
This item was retrieved from the K-State Research Exchange (K-REx), the institutional
repository of Kansas State University. K-REx is available at http://krex.ksu.edu

Efficient data access for Open Modeling Interface (OpenMI)
components

Tom Bulatewicz, Daniel Andresen

How to cite this presentation

If you make reference to this version of the manuscript, use the following information:

Bulatewicz, T., & Andresen, D. (2011, April). Efficient data access for Open Modeling
Interface (OpenMI) components. Retrieved from http://krex.ksu.edu

Citation of Unpublished Symposium

Citation: Bulatewicz, T., & Andresen, D. (2011, April). Efficient data access for Open
Modeling Interface (OpenMI) components. Paper presented at the 41st Biological
Systems Simulation Conference, Austin, TX

Efficient data access for Open Modeling Interface (OpenMI) components

Tom Bulatewicz, Daniel Andresen
Kansas State University, Dept. of Computing and Information Sciences

234 Nichols Hall, Manhattan KS, 66506, USA
{tombz, dan}@ksu.edu

Introduction

Data management can be a challenging task when employing linked (or coupled) simulation
models that execute independently and cooperate to collectively carry out a simulation. In the
case of models that are software components with well-defined input/output interfaces, data
access can be simplified by linking general-purpose data components to model components. An
interdisciplinary team of engineers and scientists at Kansas State University are integrating crop,
hydrological, and economic models toward developing a comprehensive understanding of
agricultural systems (NSF grant GEO0909515). These multidisciplinary models are linked
together using the Open Modeling Interface (OpenMI) which defines a standard way for
software components to exchange data with each other and coordinate their execution. In this
work we present the design of a general-purpose Data Provider Component (DPC) that is capable
of delivering data from online sources to OpenMI components.

Methods

Fig. 1 illustrates the movement of data through a distributed data delivery system for linked
model components. Compositions of linked components execute on cluster nodes. Each
composition includes a DPC that retrieves data from web services and provides it to the other
components. DPCs within compositions that are running on different cluster nodes share data
with each other. When a model component needs input data it invokes the getvalues function of
the DPC for the needed quantity, time, and locations (element set) and the DPC returns the
appropriate set of values (a valueset). The DPC calls web services for a specific quantity
identifier, time, and list of location identifiers and then extracts the values from the response.
Any web service that can be queried for a quantity, time, and list of locations and returns a list of
values could be used as a data source for a DPC. The current implementation supports
WaterOneFlow web services (e.g. DAYMET) that provide time series data in XML that
conforms to the WaterML schema.

To minimize the impact that the DPC has on the execution time and resource use of a linked
simulation, it must (1) minimize the wait time, which is how long it takes for the getvalues
function to return a valueset and (2) minimize the number of times each valueset is retrieved
from a web service. To these ends, the DPC utilizes three strategies: caching, prefetching, and
pipelining. Each valueset is retrieved from web services once and is then cached so that it is
immediately available for subsequent requests by other model components (within and across
compositions) and subsequent executions of the composition. Since components typically
advance forward through simulation time, valuesets can be prefetched so that they are available
in the cache before they are requested. Multiple web service calls are performed simultaneously
in a pipelined fashion to maximize use of available network bandwidth.

Figure 1: System overview (left) and operation of the data provider component
(right). Solid lines indicate requests and dashed lines indicate the flow of data.

The DPC consists of a fetching module and a caching module (Fig. 1 right). The fetching module
continuously identifies the valuesets that the model components have requested or are expected
to request, retrieves them from the web services, and then stores them in memory. The caching
module waits for requests from model components and responds by retrieving the appropriate
values from the cache, assembling the valueset, and returning it to the calling model component.
The fetching module predicts which valuesets the model components may request based on their
previous requests. Valuesets are prefetched to the same point in simulation time for all model
components linked to a DPC and prefetching is performed only when there are available system
resources (based on CPU and network usage).

Results and discussion

We implemented the DPC and evaluated its performance and efficiency. Caching within a linked
model resulted in constant wait time as the number of model components increased. Distributed
caching resulted in reduced wait time as a function of the number of concurrent simulations and
the time required to retrieve data from the web services. In both cases, the amount of data
transferred was minimized and remained constant as the number of model components increased.
When a sufficient number of concurrent requests are permitted, prefetching and pipelining
resulted in constant wait time as the number of model components increased. To mitigate some
of the challenges of data management for linked simulations, intelligent, efficient data provider
components will become an essential part of any OpenMI linked model. We believe that this
work provides a sound basis for the development of such components.

References

J. B. Gregersen, P. J. A. Gijsbers, and S. J. P. Westen. OpenMI: Open modeling interface. J.
Hydroinform., 9(3):175–191, 2007.

cluster

node

DPC

C1

C2

DPC

C5
C4

web
services

distributed
memory getvalues

 • quantity
 • time
 • locations

Fetching Caching

web
services

predict

request

inspect find

67.2

89.0 72.357.1

67.2 73.168.2

57.1
67.289.073.1

call

68.273.1

67.2

73.1

68.2

	K-RExCoverPage - unpublished symposium.MASTER
	DPC_BSSG

