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INTRODUCTION

Utilization of solar energy to produce useful products, such as

Single Cell Protein (SCP) is expected to become increasingly important as

costs of other sources of energy increase. Long term interest and import-

ance associated with these processes is due to the much higher thermo-

dynamic efficiencies of microbial photosynthesis compared to agricultural

plants, which is demonstrated in Table I. Algal cultures can be easily

controlled to obtain higher yields. Although photosynthetic microbial

processes are of considerable importance and many papers on algal growth

experiments have been published, much biochemical engineering process

analysis and design research remain to be done with respect to develop-

ing methods of estimating photosynthetic growth yields and for achieving

high yields in large scale processes. This work'is concerned with

surveying relevant literature, developing new methods for estimating

yield parameters, and applying these methods to literature data. Algal

growth on C0
2

and heterotrophic growth on C-l compounds, such as methanol,

are investigated. These processes are related because both involve

growth on C-l compounds. This work is divided into four chapters.

Tables, nomenclature, and references are located at the end of each chapter.

Chapter 2 is mainly concerned with summarizing literature on the

bioenergetic and food aspects of algal growth. In the bioenergetic

section, theoretical bioenergetic considerations, estimation methods

for evaluating photosynthetic efficiency, effects of light, carbon dioxide,

oxygen, and other nutrients on growth, and experimental methods are

discussed in this chapter.
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Chapter 3 contains the results of analyzing regularities for photo-

synthetic microorganisms, whose values are used in estimating true

growth yield and maintenance coefficients. Statistical anslysis is used

to obtain average values and coefficients of variation from measured values

in the literature.

In Chapter 4, estimation methods for yield and maintenance parameters,

which have been applied in heterographic growth, are used to analyze

continuous cultures of photosynthetic growth. Methods for batch culti-

vation are also developed and applied to available batch data.

Chapter 5 presents the results of estimating true growth yield and

maintenance coefficients for microbial processes grown heterotrophically

on C-l compounds, such as methanol. The analysis process is similar to

that used for photosynthetic microbial growth.
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Table 1. Comparison of Efficiencies

Species
Maximum conver-
sion efficiency

(%)

References

Photosynthetic

micro-
organisms

Chlorella
vulgaris

*26.7
*39.6++

S.J. Pirt et al

[1]

Spirulina
platensis

*12.7 S. Aiba et al

[2]

Oscillatoria
agardhii

*23.0 L. VanLiere et al

[3]

Chlorella
pyreidosa

*16.43 J. Myers

[4]

Agricultural

Crop Plants

Onions 0.45

E.C. Wassink
et al

~T5]

Carrots 0.94

Sugar cane 1.92

Wheat 1.26

Potatoes 1.23

Results from estimation methods in Chapter 4

++Mixed culture with bacteria
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INTRODUCTION

In this chapter, literature on the photosynthetic algal growth

process is surveyed with an emphasis on the bioenergetics and process

requirements of photosynthesis through light utilization [1-73]. So

far the theoretical conversion efficiency is still controversial because

the maximum conversion efficiency based on quantum requirements is lower

than that value based on some measurements of biomass. Therefore the

theoretical considerations and experimental results related to photo-

synthetic efficiency need to be summarized. The methods of estimating

this energetic yield, which have been developed by many investigators,

and the process of utilizing light energy are discussed in terms of

bioenergetics. Many factors, which can affect algal growth, such as

light, temperature, CO,,, and 0„ concentration, etc., are reviewed

because they are important in modeling, design, and scaling up systems.

Many experimental methods are reviewed, especially the methods for

measuring light intensity, and the demonstrated advantages of continuous

cultivation. Finally, the possible ways of using algae as food, some-

times called Single Cell Protein, are reviewed.
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BIOENERGETICS OF PHOTOSYNTHESIS

1. Theoretical Considerations and Efficiency of Algal Growth

It is important to define qualitatively and quantitatively the thermo-

dynamic and kinetic limits on the photochemical conversion and storage

of solar energy when we consider the growth of photosynthetic organisms.

Many researchers have dealt with the problem of thermodynamic limits on

the conversion of light to chemical energy [1-5]; Ross and Hsiao [5] have

recently published a particularly lucid treatment, based on the original

treatment by Ross and Calvin [4]. That is, they defined maximum thermo-

dynamic efficiency as a function of wave length and photochemical power

yields [4] which they had developed. They have been interested in fuel-

generation reactions, such as hydrogen production using photosynthetic

reactions. They have shown that a reasonable goal for solar energy

storage efficiency in this reaction would be * 10 to 13 percent but

probably not much higher than 13 percent. Goldman [6] developed another

expression for thermodynamic efficiency as a function of wave length.

The average value of his calculation for the visible light range which

is used for photosynthesis is about 20" as determined from graphical

integration. Goldman [6] also considered light utilization efficiency,

in his analysis of photosynthetic conversion efficiency. The earliest

attempt to quantitatively account for the effect of light saturation was

by Burlew [7].

Pirt [10] defines photosynthetic efficiency as the ratio of the

free energy of the biomass produced to the amount of light energy absorbed.

The free energy of the biomass relative to C0
2

(g), H
2

(z), and aqueous

ammonia may be appropriately used when the nitrogen source is ammonia or
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urea. When N-, or nitrate is the nitrogen source, the free energy of

combustion of the biomass may be used.

The quantum requirement, which is defined as the number of quanta

required for fixing one mole of CCU or producing one mole of CL photo-

synthetically, has been used to evaluate the efficiency of light-energy

conversion to chemical energy. However, the minimum number of quanta

required has been and remains controversial [8,9]. The estimated range

of the quantum requirement has varied from three to fourteen. Up to

now, quantum requirements of 8-10 quanta per oxygen molecule evolved

are widely accepted as yield efficiencies that can be achieved. It is

well-known that the Hill and Bendall [71] scheme (the
T
Z scheme 1

) for

photosynthetic electron transport requires that eight light quanta arc

utilized per molecule of oxygen evolved. That is,

2H
2

+ 4Fd+3 S^nt 4H
+

+
2

+ 4Fd+2 (1 )

where Fd refers to ferredoxin.

For higher plants, this scheme is accepted without any particular problem;

the C0
2

and H~0 are converted to carbohydrates in the cell, where

free energy is stored as chemical energy.

For photosynthetic microorganisms some of the reported quantum

requirements [8,10] are smaller than 8. There have been several attempts

to calculate the correct quantum requirement for illustrating the exact

electron flow system of these organisms. No widely accepted minimum

quantum requirement exists at this time. Pirt [10] tried to answer

whether the minimum quantum demand is less or greater than 8 hv/0
2 ,

which is a critical point for present theoretical concepts of the con-

version of radiant energy to chemical energy in photosynthesis. For the



2-4

biotechnologist the problem is essentially one of determining the maximum

growth yield from the available light energy. He interpreted his results

very carefully to show that the quantum requirement is less than eight.

He justified his value by pointing out that photosystems 1 and 2 may

work in parallel, and that the two photosystems may act in series under

some conditions where maximum photosynthetic efficiency is not required,

e.g., when some factor other than light limits photosynthesis. He also

insisted that thermodynamics permits on the average an energy gain of

1.33 eV for each electron excited by a photon at 680 nm which suggests

that living cells would have evolved an acceptor to take maximum advantage

of this light energy. The selection of an electron shift from water to

ferredoxin (AE
h

= 1.24 eV) would represent near perfection in evolution

of photosystem 2. Pirt [10] preferred the measurement of photosynthetic

efficiency based on biomass production to those based on short-term Oj

release because algae can use oxygen for respiration as well as produce

it. Biomass production measurements are made over a longer period of

time and are not as dependent on short term transients which may introduce

error into the oxygen release measurements. The thorough, well -control led

application of oxygen measurement by Brackett et al_ [11] gave a minimum

quantum demand of 6.1 hv/0_ +_ 0.6 for Chlorella . Brackett also found

that the quantum requirement was highly reproducible for a given culture,

but it varied from 6 to 13 with different cultures. One possible reason

for this variation could be the chlorophyll content of the cultures

which varied roughly inversely with the quantum requirement. Williams

[12] found that the chlorophyll content of algae can be varied several

fold by the growth conditions in continuous culture systems. Even

though the measurements based on biomass production have advantages like



2-5

those mentioned above, it might be difficult to estimate accurately the

light energy flowing to a continuous culture of aglae. However, the

use of a continuous flow steady state method can offer methodological

advantages which facilitate the mathematical and conceptual analysis of

the parameters and variables involved in the relationship between algal

growth and a rate limiting factor [13]. The Turbidostatic method proved

to be good in reaching steady state conditions rapidly and for maintain-

ing a predetermined concentration of algae in the reactor. The latter

is particularly important in assaying waters relatively rich in nutrients

in which intensive growth of algae can cause excessive shading.

Even when theoretical data on quantum requirements of specific

green plants and/or algal cells are available from the literature, it

is difficult from such information per se to precisely answer the

question of how much energy is required to harvest a unit amount of cells,

unless the absorption spectrum, and a spectrum of the light source are

also provided [14]. In order to prevent this difficulty, a growth

yield, defined as the grams of dry cells harvested per kj of light

energy absorbed by the cells by Aiba and Ogawa [15], was introduced and

used for their work with a dilute supension of Spirulina platensis , a

specific blue-green alga [14].

2. Methods to Estimate Energetic Yields

Many researchers [15,18,19,20,55] have been trying to estimate

the'light conversion efficiency. Ogawa and Aiba [15] estimated the

maximum energetic yield as 31.7% based on eight quanta of light required

to produce one mole of oxygen, and the average wave length of visible

light. They also analyzed the cellular composition of algae for
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calculating the energy contained in the cell. However, the theoretical

maximum energetic yield based on eight quanta is exceeded by the results

of Pirt's estimations [21] which are about 34~42%. Thus, the correct

minimum quantum yield is unclear as well as the maximum light conversion

efficiency. Aiba [18,54] defined growth yield, Y
kJ

, as grams of biomass

per kJ of light energy input. When Aiba calculated growth yield, he

checked the differences in light source on growth yield, and used a wave

length distribution given by a halogen lamp with an infrared cut-filter.

The wavelength of light source after passing through the filter ranged

from 380 to 720 nm. Also, to get the light conversion efficiency, the

growth yield was multiplied by the heat of combustion of algal cells,

-AHa, kcal/g. According to elemental analysis of Spiralina platensis ,

-AHa is estimated as 25.1 kj/g. Aiba [18] also calculated growth yield

based on the measurement of carbon dioxide consumption. Aiba counted

14
the rate of carbon dioxide consumption with radio activity of C Op, and

checked the carbon balance in the culture vessel.

It is interesting to note from Aiba's calculations [54] that the

value of Y|- remains rather unchanged, (3~5) x 10 g/kJ, despite the

difference in algal species and culture conditions as far as autotrophic

cultivation of these algae is concerned. Aiba [54] used the specific

light energy absorption rate £ y/Y
kl

, to calculate the true growth

yield with the following relationship,
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TTT +a (2)

where

K specific light-energy absorption rate p/Y

(Y
kJ

) G
= true growth yield, g/kj

m = maintenance coefficient, kj/g/hr

If equation (2) is acceptable for photoautotarophic growth, £ may be

plotted against y(=D) to yield a straight line, whose slope and inter-

cept correspond to the reciprocal of (Y
kJ ) G

and m, respectively. Aiba

checked the applicability of equation (2), but the linearity between

% and D(=y) was not always satisfactory.

Pirt [19,21] also found the photosynthetic efficiency using the

product of the calorific value of the biomass and the growth yield

defined as the biomass formed per light absorbed. From the principles of

bioenergetics [22,23] which show that the growth yield will be a function

of the specific growth rate of the cells, Pirt also found [21] that

the light requirement of a growing culture of cells is expected to

conform with the relation given by Equation (2).

Pirt mentioned that the maximum growth yield is to be expected only

when the energy source is growth-limiting, and showed that Equation (2)

may be divided by the specific growth rate, y, to obtain the relationship

1 1 , m
Y
kJ <VG

+ ~ (3)
v

Equation (3) may be treated as a linear relationship by plotting the

reciprocal of Y
kJ

vs that of p. Thus, the true growth yield (Y
kJ

)
G

can

be estimated and the photosynthetic efficiency can be found by multiplying
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this value by the calorific value of the biomass. Pirt noted that the

value of the mass yield should depend on the degree of reduction of the

nitrogen source used. Generally nitrate has been used instead of ammonia

for algal growth; this will decrease the mass yield with respect to that

found using ammonia or urea. This will be discussed quantitatively in

the next chapter. Pirt stated that the reduction in photosynthetic

efficiency should be of the order of 20% of its value. Also, Pirt

estimated the maximum photosynthetic efficiency to be 29%, assuming n = 8

and the mean wavelength of the light is 575 nm; however, his value of

biomass growth yield is much higher than that corresponding to a photo-

synthetic efficiency of 29%. Therefore, Pirt recommended that the

quantum requirement should be reconsidered and the assessment of photo-

synthetic efficiency should be based on biomass growth. Particularly,

Pirt showed a way of enhancing the photosynthetic efficiency by symbiotic

cultivations with bacteria, Alcaligenes species. The resulting efficiency

was higher than for the case of growing algae alone. Also, the photo-

synthetic efficiency was independent of both the amount of light energy

and the intensity of the light incident on the culture surface. Pirt

[19,73] also considered product formation; that is, he showed that

nitrogen-limited growth of Chlorella in photosynthetic chemastat culture

could be used to produce starch. Pirt considered the biomass yield by

measuring both the biomass and the total cell dry weight which included

the starch. Therefore, Pirt tried to distinguish between a storage

product, such as starch, and the functional biomass.

Gons and Mur [20] considered a light-limited system, in which

attention was given to the quantity of absorbed light energy, the

efficiency of conversion of light energy to chemical energy, and the
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maintenance energy requirement of the cells. Gons and Mur [20]

developed a model to describe growth in light-limited conditions:

(dE/dt) • C = pX + y
e
X (4)

where dE/dt is the rate at which light energy is absorbed by a unit

volume of algal biomass culture, C is an efficiency factor, X is concen-

tration of organisms, p is specific growth rate, and p is a maintenance

rate constant. Therefore by plotting (1/X)- (dE/dt) vs p, the efficiency

factor, C and maintenance rate constant, p are obtained from a straight

line. The efficiency factor, C, should be recognized as the efficiency

with which light energy is converted to chemical energy in biomass when

the energy required for maintenance is neglected. It is a measure of

the photosynthetic efficiency. The maintenance parameter, p , is

related to the energetic maintenance coefficient, m ; that is,

m
e

= T

where m is the specific rate of light energy utilization for maintenance

with units of hr" and u is the specific rate of chemical energy

utilization for maintenance based on light energy being converted to

chemical energy with an efficiency, C.

The equation used by Gons and Mur [20] for parameter estimation is

similar to Equation (2); however, the units of the yield parameters are

different. Equation (4) may be used with continuous culture data if

dE/dt is taken as the rate that light energy is absorbed per unit volume

of culture.

Mur and vanLiere [36] reported that estimated values of the

efficiency factor, C, ranged from 0.155 to 0.214 while values of u„
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ranged from 0.015 to 0.062 day . Mur and van Liere [24] recognized the

difficulties of studying growth yields in light limited batch cultures

because of the rapid change in growth conditions and the slow adaptation

of microorganisms to these changes.

3. Effects of Light Intensity and Temperature on Algal Growth

The effects of light intensity and temperature on photosynthesis

have been extensively reported. At low light intensity a linear relation

between intensity and photosynthesis usually has been found [34,54],

whereas at high light intensity, the rate of photosynthesis is constant

and relatively independent of light intensity. Rabinowitch [25] showed

the same general trend in every case of a linear increase of photosynthesis

with light intensity up to a saturation point, beyond which higher

intensities did not increase photosynthesis but eventually resulted in

inhibition, the physiology of which is disucssed by Steemann [26]. At

low cell densities, when growth is not light energy limited, an exponen-

tial growth phase occurs; at higher densities, growth proceeds linearly

with time, while growth decreases gradually at very high cell densities.

Mass cultivation of algae has to be designed for the linear range, at

which practically all the incident light is absorbed by the culture.

Sorokin and Krauss [27] reported that photosynthetic efficiency

must be considered in predicting yields of mass cultures. The density

of algal populations often limits the light intensity received by some

of the algal cells. According to Kok [28], the complete process of

algal growth is more complicated than the photosynthetic conversion of

light energy to chemical energy; however, the maximum conversion effi-

ciency of light energy into biomass is of the same order of magnitude
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as that observed in photosynthesis experiments using gas exchange measure-

ments .

In growth experiments with mass cultures, Oorschat [29] observed

a decrease in the efficiency with increasing light intensities even

though the biomass concentration increased at higher intensities. This

is connected with the mutual shading of the cells in cultures of high

cell density. Oorschat also investigated the functional relationship

between the rate of photosynthesis and the light intensity. He considered

the theoretical efficiency, assuming that in an algal culture the light

intensity decreases with depth and cell density according to Beer's law.

The maximum efficiency was about 23%, based on his optional culture

conditions.

Frog, Nalewajko, and Watt [30] found that photosynthesis can

proceed over a wide range of light intensities, up to ~50klux. Tailing

[31] determined maximal photosynthetic rates of about 25 mg 0- (mg

chlorophyll a) h in experimental exposures of blue-green algae-

dominated suspensions in a reservoir on the White Nile, at irradiance

level equivalent to 35-40 klux and at a temperature in the range 21~25°C.

Tailing also showed that the onset of light saturation of photosynthesis,

i.e. the light level below which photosynthetic rate becomes light-

limited, generally occurred between 6"10 klux. The light requirement of

blue-green algae seems generally similar to those of other planktonic

algae, although the value for light saturation of photosynthesis is

probably lower than that for many other algae. Adaptation of populations

to light is also possible during growth, resulting in a further change

in the light saturation condition. This may be due to a change in

chlorophyll content or a change in the efficiency of photosynthesis.
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Myers [32] reported that with higher light intensities, the cells become

increasingly larger but they have about the same chlorophyll content per

cell. Meffert [33] found optimal growth of planktonic species in

culture is often achieved under an incident illumination of 2-3 k1ux.

In algal fermentation, a non-illuminated part of fermentor, i.e.

dark region which is in the center of the vessel, frequently exists.

This dark region could affect the growth rate; that is, the specific

growth rate may vary with position. The respiration process in the

dark region could affect the energetic yield and the maintenance coeffi-

cient. The respiration process, which means that the carbohydrates in

the cell are consumed by using oxygen to produce carbon dioxide, results

in a loss of energy because of the need for this energy for maintenance

processes. Ryther [34] made a hypothesis that the ratio of photosynthesis

to respiration is 10:1 at light saturation, and that respiration assumed

a value of 0.1 relative to maximum photosynthesis because it is not

possible to measure the ratio directly in natural populations. Livansky

[35] also found that the rate of photosynthesis in algal cells depended

on the volume of light and dark region and retention time in these

regions. Livansky developed a relationship between growth rate and

ratio of non-illuminated volume to total volume. The fraction of volume

in the dark region affects the energetic yield. As the ratio of dark

region volume is increased, the maintenance coefficient also increased.

If the dark volume is controlled, the actual growth rate can be estimated

from the equation that Livansky [47] developed. Van Liere, Loagman

and Mur [36] stated that the light distribution in the fermenter could

be modeled using mean light irradiance at low cell concentrations.

Van Liere et_ al_ [36] worked with continuous culture at several specific
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growth rates with cell concentrations up to 40 rag/1 . Under these

conditions the specific growth rate is the same at all points in the

fermentor.

Lee and Pirt [37] developed a theory to predict the growth rate of

photosynthetic microbes in a photobiological reactor with light-sufficient

zones and dark zones. The theory predicts that in light-limited cultures

the maintenance energy will increase in proportion to the duration of

the dark period. Therefore Lee and Pirt [37] found that the maintenance

energy was close to zero in the light, but endogenous metabolism of rest-

ing cells in the dark corresponded to a large maintenance energy of about

8.8 kJ (g dry wt)~ h" . They pointed out the significance of these

results for the design of photobiological reactors.

At very high light intensities, the growth of algae are inhibited.

For example, when algae are cultivated outdoors, i.e. in full sun light,

the growth yield is much lower than when cultured inside. Even though

there are many possible explanations for this, photorespiration, which

is defined as the light-dependent, oxygen sensitive, CO, evolution in

photosynthetic tissues under high light intensities, originating from

the metabolism of glycolate, is mostly accepted. Therefore these results

may be generally interpreted as light-induced inhibition due to photo-

respiration. Stewart [3B] and Graham [39] explained the mechanism of

photorespiration in algae. They showed the evidence of existing photo-

respiration and inhibitory effect on cell growth. However, Lloyd, Canvin,

and Culver [40] reported that photorespiration and formation of glycolate

did not exist and dissolved oxygen concentration did not affect apparent

photosynthesis in cultivation of several species of fresh water and marine

algae. This result is very contradictory to other results. The existence
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and effect of photorespi ration should be studied further.

Temperature in culturing algae is also an important factor in

terms of energetic yield. Livansky [41] found that the growth rate

increased with the intensity of illumination and temperature of the sus-

pension to a maximum and then decreased with further increase of temper-

ature. Oorschot [29] observed that the chlorophyll content of the

inoculum depended on the temperature, at which the algae had been pre-

cultured. Lowest contents were observed at 20°C, while at 40°C somewhat

lower contents than at 30°C occurred. Planktonic blue-green algae are

widely supposed to have a preference for higher water temperature, but

this view is probably an erroneous one based upon the remarkable occurrence

of thermophiles thriving in hot-water springs, according to Castenholz

[42]. Temperature optima for some of the algae species are much lower,

probably in the range 25-35°C. Anabaena flos-aquae began to grow above

5
C
C, producing its most rapid rate of increase between 10 and 15°C.

Microcystis aeruginosa , however, had a wider temperature tolerance,

but its increase was most prolific at about 17-1 8°C. Microcystis did not

appear in abundance until the surface temperature had exceeded 15°C, but

it is now believed that this temperature is significant only in that its

attainment coincides roughly with the onset of thermal stratification.

This sort of criticism can be levelled at all correlations between tem-

perature and the time at which populations appear. There is an obvious

need for the investigation of temperature optima of specific blue-green

algae under controlled conditions.
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4. Influence of C0
2

and CL Concentration on Photosynthesis

In spite of the important roles of C0
2

and CL in photosynthesis,

present understanding of the influence of the partial pressure of these

gases on photosynthesis is still poor. Warburg [43] first reported that

increasing the
2

partial pressure above 0.02 atm reversibly inhibited

photosynthesis as measured by 0- evolution by resting, that is, non-growing

algal cell suspension over a 30 min. period. Bjorkman [44] found with

chlorella that there was no measurable inhibition of C0
2

fixation by 0,,.

Myers [45] also observed algal photosynthesis is inhibited by an increase

in C0
2

partial pressure above 0.05 atm. In addition, C0
2

has been

reported as antagonizing the Warburg effect, although this effect seems

highly variable. Ogawa et_ aj_ [51] observed the effect of oxygen on

growth yield of chlorella . The result was that in the light-limited

environment, the algal specific growth rate deteriorated appreciably

with the increase of partial pressure of oxygen.

Pirt and Pirt [46] considered the fact that C0
2

and
2

are dominant

components in the material balance for photosynthesis. They reported

that algal growth was inhibited by a step change in
2

or C0
2

partial

pressure of more than about 0.1 atm; however, the cells could be readily

adapted to much larger changes in these gases provided the change is made

in small steps. The constancy of the maximum growth yield and maintenance

energy with an increase in the 0, partial pressure to 0.8 atm indicates

that chlorella does not contain any metabolic site which is made

inefficient by oxidation at high
2

partial pressures.

The required quantities of inorganic carbon for algal growth are

more difficult to estimate compared to those of nitrogen and phosphorous.

Even though the actual quantities of organic carbon produced via
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photosynthesis can be calculated in the same manner as for nitrogen and

phosphorous, according to Goldman et a_l_ [47], the total amount of inorgan-

ic carbon to be supplied is much more difficult to calculate because

inorganic carbon is distributed among the chemical species CO, (aqueous),

-2
H,C0,, HCO,, and CO, in an exceedingly complex chemical equilibrium

system which is controlled by two parameters, alkalinity and pH. Also

Myers [48] pointed out the complexity of effects of CO-, that is, the

carbon dioxide pressure at the surface of the algal' cell can never be as

great as that in equilibrium with the gas phase since a diffusion

gradient must always exist. Goldman et a]_ [47] compared the growth effect

between HCO, alkalinity and bubbled CO, as carbon sources. The results

were that HCO, alkalinity was an excellent source of inorganic carbon

below specific pH levels, but chemical precipitation at high pH placed

an upper limit on productivity that was far lower than potential light-

limiting levels. Also another factor for explaining lower efficiency

by using HCO^ is that it is conceivable that ATP is consumed in uptake

of CO, from HCO, at a higher pH value. Therefore, a full understanding

-2
of the complex interactions in the aqueous CO, - HCO, - CO, system

and photosynthetic assimilation of inorganic carbon is necessary to avoid

undue wastage of CO,. Also Goldman et al_ [49] observed urea is, by far,

the most suitable N source for maximizing algal yield when it is supplied

in combination with the proper amount of HCOl alkalinity in the growth

medium and percent CO, in the bubbled gas that will lead to an equili-

brium pH near the optimum pH. Finally, Goldman et al_ [49] concluded

that the most effective way to supply inorganic carbon in excess to

intensive and continuous microalgal culture was to bubble air enriched

with CO, into the growth chamber. Briggs and Whittingham [50] considered



2-17

the buffer effect by using four strains of chlorella grown in the

customary way in 43! carbon dioxide. The rate of photosynthesis in

carbonate-bicarbonate buffer solution of low carbon dioxide concentration

(0.9 x 10" mole/A) increased four-to-five fold during 2 hr. of high

illumination (40,0001ux) in contrast with a relatively constant rate in

a buffer of high carbon dioxide concentration (78.7 x 10 mole/il).

5. Summary of Experimental Methods

A. Culture conditions and methods.

It is very difficult to find studies which describe values of specific

growth rate observed under well-defined growth conditions with respect

to given microorganisms, even though numerous references on microbial

photosynthesis have been published. The well-defined conditions should

include not only the composition of the culture medium, temperature, and

pH of the medium, but also the light source, incident light intensity,

size of the bio-photoreactor, and the variation of light intensity with

position in the reactor. The light source and measurement methods will

be discussed in the next section. The size of the bio-reactor is a very

important factor because of the variation of light intensity with position.

Little attention has been given to the design of the photoreactor where

growth occurs. Few papers have reported fermentation in pilot scale

equipment [52,53].

Culture conditions for some species of blue-green, green algae and

photosynthetic bacteria are summarized by Aiba [54]. Most of those data

are taken in light-limited, continuous cultures either in chemostat or

in turbidostat, which have great advantage of being controlled easily

to get the best culture condition. Aiba tried to show the specific
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growth rate as affected by incident light intensity, temperature and

pH, by demonstrating specific growth rate and culture conditions, but it

is hard to estimate growth kinetics parameters from his data. His

summary gives a sectional view on the microbial growth despite the

essential difficulty to handle consistently different divisions, genera

and species of the photosynthetic microorganisms.

Outdoor cultivation also should be carefully investigated. Up to

now, several workers [55,56] presented their results from outdoor

cultivation which have lower efficiency than indoor cultivation. Because

the intensity of sun light is difficult to control for optimized cell

growth in outdoor cultivation, sometimes photorespiration is important.

In experimental design for photosynthesis, it should be well under-

stood that appropriate attention needs to be given to the kind of

cultivation, size and shape of fermentor, indoor or outdoor light conditions,

dissolved nutrient culture conditions, and measurement methods for

estimating growth parameters and light intensity. Among those factors,

measurement of the light intensity and dissolved CCL concentration are

very important, but not studied very well because light intensity varies

with position and both are difficult to be measured. The experimental

methods will be summarized in the following sections.

B. Determination of light intensity.

In many older investigations, the influence of light intensity on

photosynthesis was studied by illuminating the plants with "white light"

(of the sun, or of an incandescent lamp) and introducing gray filters,

or altering the distance between light source and plant. Other observers

determined the intensity of illumination by visual comparison with a
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standard light source. The light source varies from sun light to many

different lamps. The characteristics of sun light including maximum

and minimum illumination [57] and incandescent lamps [58] are reported

by several workers. Of the common photometric devices, only thermoelements

and bolometers react uniformly to radiation of all wave lengths. All

other instruments — vacuum photocells, barrier layer cells, actinometers -

possess a selective spectral sensitivity. Some investigators [54,57]

suggested that instruments insensitive to infrared light, e.g., selenium

barrier layer cells should be used in preference to thermophiles or

bolometers in the measurement of light intensity, in order to avoid

measuring the infrared contribution together with visible light. Warburg

and Schocken [59] have developed an actinometer based on Gaffron's

earlier observations in Warburg's laboratory of sensitized autoxidation

of allyl thiourea. Thiourea was substituted for ally! thiourea as

oxidation substrate, and pyridine for acetone as solvent; it was found

that, with ethyl chlorophyllide (or protoporphyrin) as sensitizer, a

quantum yield equal to 1.0+0.1 (molecules oxygen consumed per quantum

absorbed) can be obtained over a considerable range of wave lengths

and intensities. The convenience of this actinometer is the possibility

of using it in conjunction with Warburg reaction vessels in a manometric

system. Recently the intensity of light has been measured with a photo-

cell illuminometer or photodiode, and light energy with a temperature-

compensating thermopile [54].

Aiba [54] showed evidence that the accurate measurement of light

energy absorbed by a dilute suspension of photosynthetic microorganisms

in liquid medium, while minimizing the shading effect, is a prerequisite

to useful data for estimating the efficiency of light energy conversion
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to a cell material. Aiba described several ways of measuring light

energy, such as the opalescent plate method, the method of using inte-

grating sphere photometer, and chemical actinometer. The opalescent

plate method is highly recommendable, in terms of measuring light

energy which passes through the medium; this measurement gives the

light energy actually absorbed by the microbial cells. Some workers

measured light intensity only at the surface of the fermentor assuming

all of it is absorbed. The estimated energetic yield in terms of the

energy in the cells divided by the absorbed light energy will depend on

how the absorbed light energy is measured if not all energy is absorbed

by the cells. The assumption that the light energy absorption is the

same throughout the fermentor is frequently made. Most researchers

use this assumption for simplifying the analysis, but this problem needs

further study. It is important to know what the distribution of light

intensity is in the culture vessel for calculating the exact energy

absorbed by the cells. This is true when studying the effects of other

factors since the light levels should then be neither inhibiting at the

surface nor limiting. Van Liere and Walsby [60] measured the light-

irradiance profile and from this calculated mean light irradiance in a

culture. Also, they designed a system for measuring mean light intensity.

C. Measurement of CO- consumption and 0„ evolution.

In measuring COp consumption or o evolution, direct measurement

of the gas phase concentrations or partial pressures is routinely done

using infrared CO2 analyzers and paramagnetic oxygen analyzers. Another

useful way which was used by Myers [61] is gas chromatography. The

results with this method are also quite reliable. However, the dissolved
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inorganic carbon is very much affected by the pH of the medium and the

quantity dissolved in the medium is large compared to
?

. One should

not neglect the carbon dissolved in the liquid broth in any dynamic

study of photosynthesis. Van Beusekom et al_ [62] reported a method

for the determination of dissolved carbon dioxide as a function of pH

and flow rate. Also Barford and Hall [63] showed a good way of deter-

mining COp in the media and cells. Therefore, the measured values from

the gas phase analysis should be combined with liquid phase measurements

for dynamic processes.

Rabinowitch [57] described methods of measuring oxygen evolution

by different chemical or physicochemical methods, either in the liquid

phase containing the aquatic plants, or in the gas phase. Because of

the low solubility of oxygen in water, methods of the potentiometric

determination of the oxygen concentration in solution are suitable

only for the measurement of small effects, e.g., for the observation of

the photosynthetic activity in the first minutes of illumination. When

oxygen production is measured during batch or continuous culture, it is

common to neglect the accumulation of oxygen dissolved in the liquid

phase.
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UTILIZATION OF ALGAE AS A FOOD

Unicellular algae have been used as food since ancient times in

some regions of Africa and Mexico [74]. Also nutritional studies' carried

out by the Institut Francis du Petrole (IFP) showed that Spirulina

is one of the richest protein sources ever found. Clement, Ginney and

Menzi [64] pointed out too that the use of microalgae for human and

animal food predates history. Floating microalgae are sometimes concen-

trated by the actions of wind or current along the shores of lakes and

streams, sufficiently to permit manual collection and use for food and

animal feed. According to Faron [65], a Spanish historian, who accompanied

Cortez through the street of the Aztec island city of Tenochititlan,

wrote of the sale of 'loaves' of a cheeselike material made from a 'slime'

collected from nearby Lake Texcoco, near where the blue-green algae

Spirulina grows and is harvested today. According to Gross et al_ [66],

Nostoc , another blue-green algae, which forms pea size round modules

in water, is reportedly eaten by inhabitants of Northern Thailand and in

the Peruvian Andes. Seaweeds are uni- or multi-cellular organisms like

plankton that grow in the sea. Seaweeds are also more important

economically than is generally realized, since they are used as human

and animal food, in medicine and agriculture, and as a source of raw

materials for numerous industries [72].

More than three decades ago, Spoehr and Milner [67], following

extensive experiments, suggested the mass culturing of algae as a

potential solution to the world protein shortage. Microalgae, in common

with all other plants, are comprised of protein, carbohydrate, lipids,

fiber, and minerals but, unlike most higher plants, are especially rich
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in protein. According to Nguyen, Kosaric, and Bergougnou [68], the

composition of protein, carbohydrate, fat, moisture, and ash is 63.1%,

16.6%, 1.0% and 13.9% respectively. Moreover, the yield of protein

recovery from intact cells was about 66%, which is higher value than any

other organism. Clement et aj_ [64] analyzed the amino acid composition

of algal protein for nutritional value, and found all the essential

amino acids were contained in fairly good amount except that the amounts.

of the sulphur amino acids, such as cystein and methionine, were low.

However, fortunately lysine, tryptophan, and tyrosine, which are sufficient

in algal protein, are insufficient in many food products; if food

products are supplemented with algal protein, the deficiency of these

essential amino acid would be overcome.

For digestibility tests, rats were fed with algal protein and casein

[64], and the results (the gain of diet animal weight was measured)

showed that there was not much difference between the weight gain of casein

diet rats and that of algal protein diet rats. The nutritive value of

sewage grown Chlorella and Scenedesmus has been demonstrated in feed

trials for poultry, swine, sheep and cattle [69]. These studies suggested

that algae are essentially equivalent in nutrient content and digestibility

to soybean meal, a common protein supplement for livestock feed.

The most notable algal production in the United States is currently

20 to 40 lb/day of sewage grown algae. This is produced at the University

of California, Richmond pilot plant. In contrast, large plants in which

algae are grown to produce oxygen have now reached a size of 200 acres,

producing as much as 10 tons of oxygen/day [70]. The significant progress

toward controlled oxygen production that has been attained over the last

30 years encourages us to believe that, as the need for protein increases,
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waste grown algae will become available, perhaps first simply for

fertilizer, but, as the need arises, for animal feed. Whether algae

production is accomplished in conjunction with or without waste recovery,

and whether it is practiced for direct human or for livestock consumption

its potential for bettering the lot of mankind seems virtually limitless.

It is time, therefore, for industry and government to renew their

interest in microalgae technology and to move toward a period when

palatable animal protein is more plentiful and less expensive than it is

today and when protein itself should no longer be a limiting factor in

the development of mankind.
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CONCLUSIONS

There still is some uncertainty with respect to the true growth yield

for algae, i.e., maximum photosynthetic efficiency because the results of

calculating the maximum efficiency based on the observed biomass production

sometimes are higher than the maximum value of 29% based on the Z-scheme.

The Z-scheme is widely accepted for photosynthesis; in it eight quanta

are necessary for fixing one mole of carbon dioxide and producing one

mole of oxygen. The effect of maintenance energy, which is an important

factor for algal growth, should be considered in estimating true growth

yield. Continuous or turbidostat culture is recommended for investigating

the true growth yield and maintenance energy requirement. Mass and energy

balance equations should be used to check the consistency of the experi-

mental data.

Light intensity, which is a critical factor for growing algae, should

be lower than the saturation intensity. Above this intensity the growth

is inhibited due to photorespiration. Temperature is an important

variable at higher light intensity; the saturation intensity depends

on temperature. High partial pressures of C0~ and
?

have been found

to inhibit cell growth. Several methods of measuring light intensity

are described; however, precise measurement of the light absorbed by

the culture is difficult.

Algae have been shown to be an excellent protein source, single cell

protein (SCP), which has good digestibility and amino acid composition.

However, algae have a problem for use as a human food due to different

taste and texture, which needs to be studied further. Supplementation

with cereal products has been used with better taste and amino acid

composition.
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Much analysis and design work remains to achieve maximum potential

yields in large scale out-door algal cultures. The effect of mixing on

yield and system design should be considered, and other variables for

controlling light utilizing efficiency, such as cell concentration, flow

rate, nutrient concentration and light intensity distribution have to be

optimized. Finally, designs for formation of extracellular products from

algae, and genetic engineering of algae will be long term goals.
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NOMENCLATURE

Qrn Specific rate of carbon dioxide consumption, g mole of
LU

2 C0
2
/g cell/hr.

y Specific growth rate, hr .

5 Specific light energy absorption rate, kcal/g cell/hr.

2
I. Total light energy input, kcal/cm .

a

2
A Total area, cm .

Y., Growth yield, g cell/kcal.

(Y. , )- "True" growth yield.

m Maintenance coefficient, kcal/g cell/hr.

X cell concentration, g/£.

C Efficiency factor, dimensionless.

q Specific rate of light utilization, kcal/g cell/hr.
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Chapter 3

CHARACTERIZATION OF ALGAE USING REGULARITIES
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INTRODUCTION

There is considerable interest in the utilization of solar energy for

microbial photoautotrophic growth of algae because of the long term poten-

tial of photosynthetic processes [1,2,3,4,5]. The regularities of Minkevich

and Eroshin [6,7], which are very useful in the analysis of heterotrophic

growth processes [8,9,10,11], may also be used in the analysis of photo-

autotrophic growth processes [3,12]. In this work, values of the weight

fraction carbon in algal biomass, o
b>

the reductance degree of algal

biomass, Y
b

» and the energy content per equivalent of available electrons,

Q , are reviewed for available literature data. The data in the literature

is divided into that for fresh water algae and that for marine algae

because of the significant difference in ash content.
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ANALYSIS OF DATA

The purpose of this work is to determine the mean and standard

deviation of these regularities for algae and to compare the results with

those for bacteria and yeasts. Values of the regularities for yeast and

bacteria have been examined previously [6,7,13,14]; however, data for

algae have not been summarized using the regularities of Minkevich and

Eroshin [6,7]. Values of the weight fraction carbon in algae are presented

on a dry weight basis and also on an ash free dry weight basis. The

elemental composition is used to calculate the values of the biomass

reductance degree, y,; i.e.,

*C(4) + %H - S0(4>-SN(4)
Y . _J2 li 14_

(1)

for the valences C = 4, H = 1 , = -2, and N = -3. The above formula is

most appropriately used when the nitrogen source has a valence of -3.

For N
2

or nitrate as nitrogen source, a valence of N is employed [3]

and the last term in the numerator of Equation (1) is omitted. Values of

the reductance degree are calculated for both the valences N = -3 and

N 0.
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RESULTS AND DISCUSSION

In Table 1, values of the regularities are presented for the element-

al compositions measured by Ketchum and Redfield [15] for Chlorella

pyrenoidosa and Chlorella vulgaris . The average values of weight fraction

carbon and reductance degree are similar for those regularities. Additional

results for Chlorella species are presented in Tables 2 and 3 for the

data of Wassink et aj_. [16] and Myers [17,18], respectively. In Table 2,

the variation in the weight fraction carbon on an ash-free basis is much

smaller than that obtained with ash included. There is considerable

variation in ash content in the data in Table 2, and this is reflected in

the variation of the values of weight fraction carbon, a
fa

. Comparison

of Tables 1,2 and 3 shows that values of weight fraction carbon on an

ash free basis and reductance degree are very similar for all of the

data with Chlorella .

In Table 4, values for the regularities for Spirulina platensis are

presented based on the data of Aiba and Ogawa [19] and Ogawa and Terui

[20]. The average values for the weight fraction carbon and reductance

degree are slightly lower for S. platensis compared to the values of

Chlorella .

Table 5 summarizes the values of the regularities for other fresh

water algae based on elemental composition measurements in the indicated

references. While the average values of weight fraction carbon and

reductance degree are similar, values of the standard deviation and

coefficient of variation are larger in Table 5 compared to the values in

Tables 1 , 3, and 4.

Table 6 presents values of the regularities from the indicated liter-

ature for marine algae. The ash content is larger in these samples because
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of the higher salinity of the culture broth. Comparison of the results

in Table 6 with the results in Table 1 - 5 shows that the weight fraction

carbon and reductance degree are lower for marine algae. This is clearly

shown in Table 7 where the average values for fresh water algae and marine

algae are compared.

The average values in Table 7 for fresh water algae may be compared

with the average values reported by Minkevich and Eroshin [6,7] of

a
fa

= 0.462 and y, = 4.291 (for the valence N » -3) for bacteria and yeasts.

The weight fraction carbon and reductance degree are about 3% larger for

fresh water algae compared to the average values reported by Minkevich

and Eroshin. The average values in Table 7 for fresh water algae are

slightly smaller than the average values for bacteria of cr. 0.482 and

Yl 4.423 which were reported by Minkevich et a]_. [7].. One can conclude

that average values for fresh water algae are similar to values for yeast

and bacteria grown heterotrophyically. The values of coefficient of

variation reported in Table 7 are similar to those reported for a. and

Yl by Minkevich and Eroshin [6,7].

Tables 8 and 9 present some results obtained under conditions of

nutritional deficiency. In Table 8 nitrogen and phosphorous deficiencies

are considered by examining the data of Ketchum and Redfield [15],

In Table 9, some results from the data of Spoehr and Milner [21] are

presented based on the results of their experiments under a wide variety

of environmental conditions. Nitrogen deficiency appears to be the primary

reason for the significantly larger values of weight fraction carbon and

reductance degree in Table 9. Milner [22] has extracted lipids from the

samples and found that lipid storage is the reason for the greatly

increased values of weight fraction carbon and reductance degree.
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Milner [22] also pointed out that the chlorophyll content varied from

less than 0.01% to 6% in their experiments [21] and that the weight

fraction carbon and reductance degree are not significantly increased

because of changes in chlorophyll content.

Spoehr and Milner [21] show in their work that the reductance degree

varies with the nitrogen concentration in the culture medium (see Fig. 1

of Spoehr and Milner [21]). Spoehr and Milner [21] point out that the

variation of ash content in Table 9 is partly due to the variation in

mineral salt composition and partly due to the yield of cells obtained.

Lower ash contents were found with higher cell yields.

Spoehr and Milner [21] introduced the concept of degree of reduction

in their work. The reductance degree introduced by Minkevich and Eroshin

[6] is a modified form which allows one to appropriately consider the

valence of nitrogen in making calculations.

The energy content per equivalent of available electrons, Q , has

not been measured very much for algae; however, one would expect this

value to be similar to that for other microorganisms. Based on the

experimental results of Pirt et ah [4] and Kok [23], Q = 27.1 and 27.7

kcal/eq. of available electrons, respectively. These values are close

to the average value of 26.95 kcal/eq. reported by Minkevich and Eroshin

[6,7].
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CONCLUSIONS

Based on the results presented in this work, it appears that the

weight fraction carbon in algae and the reductance degree are relatively

constant and that average values may be used as long as the culture is

not nutritionally deficient in nitrogen or phosphorous. Thus, for

light limited growth conditions, the regularities may be used in the

analysis of growth process.
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Chapter 4

ESTIMATION OF YIELD AND MAINTENANCE

PARAMETERS FOR PHOTOAUTOTROPHIC GROWTH
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INTRODUCTION

There is considerable interest in the estimation of growth yield and

maintenance parameters associated with microbial bioenergetics and the

efficiency of growth processes [1-41]. Recently Pirt [11] has reviewed

some of the research with photosynthetic efficiency. The purpose of this

work is to illustrate how some of the methods, which were presented

previously for heterotrophic growth [7,8,12-17], may be applied to photo-

autotrophic growth. The current interest in the growth of algae and photo-

synthetic bacteria is due to the potential of these organisms to produce

renewable chemicals and to convert light energy into useful forms of

chemical energy. Microorganisms have a higher photosynthetic efficiency

than agricultural plants and growth conditions can be more easily controlled.

Many researchers have developed yield expressions for light energy

conversion by photoautotrophic microorganisms [1-5] Pirt [11] has consid-

ered the photosynthetic efficiency to be the ratio of the free energy

of the biomass produced relative to the amount of light energy absorbed.

This concept of photosynthetic efficiency may be used with the true

growth yield and maintenance model of Pirt [1,6,11]. Carbon, available

electron, nitrogen, and energy balances may be used in photoautotrophic

growth to examine data consistency. True growth yield and maintenance

parameters may be estimated using all of the experimentally measurable

variables simultaneously with the covariate adjustment method. In this

work both batch culture and continuous culture data are analyzed.
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THEORY

The yield or efficiency of photoautotropic microbial growth is fre-

quently evaluated in terms of the free energy of the biomass divided by

the light energy absorbed. When ammonia is the nitrogen source, a chem-

ical balance equation may be written as follows:

light

CO, + aNH, + c H,0
ener^—< CH N + b 0, (1)til p n q Z '

where CH N is the composition of these atoms in the microbial biomass.

The method of Minkevich and Eroshin [17] can be used to characterize the

biomass in terms of the weight fraction carbon a. , reductance degree,

Y b
, the energy content per equivalent of available electrons, Q , and the

free energy content per equivalent of available electrons, g. .

Equations to examine the consistency of the experimental data may

be obtained by employing a carbon balance, an available electron balance,

and an energy balance. The carbon balance is simple for this case because

the carbon consumed as carbon dioxide should be equal to the carbon in

the produced biomass when no extracellular products are formed. For

continuous culture with dilution rate, D,

DXc
b

QC0
2

X = IT

or

12 s
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When the valences, C=4, H=l, 0=-2, and N=-3, are used, the available

electron balance can be written as

DXVb

or

where

\ X *

^=1 (3)
48Qn

'
w

u
2

Y
fa

4 + p - 2n - 3q

A steady state energy balance may be written in the form

Total light Energy incorporated + Energy leaving by
energy in into biomass radiation, conduction

and convection

or

FXa
bY bQ n

which may be written as

121 A
+ TT- ]

( 4 >

a 3

or

"kca1
+ e

h * ! (5)

where the first term in Equations (4) and (5) is the biomass energetic

yield and the second term is the fraction of energy which is lost as

heat. The value of the biomass energetic yield
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FXVbQ
o (6)

'kcal 121 A
a

can be estimated directly using microbial biomass and light energy

absorption measurements. Indirect estimates of n may also be obtained.

The available electron balance and oxygen measurements can be used with

light energy absorption measurements to obtain.

\
= ~

T7

—

(7)

The carbon balance and CO- measurements can be used with light energy

absorption measurements to obtain

"c0
2
m

bQ

n
co„

= —

O

( 8 >

c a

If the energy losses from the fermentor, Q, , are measured, these may be

used with microbial biomass measurements

FXa.y Q /12

(9)
Q FXVb%

, n
12 \

Equations (6), (7), (8) and (9) provide four different estimates

of the true growth yield, n. These equations are written in terms of the

enthalpy of the biomass relative to ammonia in aqueous solution, CO,

gas, and H-0 liquid. By substituting the free energy per equivalent of

available electrons, g. , for QQ
, similar expressions can be obtained

based on the free energy of the biomass relative to aqueous ammonia, CO-

gas, and HjO liquid. The values of QQ
and g. are similar in magnitude.
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Minkevich and Eroshin [17] reported a value of 112. 8 kJ/eq. for g. .

Values of -67.1 and -46.0 kJ/mole of carbon in biomass have been estimated

for the free energy of formation of biomass by Roels [26] and Grosz and

Stephanopoulos [40], respectively. These values lead to 113 kJ/eq and

117.6 kJ/eq, respectively, for the free energy relative to aqueous ammonia,

C0
2

gas, and H
?

liquid.

When nitrate is used as the source of nitrogen, energy is required

to convert the nitrogen from the nitrate form to the amino form found in

microbial biomass. The free energy change involved in the chemical reaction

for the formation of biomass (using -46 kcal/C mole for the free energy

of formation of biomass [40])

C0
2
+ a HN0

3
+ cH

2
CH ON + b0

2
(10)

is 557.8 kJ/C mole compared to 559.1 kJ/C mole for the case where aqueous

HN0
3

is replaced by N
2

as the nitrogen source. For nitrate as the nitrogen

source, it is convenient to consider the free energy and enthalpy relative

to C0
2

gas, H
2

liquid, and N
2

gas because the free energy and enthalpy

changes in going from aqueous HN0
3

to N
2

and H
2

are very small. In

addition the enthalpy becomes that associated with the standard heat of

combustion. The average values of Minkevich and Eroshin of p » 1.776,

n = 0.495 and q = 0.165 are used in the formula for biomass, CH N ;

p n q

thus, Y 4.291 for the valences C»4, H-l , 0=-2, and N=-3, and

Y
b

4.786 for C-4, H=l , 0=-2, and N=0. This gives

% = ¥m = "6.8kJ/eq

for the valence N=0; using Roels' [26] value of -67.1 kJ/C mole for the
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free energy of formation of biomass gives g. 112.4 kj/eq. for N=0.

The values for Q„ and g. are relatively constant and similar for both

the valences N=-3 and N=0.

The carbon balance is not affected by the choice of the nitrogen

source as long as inorganic nitrogen sources which are free of carbon

are selected. Thus, Equation (2) remains valid as the carbon balance

associated with Equation (10).

The available electron balance for Equation (1) based on the valences

C«4, H=l, 0=-2, and N=0 is

-5a » y. - 4b

or

Y b
+ 5a = 4b (11)

where a=q in Equation (10). If the nitrate consumption is measured, this

information may be used in Equation (11); however, when nitrogen consump-

tion is not measured, the elemental composition of the microbial biomass

may be used to estimate q for use in Equation (11).

For continuous culture, Equation (11) may be written in the form

DXVa.Yu 5oDXVo,
40 XV = — +_ 2.4W

2

M
12 T2

^!b
+ !^=! (1 2)48%

2

48%
( '

Equation (12) is the available electron balance when nitrate is the nitrogen

source. The second term accounts for the available electrons required to
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convert nitrate to elemental nitrogen.

The energy balance as presented in Equations (4) and (5) may also

be used when nitrate is the source of nitrogen provided that the valences

C=4, H=l, 0=-2, and N=0 are used to obtain the value of y..

For nitrate as the nitrogen source, Equations (6), (8) and (9) may be

used to estimate n provided the valence N=0 is used in estimating Yu-

Equation (7) must be modified because of the modified available electron

balance. Equations (6) and (12) may be combined to obtain

(48Q
Q

XV - 5qDXVc
b
)Q

n
o,

=
rrr-j < 13 >

<- a

For urea as a source of nitrogen and carbon, the chemical balance

equation is of the form

a N,H.C0 + cH,0 + d CO, CH N + b 0,£4 c L pnq 2

and the carbon balance becomes

a + d = 1.0

From the nitrogen balance, we have an expression which may be used to

estimate urea consumption when it is not measured directly. The nitrogen

balance is

2a = q

In continuous culture, per unit of liquid volume the carbon balance is

DXa.q DXa.

2T~ W
C0

2

K ' ~VT
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q +
12Q

co2 .
,

....

2 Do u ' < 15 >

The appropriate valence for nitrogen is N=-3 when urea is the nitrogen

source; energetically aqueous urea is approximately equivalent to aqueous

arrmonia and C0
2

gas. Equation (8) becomes

DXVaqy Q—sr° +VVy
"
Q
°

n
co;

=
rs
—

—

( 16 >

L di

when urea is used.
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ESTIMATION OF YIELD AND MAINTENANCE PARAMETERS

The model of Pirt [1,6] may be used to estimate the true growth

yield, n , and the mainteanance coefficient, m , based on experimental

yield measurements at several different specific growth rates. This model

may be written in the form

M

m + —— + error (17)
n
kcal i

e nmax

u
i . - ,

v
i

Y
2i

= = m + —i- + error (18)" n

2
i

e nmax

31 n
C0

2
i

'
e

"max

"1
,

"1

m + + error

^ = ^ =
"*

+W + err° r (20)

where i = 1, ..., n are the n specific growth rates investigated. Two

forms of Equations (17) - (20) may be used for parameter estimation. In

this paper, Equations (17) - (20) are referred to as Form II.

Form I is obtained by dividing each term by y. Equations (17) - (20)

may each be used individually for parameter estimation. An average of

the responses may also be used; that is, let

however, then the information in the responses may not be efficiently

utilized. A set of covariates, Z^,..., Z . (1 < q <_3), which are
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linear combinations of the four dependent variables, may be added to

obtain a conditional model (conditional on Z,.,...,Z •)

"l 1
Y ,•

" m „ + —— + Z a,, Z., + error, i=l,2,...,n (22)

max K=l

The covariates should be linearly independent and have zero expected

value; for example, a full set of covariates is

Z
li

" Y
li

+ Y
2i

" Y
3i

* Y
4i

Z
2i

" Y
li

+ 3Y
2i

" Y
3i

" 3Y
4i

Z
3

. - -Y„ 3Y
2i

- 3Y
3i

t Y
4i

Methods to efficiently select convariates and to evaluate the reuslts

of including one, two, or three covariates are described elsehwere [7,

20,33]. When the maximum number of covariates is included, the maximum

likelihood estimate (M.L.E.) is obtained based on all available measure-

ments. Frequently, the estimates with the shortest confidence intervals

are obtained when only one or two covariates are included [7,33].



4-n

BATCH CULTIVATION

The results of batch growth nay also be used to estimate the growth

yield. When the growth process is energy limited, a region of linear

growth is frequently observed where cell mass increases linearly with time.

If the growth rate (dX/dt) is constant for a period of time, the slope

may be used to estimate the growth yield in the equation

. <dT>VbQo
^kcal 121 A (23)

a

In this region of linear growth, the biomass concentration increases while

the specific growth rate decreases. The true growth yield, "
max . may

be larger than n, but the linear region indicates that n is relatively

constant and that the growth yield, r,, is a reasonable approximation of

the true growth yield, n_,„.max

Other estimates of the growth yield, n, may be obtained by following

the CO- consumption, oxygen production, and heat generation; that is,

Equation (8) may be used to estimate the growth yield in the region where

the rate of CO- consumption, Q-n
X, is constant. When the 0- production

rate, Qn X, is constant, the growth yield may be used with nitrate provided
u
2

the slope of the batch curve dX/dt is used in place of DX in Equation (13).

Similarly,

_ f vv bV 12
....

dX
VVbQ

dt 12 '

w
h

+ Q,

may be obtained from data in the region where the growth rate and heat

evolution rate are constant.
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As batch growth continues, a region is encountered in which the

growth rate decreases and then approaches zero. The stationary phase

where dX/dt = may be used to estimate the maintenance coefficient,

m , where

121 A
a

This estimate of the maintenance coefficient often exceeds the actual

value because the stationary condition may be due to reasons other than

energy limitation. That is, only a portion of the energy may be required

for maintenance purposes.

In the process of estimating the parameters from the batch experimental

data, the average values of a. » 0.462 and Q * 25.95 kcal/eq. of

available electrons have been used. When the nitrogen source has a valence

N -3, y^ » 4.291 has been used; when N~ or nitrate is used as a nitrogen

source, y, = 4.773 has been used.
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RESULTS AND DISCUSSION

The experimental data of Aiba and Ogawa [2,3] from continuous

culture of Spirulina platensis is shown in Table 1. These investigators

measured dilution rate, liquid volume, cell dry weight, carbon dioxide

consumption rate, and light energy absorption at several different

dilution rates. The biomass energetic yield is estimated in Table 1

using Equation (6) with biomass concentration, light energy absorption

and dilution rate measurements to obtain n. , and using Equation (3)

with CO- consumption and light energy absorption measurements to calculate

nco
The last column in Table 1 is a measure of the consistency of the

experimental data as measured using the carbon balance, Equation (2). The

consistency of the data appears to be better at higher dilution rates.

The values of the weight fraction carbon, o
b

and the reductance degree,

Y
b

. which are used in Tables 1 and 2 are based on the biomass elemental

compositions reported by Aiba and Ogawa [2,3]. The valance, N=0, is

used to estimate y. because nitrate was used as the source of nitrogen.

Table 2 contains the estimates of the true biomass energetic yield,

nmax'
and ttle malnterlance coefficient, m , for the data of Aiba and Ogawa

[2,3] which is presented in Table I. Results are presented for both

Form land Form II of Equations (17) and (19). The point and 95% confidence

interval estimates, which are presented in Table 2, include some negative

values; however, only positive values are physically possible. Thus, the

interval of interest is limited to values greater than zero.

The covariate adjustment method with Equations (21) and (22) for

this data set involves at most one covariate because only Equations (17)

and (19) may be used with the available data. The average results, which
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are obtained when no covariates are included in Equation (22), gave better

estimates than when one covariate was included. This appears to be partly

due to the limited number of dilution rates where were considered and the

undesirability of introducing a third unknown parameter when so few

data points are being analyzed. The 95% confidence intervals for the case

where all of the data are utilized appear to be very realistic; that is,

one would expect 0.071 £ n <_ 0.29 and <_ m < 0.18. In Table 2,

the confidence intervals are large because of the small number of data

points. The shortest 95% confidence intervals for n_=v are obtained when
max

Form 2 is used while the shortest interval estimates for m are obtained
e

with Form I.

Point and 95% confidence interval estimates for the true biomass

energetic yield, n__u , and the maintenance coefficient, m . are presented
max e

for the data of Pirt et al_. [1] in Table 3. The results presented by

Pirt et al_. [1] are compared to estimates which are obtained using their

data and the average values of the regularities (a. 0.462, y. = 4.291,

and Q = 26.95 kcal/eq. of available elections) for urea as nitrogen

source (N=-3). Pirt et al_. [1] reported that o
b

= 0.486, that the

elemental biomass composition was CH,
8 Q 430^0 143 (Yh " 4-51) and that

the heat of combustion was 22.7 kj/g dry weight.

The true growth yield estimates of Pirt are larger than one would

expect based on the experimental evidence that the maximum value of nmax

should be about 0.29 [11,22,23,24]. Recalculation of Pirt's data using

the average values of the regularities still results in a 95% confidence

interval for nmax
which exceeds the widely accepted maximum value of 0.29

for the entire interval when mixed cultures are considered.
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The true growth yield estimates with mixed cultures are higher than

for Chlorella by itself. The symbiotic growth of bacteria and algae

may be a promising method for converting solar energy to chemical energy

[25].

• The experimental results of Myers [5,35] with Chlorella pyrenoidosa

in continuous culture are analyzed in Tables 4 and 5. Myers measured

dilution rate, cell dry weight, oxygen production, carbon dioxide con-

sumption, and incident light energy. The carbon and available electron

balances are used in Table 4 to check the consistency of the experimental

data. For the first eleven data points in Table 4, nitrate was the

nitrogen source; for the last two data points, urea was the nitrogen

source. The appropriate available electron balance, Equation (12)

with nitrate and Equation (3) with urea, was used to check the consistency

of the data. For the consistency check using the carbon balance, Equation

(2) was used with the nitrate data, and Equation (15) was used with the

urea data. The consistency analysis of the experimental data shows that

for all cases the carbon and available electron content of the biomass

is less than that estimated from C0
2

and oxygen measurements. If one

compares the carbon balance results with those in Table 1, the same

trend is observed because the measured CO- consumption exceeds the carbon

incorporated into biomass for all except one of the data points in

Table 1.

Values of the biomass energetic yield are estimated in Table 4

from the available measured values at each dilution rate. For nitrate as

the nitrogen source, the valence N = was used, and thus, y. = 4.849

and o
b

0.4870 based on Myers data [5,35]. Values of the biomass energetic

yield in Table 4 are in good agreement with the values reported by Myers
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[5,35].

Table 5 shows the results of parameter estimation using the data

in Table 4 together with the covariate adjustment method to obtain point

and 95% confidence interval estimates for the true growth yield, n ,

max

and the maintenance coefficient, m . The maximum liklihood estimate

(MLE) is obtained by including two covariates in Equation (22). Results

are also shown in Table 5 for the cases where each of the covariates is

included separately. The average value is the result obtained when all

data are analyzed and no covariates are included. The point and interval

estimates for the true growth yield, n , are in good agreement; that

is, the results with Form I and Form II are similar and the effect of

including covariates appears to be relatively small. When covariate

adjustment is used here, all of the point estimates are within all of

the 95% confidence intervals irrespective of the form and the number of

covariates included.

The results of analysis using each data set individually is also

shown in Table 1. The point estimates of n vary from 0.1405 to 0.1778

in this portion of the table. There is also greater variation in the

estimates of the maintenance coefficient when the individual data sets

are analyzed.

The results for Form II are shown graphically in Figure 1. Curve A

is the maximum likelihood estimate when two covariates are included;

Curve B is the average of the three individual estimates which is

obtained when no covariates are included in Equation (22); Curve C is

the individual estimate based on biomass and light measurements. The

results for Form II appear to be better than those in Form I in that the

point estimates of m are positive when Form II is used.
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Table 6 contains the results of estimating the growth yield and

maintenance parameters from the batch culture data of Winokur [9].

Equation (23) is used to estimate the growth yield, n> and Equation (25)

is used to estimate the maintenance coefficient, m . The estimates of the

maintenance coefficient may be significantly larger than the actual value

if batch growth stopped for reasons other than energy limitation.

The effect of agitation is shown in Table 6; significantly larger

growth yields are observed when the culture is agitated. The maintenance

coefficients are smaller if agitation is used. These results indicate

that more of the light energy reaches the locations where it can be

effectively utilized when the culture is agitated. The results show

that the growth yield is higher for a light intensity of 200 meter candles

than it is for 6000 meter candles. This suggests that some of the light

energy is not effectively used at the higher light intensity even when

the culture is agitated. The estimated value for the maintenance

coefficient is generally smaller for a light intensity of 2000 meter candles

than it is for 6000; this result also suggests that the distribution

of light is less efficient at the higher intensity.

Some other growth yields from batch culture studies are presented

In table 7. The results of Kosaric and coworkers [10] with Spirulina

maxima show that much larger yields are obtained with synthetic media

as compared to those obtained using the effluent from secondary municipal

wastewater treatment. The limited quantity of nitrogen in the effluent

from secondary treatment appeared to limit growth of the algae. Batch

cultivation under conditions where the nitrogen supply was exhausted

also gave a yield of about n
= 0.1 in the work of Leduy and Therien [37]

which was carried out in an annular pilot scale reactor. In steady

state continuous culture, the growth yield was found to be 0.15 and 0.17
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at dilution rates of 0.24 day" and 0.54 day" respectively.

The effect of mixing was also investigated by Persoone and coworkers

[32] who used airlift pumps when they cultured Chlorella saccharophila

in 100 liter tanks containing sea water and culture medium. While the

yields are relatively small in this work, it is clear that yields are

larger under conditions of better mixing.

Analysis of the results of Allen and Arnon [36] for the growth of

Anabaena cylindrica indicates that growth yields (n) are relatively high

under good nutritional conditions. (See Table 7). This research was

carried out with 5% C0
2

in air passing over 250 ma of liquid in Roux

bottles on an illuminated shaker. Pirt et a]_. [1] also used C0
2

in air in

their research with high growth yields. Allen and Arnon [36] clearly show

that mineral limitations can be very important in algal growth and that

calcium is essential for growth.

Ogawa and Terui [38] cultured Spirulina platensis in Roux bottles

using aeration to provide agitation. Analysis of their batch culture

results (See Table 7) shows that the growth yield, n, is in relatively

good agreement with the true growth yield, n , from the data of Aiba

and Ogawa [2,3] which is reported in Table II.

Table 8 contains a summary of continuous culture yields for photo-

autotrophic microbial growth. In these studies the maintenance coefficient

appears to be larger when the true growth yield is smaller. This may be

because of experimental designs in which some of the light energy is not

effectively utilized. The yield of outdoor cultivation is much smaller

than that of indoor cultivation.

The results in Tables 6 and 7 and the results of Prokop and Ricica

[41] in Table 8 depend on the value of the conversion factor used to
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convert luminous light intensity to radiant energy. The conversion

factor at maximum luminescence at 550 nm (680 lumens/watt) was used

where it was necessary to convert luminous measurements to energetic

measurements. Since there is not sufficient wavelength information to

estimate the correct value, the parameter values reported should only be

used to appreciate the relative effects of nutritional and operational

conditions. Since the actual conversion factor will be less than 680

lumens/watt, the actual values of growth yield in Tables 6 and 7 and for

Prokop and Ricica [41] in Table 8 will be smaller than those presented.

Some values of the true growth yield exceed the maximum value of

about 0.29 associated with the widely accepted Z-scheme of photosynthesis

[11, 22]. In Tables 6 and 7 and for the data of Prokop and Ricica [41]

in Table 8, this may be due to the fact that luminous intensity was

measured and reported, and that no accurate estimate of radiant energy is

available. It appears consistency of the data can be examined in order

to obtain more reliable estimates of the true growth yield and maintenance

coefficient. The measurement of light energy with a non-selective

detector should be included in future work. It may also be desirable to

use selective detectors and instruments which measure luminous intensity;

however, for estimating the photosynthetic efficiency, it is important

to know the light energy which enters the photoreactor.
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CONCLUSIONS

Methods are presented for examining the consistency of experimental

measurements associated with the estimation of yield and maintenance

parameters for photoautotrophic growth. The covariate adjustment method

is used to estimate true growth yield and maintenance parameters for

photoautotrophic growth. Values of true growth yield and maintenance

parameters are presented for several sets of literature data. Values of

the true growth yield appear to depend on mixing intensity, availability

of nutrients, incident light intensity, and the geometry of the fermentor.
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NOMENCLATURE

A Surface area, cm

a Stoichiometric coefficient

b Stoichiometric coefficient

c Stoichiometric coefficient

D Dilution rate, time"

F Volumetric flow rate, liters/hr

g b
Free energy of biomass per equivalent of available electrons

2
1 Intensity of light, kcal/cm (hr)
a

m_ Maintenance coefficient, time"
e

Q
rf)

Specific consumption rate of CO., g moles C0-/g cell (hr)

Q, Rate of energy loss from fermentor, kcal/hr

Q Energy of biomass per equivalent of available electrons

QQ
Specific rate of production of 0~,g moles 0„/g cell (hr)

V Liquid volume, liters

X Biomass concentration, g/liter

Y Response function; see Equations (17-21)

2 Covariate in Equation (22)

a Coefficient in Equation (22)

y. Reductance degree of biomass, equivalents of available
electrons per g atom carbon

'CO
Biomass energetic yield based on CO- and light measurements

n. =1 Biomass energetic yield based on biomass and light measurements
Kca i

nm=,„
~
rue growth energetic yield parameter, dimensionless

max

nn Biomass energetic yield based on oxygen and light measurements
u
2

ng Biomass energetic yield based on biomass and energy measurements

u Specific growth rate, time"

ch Weight fraction carbon in biomass
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Table 1. Experimental results, biomass energetic yields, and results of
data consistency analysis with carbon balance for data of Aiba
and Ogawa [2,3] for Spirulina platensis .

Dilution Cell dry Qrn Intensity 12 0..
Rate Weight

LU
2 .3 C0

2

D Ihr'h X^ 3-) m mole
X
a

x IU
, Val n

C0, Da,lnr
' g-cell • hr (kcal/an hr)

2 b

0.014 0.272 0.768 1.5 0.0721 0.0900 1.25

0.022 0.246 1.88 1.44 0.101 0.130 1.29

0.023 0.177 ... 1.25 0.0917 ... --

0.029 0.169 1.38 1.21 0.108 0.125 1.15

0.034 0.122 1.48 1.05 0.105 0.111 1.05

0.038 0.057 1.62 0.61 0.0982 0.0978 0.996
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Table 6. Estimjites of the growth energetic yield, n, and the maintenance
coefficients, m .

, from the batch culture data of
: Winokur [9].

Light Ag itation Growth Maintenance
Organism Intensity, of Yield, Coefficient

Meter Candles Cu Iture
m
e

. day"

Chlorella 6000 Yes 0.1745 0.3024
vulgaris 6000 No 0.0083 0.6755
var. viridis 2000 Yes 0.1548 0.2452

700 Yes 0.0610 0.2889

Chlorella 6000 Yes 0.1129 0.4389
pyrenoidosa 6000 No 0.0846 0.6108

2000 Yes 0.1522 0.2988
700 Yes 0.0702 0.3710

Chlorella 6000 Yes 0.0909 0.3953
luteoviridis 6000 No 0.0440 1.0610

2000 Yes 0.1200 0.2239
700 Yes 0.0469 0.2548

Chlorella 6000 Yes 0.0875 0.4956
saccharophila 6000 No 0.0732 0.8783

2000 Yes 0.1048 0.4862

Chlorella 6000 Yes 0.0794 0.3762
luteoviridis 6000 No 0.0458 1.010
var. lutescens 2000 res 0.1182 0.2480

700 Yes 0.0518 0.1425

Nitrogen source is nitrate; a, = 0.462; y. = 4.773
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Table 8. Comparison of the true biomass energetic yield and maintenance
coefficient for photosynthetic organisms.

Species m
e

, hr References

Chi orel la**

Chlorella ,**

mixed culture
with bacteria

Chlorella
pyrenoidosa

Spirulina
platensis

Oscil latoria
agardhii

0. agardhii

0. agardhii

Scenedesmus
protuberans**

S. protuberans*

S. obliquus

Chlorella***

0.27 -0.015 Pirt [1]

0.40 0.0029

0.64
0.35

0.030
0.016

Prokop and
Ricica [41]

0.115 0.0255 Aiba and
Ogawa [3]

0.23 0.00438 VanLiere and
Mur [27]

0.19 0.0211

0.15 0.00667

0.18 0.0444 Gons & Mur

[27,28]

0.13 0.0692

0.04 0.225 Oswald [27,29]

0.08 0.187 Myers [42]

**Nitrogen source, urea.
***Light source, approximate full sunlight.
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Fig. 1. Comparison of parameter estimation results using Form II

and data in Table 4; A. maximum likelihood estimate;
B. average result from all data and no covariates; C. result
using only n

kca -j; A is from n
k

•] ; e is from n
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; X is from
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Chapter 5

HETEROTROPHIC MICROBIAL GROWTH ON C-l COMPOUNDS
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INTRODUCTION

Long considered a most promising solution for the world protein

shortage, large scale productions of protein from single-cell organisms

is currently attracting industrial interest [1]. The process of photo-

synthesis in which light energy is converted into useful protein was

fairly well surveyed in earlier parts of this thesis. In photosynthesis,

microogranisms utilize carbon dioxide as a carbon source, which means

photosynthetic microorganisms grow on C-l compounds. Therefore, it is

worthwhile considering the energetics of microorganisms which can grow

heterotrophically on other C-l compounds, especially methanol.

Large scale production of protein by growing single-cell organisms

continues to be of considerable industrial interest [1]. In the early

seventies, many studies were conducted to develop single-cell protein

(SCP) technology based on petroleum feedstocks such as n-paraffin hydro-

carbons and gas oil. However, the advantages of using a low-cost, water

soluble feedstock, such as alcohol, led to the successful use of methanol

for producing SCP [1]. Since these SCP products are free from hydrocarbon

residue, they are more acceptable as feed supplements than those produced

from hydrocarbons. Other advantages of alcohol-based processes are the

comparatively lower cooling costs and oxygen requirements. In addition,

methanol can be produced from a variety of raw materials (coal, wood,

petroleum, and natural gas). Because of this, there is long term interest

in the production of SCP from methanol.

Some nutritional considerations of SCP from methanol utilization

were reported [1]. The results are that the products have been proven safe

with rats, pigs, chickens, ducks, fish, and ruminants. In all these
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studies, no signs of pathologic, neurologic, or other adverse or toxic

reactions have been observed in the test animals. By mild alkaline treat-

ment, the nucleic acid content of SCP from methanol utilization can be

reduced to less than 2$ (from 5*78!), making it suitable for even human

consumption. Also Protein Efficiency Ratio (PER) tests have shown that

it requires 1.4 pounds of soybean meal to equal the crude protein contained

in one pound of SCP from utilizing methanol. The product can be substituted

for soybean meal to a high proportion in diets with a high level of feed

efficiency [1].

Van Dijken and Harder [2] and Harrison et al_. [3] studied the theor-

etical yields on methanol and compared them with experimentally obtained

yields. Van Dijken and Harder assumed a value of Y.,
p

of 10.5 g cells/g

mole ATP on 3-phosphoglycerate, and calculated yields based on two diff-

erent pathways; one is the serine pathway, the other is the ribulose

phosphate pathway. The calculated theoretical maximum cell yield on

methanol was 0.73 g cells/ g substrate, which can be converted into a

growth yield, n, of 0.643 using available electron units The observed

experimental yields have been smaller than this value.

In SCP production more than 50% of the operating cost is frequently

associated with the cost of the carbon substrate. Because of the economic

importance of yield in SCP production, the literature on growth yield is

reviewed. In order to compare yields on theC-1 compounds methanol,

formaldehyde, and formate, the available electron yield, n, is used.

Losses of methanol due to evaporation are considered by checking the

consistency of the data with carbon and available electron balances where

this is possible. The true growth yield, ri „, and maintenance parameter,
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m
e>

in Pirt's model [4] are estimated using all of the data simultaneously

with the covariate adjustment method [5].
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THEORY

The efficiency or yield of heterotrophic microbial growth can be

expressed in either mass or energetic terms. Material and energy balances

and regularities associated with microbial biomass may be used in the

yield analysis [6,7,8,9,10]. The chemical balance equation for growth with

no product formation based on methanol utilization with ammonia as nitrogen

source is

CH
3
0H + aNH

3
+ b

2 yc
CH ON + c H

2
+ dC0

2
(1)

where CH n is the composition of these atoms in the biomass, and a, b,

c, d, and y
c

are stoichiometric coefficients. Minkevich and Eroshin [11]

have found that the weight fraction carbon in the biomass, a. , the reduc-

tance degree, y., and the energy content per equivalent of available

electrons in biomass, Q , are relatively constant. The carbon balance

based on equation (1) is

y c
+ d « 1.0 (2)

where y
c

is the fraction of substrate carbon incorporated into biomass,

and d is the fraction evolved as carbon dioxide. The available electron

balance is

n + e = 1.0 (3)

where n y
cYt/Y s

is the fraction of available electrons incorporated into

biomass and e = 4b/y
s

is the fraction of available electrons transferred

to oxygen [8,9,10,11]. Equation (3) may also be viewed as an approximate

energy balance; however for very small molecules the regularity identified

by Thornton [12] and Kharasch [13,14] shows womewhat larger deviations [15].
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Table 1 gives the heat of combustion and free energy of combustion for

methanol, formaldehyde, and formic acid as well as the average value for

microbial biomass. Table 1 shows that the values for these small molecules

deviate significantly from the regularity value.

By using Pirt's yield model [4] and the available electron concept

Erickson [16] derived the following equation:

1 1
m
p1 = —!_+-£

( 4 )
n n umax M

Two related equations are obtained by using the equality constraints from

equation (2) and (3) as follows [5,16]:

(y
c
+d)

i
m—-— -—L + -£

(5)

isiA = _2_ + ji ()n H„,„ V * '

Two forms of equation (4-6) are used for parameter estimation. In this

work, equations (4-6) are referred to as Form I. Form II is obtained by

multiplying each term in equations (4-6) by y.

Several different estimates of the parameters from equations (4-6)

can be obtained. By treating the three equations as a multivariate linear

model with common parameters, a method of analysis of growth curves which

utilizes the technique of analysis of covariance may be applied [17,18,19].

To apply this method equations (4-6) are linearized as follows:



for Form I

for Form II

where
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Y
ii
=8+mX. j = 1, 2, 3 (7)

J e n

1 * 1, 2, .... N

Y
lM

" mp + Bu, j = 4, 5, 6 (8)ji e ""i
1 = 1, 2, ..., N

V -J- V -
(y

ci
+d

i
]

Y .iV!li
Mi

ni
' 2i "

ni
' 31

~
n
i

Y .ii Y . "i(y c i
+d

i
)

, Y . "iV'j) ,

41 ni
' 51 n< 61

"
n,.

6 . _L
, Xj . _L

and N is the number of observations for each variable. The three responses

Y
li'

Y
2i '

and Y
3i

contain information from the experimental measurements.

The average of these values for Form I

may be used to estimate the parameters m and b; that is

7 ,-
= 3 + m

e
X, + error (10)

However, a conditional model, which includes the error structure of the

equality constraints,

q

Y
-1

+ m
e

X. + z a
k

Z
ki

+ error, (1 < q < 2) (11)
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may provide better estimates. In equation (11) Z. . are covariates which

are selected such that they have zero expected value. For example,

Z
li

= Y
li

- 2Y
2i
+Y

3i < 12 >

Z
2i

= Y
li

" Y
3i C 13 )

provide a set of covariates with zero expected value. Methods for

selecting covariates have been discussed in detail elsewhere [5,18,19].

The coefficients, a,, are estimated in the regression analysis. The

maximum likelihood estimate is obtained when the maximum number of covar-

iates is included (2 in this case with two equality constraints). Since

an additional degree of freedom is introduced with each covariate that is

introduced, the parameter estimates with shortest confidence interval may

arise from using zero, one or two covariates. Each case may be considered

and the results may be compared using the shortness of the confidence

interval as one of the measures of the quality of the estimate [5,18,19].

An analogous procedure is used with Form II. By using multiple linear

regression methods (in this work SAS [20] was used) estimates of g = 1/n

and m
g
may be obtained for both Form I and Form II. Equations (4), (5),

and (6) may also be considered individually. The 95% confidence intervals

for the parameters can be obtained by using the estimated standard errors

of the parameters, 5
g
and 5

m , which are directly obtained from the SAS

computer output. The confidence interval for s is

»±*0.025 < N - P " ^ °
B < 14 )

where p is the number of parameters (p = 2) and q is the number of covariates

(q " 0, 1, or 2). Generally, smaller confidence intervals for the
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parameters may result when the number of covariates is decreased without

sacrificing an appreciable amount of information. More detail on this is

presented elsewhere [5,18,19].

The 95% confidence interval for m is found using an equation which

is analogous to equation (14). The confidence interval reported for

nmax
= ^ B is found by taking the reciprocal values after applying equation

(14) to find the confidence interval.

The numerical values of a. 0.462 and y, 4.291 based on the
b b

average values of Minkevich and Eroshin [11] were used in this work to

estimate the parameters, n and m .

max e
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RESULTS AND DISCUSSION

Several sets of experimental data in the published literature are

analyzed using the carbon balance and available electron balance to

examine data consistency, and the covariate adjustment method to estimate

the true growth yield and maintenance parameters, n and m , respectively.

The data of Held et al_. [23] is presented in Table 2 and 3 together with

an analysis of data consistency using carbon and available electron balances.

Methanol, formaldehyde and formate concentrations were measured; however,

formaldehyde and formate concentrations, respectively, were less than

250 \i moles/liter and 100 y moles/liter. Since these quantities are less

than 0.1% of the substrate supplied, formaldehyde and formate are not

included in the carbon and available electron balances. Figure 1 provides

a graphical analysis of the results of data consistency calculations for

the data sets in Tables 2 and 3. Note that for both sets of data, the

failure to account for all the carbon and available electrons tends to be

greater at higher dilution rates. It is not clear why the recovery of

carbon and available electrons is low, but evaporation of methanol and

formaldehyde is one possible explanation. For the data in Table 2

measurable quantities of methanol and formaldehyde are observed in the

culture broth at dilution rates of 0.143 hr"
1

and higher; this also corres-

ponds to the region of poorest recovery. With the higher feed concentration

of 30 g/f, of methanol in Table 3, measurable quantities of methanol and

formaldehyde are reported at dilution rates of 0.06 hr" and higher.

Estimates of vapor losses based on the measured concentrations of methanol

and formaldehyde in the culture broth and the respective vapor pressures

indicate that methanol losses should be greater than formaldehyde losses
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and that the fraction which is lost is almost of the same order of

magnitude as the missing fraction in Tables 2 and 3. The maximum estimated

value of the losses due to volatility occurs at the largest specific

growth rate in Table 3; 2% of the methanol which enters is lost as vapor.

Since only 40% of the methanol is consumed, the vapor loss accounts for

about 5% of the carbon and available electrons in the balances. Phase

equilibrium and ideal solution behavior are assumed in making these

estimates.

Tables 4 and 5 provide estimates of the true growth yield, n , andv 3 ' max

maintenance parameter, m for the data in Tables 2 and 3, respectively.

In these tables, the results of parameter estimation with the covariate

adjustment method (equation 11) with zero, one, and two covariates are

reported. In addition, the results of using each of equations(4), (5),

and (6) separately with the appropriate data are also presented. Both

Form I and II are used with covariate adjustment and with the individual

equations to obtain point and 95% confidence interval estimates of true

growth yield, nm=v . and maintenance parameter, m .max q

The first two rows of Tables 4 and 5 contain the maximum likelihood

results which are obtained by using two covariates. In both Tables 4

and 5 larger estimates of n are obtained when covariates are included

compared to the average results where covariate adjustment is used without

any covariates. In Table 4 the shortest confidence intervals with covariate

adjustment are for the cases with no covariates and one covariate, Z
?

.

In Table 4 larger estimates of the true qrowth yield parameter, n , , are
max

obtainedfrom equations(5) and (6) than from equation (4). This is expected

because in equations (5) and (5) the sum from the available electron and

carbon balances, respectively, is used as the measure of consumed substrate.
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The results in Table 5 are generally lower than those in Table 4.

Held et aJL [23] point out that much of the data in Table 3 for use in

Table 5 was collected under oxygen limited conditions while most of the

data at the lower feed concentration (Tables 2 and 4) was obtained under

methanol limited growth conditions.

The values of the maintenance parameter, m , should be positive;

however, the 95% confidence interval frequently includes a negative region

because the values of this parameter are frequently not significantly

different from zero.

Data consistency results are presented in Table 6 for the data of

Dostalek and Molin [24] who cultured ffethylomonas methanol ica on methanol

in continuous culture. The data consistency results are best at higher

dilution rates and poorest at lower dilution rates. The reason for the

failure to recover all of the carbon and available electrons is not clear;

however, there is good agreement of the carbon and available electron

balances with each other. Evaporation of methanol is consistent with the

nearly identical recoveries of the carbon and available electron balances;

however, since the residual methanol concentration is low the predicted

rate of evaporation is less than 0.1%.

Table 7 displays the results of parameter estimation using covariate

adjustment, and also the results from each equation individually. The

shortest confidence intervals for true growth yield with covariate

adjustment occur when convariate Z~ is included. For the estimation of

the maintenance coefficient, the confidence intervals are slightly shorter

for the average value where no convariates are included. Figure 2 shows

how each of these two cases fit the data using Form II. The results using

the covariate 1^ do not fit the data as well as the average value where no



5-12

covariates are included; however, the consistent deviation of the carbon

and available electron balances from one is appropriately included in the

analysis when covariate Z- is included. Note that the deviation of the

two models is greatest at small specific growth rates where the deviations

of the balances from one is greatest.

The estimates of true growth yield in Table 7 are significantly

greater than those found in Table 4 and 5. All of the point and interval

estimates using covariate adjustment are less than the theoretical value

of n , = 0.643 based on the analysis of van Dijken and Harder [2] for
max

Y
ATp

10.5 g cells/mole ATP.

Recently Tsuchiya et aj[. [25] have examined growth yields for Pseudo-

monas AM-1 growing on methanol, formaldehyde, and formate. The consistency

of the data is examined and reported to be relatively good [25]. The

results of parameter estimation using the covariate adjustment method are

reported in Table 8. Because of the small number of data points, the

shortest confidence intervals are those obtained when no covariates are

included in equation (11).

Comparison of the results in Table 8 shows that yields based on

free energy, n
th

. are lower than the yields based on available electrons,

n_,„. because of the higher free energy of the substrate relative to that
max

of the microbial biomass as shown in Table 1.

The true growth yield based on free energy is similar for formaldehyde

and methanol in Table 3. The true growth yield based on available elec-

trons, nm,„, is about the same for methanol and formate. The somewhat
max

lower true growth yield based on free energy, when the substrate is formate,

is not surprising; while formate has a greater free energy per equivalent

of available electrons, not all of that energy is effectively used in the
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conversion process.

Values of true growth yield, n and maintenance parameter, m , are

presented for several sets of literature data in Table 9. Most of these

studies were conducted with Hansenula polymorpha . Sufficient data to

check the consistency of the experimental measurements using mass balances

was available for only one case [26]. The highest true growth yields in

Table 9 are similar for Pichia pastoris CBM 10 and Hansenula polymorpha

DL - 1.

Values of the true growth yield and maintenance coefficient have

been estimated for Paracoccus denitrificans by van Verseveld [30,31].

His results are presented in available electron units in Table 10. Values

of true growth yield based on methanol as substrate are similar to several

of the values reported in the other tables. The true growth yieTds on

formate are lower in Table 10 than they are in Table 8.

In the work of Held et al_. [23] and the work of Allais and Baratti

[27] better yields were obtained at lower methanol feed concentrations.

Held et al_. [23] attributed the decreased yield at higher methanol feed

concentrations to oxygen transfer limitations. Since the true growth

yield is economically very important in SCP production [32], growth

conditions which maximize the yield should be maintained.

Recently, Amano e_t aj_. [33] have reported their results with

Methylomonas methanolovorans growing on methanol in batch and continuous

culture. The consistency of their data is relatively good. Conversion

of their estimates of true growth yield and maintenance coefficient to

available electron units gives n_-v * 0.44 and m_ = 0.029 hr . This
max e

value of the true growth yield is similar to that reported in Table 7 for

Hethylomonas methanol ica for the data of Dostalek and Molin [24].
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CONCLUSIONS

Values of the true growth yield and maintenance parameter are present-

ed for several sets of literature data for microbial growth on methanol,

formaldehyde, and formate. The estimated values of the true growth yield

for Methyl omonas methanol ica were found to be the largest of all those

which were considered. The results indicate that the interval

0.395 < Ti

max
< 0.596 probably includes the true growth yield for this

organism. This interval is less than the theoretically estimated maximum

yield of 0.643 based on the analysis of van Dijken and Harder.

The covariate adjustment method allows all of the experimental measure-

ments to be used simultaneously in the estimation of the parameters.

The carbon balance and available electron balance have been used to examine

the consistency of the data. One of the advantages of the covariate

adjustment method is that covariates are introduced based on the expected

values of the carbon and available electron balances. The covariate

adjustment method also considers the error structure of the experimental

data.

The volatility of methanol and formaldehyde was examined and estimated

to be significant in some of the experimental results.

The methods and results presented in this work should be helpful to

those who are working to develop strains with significantly improved yields.
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NOMENCLATURE

a Moles of ammonia per quantity of organic substrate contain-
ing one g atom carbon, g mole/g atom carbon.

b Moles of oxygen per quantity of organic substrate containing
one g atom carbon, g mole/g atom carbon.

c Moles of water per quantity of organic substrate containing
one g atom carbon, g mole/g atom carbon.

d Moles of carbon dioxide per quantity of organic substrate
containing one g atom carbon, g mole/g atom carbon.

m Maintenance coefficient, hr~ (available electron units).

riUu Maintenance coefficient, hr~ (free energy units)

e

'th

Qrf
. Specific rate of carbon dioxide evolution, mole C0,/g cell/hr.

Qn Specific rate of oxygen consumption, mole 0,,/g cell/hr.
U
2

P Number of parameters, n ,„ and m .r max e

q Number of added covariates to original equation.

t
025*

N" p
"
q '

Student's distribution with (N-p-q) degrees of freedom and

0.95 probability (for one tailed table).

y Fraction of organic substrate carbon in biomass, dimensionless.

Z. Covariate

6 Yield parameter; l/n_„„, dimensionless.
max

y. Reductance degree, equivalents of available electrons per
gram atom carbon.

e Fraction of available electrons in organic substrate which
are transferred to oxygen, dimensionless.

n Fraction of available electrons in organic substrate which
is converted to biomass, dimensionless.

n _„ "True" biomass available electron yield, dimensionless.

nth
"True" biomass free energy yield, dimensionless.

p Specific growth rate, hr" .

o. Estimate of variance of k parameter.
s
k
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Table 1. Heat of combustion and free energy of combustion in kcal

per equivalent of available electrons.

-AG
C

28.0

31.2

32.9

27.0

Based on data from Roels [2] and CRC Handbook of Chemistry and
Physics [22].

Substance -*H
c

Methanol 28.9

Formaldehyde 32.2

Formic acid 32.2

Biomass 27.0
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Table 6. Data Consistency Check with Carbon and Available Electron
Balance from Continuous Culture of Methylomonas methanol ica
at S

Q
=7.96 g methanol/* and 30°C [24J.

"(hr-
1

)

Carbon Balance Available Electron Balance

y d y +dJ c
J
c

n E n + e

0.10

0.17

0.22

0.25

0.26

0.29

0.35

0.45

0.47

0.50

0.3065

0.3405

0.4025

0.4180

0.4490

0.4644

0.5032

0.5734

0.6050

0.5439

0.5187

0.4876

0.4895

0.4732

0.4929

0.4692

0.4706

0.4500

0.4312

0.4244

0.852

0.8381

0.8920

0.8912

0.9419

0.9336

0.9738

1.0234

1.0362

0.9683

0.2192

0.2435

0.2878

0.2989

0.3211

0.3322

0.3600

0.4101

0.4326

0.3890

0.6067

0.6134

0.5933

0.6067

0.6200

0.6133

0.6033

0.5933

0.5867

0.5833

0.8259

0.8369

0.8811

0.9056

0.9411

0.9455

0.9633

1.0034

1.0193

0.9723
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Table 10. Estimates of true growth yield, nmax > and maintenance parameter, m ,

based on parameter estimates of van Verseveld [30,31] for Paracoccus
denitrificans growing on methanol and formate.*

Substrate Data W V hr

Used point 95% confidence 95% confidence
estimate interval estimate interval

1 0.339 0.306, 0.379 0.0673 0.0277, 0.107

n

Methanol IL^~e
0.370 0.338, 0.408 0.0712 0.0396, 0.100

n

y
c

+ d

0.326 0.308, 0.347 0.0119 -0.0079, 0.0317

0.220 0.197, 0.250 0.0092 -0.0132, 0.0317

Formate XLs. q.285 0.235, 0.366 0.0501 0.0185, 0.0844

Results are based on Form II and the cell composition C, H ln ,1, c Q reported
by van Verseveld [30].
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The photoautotrophic growth of algae and other microorganisms is

an important consideration when long term solutions to food and energy

needs are examined. In this work the bioenergetics of algal growth are

examined. Literature on the utilization of algae as a food source is

reviewed.

Methods are presented for examining the consistency of experimental

data of microbial growth where light energy is converted to chemical

energy through photosynthesis. Methods of parameter estimation are

presented which allow all of the measured variables to be used simultan-

eously for parameter estimation. The results show that a wide range of

values have been found for the true growth yield and maintenance parameters.

Values of the true growth yield range from 0.04 to values above those

predicted by the Z-scheme model for photosynthesis.

The weight fraction carbon and reductance degree of algae are

reviewed using literature data for a wide range of growth conditions. The

results show that the standard deviation and coefficient of variation are

small as long as the algae are grown under adequate nutritional conditions.

For nitrogen deficient growth conditions, the storage of lipids has been

observed; this results in values of weight fraction carbon and reductance

degree which are larger than the average values.

The growth of methanol ultilizing organisms, which is related to

photosynthesis in terms of using C-l compounds, is analyzed to estimate

and compare values of the true growth yield and maintenance coefficient.

A covariate adjustment method is presented and used to analyze all of

the experimental data simultaneously for each set of literature data. The

consistency of the data is examined using carbon and available electron



balances. True growth yield estimates are presented and compared for

growth on methanal, formaldehyde, and formate.


