DEVELOPMENT OF A NETWORK ALGORITHM AND ITS
APPLICATION TO COMBINATORIAL PROBLEMS

by 2 ro™

ROBERT GARY PARKER

B. S., Kansas State University, 1968

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1970
Approved by:

Major Professor

ACKNOWLEDGEMENT

I would like to express a sincere debt of gratitude to
my Major Professor, Dr. Said Ashour, for his guidance in the
preparation of this work. It was he who not only suggested
this piece of research but, more importantly, instigated
the writer's great interest in scheduling theory.

Also, I would iike to thank Dr. Frank A. Tillman, Head
of the Department of Industrial Engineering; Dr. L. E. Grosh,
Department of Industrial Engineering; and Dr. N. D. Eckhoff,
Department of Nuclear Engineering, for their assistance. |

Finally, I want to express thanks to Mrs. F. Rod Harris

for her invaluable assistance in typing this thesis,

LD

L E6E

7Y

1778 |

'??iié TABLE OF CONTENTS

C?"Q page

ACKNOWLEDGEMENT i

LIST OF TABLES ’ ii

LIST OF FIGURES iii

CHAPTER I. INTRODUCTION 1
1.1 The Combinatorial Problem ' 2
l.2 Historical Background | 4
1.3 Proposed Research 6

CHAPTER II. DEVELOPMENT OF A NETWORK APPROACH 8
2.1 Basic Concepts 8
2.2 Sample Problem 18
2.3 A Network Algorithm 26

CHAPTER III. APPLICATIONS TO COMBINATORIAL PROBLEMS 29
3.1 The Traveling Salesman Problem 29
3.2 The Project Scheduling Problem 40
3.3 The Explosion Problem 50

CHAPTER IV. COMPUTATIONAL EXPERIMENTS _ _55
4,1 Job Shop Problems 55
4,2 Traveling Salesman Problems 65

CHAPTER V. SUMMARY AND CONCLUSIONS 74

BIBLIOGRAPHY _ 78

APPENDIX A: SCHEDULE ALGEBRA OPERATORS 8O

APPENDIX B: A SCHEDULE ALGEBRA ALGORITHM 99

APPENDIX C: A BOUNDING PROCEDURE 121

APPENDIX D: COMPUTER PROGRAM 132

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table

Table
Table
Table

Table

Table
Table

Table

Table

3.10

3.11
3:12
4,1

4,2

LIST OF TABLES

Initial Precedence Matrix, QO
Intermediate Precedence Matrix, Q!
Intermediate Precedence Matrix, Q2
Intermediate Precedence Matrix Q3
Final Precedence Matrix, Q4

A Cost Chart

Initial Precedence Matrix, QO
Intermediate Precedence Matrix, Q!
Intermediate Precedence Matrix, Q2
Intermediate Precedence Matrix, Q3
Intermediate Precedence Matrix, Q4
Intermediate Precedence Matrix, Q53
Final Precedence Matrix, Q6
Precedence Matrix, Q

Precedence Matrix, Q1 Used to Determine
Latest Start Times of All Elements

Bill of Materials for Sample Problem
Precedence Matrix, Q for Sample Problem

Computational Time, Iterations, Conflicts
and Efficiency with Job Grouping

Computational Time, Iterations, Conflicts,
and Efficiency with Machine Grouping

Number of Iterations Per Problem Size
Computational Time Per Node

Number of Optimal Solutions Found Per
Problem Size

Distance Chart for Problem 1

3 8

page
19
20
21
22
23
32
34
35
36
36
37
37
38
46

49
52
53

60

60
62

63

64
66

Table
Table
Table
Table
Table

Table
Table
Table
Table
Table
Table

Table

Table
Table
Table
Table

Table

B.8

B.9

B.10

Distance Chart for Problem 2

Distance Chart for Problem 3

Distance Chart for Problem 4

Initial Precedence Matrix, S§°

Intermediate

Intermediate
and Starting

Intermediate
and Starting

' Intermediate

and Starting

Intermediate
and Starting

Intermediate
and Starting

Intermediate
and Starting

Intermediate
and Starting
Intermediate
and Starting

Intermediate
and Starting

Intermediate
and Starting

Final Precedence Matrix

Precedence Matrix, S!

Precedence Matrix, S2
Time Vector, T2

Precedence Matrix, §2
Time Vector, T3

Precedence Matrix,S"
Time Vector, T*

Precedence Matrix, 8°
Time Vector, T°

Precedence Matrix, S°®
Time Vector, T®

Precedence Matrix, S7
Time Vector, T’

Precedence Matrix, S8
Time Vector, T8

Precedence Matrix, S?
Time Vector, T9 :

Precedence Matrix, S0

Time Vector, T!10

Precedence Matrix, S!!

Time Vector, T!!

sl2 and

Starting Time Vector, T12

Summary of Computations of Lower
Bounds for Sample Problem

ii
page
66
67
68
105
106

107
108
109
110
111

112
113

114
115
116
117

131

Figure 1.1

Figure 2.1

Figure 2.2

Figure 2.3
Figure 2.4

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Fiqure 4.5

Figure 4,6

Figure A.l

Figure A.2

LIST OF FIGURES

Decomposition of Possible Solations to
the Combinatorial Problem

A Directed Network

Directed Linear Graph Depicting Machine
Orderings

Network Depicting Feasible Sequence, S
Possible Direct Precedence Relationships

Network Depicting Possible Dlrect
Precedence Relationships

A Typical Solution to the Traveling
Salesman Problem

A Solution to the Sample Problem

A Typical Network for Critical
Pathe Analysis

Sample Problem Depicting Earliest and
Latest Start Times for ALL Events

Network Depicting Bill of Materials
for Sample Problem

Relationship Between Computational Time
and the Number of Jobs, M = 3.

Relationship Between Computational Time
and the Number of Jobs, M = 4

Relationship Between Computational Time
and the Number of Jobs, M =5

Relationship Between Computational Time
and the Number of Machines

Relationship Between the Number of Nodes
and Computational Time Per Node

Relationship Between Job Size and the
Number of Iterations

A Typical Network

Typical Network with Branch Lengths Affixed

iii

page

10

10
12
12

32

33
39

42

49

52

69

70

71

72

.

73a
80

88

CHAPTER I

Introduction

As problems in business and industry become more and
more complex, fields such as operations research and manage-
ment science have been called upon for their ability to solve
or at least lessen these problems. The diversity accompanying
such problems might be expected; however, their magnitude is
sometimes overwhelming. For example, consider the seemingly
simple task of sequencing five jobs on say three machines, so
as to optimize some measure of performance such as schedule
time. If one would attempt to evaluate every possible sequence
in this problem, a total of (5%)3 sequences would have to be
evaluated. Obviously, when the number of jobs and machines
increases, the magnitude of tﬁis type of problem increases
-tfemendously, for the number of possible sequences can be
‘expressed in general as (J!)M, where J is the number of jobs
and M represents the number of machines.

| While the above illustfation represents only a specific
type of problem, namely that of scheduling theory,, it more
importantly, gives rise to a much wider range of emphasis and
that is the combinatorial problem in general. Many techniques
have been suggested for use in combinatorial problems and
naturally, some are more powerful than others. Of course,
any technique that reduces the computation involved in obtaining

solutions, is much more desirable than simple enumeration.

Nevertheless, this work presents a discussion of a particular
technique which can be used to solve various combinatorial
problems. The first chapter is organized into three sections.
The first involves a general discussion of the combinatorial
problem and some of its characteristics. The second section
considers a brief historical background pertaining specifically
to the work done in this thesis, and the last section deals

with proposed research.

1.1 The Combinatorial Problem

Rigorous definitions of the combinatorial problem, as has
been suggested in literature of the field, are very difficult
to formulate. In general, however, such problems concern them-
selves with the study of arrangements or groupings of finite
numbers of elements into sets. éuch arrangements are generally
constrained‘by boundary restrictions imposed upon the problem.
To illustrate this sitnhtion, let us return to the J x M
scheduling problem again. If we consider the total number of
sequences possible, to be one large set, we can further decom-
pose such a set into smaller subsets with respect to two con-
siderations.

The first consideration involves constraints on the
‘problem, in the form of machine orderings. Such orderings are
the result of existing technological requirements. Consequently,
any sequence from the total of all sequences that violates such
requirements would be non-feasible and can be removed from

consideration as a possible solution.

The second major cdnsideration is that of optimality.
Obviously, there are solutions to the problem that are superior
to other solutions, considering, of course, a particular mea-
sure of performance. Therefore, the set of solutions remaining
from the entire set after removal of those that are non-feasible
can be further decomposed into two subsets: ‘those that are
optimal and those that are non-optimal. This entire decom-

position of solutions can be illustrated in general by Fig. 1.1.

All Possible Soclutions

Feasible Non~-feasible

Optimal Non-optimal

Fig. l.1. Decomposition of possible solutions to
the combinatorial problem.

Naturally, there are many problems that can be classified
as combinatorial. Use has been made thus far of only one type
of combinatorial problem, that of scheduling; however, other
types of problems such as the traveling salesman, delivery,
line balancing, and critical path, to mention a few, can be so

classified.

1.2. Historical Background

In 1959, Giffler [8], introduced the concept of schedule
algebra and with it, described techniques for solving pré-
duction scheduling problems. His work was updated in 1962
when he presented a computational technique known informally
as the schedule algebra algorithm, [5], which, of course, was
based upon the use of the schedule algebra operators.

Since 1963, however, there seems to have been very little
amplification of Giffler's work. Appearances in the literature
occurred [6, 7, 9, 10], but such publications have basically
been representations by Giffler of the original work. Conse-
quently, since the schedule algebra algorithm was first intro-
duced, there has been little continuation of its concept. The

entire literature survey can be presented as shown below:

Year Reference Description

1959 (8] A demonstration of the use of con-
ventional matrix algebra in the
solution of explosion problems,
as well as the development and
demonstration of a schedule algebra
used to solve scheduling problems.

1959 [9] A presentation of algorithms which
can be used in solution of the
general scheduling problem.

1959 [10] An introduction to the concept of
active schedules; however, basically,
this presentation is equivalent to
that in [9].

1961 [7] A summary of various scheduling
theories and discussion of the
schedule algebra and its appli-
cation to explosion and scheduling
problems. This work in general
is very similar to that of [5].

1962 [51 A formulation of the schedule
algebra operators and a formal
presentation of the schedule
algebra algorithm.

1968 [6] _ A summary of the current status
of schedule algebra, its origin,
application, and its motivation.

In general, this work emhodies
most of the concepts presented in
Giffler's earlier work.

In trying to trace the work which may have led to the
schedule algebra algorithm, it was found, in another work by
Giffler in 1959, that a linear algorithm was presented [9].

It was believed that this algorithm was linked to the schedule
algebra algorithm. While investigating such a relationship,
another technique, which was unnamed at the time, was mentioned

in the same literature. This technique did, indeed, bear a

great deal of resemblarice to the current schedule algebra algorithm,
Furthermore, it was fdund that through implementation of some

of the characteristics of the schedule algebra algorithm and
simple experimentation, the network algorithm could be constructed.
Referral to the technique as a network algorithm arose from its
-direct applicability to problems which can be formulated into
networks.

At first, the use of this network algorithm was confined

to the scheduling problem. However, its application to other

network problems became evident and as such, the entire
concern of this work became shifted from what was originally
an analysis of Giffler's schedule algebra algorithm, to a

formalization and application of the network algorithm.

1.3. Proposed Research

The motivation for beginning this researcﬁ was the result
of two primary factors. The first involved the fact that the
original schedule algebra was developed in 1959 and, until
the present time, has not been investigated further. This
situation can be verified by examining the literature summary
presented earlier. All work since 1959 seems to have been
confined only to the originator of the technique.

The second consideration, which is an outgrowth of the
first, pertains to the fact that there has been no new presen-
tation made in the literature, with respect to the schedule
algebra. While there have been several publications by a
single individual, there was 1itt1e diversity among such
presentations; hence, it became evident that there was little
or no new development of the schedule algebra concept.

The apparent scarcity of work dealing with the schedule
élgebra concept, instigated research into three basic areas.
‘They are, (1) the development of a network algorithm which is
based upon the schedule algebra operators and which embodies a

criteria referred to as a lower bound to improve the solution,

(2) the extension of the application of this network algorithm
to other combinatorial problems, and (3) the investigation into
the computational experience which results when the network

algorithm is applied to problems of varying dimensions.

CHAPTER II

Development of a Network Approach

At the outset, the main emphasis for this research was
placed upon the use of the schedule algebra algorithm as pre-
sented in Appendix B. However, as the study progressed, this
consideration was slowly modified until the resultant network
approach emerged. Consequently, the scope of this work became
centered around this modification and its applicability to the
combinatorial problem in general. Nevertheless, this éhapter
will deal with the development and basic concepts of the net-
work approach. 1Its application will be demonstrated with a
sample problem, and, finally, a computational algorithm Gill
berpresented in a formal fashion. A general nature, with
respect to the concepts of the approach, is maintained in order
to allow applicability to other problem formulations. Such
further application will be discussed in Chapter III.

2.1 Basic Concepts

The network technique is a systematic approach which
searches for a solution among a subset of feasible sequences.
The basic concepts of this network approach involve: (1) the
representation of the problem in a network which, in turn, is
depicted in a precedence matrix, (2) the manipulation of the
precedence matrix based on the star algebra operators, and
(3) the evaluation of the resulting sequence to obtain the

corresponding schedule time.

A network can be described as consisting of a set of nodes
and branches which connect various pairs of nodes. If these
branches are specifically oriented, they are then said to be
directed. For example, the network depicted in Fig. 2.1 is
directed because every connecting branch is oriented in a
specific direction.

The scheduiing problem can be formulated into a network
or directed linear graph by making use of the precedence relation-
ships that are inherent in the machine orderings. 2As defined
earlier, the scheduling problem can be represented by machine
ordering and processing time matrices. This representation

can be shown with the aid of the following sample problem:

- " i -
12 13 11 4 2 3
21 23 22 | B 4 5
Moo= ’ T = .
33 31 32 | 6 3 9
41 42 43 7 6 2
- - o -

By considering the second row of the machine ordering matrix,
we can interpret the following: 3job 2 is processed on machine 1
first, machine 3 second, and machine 2 last.

Using the directed linear graph, the machine orderings
of jobs 1, 2, 3, and 4, can be represented as shown in Fig. 2.2.
These relationships are nothing more than those of direct

precedence. Further, they can be considered as partial orderings.

10

Fig. 2.1. A directed network

V[

Fig. 2.2. Directed linear graph depicting machine orderings.

11

In fact, this re-definition will be used synonymously with
machine orderings throughout this discussion. Nevertheless,
any scheduling problem; as previously stated in mathematical
form, can be depicted with the linear graph representation
as illustrated in Pig. 2.2.

Once the linear graphs have been constructed, the search
for a solution to the problem can commence. Such a solution
involves determining the sequence of the jobs on each machine.
That is, the task becomes one of finding a job sequencing

matrix, S such that
41 31 21 11

33 13 43 23

where machines 1, 2, and 3 perform the four jobs in the
sequences { 4 3211}, {14321}, and { 314 2}, respectively.
Figure 2.3 shows a directed network which represents the
above sequence. Note that this sequence is consistent with the
machine ordering graphs.
In the scheduling problem, the network analysis is made
with respect to two factors. The first is the partial ordering
that is inherent in the statement of the problem. For example,
the operation of reaming a hole could not precede the operation

of drilling the hole. Technologically, it is not possible.

Fig.

Fig.

12

2.3.

2.4.

Network depicting feasible sequence, S.

Possible direct precedence relationships.

13

Such an ordering of precedence relationships are shown in the
machine ordering matrix which was iilustrated earlier. These
partial orderings must be maintained in order to obtain a
feasible solution. That is, any feasible sequence must be
consistent with the partial orderings. Naturally, any sequence
that does not maintain these partial orderings will be non-
feasible.

_ The second factor pertains to the sequences in which jobs
are processed on each of the machines. It is this determination
of job sequencings that is the primary consideration in the
scheduling problem. Any evaluation of various solutions is
only an evaluation of the sequence in which jobs can be processed
on each machine.

By considering Fig. 2.2 again, let us reconstruct the
four linear graphs, or partial orderings, with the following
addition. The nodes representing operations on machine 1 are
connected by'broken lines whigh,_as can be seen, are not
oriented in any direction. These branches are normally repeated
for the nodes represenping operation§ on the other two machines,
but in order to avoid congestion, they have been omitted in
Fig. 2.4. Nonetheless, the logic of the broken line branches
is very critical to the discussion of the network formulation
as well as to the construction of the precedence matrix which
will be discussed shortly.

Each branch implies the existence of a possible direct

precedence relationship. For example, operation or node (11),

14

in Fig. 2.4, may directly precede operation or node (21).
Conversely, node (21) may directly-precede node (11). The
exact precedence at this point is, of course, unknown. The
significance of the broken line is simply to illustrate the
unknown direction of precedence. However, it should be under-
stood that certain broken lines will eventually become solid
directed line segments which will depict a final direct prece-
dence relationship. That is, when all broken lines are either
made solid and directed or are deleted, a feasible sequence
has been attained. Consequently, the construction in Fig. 2.4
cannot be classified as a network in its present state. This
is only logical, because by virtue of the broken lines, not
one, but many possible networks are represented. It is the
task of the technique employed to determine one network from
this population of many.

Once the problem has been formulated as shown in Fig. 2.4,
it can be reformulated into a precedence matrix. It is this
precedence matrix which is the basis for fhe network algorithm.
The matrix is always square and its size is deterﬁined from
the number of jobs and machines, such that the number of rows
and columns is JM. The matrix is partitioned into M machine
blocks, each of which has J rows and J columns. For example,
.a (4 x 3) scheduling problem can be represented by a precedence
matrix of size 12 x 12. .This matrix consists of 3 machine
blocks. Machine block 1 includes all 4 jobs on machine 1,
block 2; the 4 jobs on machine 2, and block 3 contains 4 jobs

on machine 3.

15

Entries are made in the precedence matrix, QO in a conven-
tional manner. That is, an entry q(4 mp, j mg)15 made with
respect to its row first and then its column. The value of

each entry is determined such that

-

t(j mt)' if (3 mp)<<(j m,)

Ujmp 3mg) = Sxt , if (3 mp)<<(j my) is possible,
(3 mp)

{0, otherwise
where (jmz) indicates operation of job j on machine m, .

Once the precedence matrix has been constructed, the task
of manipulation can begin. The very basic concept behind the
manipulation of the precedence matrix is one of a step by step
entry of nodes into solution. That is, by entering operations
in a systematic manner, to be explained shortly, the investi-
gator is, in essence, moving through the network. When this
step by step process is completed, every node in the network
will have been entered and, of course, some sequence will result.

Entries are made on a machine block basis. At each
iteration, each machine block is checked for operations to
enter next. This checking procedure involves scanning each
column of the matrix in search of those nodes that are, in
fact, ready for next entry into the solution. A node or oper-
ation can enter the solution or more generally, is_a candidate
for entry, if all nodes that directly precede it in the partial
ordering, have already been entered. When such a condition

for entry exists, the column represented by the node in question

16

is said to be null or potentially null. HNonetheless, this
concept of entry is wvalid, of course, because any entry of
some node (j mz) before a preceding node (j my) has been
entered, would be inconsistent with the partial ordering and
would result in a non-feasible sequence.

If there is more than one candidate for entry in a
machine block, a lower bound is applied and the conflict is
resolved in favor of the operation which has the least lower
bound. Nevertheless, when a node for next entry has been
determined for each block (if no node can next enter from a
particular block, the block is unchanged at that iteration)
the matrix is updated. This involves updating the entries
in the column of the corresponding node such that

Xq 0, if (3 mt) has not been previously
(i mp, Imy) = entered,

q(j mp, 3 mﬁ), if (j mg) has been entered.

If the entry d(§ m i m) is made, then all the remaining
4

zl‘
entries in the same row as the updated element, become zero.
This procedure for entry and the corresponding update of each
column follows from the nature of the problem, in general.
By noting that the only elements in a diagonal machine
block that are not zero are those of the form xq,. .
(3 mp, 3 mg),
and further, recalling that the real problem at hand is to

determine a sequence of jobs on each machine, it is completely

logical that the procedure described above be carried out.

17

Naturally, if a node has been selected to next enter or, with
reference to the sequencing problem, if a job has been selected
to be processed next, any node entered previously would precede
it. Furthermore, all nodes not yet entered would not precede
it, but would, in fact, be preceded by the node now being
entered. Consequently, in the former éase, the update to
relevant entries in the column represented by the entered node
would involve changing an entry of the form xq(j mp, 3 my)
to c:_[(j my, 5 mbj' while in the latter case, the change would
be to zero. This concept will be illustrated by a sample
problem.

When all nodes have been entered, the precedence matrix
will contain only positive scalar entries or zeros. All con-
flicts on all machines will have been resolved, and some
feasible sequence been obtained. However, to determine the
earliest starting times, and, hence, the schedule time for the
sequence, the concept of a starting time vector is employed.

This vector consists of JM elements. As an illustration,
a starting vector for the (4 x 3) problem would be a vector
of 12 elements. Initially, entries in the vector are either
iota, 1, or zero. If the earliest possible starting time of
a node is known, the entry is 1; otherwise, the entry is zero.
Specifically, all initial nodes in the partial orderings will

command entries, in the initial starting vector, of ,, while

all other entries will be zero.

18

Once the initial starting vector has been constructed,
a series of multiplications follow. The starting vector is
multiplied by the final precedence matrix over and over until
there is no change in succeeding vectors. Prior to each
new muitiplication, the vector is updated by being added to
the vector of the preceding multiplication. Of course, the
operations of multiplication and addition are those of star
algebra discussed in Appendix A. Finally, the resultant
starting vector represents the earliest starting times of
all nodes, consistent, of course, with the sequence deter-
mined by the final precedence matrix. The schedule time can

be easily computed from this final-starting time vector.

2.2 Sample Problem

Let us consider the following machine ordering and

processing time matrices:

1 . & =
12 13 11 4 2 3
21 23 22 8 4 5
M = T =
33 31 32 6 3 9
41 42 43 7 6 2
» - = d

Step 1. Construct the initial starting vector, T°,

such that

™=[010110000011 0],

19

Table 2.1, Initial Precedence Matrix, Q°.

~(11) (21) (31) (41) (12) (22) (32) (42) (13) (23) (33) (43)_

(11 0 x3 x3 %3 ¢ o0 9o o © o 0 0
(21)] x8 0 x8 x8 N o 8 0 0
(31)] x3 x3 0 %3 0 0 - 3 0 0 0 0 0
(a1)| x7 x7 x7 0 o o0 0o 7 o o0 o0 0
12y o o o o 0 x4 x4 x4 4 0o 0 o0
22 o 0o 0 0 x5 0 x5 x5 o o o0 o0
Gyl o o 0 0 x99 x2 0 x9 o o0 0 0
(42) o 0 0 0 x6 x6 x6 0 0 0 0 6
an|l 2 o o o o o 0o o 0 x r x
2] o o o o o 4 0 0 x4 0 x4 x4
3] o o 6 0 6o 0 0 0 X % 0 %
nl o o o o o 0 0 0 x x x 0

where only the earliest starting times of nodes (21), (41), (12),
and (33) are known and so signified by the e?tries of 1.

. Step 2. Construct the precedence matrix, Q° from the
partial orderings and possible direct precedence relationships

as illustrated in Fig. 2.4.

(ll)
(21)
(31)
(41)
(12)
(22)
(32)
(42)
(13)
(23)
(33)

(43)

(11) (21) (31) (41)

0

X8

X3

x7

Table 2.2.

X3 X3
0 x8
X3 0
x7 x7
0 0
0 0
0 0
0 0
0 0
0 0
0 6
0 0
Step 3.

0

Intermediate Precedence Matrix, Q!.

(12) (22) (32) (42)

0

0

x4

x9

X6

Check for nodes to

0 0
0 0
3 0
0 7
x4 x4
X5 X5
0 x9
X6 0
0 0
0 0
0 0
o 0
enter.,

(13)
0

x4
X6

X2

(23)
0

x2

X6

x2

20

(33) (43
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 6
0 X2
0 x4
0 X6
0 0

Columns (33),

(12),

and (41) are potentially null, and thus, they can be marked.

L

(21),

The

conflict between jobs 2 and 4 on machine 1, is resolved in favor

of job 4, based on a composite lower bound which is described in

Appendix C.

Upon application of the lower bound, it is found

21

Table 2.3. Intefmediate Precedence Matrix, Q2

_.(11) (21) (31) (41) (12) (22) (32) (42) (13) (23) (33) (43)__

au| o x3 o o o o0 o0 0 o 0o 0 0
2| x8 o 0o o o o 0 0 c 8 0 0
B x3 x3 o 0o 0o 0o 3 0 o o 0 o0
anf o o 7 0 o o o 7 o o0 0 0
12 o o 0 o0 o o o0 4 4 0o 0 0
22 o o o 0 0 0 x5 0 o o0 o 0
32)] o o o o 0 x9 0 0 o o o0 o
a2)] o o o o 0 x6 x6 0 o o0 0 6
a)] 2 o o o o o 0 0 0 x2 0 x2
2 o o o o o 4 0 0 0o o0 0 x4
G o o & o0 o o o 0 €& 0 0 0
| o o o o0 o o0 0 0 o x2 0 0
-]

that the bound for job 4 is lower than that of job 3; consequently,
job 4 is selected to next start.

Step 4. Update the precedence matrix by entering the latest
marked nodes. The three columns (33), (12), and (41l) are made

null, and the matrix Q° is updated to matrix Q!.

(11)

(21)

(31)

(41)

(12)

(22)

(32)

(42)

(13}

(23)

(33)

(43)

22

Table 2.4. Intermediate Precedence Matrix, Q3.

(11) (21) (31) (41) (12) (22) (32) (42) (13) (23) (33) (43)

o o0 o o0 o o o o0 o o0 0 0
x8 0 0 0 o o0 0 0 o 8 0 0
6o 3 0 o0 o o 3 0 o o 0o 0
o o 7 0 o o0 o 7 o o0 o 0
o o 0o o o o 0o 4 4 0 0o o0
o o o 0 o o o o0 co o0 0 0
o o 0o o0 0o x 0 0 o o0 o0 o
o o o o o o0 6 0 o o 0o 6
2 0o o0 0 o o o0 0 o o o 2
o o o 0 o 4 0 0 o o0 0 0
o o0 6 0 o 0o 0 0 6 0 0 0O
o o 0o 0 o o o0 o6 0 x 0 O

Step 5. Repeat step 3 by checking for three new nodes to
enter. From the updated matrix ol, we can mark columns (13),
(42), (31), and (21). Once again, we see the existence of a
tie in machine block 1. Both nodes (31) and (21{ are potentially

null; and consequently, we shall apply the composite bound and

(11)

(21)

(31)

(41)

(12)

(22)

(32)

(42)

(13)

(23)

(33)

(43)

Ta@le 24D

Final Precedence Matrix, Q".

23

_(11) (21) (31) (41) (12) (22) (32) (42) (13) (23) (33) (43)
0 0 0 0 0 0 0 0 0 0 o- 0
8 0 0 0 0 0 0 0 0 8 0 0
0 3 0 0 0 0 3 0 0 0 0 0
0 0 7 0 0 0 0 7 0 0 0 0
0 0 0 0 0 0 0 4 4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 9 0 0 0 0 0 0
0 0 0 0 0 0 6 0 0 0 0 6
2 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 4 0 0 0 0 0 0
0 0 6 0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0

resolve the tie in favor of job 3. This resolution is, made

in favor of job 3 since its bound is lower than that of job 2.

Nonetheless, columns (13), (42), and (31l) are marked. The

Matrix Q! is now updated and becomes Q2.

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

24

The next tﬁﬁ@g columns selected to enter are (43}, (32),
and (21). It should be pointed out that there is again a tie
in machine block 1. The tie, involving nodes (21) and (11),
is broken in favor of (21) after application of the lower
bound. After updating the above matrix with respeét to these
three nodes, the resulting matrix, Q3, can be constructedf

The remaining three columns, (23), (22), and (11}, are
marked and matrix Q3 can be updated to become Q%. This
reéultant matrix Q% is the final matrix, for all nodes have
been entered.

Step 6. Compute the earliest starting times of all nodes.
Upon multiplying the initial starting vector T° by the final

precedence matrix Q%, the resultant vector is as follows:
{8070000768001].
When this vector is added to T°, the resultant is T! , where
Tl= [8 17 1+ 1007 68 10].

By repeating this procedure until there is no change in
succeeding T vectors, we find that we must compute a total of

four T vectors. These wvectors are:

T2= [8 10 7 112 13 7 6 8113],
3= [18 10 7 v v 22 13 7 6 18 13],

and
T= [18 10 7 v 122 13 7 6 18 113].

Note that vector T% is identical to T3,

Step 7.
time.
and its corresponding schedule
with respect to their starting

of the final T vector, we have

25

Calculate the final sequence and the schedule

From the final T vector, we can compute the sequence

time. By ordering the jobs
times in each machine block

the following sequences on

each machine:

machine 1: {
machine 2: {
machine 3: {

The job sequencing matrix can be taken from the above ordering

such that
41 31
8§ = 12 42
33 13

4 2
1 3
| 4

21 11
32 22
43 23

If we locate the entries in each machine block with the
highest starting times, we get (11), (22), and (23). Upon
adding the processing times of each of these nodes to their
respective start times, we get 21, 27, and 22 time units
- respectively.. Consequently, the schedule time for the sequence
just computed is 27. It should be noted that this is the
optimal solution, since this problem was also solved by a
branch-and-bound algorithm with backtracking [11]. Note that
in breaking tﬁe ties differently, we could expect to obtain

other solutions.

26

2.3 A Network Algorithm

Now that the basic concepts and a sample problem have
been discussed with reference to the network approach, a’

formal step by step computational algorithm is presented below.

Step l: Construct the initial starting vector, T°.
Form a vector with JM entries such that
v (j mg) =
o . otherwise.
Step 2: Construct the initial precedence matrix, Q°.
2.1 Partition a (JM x JM) matrix into M machine blocks.
2.2 Label the rows and columns of the matrix by the
appropriate nodes.

2.3 Place the entries in the matrix such that

W
t(j m‘E), if (j m£)<<(j mé)r
q Xt(s m,) if (3 mp)<<(j my)
(Gmpim) = & 70
is possible,
0, otherwise.
\.

Step 3: Check for null or potentially null columns.
3.1 Within each machine block, mark the columns that
are null or can be made null.
3.2 If there is more than one marked column in a
machine block,-break the tie by a particular

bounding procedure.

27

Step 4: Update the precedence matrix.

At the intersection of a marked column and a

marked row make the following change if possible:

xq q '
(3 mg, 3 my) (3 mg, 3 mg)

Update all other entries in that column and row

such that

it
o
-

xq
(j m.?.' j mé)

.then mark the corresponding row of the just

updated column.

Step 5: Repeat steps 3 and 4 until there are no more entries

in the precedence matrix which have x terms.

Step 6: Update the starting vector.

6.1 Multiply the final precedence matrix by the

6.2

starting vector such that
]
Tk = Tk-1 $ 0, k=1, 2,...,

and add the starting vector to the resultant

vector such that

Repeat step 6.1 until there is no change in

succeeding starting vectors, or simply, until

28

ok = -1

Step 7: Find the sequence and the corresponding schedule time.

7.1 In each machine block of the final starting vector,
order the jobs with respect to their start times.

7.2 Locate the element in each machine block of the
final starting vector that has the latest start
time.

7.3 Add the processing time to the starting time of
each chosen element.

7.4 Select the operation which results in the greatest

amount of time such that
T(S) = max T : + t 3 r j=1' 2,.-0;31
[(3 mM) (3 mM)]

where T(S) is the schedule time for the sequence.

29

CHAPTER III

Applications to Combinatorial Problems.

In the preceding chapter the network algorithm was
developed and demonstrated with a sample problem. The problem
chosen in Chapter II was a typical job shop scheduling problem.
In this chapter, however, three other types of problems have
been used to illustrate that the network algorithm is not
completely isolated in its use. These three problems are the
traveling salesman, critical path, and explosion problems.

The format used in this chapter involves two specific
divisions within each area of application. The first is the
formulation of the problem for application of the network
algorithm and the second involves a sample problem. It should
be stressed that the main intent in this chapter is to point
out the applicability of the network algorithm to at least
some phase of other network problem solutions. In certain
cases, complete solutions may be attainable; however, in other
cases it may be necessary to use the network algorithm in
combination with other techniques in order to obtain a specific
solution.

3,1. The Traveling Salesman Problem

The traveling salesman problem can be stated as follows:
A salesman has a given number of cities he must visit. Knowing
the distances, costs, or say times between each pair of cities,

the salesman's task is to select a route whereby he does, in fact,

30

visit each city only once and in so doing, optimizes some

measure of performance. It is, of course, understood that
the salesman begins at some known point and ends his route
at this same point. Nevertheless, this section deals with
the application of the network algorithm to the traveling

salesman problem and is organized as stated above.

Problem formulation. The traveling salesman problem

can be considered as nothing more than a scheduling problem
invblving one machine. If such a scheduling problem makes
use of say, setup time as a measure of performance, it becomes
synonomous,in nature to the traveling salesman problem. That
is, a number of jobs are to be sequenced on a single machine
so as to minimize total setup time between jobs, including
the setuﬁ time between the final job in the sequence and the
first job in the sequence. Nevertheless, in the construction
of the precedence matrix for the traveling salesman problem,
only one machine block is considered. In fact, the entire
matrix is one machine block. Furthermore, remembering that
in the scheduling problem, all conflicts within blocks were
resolved by a bounding procedure, one can anticipate using
some such criteria for resolving conflicts in this application.
fhat is, since the precedence matrix for the traveling salesman
problem is one large machine block, there will be a conflict
at every iteration.

Necessary to the construction of the precedence matrix

is the cost chart. Costs are used here, but it is understood

31

that one could consider other criteria such as distance or
time. Nevertheless, consider the asymmetrical cost chart
proposed by Little, et al [12], and shown in Table 3.1. This
cost chart as well as the network of Figure 3.1, plays a dual
role. They are presented at this point for illustrative puf-
poses.only, with respect to the problem formulation; however,
they also provide the sample problem that is solved in the
second part of this section. Nevertheless, asymmetry implies
the possibility of traveling from one node to another node, or
conversely, from the latter node to the former. In conventiénal
notation this can be represented such that

(1) <<(3),

and
()<< (i),

where (i) and (j) represent nodes in the network. This asym-
metrical concept was evident in the relationships referred to
previously as possible direct precedence. Just as before,
these possible direct precedence relationships can be repre-
sented in the network by broken noﬁ-oriented branches. Such
relationships can be seen from the network drawn in Figure 3.1.
Once the cost chart is known, the precedence matrix can
be constructed. The manipulation of the precedence matrix is
carried out in a manner consistent with the algorithm. The
starting vector is, of course, employed in the same manner as
before. The only entry in the initial starting vector not zero,

will be that corresponding to the starting node in the network.

32

Table 3.1. A Cost Chart

(1) (2) (3) (4) (5) (6)

(1) 0 27 43 16 30 26
(2) 7 o 16 1 30 25
(3) 20 13 0 35 5 0
(4) 21 16 25 0 18 18
(5) 12 46 27 48 0 5
(6) 23 5 5 9 5 0

7
/// /g// ;/K____‘, N
_ \ >~
e~ 1
AN T -~ - /
\ l ""{___ -~ I Ve

Figure 3.1. Network depicting possible direct precedence
relationships.

33

Such a starting node can'be considered as the salesman's home
or, at least, someplace where he starts and to where he must
return., Nevertheless, when the final starting vector is com-
pleted, the route and the route cost can be computed.

When such a route is evaluated, the resultant network

would appear as shown in Figure 3.2,

Figure 3.2. A typical solution to the traveling salesman
problem.,

Sample problem. Consider agéin the cost chart of Table 3.1

and the network of Figure-B.l. Further, let us consider the
starting point of the salesman's journey to be node (l1). That
is, his route must begin at node (1) and terminate at node (1)
after he has visited every other node in the network.

Step 1. Construct the initial starting vector, T%. Knowing
the starting point in the network, the initial starting vector,
70 can be constructed such that |

7 = [+ 0 0 0O 0O 0],

34

Step 2. Construct the initial precedence matrix, Q9.
From the cost chart and the network diagram, the precedence

matrix Q% can be constructed as shown in Table 3.2,

Table 3.2. Initial Precedence Matrix, Q9.
(L) (2 (3) (4) (5) (6) _
(1) 0 %27 x43 x1l6 x30 x26
(2) x7 0 x16 x1 x30 x25
(3) X20 x13 0 x35 x5 X1
(4) X21 x16 x25 0 x18 x18
(5) X12 Xx46 x27 x48 0 x5
(6) | x23 x5 x5 x9 x5 0

Note that the entry (3, 6) in the cost chart which is 0,
appears as 1 in QO, |

Step 3. Check for nodes to enter. In general, any node
can be entered at this point, because all of the columns in
the matrix Q° are potentially null. However, since node (1)
was specified as the starting point, it will be entered first.
It should be noted that a simple procedure for resoclving con-
flicts among entering nodes is used for all iterations after
the initial one. This procedure simply involves scanning the
row of the node currently being visited by the salesman, for
the minimum element of the form X (i, §)° The column in which

this minimum element occurs is entered next.

35

Step 4. Update the precedence matrix by entering the
latest marked node. By making column (1) in matrix Q% null,

the resultant matrix, Q! is formed as shown in Table 3.3.

Table 3.3. Intermediate Pﬁgcedence Matrix, ol.

() _(2) (3 (4 (5) (6)

/(1) i 0 x27 x43 x16 x30 x26 |
(2) 0 0 Xlé6 x1 X30 x25
(3) 0 x13 0 X35 X5 X
(4) 0 X16 %25 0 x18 x18
(5) 0 Xx46 x27 x48 0 x5 _
{6) 0 x5 x5 X9 x5 0

L e e e

Step 5. Repeat step 3 by checking for a new node to enter.
obviously, all five remaining nodes in Q! can be entered; however,
using the procedure discussed above, node (4) is marked to enter.
Upon entering node (4), the resultant matrix, Q2 is formed and
is given in Table 3.4.

We have now moved to node (4) and in so doing, scan row (4)
for the next node to enter. When this is done, we see that we
can enter node (2). After making column (2) hull, the updated
matrix becomes Q3.

The next node to enter is found to be node (3). When entry
is made, the precedence matrix, Q% is formed. The next two nodes
to enter are (6) and (5), where the corresponding updates to

the precedence matrix yields Q5 and Qf, respectively.

Table 3.4. Intermediate Precedence Matrix, Q2.
" Y Y
(1) (2) (3) (4) (5) (6)
ha——
Y (1) 0 0 0 16 0 0
(2) 0 0 x16 0 x30 25
(3) 0 x13 0 0 x5 X1
Y (4) 0 Xlé X25 x18 x18
(5) 0 x46 x27 0 x5
(6) 0 X5 x5 x5 0
Table 3.5. Intermediate Precedence Matrix, Q3.
Y 4 7
(1) (2) (3) (5) (6)
Y (1) 0 0 0 0 0
Y (2) 0 0 x16 x30 x25
(3) 0 0 0 x18 X1
Y (4) 0 16 0 0 0
{5) 0 0 x 27 0 x5
(6) 0 0 X5 X5 0

Table 3.6. Intermediate Precedence Matrix, Q%.

v % Y 7/ Y/
(1) (2) {3) (4) (5) (6)

/(1) 0 0 0 16 0 0
/(2) 0 0 16 0 0 0
/(3) 0 0 0 0 %18 x1
Y (4) 0 16 0 0 0 0
(5) 0 0 0 0 0 x5
(6) 0 0] 0 x5 0

Table 3.7. Intermediate Precedence Matrix, Q5.

/ / v i v /
@ (2 (3 (4 (5 (6)

/(1) 0 0 0 16 O 0
/(2) 0 0 16 | 0 0 0
/(3) 0 0 0 0 0 1
/(4) 0 16 0 0 0 0

(5) 0 0 0 0 0 0
/(6) 0 0 0 0 x5 0

38

Table 3.8. Final Precedence Matrix, Q6,

4 Y 4 v Y v
- (1) (2) (3) (4) (5) (6)

V(1) 0 0 0 16 0 0
/(2) 0 0 16 0 0 0
/f3) 0 0 0 0 0 !
/(4) 0 16 0 0 0 0
/(5) 0 0 0 0 0 0
/(6) 0 0 0 0 5 0

Step 6. Update the starting time vector. Now that all
six nodes have been entered, a resultant route has been deter-
mined. When the final precedence matrix, Q° is multiplied

by the initial starting vector, the resultant vector becomes:
T'=[(0 0 0 16 0 0].

When this vector is added to T?, the resultant is Tl, such that
TP =1 0 0 16 0 O0].

Continuing in this manner, a total of six T vectors are computed.
The other five can be presented as follows:
T2 = [y 32 0 1} 0 0],

T3

[« 32 4816 0 0],
T = [, 32 48 16 0 48],

39

T5 = [. 32 48 16 53 48],
and

™ = [1 32 48 16 53 48].

Note that T® is identical to TS.
Step 7. Calculate the final route and route cost. By ordering
the entries in the final starting vector with respect to start
costs, the following sequence can be given:

(1) (4) (2) (3) (6) (5).
Therefore, the rbute to be taken becomes

1l -+ 4 » 2 +» 3 » 6 > 5 =+ 1,
The total cost of this route can be computed such that

T8) = x(5) * °(5, 1°
where 1 (g is the final starting cost of node (5) and (s, 1)
is the cost from node (5) to node (1). Therefore, the final
value of the route cost can be given as follows:

T(S) = 53 + 12 = 65.

The final network can be shown in Figure 3.3.

Figure 3.3. A solution to the sample problem.

40

It should be pointed out that the criterion used in
selecting nodes to enter was chosen for simplicity only. No
doubt, there are other criteria that may be more powerful;
however, this diséussion is concerned primarily with appli-
cation of the network algorithm to the general traveling
salesman problem, The resolution of conflicts is, of course,
essential to the solution of the problem, but any discussion
in depth of specific criteria such as bounding procedures,'
is not warranted at this time.

It should also be pointed out that the optimal solution
to the above problem as presented in Little, EE 3& (12 1,
can be given as follows:

l1+>4+>3+5+>6>+2=+>1,
where the cost of the route is 63. Using the simple criterion
described earlier for entering nodes, the solution of Little,
et al., cannot be obtained; however, by simply entering the
nodes consistent with the optimai route above, the route cost

of 63 is easily computed.

3.2. The Project Scheduling Problem

Sometimes it is desirable when considering a project
network like that shown in Figure 3.4, to determine the critical
path through the network. It is critical for, indeed, any
shortening of its length, whether it be in terms of distance,
time, cost, or any other measure of performance, would result

in a savings with respect to the same measure of performance

41

for the entire network. Nevertheless, such problems are re-
ferred to as critical path scheduling problems and their solu-
tion can be computed with the aid of the network algorithm,
This section deals with the formulation of the critical path
problem and applicability of the algorithm is demonstrated
with a simple example.

Problem formulation. The critical path problem is con-

structed as a typical network as shown in Figure 3.4. The
nodes represent events and the directed branches represent
activities., The broken branch represents a dummy activity.
It signifies that the event to which it is directed cannot
begin until the event from which it is directed is finished.
It is, of course, Eroken to imply that no real or.physical
precedence occurs. Nevertheless, once such a network is con-
structed, the process of obtaining a critical path can commence.
This procedure entails determining the slack times for each
event. Slack time is that amount of time that a node or event
can be delayed without increasing the total time to complete
the network. An event without slack time is a critical event
and any continuous path or transitive chain of precedence rela-
tionships between events without slack is a critical path.

To determine the slack times of each event, we must deter-
mine the earliest and latest start times of the events. Such
a determination of start times can be made using the network

algorithm. However, once these start times have been computed,

Figure 3.4.

A typical network for critical path analysis

42

43

the remainder of the solution is computed consistently with
such techniques as that described in [1 1. |

Obviously, determination of earliest start times poses
no problem, Such start times are simply the result of the
final starting time vector, consistent with the method des-
cribed in the algorithm. That is, once the precedence matrix
is constructed, the initial starting vector ié multiplied
over and over until there is no change in succeeding vectors.
The resultant final starting vector represents the earliest
start times of all.évents in the network. It should be pointed
out that the section of the algorithm pertaining to computation
of the final precedence matrix.can be omitted. The nature of
the problem itself allows for one and only one precedeﬁce matrix
becéuse, naturally, all precedence relationships are finalized
by virtue of the initial network itself.

While computation of the earliest start times of all events
follows‘hirectly £rom the algorithm, the computation of the
latest start times requires a slight addition to the operations
of star algebra mul£ip1icatiqa and addiﬁion. Such a change
can be formulated such that

a © -b= |al - |b] =c¢

c () d

It should be pointed out that the above addition to the star

and

min (c, 4d).

algebra operators is made oniy to facilitate application of

the network algorithm to the critical path problem. Any further

44

.

application, although perhaps desirable, is not reported at
this time.

Besides imposing the above convention for star algebra
addition and multiplication, we must change the precedence

matrix such that the new matrix becomes
Q' = [— 1 Q] TI

That is, the original precedence matrix used to determine
earliest start times is multiplied by -1, and made negative,
after which time it is transposed.

When the new precedence matrix has been formed, the
starting vector can be constructed such that the only non-
zero entry in the vector is that corresponding to the earliest
starting time of the final event in the network. That is,
determination of the latest start times of all events can be
accomplished by beginning at the final event in the network
and proceeding backwards thrdugh the network until the first
node or event is reached. Obviously, the only event whose
start time is known is the final event.

In summary, the critical path analysis of a project net-
work can be facilitated using the network algorithm in two
capacities. The first is determination of the earliest start
times of all events in the network and follows directly from
the algorithm. The second involves determination of the latest

starting times of all events and requires the following changes:

45

(1) the transpose of the original precedence matrix after it
has been made negative, (2) alteration of the starting time
vector by beginning at the last event in the network and moving
from back to front, and (3) the additional convention for

star algebra multiplication and addition. These changes as
well as thé entire applicatidn of the network algorithm to

the critical path problem are illustrated in a sample problem.

Sample problem. Consider the project network of Figure 3.4,

which was taken from Ashour [1 1. Each node represents an
event, while activities are represented by the directed branches.
The duration of activities is represented by the numbers attached
to each branch., The first analysis will be made to determine the
earliest start time of each event.

Step 1. Construct the initial starting vector, T?. Only
the starting time of event (1) is known and is so.signified

by the entry of 1 in the initial starting vector such that
™=(: 0 0 0 0 0 0 01,

Step 2. Construct the precedence matrix, Q. As mentioned
in the problem formulation, there is only one precedence matrix;
consequently, the exponents can be omitted from the notation.
Nevertheless, the precedence matrix can be constructed as shown
in Table 3.9. Since no updates are required to the precedence

matrix, we can proceed directly to step 6.

46

Table 3.9. Precedence Matrix, Q.

(1) (2) (3) (4) (5) (6) (7) (8) _

(1) 0o 2 0 0 0 0 0 0
(2) 0 0 4 2 0 0 0 0
(3) 0 0 0 0 5 0 0 0
(4} 0 0 0 0 0 3 0 0
{5} 0 0 0 0 0 1 3 0
(6) 0 0 0 0 0 0 6 0
(7) 0 0 0 0 0 0 0 10
(8) 0 0 0 0 0 0 0 0
- .4

Step 6. Update the starting time vector. When the pre-

cedence matrix, Q is multiplied by T0, the resultant becomes
[o 2 0 0 0 0 0 O01].

When the above vector is added to TP, the resultant is T!

such that
TP = {+ 2 0 0 0 0O O O01].

Following in the above manner, a total of seven starting

vectors are computed. They are as follows:

47

T2 = [2 6 4 0 0 0 01,

T3 = [1 2 6 4 11 T 0 01,
™ = [1 2 6 4 11 11 14 0],
T5 = [2 6 4 11 11 17 24},

6 = [.1 2 6 4 11 11 17 271},
and
7 = [+ 2 6 4 11 11 17 27].
Note that T® and T7 are identicalk
Now that the earliest start times of all events have
been computed, the latest start times can be determined.
Step 1. Construct the initial starting vector. Recalling
that the latest start times are determined by moving from the
back to the front of the network, the initial starting vector

now can be constructed such that
0 = [0O 0 0 0 0 0 0 271,

where the only event whose start time is known is the final

event in the network or event (8).
Step 2. Construct the new precedence matrix, Q'. By

making every non-zero entry in Q negative and transposing the

resultant matrix, the matrix Q' can be given as shown in Table 3.10.
Step g. Update the starting time vector. Utilizing the

new convention for star algebra multiplication and addition,

the product of the initial starting vector, T? and the pre-

cedence matrix, Q' can be given as

[O 0 0 0 0 0 17 01].

48

When the above vector is added to T?, the resultant, T! can

be given such that
TT=[{06 0 6 0 © 0 17 27 1.

Note that in the above addition, normal star algebra holds.
Proceeding in the above manner, we find that there are

seven starting vectors. They can be given as follows:

T2 = [0 0 0 0 14 11 17 271,
T3 = [0 0 9 8 11 11 17 271,

™ = [0 5 6 8 11 11 17 273,
TS = [3 2 6 8 11 11 17 271,
76 = [0 2 6 8 11 11 17 271,

and
7 = [0 2 6 8 11 11 17 27],
where, of course, T® and T’ are identical.

Now that the latest start times of all events have been
computed, the original network is reconstructed and each event
in the network is accompanied by its earliest and latest start
times as shown in Figure 3.5.

The application of the network algorithm is concluded
at this point; however, further solution of the critical path
problem can be found in [1]. Such analysis, in this work,

is not pertinent at this time and is omitted.

49

Table 3.10. Precedence Matrix Q' used to Determine
Latest Start Times of All Events.,

(D) (2) (3) (4) (5) (6) (7) (8)

(1) 0 0 0 0 0 0 0 0
(2) -2 0 0 0 0 0 0 0
(3) o -4 0 0 0 0 0 0
(4) o -2 o 0o 0o 0 0 0
(5) 0 0o -5 0 0 0 0 0
(6) 0 0 0 -3 -1 o 0 0
(7) 0 0 0 0o -3 -6 0 0
(8) 0 0 0 0 0 0 -10 0
R

27
27

11
11

o
=
nn

Figure 3.5. Sample problem, depicting earliest and
latest start times of all events.

50

3.3 The Explosion Problem

The explosion problem, sometimes referred to as the
parts requirement problem, presents a third area of appli-
cation for the network algorithm. Moreover, just as in the
project scheduling problem, all precedence relationships are
initially specified by the nature of the explosion problem
itself. Consequently, the explosion problem involves determ-
ination of operation (node) starting times only. Therefore,
theAuse of the algorithm can be abbreviated to include only
the construction of the precedence matrix and the manipulation
of the starting time vector.

Problem ¥formulation. The general form of the explosion

problem usually appears in a bill of material. Such a bill
of material might appear as in Table 3.1l1, where the produét
or node (1) is constructed from nine components, as can be
seen from Figure 3.6. Six of the components are made (2, 3,
4, 5, 6, and 7) and three are purchased (8, 9, and 10). Fur-
thermore, there may be more than one component essential to
the construction of another. That is, component 4 requires
two parts of component 6. In general, the numbers on the
directed branches between nodes in Figure 3.6 represent the
requirement from one node to another.

The construction of the precedence matrix can be made
directly from the bill of material and the network. Each
branch in the network represents one or more components where

the time per component is given in the bill of material. When

51
this time per component is multiplied by the number of com-
ponents necessary, the time to move from node (i) to node (3j)
is obtained. These times between nodes become the entries
in the precedence matrix. Obviously, all entries in the
precedence matrix will be either zero or some positive scaler.
' As mentioned earlier, this concept is logical since all pre-
cedence relationships are already determined from the nature
of the problem. Consequently, the initial precedence matrix
is also the final precedence matrix. Once this matrix is
constructed, the network can be evaluated with respect to
starting times of all nodes.

The starting vector is constructed in the usual manner,
where the only entries not zero are those representing the
initial components or nodes in the network. When the initial
vector has been constructed, it can be multiplied 6verrand
over as described in fhe algorithm until the final starting
vector has been obtained. The entries of the final vector
represent the earliest start times of all nodes. Of course,
the total time to make the product considered in the bill of
material can be computed just as schedule time was computed
earlier.

Sample'problem. Consider the bill of material given in

Table 3,11, Further, consider the corresponding network of
Figure 3.6. The precedence matrix can!':be constructed from

the bill of material and the network as shown in Table 3.12.

52

Table 3.11 Bill of Material for Sample Problem.

Node Quantity Time/Component Total Time
1 1 5 5
3 4 12
3 2 . 3 6
4 1 6 6
5 5 2 10
6 4 3 12
7 3,2 4 12, 8
8 2 5 10
9 4,3 3 12, 9
10 5 1 5

Figure 3.6. Network depicting bill of material
for sample problem.

53

Table 3.12. Precedence Matrix, Q for Sample Problem.

(1) (2) (3) (4 (5) (6) (T (8) (9) (10)_

(1) ©o o ©o o0 o0 0 o0 0 0 0
(2) 12 0o o 0 o 0 0 0 0 0
(3) 6 0o o0 0 ©0 O o0 0 0 0
4 | o € o o o 0o 0o 0 0 0
(5) o 10 o o0 o0 0 0o 0 0 0
(6) o o o 12 0o 0o 0o 0 0 0
(7) o o 8 0 12 0 0 0 0 0
(8) ©o o o o0 0o 1 0 0 0 0
(9) o o o0 0 12 9 0 0 0 0
(10)] o o o o o 0 5 0 0 0

The initial starting vector, T? becomes
fo o 0o 0 0 0 O v v 1],
where, obviously, only the earliest starting times of nodes
(8), (9), and (10) are known and so signified by 1 in TY. When
T0 is multiplied by the precedence matrix, the resultant vector
becomes

[o o 0 01210 5 0 0 O].

54

When added to T?, the new vector, Tl, is constructed such that
L = {0 0 O 01210 5 1 v 1].

Proceeding as usual, we find that a total of five starting

vectors must be computed. They can be presented as follows:

T2 = [0 22 13221710 5 1 1 1],

T3 = [34 28 13 22 1710 5 1 1 1],

T% = [40 28 13 22 17 10 5 1 1],
and |

T5 = [40 28 13 22 17 10 5 1 1 1].

Note that T5 is identical to T".
The total time T(S) can be computed as follows:
T(S) = max ('&i))-+ t(i)f
= 40 + 5 = 45 time units.
That is, the total time for one operator to assemble the
product specified by the bill of material is 45 time units.
Of course, this interpretation can be extended to include
the case of multiple operators, in which case the time of
45 is simply the total of all individual times involved in

the product's assembly.

55

CHAPTER IV

Computational Experiments

The network algorithm discussed in section 2.3 was pro-
grammed in FORTRAN IV for use on the IBM 360/50 computer.
The program consists of a main program and two subroutines.
The first subroutine represents the composite lower bound
which is used to improve the solution while the second
subroutine is used in conjunction with the bounding sub-
roﬁtine to compute completion times. Evaluation of the net-
work algorithm was made possible by solving a wide range of
problems. The bulk 6f fhe cémputational experiments were
made with respect to the typical job shop scheduling problem.
The number and type of such problems is shown in Table 4.l.
The remaining experiments consist of four traveling salesman
problems, which unlike the dob shop problems, were simply
solved by hand to illustrate the applicability of the network
algorithm,

4,1, Job Shop Problems

The size of the job shop problems vary with respect to
both the number of jobs and machines. The smallest number of
jobs considered was 3, while the largest was 12. The number
of machines ranges between 3 and 5. A total of 17 experiments
were conducted. A total of 25 problems were solved for each
experiment with the exception of experiments VIII and X, in

which case only 10 problems were solved. The entries in the

56

machine ordering and processing time‘matrices were generated
in a random fashion. More specifically, the values of the
processing times were generated from a uniform distribution
between one and 30, inclusively.

The performance of the network algorithm was made with
respect to three factors pertaining to the job shop problem:
(1) the computational time involved to obtain a solution,

(2) the quality of the solution, and (3) the number of iter-
ations and conflicts for each problem size. The statistics
maximum, minimum, mean, and standard deviation for the factors
efficiency, number of conflicts, and number of iterations have
also been computed.

Computational time., The computational time was, of course,

one of the main considerations in the evaluation of the perfor-
mance of the network algorithm. In Table 4.1, the computational
time per problem size is shown on a job group basis. The rela-
tionship between computational time and an increase in the num-
ber of machines per job group can be seen in Fiqure 4.4. It is
interesting to note that the experiments with the least number
of jobs exhibited nearly linear relationships when the number
of machines was increased from 3 through 5. Of course, such
analysis cannot be made for problems with 8 or more jobs because
only 2 machine sizes, namely 3 and 4, were considered.

When the number of machines is held constant and the job
size is increased, the effect upon computational time can be

shown graphically in Figures 4.2 through 4.4. Again, linearity

57

is, at least, graphically évident when the level of jobs is
in the range of 3 to 8. However, when the job level reaches
10 and 12, the computational time increases rapidly.

The next analysis that was made with respect to compu-
tational time was that in which the time per node was inves-
tigatéd. These realtionships are tabulated in Table 4.4 and
shown graphically in Figure 4.5. Thé instigation for making
this type of analysis arose Qhen it was noticed that for
problems with the same number of nodes, the computational
time per problem was very close. For example, from Table 4.4,
it can be seen that the 4x5 and 5x4 problems, both consisting
of 20 nodes, exhibited the same computational time. Such was
the case for the 15 node or 3x5 and 5x3 problems. Consequently,
all of the problems were reorganized with respect to their
corresponding number of nodes. When a plot was made of the
average time per node for each total number of nodes, it was
observed from Fiqure 4.5, that, just as before, the lower portion
of the curve approximated a linear relationship, while the upper
portion did not. More specifically, the portion of the curve
that is non-linear seems to occur when the node level reaches
approximately 30.

At this stage in the research, only a speculative explan-
ation can be made concerning the rapid increase in computational
time when the number of nodes increases. Nevertheless, consider
the case of all problems consisting of 30 or more nodes. These

problems were 6x5, 8x4, 10x3, 1l0x4, 12x3, and 12x4. By recalling

58

that entries are made in the precedence matrix on a machine
block basis, where each block consists of J jobs, it is
natural that as J increases, the number of conflicts that
occur per machine block increases. The immediate result of
this phenomena is that the lower bounds of all nodes in the
resulting conflict sets must be computed in order that a
resolution can be made. Naturally, as the number of such
lower bound computatipns increases, the execution or compu-
tational time per problem would increase. Of course, inherent
in this situation is the expectation that as conflicts them-
selves increase, the number of nodes in the conflict set would
also increase, thereby increasing computation involved in
resolving the conflict. It is believed that if such lower
bound computation were excluded from the total computational
time, the relationship between time per node and the number
of nodes would be, at least, more nearly linear. However,
such an exclusion would mean that conflicts would be broken
at random or, at best, by some procedure reqairing much less
computation than that of a lower bound on schedule time. If
this were the case, the expected efficiency of solution using
such a selection criteria, would be much less than that now
experienced using the composite lower bound.

Quality of Solution. The efficiency of the solution found

by the network algorithm was computed from the ratio of that
solution to the known optimal solution.obtained by B-and-B

technigue [11]. These results have been tabulated in Table 4.1

59

and 4.2, The number of optimal solutions per problem size
as well as the percent of optimal solutions and the corre-
sponding range of efficiency are shown in Table 4.5. The
scarcity in the number of available optimal solutions does
not allow a good analysis with respect to possible trends

in efficiency as problem size increases; however, one could
expect efficiency to decrease as problems become larger.

The reason for this can be attributed, most likely, to the
increase in the number of conflicts that occur when the
problem size, especially job size, increases. That is, when
" a conflict is encountered and is ultimately resolved, the
result is that idle time is generated by virtue of the reso-
lution.

The logic used above is supported, in part, at least by
the fact that in every instance where there were no conflicts
in a problem solution, the éptimal solution was obtained.

Of course, the frequency of such occurrances is low due to
the fact that whenever the number of jobs is greater than the
number of machines, there will be at least one conflict and
most probably, more than one. As can be seen from the table
of experiments, 12 of 17 problem sets involved situations

in which J was greater than M.

Number of Iterations. As mentioned earlier in this

thesis, only one node can be entered per machine block per

iteration. Obviously then, if M nodes are entered at every

60

SpUOODdsS UT SWT3 TeuoT3IeINduOdyxy
*swaTqoxd yz uoO paseq SOTISTIEIS Idyjzo [T {swarqoad Gz uo peseq auT3 TeuoTiezndwodys
*BTqeITIRAR ST UOTINTOS TPWTIHO ONg

€0'0F 90°E 9L°VPE Y4 (1374 L6" B ET et 9T - ¥ » * qe ,vNNH ITIAX
9L°¢€Z e6L°C 8C"LC ¢C CE 69° 0C°tT CT ST LB°T 1L 96 L qZ "EXTT IAX
Zv"€EC ¢€6°C 88B°ST GBI {I€ T6" 9L 1T 0T 71 8v°¢6 T qZ FPX0T AX
G9°6 I8°C Vv0°1¢ ST GqZ Z8° 96°0T 0T ¢T LET9 EL°EG6 /4 SZ €X0T AIX
£€S°ZT 0T°"Z 9£°8T1 ST £C 6S" 88°6 6 T vL"9 08°68 4 qZ X8 IIIX
67" L 8E€°¢C 0F°ST o 6T T9°® 9T°6 8 0T 81°S 6S9°t6 T Gz £X8 IIX
80°0T TI8°T 06°CT 0T 9T 26" 09°6 8 T 29°¢ TL"°98 [0T GgX9 IX
06°S 9% T TL 0T L €T L9° €1°8 L 0T CE"6 Vv 68 ve Y4 xx¥7X9 X
09°¢ 06°T 9L°6 9 £T LS® Q¢°L 9 8 L8°9 LL°té6 g Y4 £€X9 XI
9L°S 8T°T 00°L 4 8 LL® 00°8 L 0T 0DE*9 ¢28°¢to 0T 0T GXg ITIA
L € TIT1°2 8¢°8 ¥ VT ¥9°* 8¥v°L L 6 L6 LT €6 ST sZ 7Xg IIA
9T°¢ GE°T 80°L S 6 6S° $279: S L LB°E 66°96 Y4 Ge £Xg IA
L E €L°T BZ°V 4 8 €L 9T°L 9 6 €0°9 8L°S6 =14 Y4 SXp A
Sv°¢ 6E°T 9S° ¥ 4 L 69° 0¥*9 S 8 LE®9 TZ°S6 GZ gc (2.8 AT
8S6°'T I8°0 9LV £ 9 0S° 96°G: < 9 £€2°S L9°9%6 T4 S¢ £XP III
9T°¢ Z9°T ¢tg°¢ 0 9 86" 0%°9 9 8 EE"F GS°L6 sZ G¢ GX¢E II
PP°T IP°T 9€°¢C 0 S 98° 9L°S ¥ L 9¢*¥y €Z°96 GZ sZ 1245 I
auTy, 0 f uTw Xew o f utw Xew mww Jgon punog °nIos “qoid 2ZTS °ON
-dwo) *sAay S3IOTTFUOD JO ISqunN SUOTIRISII FO I2qumpy dot10133a -3dp Jo *oN 3JOo °*ON -qoxg -dxd

*butdnoab qol yzTm AoUaTOTFI® pue ‘sS3DTTFUOD ‘SUOTIRIAT nwﬁﬂu TeuoTyeandwo) Iy STJel

SPUODDS uT 2uWT3 [eUOT3IE3INdWODyk
9IqelTeAR ST UOTINTOS Tewilxdo ONy

80°0T T8°T 06°CT OT 91 26°0 09°6 8 IT 29°t TL°98 < 0T SX9 IX
ﬂ aL*sS 8TI°T 00°L 14 8 LL*Q 00°8 L 01 0E"9 28°té6 0T 0T GXg IIIA
PL"E EL°T 8C' ¥ < 8 €L°0 9T°L 9 6 €0°9 8L°S6 Y4 A SXy A
b1 ¢ Z9°T ¢2£°¢C 0 | 9 86°0 0FV°9 g 8 EE"Y G8°L6 Y4 6¢ GX¢ I1
€0°0F 90°t 9L°¥E 6l 0y L6°0 ¥8°ET 2T 91 ¥ ¥ ¥ T A PXCT ITIAX
g tC ¢6°Z B88°'ST 6T 1€ T16°0 9L°1IT OT FT gv-ce T T4 PX0T AX
€G°CT 0T°Z 9£°8T &1 14 6570 88°6 6 ITI ¥L°9 08768 14 Y4 ¥x8 IIIX
06°S 9%¥"T TL'0T L €T L9°0 €1°8 L 0T mm..m ¥v°68 &4 T4 %9 X
PL° ¢ 112 82°8 14 PI ¥9°0 8%°L L 6 L6°S LT €6 T4 s /2.3 IIA
sv°c 6E°T 99°% Z L 69°0 0F°9 S 8 LET9 TZ°%S6 A T T4 Xy AT
- IP°T 9€°C 0 S 98°0 9L°S (7 L 96"y €C°96 YA Y4 PXe I
9L°€T e6lL"C 8Z°LT ¢Z¢ A 69°0 0C°€T ¢TI ST L8°T TL*96 L 1% 4 £EXCT IAX
G9'6 I8°¢ ¥0°1¢ ST se <870 wm.oﬁ 0T A LE*9 EL°E6 4 Y4 €X0T AIX
6v°L 8€°2 0¥°ST o6 6T T9°0 9T°6 8 0T 8IS ~S9°E€6 11 T4 £X8 IIX
09°¢g 0S°T 9L°6 9 €T LGS0 G6C°L 9 8 L8°9 LLTEG s Y4 £X9 XI
9T ¢ SE'T 80°L 9 6 mm.c.em.w S L L8°E 66796 T4 L7 £XG IA
8S°1T 18°0 oL°¥ € 9 068°0 96°§ S 9 €TSS L6796 ce §5¢ £EXy III
QWTT 0 n uTtw Xew 0 n utw XePw 339, IFIOrn punod *nfos "qoad 9zTS °*ON

-dwoy *say S3IOTTIUO) FO Id2qumMy SUOTIBIDIT JO Iaqumy AQUSTDITIIA +3dp 3o *ON JO °"ON °qoxd *dxa

“butdnoab suTyorw YITM ADUSDTOTIFS Pu®R ‘SIDTTIUOD ’'SUOTIRISIT waﬂu Teuotjeandwo)y °*Z°f 2@219elL

62

Table 4.3. Number of Iterations Per Problem Size.

Number of jobs Problem Size Number of Iterations Ave, Iterations

3 I x 4 5.76
6.08

3 x5 6,40

4 4 xx 3 5.56
4 x 4 6.40 6.37

4 %5 7.16

5 5 x 3 6.24
5 x 4 7.48 7.22

5 x5 8.00

6 6 x 3 7.20
6 x 4 8.13 8,31

6 X5 9.60

8 8 x 3 9.16
9,52

8 x 4 9,88

10 10 x 3 10.96
11.36

10 x 4 11.76

12 12 % 3 13.20
13.52

12 x 4 13,84

63

Table 4.4. Computational Time per Node*.

Number of nodes Problem Ave. Comp. . Ave. Comp. Time/ Time/Node

Per Problem Size Time Number Nodes
12 iié i:éé 1.51 0.126
15 3x5 2.16 2.16 0.144
5%3 2.16
16 4x4 2.45 2.45 0.153
18 6x3 3.60 3.60 0.200
20 gzi | g:;i 3.74 0.187
<5 g i 6.70 0.279
25 5%5 5.76 5.76 0.230
2 Lox3 e 9.87 0.329
32 8x4 12.53 12.53 0.391
36 12x3 23.76 23,76 0.660
40 10x4 94,49 23.42 0.586
48 12x4 40,03 40.03 0.834

* ' g p
Computational time in seconds

No. of Opt. Sol. -No. of Opt. Sol.
Found Using Network
Algorithm

Found Using B&B

Table 4.5.

Prob.

Size

3x4 25
3x5 25
4x3 25
4x4 25
4x5 25
5x3 25
5x4 25
5x5 10
6x3 25
6x4 24
6x5 2
8x3 11
8x4 4
10x3 4
10x4 l
12x3 7
12x4 *

*No optimal solution available

12
16

11
11
13

12

$Optimal

48.0
64.0

44.0
44.0

52.0

48.0
20.0

20.0

36.0
17.0
0.0

27.0

0.0

50.0

0.0

14,0

64
Number of Optimal Solutions Found per Problem Size.

Range
84 100
82 100
80 100
76 100
78 100
.80 100
79 - 100
.81 100
.80 100
g1 100
B3 1n0
.85 100
.80 98
86 100
94 100

65

iteration, a minimum of J iterations results. The number of
iterations per size of problem has been tabulated in Table 4.1
and 4.2. From the tables as well as Figure 4.6, it can be
seen that as the problem size, and more specifically the job
size, increases, the number of iterations is more nearly J.

4.2, The Traveling Salesman Problem.

Four traveling salesman problems have been solved by
hand and are preseﬁted in this section only as a demonstration
of the applicability of the network algorithm. The problems
are presented in the form of a distance chart. Included, of -
course, is the solution as well as the corresponding efficiency.
As in Chapter III, the criteria for entry in the precedence
matrix, is a simple look ahead technique which is used for
simplicity. However, some criteria could be developed to
improve the solution.

Problem 1. The problem formulated in Table 4.6 is taken
from Cochran [14]. The solution obtained using the network
algorithm is 37. A measure of efficiency is not possible
because an optimal solution to the problem is not available.

Nevertheless, the route to be taken can be given as follows:
l1+3-+6-+4+5-+2->1,

where node 1 is considered to be home.

66

Table 4.6 Distance Chart for Problem 1

0 il 9 12 13 10
1l 0 10 11 4 -8
9 10 0 8 2 4
12 1k 8 0 7 2
13 4 9 7 0 5
10 8 4 2 1 0

*
Problem 2. The second problem shown in Table 4.7 involves five cities.
Again, no optimal solution is available; however, the solution
obtained with the network algorithm is 38. The corresponding

route can be given as follows:
l1+5+4+2+3-+1 '
where node 1 is home.

Table 4.7 Distance Chart for Problem 2

0 10 - 8 4 2
10 0 11 2 12
8 11l 0 10 11
4 9 10 0 8
2 12 11 8 0

Problem 3. The problem shown in Table 4.8 is a five-city

problem taken from [15] . The solution obtained from

*
We are somewhat at a loss to identify the original author of
this problem.

67

the network algorithm is 148 which is the same as the optimal
solution, yielding an efficiency of 100%. The route to be

taken can be given such that
2+3+4-+5-+>1-=+2 .
where home is node 2.

Table 4.8 Distance Chart for Problem 3

0 30 26 50 40

30 0 24 ' 40 50
26 24 0 24 26
50 40 24 0 30
40 50 26 30 0

Problem 4. The final problem, shown in Table 4.9, is a
ten-city prboblem from [15]. The solution by the network al-
gorithm is 387 while the optimal soluﬁion is 378; hence, an
efficiency of 98%. If home.is éonsidered to be node 9, the

route can be given as follows:

9 +5+4+3>2+1+7+>6-+8=>10~+29 .

28
57
72
8l
85

80

113
89
80

28
45
54
57
63
85
63
63

Table 4.9 Distance Chart for Problem 4.

57
28

0
20
30
28
57
57
40
57

72

45
20

0
10
20
72
45
20
45

81
54
30
10

0
22
81
41
10
41

85

g7
28
20
22

0
63
28
28
63

a0

63
57
72
81
63

0
80

89

113

113
85
57
45
41
28
80

0

40
80

89
63
40
20
10
28
89
40

0
40

68

‘80
63
57
45
41
63

113
80
40

*souUTyORW JO IIQUMU JFURJISUOD YITM
‘gqol JO Isqunu @yj pue swT3l TeuoTieindwod usemileq dIysuoTilRISY “T°p 2Inbig

69

sqor

ET 1T 0T 6 8 L 9 S 4 €

0T
(A
A
91
8T
0c¢
A4

ve
9¢

SpPUOD®§ UT 2WT], Ieuoiqeqndmoa

70

*S2UTYDRW JO ISQunu JUBISUOD YITM
sqol jo Ioqunu @y3 pue awTjl JrUOTIEINdWod usamilaq dIysuorIerad Ty 2anbtg

sqop
L IT 0T 6 8 L 9 S 4 £

0T
12t
A
9T
8T
0¢
(A4
ve
9¢Z
8¢
(1%
43
43
[9¢€

8¢t

ov

spuooag ul awrl TeuocTizeinduc)

*SQUTYORWl JO JABQUNU JURISUOD YFTM

71

sqop

A SR A 0T 6 8

sqol JO Ioqumu 2y3 pue sawT3l TeuoTieinduocd usomisq dTysuoTie(ay “"g£"f 2anbTg

To]
i

0T
(A
(At
91
81
0¢
(44
ve

9¢

spuooes UT awrl Teuorjeindwo)d

72

*SaUTYORUW JO Iaqumu pue sSawI3 Teuorijejindwod usamieq dIysuoTjleTay

SaUTYDRW

"y 2anbra

e
I

¢

bR B

0T

(A

— ____»

4
2
~

o

W
91
8T

0¢

1€<

14
9z
82
0€
43
e

9€

0¥

I Teuotjezndwopd

T ouT

»

spuooeg u

-opou Iad awr3i TeuoT3ieindwod pue S9POU FO JdqUUU ISYJ usemzaq dTysuoTjleIad ‘G°y 2InbTa

SOpON JFO Iaqunpy

73

0s ov 0€ 0c 0T

°0

¢°0

S 0

9°0

apoN/am;L'Ieuo;qeqndmoo

*SUOT3BID3T FO JIL_qunu SY3 pue IzZTS qol usemiaq drysuoTIlelsy °9°¥ aanbta

73a

sqgop

Z1 11 0T 6 8 L 9 S ¥ €

SUQTIBIOD]I JO Iaqumy abeIsaAy

74

CHAPTER V

Summary and Conclusions

The objective of this thesis is to preseﬁt an algorithm
which is based upon the schedule algebra operators and which
is used to solve combinatorial problems. The immediate
application of the algorithm is shown in the job shop
scheduling problem; however, its use is extended to three
other types of problems, namely, the traveling salesman,
project scheduling, and the explosion problems. In the case
of the latter three applications, the use of the algorithm
is for demonstration purposes only; however, for the job shop
scheduling problems, a fairly rigorous computational experi-
ence was obtained. Furthermore, in the case of the job shop
problem, a composite-based bound was embodied in the algorithm
which is used to improve the solution.

The algorithm employs a network approach, the basic

concepts of which are presented in Chapter II. The demon-
stration of such an approach is made in the case of a simple
job shop problem where J jobs are to be sequenced on M maéhines.
Finally, the computational algorithm is presented in formal
fashion, using fairly rigorous notation.

The extension of the applicability of the algorithm is
presented in Chapter III. The three classes of problems men-
tioned above are used for demonstration. In the case of the

traveling salesman problem, a complete application can be made

75

because of the nature of the problem itself. By considering
the traveling salesman problem as nothiﬁg more than a job
shop problem consisting of only one machine, the soclution by
the neﬁwork algorithm is fairly routine. However, in the
case of the project scheduling and explosion problems, the
network algorithm is employed in a partial capacity. None-
theless, in such a partial application, the main point that
should be evident, is the flexibility of the algorithm.

The performance of the algorithm is evaluated in Chapter IV.
A total of 17 job shop experiments, exercising a wide range of
sizes, were run on the IBM 360/50. In addition, four traveling
salesman problems were solved. Three factors were considered
in the evaluation of the algorithm with respect to the job
shop problem: (1) éomputational time, (2) quality of the
solution, and (3) the number of iterations and conflicts
experienced in the solution. The results are formalized in
numerous tables and figures in Chapter IV. The computational
time was found to exhibit a fair linear relationship at the
small problem level. However, as problem size, especially the
number of jobs, increased, the computational time increased
rather rapidly. The effect of computational time per node was
investigated and, again, computational time seemed to increase
in a non-linear fashion at the large problem level. It is
believed that this is due, in part, to the increased computa-
tional time involved in resolving conflicts with the composite-
based lower bound. Such conflicts increased, obviously, as the

job size increased.

76

The gquality of the solutions thained was computed from
the ratio of the network algorithm solution to the optimal
solution. Although not graphically evident because of the
inconsistency of available optimal solutions, the efficiency
of solution should decrease as the number of conflicts increase.

In the case of the number of iterations experienced in
obtaining solutions for the various éroblem sizes, it was
found that as the number of jobs, J, increase, the number of
iterations seems to be more nearly the minimum which, of
course, is J.

While a large number of at least one ttass of combina-
torial problems were solved, the main intent in this work
was not one of computational experience. Rather, it was the
objective of this thesis to develop a network approach to
such problems as those included and to present a formal al=-
gorithm which can be used in their solution. Of course, as
is exhibited by the algorithm's application to some problems,
only partial solutions have been obtained. Consequently, it
is in this area that further research has been proposed.
Specifically, further work should be done in two immediate
areas. The first involves the further applicability of the
algorithm to such problems as the delivery and the line-balancing
problems, as well as increased applicability in the project
scheduling problem. Secondly, further improvement of the

network algorithm solution should be considered. At this point

77

in the research, the composite-based lower bound has proved

to be the most desirable criteria; however, its applicability
has been made in only one type of problem. Finally, it should
be poiﬁted out that the possibility of further improvement

in the algorithm itself should be investigated.

78

REFERENCES

Ashour, S., Introduction to Scheduling: Concepts,

Analyses, and Performances, John Wiley and Sons, New

York, N.Y., in press.
Ashour, S. and M, N. Quraishi, "Analysis and Comparison
of Vafious Lower~-Bounds on Schedule Times for the

Solution of Flow-Shop Problems," Proceedings of the

American Astronautical Society, to be published.

ashour, S., and M. N. Quraishi, "Investigation of Various
Bounding Procedures for Production Scheduling Problems,”

The International Journal of Production Research, Vol. 7.

No. 3, 1969, 1-4.
Conway, R. N., W. L. Maxwell, and L. W. Miller, Theory

of Scheduling, Addison-Wesley Publishing Company, Reading,

Massachusetts, 1967.
Giffler, B., "Scheduling General Production Systems Using

Schedule Algebra," Naval Research Logistics Quarterly,

Vol. 10, No. 3, Set., 1963,
Giffler, B., "Schedule Algebra: A Progress Report,"

Naval Research Logistics Quarterly, Vol. 15, No. 2y

June, 1968.

Giffler, B., "Schedule Algebras and Their Use in Formu-

lating General Systems Simulation," Chapter 4 in reference.

Giffler, B., "Mathematical Solution of Explosion and

Scheduling Problems," IBM Research Report RC-128,

Yorktown Heights, New York, May, 1959.

79

9 Giffler, B., and G. L. Thompson, "Algorithms for

Solving Production Scheduling Problems," IBM Research

Report RC-118, Yorktown Heights, New York, June, 1959,

10. Giffler, B., and G. L. Thompson, “Algorithms for Solving

Production Scheduling Problems," Journal of Operations

Research, Vol, 8, July, 1960, pp. 487-503.

11 Hiremath, MS Thesis, Kansas State University, January,
1970.

12. Little, J.D., K. G. Murty, D. N. Sweeney, and C. Karel,
"An Algorithm for the Traveling Salesman Problem,”

Operations Research, Vol. 11 (D 63), pp. 972-989.

13 Muth, J. F., and G. L. Thompson. Industrial Scheduling.

Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1963.

Related References

14. Cochran, H., MS Thesis, Kansas State University, 1968.
15 Karg, R. L., and G. L. Thompson, "A Heuristic Approach

to Solving Traveling Salesman Problems", Management Science,

vol, 10, no. 2, January, 1964, pp. 225-48.

80

APPENDIX A
Schedule Algebra Theory

The theory upon which the schedule algebra is built is
based on certain fundamental conceéts found specifically in
the scheduling problem and more generally in the combi-
natorial problem. Beginning with the basic concept of the
precedence relationship, the theory for the algebra is developed
to a point where the operators can be presented in a formal
fashion. After the schedule algebra is presented, an adapta-
tion of the algebra known as star algebra is presented in a
similar manner. |

A.l. Precedence relationships:

One of the very basic concepts pertaining to the theory
of the schedule algebra and the consequent formulation of the
operators, is that of the precedence relationship. This con-
cept can best be explained by considériﬁg the following

network.

Figure A.l. A Typical Network

81

It can be seen from Figure A.l. that there are four nodes,
each being connected to at least one other node in the
network. It is precisely these relationships between con-
necting nodes that define the nature of the precedence rela-
tionships.

When a node must begin at the same time as or before
another node, it is said to precede that node. From Figure
A.l., it can be seen that node (1) precedes all other nodes
in the network. Node (4), on the other hand, does not pre-
cede any nodes. If a node must begin before another node
with no other nodes between them, the first node is said to
directly precede the second. This relationship is seen to
exist between nodes (1) and (2), (1) and (3), (2) and (3},
(2) and (4), and between (3) and (4).

The relationships of precedence and direct precedence
can be symbolized by adopting the following convention. If

a node (i) precedes a node (j), it shall be denoted as follows:
(i) < (7).

While not pointed out earlier, a node can be taken to precede

itself, or
(i) < (1)

If a node (i) is to begin before node (j), with no other
nodes in between, then node (i) is said to directly precede

node (j), or

82
(1) << (3).

Unlike the precedence relationship, a node does not directly

precede itself. That is,
(i) </< (i).

Nevertheless, it can be seen that with the exception of a
node directly preceding itself, the set of all direct pre-
cedence relationships is included in the set of precedence
relationships.

Precedence chains. The concept of the chain relationship

is basically a simple one. Such a relationship is evident
when two nodes are connected by one or more branches in a
network. The length of the chain is dependent upon the num-
ber of connecting branches. Furthermore, the lengths are
referred to by levels, such that the chains can be d, 1, 2,
or, in general, of level L. For example, a one-level chain

can be illustrated as follows:

O—0

This relationship illustrates the direct precedence of node

(i) to node (j) and, in general, points out that all direct
precedence relationships are constructed of one-level chains.

Consider the case below:

83

-

Obviously, node (i)<<(j), (j)<<(k), and (i)<(k). This is a
two-level chain, but more importantly, is the result of two
one-level chains or two direct precedence relationships. Con-
sequently, any L-level chain is the result of L one-level
chains, which in turn, can be interpreted as L direct precedence
relationships.

Finally, a chain of level zero occurs when a node precedes

itself. That is, when the following relationship is evident:

Consultation of the network in Figure A.l., shows that
there are four 0-level chains, five l-level chains, four 2-
level chains, and one 3-level chain. These chains and their

precedence interpretations can be seen in the following

summary.
0-level l-level . _2-level 3-level
1 1<<2 1<<2<<4 1<<2<<3<<4
2 1<<3 1<<2<<3
K] 2<<3 . D<<¢3<c<cd
4 2<<4 1<<3<<4
3<<4

The precedence matrix. A precedence matrix is nothing

more than an arrangement, in matrix form, of the direct pre-
cedence relationships that exist for a particular network.

The matrix is of size (n x n) where n is the number of nodes

84

in the network. Entries n(i,j) are made in the matrix N,
where node (i) directly precedes node (j). The value of the

entry is made with respect to two cases, such that
0, if (1)</<(3J)

n,. .
(i,3)
1, if (i)<<(3).

By considering the network of Figure A.l., the following

precedence matrix can be constructed.

(1) @ (3 (4)
(1) 0 1 1l 0
(2) 0 0 1 1
N =
(3) 0 0 0 1
(4) 0 0 0 0
- -

Reading from the matrix, node (1) directly precedes node (2)
and (3). 1In like manner, node (2) directly precedes nodes (3)
and (4), while node (3) directly preéedes.node (4) and node
(4) directly precedes no node. Nonetheless, the matrix N,
represents all of the l-level chain relationships associated

with the network.

85

In multiplying the matrix N by itself, we get:

0 1 1 0 0 1 1 0
5 o 0 1 1 00 0 1 1
N = .
0 0 0 1 0 0 0 1
0 ¢ 0 O 0 0 0 O
0o 0o 1 2
0 0 0 1
= L]
0 0 0 O
0 0 0 O

The entries n? , in N2, represent all existing chains of

(i,3)
level 2. That is? there exists one 2-level chain from node (1)
to node (3). Two 2-level chains from (1) to (4) and one 2-level
chain from (2) to (4). These relationships do, indeed, exist

as can be seen from the network.

If N2 shows all 2-level relationships, it follows that

N3 shows all 3-level chain relationships.

0 0 1 2 0 1 1 07

0 0 0 1 0 0 1 1
N =

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

86

0 0 0 1
0 0 0 0

) 6 0 0 0 |
0 0 0 0

As the resultant matrix, N3, shﬁws and as the network verifies,
there is only one 3-level chain and that is from node (1) to
node (4).

In general, the number of L-level chains between two
nodes (i) and (j), can be found by taking the L-th power of
the precedence matrix, N. Moreover, the total paths, P; that
is, the total of all paths of any level, from (i) to (j) is

simply the sum of all powers of N, such that

p =N + N! + N2 +...+ NV

I + N + N2 +...+1NL,

where I is the identity matrix which is formed by the precedence
of each node to itself. After the matrix has been raised to
the (L + 1)-th power, it will become a null matrix. Such a
matrix signifies the non=existence of any paths of level L + 1
or higher. If N* is computed in the above example, it will be
found to be a null matrix. Obviously, there are no paths of
length four in the network.

The concept regarding the number of paths between pairs

of nodes is an important one and should be discussed in.some

87

depth. Let us once again consider the matrix N2, such that

- B
0 0 1 2
0 0 0 1
Nz = .
0 0 0 O
0 0 0 O

The elements in the matrix are simply the result of conven-
tional matrix multiplication, while the values of the elements
were obtained with conventional arithmetic. For example, the
element n2(1'4) whose value is seen to be 2, was obtained when

the N matrix was squared. That is,

a%(1,4) = [y 1y nq1,a))] + [y 2y np 4] +

[(n(1,3)'n(3,4))] + [(n(1’4)'n(4'4))1 ‘

This indicates that the first sum is really concerned with

the transitive relationship between the precedence of node (1)
to node (4). The second, the transitive path from nodes (1)

to (2) and (2) to (4). The others involve this same type of
consideration. Nevertheless, in all four cases, the existence
of a path from node (1) to node (4) is checked. Further, such
a path exists only when the two direct precedence relationships
that might compose the path exist. In the Zero-One notation,

such a path exists when both components of the multiplication

88

are 1. If either are 0, the path does not exist. By checking
the four multiplications involved in arriving at the entry

2
n (1, 4) one can compute

nZ) 4y = (0)+(0) + (1)(1) + (1)-(1) + (0)-(0)

0+1+1+0

"

= 2.

Obviously, the only paths that exist between (1) and (4) that
are composed of two direct precedence relationships are (L)< <
(2) <<(4), and (1)<<(3)<<(4). Consequently, the number of
paths existing between various pairs of nodes can be computed
easily and in a logical fashion using conventional matrix
multiplication and, of course, conventional addition and
multiplication.

Quantitative aspect. Thus far, the main consideration

has been given to simply counting the number of paths between
nodes in a network. However, this analysis can be extended
to include the measurement of the lengths of various paths
in the network.

Let us reconstruct the original network and include the

times to transverse each direct precedence path.

Figure A.2. Typical Network with Branch Lengths Affixed.

89

By constructing the precedence matrix for the above
network using path lengths rather than the Zero-One notation,

the following formulation can be made:

—~
[
S
—
N
~—
-
(7S]
—
-~
L3

L

(1) 0 2 4 0
(2) 0 0 3 3
N = i
(3) 0 0 0 1
(4) 0 0 0 0
- |

Interpretation of the matrix N : is similar to that made
earlier, except each entry, nz(i,j) is extended to represent
an element set. This element set contains the lengths of
all paths between the nodes (i) and (j). This can be illus-
trated by computing the matrix N2, and examining the entries

of the resultant:

() (@ (3 (4)
=
(1) 5 5,5
(2)
(3)

(4)

o o o o

4
0
0

o o o o
o O o

Consider the element n2(1'4} which is the element set (5,5).
This entry signifies that there are two 2-level chain rela-
tionships from node (1) to node (4) each having a length of
5. A quick check of the network shows that such relationships

and corresponding lengths do exist.

90

Noting that the discussion earlier, concerning the
number of paths between nodes called for conventional matrix
operations and more specifically, conventional arithmetic
operations, it should be readily noticeable that the element
sets above were n ot the result of such computation. Had the

normal operations of multiplication and addition been performed,

2

the element n
(1,4)

would have yielded,

na,e = Mo,y e’ t Ba,) te,al t

)) + (n

(01,3 (3,4 (1,4) "(4,4)’

(0)°(¢0) 4+ (2)-(3) + (4)°(1) + (0)*(0)

= 6 + 4
= 10

The element 10 would have been meaningless, since the main
concern is the length of the paths from node (1) to node (4).
However, by looking at the network, it is evident that to
obtain the length of the paths between node (1) and (4), one
should add the length of the l-level chains that compose the
desired paths, which for N2 are, of course, chains of levelr
two. Consequently, by reformulating the computational pro-

cedure used in obtaining n%l 4’ one can write
!

@
(ney, 1@, s! ® “‘(1,2)@“(2,4)’ ® (n) 3)%0(3,4)) ®

®1,0% 4,0’
where the symbol @ is taken to signify conventional addition.

Therefore, the resulting values from the operations defined in

the parentheses are (0+0), (2+3), (4+1), and (0+0). Once
the corresponding elements in the matrices have been multi-
plied (added conventionally), they are then combined into
an element set as mentioned previously. Such a combination
which is signified by the symbol + , can be illustrated by

completing the computation of n"a(1 4) such that
r

2y 4y = (0+0) ® (2+3) & 4+1) (B (0+0)
(0, 5, 5, 0)

(5, 5).

. The 2zero elements are omitted; however, the two elements (5,5)
are the lengths of the two different 2-level chains from node
(1) to node (4).

This example points out the computational aerivation for
“the special forms of addition and multiplication. These special
forms have been given the names of schedule algebra addition
and schedule algebra multiplication. They can be presented

formally by the following formulation:

2 -)
n7(1,9) z‘“(i.m ® g, 4!
k
where @ implies schedule algebra multiplication and the

summation over k refers to schedule algebra addition, (:) .

or to the combination of the schedule algebra products into
element sets. Finally, it shouid be pointed out that the above
formulation is not general, for it refers only to those rela-

tionships of level 2, This is indicated by the power of 2

92

to which n(i 9 is raised; however, the formulation with
vJ
respect to the operators of addition and multiplication is

valid in all cases.

A.2. Schedule Algebra Operators:

As implied in the earlier discussion, schedule algebra
is idehtical to conventional matfix algebra with respect to
matrix operations such as addition and multiplication. However,
it differs from matrix algebra in its characterization of a
matrix and in the arithmetic operations involving elements
of the matrices.

Characteristics of matrices. Matrices in schedule algebra

can be considered to be arrays of element sets. The entries
within these sets are called elements. Such elements take
the form of the usual numbers or ratios of sucﬁ numbers. The
only exception is the éddition of the element 1. This term
repfesents numerical zero or zero magnitude:' With reference
to earlier discussion, this term would be the guantifying
element for chains of level 0.

Schédule algébra matrices are signified by capital letters
and are, as usual, enclosed by brackets. The entries in the
matrices; that is, the element sets are identified by lower
case double subscripted letters. Consequently, the identity,
with few exceptions, of the schedule algebra matrices is very
similar to that of conventional matrices. Nevertheless, an

example of a schedule algebra matrix can be constructed as

follows:

93

(6, 4) (8, 4)
A = (0) (-2,2) "
(, 1) (1, 1)

Before the operators are presented, it should be pointed
out that there are identity matrices in schedule algebra just
as in conventional matrix algebra. These identities are given

below, for addition and multiplication respectively:

(0) (0) r_(t) (0)

(0) (0) (0) (1)

s _| L _

Schedule algebra addition. The symbol for schedule

algebra addition, as pointed out earlier, is (:) . The pro-
cedure for addition can be presented in three steps:

1 - Combine all entries of the element sets to be added
into one set.

2 - Delete all pairs of elements which are identical in
magnitude but opposite in sign and replace with a
zero and

3 - Delete all zeros if the set contains at least one
element which is not zero; however, if nothing but
zeros remain, reduce the set to only one element of

Zero.

94

Consider the following examples:

(., 1, 4) (® (6, -1)

(v, 6, 0, 4)
w® (v, 6, 4)
and ' ,
(1, -3y (® (-1, 3) = (0, 0)
(0) .

Schedule algebra multiplication. The symbol for schedule

algebra multiplication is @ . The rules for schedule algebra

multiplication can best be summarized in the followinq‘manner:

~ ' .
0, ifx=0o0ry-=20,

|x| + |yl , if x,y # 0 and have the same sign,

x © y =
‘ﬁ -{|x| + |yll , if x,y # 0 and have opposite signs,

L +y, if x=+,., and y # 0.

The symbol, + that appears in the second and third cases
above, implies conventional addition and not schedule algebra

addition. Consider the following:

6©7 =13
4 0 -7 =41
200 = 0
8., = 8

1 @a = =1

The above formulation and examples describe multiplication

of elements. To multiply two element sets; however, is to form

95

the cross products of the elements of the sets. Of course,
the resultant set is that obtained from the schedule algebra

addition of cross products. Consider the following examples:

(1, v) @ (2, 3 =(3, 2, 4, 3)
(1, 1) © (-2, -1) = (-3, -2, -1, =1).

Schedule algebra subtraction. Once the multiplication

operation has been discussed, the operation of subtraction

can follow such that,

O = @ -0 © un,l,
where for example | '

6,) O 4, -6, V) = (6,) B (-4, 6, 1)
(-4, 6, 6).

Schedule algebra division. By considering the schedule

algebra operation of division as an operation involving ratios
of integers, the following rules can be presented. Consider

' two non-zero integers x and y such that

-

|x| - |yl = =z, if x>y, and both x and y have
the same signs,

-z, if x>y, and x and y have
different signs,

v /Yy - %, if y>x, and % and y have the

same signs,
x/y =

-1 /y - x, if y>x, and x and y have
' different signs,

1, if x = y and both x andy have
the same sign

-1, if x =y, and x and y have
different signs.

96
In general, schedule algebra divisidn is defined for all
ratios x/y in which y # 0. However, if x = 0, then 0/y is
equal to 0 for all y ? 0. It should be noted that the sub-
traction operation used above is one of a conventional nature.

Consider the following examples for the ratio of two integers:

6/ 4 = 6-4=2,
6/ 44 = -(6 - 4) = -2,
4/ 6 = 1/6 - 4 =./2,

4/ -6 =-1/6 -4 ==/ 2,
5/ 5 = 1
-5/ 5 = =1

By defining the operation of division, it follows that
every set must have an inverse of multiplication (every non-

empty set). Consider the following:

(™l = /g,
G/, =1L e (4, -1).

Matrix operations. The operations and rules of matrix

algebra hold true for schedule algebra matrices in the same
manner as for conventional matrices. Of course, the arithmetic
involved in manipulation is unique, based on the operators
presented above. For example, consider the sum of the following

" two matrices:

97

(1) (5, 1) (4) (0) (v, 4) (5, 1)
(6, 1) (-3, 1) (v, 2) (v) (6, }r. 1, 2) (=3, 1,)

The product of the same two matrices is

(4)® (5, 7, 1, 3) (0@ (5, 1)
(10, 4)(® (-3, -5, 1, 3) (-3, 1)
= d
or
(4, 5, 7, 1, 3) (5, 1)
(10, 4, -5, 1) (-3, 1)

A.3. Star Algebra Operators:

As Giffler has pointed out, it is not always computationally
feasible to keep all elements in an element set. Rather, only
those elements that are the maximum in each set are maintained.
Such a maximizing rule for addition has led to the formulation
of the star algebra. Star algebra is equivalent to conventional
matrix algebra with respect to its matrix operations. The
primary difference is that all matrices under star algebra are

non-negative or zero.

98

Star algebra addition. The operation for addition of

elements under star algebra can be formulated as follows:
x * y = max (x, y),

where the symbol x has replaced the schedule algebra symbol
for addition of (¥).

Star algebra multiplication. Star algebra multiplication

can be given as follows:
(x, y) # (v, z) =max (x®v, x02,y®v, y®2),

where the symbol, #, has replaced the schedule algebraic
symbol of @ , for multiplication.
The following sample problem illustrates the use of the

star algebra.

B . B T T T
6 4 5 2 1 max(5 © 6, 4 ® 0)max(2 © 6, 4 © 1)
3 _ .
v 3 0 1 max(r @5, 39 0)max(2 @ ,, 3% 1)
- —_
max(ll, 0) max(8, 5)
max(5, 0) max (2, 4)
11 8

99

APPENDIX B

A Schedule Algebra Algorithm

As was mentioned in Chapter II, the research for this
thesis was instigated by the schedule algebra algorithm as
formulated by Giffler, Of course, the emphasis eventually
became centered aroﬁnd the network approach and its develop-
‘ment., However, the network approach was an outgrowth of the
~ schedule algebra algorithm, and, as such, it is logical thatm
the basic concept of the schedule algebra algoritﬁm be pre-
sented in a formal fashion. This appendix is made up of
‘three seétions which are identical to those maintained for
the discussion of the network approach. They are the basic
concepts of the algorithm, a sample problem, and a formal
presentation of the computational algorithm.

B.l. Basic Concepts:

The schedule algebra technique, much like the network
approach, is a systematic approach which searches a Bubset
of feasible sequences for a solution. The basic concept of
this approach can be broken down into the same three areas
as were used in the discussion of the network algorithm.
They are (1) the representation of the problem in a precedence
matrix, (2) the manipulation of the matrix based oh the star
algebra operators, and (3) the evaluation of the resulting

sequence to obtain the corresponding schedule time.

100

Representation of the problem by a precedence matrix and
the corresponding construction of such, is identical to that
presented in Chapter II. The matrix is partitioned into M
machine blocks, each having J rows and J columns. Entries
are made in the matrix in the same manner as in the nétwork
approach. The concepts of partial ordering and the poséible
direct precedence relationship remain unchanged. Consequently,
both techniques employ the same initial precedence matrix.
With respect to the schedule algebra algorithm, this matrix
is referred to as S.

Once the precedence matrix is constructed, the process
of entry can begin. The technique for entry is the same in
concept as that used in the network approach. However, the
method of entry is somewhat different. Nodes are selected
to enter one at a time. That is, bonly one node can enter
per iteration with the schedule algebra. Nonetheless, a node
is a candidate for entry if its column is null or potentially
null. If there are more than one such candidates for entry,
the conflicts are resolved with a particular bounding procedure.
This procedure makes use of a bound which is really an evalua-
tion of the earliest machine available time and is referred
to as the FACAT (facility available time). The value of the
FACAT represents the earliest timé that a particular machine
will be available after processing the job associated with
the node in question. Obviously, the node with the earliest

FACAT is chosen to next start.

101

&

When a node is chosen to be entered into solution, its

column is updated as follows:

‘X8, . i = 0,
(3 My mé)

5. ; =S, .

¥ (3 mﬂ' Jmé) (3 m‘er Jmé)'
where all other terms with y's in the same row as the y-term
above, are made 0, and all elements in the corresponding row
of the updated column are updated such that

(3 m,, 3 nu) =¥(im

2’ J mé}.

As can be seen, a new term has been introduced. The

.E'

concept of the y-term is one of a transito:y nature. That is,
a y-term is taken to imply an x-term that will eventually
become 0 or 1. When the y's appear in the matrix, they act
as 1's and behave as such in all computations. |

Once a node has entered the solution and the matrix has
been updated accordingly, the starting time vector is updated.
This procedure represents another phase of the schedule algebra
algorithm that is in contrast to the network approach. Before,
the starting vector was used only when the final precedence
matrix was obtained; however, here the'vectqr is used after
each update to the precedence matrix, 6 The concept and construction
of the starting vector is identical to that discussed earlier.

In general, the procedure involved in the algorithm would
entail choosing a node for entry, updating the precedence matrix,

and finally, updating the starting vector. At this point, the

102

process would begin again, being completed, of course, when
all nodes had been entered. Finally, the schedule time for
a sequence must be obtained. The computation of this schedule
time follows identically the procedure outlined in Chapter 1T.

B.2, Sample Problem:

Consider again the sample problem solved in Chapter II.
The corresponding machine ordering and processing time matrices

are reproduced below for convenience:

12 13 1l 4 2 3

21 23 22 B8 4 5
M= T =

33 31 32 6 3 9

41 42 43 7 6 2

Step 1. Construct the initial starting vector, T®, such

that
T = [0101100000101,

where the 1's signify the earliest starting times of nodes
(21), (41), (12), and (33).

Step 2. Construct the precedence matrix, S°, from the
partial orderings and possible direct precedence relationships.

Step 3. Check for nodes to enter. It can be seen from
§° that columns (21), (41), (12), and (33) are potentially
null. Since there are four nodes competing for entry, the

FACATS, A(j mﬁ)' must be computed for each entry such that

103

A : = T " + t : .
(3 mz) (3 m£) (3 m£)
The FACATS for the nodes can be computed as follows:

A(21) =1+ 8 = 8,

A(41) =1+ 7=717,
A(12) =1+ 4 = 4,
= 6-.

3(33) =1+ 6

Since column (12) has the minimum FACAT, it is selected to enter.
Step 4. Update the precedence matrix by entering the node
just sélected in step 3. By making column (12) null and, further,
updating the matrix as described in the basic concept, the
matrix S!, can be computed.
Step 5. Update the starting vector. When the T? vector
- is multiplied by the matrix S!, the resultant can be given as
(006004474800].
Upon adding this vector to T?, the resultant vector, T!, becomes
Tl=[0 + 6 1 1 4 474810].
Step 6. Repeat step 3 by checking for the next node to
enter. After checking S!, picking the candidates for entry,
and evaluating the FACATS of each node, (33) was chosen to enter
next. The updated matrix becomes S? and the updated starting
' vector becomes T2. This procedure is repeated until all nodes
have been entered. The entry of the nodes can be given in the

following order, beginning with the third node to enter, (41).

104

The order of entry is (13), (31), (42), (11), (21), (43), (23),
(32), and (22): It should be pointed cut that there were some
ties in FACATS; consequently, these ties have been broken by
random. The precedence matrices and the corresponding starting
vectors are presented after each iteration.

Step 7. Calculate the final sequence and the schedule
time. By arranging the jobs in each machine block of the final
starting vector, T!2, with respect to starting times, we can

formulate the following sequences on each machine:

machine 1: {4 3 1 2}
machine 2: {1 4 3 2}
machine 3: {3 1 4 2}

The job sequencing matrix, S can be constructed such that,
3]
41 31 11 21
s = 12 42 32 22
33 13 43 23

Upon locating the operations in each machine bleck which
have the highest starting times, we can obtain nodes (21), (22),
and (23). When the processing times of each node are added
to the starting times, the results are 21, 30, and 25 time units,
respectively. Consequently, the schedule time for the sequence

is 30. Note that the optimal schedule time is 27.

(11)
(21)
(31)
(41)
(12)
(22)
(32)
(42)
(13)
(23)
(33)

(43)

(11) (21) (31) (41)

0

x8

x3

x7

*x3

x3

x7

%x3

x8

x7

Table B.l.

®x3

x8

%3

Initial Precedence Matrix, S°.

(12)
0

x5

X9

X6

(22)
0

x4

X9

X6

(32)
0

x4

X5

x6

(42)
0

x4

x5

x9

(13)
0

x6

x2

(23)
0

x2

x6

x2

105

(33)
0

x2

x4

x2

(43)
0

x2
x4

X6

(11)
(21)
(31)
(41)
(12)
(22)
(32)
(42)
(13)
(23)
(33)

(43)

0

x8

x3

x7

Table B.2.

%3

x3

%8

x7

(11) (21) (31) (41)
—

x3

x8

x3

(12) (22)
o 0
o 0
o 0
o o
0 y4
o o
0 x9
0 x6
0 0
o 4
0o 0
o 0

(32)
¢

(42)
0

x5

%9

x0

(13)
0

x4

x 2

(23)
0

106

Intermediate Precedence Matrix, S!l.

(33) (43)
e o
0o o
60 o
0 0
0 o0
0 0
0 o0
0 6

w2 32

x4 x4
0 46

(11)

(21)

(31)

(41)

(12)

(22)

(32)

(42)

(13)

(23)

(33)

(43)

and

107

Table B.3. Intermediate Precedence Matrix, §2
and Starting Time Vector, T2.

(11) (21) (31) (41) (12) (22) (32) (42) (13) (23) (33) ("!3)_____|

0 53 w3 3 o o o o0 0o ©0 o0 0

X8 0 x8 %8 0 0 0 0 0 8 0 0

x3 x3 0 x3 0 0 3 0 0 0 0 0

x7 x7 x7 0 0 0 0 7 0 -0 0 0

o 0o 0 o0 0 y4 y4 yd 4 0o 0 0

0 0 0 0 0 0 x5 x5 0 0 0 0

o o o0 o 0 x9 0 x9 o o 0 o

0 0 0 0 ~0 x6 x6 0 0 0 0 6

2 0 0 0 0 0 0 0 0 x2 0 %2

6o 0 0 0 0 4 0 0 x4 0 0 x4

o 0 6 0 0 0 0 0 y6 y6 0 y6
| 0o o o0 o o o0 0 0 x2 x2 0 0_

1 6 1 1 12 9 7 6 8 1

(11)
(21)
(31)
(41)
(12)
(22)
(32)
(42)
(13)
(23)
(33)
(43)

and

108

Table B.4. Intermediate Precedence Matrix, S3
and Starting Time Vector, T3.

rill) (21) (31) (41) (12) (22) (32) (42) (13) (23) (33) (43)

0 %3 x3 0 0 0 0 0 0 0 0 0

%8 0 %8 0 0 0 0 0 0 8 0 0

x3 x3 0 0 0 0 3 0 0 0 0 0

y1 y7 y1 0 o o o0 7 6o 0 0 0

o o o o 0 yi& y4 yé 4 0 0 0

0 0 0 0 0 0 x5 x5 0 0 0 0

0 0 0 0 0 %9 0 x9 0 0 0 0

0 0 0 0 0 x6 x6 0 0 0 0 6

2 0 0 0 0 0 0 0 0 %2 0 %2

0 0 0 0 0 4 1] 0 x4 0 0 %4

o o 6 0 0 0 0 0 y6 y6 0 yb

0 0 0 0 0 0 0 0 x2 x2 0 0
| —
[: 8 7 7 1 1 12 9 7 6 8 1 IE}

(11)

(21)

(31)

(41)

(12)

(22)

(32)

(42)

(13)

(23)

(33)

(43)

and

(11) (21) (31) (41)

0

x8

x3

y7

Table B.5.

x3

X3

y7

x3

x8

y7

0,

Intermediate Precedence Matrix, S*
and Starting Time Vector, T".

(12)

0

(22)
0

x9

x6

12

(32)
0

x5

%6

10

(42)

0

x5

x9

-0

0

x2

15

0

109

(13) (23) (33) (43)

0

(11)
(21)
(31)
(41)
(12)
(22)
(32)
(42)
(13)
(23)
(33)
(43)

and

Table B.6.

Intermediate Precedence Matrix, S3
and Starting Time Vector, TS,

110

(11) (21) (31) (41) (12) (22) (32) (42) (13) (23) (33) (43lﬁ

0 x3 0 0 o 0o o0 0 o 0 0 o
x8 0 0 0 6 o o0 0 o 8 0 0
¥y3 y3 0 O ©o o o 3 o 0 o0 o
o o 7 o o o o 7 o o0 o0 0
o o o0 o0 0 y4 y4 g4 4 0 0 o
o o o 0 0 0 x5 x5 o 0 0 0
o o o 0 0 %9 0 x9 o 0 o0 0
o o o0 o 0 x6 x6 0 o 0 0 6
2 0 0o 0 0o o o0 0 0 y2 0 2
6 o 0 O 0 4 o0 0 0 0 0 44
o o 6 0 o o o o 6 0 0 0
¢ o6 0o o 6 6 o0 o 0 x2 0 O
10 7 v 19 10 7 6 15 1

(11)

(21)

(31)

(41)

(12)

(22)

(32)

(42)

(13)

(23)

(33)

(43)

and

(11) (21) (31) (41)

0

X8

y3

Table B.7.

X3

Y3

10

0

0

Intermediate Precedence Matrix, S®
and Starting Time Vector, T®,.

0

(12)

(22)

0

19

(32)

0

10

(42)

0

(13)

0

(23)

0

x 2

18

1Tl

(33) (43)_
o 0
0o 0
0 0
o 0
60 0
0 o
o 0
0 6
0 y2
0 x4
o 0
o 0

(11)
(21)
(31)
"
(12)
(22)
(32)
(42)
(13)
(23)
133)
(43)

and

(11) (21) (31) (41)

0

Table B.8.

¥3

13

0

0

Intermediate Precedence Matrix, §7
and Starting Time Vector, 7,

0

0

22

0

13

(12) (22) (32) (42)

0

(13)
-0

(23)
0

18

112

(33)
0

(43)
0

(11)

(21)

(31)

(41)

(12)

(22)

(32)

(42)

(13)

(23)

(33)

(43)

and

0

Table B.9.

3

13

0

0

Intermediate Precedence Matrix, S8
and Starting Time Vector, T&.

0

0

22

0

13

0

0

0

Y2

21

0

113

_(11) (21) (31) (41) (12) (22) (32) (42) (13) (23) (33) (43)

0

y2

x4

]

(11)

(21)

(31)

(41)

(12)

(22)

(32)

(42)

(13)

(23)

(33)

(43)

and

_(11) (21) (31) (41)

0

10

Table B,10,

3

13

0

0

Intermediate Precedence Matrix, S°
and Starting Time Vector, T?.

(12) (22)
0 0
0 0
0 0
0 0
] 0
0 0
0 x9
0 y6
o 0
0 4
0 0
0 0
1 25

(32)
0

%5

13

(42)
0

(13)
0

(23)
0

21

114

(33)
0

(43)
0

115

Table B.1ll. Intermediate Precedence Matrix, S!0

and Starting Time Vector, T!0,

(11) (21) (31) (41) (12) (22) (32) (42) (13) (23) (33) (43)

(11) 0 3 0 0 0 0 0 0 -0 0 0 0
(21) 0 0 0 0 0 0 0 0 0 8 0 0
(31) 3 0 0 0 0 .0 0 3 0 0 0 0
(41) 0 0 7 0 0 0 0 7 0 | 0 0 0
(12) 0 0 0 0 0 0 0 4 4 0 0 70
(22) 0 0 0 0 0 0 x5 0 0 0 0 0
(32) 0 0 0 0 0 x9 0 0 0 0 0 0
(42) 0 0 0 0 0 y6 y6 0 0 0 0 6
(13) 2 0 0 0 0 0 0 0 0 0 0 2
(23) 0 0 0 0 0 4 0 0 0 0 0 0
(33) 0 0 6 0 0 0 0 | 0 6 0 0 0
(43) 0 0 0 0 0 0 0 0 0 2 0 0
and B B

l___lD 13 # 1 1 25 13 7 6 21 1 13]

(11)
(21)
(31)
(41)
(12)
(22)
(32)
 (42)
(13)
(23)
(33)
(43)

and

Table B.1l2.

Intermediate Precedence Matrix, S!!
and Starting Time Vector, T

|__{_11) (21) (31) (41) (12)
0 3 0 0 0
0 0 0 0 0
3 0 0 0 0
0 0 7 0 0
0 0 0 0 0
0 0 0 0 0
0] 0 0 0
0o 0 0 0 0
2 0 0 0 0
0 0 0 0 0
0 0 6 0 0
0] 0 0 0

13 7 1 1

(22)
0

25

(32)
0

13

(42)
0

(13) (23)
0 0
0 8
0 0
0 0
4 0
0 0
0 0
0 0
0 0
0 0
6 0
0 2
6 21

11

116

(33) (43)
o o0
0o 0
0 0
0 0
0o 0
0 0
0o 0
0 6
0 2
0 0
0 0
0 0

(11)

(21)

(31)

(41)

(12)

(22)

(32)

(42}

(13)

(23)

(33)

(43)

and

Table B.1l3.

(11) (21) (31) (41)
o 3 0 0

[:10 13 7 1

(12) (22)
0 0
0 0
0 0
0 0
0 0
0 0
0 9
0 0
0 0
0 4
0 0
0 0
1 25

(32)
0

13

Final Precedence Matrix

(42)
0

sl2 and
Starting Time Vector, T'2.

(13)
0

(23)
0

21

117

(33)
0

(43)
0

118

B.3. Computational Algorithm:

The final phase of this discussion of the schedule algebra

algorithm, will be a formal presentation of the algorithm,

The following represents a step by step computational procedure

which embodies the concepts presented earlier and formalizes

the procedure illustrated in the sample problem.

Step 1:

 Step 2:

Step 3:

Construct the initial starting vector, TO.
Form a vector with JM entries, such that
v, for all {(j m)),
T (5 m£) » ' 1
0, otherwise.

Construct the initial precedence matrix, st .
2.1 Partition a (JM x JM) matrix into M machine blocks.
2.2 Label the rows and columns of the matrix by the

appropriate nodes.

2.3 Place the entries in the matrix such that

(3 mp, 3 m) =< Xty mp) * if (3 mp)e<c(i m) is possible

0, otherwise.
Check for null or potentially null columns.
3.1 For each null or potentially null column in the
S matrix, mark the column.
3.2 If there is more than one marked column, go to
step 4.

3.3 If there is only one marked column, go to step 5.

119

Step 4: Determine the machine available time.

Step 5

Step 6:

4.1 For each marked column, scan the corresponding
row and determine the minimum entry of the form

XS (5 mg)'

4.2 Compute the machine available time, Af Tg such that
A6 M=t (ymyy * tG my:
4.3 Select the column having minimum A.

4,3,1, If there is a tie, select a column to
next start by a particular rule. Remove
the marks from the other columns that
were considered, and proceed to step 5.

4.3.2. If there is no tie, remove the marks
from the other columns being considered
and proceed to step 5.

Update the precedence matrix. |

5.1 Make all entrieé in the marked column, of the
form xS(j ml)' eqﬁal to zero.

5.2 Make all entries in the marked column, of the
form YS (5 mp) * equal to S (5 mp) - Make all other

y terms in this row equal to zero.

5.3 Make all entries in the corresponding row of the
marked column, which are of the form XS(§ mp),

equal to YS (5 mp) *

Update the starting vector.

Step 7:

‘Step 8:

120

6.1 Multiply the updated S matrix by the starting

vector such that

L]
1
L = pL-" 4 gk, L =1, 2, ...,
and add the starting vector to the resultant
vector such that

L=l oL

™ = T
Repeat steps 3?6 until all columns have been entered.
Find the sequence and the corresponding schedule time.
8.1 Order the jobs with respect to their starting-

times within each machine block of the final
starting vector.

8.2 Locate the element in each machine block of the
final starting vector that has the latest starting
tire.

8.3 Add the processing time to the starting time of
each chosen element.

8.4 Select the operation which results in the greatest
amount of time such that

T(S) = max [T(j m) * t(j m) Je = Yy 2p00ep T

M M
where T(S) is the schedule time for the sequence.

121

APPENDIX C
A Bounding Procedure

It was pointed out in Chapter II that a particular
bounding procedure was used to resolve the conflict that
resulted in the machine blocks with respect to the order of
entry of nodes, Furthermore, it was pointed out that the
bounding procedure used was a composite one; however, no
formulation was made at that time. Therefore, this appendix
has been included to discuss the composite bound used to
resolve the conflicts arising in the network algoritﬁm.
Moreover, the organization of this discussion will include
two sections. They are (1) formulation of the bound and

(2) a sample problem illustrating the use of the bound.

C.l. Composite-Based Bound

The lower bound on schedule time for a node can be
defined as the sum of the completion times of the scheduled
jobs and the total processing times of the unscheduléd jobs
in addition to an estimation of the idle time which may be
experienced between the unscheduled jobs when they are sched-
uled, Furthermore, the power of a particular bounding pro-
cedure is measured in terms of its ability to produce a lower
bound that is close to the actual schedule time.

Lower bounds c¢an be used individually or they can be
combined, in which case a composite bound is formed. Such a
combination of lower bounds was used in this research. That

is, a job-based bound and a machine-based bound have been

122

combined to form a composite-based bound. This composite-

based bound is presented more rigorously in Hiremath [111.
Before any formulation of the bound can be made, certain

notation should be considered. This notation is consistent

with that used in [1l] and can be presented as follows:

L level at which the conflict occurs. In refer-

ence to the network algorithm, L refers to the

iteration.
n set of nodes already selected or scheduled
to start |
n set of nodes not scheduled to start
ch m, completion time of node (j mt) at level L.
sl set of nodes that are under conflict at a

particular level.
BL(j mt) lower bound for node (j m£) at iteration L.
Bl minimum lower bound on the schedule time at

i;eration L.

A job-based bound. The job-based bound procedure is a

technique which is used to compute the total processing time
on each job in the conflict set. The lower bound, BL(j @e)

for node (j qt) at level or iteration L, can be formulated

as follows:

-

: M M
BL(j “k) = max c% m + >t max |ol _ + t
< L) I me Lo Timg
Sl iesk -
1#3

123

The first of the two expressions in the formulation

consists of two terms:

cL(j mt) the completion time of node (j mp).

M

th m, the sum of the processing times of job j
Sl on the remaining machines. That is, the
minimum time for the unscheduled nodes.

The second expression the formulation has two components:

cL{j mz) the completion time of node (j mL) .

M ;
ztj m’s the sum of the processing times of the

& mok other unscheduled nodes in the conflict set.
=

A machine-based bound. The second bounding procedure

used in the composite bound is a machine-based bound, since
a lower bound is computed with respect to the total processing
time on each machine. The lower bound, BI‘(j mp) for node

(3 mz) can be formulated as follows:

L,. L, _
= + E .
B (j mpy max cj mp ‘ t:. 7

iefy
m'mz J =]
max) L
.-m m;n t:i o ti m + Eti m
- m# mp i=1
len

124

The first expression contains two terms:
el (5 m,) the completion time of node (j mz}.

7 Eti m the sum of the processing times of the

ien unscheduled nodes which include machine m.
m=m , :

The second expression also consists of two components:

L

‘min [c - t,] the earliest time at which an unscheduled
is ﬁ im im
node can be started on machine m,
J the sum of the processing times of
:EE ti - the unscheduled nodes which involve .
i =1 machine m.

Now that the two lower bounds have been formulated, the
composite bound can be presented formally. If the job-based
bound is referred to as lower bound I (LB I) and the machine-
based bound as lower bound II (LB II), the composite bound |
can be presented as follows:

LB III =max [LB I, LB II] ,
where the composite bound will be referred to as LB III.
Obviously, the conflicts are resolved in favor of the node
which has the least composite iower bound.

C.2, Sample Problem

By considering the sample problem that has been used

consistently in this thesis, the concept of the composite

125

bound will be demonstrated. The conflicts at the first iter-
ation have been resolved by hand and are presented in this
section, while the remainder of the resolutions are summarized
in Table C.1l.

Conflict level one. When the initial precedence matrix,

0 was examined for entry candidates in each machine block,

it was found that there was a conflict in block one. The

two nodes competing for entry were (21) and (41). Consequently,

these two nodes constitute the conflict set at iteration one.
Consider first, LB I. The first term in the formulation

can be evaluated for node (21) as follows:

1
€21 = B
and
t = t,. + t
imy 23 22
s=L+1
=9,

Consequently, the first term in the bound has a value of 17.

The second term in the bound can be evaluated such that

1

Cc = 8,
(21)

: =t + t + t
and M 41 42 43

z t. 7+ 6 + 2
1m
= 15,

d=1 -

|

Therefore, the evaluation of the second expression in the
formulation can be given such that

max [8 + 15] max [23]

23.

126

Finally, the lower bound can be computed:

8t (21)

Consider now the evaluation of LB I for node (41).

max [17, 23 1],
23

The

computation can be presented in the same manner as that used

above.
such that
1
Cla1)
and M
Z ©9mg
s=L+1

where, of course, the value

The second term can be

1
Clan)

t.
&
d=

max [7 + 17]

and

and finally,

The first term in the formulation can be evaluated

7,

of the term becomes 15,

computed as follows:

7,

+
t23
4 + 5,

t + t

21
8 +

22"

max [24 1,

]

24,

Consequently, the value of LB I for node 41 becomes

max [15, 24)

24.

127

Consider the second lower bound in the composite bound,
namely LB II. Further, let us consider, first the evaluation
of this bound for node (21).

The first term in the formulation of the bound can be

computed such that

C = 8
(21) '
and
zgg;m =tnt t31 t
iefi
= 13.

The first term in the bound becomes 21.
The evaluation of the second term is made with respect

to machines 2 and 3. Considering m = 2, first we can compute

min. 1 el -ty 1 = min [Cyy -ty Cyp = g0 Cpy =ty
= min [17 - 5, 20 - 9, 21 -6],
= 11.
Note that node (21) is not considered in the above computation
because it has already been scheduled.
Continuing with the evaluation of the second term of the

bound,

J
ztim =ty tt Y E,
i=
ie

S

5+ 9 + 6,

n
[]
o
L

128

Now consider the case where m = 3.

5 : 1 1 1
L . = - C -
i im im 1 = min [Gy g 23 23 “437 Fa3

=min [8 - 2, 12 - 4, 23 - 2]

and

3
jgi tim " F13 v Eya t by

i= =2 + 4 + 2,

i=

ien - .

Therefore, the second term in LB II becomes
max [11+20, 6+8] = max [31, 14],

| = 31.

Finally, the evaluation of the lower bound for node (21),

31(21) can be made such that

max [21, 31 1 = 31.
Following the same procedure, the lower bound for node (41)
is computed. Consider the following evaluation of the first

term of the formulation.

c%41) =7
and ztim
;;iz =t Yty *Eaye
=34+8+3,
= 14.

The value of the first term is, obviously, 21l.

129

In evaluating the second term, we shall consider the

case when m = 2, first, such that

ol 1]
32

t
327 T4z 42

min [ck - t.,] = min [.Cl +

i = ’
i im im i 27 22

=min [24 - 5, 19 - 9, 13 - 6]

=7,
and
J t + t + t
& . 28 32 42'
im
ien .
= 20.

The final value of the second term for the case, m = 2,
becomes 27.

When m = 3, we can compute,

L
i - t, min [C_ -t ., C_~t_ _, C =
e L S in 1€ 5= ®13r Co37 Ba3r G4y By 1

]

min [8 - 2, 19 - 4, 15 = 2]

= 6,
and
J t t
= +t +
£ 13 23 43’
im
i=1 ' =2+ 4 + 2,
iefi

= 8.
For m = 3, the second term of the formulation becomes 14.
Consequently, the final value of the second term can be computed
such that

max [27, 14] = 27.

130

Finally, the value of the bound for node (41}, B1(41)
can be given as follows:

max [21, 27] = 27.
At this point, we have computed the values of the lower bounds
for nodes (21) and (41) using LB I and LB II. The next step,
obviously, is to resolve the conflict using the values for

the lower bounds obtained. Summarizing, the following can

be given:
LB I : Bl(21) = 23,
Bl(41) = 24,
LB IT : BY(21) = 31,
Bl(41) = 27.

Application of the compoéite bound, LB III, yields the
following formulation:
IB III = max [LB I, LB II] ,

where for node (21),

max [23, 311 ,

LB III

51,
and for node (41),
7 1B ITITI =max | 24, 27 1},
= 27,
In the above case, node (41) is selected to next start because
it exhibits a lower bound that is less than that of node (21).
Nonethe less, the remainder of the conflicts in the sample

problem and their resolutions are summarized in Table C.1.

131

It should be noted that the minimum values for the com-

posite bound, 27, are the same as the actual value of the

schedule time.

solution in Chapter II.

Table C.1,
Conflict

Level Node

b (21)

(41)

2 (21)

(31)

3 (21)

(11)

for Sample Problem.

Lower Bounds

IBI LB II
23 31
24 27
27 32
27 27
27 27
30 30

LB III
31
27
32
27
ai
30

Minimum

LB

III

27

27
27

This is verified in the sample problem

Summary of Computation of Lower Bounds

Resolution

(41)

(31)
(21)

132

APPENDIX D

Computer Program

THE
FOLLOWING
DOCUMENT HAS
PRINTING THAT
EXTENDS INTO
THE BINDING.

THIS IS AS
RECEIVED FROM
CUSTOMER.

133

¥ 1v 6 LEVEL 1, MOD 4 MAIN DATE = 70044 15/29/47
L THIS PROGRAM HAS BEEN CONSTRUCTED TO SOLVE A CLASS

x> OF COMBINATORIAL PROBLEMS USING THE NETWORK

| ALGORITHMs THE ALGORITHM 1S BASED UPON THE

e SCHEDULE ALGEBRA DPERATORS AS FORMULATED BY

~ Bs GIFFLERe INCLUDED IN THIS ROUTINE BESIDES THE

F~' MAIN PROSRAM, ARE TWO SUBROUTINES, COMP AND ICPLTs

% x

ﬁﬁﬁﬁﬁﬂﬁﬁﬁﬂﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁnﬁnﬁﬁﬁﬁﬁﬁﬁﬁﬁ

MAIN VARIABLES
IPRDB‘....D.........‘...'IQ..'...NUMBER GF pRDBLEMS
TO BE RUN.
Ml..!‘-..ll...........I...O.l.OOOONUMBER DF MACHINES.
JOB.‘I.....'.I-.l'...............NUHBER GF JDBSC

JMeososesosssssessssasssssansnses NUMBER OF NODES IN THE
NETWORK, WHERE JM=M * JOB.

I0essssssosssacssnssscoesnasnaasasnsc MACHINE ORDERING MATRIXs
NPsseacsssnsnsansnssssasssesssessae PROCESSING TIME MATRIX,
Secesssessssssssssnassenssssasaess PRECEDENCE MATRIX.
T..."....'....'.‘...........'....STARTING vECTOR.
ICMPosossssscessssasesnssnosossceas COMPLETION TIME MATRIX.
ITER.....'........-.............'.NUMBER OF ITERATIONS.
[CONUoseoss sosscsssssoncassssnsessss NUMBER OF CONFLICTS.
CORDB wns & swas waeses verasnsteerseE LEMENTAL NALUES IN THE
UPDATED STARTING VECTOR.
CORRESPONDS TO TK*(I41}
IN THE ALGORITHHM,.
TITEFResssonsoosssnnsssssssssnsese RESULTANT UPDATE TO THE
STARTING VECTOR WHEN
MULTIPLIED BY THE PRE-
CEDENCE MATRIX,
CORRESPONDS TO TK' IN THE
ALGORITHM,

SEQeesssssssosssnosesnassnnanassese S EQUENCING MATRIX.

VARIABLES PERTAINING TO INPUT AND OUTPUT CONTROL

JCHNG = 1o--o-.o--oo-c.oocooaaooaREAD INPUT FROM IO AND NP

>

¥

Y7

-

r e

be

-%

OO0 O0O00O0O0O0

OO

OO0 0

AN IV G LEVEL 1, MOD 4 MAIN DATE = 70044 134

AND GENERATE THE PRECEDENCE
MATRIX,STARTING TIME VECTOR,

PROCESSING TIME VECTOR,AND
I0LE TIME VECTOR.

= 0-tn-0....!0...001..9.-..READ INPUT IN FORM OTHER
THAN 10.

1.......l......‘......'.'IPRINT DNLY THE PRDBLEM
NUMBER,THE SEQUENCING

IPRER

(]

MATRIX, AND THE SCHEDULE TIME.

= 3.o-oooo-oocooooccooo.oooPRINT ALL INFORMATION AT

EVERY ITERATION, INCLUDING.

VALUES OF THE BOUNDING
PROCEDURE,

15729747

DIMENSION S{40,40)sT(4041) s WORK(40),PROC(40),IDLE(20),DELET(40U),ENRGPOU
LTER(40)yTITER(4051)9SPROD(40,1)4SCHD(40),10(15410)4NP(15,10)4R(15,RGPLU
210)ySEQ(9,15) yLONE(15),IDON(15)4LBSE(15)4LBNE(15), ICOMX(15), ICMP(IRGPCU

3545),ICTM(15,5)
IPRER=1
IPROB=25
JPROB=0
682 CONTINUE
ICONU=0
JPROB=JPROB+1

READ IN THE MACHINE ORDERING AND TIME PROCESSING MATRICES.

1332 FORMATI(3I4)

READ{1,1332)M,JM,JOB
DO 2139 IQX=14M

DO 2140 1QXX=14J0OB
SEQ(IQX,I1QXX)=0

2140 CONTINUE
2139 CONTINUE

JMM=JM-1

THIS ROUTINE IS USED TO READ THE INPUT DATA
AND GENERATE THE NEXT PRECEEDS MATRIX, THE
START TIME VECTOR, THE WORK AND PROCESS TIME
VECTORSe '

MM=M-1

JCHNG=1

IF(JCHNG.NE.1) GO TO 1516

CONT INUE

DO 1784 1=1,J08
READ(1,1156)(I0(T,Jd)yJd=1,sM)
1156 FORMATI(1415)
1784 CONTINUE

RGPOL
RGPCGU
RGPOU
RGPOU
RGPOU
RGPCC
RGPOU

RGPOU
RGPOU
RGPJu
RGPOO
RGPOU
RGPQODO
RGPOC
RGPUC

RGP0

RGPCU
RGPOC
RGPOGC
RGPUOU
RGPIC
RGPOU
RGPOC
RGPQO

: 13 -
W IV G LEVEL 1, MOD &4 MAIN DATE = 70044 3 15429747
-~

. DO 1793 I=1,J08 RGPOO
DO 1596 J=1,M RGPOO

X JQ=1011,J)/100 RGPOO
_ MQ=10(1,J)-JQ*100 RGPIO
P~ IBLCK=MO-1 RGPIG
> NEWR=IBLCK#*JOB "RGPJO
- R(T,J)=NEWR+JQ RGPOG
' 1596 CONTINUE RGPOU
. 1793 CONTINUE RGPOO
DO 1619 1=1,JM RGPOG

ail T(1,1)=0 RGPIO
-~ 1619 CONTINUE RGPOC
o~ DO 1582 I=1,J08B RGPGO
IL=R{I,41) RGPOC

. T(IL,1)=999 RGPGG
- 1582 CONTINUE RGP IO
GO TO 1555 RGPOO

~ 1516 CONTINUE RGPOO
. DO 1112 1=1,J0B RGPIO
1111 FORMAT{24F3,0) RGPOU

.e READ(1,1111)(R{I,J)yd=14M) RGP
1112 CONTINUE RGPOU

Y 1555 CONTINUE RGPGO
o , DO 1113 I=1,J08B RGPIC
" 1114 FORMAT(1415) RGPGU
READ(1+1114) (NPU{I4J)yd=1,M) RGPOO

. 1113 CONTINUE RGPIU
F C RGPOU
: e INITIALIZE ICMP, RGPOO
- C RGPOO
- DO 8668 ILI=1,J0B RGPJO
P DO 8667 JLI=1,M RGPIC
ve ICMP(ILI,JLI)=NP(ILI,JLI) RGP OO/
" ICTM(ILI,JLI)=0 RGPIU
i~ 8667 CONTINUE RGP OO
tf 8668 CONTINUE RGPOO
i CO 8669 ILI=1,J0B RGPOOD
[IDAX=0 RGPOL

DO 8666 JLI=1,M RGPOO
TIDA=NP(ILI,JLI) RGPCO
ICMP(ILT,JLI}=1IDAX+11IDA RGPOO
TIDAX=ICMP(ILI,JLI) RGPGG

CONTINUE RGPOU

CONT INUE RGPOO
IF(IPRER,EQsl) GO TO 5092 RGPOU

DO 5036 1180=1,J0B RGPOO
WRITE(3,5034)(ICMP{IIBO,I140),11J0=1,M) RGPOG

FORMAT(315) RGPOU

CONTINUE RGPOO

CONTINUE RGPOU

DO 1120 I=1,JM RGPGU

DO 1121 J=1,JM RGPOU

S(I,d)=0 RGPGU

CONT INUE RGPOOC

CONTINUE RGPOO

DO 1115 I=1,J08 RGPOC

DO 1161 J=1,MM RGPGO

IROW=R(T1,J) RGPGO

W IV G LEVEL

o
*h

- >

4

~

ek

<
-
e

1161
Liis

1212
1219

1216

tizd
1181
6222
1209
6223
1117
1215
1250
1118
7008
1892

1863

1152

6165
1157

1868
1861

1, MOD 4 MAIN DATE =

ICOL=R(I4J+1)
S(IROW, ICOL)I=NPI(I,J)
CONTINUE

CONTINUE

Jx=1

JOBX=JOB

DO 1250 I=1,JM
HOLD=0

‘DO 1219 J=1,JM

IF(S({14J)sGTs0) GO TO 1212
GO TO 1219

HOLD=S(1,J)

CONTINUE

IF(HOLD4EQsO) GO TO 1216
GO TO 1209

DO 6222 IP=1,J08

DO 1181 JP=1,M
IF(R(IP,JP)sEQeI) GO TO 1127
GO TO 1181

HOLD=NP(IP,JP)

GD TO 6222

CONTINUE

CONTINUE

IF{1.GToJOBX) GD TO 6223
GO 7O 1117

JX=JX+J08B

JOBX=JOBX+JOB

DO 1215 JP=JX,J0OBX
IF(I,EQeJP) GO TO 1215
S(1,JP)=HOLD*1000

CONTINUE

CONTINUE

IF(JCHNGsEQel) GO TO 1892
READ(1,1118){T(Is1)yI=1sJM)
FORMAT(18BF4.0)

GO TO 1002

CONTINUE

CONTINUE

IBX=1

IB=JM/M

IWORK=0

ICOUN=0

DO 1861 I=1,J08

DO 1868 J=1,4M
IF(R(I,4J)eGEs IBXe ANDaRI(T9J)sLELIB) GO TO 1152
GO TO 6165
IWORK=NP(I,J)+IWORK
ICOUN=TCOUN+1

IF(ICOUN, EQsJOB) GO TO 1157
GO TO 1868

ID=1B/J0OB

PROC(ID)=IWORK

IBX=1BX+JOB

I18=1B+J0B

IF{IBeGTe JM) GO TO 1862

GO TO 1863

CONTINUE

CONTINUE

70044

13

6

15729747

RGPGO
RGPOO
RGPGU
RGPDO
RGPOC
RGPO1
RGPC1
RGPC1
RGPO1
RGPO1
RGPO1
RGPO1
RGPG1L
RGPC1L
RGPO1
RGPO1
RGP3J1
RGPOL
RGPO1
RGPU1
RGPC1
RGPU1
RGPO1
RGPCO1
RGPO1
RGPOL
RGPO1
RGPG1
RGPO1
RGPO1
RGPO1
RGPO1
RGPO1
RGPC1
RGPU1
RGPOL
RGPI1
RGPO1
RGPCG1
RGPG1
RGPGL
RGPO1
RGP31
RGPO1
RGPO1
RGPC1
RGPOL
RGPC1
RGPO1
RGPO1
RGPC1
RGPO1
RGPC1
RGPO1
RGPO1
RGPO1
RGPO1
RGPG1

137

E: IV 6 LEVEL 1, MOD & MAIN DATE = 70044 15729747
- 1862 CONTINUE RGPO1
DO 1169 I=1,J08 RGPO1
=¥ DO 1172 J=1,M RGPO1
- ITEL=R(1,J) RGPO1
A WORK(ITEL)=NP(I,J) RGPO1
b+ 1172 CONTINUE RGPO1
- 1169 CONTINUE RGPO1
G0 TO 1001 RGPO1
¥ 1002 CONTINUE RGPO1
- READ(1,1802) (WORK(I)sI=1,JM) RGPO1
L 1802 FORMAT(18F440,8X) | RGPI1
; READ(1,1803) (PROC (K) sK=1,M) RGPO1
- 1803 FORMAT(5F4,0) RGPI1
1001 CONTINUE RGPO1
-3 1814 FORMAT(10X,'THIS IS PROBLEM',13) RGPO1
- WRITE(3,1814) JPROB RGPO1
{ IF(IPRER.EQe1) GO TO 5172 RGPO1
f 8 EORMAT(1)X,'THE NEXT PRECEEDS MATRIX IS') RGPO1
- WRITE(3,8) RGPO1L
DO 9 I=1,JM RGPO1
s WRITE(3410)(S(IyJ)yJ=1sJIM) RGPO1
| 10 FORMAT(12F640) RGPOL
of 9 CONTINUE RGPO1
+ 11 FORMAT(10X,'THE START VECTOR IS') RGPO1
Lo WRITE(3,11) RGPO1
| DO 12 I=1,JM RGPO1
o WRITE(3,13)T(I,1) RGPO1
‘[13 FORMAT(F640) RGPOL.
: 12 CONTINUE RGPO1
o 5172 CONTINUE RGPO1
A\ c
- c THE PROBLEM IS PROPERLY FORMULATED AT THIS POINT AND IS
e C READY FOR SOLUTION.
L 5 c
: C
DO 15 I=1,JM _ RGPO1
DELET(I)=0 RGPO1
i 15 CONTINUE RGPO1
s DO 16 J=1,JM RGPO1
i, ENTER(J)=0 RGPO1
¥ 16 CONTINUE RGPO1
e ITER=0 RGPO1
GO TO 476 RGPO1
‘ 416 CONTINUE RGPO1
b IF(IPRER, EQel) GO TO 5060 RGPO1
s 21 FORMAT(10X,'AFTER ITERATION®,I3,'THE S/MATRIX IS') RGPO1
WRITE(3,21) ITER RGPO1
-~ DO 22 I=1,JM RGPO1
L WRITE(3,23)(S({T,J),J=1,JM) RGPO1
23 FORMAT{12F640) RGPO1
- 22 CONTINUE RGPO1L
Ky 5060 CONTINUE RGPOIL
: 476 ITER=ITER+1 RGPO2
o DO 9921 T1QRG=1,M RGPO2
o IDON(IQR3)=0 RGPO2
9921 CONTINUE RGPO2
" . L=1 RGPO2

L MM=JM/M RGpe2

gﬁ IV G LEVEL

e

* ¥

TS 2

ad

OO0

926

29

47
5061

859
30

826
B25

Li5%

5042
5043

1829

1830

4362
6527
1752

1y MOD & MAIN DATE

CONTINUE

IJACK=0

NULL=0

DO 825 J=L,MM
IF{JsEQsENTER(J)) GO TO 825
DO 826 I=1,JM
IF‘S‘I!J].GT.O'AND.S{I!J’.LT;QQ) GO TG 359
IF{1.LTe«JM) GO TO 826
CONTINUE

IF{IPRER,EQs1l) GO TO 5061
WRITE(344T7T)ITER,J
FORMAT(10X,'POTENTIALLY NULL AT ITERATION
CONTINUE

NULL=NULL+1

IJACK=J

GO TO 825

IF({1+EQeDELET{I))} GO TO 30
GO TO 825

IF(I«EQeJM) GO TO 29
CONTINUE

CONTINUE

IF(NULLesEQel) GO TO 1751

GO TO 1752
ENTER{IJACK)=1JACK
IWWD=MM/J 0B

IDON(IWWD }=1IWHWD

ENTER IJACK INTO THE JOB SEQUENCING MATRIX, WHERE IJACK

70044

1,13,'15

138

',13)

15729747

RGPOZ
RGPI2
RGPO2
RGPUO2
RGPOZ
RGPO2
RGPUO2
RGPOZ
RGPUZ
RGP0O2
RGPO2Z
RGPLZ
RGPJZ
RGPOZ
RGPU¢g
RGPOc
RGPOZ
RGPOZ
RGPUZ2
RGPO2
RGPO2
RGPC2Z
RGPOZ
RGPO2
RGPJU2
RGPO2

REFERS TO COLUMNS WHICH CAN ENTER THE SOLUTION WITHOUT RESOLUTION

OF A CONFLICT.

IPREY=TJACK

CALL ICPLT(ICMP,IPREY,JOByMyI0,ENTER,NP,ICTM)

DO 5043 IBIDDO=1,J0B

DO 5042 11BDO=1,M
ICMP(IBIDO,IIBDO)=ICTM({IBIDO,IIBDO)
CONTINUE

CONTINUE
JNOW=ENTER(TJACK)
IPICK=JNDW/JOB
INUM=IPICK*JOB
JPICK=JNOW=-INUM
IF{JPICK.EQs0) GO TO 1829
MXX=IPICK+1

GO TO 1830

JPICK=J0B

MXX=IPICK

CONTINUE

DO 4362 IKL=1,J08B
IF(SEQ(MXX,IKL)eNEsO) GO TO 4362
SEQIMXX,IKL)=JPICK

GO TO 6527

CONTINUE

CONTINUE

IF(MMeEQs JM) GO TO 1637
MM=MM+JIM/M

L=L+JM/M

GO TO 926

RGPOZ
RGPOZ
RGPOZ
RGPO2
RGPOZ
RGP32Z
RGPO2
RGPOZ
RGPOZ
RGPOL
RGPG2
RGPO2Z
RGPJ2
RGPOZ2
RGPOZ
RGPO2
RGPOZ
RGPOZ
RGPJ2Z
RGPOZ
RGPOZ
RGPUZ
RGPOZ
“RGPOZ
RGPO2
RGPOZ
RGPOZ

139

gi IV G LEVEL 1, MOD 4 MAIN DATE = 70044 15/29/747
. 1637 L=1 RGPO2
MM=JM/M RGPO2
At 9926 CONTINUE _ RGPO2
_ [EXTD=J0B+1 RGPI2
a DO 9214 ICRP=1,IEXTD RGPO2Z
~ LONE(ICRP)=0 RGPO2Z
— LBNE{ICRP)=0 RGPO2
LBSE(ICRP)=0 RGPO2
~d ICOMX (ICRP)=0 RGPO2
: 9214 CONTINUE RGPO2
& NULL=0 RGPO2Z
- 1G00=MM/JOB RGPO2
., IF(IDON{IGOO) eNEeO) GO TO 9489 RGPO2
DO 9825 J=L,MM RGPO2Z
.t IF(JoEQ.ENTER(J)) GO TO 9825 RGPO2
- DO 9826 I=1,JM RGPO2
| IF(S{14J)aGTe0eANDaS(I,J)aLT299) GO TO 9859 RGPO2
| IF(I.LTeJM) GO TO 9826 RGPOZ
i~ 9829 CONTINUE RGPU2
IF(IPRER.EQel) GO TO 5062 RGPI2
. WRITE(3,9847) ITER,J RGPO2
- 9847 FORMAT (10X, 'POTENTIALLY NULL AT ITERATION *+I3,'IS ',13) RGPO2
P 5062 CONTINUE RGPO2
« NULL=NULL+1 RGPOZ
IBBZ=NULL RGPO2
LONE(IBBZ)=J RGPO2
GO TO 9825 RGPO2
9859 IF(1,EQeDELET{I)) GO TO 9830 RGPOZ
GO TO 9825 RGPO2Z
9830 IF(I¢EQeJM) GO TO 9829 RGPO2
9826 CONTINUE RGPO2
9825 CONTINUE RGPD2
IF(LONE(1)+EQeQ) GO TO 9874 RGP 02
GO TO 9875 RGPO2
9874 GO TO 9489 ’ RGPO2
6692 JENT=0 RGPO2
c
c RESOLVE CONELICTS IN THE MACHINE BLOCKS WITH LOWER BOUND I (COMP)s
c |
9875 CALL COMP(LONE,JOBsMsNP,I0yENTERyLBSE,LBNE ICOMXyJENT,ICMP,ICTM, IPRGPO2
1RER) RGPO2
1CONU=TCINU+1 RGPI3
IF(IPRER.EQel) GO TO 5063 RGPO3
WRITE{3,9807) (ICOMX{ICB),ICB=1,J0B) RGPO3
9807 FORMAT(10X,'THE LOWER BOUND IS *,I4) RGP O3
WRITE(3,9808) JENT RGPO3
9808 FORMAT(10X,*SELECT NODE *,14) RGPO3
5063 CONTINUE. RGPO3
ENTER(JENT)=JENT RGPO3
c RGPO 3
c UPDATE ICMP, BASED UPON THE SELECTED NODE, JENT. RGPO3
C RGPO3
NMMN=JENT / JOB RGPO3
NMMC=NMMN *JOB RGPO3
. 1F (NMMC+EQe JENT) GO TO 2500 RGPO3
; NMMX=NMMN+ 1 RGP0O3
JMMX=NMMN % JOB RGPO3

IF{JMMXoGTJENT)Y GO TO 2531 RGPO3

NIV 6 LEVEL
L2 S

> &
2531
x®
- 2532
' 2533
o
-
2500
| B
?ﬂ 2501
i
<
6605
. 6601
?t* 6600
b
- R
—_
vy 6642
{
A 6643
\
e 6644
.
.
6317
6315
6316
6327
6347
6641

6640

5098
5097
5064

1, MOD 4 MAIN DATE

GO TO 2532

JOBTX=JENT

GO TO 2533

JOBTX=JENT-JMMX

NSEL=JOBTX*100

NSEX=NSEL +NMMX

GO TO 2501

NSEL=J08%100

NSEX=NSEL +NMMN

DO 6600 TUUX=1,J08B

DO 6601 TUUU=1,M
IF{I0(TIUUX, TUUU) o EQeNSEX) GO TO 6605
GO TO 6601

1IDA=ICMP {TUUX, IUUU)

CONTINUE

CONTINUE

IKSU=NSEX/100

TISU=1IKSU*100

I TKU=NSEX-TISU

DO 6640 IKUU=1,JOB

DO 6641 TIIK=1,4M

IF(IKUUeEQe IKSU) GO TO 6640
IIMU=I0(TKUU,ITIK)/100
ITCU=I0{IKUU, ITIK)-T1IMU*100
IF(TICUsEQsIIKU) GO TO 6643

GO TO 6641

I110u=11CU-1

I0SU=T110U*J0B

IINU=TOSU+IIMU
IF(ENTER(IINU)+EQsO) GO TO 6644
GO TO 6640

IUPTE=0

DO 6347 JCCCD=IIIK,M
IF(JCCCD.EQe.IIIK) GO TO 6317

GO TO 6327
KIJCK=NP{IKUU,JCCCD)I+IIDA
IF(KIJCK,LT2 ICMP{IKUU,JCCCD)) GO TO 6315
ICMP(TKUJ,JCCCD)=NP({IKUU,JCCCD)+TIDA
GO TO 6316
IUPTE=T1CMP(IKUU,JCCCD)}

GO TO 6347
IUPTE=ICMP{IKUU,JCCCD)

GO TO 6347

ICMP{ IKUU,JCCCD)=TUPTE+NP(IKUU,JCCCD}
IUPTE=ICMP(IKUU,JCCCD)

CONTINUE

CONTINUE

CONTINUE

IF(IPRERsEQsl) GO TO 5064

DO 5097 180Q=1,J0B
WRITE(2,5098) (ICMP{IBOQ,JBOQ),JBOQ=1,M)
FORMAT(315)

CONTINUE

CONTINUE

ENTER NODE JENT INTO THE SEQUENCING MATRIXe

70044

15729747

RGPO3
RGPO3
RGPO3
RGPO3
RGPO3
RGPO3
RGPO3
RGPO3
RGPU3
RGPO3
RGPO3
RGPU3
RGP0O3.
RGP3J3
RGPO3
RGPU3
RGPO3
RGPG3
RGPU3
RGPU3
RGPO3
RGPO3
RGPO3
RGPJ3:
RGPO3:
RGPL 3
RGPG3
RGPJ3:
RGP 3y
RGPG3
RGPI3:
RGPO3!
RGPO3
RGPO3
RGPO3
RGPG3
RGPG3
RGPO3
RGPO3
RGPO3
RGPJ3
RGPOU3
RGPG3
RGPU3
RGPG3
RGP3I3
RGPO3
RGPO3
RGPO3
RGPO3
RGPO3
RGPG3
RGPO3
RGP33

i

141

IN"IV 6 LEVEL 1, MOD & MAIN DATE = 70044

4
w R

n®

\L‘Q

-l

coo0o00O

sNaNe!l

OO0

9429

9430

9462
9427
9489

800

802

804
803

811

821
820

8lé
815
810

NOTE THAT THE ONLY DIFFERENCE BETWEEN NODES SIGNIFIED AS

IJACK AND THOSE AS JENT IS THAT THE FORMER ARE DETERMINED
WITHOUT RESOLUTION OF CONFLICTS WHILE THE LATTER ARE DE-

TERMINED BY SAID RESOLUTION,

JNOW=ENTER{JENT)
IPICK=JNOW/JOB
INUM=IPICK*JOB
JPICK=JNOW-INUM

IF(JPICK, EQe0O) GO TO 9429
MXX=IPICK+1

GO TO 9430

JPICK=J0B

MXX=IPICK

CONT INUE

DO 9462 IKL=1,J0B
IF(SEQIMXX,IKL)sNEsO) GO TO 9462
SEQ{MXXysIKL)=JPICK

GO TO 9427

CONTINUE

CONTINUE

IF(MMaEQs M) GO TO 800
MM=MM+JIM/ M

L=L+JM/M

GO TO 9926

ENTER THE SELECTED NODES IN THE PRECEDENCE MATRIXs

DO 801 J=1,JM

NO=0

IF(JsEQ.ENTER(J)) GO TO 802
GO TO 801

DO 803 IX=1,JM

IF(NOsGTs0) GO TO 803
IF(S{IXyJ)eGT999) GO TO 804
GO TO 803

NO=NO+1

CONTINUE

IF(NO<EQe0O) GO TD 801

DO 810 I=1,JM
IFIS({I,J)eGT+999) GO TO 811
GO TO 810

IF(1+4EQsDELET(I)) GO TO 821
StI,J)=0

GO TO 810
S(1,J)=S{1,J)/1000

DO 815 IP=1,JM
IF(SI{I,IP)aGTe999) GO TO 816
GO TO 815

S(1,1P)=D

CONTINUE

CONT INUE

NOW WE MJST DELETE THE CORRESPONDING ROWs

I=J
DELET{I)=1

15729747

RGPG3
RGPO3
RGPJ3
RGPO3
RGPO3
RGPO3
RGP 3
RGP 23
RGPO3
RGPU3|
RGP3 3,
RGPO3.
RGPuU3
RGPO3.
RGP0 3
RGPU3:
RGPO3]
RGPU3
RGPJ3
RGPG3

RGPO3
RGP(O3
RGPO3]
RGPO3
RGP(O 3
RGPC 3!
RGPG4I
RGPO4!
RGPO&I
RGPO4!
RGPO4!
RGPO&
RGP Q4
RGP3 41
RGP 4
RGPO4
RGPO4
RGPO4
RGPL4
RGPO4
RGPO4
RGPU4
RGP G4
RGPO4

RGPJ4

RGPG4
RGPO4

[ale el

977

963

901

49
900
902

969

778

770
904

709

305

1, MOD 4 MAIN DATE =
CONT INUE
CHECK TO SEE IF ALL NODES HAVE BEEN ENTEREDs

PLUS=0

DO 640 I=1,JM

DO 641 J=1,JM
IF{S{14J)eGTe99) GO TO 642
GO TO 64l '
PLUS=PLUS+1

CONT INUE ;
CONTINUE

IF{PLUS.S5T.0) GO TO 416

UPDATE THE STARTING VECTOR.

CONTINUE
TCOL=1

DO 905 J=1,JM

DO 904 I=1,JM
IF(T(I,TZ0L)+EQe999) GO TO 963
IF(T(1,TCOL)«EQ.0) GO TO 902

70044

IF(T(I,TCOL)eGTo0eANDaT(I,TCOL)eLT&999) GO TO 969

IF(5(1,J)eGTo0aANDaS(I,J1aLTa99) GO TO 901
IF(S(14J)sFQa0s0RaS{I4J)aGT+999) GO TO 900
IF{S(14J)aGTe99) GO TO 49
SPRODII,LTCOL)=S{I,J)

GO TD 904

SPROD(I,TCOL)=S(1,J)/100

GO TO 904

SPROD(I1,TCOL) =0

GO TO 904

SPROD(1,TCOL)=0

GO TO 904

IF(S(1,J)eEQe0a0RaS(1,J)aGT4999) GO TO 770
IF(S(1+J)eGTa99eANDeS{I,J)eLT2999) GO TO 778
SPROD(I,TCOL)=T(I,TCOL)+S(I,J)

GO TO 904
SPROD{I,TCOL)=T(I,TCOL)+S(1,4)/100

GO TO 904

SPROD(I,TCOL)=0

CONTINUE

MAL=M

M=1

MAXT=SPRID{M, TCOL)

DO 709 M=1,JMM

IF(MAXTe5Es SPROD(M+1,TCOL)) GO TO 709
MAXT=SPROD(M+1, TCOL)

CONT INUE

M=MAL

I=J

TITER{I,TCOL)=MAXT

CONTINUE

AGAIN=0

DO 797 I=1,JM |

IF(T(1,TCOL)+EQe999) GO TO 796
IF(T(I,TCOL)aLToTITERII,TCOL)) GO TO 795
G0 TO 797

142

15729747

RGPO4

RGPO4
RGPG4
RGPO4
RGPC4
RGPG4
RGPO4
RGPG4
RGPO4
RGPG4

RGPU4
RGPO4
RGPO4
RGPO4
RGPO4
RGPO4
RGPO4
RGP G4
RGPJ4
RGPO4
RGPJ4
RGPO4
RGPO4
RGP24
RGPO4
RGP4
RGPU4
RGPO4
RGP34
RGPO4
RGPG4
RGPG4
RGPO4
RGPO4
RGPO4&
RGPO4
RGPC4
RGPO4
RGPO4
RGPO4
RGPO4
RGPG4
RGPO4
RGPI4
RGPO&4
RGPO4
RGPO4
RGPO4
RGPU4
RGPO4
RGPO4
RGPO4

i
\N IV G LEVEL

X w .
™ 795
R
frﬂ 796
g 339
-

797
L c
- C
r c
o c
v ¥
| 782
LN 2
. 781
P 913
r‘r
L 912
. 827
A
s 829
: 828
f 5173
?V
: 6
T C
] c
re c
P
.
> 929
E.h
e
1 939
iy
b 919
| (¥
1]
e

808
P’ 812
. 809
v 9041
. 9032
> 5067

143

1, MDD & MAIN DATE = 70044

T(I,TCOLY=TITER(I,TCOL)
AGAIN=AGATIN+1

GO 70O 797

IF(TITER(I,TCOL)aGTeQ) GO TO 339
GO TO 797
T(I,TCOL)=TITER(I,TCOL)
AGAIN=AGAIN+1

CONTINUE

THE ABOVE SECTION OF THE PROGRAM WILL UPDATE BOTH
THE T-VELTOR AND THE S-MATRIX.

IF{AGAINeNELO) GO TD 977

CONTINUE

IF(IPRER.EQel) GO TO 5173

WRITE(3,913)

FORMAT{10X,*THE FINAL START TIME VECTOR IS')
WRITE(3,912)(T(I,TCOL)yI=1,JM)

FORMAT(F640)

WRITE(3,827)

FORMAT(10X,*THE FINAL S-MATRIX IS*)
DD 828 I=1,JM
WRITE(3,4829)(S(I,J)yd=1yJM)
FORMAT(12F640)

CONTINUE

CONTINUE

N=1

K=1

15729747

RGPO4
RGPU4
RGPI&4
RGPO4
RGPO4
RGPO4
RGPT4
RGPO4

RGPO &
RGPO4
RGPO4
RGPO4
RGPU4
RGPO4
RGPO4
RGPO4
RGPO4
RGPO4
RGPO4
RGPO4
RGPG4
RGPO4
RGPS
RGPD5
RGPS5

THE REMAINDER OF THE ROUTINE COMPUTES SCHEDULE TIME AND FACILITY

IDLE TIME,

CO 929 N=1,JM

SCHD{N)=WORK{N)+T{N,TCOL)
IF{SCHDI(N)+GT4999) SCHD{N)=SCHD(N)=999
CONTINUE

CHEK1=SCHD(1)

DO 939 I=1,JMM

IF(CHEK1.GFoSCHD(I+1)) GO TO 939
CHEK1=SCHD(I+1)

CONTINUE

WRITE(3,919) CHEK1

FORMAT(10X,'THE SCHEDULE TIME [IS',F4,0)
NOWy USING CHEK1l, WE CAN CALCULATE MACHINE IDLE TIME.
DO 808 I=1,M

IDLE(I)=CHEK1-PROCI(I)

CONTINUE

WRITE(3,812)
WRITE(3,809)(IDLE(I)yI=14M)
FORMAT{10X,*'THE FACILITY IDLE TIMES ARE')
FORMAT(14)

0O 9032 IPQ=1,M

WRITE(3,9041) (SEQ(IPQ,IPQX),IPQX=1,J408)
FORMAT(10F5.0)

CONTINUE

WRITE(2,5067) ITER,ICONU,CHEKL
FORMAT(215,F440)

WRITE{(3,5068) ITER,ICONU

RGPO5
RGPUS
RGPO5
RGPO5
RGPI5
RGP35
RGPS
RGPO5
RGPCS5
RGPO5
RGPO5
RGPOS5
RGPO5
RGPO5
RGP25
RGPGS5
RGPO5
RGPG5
RGPGS
RGPGO5
RGPOS
RGPG5
RGPUS
RGPO5
RGPO5
RGPO5

\ IV G LEVEL 1, MDD 4

2 4

L3

o

= 4

7

«

144

MAIN DATE = 70044 15729747
5068 FORMAT(10X,'THE NOe OF ITERs AND CONFLICTS ARE',2I5]) RGPCS
IF(JPROB., NE, IPROB) GO TO 682 RGPOS
STOP RGP35
END RGPGS

LEVEL 1, MOD 4 COMP

OO0 OOOO0

OO0

8888

5001

6031

OO0

6032
6033

7500

7501

5012
5011

145
DATE = 70044 15/729/47

SUBROUTINE COMP (LONE,JOByM,NP, IO,ENTER,LBSESLBNE, ICOMXyJENT, ICMP,IRGPOS

1CTM, IPRER)

RGPLUS

DIMENSION LONE(15)4NP{15,5),10(1545),ENTER(5G),LBSE(15)4,LBNE(L5),IRGPT5
1COMX(15)y IUNSC(40) 4 MIN(15) 4, MINK{15), ISECT{15), ISEC(15)4ICMP(15,5),RGPT5

2ICTM(15,5) RGPOS
RGPO5
THIS ROUTINE COMPUTES THE LOWER BOUND FOR EACH RGPO5
NODE IN THE CONFLICT SET IN EACH MACHINE BLOCK RGPOS
AT ALL ITERATIONS-USING LOWER BOUND ONE, RGPO5
LOWER BOUND 1 IS A COMPOSITE BOUND CONSISTING OF TWO
INDIVIDUAL BOUNDS,
RGPJ5
COMPUTE FIRST, THE VALUE OF THE FIRST BOUND IN THE RGPO5
COMPDSITE LOWER BOUNDe RGPUS
RGPUS
JM=J0B*M RGPO5
DO 8888 1PA=1,J0B RGPO5
ISEC(IPA)=0 RGPS
ISECT(IPA}=0 RGPO5
CONTINUE RGPO5
10B=0 RGPCS
ICB=10B+1 RGPO5
1QD=10Q8 RGPS
IF(LONE(IQD)eEQe0) GO TO 5002 RGPCS
RGPUS
COMPUTE THF COMPLETION TIME RGPC5
RGPJ5
IPREY=LONE{IQD) RGP 35
IMCH=TPREY/JOB RGPJ5
IMC=IMCH*JOB RGPO5
IF{IMC.EQs IPREY) GO TO 7500 RGP25
IMCX=IMCH+1 RGPI5
JOBM=TMCH=*J0B RGPCS
IF(JOBMe5Te IPREY) GO TG 6031 RGPLS
GO TO 6032 RGPO2
JOBP=IPREY RGPS5
GO TO 6033 RGPCE
JOBP=IPREY-JOBM RGPOS
ISEL=J0BP *100 RGPOE
ISEX=ISEL+IMCX RGPOS
GO TO 7501 RGPGE
ISEL=J0B*100 RGPGE
ISEX=1SEL +IMCH RGP33
[=ISEX/100 RGPOE
DO 5011 J=1,M RGPOS
IF{ID{1,J)eEQ.ISEX) GO TO 5012 RGPUS
GO TO 5011 RGPCE
IHOL=J RGPOE
CONTINUE RGPIE
ISUMX=ICMP (1, IHOL) RGPIE
COMPUTE THE SECOND COMPONENT IN THE FIRST TERM OF THE BOUND.
JHOL=THOL+1 RGPuE
I1JSuM=0 RGPGE
IF(JHOL«GTaM) GO TO 6608 RGP3E
DO 5014 JZIX=JHOL,M RGPUE
JISUM=NP{I,JZX) RGPUE

146

"IV G LEVEL 1, MOD 4 comp DATE = 70044 15/29/47
Fw

- 1JSUM=TJSUM+JISUM RGPOS
5014 CONTINUE RGP OS5
. 6608 CONTINUE RGPOS
N IFIRS=1SUMX+1JSUM RGPGS
IF(IPRER,EQe1) GO TO 4370 RGPOS
= WRITE(3,3901) ISUMX RGPOS
. 3901 FORMAT(10X,'COMPLETION TIME IS *,14) RGPO5
WRITE(3,3900) IFIRS RGPCS
. 3900 FORMAT(10X,'FIRST TERM IS *,14) RGPO5
. 4370 CONTINUE RGPO5
c RGPOS5
= C COMPUTE THE SECOND TERM RGPO5
. c "RGPOS
DO 8846 1BT=1,J08 RGPOS
. 1SEC(IBT) =0 RGP U6
" 8846 CONTINUE RGP 6
DD 5020 IXD=1,J08B RGPO6
- IF(I1XDeEQe IQD) GO TO 5020 RGPO6
L IF(LONE(IXD)eEQe0) GO TO 5020 RGPOG
IPREY=LONE (1XD) RGPO6
- IMCH=1PREY/JOB RGPG6
. IMC=1MCH*JOB RGPO6
IF(IMC.EQq IPREY) GO TO 8500 RGPO6
N IMCX=TMCH+1 RGPO6
. JOBM=IMCH* JOB RGPO6
IF(JOBMaGToIPREY) GO TO 6041 RGPO6
~ GO TO 6042 RGPO6
6041 JOBP=IPREY RGPO6
GO TO 6043 | RGPO6
co 6042 JOBP=IPREY-JOBM RGPO6
: 6043 1SEL=JOBP%100 RGPO6
ISEX=ISEL+ IMCX RGPO6
. GO TO 8501 RGPO6
. 8500 ISEL=JOB%100 RGPU6
ISEX=I1SEL+IMCH RGP D6
v 8501 1=ISEX/100 RGPO6
L DD 6090 J=1,M RGPI6
IF(I0(1,J)+EQeISEX) GO TO 6091 RGPO6
r GO TO 6090 RGPO6
. 6091 JHOL=J RGPO6
? 6090 CONTINUE RGPOE
" JISUM=0 RGPO&
B 00 6080 JZZ=JHOL,M RGPOE
; JXSUM=NP(I ,JZ2) RGPUE
v JISUM=JXSUM+JTSUM RGP IE
: 6080 CONTINUE RGPOE
IF(IPRER, EQa1) GO TO 4371 RGPOE
 WRITE(3,3902) JISUM RGPOE
E 3902 FORMAT(10X,'FOURTH TERM IS *,14) RGPOE
4371 CONTINUE RGPGE
: ISEC(IXD)=1SUMX+JISUM RGPOE
F 5020 CONTINUE RGPOE
J02Q=J0B-1 RGPOE
- DO 6070 I1XD=1,J0ZQ RGPUE
. IF(IXDaGTal) GO TO 6072 - RGPO&
KEPE=ISEC (1) RGPOE
b 6072 1F(KEPE.5Ta ISECIIXD+1)) GO TO 6070 RGPOE

KEPE=ISEC(IXD+1) RGPOE

NIV 6 L

. W

?m

at

?qu"!’

¥

-

’%%

e

t;*
C
c
C

OOOO0O0Oa0O0O00

EVEL

6070

9539

9538
9537

5002

8823
4372

8001

9031
9032
9033
9500

9501

9512
sl
. ISUMX=ICMP(1,IHOL)

LE(I0(T,9)4EQ. ISEX) GO TO 9512 T

147
1, MOD 4 © COMP DATE = 70044

CONTINUE

IFISC=KEPE

IDIFF=IFIRS-IFISC

IFIIDIFF,GTe0) GO TO 9539

GO TO 9538

LBNE{ IQD)=IFIRS

GO TO 9537

LBNE{IQD)=IFISC

CONTINUE

GO TO 5001

CONTINUE

IF{IPRER.EQel) GO TO 4372
WRITE(3,8823)(LBNE(IQD),1QD=1,J0B)}
FORMAT{10X,'THE VALUE OF THE LB I IS ',15)
CONTINUE

COMPUTE THE VALUE OF LOWER BOUND USING LOWER
BOUND TWD.

COMPUTE THE FIRST TERM IN THE FORMULATION

IQR=0

IQR=1QR+1

IQW=1IQR

IF(LONE{IQW)sEQ.0) GO TO 8002

COMPUTE THE COMPLETION TIME

IPREY=LONE(IQW)
IMCH=I1PREY/JOB

IMC=IMCH%*JOB

IF(IMCoFQe IPREY) GO TO 9500
IMCX=IMCH+1

JOBM=IMCA*JOB

IF(JOBMaGT IPREY) GO TO 9031
GO TC 9032

JOBP=1PREY

GO TO 9033

JOBP=1PREY-JOBM
ISEL=JOBP*100
ISEX=ISEL+IMCX

G0 TO 9501

ISEL=J0B*100
1SEX=1SEL+1IMCH
I=ISEX/100

DD 9511 J=1,M

GO TO 9511
IHOL=J
CONTINUE

1PRER,EQel) GO TO 4373

*iwaz?fis,sgozl 1SUMX

15/729/47

RGPUG
RGPGO
RGPO6&
RGPO6
RGPOS
RGPOG&.
RGPUB
RGPOB
RGPO6
RGPO6
RGPOG
RGPG6
RGPOS
RGPCE
RGPOG

RGPUG
RGPOG
RGPJG
RGPUG
RGPOG

RGPOG
RGPO6
RGP36
RGPO6
RGPOG
RGPO6
RGPG6
RGPO6
RGPO6
RGPO6
RGPOG
RGPOG
RGPO6
RGPOG
RGPO6
RGPO6
RGPO6
~ RGPO6
- RGPO6
RGPO6
- RGPO6
RGPO6
RGPOG
RGPOS
RGPOG6
RGPUS
" RGPO4E
RGPG4
RGPOG
RGPOE
RGPOG
,Rspe@
RGPCS
Rﬁpjé

.
AN IV G LEVEL 1, MOD 4 comp DATE = 70044 148 15/29/47
[2= 4

" 3903 FORMAT(10X,'COMPLETION TIME IS *,14) RGPOE
? 4373 CONTINUE RGPOE
¥ c RGPO1
bey < C COMPUTE PROCESSING TIME OF OTHER UNSCHEDULED JOBS RGPQ1T
: i CN THE SAME MACHINE. RGPOT
el C RGPOT
PPy IOTHR=IPREY/JOB RGPO7T
_ ' I0OT=10THR*JOB RGPOT
i ' IF(I0T.EQe IPREY) GO TO 9560 RGPOT
GO TO 9561 RGPOT
9560 IMCKI=IPREY RGPO7
GO TO 9562 RGPU7T
9561 INMC=I0THR*JOB RGPGT
JKZ=TNMC+1 : RGPOT
JKX=INMC+J0OB RGPOT
GO TO 6939 RGPOT
9562 JOBK=J0OB-1 RGPOT
JKZ=]PREY-JOBK RGPOT
JKX=IPREY RGPOT
o ' RGPOT
(o CHECK FOR UNSCHEDULED NODES. RGPO7
o RGPOT
6939 CONTINUE RGPOT
DO 4908 100=1,JM RGPOT
IUNSCI(T00)=0 RGPOT
4908 CONTINUE RGPO7
9563 DO 9567 TUJ=JKZ,JKX ‘RGPO7
IF{IUJ.EQ.LONE(IQW)) GO TO 9567 RGPO7
IFIENTER{TIUJ)EQeC) GO TO 9568 RGPOT
GO TO 9567 ' RGPOT
9568 IUNSC{IUJ)I=TUJ RGPOT
9567 CONTINUE RGPOT
[IUNSM=0 RGPOT
DO 9570 I1UJ=JKZ,JKX . RGPO7
IF(IUNSC(IUJ)-EQeQ) GO TO 9570 RGPOT
IPREY=TUNSC(IUJ) RGPO7
IMCH=IPREY/JOB RGPOT
IMC=IMCH¥*J0B "~ RGPOT
IF(IMC.EQs IPREY) GO TO 9571 RGPO7
IMCX=TMCH+1 RGPOT
JOBM=IMCH*J0OB RGPO7
IF{JOBM.3T. IPREY) GO TO 9572 RGPOT
GO TO 9573 ‘ RGPOT
9572 JOBP=IPREY RGPO7
GO TOD 9574 RGPOT
9573 JORP=IPREY-JOBM RGPOT
9574 ISEL=JOBP*100 RGPOT
ISEX=1SEL+IMCX : RGPO7
GO TO 9575 RGPO7
9571 ISEL=J0OB%100 RGPG7
ISEX=1SEL+IMCX RGPOT
9575 I=1SEX/100 RGPOT
DO 6511 JA=1,M RGPOT
IF(I011,JA)eEQe ISEX) GO TO 6512 RGPOT
GO TO 6511 RGPO7
6512 IHOL=JA RGPOT
o 6511 CONTINUE RGPO7

it : IPRSS=NP(I,TIHOL) RGPOT

i

AN IV G LEVEL

A %
- 9570
r‘ t
&
Prt
X 3904 .
e 4374
* C
- C
C
C
C
C
(o
9430
9431
C
o
C
7662
C
C
o
4902
4904
4903
4901

i, MOD 4 COMP DATE = 70044

[UNSM=TUNSM+IPRSS

CONTINUE

TUNXM=TUNSM+] SUMX
IF{IPRER.EQel) GO TO 4374
WRITE(343904) IUNXM
FORMAT(10X,'FIRST TERM IS ',14)
CONTINUE

COMPUTE THE SECOND TERM OF THE LOWER BOUND.

IDENTIFY THE OTHER MACHINES

IPREY=LONE(IQR)

CALL ICPLT(ICMP,IPREY,JOByMyI0,ENTER,4NP,ICTM]
IMCH=IPREY/JOB

IMC=IMCH*xJOB

IF{IMCoEQe IPREY) GO TO 9430
IMCH=TMCH+1

GO TO 9431

IMCH=IPREY/J0B

CONTINUE

DO 4900 JZIZ1Z=1,M
IF(JZ77.,EQe IMCH) GO TO 4S00

149

15729747

RGPOT
RGPO7
RGPOT
RGPGY
RGPIT
RGPGY
RGPOT
RGPOT
RGPOT
RGPOT
RGPOT
RGPCY
RGPCT
RGPOT
RGPCT
RGPOT
RGPOT
RGPOT
RGPOT
RGPCT
RGPO7
RGPO7T
RGPOT
RGPOT
RGPC7
RGPOT

COMPUTE THE FIRST COMPONENT OF THE SECOND TERM OF THE BOUND,

DO 7662 1KK=1,J08B
MIN(IKK)=0
MINK{IKK)=0
CONTINUE

DO 4901 JZ7X=1,J08B
JZIK=JZIX*10C
JZIP=JIIK+JI1I1
JXO0X=JZZP /100
JZIXX=JZIP-JXOX*100
JIXXX=JIZXX~-1
JZXN=JIXXX*JOB
JTRY=JZXN+JX0OX

CHECK IF THIS NODE HAS ALREADY BEEN ENTEREDe

IF{ENTER({JTRY)sEQeD) GO TO 4902
GO TO 4901

MLK=JZZX

DO 4903 JOW=1,M
IF(TI0(MLK,JOW)eEQe JZZP) GO TO 4904
GO TO 4903

JQD=JOW

CONTINUE

KOOL=ICTM(MLK,JQD)
NKOOL=NP{MLK,JQD)
MIN{MLK)=KOOL-NKOOL

MINK (MLK) =NKOOL

CONTINUE

I0KP=100

DO 4910 MLK=1,J08B

RGPOT
RGPOT
RGPO7
RGPOT
RGPOT
RGPO7
RGPCT
RGPLT
RGPOTY
RGPOT
RGPOT
RGPOT
RGPOT
RGPOT
RGPOT
RGPIT
RGPOT
RGPOB
RGPUS
RGPI8
RGPC8
RGPOB
RGPOS
RGPOE&
RGPOS8
RGPUB
RGPGS
RGPOB
RGPOE
RGPOS
RGPOSE

L

OOO0O0

eizisisRaisis)

OOOOO0

EVEL

4911
4910

3907
4377
4920

4900

3908
4375
5650

7735
1736
8002

8822
4376

1, MOD 4 COMP

IF(MIN(MLK)+EQe0O) GO TO 4910
IF(IOKPsLE«MINIMLK)) GO TO 4910
IOKP=MIN{MLK)

CONTINUE

ADD THIS MINIMUM TO THE SECOND COMPONENT OF THE

DATE =

70044

SECOND TERM

OF THE BJUND, WHERE THE SECOND COMPONENT IS IDENTIFIED AS

MITOLe

MITOL=0

DO 4920 MLK=1,J0B
IFIMINK(MLK)2EQeC} GO TO 4920
MITOL=MINK (MLK)+MITOL
IF(IPRER,EQs1) GO TO 4377
WRITE(3,3907) MITOL
FORMAT{10X,*MITOL EQUALS ',I14)
CONTINUE

CONTINUE
ISECT(JZZZ)=10KP+MITOL
CONTINUE

ILAKS=0

DO 5650 JZ2ZZI=1,M
IF(J7724EQeIMCH) GO TO 5650
IF(ILAKSeGToISECT(JZZZ)}) GO TO 5650
ILAKS=ISECTI(JZIZZ)
IF(IPRER.EQel) GO TO 4375
WRITE(3,3908) ILAKS
FORMAT(10X,'ILAKS EQUALS ',I4)
CONTINUE

CONTINUE

COMPUTE THE VALUE OF THE SECOND LOWER BOUND
WHERE THE FIRST TERM IS IUNXM AND THE SECOND

TERM IS TLAKS,

IWICH=TUNXM-ILAKS

IFIIWICH,GEA.Q) GO TO 7735
LBSE(IQW)=ILAKS

GO TO 7736

LBSE(IQW)=TUNXM

GO TO 8001

CONTINUE

IF(IPRER, EQel) GO TO 4376
WRITE(3,8822)(LBSE(IQW),1QW=1,J0B)
FORMAT (10X, *THE VALUE OF THE LB II IS
CONTINUE

',15)

COMPUTE THE COMPOSITE LOWER BOUND FOR THE
NODE LONF(X), WHERE X = 1, 2yssey AND REFERS TO THE 1ST, 2ND,

ETCe NODE IN THE CONFLICT SET.

OO 9635 1CB=1,J08B
IF(LONE(ICB)sEQeC) GO TO 9635
ICOMP=LBNE(ICB)-LBSE(ICB)
IF(ICOMP,GELDO) GO TO 9636
ICOMX(ICB)=LBSE(ICB)

15/29/47

RGPIB
RGPCE
RGPZ8
RGP38
RGPTYH

RGPO8
RGPOS
RGPS
RGPOS
RGPOS
RGPS
RGPOB,
RGPOB.
RGPOS,
RGPS
RGPOS
RGPS
RGPOS
RGPOE
RGPOS
RGPOB,
RGPGCS!
RGPOS
RGPD8
RGPS
RGPI8
RGPOS
RGPCE
RGPS

RGPO&!
RGP I8
RGPOY:
RGPO8:
RGPE
RGPOSB
RGPDB!
RGPGE
RGPOB
RGPOS
RGPOE
RGPJE
RGPOB
RGP38
RGPOS
RGPOB
RGPUGE

RGPGE
RGPOB
RGPUB
RGP JE
RGPOB
RGPUB

" IV G LEVEL 1, MOD & camMp DATE = 70044 151 15/29/47
3% : :

" GO TO 9635 RGPOE

9636 ICOMXIICB)=LBNE(ICB) RGPGE

N 9635 CONTINUE RGP0t

N c | RGPOE

C SELECT WHICH NODE WILL ENTER (RESOLVE THE CONFLICT)

= (o RGP OE

— THOH=1000 RGPOE

0O 8945 ICB=14+J08 RGPO&

¥ IF{ICOMX{ICB)«EQe0) GO TO 8945 RGPOB

- IF{IHOHeLEL ICOMX(ICB)) GO TO 8945 RGPGB

IHOH=ICOMX{ICB) RGPO8

- ™ JENTX=ICB RGPOS8

il 8945 CONTINUE RGPOB

JENT=LONE (JENTX) RGPOS

o RETURN RGPL8

) END RGPOB
e .

DR T
'T

o

X" 1V G LEVEL

£ 3 3

o

N 22 S A - - 6" B

OO0

OOOOO0

OO0 0

6551

5801
5800

5803
5804
5805
5802

5806

3427
3428
3429

7049

152
1, MOD 4 ICPLT DATE = 70044

SUBROUTINE ICPLT(ICMP,IPREY,JOByMyI10,ENTER,NP,ICTM]
THIS ROUTINE COMPUTES THE COMPLETION TIME MATRIX.

DIMENSION ICTM{1545),ICMP(15,5),10(15,5),ENTER{40),NP(15,5)
0O 5800 IWI=1,J08B

DO 5801 IWJ=14M

ICTMUIWI, IWJ)=ICMP{IWI,IWJ}

CONTINUE

CONTINUE

UPDATE ICTM WeReTe. THE NODE UNDER RESOLUTION, WHERE ICTM IS
THE TRANSITORY FORM OF THE COMPLETION TIME MATRIX

UNTIL A CONFLICT HAS BEEN RESOLVED AFTER WHICH TIME THE
MATRIX IS IDENTIFIED AS ICMP,

MMCH=1PREY/JOB

MMC=MMCH*JOB

IF{MMC+EQ. IPREY) GO TO 5802
MMC X=MMCH+1

MOBM=MMCH*J0B

IF(MOBMGTs IPREY) GO TO 5803
GO TO 5804

MOBP=IPREY

GO TO 5805

MOBP=1PREY-MOBM
MSEL=MOBP*100

MSEX=MSEL +MMCX

GO TO 5806

MSEL=J0B%*100

MSEX=MSEL +MMCH

CONTINUE

DO 3429 100B=1,J0B

DO 3428 JO0OB=1,M
IF{ID(I00B,JO00B).EQeMSEX) GO TO 3427
GO TO 3428
KNOX=ICMP{ 1008, J008B)

CONT INUE

CONTINUE

WE'VE NOW IDENTIFIED THE NODE WE ARE INVESTIGATING.

NOW, WE UPDATE ICTM WeReTs THE OTHER NODES IN
THE CONFLICT SET.

DO 7050 IKEY=1,J0B

DO 7051 JKEY=1,M
MSEF=MSEX/100
IF{IKEYsEQeMSEF) GO TO 7050
MSSX=MSEX/100

MSSL=MSSX*100
MSMS=MSEX-MSSL
MXSX=I0(IKEY,JKEY)/100
MSLS=MXSX*100

MSSM=TO(IKEY, JKEY)=MSLS
IF{MSSMeEQe MSMS) GO TO 7049
GO TO 7051
MXOL=I0{IKEY,JKEY)/100

15/29/47

RGPOE
RGPOE

RGPOE
RGPuE
RGPOE
RGPUE
RGPOE
RGPOE
RGPOSB
RGPOB

RGPOE
RGPO8
RGPO9Y
RGPO9
RGPUO
RGPOI
RGPGI
RGP39
RGPO9
RGPOI
RGPOY:
RGP0
RGPO9
choj
RGPOY
RGPOS
RGPOY
RGPO9
RGPOY
RGPOY
RGPJ9
RGPUY
RGPOY
RGPO9Y
RGPOY
RGPO9
RGPGY
RGPOY
RGPOS
RGPO9
RGPOD
RGPD9
RGPOY
RGPOO
RGPO9
RGPJY
RGPO9
RGPOY
RGPU9
RGPJ9
RGPO9Y
RGPOY
RGPOY

, | 153
%IV G LEVEL 1, MOD & 1CPLT DATE = 70044 15/29/47

MXZZP=T0{IKEY,JKEY)-MXOL*100 RGPOS
MZZZIP=MXZ1P-1 RGPOS
MIZNX=MZZZP*JOB RGPOC
JTRY=MZNX+MXOL - RGPOS
IF(ENTER{JTRY)eEQeO) GO TO 7048 RGPIS
GO TO 7050 RGPOS
7048 IUPTE=0 ‘ RGPUS
DO 7047 JCCCD=JKEY.M RGPOs
IF{JCCCD.EQeJKEY) GO TGO 7017 RGPOS
GO TO 7027 RGPOS
7017 KIJCK=NP{IKEY,JCCCD)+KNOX RGPIS
IF(KIJCKeLTo ICMP{IKEY,JCCCD)) GO TO 7015 RGPOS
ICTM(IKEY,JCCCD)=NP(IKEY,JCCCD)+KNOX RGPUY
: GO TO 7016 RGPOS
7015 IUPTE=ICMP({IKEY,JCCCD) RGPOY9
GO TO 7047 RGPLI
7016 IUPTE=ICTM(IKEY,JCCCD) RGPOSY
GO TO 7047 RGPGSY
7027 ICTM{IKEY,JCCCD)=IUPTE+NP(IKEY,JCCCD) RGPOY
IUPTE=ICTM{IKEY,;JCCCD) RGPOS
7047 CONTINUE RGPGY
7051 CONTINUE ' RGPG9
7050 CONTINUE RGPIY
RETURN RGPO9

END RGPOY

DEVELOPMENT OF A NETWORK ALGORITHM AND ITS
APPLICATION TO COMBINATORIAL PROBLEMS

by

ROBERT GARY PARKER

B. S., Kansas State University, 1968

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1970

This thesis is concerned with the development of an
algorithm which can be used to solve combinatorial problems.
The algorithm employs a network approach and is based upon
the use of the schedule algebra operators. The basic concepts
of the approach as well as a sample problem and formal pre-
sentation of the computational algorithm are presented.

The main application of the algorithm is made with
respect to the general job shop scheduling problem. However,
the extension of its applicability is demonstrated by con-
sidering three other classes of problems. These are the traveling
salesman, project scheduling, and explosion problems.

A wide range of computational experiments were conducted
with respect to the job shop problem. In addition, four
traveling salesman problems are solved. Three main factors
were considered in the evaluation of the performance of the
network algorithm as it pertains to the job shop problem.

They are (1) computation time, (2) quality of the solution,
and (3) the number of iterations and conflicts encountered
in obtaining a solution.

From the computational results, it is evident that com-
putational time increases rapidly as prbblem size increases.
The quality of the solution which is a measure of efficiency,
appears to decrease as the number of conflicts increase. In
addition, as the problem size increases, the number of iterations

seems to approach the minimum of J.

Finally, further research is suggested in certain
directions, the most important of which, lies in the area

of increased applicability of the algorithm.

