raster column */

}

1--; - /* index next output raster column #*/



}
}

/* produce a 2 X 16-bit output segment */
}
else /* both main registers are blank: zero the output segments */
{ ras[k][1l] = ras[k][1-1] = ras[k-1][1] = ras[k-1][1l-1] = O;
1==2;
}

fiddler(ro, rl, r2, r3) /* Generate a 2X2 quad of output raster bits */
register unsigned long r0, rl, r2, r3; '

/*
**
**

**
* ok

*/
{

This function examines the 4X4 processing zone of the registers and shifts
two output bits into the high end of two 16-bit entries of the output
raster array. In most cases, the full result is obtained directly from
the central 2X2 area of the processing zone, without using the bordering
12 pixels.

int cor; /* to hold result of indexing corner tables */

ras[k] [1] >»= 2;

ras[k-=1][1] =>>= 2;

/* Two output raster entries are shifted down by two bits, leaving
*% the high two bits in each entry zerced. After eight calls to the
** fiddler, these two output entries will be completely replaced.

& :

switch ((ri<<1&12)|(r2>>1&3))

/* The switch value is assembled from the central 2X2 square of

** the register processing zone.

*/

{ case 0:
break; /* Do nothing - the output quad is already zero. #*/

case 15: /s 101



case 9: /¥ 0 1
10 #/
case 6: /¥ 10
01 #*/
ras[k][1] (unsigned short)0140000;

= (unsigned short)0140000;

l
ras[k-1]1[1] |
/* The output is .
11 #*/
break;
case 3: /* 11
00 #*/
ras[k-1][1] |= (unsigned short)0140000;
/* The output is 1 1
. 00 %/
break;
case 12: /* 00
11 #*/

ras[k][l] |= (unsigned short)0140000;
/* The output is 00

11 #*/
break:;
case 5: /S¥ 0 1
01 #*/

ras[k][1] |
|

(unsigned short)0040000;
ras[k-1][1] (

= (unsigned short)0040000;
/* The output is 01
a 01 #*/



break:;

case 10: /J¥ 10
10 #/
ras[k][1] |= (unsigned short)0100000;
ras[k-1][1] |= (unsigned short)0100000;
/* The output is 10
10 #/
break;
case 4: /* 00
01 */
if (square && ((cor = corner rnd[(ro<<2&28) | (rl<<1&2) | r2&l]) == 1))

/* The index to the corner array is constructed from the
#* five border bits which are adjacent to the set bit
*# in the main square. In this case, the configuration

#* of the examined border bits is: - - - -
* % where X is examined - 00X
&% and - is ignored - 01X
*# - XXX
i
ras[k][1] |= (unsigned short)0040000;
/* The output is o 0
0 1 1if square and corner are == */
else
if ((cor == 2) && square && fringe(1, -3, 1, -1, -5, -2, =5))
ras[k][1] |= (unsigned short)0040000;

/* If pr zone has a corner pattern and fringe bits are
** aligned with the sides, the corner bit is set
#*% Otherwise the quad output is zero
*
break;



case 8: /% 00
10 #/
if (square && ((cor = corner rnd[(ro0>>1&7) | (rl&8) | (r2<<1&16)]) == 1))
/* The configuration of examined border bits is:
*

** X 00 -
* o X10 -
* % XXX -
*/
ras[k][1] |= (unsigned short)0100000;
/* The output is 00
1 0 1if square and corner are == */
else
if ((cor == 2) && square && fringe(1, -3, 2, -1, 0, =2, 0))
ras[k][l] |= (unsigned short)0100000;
break:; :
case 1: /* 01
00 */
if (square && ({cor = corner rndf[(r3<<2&28) | (r2<<1&2) | (ri&l)]) == 1))
ras[k=1][1l] |= (unsigned short)0040000;
/* The output is 0 1
_ 0 0 if square and corner are == 1 #/
else
if ((cor == 2) && square && fringe(-4, -3, 1, -2, -5, -1, =5))
ras[k-1][1] |= (unsigned short)0040000;
break:;
case 2: /% 10
00 #*/
if (square && ((cor = corner rnd[(r3>>1&7) | (r2&8) | (ri<<i&le6)]) == 1))
ras[k-1}[1] |= (unsigned short)0100000;

/* The output is 10
0 0 1if square and corner are == 1 #/



else

if ((cor == 2) && square && fringe(-4, -3, 2, -2, 0, -1, 0))
ras[k-1][1] |= (unsigned short)0100000;
break;
case 13: /* 01

11 #/
ras[k][1l] |= (unsigned short)0140000;

if (square && ((cor = corner fil[(r3>>1&7) | (r2&8) | (ri<<1&l6)]) == 1))

/* The index to the corner array is constructed from the

#*% five border bits adjacent to the zero in the main square.

*% Configuration of examined bits: XX X -
** X 0o 1 -
* X11-
" ok G o A
*/

ras[k-1]1[1l] |= (unsigned short)0040000;
/* The output is 01

11 if square and corner are == */
else
if ((cor == 2) && square &% fringe(-4, -3, 1, -1, 0, -2, 0))
ras[k=1][1] [= (unsigned short)0040000;
else
ras[k-1][1] |= (unsigned short)0140000;
/* Otherwise 11
1 XL ¥y
break;
case 14: /J* 10
11 */
ras[k][1l] |= (unsigned short)0140000;
if (square && ((cor = corner fil[(r3<<2&28) | (r2<<1l&2) | (rl&l)]) == 1))
ras[k=1][1] [= (unsigned short)0100000;

/* The output is 10



11 1if square and corner are == */
else
if ((cor == 2) && square && fringe(-4, -3, 2, -1, -5, -2, =5))
ras[k-1][1] |= (unsigned short)0100000;
else
ras[k=1][1] |= (unsigned short)0140000;
/* Otherwise 11
11 #*/
break;
case 7: f* 123
01 =*/
ras[k~1][1] |= (unsigned short)0140000;

if (square && ((cor = corner fil[(r0>>1&7) | (rl&8) | (r2<<1l&1l6)]) == 1))
ras[k][1] |= (unsigned short)0040000;
/* The output is 1 1°
0 1 if square and corner are true #*/
else
if ((cor == 2) && square && fringe(i, -3, 1, -2, 0, =1, 0))
ras[k][1l] |= (unsigned short)0040000;
else
ras[k][1l] [= (unsigned short)0140000;
/* Otherwise 11
11 #*/
break;

case 11: /S 11
10 #*/
ras[k-1][1] {= (unsigned short)0140000;
if (square && ((cor = corner fil[(ro<<2&28) | (rl<<1&2) | (r2&1)]) == 1))
ras[k][1l] |= (unsigned short)0100000;
/* The output is 11
1 0 1if square and corner are true *#*/
else

10



if ((cor == 2) && square && fringe(1, -3, 2, -2, -5, -1, =5))
ras[k][1] |= (unsigned short)0100000;
else
ras[k][1] |= (unsigned short)0140000;
/* Otherwise 11
11 #*/
break:

fringe(vp, hp, val, vs, hs, vz, hz) /* find square border on the fringe #*/
int vp, hp, val, vs, hs, vz, hz; /* relative coordinate info #*/

/*
*
* &
o+ *
&%
* ok
* ok
oo
& A&
* ok
o ok
* ok
*/
{

/*
ok *
b

B

vp and hp locate a horiz pair of bits either above or below the zone.
val gives the two-bit expected value of bits starting at vp, hp.

vs and hs give coords of a bit on left or right expected to be set.

vz and hz give coords of a bit on left or right expected to be zero.
This function is called from fiddler only if sharp corners are requested
and the current processing zone has an actual corner pattern in it.

The fringe function reads the outlying bits directly from the input
source raster locations, so they do not have to be carried in registers.
Fringe also uses the global values n, i and j in effect when fiddler()
was called, to locate the bits to be read.

The basic function of fringe is to return a true result if a corner
pattern extends a total distance of three bits in both directions.

int result = 0;

int hl, incr;

register unsigned long buff;

hl is the effective horiz location of a bit, based on n and args.
The incr variable is true if bits have to be read from the previous
horiz raster word, as indicated when hl is initially negative.

hl = n 4+ 13;

11



12

buff = ras[i+vp][j]l:
buff <<= 16;
buff |= ras[1+vp][j+1].

/* The raster is indexed with two relative adjustments to the coordinates:
&% The row i is modified by the vp argument
* %k The selected bits are shifted down by hl
** Then the two-bit result is compared with the val argument for the result
4

result = ((buff>>hl&3) == val);

if (result) /# quit if first test failed */

{ if (incr = (int)((hl = n + hs) < 0))

hl += 16;
result = (rasfi+vs][j+incr]>>hl&l);

}
/* Row selection is modified by argument vs, which locates the side bit
** expected to be set.
ny

if (result) /+* quit if any previous tests failed */

result = ! (ras[i+vz][j+incr]>>hl&l);

/* Row selection is modified by argument vz, which locates the side
#* bit expected to be zero.
S

return (result);
}
interp(v, h, op) /* Interpret an input file for graphic pixels */
int v, h; /* Block coordinates of upper left corner #*/
char op;
/* This function reads the standard input a line at a time and converts
** the characters 8, o, »~, and other into vertical pairs of pixel values
*#% and loads them into the input raster array two rows at a time.
& o

The ints v and h give the upper left raster starting coordinates.



* %
*
*F
*
**
* &

e

The op character is: w to write over the existing raster.

o to OR into the existing raster.

¥ to X OR into the existing raster.

e to Erase the existing raster where marked.
The o, x, and e choices are intended for future applications in which
recurrent operations are performed on the raster interactively.

char buf[656], *cp, ch; /* Buffer to collect input characters #*/
Fegister unsigned short ril, r2; /#* working buffers #*/
int i, j, k, go, 11;
11 = o;
J = v+1;
while ( (gets(buf)) && (j<640) )
{ ©cp=Dbuf; i = 16; k = h;
go=1;
while ( (go==1) && (k<41) )
{ ch = *(cp++);
rl <<= 1;
r2 <<= 1:;
switch (ch)
{ case '8':
rl |= (unsigned short)1l;
r2 |= (unsigned short)1l;
break;

case 'o':
r2 |= (unsigned short)1:;
break;

case "1~ _
rl |= (unsigned short)1i;
break;

13



}
jums
if (
{

case Woi:
rl <<= (i-1):
r2 <<= (i-1);

if (11 < k)
11 = k;

go=0;

1=13F

break;

i==0)

switch (op)

{ case 'w';
case 'W':
ras[j] [k]
ras[j+1] [k]
break;

case 'o':
case '0':
ras{j][k]
ras[j+1] [k]
break;

case 'xX';
case 'X':
ras[j][K]
ras[j+1] [k]
break:

case 'e':
case 'E':
ras[j][k]
ras[j+1] [k]

A m—

A

&=
&=

rl
rz

e

-



{

/*

break;
}
k++;
i= 16;
}
}
j 4= 2;
}
height = j;
width = 11+1;

paint () /* Paint the raster on screen #*/

char buf[656], *cp; /* Buffer to collect output characters #/
register unsigned short ri, r2; /* working buffers #*/
static char pix[] = {* ', tot, '~Vv, 'g1};
int i, J, k, 1, ¢:
for(j = 0; j<h mag; j+=2)
{ c =16 * (w mag + 1);
buffec-=] = '0;%/
for(k=w_mag; k>=0; k--)
{ rl = ras{jl[k]:
r2 = ras[j+1][k]:
if (r1 || r2)
{ for (i=0; i<16; i++)
{ Dbuf[--c] = pix[(int) ((2 * (r1&l)) + (r2&1))]:
rl >>= 1;
r2 >»>= 1;

else -

15



VA

e 4

for (i=0; i<16; i++)
buf[--¢] = ' ;

}

¢ =16 * (wmag + 1) - 1;

while (buf[c] == "No' && ¢ > 0)
c -=1;

buf[ec+2] = v 1;

puts (buf):

for (i=0; i<=(w _mag * 16); i++)
if (buffi}]) putchar(buffi]):
else putchar('X'):;

print (siz)
char siz;

{

char buf[87]; /# Buffer to collect output characters
int j, k;
buf[o]=' 33'; buf[l]='*'; buf[2]='b';
buff{s5]='w';
buf[3] = (char)('0' + ((2 * w mag) / 10));
buf(4] = (char)('0' + ((2 * w mag) % 10));
switch (siz)
{ case "1"':
printf ("%c*t300RSc*r1AN, we33!, Wp33');
break:;

case '2':
printf ("%c*t150R%c*r1An, N033', N331);

break;

i

16



/*
& *
*
* &
* ok
L
* %k
ok
* %
* %

case '31;
printf ("%c*t100R%c*r1A%W, N33, N\e331);
break;

case "4';
printf ("%c*t75R%c*r1a", wWe33', Ne33t);
break;
} 3
for(j = 0; j<640, j<=(h mag); j++)
{ for(k=0; k<=(w mag); k++)
{ buf[2 * k + 7] = (char) (ras[j][k]&255);
buf[2 * k + 6] = (char) (ras[j][k]>>8&255);

}
 for(k=0; k<=(w mag * 2 + 6); k++)
putchar(bufik]):

)
printf ("%c*rBoY ne33');

The main() Function operates all the other functions in the program.
This function could be as simple as the following:

main()

{ interp():
dbl (0, 0, 320, 19, 640, 39);
paint();

}

In this form it would need no arguments, and would simply double

17



*A*
* ok
#* o
*F
*x
* %
*
* &
**
o
o& &
* &
**
**
* K&
**
* 4
* &
& &
* %k
* ok
* ok
**
& *
* A
o*
&

e

18
its standard input once, producing a 2X magnified standard output.

However, the effort of testing and refining the procedure has led

to a more flexible and convenient version of main(), which is included here.
This main() function allows control of the square variable and full

control of output devices, magnification factor and pixel size, with
built-in size management to serve the casual user.

The operation of this version is controled by three simple arguments from
the command line:

argvf1l] It Enter the letter 's' for square corners
Enter any other letter for all rounded shapes

argvf2] 1-9 Enter a digit for mag factor in dbl()
Gravitates to values 1, 2, 4 and 8

argvi3] 0-4 Enter 0 for text mode output by paint()
Enter 1-4 for bitmap ocutput for laser printer
The print() function uses value 1-4 for pixel size.

Actual sizes of input are measured by interp and reported internally to
other functions. If the input size times the requested mag factor

exceeds memory size, the result is clipped without attempting to

use unallocated memory. If memory size itself is to be changed for different
applications, main() should be rewritten with the limits 40, 80, 320 and 640
defined as constants.

main(arge, argv)
int arge;
char *argv[]:;

{

interp(0, 0, 'w');
if (*argv[l] == 's!')



square = 1;

else square = 0;
switch (*argv([2])

{

case '1°';

h mag = height;
W_mag = width;
break:;

case '21':
case 13':
mag = 2;

if ((h_mag = height * 2) > 640)

{ h mag = 640;
height = 320;
}

if ((w mag = width * 2) > 40)
{ W _mag = 40;
width = 20;

}
dbl ( 0, 0, height, width-1, h mag, w mag-1);

break:;

éase T4t
case '5';
mag = 4;

if ((h mag = height * 4) > 640)

{ h mag = 640;
height = 160;
}

if ((w_mag = width * 4) > 40)

{ W _mag = 40;
width = 10;

}

dbl ( 0, 0, height, width-1,

{2*height),

(2*width-1));

19
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dbl ( 0, 0, (2*height), (2%width-1), h mag, w_mag-1);
break:

case '6':
case '7':
case '8':
case '9':
mag = 8;
if ((h_mag = height * 8) > 640)
{ h mag = 640;
height = 80;

}

if ((w mag = width * 8) > 40)
{ W _mag = 40;
width = 5;
}

dbl ( 0, 0, height, (width-1), (2%height), (2*width-1));
dbl ( 0, 0, (2*height), (2%*width-1), (4*height), (4*width-1));
dbl ( 0, 0, (4*height), (4*%width-1), h mag, w mag-1l);
break;

}

if (*argv[3] > '0')
print (*argv3]):

else paint();



Appendix 2 1

INTRODUCTION TO NAPLPS

When computer technology moved beyond the realm of numbers,
and into the processing and production of printed text, a
new alphabet swept over the industrialized world. Streams
of transmitted data became peppered with "control codes"
having mysterious names, and which were not seen by the eye
in the printed message.

The 128-character ASCII set established a new universal
principle of communication. The control codes can be freely
mixed with the normal characters in a message. The display
device screens them out and modifies its operating states
according to the instructions they convey. At the same
time, it displays the normal characters as received. In
effect, the sender can simultaneously converse with the
human reading the message and with the machine displaving
it.

Now some fundamental extensions have been applied to the
ASCII character set, producing a new language to converse
in images as well as text. The potential forseen by the
designers of the ASCII character set is being realized in
the North American Presentation Level Protocol Syntax.

1. NAPLPS as a Language

The first step in learning to deal with NAPLPS is simply to
recognize that it is a language. Unlike physical devices or
systems, it can materialize within a variety of existing
systems. Most computers can be programmed to converse in
graphic images via NAPLPS. Designers can use any internal
means of generating and interpreting NAPLPS with the comfort
of knowing that other designers are building toward the same
connecting language.

The 128 codes of the ASCII character set can accomplish
everything in the NAPLPS language. Certain of the codes are
able to substitute alternate meanings into whole groups of
codes. In effect NAPLPS has the ability to dynamically swap
its alphabets during a conversation. The various alphabets
have a wide range of meanings, spanning all the elements of
graphic image definition.



Appendix 2 2

A NAPLPS data stream may contain a code that we recognize as
the letter "j" by its ASCII definition. But in a European
alphabet it would represent the character "OE" joined in a
ligature. As a Mosaic cell it would represent three white
squares stacked vertically alongside three black squares.
As an operand to a Picture Description Instruction (PDI),
it could give part of the coordinates of a polygon. Then
there are redefinable characters and even macro definitions
to invoke an arbitrary sequence of stored instructions.

Beyond all these capabilities, however, NAPLPS is not a
language in the sense that Pascal is a language. It would
not be applied in solving a general logical or mathematical
problem. It will not evaluate data and dynamically branch
to procedures appropriate to the situation. Instead it is
simply a descriptive language for graphic images to be
written on a display. A NAPLPS byte stream is a linear
sequence of instructions used as a communications line.

2. Code Extension within NAPLPS

The Code Extension technique that makes NAPLPS work uses a
collection of different character sets in addition to the
old ASCII definitions. At least four sets are Xkept in
Random Access Memory for instant selection. However, there
is no increase in the size or complexity of the individual
characters. The selection of character set is done by a
specific control code, after which all following characters
are interpreted from the selected set of meanings.

Character set selection is usually built into an index
variable in the operating state of the display device. In
certain character sets, such as PDI, each "character" leads
to another index into a collection of primitive graphic
drawing functions. We customarily think of ASCII codes in a
two-dimensional array with eight columns and sixteen rows.
That array now becomes one shelf in the three-dimensional
structure of NAPLPS codes. '

NAPLPS compares to ASCII as chess compares to checkers.

Like the basic game board, the 128 numeric codes remain the
same. But the squares hold different kinds of players, who
take on a variety of roles. Complexity takes a gquantum
leap, and the interpretation of each move is immensely more
dependent on the "state" of the game. ' ,
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3. Commonly-used Terminology

The alphabets I have described as "shelves” in the 3-D
structure of NAPLPS are usually called "tables" in the
literature. A table is divided between the low 32 values of
control codes and the upper 96 values of graphic codes. In
NAPLPS everything that makes a mark, such as text, mosaics,
PDIs and foreign alphabetics is called a "graphic" code. The
collection of 32 control codes in a table is called a C set,
and the 96 graphic codes are called a G set.

There are two C sets currently defined in NAPLPS,

The first, designated CO, is based on the original
ASCII set of control codes.

Within this set, the transmission control codes
(STX, EOT, S5YM, etc) and the device control codes
(DCl, DC2, etec) are invisible to the NAPLPS
Presentation Layer (That just means NAPLPS
interpreters should disregard them}. They are
used for messaging functions and physical
reconfigurations in the OSI Session Layer.

Other control codes, namely backspace, linefeed,
tab, return, formfeed, cancel, null, bell and
escape have similar functions in NAPLPS, but new
English names in some cases.

The characters from the CO gset used in the
designation and selection of other character sets
include escape, shift-in, shift-out, EM {renamed
single-shift-2), and GS (renamed single-shift-3)

The second C set, is designated Cl.

The escape character followed by any character in
column 4 or 5 ("@" thru " " including all capital
letters) makes a one-time selection from the
gecond C set (Cl). This is the familiar "escape"
mechanism used in most text terminals. It comes
from the general code extension structure
recommended by the International Standards
Organization in ISO 2022.2 - the basis of most
communication protocols including NAPLPS.

The functions performed by codes in the Cl set
include macro and DRC definitions, character size
and attributes, field scrolling and protection,
and cursor style.
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The diagram on the next page {Table 1) defines the NAPLPS C
sets and G sets on a detailed numeric basis. It combines
the definitions of a half dozen tables from the NAPLPS
Standard into one ready reference. These details are
well-documented by the ANSI Standard X3.110-1983, (Ref 10).

The entries in Table 1 each consist of a box containing most
of the definitions for a specific numeric character value.
The Primary (ASCII) definition is always in the upper left
area of the box. The definition from the Supplementary set
comes next in the top center area. If a Mosaic is defined
it is diagrammed in a nested box at the upper right corner.
The PDI op codes of columns 2 and 3 are printed in the lower
right area of the box. The letters S, R, A, and F above PDI
op codes mean Set, Relative, Absolute and Filled.

Characters involved in escape sequences to select character
sets have additional notations in nested boxes at the lower
left. Control codes of colums 0 and 1 that have new names
under NAPLPS have their old names in the lower right corner.

4. Sets of Graphic Characters

The four sets of graphic codes maintained in memory are

designated GO, Gl, G2, and G3. One of these sets is
identified as "in use" by the value of an index variable,
which points to GO by default.- Each G set in memory can

also be reloaded from time to time with table values from
some other storage area.

NAPLPS provides control code sequences to select an external
table from a "repertory" and copy its contents into a chosen
"G set." Up to 64 different graphic tables could be stored
and accessed by this mechanism, but so far only a half dozen
have been universally established.

The repertory at this time consists of:

Selected by escape * B
The Primary character set, which is the same as
the ASCII set.

Selected by escape * |
The Supplementary character set, consisting of
miscellaneous symbols, fractions, phonetics,
line fragments, and European alphabetics.
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Selected by escape * W

The Picture Description Instruction (PDI) set.
The first 32 PDI values, from "space'" to "?" are
op codes to trigger calls to graphic functions
such as plotting points, lines, arcs, rectangles,
polygons and irregular shapes. The remaining 64
values provide numeric operands to follow the op
codes and specify locations, distances and various
other data. The operand characters are easily
distinguished by the receiving device, since their
seventh bit is always set.

Selected by escape * }

The Mosaic character set, in which each character
represents a block of six binary pixels in a
raster array. The block is three pixels high and
two pixels wide. The values of the pixels are
determined by six of the bit values in the
character code.

Selected by escape * gz

The Macro set is initially empty, but its members
can be defined during a session by a control code
sequence, including the NAPLPS instructions to
be capsulized by the given character.

Selected by escape * {

The Dynamically Redefinable Character Set takes
the idea of macros a step further. Wwhile a macro
is executed exactly as it is originally defined, a
DRC is executed subject to current state variables
controlling the rotation and scaling and display
attributes of graphic characters. y

The '*' character after the escape in the above definitions
is also a variable. If it is an asterisk as shown, the
selected character set will be loaded into table G2.
However, any set can be loaded into any table, so here are
the four characters that select the four tables: '

GO
Gl
G2

G3

is loaded by the character: (
is loaded by the character: )
is loaded by the character: *

is loaded by the character: +
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The 3-character escape sequence that loads a table might not
have an immediate effect on the display in progress. The
selection of the currently "active" G-set is a separate
process, using a different group of codes.

The Si (shift in) control code activates the character
set loaded in GO. This is typically the primary text
character set, although any set can be loaded there.

The So (shift out) control code activates the character
set loaded in Gl. In some cases this would be the PDI
set, but in a raster-intensive system, the Mosaic set
would be useful in this position.

The "escape n" sequence activates whatever character
set is loaded in G2. This G-set is often used for the
supplementary set of Buropean characters and graphic
symbols. Since it is commonplace to access single
characters from it and immediately return to another
set, a single-shot mechanism is also provided. Any
time the S52 (single shift 2) control code is received,
the very next character will be interpreted from the G2
set.

The "escape o" sequence activates the character set
loaded in G3. The SS3 control character provides the
one-shot interpretation of the next character from G3.

This description takes liberties in referring to positions
in a table by their familiar ASCII character names. Other
authors have tended to avoid this, perhaps to emphasize the
abstract numeric connotation of their values under NAPLPS.
For instance in avoiding reference to the character 'j' most
authors would call it 6/10. For the benefit of readers who
are unacustomed to thinking in columns and rows, I will risk
being told some day that when a 'j' is in the PDI set, it
isn't a '3'.

Another area where a bit of confusion can be avoided is in
the eight-bit implementation of NAPLPS. This description
has avoided the confusion by ignoring the eight bit case
altogether. However, everything stated here remains true in
an eight-bit implementation. The only difference is that
two different G-sets and C-sets are active at once and their
selection is made by the eighth bit in every character. 1In
most system environments, this turns out to be more trouble
than the resource savings can justify. The language is
already sufficiently complex and flexible in its seven-bit
form.
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ABSTRACT

While images defined by wvector 1linestrokes are easily
manipulated in all the usual ways, there are some systems
which perform manipulations directly on bitmaps. These can
process images of extreme detail and complexity with no
penalty in speed. They can also process images which start
out in bitmap form, such as photo scanner output. But ocne
type of manipulation that bitmap-based machines still find
difficult 1is magnification. Magnified bitmaps are usually
characterized by enlarged pixel shapes, producing Jjagged,
checkered edges.

This report introduces a procedure for extreme magnification
of bitmaps, which adheres to significant shapes and improves
the smootheness of contour lines. The procedure magnifies by
densification, cracking each pixel into quarters. The scan
mechanism involves a 2 X 2 input window and a 2 X 2 output
cell which exactly doubles the linear dimensions in pixels.
Extreme magnification uses successive exact doubling of the
bitmap. Shapes in the window are discerned by conditionally
scanning pixels in concentric surrounding layers. This
technique, dubbed "bullseye" scanning, achieves both high
speed and effective pattern recognition.

The Successive Contouring Procedure has been implemented by
the C program documented in Appendix 1. It is arranged for
testing on time-shared minicomputers from any type of text
terminal. A sample driver is provided for high-quality
output to a laser printer. In actual tests it doubled an 80
by 48 bitmap in a half second. Successive doubling to 16X (a
million output pixels) required about ten seconds. The
procedure was found to create new information by inference,
in order to reconstruct contours with the higher-resclution
pixels. 1Its adherence to significant shapes and proportions
in the image is excellent.

Applications for this procedure can be found in the transfer
of wvideo displays to higher-resolution printers, including
laser printers. It can match the highest device densities
with economical, low=-resolution bitmaps. Zoom features on
raster displays can be improved in range and readability.
Extensions of this procedure could add the processing of
other graphic languages, including typesetter font files or
NAPLPS Mosaic codes. Many additional applications and
extensions are possible.



