
  

A frequency response-based dielectric sensor for real-time sensing and long-term monitoring of 

soil water content, nitrogen, and salinity 

 

 

by 

 

 

Mohammed Mezher Hasan 

 

 

 

B.S., University of Baghdad, Iraq, 2001 

M.S., University of Baghdad, Iraq, 2005 

 

 

 

AN ABSTRACT OF A DISSERTATION 

 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Carl and Melinda Helwig Department of Biological & Agricultural Engineering 

Carl R. Ice College of Engineering 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2020 

 

  



  

Abstract 

Practical sensors capable of in-field, simultaneous, real-time sensing and long-term 

monitoring of several soil properties that are important to production agriculture and environment, 

including water content, fertility, and salinity, are not available. Worldwide research has 

concentrated on optical (spectral), electrochemical, and dielectric types of sensors that measure 

only one or two properties. In the Instrumentation and Control Laboratory of the Department of 

Biological and Agricultural Engineering at  Kansas State University, a frequency response-based 

dielectric sensor (“FR sensor”) was developed in 2004 and it has been used to measure multiple 

properties of various types of dielectric materials, including soil, water, air, and fuel. The early 

work showed that the sensor is multifunctional, inexpensive, and rugged for field applications. 

However, the potential of the sensor for use in the field for simultaneous measurements of soil 

water and nutrients is unknown.  

This dissertation reports work since 2017, when a new sensor probe was designed 

specifically for “buried-in-soil” applications. Tests showed that the sensor could conduct 

simultaneous measurements of soil water content, density, and salinity. When salinity was replaced 

with a nitrate-N fertilizer, an ammonium-N fertilizer, or an organic N fertilizer, the sensor reported 

good results. The sensor, in general, had difficulties in separately measuring two types of the 

nitrogen fertilizer when both existed in soil. 

To simulate the in-field applications, corn was planted in two large pots.  Two sensor 

probes were placed in each of them, and the pots were placed outdoors for more than three months. 

Dielectric spectral data from the sensors were measured every other day, and, at the same time, 

soil samples were taken for analysis of water content, nitrate-N, and ammonium-N using standard 

instrument and at the KSU Soil Testing Laboratory to provide reliable references.  



  

Computer programs were written to analyze the data and to develop prediction models 

using the partial least squares regression method. Prediction results were compared with the 

reliable references. For water content and nitrate-N, good results were obtained using data from 

single sensors as well as data from across multiple sensors. For ammonium-N, good results were 

obtained using single-sensor data, but the results from across-sensor data were not satisfactory. 

From the partial least squares regression analyses, a limited number of frequencies - the 

“signature frequencies” – were identified for each soil properties. With the reduced number of 

frequencies, the cost and measurement time can be reduced, while the measurement accuracy can 

be improved. 

In the outdoor experiment, one fifth of the data were lost due to broken wires. Thus, 

improvements in the design of the probe, control box, and wire connections are needed to insure 

longevity and reliability of the sensor. 
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Chapter 1 - Introduction and Objective 

Agricultural sustainability and world food security depend on new crop varieties, soil 

health, and farm management. Numerous new varieties of crops with disease-, insect-, and 

drought-resistant traits are available, and the best field management techniques are widely 

promoted.  Nevertheless, the assessment of soil health using soil sensors requires further research. 

Soil is composed of mineral matter, organic matter, water, and air.  It has three phases:  

solid, liquid, and gas. The mineral matter in soil (solid phase) has different sizes, shapes, and 

chemical composition that affect the physical and chemical soil properties.  . 

Physical and chemical properties of soil are determined by many factors. Soil moisture is 

one of the main factors. It has an effect on plant growth directly.  Soil moisture is important, 

because it can dissolve nutrients or chemical ions that are needed for crop growth. (Stewart and 

Nielsen, 1990). 

Soil is a heterogeneous system whose processes and mechanisms are complex and difficult 

to fully understand. Many analytical techniques are used in an attempt to establish the relationship 

between soil physical and chemical properties, often disregarding their complexity. In addition, 

soil chemical extractions that alter the equilibrium between the phases may further complicate the 

interpretation of results (Viscarra Rossel and McBratney, 1998a). 

Soil health is the continued capacity of soil to function as a vital living ecosystem that 

sustains plants, animals, and humans (NRCS, 2019). This capacity is the result of the status and 

interaction of soil biological, chemical, and physical properties. Although farmers and 

environmental consultants have soil chemical properties analyzed to make fertilizer 

recommendations and when reclaiming contaminated soils, continuous monitoring information 

about soil physical, chemical, and biological properties is not readily available, because most 
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research laboratories do not have the equipment and expertise to carry out the complex and costly 

analyses of all these properties. Therefore, there is a need for real-time soil sensing for timely 

management and long-term, continuous monitoring to understand the dynamic trends in the soil.  

 1.1 Needs for in-situ soil health sensor 

Methods currently in use to define and quantify soil health move beyond standard soil 

fertility testing to incorporate soil physical and biological properties. Haney (2014) and Haney et 

al. (2018) presented a tool for soil health evaluation, which incorporated soil physical and 

biological parameters to be used in conjunction with standard soil-fertility testing. The process 

allowed for an estimation of nutrient mineralization, as nutrients became inorganic and plant-

available by microbial actions. The Haney method includes CO2 respiration for an estimate of 

microbial activity, C:N ratio of soil, organic C, and organic N to develop a soil health score. The 

Cornell method, known as the Comprehensive Assessment of Soil Health (CASH), is another 

standard soil health tool (Fine et al., 2017; McGowen et al., 2018). The Alabama Soil Health Index 

consists of a routine soil test, estimated cation exchange capacity (CEC), soil organic matter 

(SOM) content, soil respiration, and aggregate stability (Alabama Extension, 2019). Microbial 

respiration is directly related to soil nutrient cycling. It can give an estimate of how much of a 

nutrient may be available to the crop through decomposition of soil organic matter (SOM). 

Therefore, SOM is the backbone of soil health, because it improves physical properties, regulates 

chemical properties, and enhances biological properties of the soil. Nearly 10 million soil samples 

are tested annually in North America, and the majority are tested for plant available N, P and K to 

make fertilizer recommendations and to protect the environment. Inadequate N and P application 

will negatively impact crop yields and farm profit, but over applying those nutrients will result in 

air and water quality degradation. Both N and P should be applied at the right rate, time, and place 
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with the right source. If not, for example, ammonium-N can be volatilized into the air and nitrate 

can be leached into groundwater. Excess N and P in the soil can also be transported to surface 

water via runoff and trigger algal blooms (Sharpley et al., 1996). 

Methods to measure soil organic matter and plant available nutrients, however, involve 

field sample collections, laboratory analyses, and interpretation of results. It is often time 

consuming, costly, and does not capture the dynamic nature of the changing soil properties. An in-

situ, continuous monitoring device is needed to provide site-specific and timely indications of soil 

health properties. Sensors that are installed at a field site and wirelessly transmit information can 

provide timely information for farmers to make informed decisions on soil management. 

 1.2 Soil health properties to be measured  

To better understand and assess soil health, important soil physical, chemical, and 

biological properties need to be measured. The Soil Health Institute, established in 2017 as an 

independent nonprofit organization to encourage and enhance research focusing on soil health, 

recently proposed 19 Tier 1 indicators of soil health, including soil organic carbon (OC), pH, bulk 

density, available water, macro- and micro-nutrients, and others, but it does not include any direct 

measurement of biological indicators (Soil Health Institute, 2019). A meta-analysis by Stewart et 

al. (2018) stated that most currently used measurement protocols have little consistency, and some 

of the indicators showed low response to management practices. 
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 1.2.1 Soil fertility 

Accurate measurements of soil fertility are needed for efficient agricultural production, 

including site-specific crop management, where fertilizer application rates are adjusted spatially 

based on local demands. Conventional methods of measuring soil fertilizer levels are tedious, time-

consuming, and expensive. 

Soil fertility management is one of the important areas in which precision agriculture has 

been applied.  Fertilizers are one of the greatest costs involved in agricultural production 

(Thomasson et al., 2001). The high cost and environmental pollution caused by excess nitrogen 

applications increase the concern of using nitrogen fertilizers. There are many ways to determine 

the amount of nitrogen in crops, but they are expensive, time-consuming, inaccurate, and require 

specialists to operate the tools (Saberioon et al, 2014). 

Plants absorb nitrogen from the soil solution in the forms of NO3⁻ or NH4⁺ (Mengel and 

Viro, 1978). The nitrogen form used by plants depends on their growth stage. For example, in rice, 

NH4⁺ is absorbed more during the vegetation growth stage than other stages. However, NO₃⁻ is 

absorbed more during the reproductive growth stage (Takenaga, 1995).  

Ammonium sulfate [(NH4)2SO4] and urea [CO (NH2)2] are generally considered effective 

fertilizer compounds (Gaudin and Dupuy, 1999).  

Many electrochemical methods have been used to evaluate soil fertility, including ion-

selective electrodes (glass or polymer membrane) and ion-selective field-effect transistors 

(ISFET). These methods measure potential differences related to the concentration of specific ions 

(e.g., H⁺, K⁺, NO3⁻). 
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 1.2.2 Soil moisture 

Increasing agricultural production with less land and water use is the goal of agriculture in 

many parts of the world. Thus, technologies that monitor water use will greatly improve 

agricultural production (Robert et al., 2013). 

Soil water content is commonly expressed in gravimetric units as the ratio of the mass of 

water to the mass of the dry soil 

  GWC= Mw / Ms                         (1.1) 

where  

GWC is the gravimetric moisture content,  

Mw is the mass of soil water and  

Ms is the mass of the soil.  

The volumetric moisture content is the ratio of the volume of soil water to the volume of 

the total soil 

 VWC= Vw / Vt                         (1.2) 

where  

VWC is the volumetric moisture content,  

Vw is the volume of soil water, and  

Vt is the total soil volume. 

GWC= VWC / ρ                                 (1.3)   

      where  

ρ is soil bulk density 

Classical soil gravimetric water content measurement techniques require removal of the 

moisture from the soil sample by evaporation. The thermo-gravimetric technique (oven-drying) is 
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widely used for measuring the soil water content and has been employed as the standard reference 

for determining soil water content (ASTM, 2008). The water content is calculated by subtracting 

the oven-dry weight from the initial field soil weight (Lunt et al., 2005). 

The ions contained in the soil can be used to determine the soil water content. Higher 

conductivity of the soil caused by the flowing ions indicates an increase in water content due to a 

reduction in electric resistance. Therefore, measuring the voltage drop across the soil and 

calibrating it against the water content is a possible way to measure the water content (Soorya et 

al., 2013). The disadvantages of this technique are the requirement of calibration each time it is 

used and failure in saline soil (Robinson et al., 2008). 

Soil bulk density is one of the soil properties that affects soil water content. Soil bulk 

density is defined as the ratio of the total mass of soil to the total volume of soil 

 ρ = Mt / Vt                                                                       (1.4) 

where  

ρ is soil bulk density,  

Mt is the total mass of the soil, and  

Vt is the total volume of the soil. 

Most soil water sensors that use microwave technology rely on a calibration procedure to 

measure the soil's bulk density and then assume that the bulk density of the soil remains constant 

throughout the measurement. In fact, for almost all applications, it is valid to assume that the soil's 

bulk density does remain the same throughout the measurement period. For long-term, in-situ 

monitoring, however, this assumption may no longer hold true. Physical or environmental 

conditions at the monitoring site change with time and the soil bulk density around the sensor will 

change. 
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For measuring soil volumetric water content, different designs of capacitance probes have 

been used. Capacitive probes have a pair of electrodes that are inserted into soil to form a capacitor. 

This capacitor and an inductor in an oscillation circuit generate oscillations. The frequency of the 

oscillation is determined by the capacitance. Changes of the capacitance due to changes in the 

volumetric water content change the oscillation frequency.  

 1.2.3 Soil salinity 

The solution ionic conductivity within soil water increases the permittivity, especially the 

imaginary part of the relative permittivity. The conductive behavior of soils has been used to 

measure bulk soil EC with a contact-type design, which places four electrodes in a Wenner array.  

The configuration of the electrodes on the immediate surface of the soil is a non-contact, 

nondestructive design that uses the electromagnetic induction principle.  Wenner array sensors 

have been tested and were found highly accurate in measuring soil salinity, because the major 

factor determining bulk soil EC is soil salinity (Lee, 2005).  

Soil water content also has a strong effect on bulk soil EC.  Thus, measurement of soil 

salinity using this Wenner array design has to be made under known soil water conditions. Because 

of the interactions between the capacitive and conductive characteristics of soils, these sensors 

cannot separate the main factors that affect the bulk soil EC-soil water content and salinity (Zhang 

et al. 2004). 

Soil salinity is one of the reasons for desertification. Soil salinity spoils large areas of 

farmlands, grasslands, and forests, especially in arid and semiarid regions (Yun et al. 2003).  When 

plants are irrigated with saline water, they must extract fresh water from brackish water during 

transpiration, which leaves salts behind to accumulate in the soil.  Consequently, soil salinity is 

increased (Skinner and Lambert, 2011). 
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Soil salinity is caused by several factors. Soils may become saline as a result of land use, 

including the use of irrigation water with high levels of salt. The intrusion of salty water into fresh 

water aquifers may occur when wells are close to the coast and water is pumped to the surface for 

various purposes, including irrigation. Irrigating from salt-impacted wells or saline industrial water 

may lead to the formation of saline soils. 

A saline soil contains excess soluble salts that reduce the growth of most crops or ornamental 

plants. These soluble salts contain cations such as sodium (Na+), potassium (K+), calcium (Ca++), 

and magnesium (Mg++) along with anions chloride (Cl-), sulfate (SO4
--), nitrate (NO3

-), bicarbonate 

(HCO3
-), and carbonate (CO3

--). 

In many countries around the world, especially arid and semi-arid countries, soil salinity 

has a great impact on soil productivity due its effect on soil fertility. It is also a critical 

environmental problem (Ochieng et al. 2013). 

In Iraq, it has been estimated that 4% of the irrigated area is severely saline, 50% 

moderately saline, and 20% slightly saline (Al-Taie 1970). Other estimates indicate that the area 

of salt-affected soils in Iraq is about 6.7 Mha (Abrol et al. 1988); however, only 1.0 Mha are 

partially or totally reclaimed (Committee of Agriculture and Water Resources Sector 2009). The 

Food and Agricultural Organization (FAO) estimates that 70% of the total irrigated area of Iraq 

has been robbed of its production potential because of soil salinity. The FAO estimated that up to 

30% of the farm land in Iraq has gone completely out of production (FAO 2011). 

Many factors cause soil salinity, with the most significant ones being land use and use of 

irrigation water with high levels of salt. Salinity decreases the amount of available water for the 

plant. High salt levels make water absorption by the plant hard, causing physiological drought in 

the plant. The soil may contain an acceptable amount of water, but plant roots cannot absorb the 
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water, because of the high osmotic pressure or low osmotic potential. This is known as the osmotic 

or water-deficit effect of salinity. Plants are most sensitive to salinity during germination and early 

growth. 

The accuracy of in situ measurements with dielectric sensors in saline and clay soils is 

problematic, although some experimental and theoretical studies have been presented to solve this 

problem (Marco 2011). Thus, a potential application of the sensor developed in this study is to 

monitor soil salinity, especially in the middle and south parts of Iraq, where most soil has a high 

level of salinity. 

 1.3 Current soil fertility sensing technologies and our previous work 

Most soil fertility sensing technologies for field applications are either optical, 

electrochemical, or dielectric in nature. While these have improved with time, there are a number 

of issues preventing these technologies from being adapted effectively for real-time sensing and 

long-term monitoring.  

For measurement of macro-nutrients, N, P, and K, in soil, field sampling followed by 

laboratory tests has been traditionally considered the de-facto standard. Recent research has 

focused on fast, in-field sensing of these nutrients, especially on-the-go sensing technologies. The 

direct measurement of nitrogen by laboratory procedures is one of the most accurate and direct 

ways, but it is time-consuming and it needs a skilled operator (Gholizadeh et al. 2011). 

 Nitrogen is the most important macronutrient for crop growth, but nitrogen fertilizer 

residuals found in ground water or drinking water, as the result of leaching or runoff, damage the 

ecological system and the natural environment. Technologies for in-situ soil nitrogen sensing 

developed in past years have concentrated on three basic types: spectrophotometric/spectroscopic 
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(optical) sensing, electrochemical sensing, and dielectric sensing (Sinfield et al. 2010). Similar 

methods have been used for phosphorus and potassium sensing. 

 1.3.1 Optical sensors  

Included in the category of spectrophotometric/spectroscopic sensing are copper/cadmium 

reduction (CCR), near-infrared reflectance spectroscopy (NIRS), mid-infrared Fourier transform 

attenuated total reflectance (ATR) spectroscopy, and morphology-dependent simulated Raman 

scattering (MDSRS). The optical methods, such as NIRS, enable truly non-contact measurements. 

However, these sensors only measure properties immediately adjacent to the sensor (within a 

millimeter) and the measurement is strongly affected by other factors that change the spectral 

reflectance of the soil. Furthermore, these methods require considerable site-specific calibrations 

due to inherently variable optical features of different soil types. It was also found that the results 

were not satisfactory within the range the macronutrient concentrations usually applied through 

fertilizer (Kim et al. 2009). 

 1.3.2 Electrochemical sensors 

Electrochemical techniques included the nitrate ion-selective electrode (ISE), nitrate ion-

selective field-effect transistor (ISFET), and a combination of CCR and ISE. The ISEs have proven 

to provide high accuracy with low limits of detection. However, the tedious micronutrient 

extraction procedure, long response time, limited durability of the electrodes, low robustness, high 

maintenance requirements, and the need for frequent calibration due to signal drift make the use 

of ISEs in in-situ, real-time applications difficult. Nevertheless, the electrochemical sensors have 

been the choice of researchers for real-time, on-the-go soil sensing for site-specific crop 

management. Several researchers used custom-designed soil samplers and commercially available 

ISEs for sensing nitrate and pH in soils (Kim et al. 2009). Although research for many years did 
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not lead to commercially available technologies, a soil pH mapping system is now commercially 

available (Adamchuk et al. 2014). In general, on-the-go sensing of soil fertility using the optical 

methods has been less successful mainly due to calibration and accuracy issues (Kim et al. 2009).  

The optical and electrochemical sensors are generally expensive and not mechanically 

robust, making them unsuitable for long-term burial that is required to observe dynamic changes 

in the soil at specific locations over time. 

 1.3.3 Dielectric sensors 

Another technology with great potential in measuring soil fertility in-situ is dielectric 

spectroscopy (impedance spectroscopy) that measures the permittivity of soil. Different dielectric 

sensors have been developed for soil measurement, including time-domain reflectometry (TDR), 

frequency-domain reflectometry (capacitance probe), and the standing wave ratio (SWR) method. 

The use of dielectric sensors has mainly been restricted to measuring water content and electrical 

conductivity, and there are few reports in the literature concerning field experiments involving 

dielectric sensors that measure soil fertility. The enclosed design of some dielectric sensor probes 

also makes them unsuitable for underground sensing.  

Many studies have shown the capability of dielectric sensors to measure water content and 

salinity. By measuring the complex dielectric constant of two types of soil using an L-band 

dielectric probe (1.25 GHz), concentrations of two types of salts were detected (Sreenivas et al. 

1995). It was observed that, at this frequency, the dielectric constant is dependent on the soil 

texture and volumetric moisture content, while salinity does not have much influence on the 

dielectric constant. Furthermore, the dielectric increases with increases in salinity and moisture 

content in the soil. In dry soils, the soil conductivity and dielectric loss are low, because there 

exists more air inside the soil, which further reduces the dielectric loss. For wet soil, the 
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conductivity of soil increases with an increase in salt content, indicating increases in dielectric 

loss. 

The dielectric constant is an indicator of the material’s capability of storing energy in an 

electric field (electrical polarization), while the dielectric loss is an indicator of the material’s 

capability of absorbing energy from the alternating electric field. The measurement of dielectric 

properties of soils related to moisture content and fertilizer content is useful in agriculture (Yadav 

et al. 2009).  Measurement of soil moisture and electrical conductivity (salinity) is critical for 

agricultural, engineering, and environmental applications. (Suweis et al. 2010). 

There are many methods for indirect, nondestructive, in-situ, dielectric measurement of 

soil moisture such as time domain reflectometry (TDR), capacitance-based frequency domain 

reflectometry (FDR), impedance-based amplitude domain reflectometry (ADR), phase 

transmission, and time-domain transmission (TDT) (Muñoz-Carpena et al. 2005a). These 

dielectric methods all estimate soil moisture and bulk electrical conductivity by measuring soil 

dielectric properties (Topp et al. 1980). 

Accurate estimation of soil salinity is an important issue, especially in arid regions, where 

the salinity of the soil may increase significantly and become a danger to plants (Hindrikx et al. 

2002).  Measurement of soil salinity is complicated, because it is affected by many factors that 

produce measurement errors, including temperature, moisture, and texture of the soil. Therefore, 

the development of new measurement methods and equipment for evaluating soil salinity is an 

active field of research. An ideal measurement tool for soil salinity should read the majority of the 

influencing factors at the same time and same location as quickly as possible. This could be done 

by incorporating various sensors in a single unit for insertion into the measured material or by 

selective analysis of a sensor’s outputs for discrimination of various quantities like soil water 
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content and electrical conductivity, as in the case of time-domain reflectometry (Boldaji et al. 

2011). 

Time domain reflectometry (TDR), the capacitance technique, and frequency domain 

reflectometry (FDR) have been the major techniques that use the dielectric property of the soil to 

measure soil moisture content. The significant difference in the dielectric constant between dry 

soil and pure water is the basis of these dielectric technique. The major disadvantages of TDR are 

its high cost, loss of reflection in highly saline soil, and increase in conductivity with wetting of 

the soil mass. The device may give a good waveform in a very dry saline soil, but not a good one 

in a wet saline soil (Marco, 2011). 

Capacitance-based techniques have an oscillating circuit and a sensing part that are placed 

inside the soil. This technique determines the dielectric permittivity/dielectric constant of a 

medium (soil) by measuring the charge time of the capacitor (Minet et al. 2010). The soil moisture 

content determines the electrical capacitance of the capacitor. When this capacitor become a part 

of an oscillator, forming an electrical circuit, changes in the frequency of the oscillation indicate 

changes in the capacitance, hence change in soil moisture content. Thus, the soil water content is 

measured (Muñoz-Carpena et al. 2004).  This is a non-destructive method (Zazueta and Xin 1994).    
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 1.4 Permittivity 

Each dielectric material has a specific conductivity and a specific ability to polarize in an 

electric field, hence a specific permittivity. When a contaminant is added to a dielectric material, 

water as an example, the permittivity of the contaminated water will be different from that of the 

pure water. That is why a material’s permittivity can be an indicator of chemical composition 

changes of the material (Scholte et al. 2002). 

Interpretation of dielectric permittivity is complicated in saline soil and in fine-textured 

soil, because of the effect of ionic conductivity and the clay-water-ion interactions, which depend 

on the frequency that affect the permittivity reading (Kelleners et al. 2005). 

Permittivity is the behavior of a material in resisting the formation of an electric field in 

the material. When a current flows, an electromagnetic wave is applied to the material. Capacitive 

and conductive behaviors of the material determine the amount of total current flowing in the 

material. Polarization hinders current flow by storing electrical energy that is released once the 

application of the field is stopped. It occurs when dipole molecules in the material are aligned in 

the opposite directions at low frequencies, when the polarity of the electric field changes slowly. 

(Robinson et al., 2003). 

Dielectric relaxation is the dissipation of applied energy, which occurs at high frequencies 

when the dipole orientation cannot follow the change in the polarity of the electric field due to the 

binding force between atoms. Permittivity can be expressed in a complex form due to this 

relaxation process, because it gives rise to a phase lag between the imposed field and the material’s 

response to it. This phase lag is a function of the frequency of the imposed field (Topp et al. 2000). 

Zhang et al. (2004) pointed out that, at a sufficiently high-frequency range, the effects of 

the conductive behaviors on the capacitive behaviors of soils can be minimized. 
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Hillhorst (1998) reported that, at low frequencies, electric currents in soil due to 

conductance are higher than those due to capacitance, so the soil EC can be measured more 

accurately than dielectric permittivity. At low frequencies, the effects of the capacitive behaviors 

on the conductive behaviors of soils can be minimized. 

There are many factors, including frequency, temperature, and moisture content, that affect 

the dielectric properties of materials. Dielectric properties can vary significantly with frequency. 

The frequency-dependent trend of dielectric properties can provide important information about 

the material characteristics (Wang et al. 2003). 

Permittivity is a quantity used to describe dielectric properties that influence the reflection 

of electromagnetic waves at interfaces between materials and the attenuation of wave energy 

within materials. 

In the frequency domain, the complex relative permittivity   ɛ٭ of a material to that of free 

space can be expressed in the following form: 

ɛ٭ =ɛʹ - j ɛʺ                                     (1.5) 

The real part ɛʹ is referred to as the dielectric constant and represents stored energy when 

the material is exposed to an electric field, while the dielectric loss factor ɛʺ, which is the imaginary 

part, influences energy absorption and attenuation, and j= √−1 (Afsar et al. 1986). 

The imaginary part of permittivity is called the loss factor and is a measure of how 

dissipative the material is to an external electric field. The imaginary part is always greater than 

zero and is usually smaller than the real part. The loss factor includes the effect of both dielectric 

loss and conductivity. The real part of permittivity is a measure of how much energy from the 

external electric field is stored in the material. Permittivity can change with frequency, 

temperature, orientation, pressure, and molecular structure of the material. 
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 1.5 Our previous work on dielectric sensors 

Dr. Zhang’s group at Kansas State University has developed a unique, frequency-response 

(FR)-based permittivity sensor to measure simultaneously multiple properties of dielectric 

materials. Permittivity describes the response of a dielectric material, such as soil, to externally 

applied alternating electric fields. The response is characterized by polarization of the dipole 

molecules at lower frequencies, relaxation due to the binding force between atoms at higher 

frequencies, and conduction in both solid and liquid (ionic) phases. Thus, permittivity strongly 

depends on the composition of the material at the molecular, atomic, and ionic levels. Furthermore, 

because the polarization, relaxation, and conduction are all frequency dependent, information 

specific to each component in soil may be extracted at specific frequencies or frequency ranges 

(“signature frequencies”). Due to the complexity in soil composition, statistical methods are often 

used to extract these “signature frequencies”.  

The FR-based soil sensor generates sinusoidal waves at multiple frequencies within a wide 

frequency range.  Dr. Zhang’s group has used from near 0 MHz or direct current, DC, to 400 MHz.  

It measures the responses of the sensor probe filled with the dielectric material to these waves, 

hence forming “dielectric spectra”. Because of the use of multiple frequencies, prediction models 

to measure different properties can be established based on the same spectra. As a result, multiple 

properties of the materials may be measured simultaneously. In the past, the sensor has been used 

to measure simultaneously soil VWC, density, and salinity (Zhang et al. 2004; Lee et al. 20071,2), 

fossil fuel/biofuel mixing ratio (Xi and Zhang 2011), air pollutants – glycerol, ethanol, and 

ammonia (Ware 2012), nutrients in water (Shultz 2009), and sediment concentration in water 

(Utley et al. 2012). However, these sensors had not been tested in measuring soil fertility before 

2017.   
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Noticing the work done by Zhang and his group on frequency-response based dielectric 

sensors, Chighladze et al. (2011) developed a similar sensor to measure soil solution nitrate 

concentration. The sensor measured frequency responses of the soil and used the partial least 

squares (PLS) method for multi-variate analysis. Instead of using an open probe, they used a 

closed, cylindrical sample holder to hold soil samples. For soil with relatively high VWC and low 

salinity, they successfully measured NO3-N concentration in soil. Using similar methods, Pluta 

and Hewitt (2009) measured soil moisture content and density, and Pandey et al. (2013) estimated 

individual components in soil, including air, water, and nitrate. 

 1.6 Need for sensors buried in soil 

For practical, in-situ measurement, the sensor must meet the following requirements: (1) 

is capable of taking measurements at different depths, especially in the crop root zone, (2) has a 

rugged sensor probe to sustain harsh outdoor and underground conditions and mechanical damage, 

and (3) has an open probe that is in constant contact with soil so that dynamic variations in soil 

properties can be tracked. Additionally, sensors having the following capabilities are preferred for 

field application: (1) capable of real-time sensing to allow timely management decisions, such as 

fertilizer prescription, (2) capable of long-term deployment with minimum maintenance for 

continuous monitoring, (3) capable of measuring multiple properties, and (4) capable of having 

measurement data easily downloaded. With all these requirements considered, the buried-in-soil 

FR sensor developed in Dr. Zhang’ laboratory seems to be the best candidate.  

Similar to many other soil sensors, the FR sensor measurement is influenced by multiple 

soil properties, of which soil type, soil texture, and organic matter may have the strongest effects. 

Thus, the sensor may need frequent calibration. However, when the sensor probe is buried in soil 

at a fixed location and a fixed depth for long-term monitoring, the type and texture of the soil 
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surrounding the sensor probe probably do not significantly change. As a result, the sensor should 

not need frequent calibration. Moreover, if the soil bulk density at the sensor location does not 

vary significantly, the effect of bulk density on the measurement would also be minimized. Under 

these conditions, only water content and macronutrients have significant effects on the impedance 

spectra; hence, more accurate measurement of water content and macronutrients can be expected. 

Additionally, because of the simple and rugged mechanical design, the low sensitivity of the FR 

dielectric assessment to probe surface contact-resistance changes, and the anti-corrosion material 

selected for the probe, it is believed that the FR sensor is more suitable for long-term monitoring 

of dynamic soil changes and for effective detection of adverse conditions such as drought, nutrient 

deficiencies, and compaction.  

 1.7 Partial least squares regression 

The partial least squares (PLS) regression is a good prediction method when there are a 

large number of correlated x-variables (Numerical Algorithms Group 2007). The PLS regression 

method combines principal component regression (PCR) with multiple linear regression (MLR). 

The PCR method finds factors that maximize the variance of the independent (predictor) variables, 

and MLR finds a variable to maximize the correlation between the independent (predictor) and 

dependent (response) variables. Thus, PLS is an improvement over MLR and PCR, because it uses 

information from both the predictor and response variables to form a model. As a result, PLS finds 

factors that maximize the variance and correlation (Wise et al. 2006). 

The PLS regression is particularly suited when the matrix of predictors has more variables 

than observations (samples) and when there is multi-collinearity among the predictor variable 

values (Wikipedia 2020), which are the features of our dielectric spectral data. Thus, this method 

is selected as the main analytic tool for this study.  
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The R-squared value is a statistical measure on how close the sample data are to the fitted 

regression line. It is also known as the coefficient of determination, or the coefficient of multiple 

determination for multiple regression. One hundred percent indicates that the model explains all 

the variability of the response data around its mean. The root mean square error (RMSE) is the 

standard deviation of the residuals (prediction errors). Residuals are a measure of how far the data 

point are from the regression line. The RMSE is a measure of how spread out the residuals are. In 

other words, it gives the indication on how concentrated the data are around the line of best fit. In 

this study, we will use these two statistical indices to evaluate the performances of the prediction 

models developed through the PLS regression analyses. 
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 1.8 Objectives 

The specific goals of this study were: 

1. To design a probe for the already-developed frequency response-based (FR) dielectric 

sensor that can be buried in soil for real-time measurement and long-term monitoring of multiple 

soil properties. 

2. To conduct a laboratory experiment to evaluate the FR sensor with the new soil probe in 

their ability to measure simultaneously soil water content, salinity, bulk density, and one or two 

types of nitrogen fertilizer. 

3. To conduct a long-term, outdoor experiment to exam the FR sensor with multiple probes 

buried in the root zone of corn plants in their ability to measure simultaneously soil water content, 

bulk density, a nitrate-N fertilizer, an ammonium-N fertilizer, and urea. 

4. To study the correct procedure for calibration of the sensor. 

5. To identify the strengths and potential difficulties of the sensor in agricultural 

applications. 
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Chapter 2 - Materials and Methods 

 2.1 Basic measurement principle - the frequency-response method 

The basic measurement principle for the frequency-response (FR) sensor is to consider the 

probe inserted in soil as an impedance load, ZLoad, which forms a voltage divider with a constant, 

precision resistor Rref (Figure 2.1). When a sinusoidal signal is applied to the voltage divider as the 

input signal, the output signals measured at ZLoad will have a lower amplitude and a phase delay, 

although still at the same frequency. The magnitude reduction the gain and the phase delay are 

measured by a gain-phase detector. Because the gain and phase responses of the probe filled with 

soil (as the medium) are determined by the complex permittivity of the soil, the gain and phase 

measurement is related to the factors that determine the conductive and dielectric nature of the 

soil. By measuring the gain and phase delay at multiple frequencies, dielectric gain and phase 

frequency response curves, or “spectra”, can be obtained. Considering the geometric parameters 

of the probe, spectra for the real and imaginary parts of the soil permittivity can be derived. Various 

methods for spectral data analysis can then be used to extract “signature frequencies” for specific 

soil properties. Because different soil properties have different conductive or dielectric effects in 

different frequency regions, multiple properties of soil may be measured.  

 
Figure 2.1 Measurement principle of the FR sensor 
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For field measurement, the sensor probe and the control unit have to be connected through 

a proper cable. With a cable inserted between Rref and ZLoad, the voltage divider is no longer formed 

by Rref and ZLoad.  Instead, it is now formed by Rref and Zin (Figure 2.1). Thus, the frequency 

response measured by the system is a representation of Zin, not ZLoad. In order to study the 

characteristics of ZLoad, an impedance transformation model between Zin and ZLoad needs to be 

studied based on transmission line theory. During the past, we have established the impedance 

transformation model and used it to simulate gain and phase responses of different load 

impedances and co-axial cable length. 

. Figure 2.2 shows the gain and phase responses to an impedance load, which is a parallel 

connection between a 2,000 pF capacitor and a 10Ω resistor, with a 60 cm long co-axial cable. The 

repeated patterns of the responses shown in the figure are the result of signal reflections within the 

cable length. It can be seen that the simulation matched the measured responses very well, which 

validated the impedance transformation model (Tang 2009). However, this simulation did not 

include the impedance model of the probe. Because of the irregular shape of the capacitive probe, 

an impedance model of the probe must be developed to allow for prediction of frequency responses 

of the sensor to various medium properties. Future studies will consider the impedance modeling 

of the probe.  

 
                                             (a)                                                           (b) 

Figure 2.2 Simulation vs. measured frequency responses (a) gain, (b) phase 
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The principle of the FR sensor is considered in parallel with that of time-domain 

reflectometry (TDR). In TDR, time responses of the probe-medium to an impulse input are 

measured, whereas in the FR sensor, frequency responses of the sensor to sinusoidal inputs are 

measured. Because measuring time response requires equipment with high-time-resolution, the 

TDR sensor imposes higher technical difficulties in the design and manufacture.  Nevertheless, 

from the literature, the frequency-response measurements require expensive impedance meters. 

Practical and inexpensive FR sensors, such as the one developed in our laboratory, are still unique. 

To date, the FR sensor has been tested in various dielectric media using frequencies of up 

to 400 MHz, including soil, air, water, and fuel. We also studied the effect of temperature on the 

measurement (Lee 2005). 

 2.2 The control box 

The control box (Figure 2.3) measures the gain and phase responses of the probe/soil 

sample at 635 frequencies, ranging from 50 Hz to 120 MHz. It is programmed to test at each 

frequency three times. After measurement, data are uploaded into a PC computer via a serial port. 

The control box is powered by a power supply of 9V. The electronic circuit in the control box is 

composed of an Infineon CR167 microcontroller (Infineon Technologies, Neubiberg, Germany), 

a signal generator, and a gain and phase detector. The signal generator generates sinusoidal signals 

as the input of the voltage divider. The gain and phase detector measures the magnitude and phase 

changes between the input (the signal generated by the signal generator) and the output (the signal 

reflected back from the probe through the cable) of the voltage divider (Tang, 2009). 
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Figure 2.3 The control box 

 2.3 Probes 

The probe was specifically designed for buried-in-soil use. It was constructed from six 

parallel stainless steel plates. Each plate is electrically insulated from the neighboring plates.  The 

odd numbered plates were electrically connected, and so were the even-numbered plates. During 

measurement, the probe is immersed or buried in the medium material to be measured, such as 

soil. For the soil tests, the plates were made in a triangular shape so that it can be penetrated into 

soil easily. Each plate is 2 mm thick, and the dimensions are shown in Figure 2.4. The probe has 

a rectangular base with dimension 1x4 cm. The six plates are mechanically installed on the base 

with proper insulations. The spaces between adjacent plates were 8 mm and the area of each plate 

was 8 cm².  

 
                Figure 2.4 Dimensions of the probe 
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A 60-cm coaxial cable connected the probe with the control box. The base was assembled 

on a T-shaped mounting structure so that the probe can be pushed into the soil samples                          

(Figure 2.5).  

 
Figure 2.5 The probe and the coaxial cable for laboratory tests 

  

 2.4 Experimental procedure 

 2.4.1 Laboratory experiments 

The main goal of the laboratory experiments was to observe the frequency response of the 

sensor to soil samples at different combinations of density, volumetric water contents (VWC), 

salinity, and concentrations of several types of fertilizers. Three experiments were conducted in 

the Instrumentation and Control Laboratory of the Biological and Agricultural Engineering 

Department of Kansas State University:  

1)  Tests on soil samples with different levels of VWC, density, and salinity. 

2)  Tests on soil samples with different levels of VWC, density, and concentration of a single 

type of nitrogen fertilizer - urea (CO (NH₂)₂), ammonium sulfate [(NH₄)₂ SO₄], and ammonium 

nitrate (NH₄NO₃).  
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3) Tests on soil samples with different levels of VWC, density, and concentration of two 

nitrogen fertilizers combined. 

 2.4.1.1 Test materials 

Smolan silty clay loam was used in the tests.  The soil was collected from Riley County, 

KS, using the North American Proficiency Testing Program. It was oven-dried and ground.  

The textural composition of the soil was determined by the Soil Testing Laboratory at 

Kansas State University.  Particle size analysis was done using the hydrometer method. (The 

textural analysis is given in Appendix A). 

Soil samples with five levels of salinity levels (0.1, 0.2, 0.4, 0.8, and 1.6 % salt by weight), 

five levels of GWC (12, 15, 18, 21, and 24 g/g), and three levels of bulk density (0.8, 1.0, 1.2 

g/cm³) were prepared in the laboratory. 

 2.4.1.2 Test apparatus 

A steel container in a rectangular shape was used to contain the soil sample. The internal 

dimensions of the container were 9.2 by 9.2 cm. The depth of the container was 10 cm. A steel 

“piston” of 9.1 by 9.1 cm was made to push the sample within the container to achieve different 

bulk densities (Figure 2.6).    

 
Figure 2.6 The laboratory tests container 
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The piston was attached to a camera stand (Figure 2.7). The piston can move on the stand 

vertically and the movement can be adjusted with the help of a height scale on the stand. For each 

test, the piston was pressed into the sample to a calculated depth. Knowing the cross-sectional 

area, the penetration depth, and the weight of the soil sample, the density of the soil can be 

calculated. After each test, the probe was lifted from the soil sample, rinsed in distilled water, and 

dried with air. The coaxial cable that connected the probe with the control box remained connected 

between tests. 

 
           Figure 2.7 The camera stand, piston, and container 

 

During the test, the control box was connected to the serial port of a computer. Microsoft 

HyperTerminal 5.1 program was used to collect the data from the control box and save the data    

in .txt files.  
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 2.4.1.3 Sample preparation  

To achieve different GWC and salinity levels, a certain amount of salt (NaCl) was first 

dissolved in a certain amount of distilled water, and the NaCl solution was then added to the soil 

sample. To allow the samples to reach the equilibration condition, measurements were initiated at 

least 12 hours after the NaCl solution was added. 

Thus, the procedure to prepare soil sample was as follows: 

(1) Prepare the NaCl solution based on the desirable levels of GWC and salinity. 

(2) Place the soil onto a thin plastic sheet and spray the prepared NaCl solution into the 

soil. 

(3) Mix the soil by hand gently, until a high degree of uniformity was achieved.  

(4) Place the mixed soil into the container. 

(5) Cover the container with a plastic bag tightly. 

(6) Keep the sample untouched for at least 12 hours. 

Thus, to achieve combinations of 5 GWC and 5 salinities, a total of 25 samples were 

prepared.  

During the test, the piston mounted on the camera stand was moved downwards to reach 

the lowest density to take the first measurement. The piston was then moved to two more positions 

to achieve two higher densities.  

The three bulk densities selected for the laboratory tests were 0.8, 1.0, 1.2 g/cm³. These 

densities were achieved by changing the height of the soil sample in the container, which changed 

the volume of the sample (Table 2.1) 
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Table 2.1 Soil sample size for different density 

Dry soil 

(g) 

Area (cm²) Height (cm) Volume (cm³) Density (g/cm³) 

600 84.64 8.5 719.44 0.8 

600 84.64 7 592.48 1.0 

600 84.64 6 507.84 1.2 

 

  

 2.4.1.4 Preliminary observation of the dielectric spectral data 

        2.4.1.4.1 Soil density 

Preliminary observations of the obtained dielectric spectra, including the gain spectra and 

phase spectra (Appendix B), show significant differences caused by changes in the bulk density 

levels (Figure 2.8). 

 
                         (a)                                                        (b) 

Figure 2.8 (a) Gain and (b) Phase frequency responses at different density levels 
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 2.4.1.4.2 Soil moisture  

Table 2.2 gives the amount of water added to the soil sample to achieve the desirable GWC.  

Table 2.2. Water and soil weight at different GWC levels 

Dry soil (g) Water (g) GWC (g/g) 

600 72 0.12 

600 90 0.15 

600 108 0.18 

600 126 0.21 

600 144 0.24 

 

Initial observation of the gain and phase spectra also showed significant differences among 

different GWC levels (Figure 2.9). 

 
                                          (a)                                                             (b) 

Figure 2.9 (a) Gain and (b) Phase frequency responses at different GWC levels 
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  2.4.1.4.3 Soil salinity 

Table 2.3 shows that amount of NaCl salt needed to achieve the desirable salinity levels. Soil 

salinity was measured with Fisher Scientific Accumet Excel XL 50 Series Meter (Figure 2.10). 

 

Table 2.3 Amount of NaCl and soil to achieve different salinities 

 Soil (g) NaCl (g) Conductivity (mS/cm) 

600 0.3 1.93 

600 0.6 2.51 

600 0.9 3.25 

600 1.2 4.53 

600 1.5 6.34 

 

 
Figure 2.10 Conductivity meter 
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Figure 2.11 shows significant changes in the dielectric spectra due to the change in salinity 

levels in the soil sample.   

 
              (a)                                                               (b) 

Figure 2.11(a) Gain and (b) Phase frequency responses to different soil salt levels 

 

  
 2.4.1.4.4 Soil fertility (single nitrogen fertilizer), VWC, and density. 

For these tests, the same procedure was used to vary soil VWC and density. Instead of 

NaCl, one of the three fertilizers was added to achieve at six different levels:   22.4, 33.6, 44.8, 56, 

67.2 and 78.4 kg/ha. Thus, for three types of fertilizer, a total of 5x6x3=90 soil samples were 

prepared. With each sample pressed to three densities, 270 spectral data in total were obtained. 

The three types of nitrogen fertilizers were: 

Urea                           CO (NH₂)₂ (46% N)    (PotashCoro 46-0-0)  

Ammonium sulfate    (NH₄)₂ SO₄ (20% N) (Raw nitrogen 20-0-0 by NPK Industries) 

Ammonium nitrate        NH4NO3 (98% N) (Fisher Chemical) 

Initial observation of the gain and phase spectra showed significant differences related to 

nitrogen contents (Figures 2.12– 2.14), which is a good indicator for the effectiveness of the sensor 

in soil nitrogen sensing.  
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(a)                                                                          (b) 

Figure 2.12(a) Gain and (b) Phase frequency responses to different ammonium sulfate levels 

 

 
                                          (a)                                                                 (b) 

Figure 2.13 (a) Gain and (b) Phase frequency responses to different ammonium                      

nitrate levels 

 

              

 
(a)                                                              (b) 

Figure 2.14 (a) Gain and (b) Phase frequency responses to different urea levels 
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 2.4.1.4.5 Soil fertility (combined two nitrogen fertilizers), moisture, and density. 

For this test, five GWC and three density levels were achieved using the same method. 

Among the three nitrogen fertilizers, combinations of two, each at 3 concentration levels – 22.4, 

44.8, and 67.2 kg/ha -- were prepared. Later in the experiment, combinations of three more 

fertilizer concentrations – 11.2, 33.6, and 56 kg/ha were added. Thus, the total number of soil 

samples prepared for each two-fertilizer test was 5x(3x3+3x3)x3= 270. For three two-fertilizer 

combinations, the total number of samples were 270x3 = 810. Figures 2.15-2.17 display the 

examples of the spectral data obtained in these tests. 

 
                                        (a)                                                                          (b) 

Figure 2.15 (a) Gain and (b) Phase frequency responses at different ammonium sulfate & 

urea levels 

 

 

                  

 
                                         (a)                                                                (b) 

Figure 2.16 (a) Gain and (b) Phase frequency responses with different ammonium sulfate & 

ammonium nitrate levels 
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     (a)                                                                  (b) 

Figure 2.17 (a) Gain and (b) Phase frequency responses with different ammonium nitrate 

levels & urea 

  

 2.4.2 Outdoor tests 

For the outdoor experiment, different test apparatus and procedures were prepared. 

 2.4.2.1 Test apparatus 

 2.4.2.1.1 Pots 

For the outdoor tests, two large pots were planted with a corn plant in each of the pots 

(Appendix C). The size of the pots was 14 in. x 27.5 in (Figure 2.18). The material was rubber. 
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                                                  Figure 2.18 Dimensions of the pot 

 

 On one side of the pot, a lockable window (Figure 2.19a) would be opened to allow soil 

samples from the pot to be taken for chemical tests. It also allowed measurement of soil volumetric 

water content (VWC) using a commercial sensor (Decagon 5TE, Pullman, WA). In addition, a 

small hole on the opposite side of the window (Figure 2.19b) was opened that allowed the coaxial 

cable of the sensor to be connected to the control box so that the dielectric spectral data could be 

acquired. When samples and data were not taken, the window was firmly locked to avoid leaking 

of the soil from the pot. 

In order to obtain the vertical profile of the soil property information, two sensors were 

buried in each pot. The intention was to place both sensors with in the root zone of the corn plant. 

Thus, the two sensors were buried at 12.5 cm and 25 cm from the soil surface, respectively. 
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(a)                                               (b) 

Figure 2.19 The outdoor tests pots (a) the window   (b) the holes 

 

 2.4.2.1.2 Probes 

The same probe designed for the laboratory tests was used for the outdoor tests. The only 

difference was that the probes were buried in soil and were never moved during the entire 

experiment. Thus, the T-shaped mounting structure was not needed. For signal acquisition, each 

sensor had a 12-inch long coaxial cable (Figure 2.20).   

 
Figure 2.20 The outdoor test probe and coaxial cable 

 

 2.4.2.1.3 Other instruments 

Other instruments used in the experiment included a temperature and humidity meter 

(AMPROBE TE-3; Everett, WA), and a light meter (Dr.meter LX1330B; Shenzhen, People’s 
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Republic of China). A Campbell Scientific (Logan, Utah) CR850 datalogger was used to collect 

data from a Decagon 5TE soil moisture sensor (Figure 2.21).  

 
(a)                                              (b)                                    (c) 

Figure 2.21 Instruments used in the outdoor experiment (a) humidity and temperature 

meter and light meter, (b) datalogger, and (c) Decagon 5TE soil moisture sensor 

  

 2.4.2.2 Sample preparation 

In each pot, soil was added to the desired depth of the lower sensor; then we placed the 

lower sensor at the center of the pot. Then more soil was added until it reached the desired depth 

of the upper sensor. Then the upper sensor was placed at the center of the pot, and added more soil 

until it reached the desired height of soil surface, which was 5 cm from the top of the pot (Figure 

2.22).  

On 27 July 2019, soil and sensors were placed in both pots. On the same day, 4 corn seeds 

were planted in each pot. After all seeds germinated and emerged, two weaker seedlings in each 

pot. Another one, was later removed, leaving only the strongest seedling were removed from each 

pot (Figure 2.23).  

The soil used is taxonomically identified as Smolan silty clay loam from the KSU North 

Farm. Samples were sent to the KSU Soil Testing Laboratory to examine the texture. The corn 
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seeds (DEKALB, Corn Seed Blend, DKC51-20RIB) were acquired from Professor Kirkham’s 

laboratory. 

 
(a)                                (b)                                        (c) 

Figure 2.22 Insert sensors and seeds in soil (top view). (a) lower sensor, (b) upper sensor, and 

(c) seeds                                                         

  

The two pots were placed outside the west wall of the BAE Instrumentation and Control 

Laboratory. The positions of the four sensors were marked outside the pots (Figure 2.22a and b). 

 
(a)                                (b)                           (c) 

Figure 2.23The outdoor tests(a) a pot with  the four germinated corn seeds at the beginning 

of the experiment, (b) a pot after thinning to two seedlings, and (c) the two pots with one 

plant each at the end of the experiment 
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 2.4.2.3 Sampling schedule 

After the corn seeds were planted, the measurements were taken every two days. The 

measurement included 1) reading the dielectric spectral, 2) reading the VWC using the Decagon  

5TE soil water sensor, and 3) taking soil samples within the pots near the sensor locations and 

sending them to the KSU Soil Testing Laboratory to measure the concentrations of NO₃ and NH₄. 

Over the period of 27 July – 28 October 28 2019, 36 measurements were collected for each sensor, 

totaling 144 measurements for all four sensors. 

 
Figure 2.24 Some roots around the sensor area 

 

For the Decagon 5TE soil moisture and temperature sensor, a Campbell Scientific 

datalogger program was written to calculate the VWC (Appendix D). The two pots were irrigated 

as needed. Fertilizer (ammonium nitrate) was added to the pots every 8-10 days. During the 

measurements, many roots were observed growing along the perimeters of the pots (Figure 2.24). 

This probably indicated that the pot size was smaller than what the corn roots needed. 

 2.4.2.4 Removal of soil from the pots 

On 7 November 2019, the soil from the pots was removed and the sensors checked. 

It was very difficult to remove the soil surrounding the sensors because the soil was very 

dry. Many roots were around the sensors (Figure 2.25a) and some of them grew into the space 
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between the plates on the probe, also some porous area were observed between the plates (Figure 

2.25b).  

 
(a)                                          (b) 

Figure 2.25 (a) Sensors before being removed from the pots. (b) Roots and porous areas 

between plates 

 

 2.4.2.4.1 Conditions of the plants upon removal from the pots 

The plants were dry and yellow in color. This is probably because that the temperature 

reached the freezing point in the two weeks before plant removal from the pots. 

The weight of the corn ear in pot 1, where sensors 1 and 2 were located, was 176.6 g.                 

In pot 2, where sensors 3 and 4 were located, it was 256.8 g. 

 The weight of the plant (excluding the roots) in pot 1 was 203.5 g. It was 160.4 g in pot 2. 

The height of the plant in pot 1 was 170 cm. It was 174 cm in pot 2. 

While the top soil layer was very dry, the moisture content of soil surrounding the sensor 

was 16.7-16.8 cm³/cm³ in both pots.  

 2.4.2.4.2 Conditions of the sensors upon removal from the pots 

After the soil was removed, the conditions of the four sensors were examined. 

  Sensor 1 

 No short circuits were observed between the odd and even plates on the probe.  
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 Plate #2 connection was broken. 

 Roots were found in the space between the plates, with the largest being 0.25 mm in 

diameter. 

 The sensor had moved down slightly, probably due to soil movement caused by heavy 

rains in August. 

Sensor 2: 

 No short circuits were observed between the odd and even plates on the probe.  

 Plate #6 connection was broken. 

 The sensor had moved down slightly due to soil movement, which was probably caused 

by heavy rains in August  

 Roots were found in the space between the plates, with the largest being 0.25 mm in 

diameter. 

 The space between plates was slightly enlarged on the lower portion of the probe. 

Sensor 3: 

 No short circuits were observed between the odd and even plates on the probe.  

 The sensor had moved down 4 cm due to soil movement, which was probably caused 

by heavy rains in August.  

 Plates 1, 2, 4 connections were broken. 

 Roots were found in the spaces between the plates. 

Sensor 4: 

 No short circuits between the odd and even plates were observed on the probe.  

 The sensor had moved down 5 cm due to soil movement, which was probably caused 

by heavy rains in August  
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 Plate #1 connection was broken. 

 The space between plates was slightly enlarged on the lower portion of the probe. 

 Roots were found in the space between the plates, with the largest being 0.25 mm in 

diameter. 

 2.4.2.5 Conditions of the sensor signals due to potential problems caused by broken 

connections  

The findings of broken connection were a concern. An effort was made to find 1) when the 

plates were disconnected and what was the cause? 2) How many data sets were affected by this? 

In review of the moving history of the pots, it was found that the wire disconnection occurred, on 

5 October 2019, when the two pots were moved by the KSU mowing personnel without our 

knowledge. While the pots were moved twice by ourselves prior to October, it was done with 

extreme care. The unforeseen move by the mowing crew may not have been done with proper 

care. To verify this assumption, the spectral data collected before and after 5 October were 

compared.  Good data was collected from 27 July to 4 October, which included the first 4 sets of 

29 spectral data for each sensor, with a total of 116 observations. 

The sensor signals were checked, and the following results were found: 

 Sensor 1 

From Figure 2.26, it can be seen that the data collected on 2 October and 7 October were 

normal. The data collected on and after 12 October had problems.    
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              (a)                                                                  (b) 

 Figure 2.26 Dielectric spectral data collected from sensor 1 between 2 October to 20 October 

(a) Gain, (b) Phase 

 

 Sensor 2 

The data collected on 30 September and 2 October were normal.  They became problematic 

on 7 October.  

 
                                        (a)                                                         (b) 

Figure 2.27 Dielectric spectral data collected from sensor 2 between 2 October to 20 October 

(a) Gain, (b) Phase 

 

 Sensor 3 

A similar trend can be observed for the dielectric spectral data collected by Sensors 3 and 

4 (Figures 2.28 and 2.29). 
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                                      (a)                                                    (b) 

Figure 2.28 Dielectric spectral data collected from sensor 3 between 2 October to 20 October 

(a) Gain, (b) Phase. 

 

 Sensor 4 

 
                                         (a)                                                      (b) 

Figure 2.29 Dielectric spectral data collected from sensor 4 between 2 October to 20 October 

(a) Gain, (b) Phase 

 

After carefully studying the spectral data, we believe that the wire connection problem 

occurred on 5 October when the mowing crew moved the two pots. Accordingly, we decided to 

abandon all data taken after 5 October. This leaves us with good data collected from 27 July to 4 

October, which included the first 4 sets of 29 spectral data for each sensor. For the four sensors we 

had a total of 116 spectral data were available.  
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Chapter 3 - Results and Discussion 

Results of the laboratory and outdoor experiments are reported in this chapter.  

 3.1 Laboratory experiment  

This section reports the performance of the FR sensor under laboratory conditions while 

(1) simultaneously measuring soil VWC and salinity, (2) simultaneously measuring soil VWC and 

one type of nitrogen fertilizer, and (3) simultaneously measuring VWC and two types of nitrogen 

fertilizers. These measurements were conducted under different soil bulk densities. Hence, the 

effect of soil bulk density on the measurement of soil VWC, salinity, and N-fertilizers was also 

studied. 

When preparing the samples, water, salt, and fertilizers were added to soil in a weight basis 

– they were all weighed using a balance. However, except the situation when the sample was 

pressed using a piston to change the bulk density, the total volume of the sample was not changed. 

The water added to the sample at a given bulk density only changes the volumetric water content 

(VWC), not the gravitational water content (GWC). This is consistent to the water content that is 

interested by the field researchers – rainfall, irrigation, runoff, and leaching all can be conveniently 

quantified using changes in VWC. GWC becomes important only when compaction is the concern. 

On the other hand, the nature of the FR sensor also makes VWC one of the primary factors that 

affects the frequency responses. Within a given soil volume, the distributions of the solid, liquid, 

and gas phases determine the conductive and dielectric behaviors of the soil – conduction, 

polarization, and relaxation. Conductive ions in the liquid phase strongly affects the conductivity 

and more water (liquid phase) filling the pours (gas phase) improves the mobility of the ions, hence 

increasing the conductivity. In the same time, the composition of the liquid phase greatly affects 

the dielectric constant, hence changing the dielectric behavior. The mineral composition of the 
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solid phase strongly affects the conductivity. These behaviors all can be explained in a volume 

basis.  

Variations in GWC definitely would change the conductive/dielectric behaviors of the soil 

as well. However, these variations represent a combined effects of several primary factors. With 

these considerations, we converted GWC to VWC in data analysis (Equation 1.3), and used soil 

bulk density as an additional factor to specifically study its effect on the measurement of VWC, 

salinity, and N-fertilizers.    

  3.1.1   Samples and PLS analysis of dielectric spectral data 

The total number of the spectral data collected for the VWC-salinity-bulk density tests was 

75. The number for the VWC- bulk density-one fertilizer tests was 180, and for the VWC-bulk 

density-two fertilizers tests, the number was 810. For each spectral data, there were 635 predictor 

variables (635 frequencies). These dielectric spectral data were analyzed using the PLS regression 

method. The program was written in Matlab (Appendix E). In the PLS regression analysis, an 

important parameter is the number of PLS components used. The PLS regression method is 

capable of modeling a response variable with a large number of predictor variables, some of which 

are highly correlated or even collinear, as in the case of our dielectric spectral data. To make the 

model simple and more effective, the PLS regression method constructs new predictor variables, 

known as components, as linear combinations of the original predictor variables, to explain the 

observed variability in the predictor variables, taking the response variable into account. Thus, the 

PLS regression method often leads to models that are able to fit the response variable with fewer 

components. 

A preliminary study was conducted to select the number of PLS components to establish 

the prediction models. Table 3.1 shows the effect of the number of components on the R-squared 
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value of the regression models in measuring salinity. We can see that the highest R-squared values 

for both the training and validation data sets were reached when 12 components were used. 

However, after 9 components, the increase in the R-squared   value for the validation data is 

insignificant. Thus, 9 components were selected for these data. 

Table 3.1. Effect of number of PLS components on salinity measurement using the phase 

data 

PLS components R² for training R² for validation 

1 0.13 0.16 

2 0.22 0.24 

3 0.40 0.42 

4 0.53 0.56 

5 0.68 0.70 

6 0.75 0.72 

7 0.83 0.78 

8 0.88 0.83 

9 0.93 0.87 

10 0.95 0.87 

11 0.97 0.87 

12 0.98 0.88 

13 0.98 0.88 

14 0.99 0.88 

15 0.99 0.88 

 

It was noticed that the “optimum” number of components is not the same for all spectral 

data sets. To identify the best number of components, we changed the Matlab program (Appendix 

G) to perform the PLS regression analysis using different numbers of PLS components and 

selected the number of the components that gave the largest R-squared value for the validation 

data sets. Figure 3.1 shows the percent variance explained in the predictor variables (X) and the 

percent variance explained in the response variable (Y). Figure 3.2 compares the fitted response 

with the observed response for the training data sets. In this case, 15 PLS components gave the 

best prediction.  A similar comparison for the validation data sets is given in Figure 3.3. For the 
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PLS regression analyses, the odd numbered data sets were used as the training data sets, and the 

even numbered the validation data sets. Thus, the ratio between the training and validation data 

sets was 50%:50%. 

 
Figure 3.1 Percent variance explained in predictor variables (X) and response variable (Y) 

vs number of PLS components 

 

 
                           (a)                                           (b)                                           (c) 

Figure 3.2 Fitted response (calibration) vs observed response for the training data sets with 

(a) 1, (b) 8, and (c) 15 PLS components 

 

 
                               (a)                                             (b)                                          (c) 

Figure 3.3  Fitted response (calibration) vs observed response for the validation data sets 

with (a) 1, (b) 8, and (c) 15 PLS components 
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 3.1.2 Results of the PLS regression analysis 

 3.1.2.1 Soil salinity 

During these tests, three factors - VWC, bulk density, and soil salinity - were controlled. 

The PLS calibration models for predicting these properties were established using the training data 

set. The models were then evaluated using the validation data set. The magnitude spectra alone, 

phase spectra alone, and both magnitude and phase spectra were used to establish the calibration 

models.  

The results for predicting soil salinity, VWC, and bulk density are shown in Table 3.2.  The 

R-squared values for VWC was 0.85-0.89 for the validation data sets. The values for salinity and 

bulk density were 0.82-0.85 and 0.87-0.90, respectively. 

Table 3.2 R-squared values for predicting soil salinity, VWC, and bulk density 

Data set FR data 

used 

VWC 

(cm³/cm³) 

Bulk density 

(g/cm³) 

Salinity 

(mS/cm) 

 

Training 

Phase 0.92 0.93 0.88 

Magnitude 0.94 0.94 0.92 

Phase and 

magnitude 

0.92 0.92 0.89 

 

Validation 

Phase 0.88 0.87 0.83 

Magnitude 0.85 0.90 0.82 

Phase and 

magnitude 

0.89 0.89 0.85 

 

 3.1.2.2 Effect of bulk density  

Tables 3.3-3.4 compare the performance of the PLS models in predicting VWC and soil 

salinity using magnitude, phase, and both magnitude and phase spectral data obtained with 

combinations of all VWC and salinity levels at different bulk densities. The R² values achieved by 

the models in predicting VWC and salinity at different bulk densities were similar. By comparing 

Tables 3.3-3.4 with Table 3.2, it can be seen that, when bulk density did not change, we obtained 
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a better model to predict VWC and salinity. However, in general, the effect of varying bulk density 

did not significantly reduce the R-squared values for the VWC and salinity predictions. 

 From Tables 3.3 and 3.4, it also can be observed that the R² values increased slightly with 

increasing bulk density. This probably is related to the decrease of air volume in the soil at higher 

densities. 

Table 3.3 R-squared values for VWC prediction at different bulk densities 

Data set FR data used  Bulk density (g/cm³) 

0.8 1.0 1.2 

 

Training 

Phase 0.99 0.99 0.99 

Magnitude 0.99 0.99 0.99 

Phase and 

magnitude 

0.99 0.99 0.99 

 

Validation 

Phase 0.92 0.94 0.96 

Magnitude 0.90 0.93 0.94 

Phase and 

magnitude 

0.93 0.96 0.96 

 

 

Table 3.4 R-squared values for soil salinity prediction at different bulk densities 

Data set FR data used  Bulk density (g/cm³) 

0.8 1.0 1.2 

 

Training 

Phase 0.98 0.99 0.999 

Magnitude 0.98 0.999 0.99 

Phase and 

magnitude 

0.98 0.99 0.98 

 

Validation 

Phase 0.87 0.90 0.95 

Magnitude 0.80 0.92 0.94 

Phase and 

magnitude 

0.89 0.91 0.95 
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 3.1.2.3 One type of N-fertilizer 

  3.1.2.3.1 Ammonium sulfate  

The results for predicting ammonium sulfate, bulk density, and VWC are given in Table 

3.5.  It seems that using the magnitude spectra alone gave better results.  

Table 3.5 R-squared value for VWC, ammonium sulfate, and bulk density 

Data set FR data used VWC 

(cm³/cm³) 

Bulk density 

(g/cm³) 

Ammonium 

sulfate (ppm) 

 

Training 

Phase 0.88 0.82 0.95 

Magnitude 0.97 0.88 0.98 

Phase and 

magnitude 

0.86 0.82 0.96 

 

Validation 

Phase 0.76 0.70 0.84 

Magnitude 0.85 0.73 0.84 

Phase and 

magnitude 

0.82 0.72 0.84 

 

   3.1.2.3.2 Effect of bulk density  

Tables 3.6-3.7 give the results of predicting ammonium sulfate and VWC at two different 

bulk densities. It can be seen that, in general, the prediction results are slightly better than those 

obtained with varying bulk densities (Table 3.5). However, the difference is not significant. At the 

same time, the R-squared values obtained at a higher bulk density are slightly higher than those at 

a lower bulk density. Again, this may be explained by amount of air in the soil. Air has a very 

different permittivity from other materials. More air in soil can cause changes in permittivity. 

Table 3.6 R-squared value for ammonium sulfate prediction at different bulk densities 

Data set FR data 

used 

Bulk density (g/cm³) 

1.0 1.2 

 

Training 

Phase 0.98 0.98 

Magnitude 0.98 0.99 

Phase and 

magnitude 

0.98 0.98 

 

Validation 

Phase 0.77 00.87 

Magnitude 0.81 0.82 

Phase and 

magnitude 

0.79 0.85 
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Table 3.7 R-squared value for VWC prediction at different bulk densities 

Data set FR data used Bulk density (g/cm³) 

1.0 1.2 

 

Training 

Phase 0.99 0.96 

Magnitude 0.99 0.99 

Phase and 

magnitude 

0.99 0.97 

 

Validation 

Phase 0.87 0.92 

Magnitude 0.90 0.92 

Phase and 

magnitude 

0.88 0.95 

 

    3.1.2.3.3 Ammonium nitrate  

The results for predicting ammonium nitrate, VWC, and bulk density are shown in Table 

3.8. Tables 3.9-3.10 give the prediction results for ammonium nitrate and VWC at constant 

densities. Finding from these tables are similar to those for ammonium sulfate. 

Table 3.8 R-squared values for ammonium nitrate, bulk density, and VWC 

Data set FR data used VWC 

(cm³/cm³) 

Bulk 

density 

(g/cm³) 

Ammonium 

Nitrate (ppm) 

 

Training 

Phase 0.97 0.90 0.89 

Magnitude 0.98 0.95 0.97 

Phase and 

magnitude 

0.97 0.91 0.87 

 

Validation 

Phase 0.92 0.71 0.81 

Magnitude 0.89 0.74 0.85 

Phase and 

magnitude 

0.92 0.73 0.81 
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  3.1.2.3.4 Effect of bulk density 

Table 3.9 R-squared values for ammonium nitrate prediction at different bulk densities 

Data set FR data used Bulk density (g/cm³) 

1.0 1.2 

 

Training 

Phase 0.93 0.99 

Magnitude 0.99 0.99 

Phase and 

magnitude 

0.95 0.98 

 

Validation 

Phase 0.83 0.87 

Magnitude 0.80 0.85 

Phase and 

magnitude 

0.84 0.86 

 

Table 3.10 R-squared values for VWC prediction at different bulk densities 

Data set FR data used Bulk density (g/cm³) 

1.0 1.2 

 

Training 

Phase 0.98 0.99 

Magnitude 0.99 0.99 

Phase and 

magnitude 

0.98 0.99 

 

Validation 

Phase 0.93 0.93 

Magnitude 0.90 0.90 

Phase and 

magnitude 

0.92 0.94 

 

 3.1.2.3.5 Urea fertilizer 

The R-squared values in predicting urea concentration are slightly lower. This is probably 

due to the fact that both ammonium nitrate and ammonium sulfate are inorganic salts that are 

formed by anions and cations, which greatly affect the conductivity of the soil, especially when 

more water exists in the soil. Urea, on the other hand, is an organic matter. While it may contribute 

more to the dielectric behavior of the soil, its influence on conductivity is not strong.   
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Table 3.11 R-squared value for urea, bulk density, and VWC 

Data set FR data used VWC 

(cm³/cm³) 

Bulk density 

(g/cm³) 

Urea 

(ppm) 

 

Training 

Phase 0.85 0.86 0.88 

Magnitude 0.91 0.92 0.97 

Phase and 

magnitude 

0.86 0.86 0.90 

 

Validation 

Phase 0.63 0.56 0.71 

Magnitude 0.69 0.65 0.68 

Phase and 

magnitude 

0.66 0.59 0.79 

 

 3.1.2.3.6 Effect of bulk density 

Trends for the influence of bulk density on the measurements of VWC and urea can be 

observed in Tables 3.12-3.13. 

Table 3.12 R-squared values for urea prediction at different bulk densities 

Data set FR data used Bulk density (g/cm³) 

1.0 1.2 

 

Training 

Phase 0.94 0.96 

Magnitude 0.88 0.99 

Phase and 

magnitude 

0.95 0.96 

 

Validation 

Phase 0.56 0.77 

Magnitude 0.72 0.73 

Phase and 

magnitude 

0.66 0.85 

 

Table 3.13 R-squared values for VWC prediction at different bulk densities 

Data set FR data used Bulk density (g/cm³) 

1.0 1.2 

 

Training 

Phase 0.97 0.99 

Magnitude 0.99 0.99 

Phase and 

magnitude 

0.96 0.98 

 

Validation 

Phase 0.82 0.91 

Magnitude 0.87 0.88 

Phase and 

magnitude 

0.83 0.92 
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 3.1.2.4 Two types of N-fertilizers 

For the two-fertilizer tests, we applied different amounts of two types of N-fertilizers in 

the soil samples, and established PLS prediction models to predict each type of fertilizer. The 

two types of N-fertilizers were chosen from the three studied in the experiment: ammonium 

nitrate, ammonium sulfate, and urea. 

3.1.2.4.1 Ammonium sulfate and ammonium nitrate  

When both ammonium nitrate and ammonium sulfate were applied to the soil, the model 

predicting VWC still performed well, resulting in high R-squared values for both the training and 

validation data. However, the model predicting bulk density seemed to have some difficulties 

unless only the phase data were used to establish the model. However, when the two types of N-

fertilizer were measured individually, both the magnitude and phase spectral data need to be used 

to obtain good results.  

Table 3.14 R-squared values for ammonium nitrate + ammonium sulfate, bulk density, and 

VWC 

Data set FR data 

used 

VWC 

(cm³/cm³) 

Bulk 

density 

(g/cm³) 

Ammonium 

Sulfate 

(ppm) 

Ammonium 

Nitrate 

(ppm) 

Ammonium Sulfate 

with               

Ammonium Nitrate 

(ppm) 

 

Training 

Phase 0.98 0.91 0.84 0.93 0.90 

Magnitud

e 

0.95 0.95 0.88 0.87 0.59 

Phase and 

magnitude 

0.98 0.93 0.85 0.91 0.89 

 

Validation 

Phase 0.91 0.80 0.40 0.62 0.44 

Magnitud

e 

0.92 0.76 0.39 0.59 0.39 

Phase and 

magnitude 

0.93 0.82 0.45 0.67 0.50 
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 3.1.2.4.2 Ammonium sulfate and urea 

When urea was added with ammonium sulfate in the soil, the prediction results, in general, 

worsened. Although the VWC could still be measured with an R-squared value of higher than 0.8, 

measurement of the bulk density became more difficult. Among the two fertilizers, urea could be 

measured with a higher R-squared value, but it was unsuccessful in measuring ammonium sulfate. 

While still believing that the ammonium salts mainly influence the conductive behavior of the soil, 

the effect of organic urea on permittivity was still unclear in our minds. This is a topic that needs 

to be researched in the future. 

Table 3.15 R-squared values for ammonium sulfate + urea, bulk density, and VWC 

Data set FR data 

used 

VWC 

(cm³/cm³) 

Bulk 

density 

(g/cm³) 

Ammonium 

Sulfate 

(ppm) 

Urea 

(ppm) 

Ammonium 

Sulfate              

with                

Urea (ppm) 

 

Training 

Phase 0.87 0.59 0.34 0.84 0.82 

Magnitude 0.91 0.78 0.36 0.84 0.86 

Phase and 

magnitude 

0.87 0.94 0.34 0.84 0.82 

 

Validation 

Phase 0.82 0.53 0.21 0.73 0.74 

Magnitude 0.80 0.62 0.24 0.72 0.74 

Phase and 

magnitude 

0.83 0.57 0.28 0.73 0.75 

 

  3.1.2.4.3 Ammonium nitrate and urea 

When different amounts of ammonium nitrate and urea were applied in the soil, the 

performance of all prediction models, perhaps except the ones for VWC and bulk density, was 

reduced (Table 3.16).  It can also be noticed that, among the two fertilizers, urea still had better 

prediction results than ammonium nitrate. At this time, we do not have an explanation for this 

finding.   
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Table 3.16 R-squared values for ammonium nitrate + urea, bulk density, and VWC 

Data set FR data 

used 

VWC 

(cm³/cm³) 

Bulk 

density 

(g/cm³) 

Ammonium 

Nitrate (ppm) 

Urea 

(ppm) 

Ammonium 

Nitrate    with         

Urea (ppm) 

 

Training 

Phase 0.91 0.96 0.58 0.92 0.88 

Magnitude 0.94 0.87 0.19 0.69 0.69 

Phase and 

magnitude 

0.92 0.97 0.60 0.96 0.88 

 

Validation 

Phase 0.86 0.53 0.15 0.46 0.29 

Magnitude 0.85 0.64 0.09 0.29 0.22 

Phase and 

magnitude 

0.87 0.66 0.15 0.50 0.34 

 

 3.2 Outdoor experiment 

   3.2.1 Sample groups  

In total, 116 effective dielectric spectrum samples were taken by the four sensors. Each 

sensor had 29 samples. Sensors 1 and 2 were buried in pot 1 and sensors 3 and 4 in pot 2.  Sensors 

1 and 3 were buried at the same depth (12.5 cm from the soil surface) and sensors 2 and 4 were 25 

cm from the surface. Five sets of samples were taken from each sensor. Set 1 samples were taken 

from 27 July to 12 August. Eight samples were taken from each sensor.  Thus, Set 1 had 32 

samples. Sets 2-4 each had 28 samples with 7 from each sensor. Set 2 samples were collected from 

14 August to 29 August. Set 3 samples were collected from 2 September to 14 September, and Set 

4 (28 samples) from 17 September to 2 October. 

An additional set of samples (Set 5) were collected from 7 October to 28 October.  

However, this set of samples could not be used in the analysis because of broken wire connections, 

probably caused by an unexpected movement of the pots by the university’s lawn mowing crew, 

which made these data unusable. 

For each sample set, the VWC, nitrate-N, and ammonium-N were measured. The VWC 

was measured using a Decagon 5TE soil moisture sensor and all the samples were sent to the KSU 
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Soil Testing Laboratory to measure the nitrate-N and ammonium-N. For convenience in writing 

and reading, the nitrate-N and ammonium-N will be referred to as “NO3” and “NH4” hereafter in 

this dissertation.   

Two Matlab programs were developed to analyze the data. The first prepared the data for 

analysis (Appendix F). It gave the flexibility of sample set selection and various ways of data 

preprocessing. The second performed the PLS regression analysis (Appendix G). It provided the 

flexibility of selecting the optimum number of PLS components and the number of most significant 

frequencies used in the regression.  

  3.2.2 Sample range 

Table 3.17 gives the ranges of the variables measured (VWC, nitrate-N, and ammonium-

N) for each sample set.  

Table 3.17 Ranges of NO3, NH4, and VWC for each sample set 

Sensor Set Period File numbers VWC 

 (cm³/cm³) 

Nitrate-N 

(ppm) 

Ammonium-N 

(ppm) 

 

 

1 

1 7/27-8/12 1-8 12.7-28.9 17.8-59.6 5.6-10.4 

2 8/14-8/29 33-39 21.0-31.4 17.2-48.3 3.4-16.4 

3 9/2-9/14 61-67 21.2-30.5 1.2-9.0 3.3-6.3 

4 9/17-10/2 89-95 21.3-24.8 1.8-51.3 4.4-11.2 

 

 

2 

1 7/27-8/12 9-16 11.6-37.3 19.2-85.8 5.7-9.2 

2 8/14-8/29 40-46 29.6-36.2 12.7-92.4 3.5-12.4 

3 9/2-9/14 68-74 23.6-37.7 1.1-6.2 3.6-7.2 

4 9/17-10/2 96-102 15.5-26.0 2.0-4.5 4.9-9.1 

 

 

3 

1 7/27-8/12 17-24 11.2-30.8 17.6-76.0 6.4-10.1 

2 8/14-8/29 47-53 24.4-33.0 28.3-42.7 2.9-12.1 

3 9/2-9/14 75-81 24.0-36.0 0.8-10.2 3.3-7.0 

4 9/17-10/2 103-109 19.9-23.7 1.3-8.2 4.5-8.7 

 

 

4 

1 7/27-8/12 25-32 13.5-33.8 16.8-116.3 6.4-11.0 

2 8/14-8/29 54-60 29.0-36.4 21.4-102.5 4.5-15.4 

3 9/2-9/14 82-88 23.0-37.4 1.0-12.2 4.0-11.1 

4 9/17-10/2 110-116 16.8-24.5 1.2-7.4 4.1-8.3 
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From Table 3.17, it can be seen that the ranges of the variables to be measured within 

different sample sets are different. For example, the range of NO3 varied from 1.1-6.2 ppm (Sensor 

2, sample set 3) to 21.4-102.5 ppm (Sensor 4, sample set 2). Obviously, the prediction model 

trained using the data in a certain sample set may not allow correct prediction for a validation 

sample set if the coverages of the training and validation sample sets are very different. To describe 

the matching between the ranges of a training sample set and a validation sample set, we defined 

a “Coverage Index” (“CI”) as follows. 

 3.2.3 Coverage Index 

Coverage Index (CI) is an indicator of the convergence of the range of the training data 

with that of the validation data. It can be calculated from multiplying the coverage ratio (CR) by 

un-coverage ratio (UR)  

CI= CR * UR                                                                                     (3.1) 

      CR= cv/rt                                                                                                                                   (3.2) 

         where cv is the portion of the validation data range (cv) covered by                                                                                                                             

the training data range                                    

                 rt is the range of the training data ( tmax – tmin)  (Figure 3.4). 

      

   UR= cv/rv                                                                                      (3.3) 

      where rv is the range of the validation data ( vmax– vmin)  

Therefore 

CI= (cv/rt) (cv/rv) = cv²/ (rt* rv)                                                      (3.4) 

The coverage of validation data range (cv) is different depending on both the training and 

validation data and there are 5 cases (Figure 3.4):   
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Figure 3.4 Five cases of validation data coverage 

Obviously, case 5 gives the best matching between the training and validation data ranges 

and it has a perfect CI value of 1.0. 

CI has a strong effect on the PLS regression models. Table 3.18 compares the regression 

models trained and validated using 2, 3, and 4 sets of data for Sensor 3 in predicting the 

concentration of NH₄. The range of the NH₄ concentration was 2.9-12.1 ppm. However, among 

the 29 samples, 28 had NH₄ concentrations between 2.9-10.1 ppm, and only one sample (sample 
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8) had a concentration of 12.1 ppm. Including this sample in the PLS regression analysis strongly 

affected the CI, and in-turn affected the accuracy of the trained PLS models. Figures 3.5-10 

demonstrate the improvement in prediction of NH₄ after sample 8, the out-of-range sample, was 

removed from the training data sets for the 2-, 3-, and 4-set data prediction models for sensor 3.  

From Table 3.18, the cause-effect relationship between CI and R2 value is clearly displayed by the 

prediction results. 

Table 3.18 The effect of Coverage Index (CI) on the performance of prediction models 

Model parameter Out-of-range sample 

(sample 8) included 

Out-of-range sample 

(sample 8) removed 

 

Two  

sample sets 

CI 0.47 0.74 

R² (training/validation) 0.55/0.48 0.99/0.95 

RMSE (training/validation) 1.69/1.16 0.17/0.35 

 

Three  

sample sets 

CI 0.74 0.76 

R² (training/validation) 0.39/0.37 1.00/0.94 

RMSE (training/validation) 1.68/2.11 0.03/0.47 

 

Four  

sample sets 

CI 0.75 0.91 

R² (training/validation) 1.00/0.64 0.76/0.76 

RMSE (training/validation) 0.00/1.24 0.97/1.01 

 

 
Figure 3.5 Performance of NH4 prediction model using two sets of samples for sensor 3 

with an out-of-range sample (sample 8) included 
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Figure 3.6 Performance of NH4 prediction model using two sets of samples for sensor 3 

with an out-of-range sample (sample 8) removed 

 

 
Figure 3.7 Performance of NH4 prediction model using three sets of samples for sensor 3 

with an out-of-range sample (sample 8) included 
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Figure 3.8 Performance of NH4 prediction model using three sets of samples for sensor 3 

with an out-of-range sample (sample 8) removed 

 
Figure 3.9 Performance of NH4 prediction model using four sets of samples for sensor 3 

with an out-of-range sample (sample 8) included 
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Figure 3.10 Performance of NH4 prediction model using four sets of samples for sensor 3 

with an out-of-range sample (sample 8) removed 

 

 3.2.4 Matlab programs for data preparation and PLS regression analysis    

The computer programs handling the processing and analytics of the dielectric spectral data 

were written in Matlab. There are two programs. The first prepares the data for PLS regression 

analysis and the second searches the best combination of the PLS components and signature 

frequencies, performs the PLS regression, and reports the results in various ways. 

The data preparation program provides options for data selection and data preprocessing. 

For training and validation data selection, the options are:  

• Separately selecting data sets for training and validation,  

•  Selecting certain data sets for training and validation and the program will 

randomly separate the data into training and validation data sets based on a user-selected ratio (the 

recommended ratio is 70%:30%). 

• Selecting certain data sets for training and validation and the program will sort the 

selected data sets by the values of the response variable and separate the sorted data sets into 

training and validation data sets based on a user-selected ratio (the recommended ratio is 
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70%:30%). The third option was made available for spectral data that have insufficient range and 

low distribution uniformity for the response variable.  

The options for data preprocessing include: 

• Selection of the response variable: For the outdoor experiment, the response 

variable can be VWC, nitrate-N, and ammonium-N. The user may select to run one, two, or three 

response variables. 

•     Selection of the predictor variables: Available options are 1) only use the magnitude 

spectra, 2) only use the phase spectral data, and 3) use both the magnitude and phase spectral data. 

• Selection of the frequencies of the spectral data to be used in the PLS regression 

analysis: Options available include 1) User defines the maximum frequency and the program will 

eliminate all the spectral data beyond this frequency. 2) Compression of the spectral data by 

averaging them with a user-selected number of frequencies. For example, if the user selects to 

compress the data to ¼ of the original data, spectral data of every 4-frequency group would be 

averaged. 

• Selection to smooth the spectral data: Options include 1) The user can select to 

average the three runs in a spectral data set. This would reduce the number of data sets to 1/3. 2) 

The user may select smoothing the spectral through moving-averaging. This would not reduce the 

length of the spectral data but would make the spectral data look smoother, and it would eliminate 

some abrupt changes in the spectral data (Appendix F).    

 The program that handles the PLS regression analysis considered the following important 

principles: 1). the number of PLS components have an important role in deciding the performance 

of the regression model. An insufficient number of the PLS components could not fully represent 

the variance in the predictor variables and corresponding response variables. This would result in 



67 

under fitting of the prediction models and inaccurate prediction for the validation data. On the 

other hand, an excessive number of the PLS components may result in overfitting, hence less 

accurate prediction for the validation data.  2). The Variable Importance in Projection (VIP) scores 

estimate the importance of each predictor variable in the projection used in a PLS model and is 

often used for variable selection. A variable with a VIP score close to or greater than 1 (one) can 

be considered important in a given model. Variables with VIP scores significantly less than 1 are 

less important and might be good candidates for exclusion from the model. 

Based on these principles, the program that handles the PLS regression analysis included 

the following functions: 

• Calculate the ranges of the response variables of the training and validation data 

sets and the Coverage Index (CI). This helps the user decide whether the data sets selected for 

training and validation are appropriate. 

• Allow the user to select the maximum number of PLS components N and calculate 

the R-squared values for the validation data set using all available predictors (all frequencies) and 

1 to N PLS components. 

• Select the number of PLS components that produce the highest R-squared value 

and run the PLS regression analysis using this number of components, again to derive the VIP 

scores of all predictor variables (frequencies). 

• Sort the predictor variables (frequencies) based on the VIP scores to determine the 

importance of the predictor variables (frequencies). 

• Allow the user to select the maximum number of the predictor variables 

(frequencies) M and run the PLS regression analysis using the optimum number of the PLS 

components and 1-M predictor variables (frequencies) selected from the top of the sorted VIP list. 
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The optimum number of the predictor variables (frequencies) and the optimum number of the PLS 

components that produced the maximum R-squared value (or the minimum RMSE) for the 

validation data set are then reported in the results. 

•       The frequencies within the optimum number of predictor variables (frequencies) are 

then selected as the “signature frequencies” (Appendix F). 

 3.2.5 Prediction results   

First, the sample data obtained from two, three, and four sets of individual sensors were 

used to train and validate the PLS models for predicting VWC, NO3, and NH4. Then, to study the 

possibility of establishing “universal” prediction models for these measurements, sample data 

across sensors were combined to train and validate the models. The results are summarized in this 

section.  

 3.2.5.1 Models for individual sensors 

The performances of PLS models established to predict VWC, NO3, and NH4 for individual 

sensors are given in Tables 3.19-3.21. 

Sensor 1 

The performance of the prediction models established for sensor 1 in predicting VWC 

using different combinations of the training and validation data is given in Table 3.19. It was 

noticed that the first sample for VWC was taken before fertilizer and water were added to pot 1, 

Thus, this sample had a very low VWC (12.7%), which resulted in low CI values  (0.37-0.47). 

Removing this sample improved the CI and, as a result, improved the R² values and RMSE, as can 

be seen in Table 3.19 
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Table 3.19 Performance of PLS prediction models for VWC established using various 

combinations of the sample data from sensor1 

Sample sets used CI R2  

(training/validation) 

RMSE (cm3/cm3) 

(training/validation) 

1+2 0.41 1.00/0.97 0.00/0.71 

1+3 0.39 1.00/0.95 0.27/0.75 

1+4 0.37 0.92/0.91 1.08/0.80 

2+3 0.79 0.84/0.52 1.21/2.13 

2+4 0.69 0.96/0.87 0.63/0.96 

3+4 0.63 0.84/0.82 1.04/0.91 

1+2+3 

1+2+3* 

0.47 

0.74 

0.92/0.17 

1.00/0.55 

1.20/3.05 

0.01/1.85 

1+2+4 

1+2+4* 

0.46 

0.69 

0.91/0.45 

0.74/0.73 

1.23/2.44 

1.58/1.28 

1+3+4 

1+3+4* 

0.39 

0.71 

0.95/0.55 

0.85/0.83 

0.87/1.98 

1.03/0.88 

2+3+4 0.71 0.90/0.66 1.02/1.46 

1+2+3+4 

1+2+3+4* 

0.51 

0.89 

0.39/0.36 

0.80/0.69 

3.03/2.51 

1.26/1.74 

*with an out-of-range sample removed 

For NO₃, we found an out-of-range sample that had a NO₃ concentration value of 51.3 ppm, 

when we used sample sets 3+4, whereas the range of remaining samples was 1.2-9.1 ppm. From 

Table 3.20 it can be seen that removing this sample improved the prediction results. 

 

 

 

 

 

 

 

 



70 

Table 3.20 Performance of PLS prediction models for NO3 established using various 

combinations of the sample data from sensor1 

Sample sets used CI R2  

(training/validation) 

RMSE(ppm) 

(training/validation) 

1+2 0.82 1.00/0.52 0.44/11.3 

1+3 0.91 0.86/0.74 6.84/11.3 

1+4 0.86 0.72/0.63 10.2/13.3 

2+3 0.54 0.83/0.75 6.60/4.96 

2+4 0.72 0.92/0.82 4.71/5.96 

3+4 

3+4* 

0.15 

0.98 

0.38/0.17 

0.63/0.62 

11.2/3.25 

1.57/1.84 

1+2+3 0.91 0.92/0.82 5.04/8.09 

1+2+4 0.86 0.89/0.87 5.61/6.93 

1+3+4 0.91 1.00/0.77 0.00/9.89 

2+3+4 0.51 0.99/0.58 1.40/5.99 

1+2+3+4 0.91 0.99/0.71 1.59/9.89 

*with an out-of-range sample removed 

 

The prediction results using data from two data sets and four data sets for training and 

validation are shown in Table 3.21. The best results for predicting NH₄ were found when using 

sets 1+2, sets 1+3, and sets 1+2+3+4, which gave R squared value 0.99, 1.00, and 0.91 for training 

and 0.93, 0.83, and 0.85 for validation data, respectively. For NH₄, set 2 samples had the largest 

range (3.4 -16.4 ppm) whereas set 3 recorded the lowest NH₄ concentration (3.3 ppm). After 

removing this out-of-range sample, prediction model for set 3+4 was improved. 
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Table 3.21 Performance of PLS prediction models for NH4 established using various 

combinations of the sample data from sensor 1 

Sample sets used CI R2  

(training/validation) 
RMSE(ppm) 

(training/validation) 
1+2 0.39 0.99/0.93 0.15/1.03 

1+3 0.72 1.00/0.83 0.00/0.89 

1+4 0.77 0.96/0.64 0.40/1.38 

2+3 0.34 0.99/0.36 0.31/1.28 

2+4 

2+4* 

0.59 

0.65 

1.00/0.10 

0.99/0.64 

0.00/2.50 

0.03/1.05 

3+4 

3+4* 

0.25 

0.35 

0.52/0.15 

0.99/0.68 

1.48/1.92 

0.14/0.41 

1+2+3 0.53 0.82/0.67 0.85/2.23 

1+2+4 0.49 0.78/0.71 1.02/2.02 

1+3+4 

1+2+4* 

0.75 

0.65 

0.42/0.17 

0.44/0.44 

1.52/2.05 

1.50/1.51 

2+3+4 

2+3+4* 

0.37 

0.61 

0.99/0.16 

1.00/0.55 

0.35/1.58 

0.13/0.99 

1+2+3+4 0.60 0.91/0.85 0.86/0.87 

*with an out-of-range sample removed 

 

Sensor 2 

The prediction results using data from two, three, and four sets for training and validation 

for sensor 2 are given in Tables 3.22-3.24.  No obvious out-of-range samples were found and the 

prediction results are generally better than sensor 1. 
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Table 3.22 Performance of PLS prediction models for VWC established using various 

combinations of the sample data from sensor 2 

Sample sets used CI R2  

(training/validation) 
RMSE (cm3/cm3) 

(training/validation) 
1+2 0.85 0.96/0.90 1.58/2.51 

1+3 0.88 0.99/0.86 0.84/3.22 

1+4 0.54 1.00/0.85 0.00/2.94 

2+3 0.63 0.84/0.68 1.70/1.87 

2+4 0.71 1.00/0.90 0.22/1.69 

3+4 0.71 0.98/0.87 0.92/2.13 

1+2+3 0.88 0.91/0.82 2.34/3.19 

1+2+4 0.85 0.89/0.88 2.28/2.64 

1+3+4 0.88 0.96/0.87 1.46/2.62 

2+3+4 0.72 0.92/0.82 1.82/2.41 

1+2+3+4 0.88 0.86/0.84 2.78/2.93 

 

For NO3, set 2 had the larger range in (12.7 - 92.4 ppm). However, the range for set 3 (1.1- 

6.2 ppm) does not match that of set 1 well.  We removed the sample in set 2 that had the lowest 

NO₃ concentration, when we used sample sets 1+2, and the performance of the model was 

improved. 

Table 3.23 Performance of PLS prediction models for NO3 established using various 

combinations of the sample data from sensor 2 

Sample sets used CI R2  

(training/validation) 
RMSE(ppm) 

(training/validation) 
1+2 

 1+2* 

0.90 

0.73 

0.95/0.53 

0.64/0.50 

5.50/19.5 

15.0/13.8 

1+3 0.90 1.00/0.99 0.00/3.41 

1+4 0.90 1.00/0.98 0.91/5.11 

2+3 

2+3* 

0.36 

0.69 

0.27/0.26 

0.60/0.59 

23.6/11.4 

9.54/8.45 

2+4 0.36 0.90/0.89 8.88/4.38 

3+4 0.61 0.65/0.63 0.94/0.71 

1+2+3 0.92 1.00/0.64 0.03/18.8 

1+2+4 0.93 0.94/0.72 7.04/16.2 

1+3+4 0.90 1.00/0.97 0.00/5.97 

2+3+4 0.29 0.99/0.79 1.28/4.36 

1+2+3+4 0.92 0.94/0.92 7.11/8.19 

*with an out-of-range sample removed 
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For NH₄, we found one out-of-range sample that had NH₄ concentration value of 12.4 

ppm, whereas the range of remaining samples was 3.5-9.2 ppm (when sample sets 1+2 were 

used).  Removal of this sample improved the prediction performance. 

Table 3.24 Performance of PLS prediction models for NH4 established using various 

combinations of the sample data from sensor 2 

Sample sets used CI R2  

(training/validation) 
RMSE(ppm) 

(training/validation) 
1+2 

1+2* 

0.42 

0.65 

1.00/0.27 

0.72/0.56 

0.02/2.20 

0.96/0.98 

1+3 0.86 0.94/0.88 0.46/0.65 

1+4 0.79 0.87/0.86 0.51/0.49 

2+3 0.45 0.64/0.48 1.46/1.06 

2+4 0.32 0.80/0.79 1.06/0.48 

3+4 

3+4* 

0.49 

0.75 

0.40/0.30 

0.74/0.65 

1.20/0.86 

0.61/0.64 

1+2+3 0.63 1.00/0.79 0.02/1.25 

1+2+4 

1+2+4* 

0.43 

0.67 

0.83/0.51 

0.88/0.71 

0.69/1.63 

0.58/0.74 

1+3+4 0.85 0.71/0.60 0.60/1.07 

2+3+4 

2+3+4* 

0.45 

0.95 

0.48/0.29 

0.77/0.47 

1.57/1.15 

0.59/0.99 

1+2+3+4 0.63 0.79/0.74 0.95/0.93 

*with an out-of-range sample removed 

 

Sensor 3 

For sensor 3, only one out-of-range sample was identified. Removal of this sample 

improved the performance of the sets 2+4 prediction model, as can be seen in the Table 3.25. 
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Table 3.25 Performance of PLS prediction models for VWC established using various 

combinations of the sample data from sensor 3 

Sample sets used CI R2 

(training/validation) 
RMSE (cm3/cm3) 

(training/validation) 
1+2 0.41 0.99/0.92 0.54/1.09 

1+3 0.52 0.85/0.73 2.82/2.91 

1+4 0.46 0.99/0.97 0.46/0.63 

2+3 

2+3* 

0.88 

0.75 

0.63/0.63 

0.99/0.85 

2.43/2.65 

0.49/1.35 

2+4 

2+4* 

0.82 

0.51 

1.00/0.57 

0.83/0.62 

0.03/5.03 

1.08/2.49 

3+4 0.89 0.90/0.87 2.06/2.03 

1+2+3 

1+2+3* 

0.52 

0.85 

0.89/0.58 

0.99/0.87 

1.20/3.17 

0.36/1.58 

1+2+4 0.49 0.93/0.81 1.27/1.84 

1+3+4 0.60 0.78/0.77 3.07/2.85 

2+3+4 0.83 0.59/0.48 3.49/3.66 

1+2+3+4 0.60 0.77/0.66 2.89/3.01 

*with an out-of-range sample removed 

For NO₃, no obvious out-of-range samples were found and the prediction results are 

generally better than sensor 1 and sensor 2. 

Table 3.26 Performance of PLS prediction models for NO3 established using various 

combinations of the sample data from sensor 3 

Sample sets used CI R2 

(training/validation) 
RMSE(ppm) 

(training/validation) 
1+2 0.65 0.74/0.71 8.13/10.3 

1+3 0.88 1.00/0.96 0.00/6.41 

1+4 0.88 1.00/0.96 1.45/5.91 

2+3 0.76 0.89/0.89 5.14/4.67 

2+4 0.76 1.00/0.99 1.04/1.53 

3+4  0.66 0.99/0.98 0.27/0.34 

1+2+3 0.88 0.91/0.76 6.71/12.07 

1+2+4 0.88 1.00/0.77 0.00/12.05 

1+3+4 0.88 0.90/0.85 7.83/10.65 

2+3+4 0.76 0.97/0.51 2.81/9.08 

1+2+3+4 0.88 1.00/0.68 0.73/12.79 
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One out-of-range sample was found for sensor 3 in predicting NH₄, with the concentration 

value of 12.1 ppm, whereas the range of remaining samples was 2.9-10.1 ppm. A similar removal 

action was taken to improve the models.  

Table 3.27 Performance of PLS prediction models for NH4 established using various 

combinations of the sample data from sensor 3 

Sample sets used CI R2 

(training/validation) 
RMSE(ppm) 

(training/validation) 
1+2 0.74 1.00/0.53 0.00/2.07 

1+3 0.76 0.70/0.63 1.13/1.25 

1+4 0.80 0.99/0.45 0.08/1.25 

2+3 

2+3* 

0.39 

0.88 

0.60/0.32 

0.70/0.66 

1.60/1.06 

0.79/0.75 

2+4 

2+4* 

0.47 

0.74 

0.55/0.48 

0.99/0.95 

1.70/1.16 

0.17/0.35 

3+4 0.48 0.99/0.31 0.07/0.84 

1+2+3 

1+2+3* 

0.74 

0.76 

0.99/0.49 

0.77/0.70 

0.14/1.99 

1.11/1.01 

1+2+4 

1+2+4* 

0.74 

0.76 

0.39/0.37 

1.00/0.94 

1.68/2.11 

0.03/0.47 

1+3+4 0.77 0.84/0.76 0.75/0.93 

2+3+4 0.42 0.98/0.64 0.36/0.80 

1+2+3+4 

1+2+3+4* 

0.75 

0.91 

1.00/0.64 

0.76/0.76 

0.00/1.24 

0.97/1.01 

*with an out-of-range sample removed 
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Sensor 4                       

Good results were obtained for sensor 4 data in predicting VWC and NO3. 

Table 3.28 Performance of PLS prediction models for VWC established using various 

combinations of the sample data from sensor 4 

Sample sets used CI R2 

(training/validation) 
RMSE (cm3/cm3) 

(training/validation) 

1+2 0.88 0.90/0.89 2.50/2.53 

1+3 0.73 1.00/0.83 0.00/3.06 

1+4 0.68 0.96/0.95 1.09/1.41 

2+3 0.56 0.93/0.77 1.07/1.47 

2+4 0.63 0.78/0.78 3.08/2.32 

3+4 0.47 0.99/0.91 0.51/1.15 

1+2+3 0.85 0.96/0.94 1.36/1.54 

1+2+4 0.88 1.00/0.88 0.27/2.40 

1+3+4 0.73 0.93/0.74 1.65/3.34 

2+3+4 0.60 0.99/0.88 0.58/1.69 

1+2+3+4 0.85 0.93/0.87 1.73/2.31 

 

Table 3.29 Performance of PLS prediction models for NO3 established using various 

combinations of the sample data from sensor 4 

Sample sets used CI R2 

(training/validation) 
RMSE(ppm) 

(training/validation) 
1+2 0.81 0.83/0.80 11.8/15.3 

1+3 0.83 1.00/0.95 2.30/10.7 

1+4 0.83 0.98/0.94 4.73/11.4 

2+3 0.49 1.00/0.85 0.87/7.47 

2+4 0.48 0.95/0.75 7.89/10.1 

3+4 0.43 0.99/0.96 0.41/0.47 

1+2+3 0.88 1.00/0.95 0.00/8.89 

1+2+4 0.88 1.00/0.95 1.09/8.94 

1+3+4 0.83 0.90/0.90 11.08/13.5 

2+3+4 0.45 1.00/0.83 1.39/6.87 

1+2+3+4 0.88 1.00/0.93 0.06/10.2 
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For NH4, removal of an out-of-range sample helped improve most models. This sample 

had a NH₄ concentration value of 15.4 ppm. However, for the model that used all four sets of data, 

an additional out-of-range sample was removed, which had a value of 11.1 ppm. 

Table 3.30 Performance of PLS prediction models for NH4 established using various 

combinations of the sample data from sensor 4 

Sample sets used CI R2 

(training/validation) 
RMSE(ppm) 

(training/validation) 
1+2 

1+2* 

0.39 

0.52 

0.99/0.32 

0.79/0.64 

0.10/2.77 

0.83/0.87 

1+3 0.99 0.91/0.90 0.58/0.78 

1+4 0.41 0.97/0.56 0.25/1.29 

2+3 

2+3* 

0.51 

0.82 

0.65/0.56 

0.99/0.83 

2.03/1.45 

0.18/0.90 

2+4 0.45 1.00/0.88 0.06/0.66 

3+4 0.48 1.00/0.97 0.13/0.21 

1+2+3 

1+2+3* 

0.62 

0.79 

0.98/0.30 

0.99/0.53 

0.34/2.95 

0.02/1.31 

1+2+4 0.56 0.96/0.50 0.36/2.35 

1+3+4 0.99 0.97/0.73 0.33/1.14 

2+3+4 

2+3+4* 

0.49 

0.79 

0.54/0.40 

0.99/0.70 

2.04/2.43 

0.16/1.02 

1+2+3+4 

1+2+3+4* 

1+2+3+4** 

0.62 

0.99 

0.82 

0.53/0.48 

0.44/0.42 

0.70/0.70 

1.41/1.58 

1.84/1.66 

1.14/0.98 

*with one out-of-range sample removed 

  

 3.2.5.2 Models across multiple sensors 

It was hoped that “universal” prediction models for multiple sensors could be established 

to measure soil properties. Existence of such models would greatly simplify the calibration 

procedures for the sensors.   

For this study, all sets of data from two, three, and four sensors were used to establish the 

“universal” models. 
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 “Universal” models for measuring VWC 

The performance of models established using all four sets of samples from two, three, and 

four sensors are shown in Table 3.31. It is interesting to observe that, with larger numbers of 

samples taken from multiple data sets for multiple sensors, out-of-range samples became a smaller 

problem. For example, when data from sensors 1 and 3 were used, we had lower R² values and 

larger RMSE. However, because of the large number of samples (39 for training and 17 for 

validation), removing out-of-range samples did not seem to improve the performance of the model. 

This was probably because that the larger number of samples allowed more equal ranges of the 

training and validation data sets and more uniform distributions of the VWC values within the total 

range. Thus, the model became less sensitive to the out-of-range samples. 

Table 3.31 Performance of PLS prediction models for VWC established using various 

combinations of sensor data from all sets 

Sample sensors used CI R2 

(training/validation) 
RMSE (cm3/cm3) 

(training/validation) 
1+2 0.94 0.91/0.81 1.75/2.75 

1+3 

1+3* 

0.90 

0.89 

0.55/0.53 

0.97/0.47 

3.14/3.70 

0.76/3.96 

1+4 0.93 0.86/0.84 2.03/2.41 

2+3 0.97 0.71/0.57 3.47/4.60 

2+4 0.92 0.87/0.87 2.51/2.62 

3+4 0.87 0.78/0.77 2.88/3.16 

1+2+3 0.96 0.86/0.68 2.19/3.39 

1+2+4 0.94 0.98/0.85 0.87/2.42 

1+3+4 0.90 0.71/0.70 3.03/3.06 

2+3+4 0.97 0.86/0.65 2.49/3.99 

1+2+3+4 0.98 0.81/0.76 2.64/3.02 

*with an out-of-range sample removed 

      Figure 3.11 shows predicted vs actual VWC for the training and validation data sets by 

using all four data sets of all four sensors. The CI was as high as 0.98, the R² values for the training 

and validation data sets were 0.81 and 0.76, and the RMSE were 2.64 and 3.02, respectively. Figure 

3.12 shows the residuals of the prediction model.  
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                                        (a)                                                        (b) 

Figure 3.11 Performance of VWC prediction model using four sets of samples across four 

sensors (a) training data, (b) validation data 

 

 
Figure 3.12 Residual values for the training and validation data for VWC by using four 

sets of samples across four sensors 

 

 “Universal” models for measuring NO3 

Performance of the prediction models established to measure NO₃ using all sample sets 

across multiple sensors are shown in Table 3.32. It can be seen that the CI values were high for 

almost all the models, and most of the R2 values are satisfactory.   
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Table 3.32 Performance of PLS prediction models for NO3 established using various 

combinations of sensor data from all sets 

Sample sensors used CI R2 

(training/validation) 
RMSE(ppm) 

(training/validation) 

1+2 0.93 0.81/0.66 10.1/15.3 

1+3 0.88 0.87/0.78 7.28/10.58 

1+4 0.88 0.99/0.85 2.19/13.1 

2+3 0.92 0.68/0.67 14.2/16.0 

2+4 0.88 0.94/0.86 8.16/13.6 

3+4 0.88 0.87/0.85 10.7/13,0 

1+2+3 0.84 0.68/0.54 13.7/15.2 

1+2+4 0.83 0.77/0.72 14.4/15.2 

1+3+4 0.83 0.73/0.73 15.0/13.8 

2+3+4 0.83 0.82/0.81 13.0/13.0 

1+2+3+4 0.88 0.80/0.80 12.7/12.6 

 

Figure 3.13 shows the predicted vs actual NO3 for the training and validation data sets. 

Figure 3.14 gives their residuals plots. 

 
                                             (a)                                                                (b) 

Figure 3.13 Performance of NO₃ prediction model using four sets of samples across four 

sensors (a) training data, (b) validation data 
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Figure 3.14 Residual plots for training and validation data for NO3 by using four sets of 

samples across four sensors 

 

 “Universal” models for measuring NH4” 

       The performance of the models established to predict NH₄ using all sample sets 

across multiple sensor was generally low (Table 3.33 and Figures 3.15 and 3.16). 

Table 3.33 Performance of PLS prediction models for NH4 established using various 

combinations of sensor data from all sets 

Sample sensors used CI R2 

(training/validation) 
RMSE(ppm) 

(training/validation) 

1+2 0.69 0.68/0.28 1.17/2.47 

1+3 0.65 0.77/0.44 1.06/2.25 

1+4 

1+4* 

0.92 

0.98 

0.25/-0.1 

0.14/0.05 

2.07/3.12 

1.88/2.02 

2+3 0.94 0.71/0.55 1.10/1.53 

2+4 

2+4* 

0.74 

0.83 

0.58/0.23 

1.00/0.26 

01.32/2.42 

0.01/1.67 

3+4 0.71 0.80/0.12 0.97/2.65 

1+2+3 0.66 0.82/0.27 1.00/1.85 

1+2+4 

1+2+4* 

0.69 

0.86 

0.10/0.05 

0.43/0.13 

239/2.24 

1.46/2.03 

1+3+4 0.66 0.83/0.27 1.00/0.85 

2+3+4 0.71 0.63/0.25 1.42/1.85 

1+2+3+4 

1+2+3+4* 

0.90 

0.84 

0.02/0.01 

0.35/0.33 

2.34/2.44 

1.71/1.64 

*with an out-of-range sample removed 
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Figure 3.15 shows the predicted verses actual NH4 for the training and validation data 

sets. Figure 3.16 shows their residuals for the model using all four data sets across all four 

sensors. 

 
                                            (a)                                                              (b) 

Figure 3.15 Performance of NH4 prediction model using four sets of samples from four 

sensors (a) training data, (b) validation data 

 

 
Figure 3.16 Performance of NH4 prediction model using four sets of samples from four 

sensors (a) training data, (b) validation data 

 

After studying the sample data, several out-of-range samples were identified. Figures 

3.17 and 3.16 show the results of the predicted verses actual NH4 for the training and validation 

data sets and the residuals of the prediction model after these samples were removed. Still, the 

results are not satisfactory. This may indicate that, for measuring NH₄, the sensors will need to 

be individually calibrated. Establishment of “universal” models that can work across multiple 
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sensors may be difficult. On the other hand, the range of NH4 in all samples was very low (2.9-

16.4 ppm, Appendix H). The samples may not have covered a sufficient range as a basis to 

establish effective prediction models. 

 
                                   (a)                                                      (b) 

Figure 3.17 Performance of NH4 prediction model using four sets of samples for all sets in 

all sensors with samples removed (a) training data, (b) validation data 

 

Figure 3.18 shows residual values for training and validation data for NH₄ by using all 

data for all sensors after removing some out-of-range samples. 

 
Figure 3.18 Residual plot for training and validation data for NH₄ by using all data for all 

sensors after removing some out-of-range samples 
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 3.2.6 Selection of signature frequencies   

The current design of the FR sensor uses 635 frequencies, ranging from near DC (50 Hz) 

to 120 MHz. The use of a large number of frequencies for measurement has many disadvantages: 

1) it increases the cost of the sensor, 2) it slows down the measurement (the current design requires 

about 30 seconds to complete a measurement), 3) more importantly, there is no need for these 

many frequencies, especially when considering the collinearities that exist among the signals 

generated in these frequencies, 4) even more importantly, excessive numbers of frequencies may 

actually cause overfitting of the prediction models, hence reducing the measurement accuracy.  

Based on these considerations, we concentrated our effort on identifying the frequencies 

that are specifically related to the response variable – the variable to be measured. As we have 

discussed in previous sections, we considered the frequencies with the largest VIP scores the 

signature frequencies for a specific response variable, and with the Matlab program we performed 

the PLS regression analysis, which allowed us to identify these signature frequencies.        

Figures 3.19-3.21 show the frequencies with their VIP scores selected by the PLS 

regression procedure using the predictor and response loadings and scores in predicting VWC, 

NO3, and NH4, respectively. It can be seen that, for all three response variables, certain frequency 

components were identified from the gain spectra and phase spectra. The VIP scores shown in 

these figures are the average values of the VIP scores derived in 74 PLS regression runs – some 

across data sets within each sensor and some across sensors, which included all possible within- 

and across-sensor combinations. It is interesting to find that, for measuring VWC, the peak VIP 

score of 1.13 occurred at 34 MHz and another peak occurred at low frequencies near DC, whereas 

for NO3, the peak VIP score of 1.44 was found to be at the near DC frequency (50 Hz). These 

findings agreed with our guesses. For NO3, electric conduction is probably the activity that is most 
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closely associated with the conductive ions. Water, however, varies the dielectric constant of the 

medium, and it also changes the mobility of the conductive anions and cations that are soluble in 

water.      

The mean VIP scores for NH₄ in the gain spectra were small. This probably explains why 

in both the laboratory and outdoor experiments, it was more difficult to measure NH₄. The VIP 

scores shown in the three phase spectra all peaked near 30MHz, which does not seem to be very 

helpful if our goal is to distinguish between the responses variables. However, the patterns of the 

VIP scores for VWC, NO₃, and NH₄ in both the magnitude and phase spectra are different, which 

give hope for better predictions of the three response variables with careful selection of the 

signature frequencies. For now, we may use a threshold for the mean VIP scores, and define all 

frequency components that have an average VIP score in either the magnitude or phase spectra 

above the threshold as the signature frequency. This would greatly reduce the number of 

frequencies used for renditions, hence reducing the cost and measurement time, while yielding 

more accurate measurements. These assumptions will need to be proved through further studies. 

It is worth noticing that the number of predictor variables (frequencies) selected through 

the 74 runs of the PLS regression program are, in general, low. The average number of these 

frequencies selected for models predicting VWC, NO3, and NH4 were 67, 69, and 48, respectively. 

At the same time, the optimum numbers of the PLS components ranged from 7 to 16.  
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                                        (a)                                                                (b) 

Figure 3.19 Average VIP scores derived from 74 PLS regression runs for measuring VWC: 

(a) Gain spectra, (b) Phase spectra (Two distinguished peaks (DC and 30 MHz) in the 

magnitude spectra) 

 

 
                                    (a)                                                              (b) 

Figure 3.20 Average VIP scores derived from 74 PLS regression runs for measuring NO₃: 

(a) Gain spectra, (b) Phase spectra (One distinguished peak (DC) in the magnitude spectra) 

 

 
                                         (a)                                                        (b) 

Figure 3.21 Average VIP scores derived from 74 PLS regression runs for measuring NH₄: 

(a) Gain spectra, (b) Phase spectra (One distinguished peak (27 MHz) in the phase spectra) 
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Chapter 4 - Conclusions and Recommendations 

 4.1 Conclusions 

In this study, we modified the probe of a frequency-response (FR)-based dielectric sensor 

that was previously developed in the BAE Instrumentation and Control Laboratory at Kansas 

State University, and we tested its ability to simultaneously measure multiple soil properties 

under both laboratory and outdoor conditions.  

1. In the laboratory experiment, we tested the sensor in its ability to simultaneously measure 

soil volumetric water content (VWC), bulk density, and salinity. The R-squared values 

for these tests were, in general, above 0.85.    

2. In the laboratory experiment, we tested the sensor in its ability to simultaneously measure 

soil volumetric water content (VWC), bulk density, and one of two nitrogen fertilizers: 

ammonium nitrate and ammonium sulfate. The R-squared values for these tests were, in 

general, above 0.8.  

3.  In the laboratory experiment, we tested the sensor in its ability to simultaneously 

measure soil volumetric water content (VWC), bulk density, and an organic nitrogen 

fertilizer – urea. The R-squared values for these tests were in general above 0.7.    

4. In the laboratory experiment, we tested the sensor in its ability to simultaneously measure 

soil volumetric water content (VWC), bulk density, and two of three nitrogen fertilizers: 

ammonium nitrate, ammonium sulfate, and urea. The tests that included ammonium 

nitrate and ammonium sulfate gave R-squared values of higher than 0.6 for ammonium 

nitrate but were generally lower than 0.5 for ammonium sulfate. For the test that included 

urea and ammonium sulfate, the R-squared values for measuring VWC and urea were, in 

general, above 0.8 and 0.7, respectively, but that for measuring ammonium sulfate were 

low. On the other hand, for the test that included urea and ammonium nitrate, only VWC 

could be measured with R-squared values of higher than 0.8, while the fertilizers, either 

individually or combined, could not be measured correctly.  
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5. For the outdoor experiment, we planted corn plants in two specially made pots, and 

placed two FR sensors in each pot. The two sensors were buried at different depths, both 

in the root zone of the plants.  

6. For the outdoor experiment, each FR sensor took 35 dielectric measurements within a 

period of 70 days, of which 29 proved to be valid. We also took soil samples at the same 

time to measure the VWC using a commercial sensor and sent the samples to the Soil 

Testing Laboratory at Kansas State University to determine the concentration of nitrate-N 

and ammonium-N in the soil using standard methods and used them as reference values.  

7.  We conducted a PLS (partial least squares) regression analysis to establish prediction 

models for VWC, nitrate-N, and ammonium-N using different combinations of data as 

the training and validation data sets. We also developed an improved approach to select 

the number of PLS components and the numbers of frequencies with high VIP (Variable 

Importance in Projection) scores (“signature frequencies”). 

8. For the dielectric spectra obtained for each sensor across different data sets, we, in 

general, got R-squared values higher than 0.8 in predicting VWC, nitrate-N, and 

ammonium-N. 

9. For the dielectric spectra obtained across different sensors, we, in general, got R-squared 

values higher than 0.7 in predicting VWC and nitrate-N. However, the R-squared values 

for predicting ammonium-N across sensors were low.  

10. By studying the VIP scores provided by the PLS regression analyses, we identified 

frequency components in both the magnitude and phase dielectric spectra for three 

response variables – VWC, nitrate-N, and ammonium-N, and we identified special 

patterns in the VIP scores for VWC and nitrate-N. We believe that these findings lay the 
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foundation for more accurately identifying the signature frequencies for individual 

response variables, which may lead to a lower cost sensor that gives faster and more 

accurate measurements.  

11. From the outdoor experiment, we learned lessons on how to design and install the sensor 

probe and its accessories in soil for long-term deployment.  

  4.2 Recommendations for further studies 

Recommendations include the following:  

1. Improve the outdoor usability of the sensor by adding memory storage and a solar power 

supply. 

2. Improve the design of the probe and accessories for tough agricultural applications. 

3. Design a simplified calibration procedure to expand the applicability of the sensor. 

4. Test the sensor in other fertilizer types, such as P and K. 

5. Identify signature frequencies for other variables and test these frequencies during 

measurements. 

6. Increase the frequency range for potential improvement in NH₄ measurement. 
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Appendix A - Soil Texture 

             Consult the soil pyramid below to find the scientific classification of the soil used in the 

experiment. We got sand 12%, silt 52%, and clay 36%.   

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167 

 

  

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167
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Appendix B - Matlab Program for preliminary observation 

clear all; 
filename1 = uigetfile 
[A] = textread(filename1, '','delimiter',','); 
filename2 = uigetfile 
[B] = textread(filename2, '','delimiter',','); 
filename3 = uigetfile 
[C] = textread(filename3, '','delimiter',','); 
filename4 = uigetfile 
[D] = textread(filename4, '','delimiter',','); 
filename5 = uigetfile 
[E] = textread(filename5, '','delimiter',','); 

 
Gain1 = A(2:636,3); 
Phase1 = A(2:636,4); 
Gain2 = B(2:636,3); 
Phase2 = B(2:636,4); 
Gain3 = C(2:636,3); 
Phase3 = C(2:636,4); 
Gain4 = D(2:636,3); 
Phase4 = D(2:636,4); 
Gain5 = E(2:636,3); 
Phase5 = E(2:636,4); 

 
for i = 1:20 
    freq(i) = 50*(A(i+1,1)-50)+50; 
end 

  
for i = 21:40 
    freq(i) = 10^(0.15*(A(i+1,1)-69)+3); 
end 

  
for i = 41:635 
    freq(i) = 200000*(A(i+1,1)-89) + 1000000; 
end 

  
freq = freq'; 

   
figure 
plot(freq,Gain1,'b-',freq,Gain2,'r-',freq,Gain3,'g-',freq,Gain4,'k-

',freq,Gain5,'m-') 
xlabel('Frequency (Hz)'); 
ylabel('Gain (DV)'); 
title ([filename1]); 
legend(filename1, filename2, filename3, filename4, filename5); 
grid on; 

  
figure 
plot(freq,Phase1,'b-',freq,Phase2,'r-',freq,Phase3,'g-',freq,Phase4,'k-

',freq,Phase5,'m-') 
xlabel('Frequency (Hz)'); 
ylabel('Phase (DV)'); 
title ([filename1]); 
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legend(filename1, filename2, filename3, filename4, filename5); 
grid on; 
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Appendix C - Outdoor test planter 

  We used was a 14 in. x 27.5 in. slate rubber self-watering planter with a one-year guarantee for 

all-season durability - no cracking even in freezing temperatures.  According to the product 

information, it was made from recycled materials with sleek 100% recycled rubber, an elegant 

look of slate.  It was heavy-duty and durable for all seasons and was weighted to discourage tipping 

over.  A third party laboratory test showed that it will not harm plants in extreme heat. It was stain 

resistant and easy to clean and had 1 drainage hole (with removable plug) that protected against 

over watering by allowing excess water to drain.The planters were bought from Home Depot in 

Manhattan, Kansas. 

 

         We made a window in the pot for taking samples and measurements using both our sensors 

and commercially available soil moisture sensors (Model No. 5TE, Decagon Devices, Pullman, 

WA). We put the 5TE sensors at the same depth that we put our sensors. On the opposite side was 

an outlet for the sensor wires. We designed the window and it had made by BAE technicians in 

the BAE workshop. The window had a firm lock to prevent soil and water from leaking. The 

planter could be placed on almost any ground surface, including grass, mulch, floors, and more. 

https://www.homedepot.com/p/Tierra-Verde-14-in-x-27-5-in-Slate-Rubber-Self-Watering-

Planter-MT5100067CM/204672115 

https://www.homedepot.com/p/Tierra-Verde-14-in-x-27-5-in-Slate-Rubber-Self-Watering-Planter-MT5100067CM/204672115
https://www.homedepot.com/p/Tierra-Verde-14-in-x-27-5-in-Slate-Rubber-Self-Watering-Planter-MT5100067CM/204672115
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Appendix D - Datalogger code 

'CR800 Series Datalogge 

'10HS sensor 

'wiring: 

'white - SW-12 

'red - SE CH1 

'bare - gnd 

'5TE sensor 

'Wiring: 

'White wire (power) -> SW12V 

'Red wire (data) ->    C1 

'Bare wire (ground) -> G 

'Declare Public Variables 

Public batt_volt,tenHSmV,HS_VWC 

Public SensorOut(3) 

Public VWC 

Alias SensorOut(1) = Eb 

Alias SensorOut(2) = EC 

Alias SensorOut(3) = Temp 

Units Temp = Deg_C 

Units EC = dS/m 

Units VWC = m^3/m^3 

'Define Data Tables 

DataTable (Soildata,1,-1) 

 DataInterval (0,30,Sec,10) 

 Minimum (1,batt_volt,FP2,0,False) 

 Sample (1,Eb,FP2) 

 Sample (1,Temp,FP2) 

 Sample (1,EC,FP2) 

 Sample (1,VWC,FP2) 



101 

 Sample (1,HS_VWC,FP2) 

EndTable 

 

'Main Program 

SequentialMode 

BeginProg 

 Scan (5,Sec,0,0) 

  Battery (batt_volt) 

   

  'Apply power to white wire of sensor through SW-12 

  PortSet (9,1) 

  'Delay for at least 250 mSec for sensor to enter SDI-12 mode. 

  Delay (0,1,Sec) 

  'Query sensor for 3 SDI-12 outputs.  Default address for all Decagon Digital 

sensors is 0. 

  SDI12Recorder (SensorOut(),1,0,"M!",1.0,0) 

  VoltSe (tenHSmV,1,mV2500,1,1,0,_60Hz,1.0,0) 

  'Turn SW12V off 

  PortSet (9,0) 

   

  'Apply calibration to bulk dielectric reading (Eb) 

  VWC = 4.3E-6 * Eb^3 - 5.5E-4 * Eb^2 + 2.92E-2 * Eb - 5.3E-2 

  'Apply calibration to 10SH senor 

  HS_VWC = 2.97e-9* tenHSmV ^3 - 7.37e-6 * tenHSmV^2 + 6.69e-3 * 

tenHSmV - 1.92 

  

  'Call Output Tables 

  CallTable Soildata 

 NextScan 

EndProg 
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Appendix E - Matlab program for the laboratory tests 

  

 

% ncomp - Number of PLS components used. 

 
% Predicting soil properties using PLS regression 
% MathWorks Documentation on plsregress. 
% https://www.mathworks.com/help/stats/plsregress.html 
% Modified to run the soil nutrient data 
%      Naiqian Zhang 
%      April 19, 2019 

  

  

  
clear all; 
clc; 

  
Reading_files_AMD2; 
te_cons = cons; 
b_cons = cons; 

  

  
%predicted soil property index (spi) 
% 1=VWC,2=Ammonium sulfate, 4=bulk density 
spi=2; 

  
% mag_digital=mag_digital(1:fr,1:150*wci); 
% phase_digital=phase_digital(1:fr,1:150*wci); 

  
b_cons=te_cons; 
cons=te_cons(:,spi); 

  
%fst_col=50*(si-1)+1; 

  
n_mag_digital=[]; 
n_phase_digital=[]; 
n_cons=[]; 
t_cons=[]; 

  
   n_mag_digital=mag_digital; 
   n_phase_digital=phase_digital; 
   n_cons=cons; 
   t_cons=b_cons; 

  

         
mag_dB=((((5000/1023)*n_mag_digital)-900)/30); 
phase_deg=(((n_phase_digital*(5000/1023))-1800)/10); 

  
mag=mag_dB'; 
phs=phase_deg'; 
mag_phs=[mag phs]; 
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phs_mag=[phs mag]; 

  
%Bulk EC at 1kHz 
BEC=0.2457*exp(-0.1283.*mag(:,5)); 
BE_cons=[t_cons BEC]; 

  
%Select measured variabel 
%%%%%%%%%%%%% 
%  data_x=phs; 
% data_x=mag; 
data_x=phs_mag; 
% data_x=mag_phs; 

  
data_y=n_cons; 
N_freq = 1270; 
% N_freq = 635; 
%%%%%%%%%%%%%% 

  
[train_data,train_con,valid_data,valid_con]=divide_train_test(data_x,data_y); 
sub_train_data=train_data; 
sub_train_con=train_con; 

  
sub_valid_data=valid_data; 
sub_valid_con=valid_con; 

  
% NZ 041819 

  
% ncomp - Number of PLS components used. 

  

  
MaxValR2 = 0; 
for ncomp=1:8 
    Call_PLSregress 
    ValR2(ncomp) = rsquaredVAL 
    if ValR2(ncomp) > MaxValR2 
        MaxValR2 = ValR2(ncomp); 
        MaxR2ncomp = ncomp; 
    end 
end     

         
ncomp = MaxR2ncomp;     

  
% Loading the data                   
[dummy,h] = sort(sub_train_con); 
oldorder = get(gcf,'DefaultAxesColorOrder'); 
set(gcf,'DefaultAxesColorOrder',jet(60)); 
figure(1); 
plot3(repmat(1:N_freq,[size(h),1])',repmat(sub_train_con(h),1,N_freq)',sub_tr

ain_data(h,:)'); 
set(gcf,'DefaultAxesColorOrder',oldorder); 
xlabel('Wavelength Index'); ylabel('sub_train_con'); axis('tight'); 
grid on 
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% Use the plsregress function to fit a PLSR model with 20 PLS components and 

one response. 
X = sub_train_data; 
y = sub_train_con; 
[n,p] = size(X); 
[Xloadings,Yloadings,Xscores,Yscores,betaPLS10,PLSPctVar] = plsregress(... 
    X,y,20); 

  
figure(2); 
plot(1:20,cumsum(100*PLSPctVar(2,:)),'-bo'); 
xlabel('Number of PLS components'); 
ylabel('Percent Variance Explained in Y'); 

  
% Compute the fitted response values for the 7-component model. 
[Xloadings,Yloadings,Xscores,Yscores,betaPLS] = plsregress(X,y,ncomp); 
yfitPLS = [ones(n,1) X]*betaPLS; 

  
figure(3); 
plot(y,yfitPLS,'bo'); 
xlabel('Observed Response'); 
ylabel('Fitted Response (Calibration set)'); 
legend({'PLSR'}); 

  
% R-squared value for the calibration data set 
TSS = sum((y-mean(y)).^2); 
RSS_PLS = sum((y-yfitPLS).^2); 
rsquaredPLS = 1 - RSS_PLS/TSS 

  
% Percent variance in X explained  
figure(4); 
plot(1:20,100*cumsum(PLSPctVar(1,:)),'b-o'); 
xlabel('Number of Principal Components'); 
ylabel('Percent Variance Explained in X'); 
legend({'PLSR'},'location','SE'); 

  
% Choosing the Number of Components with 10-fold Cross-Validation by 
% estimating MSEP 
[Xl,Yl,Xs,Ys,beta,pctVar,PLSmsep] = plsregress(X,y,10,'CV',10); 

  
% PCRmsep = sum(crossval(@pcrsse,X,y,'KFold',10),1) / n; 
figure(5); 
plot(0:10,PLSmsep(2,:),'b-o'); 
xlabel('Number of components'); 
ylabel('Estimated Mean Squared Prediction Error'); 
legend({'PLSR'},'location','NE'); 

  
% PLS weights  
figure(6); 
[Xl,Yl,Xs,Ys,beta,pctVar,mse,stats] = plsregress(X,y,ncomp); 
plot(1:N_freq,stats.W,'-'); 
xlabel('Variable'); 
ylabel('PLS Weight'); 
legend({'1st Component' '2nd Component' '3rd Component'},  ... 
    'location','SW'); 
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% R-squared value for validation data set  
[Xloadings,Yloadings,Xscores,Yscores,betaPLS] = plsregress(X,y,ncomp); 
yfitPLS_val = [ones(n,1) sub_valid_data]*betaPLS; 

  
TSS = sum((y-mean(y)).^2); 
RSS_PLS_val = sum((sub_valid_con-yfitPLS_val).^2); 
rsquaredVAL = 1 - RSS_PLS_val/TSS 

  
figure(7); 
plot(y,yfitPLS_val,'bo'); 
xlabel('Observed Response'); 
ylabel('Fitted Response (Validation set)'); 
legend({'PLSR'}); 
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Appendix F - Matlab program for data preparation and 

preprocessing for the outdoor tests 

% Program that allows selections of data files, magnitude vs. phase  
% and treatment of data from three runs 
% 
%            Naiqian Zhang, October 10, 2019 
% 
%Added data compaction and VIP sorting. 
%     10/12/19, Naiqian Zhang 
% 
% 
% Change files order depanding to thier order in Excel file 
% Change Ecxel file name when use "Case=0 at switch replic" 
%        Mohammed Hasan, October 27,2019 
% 5 sets   November 4,2019 
clc 
close all 
clear all 
n_file = 116; 

  
% User selected parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This proigram runs on only one spi, It divides the data sets in "cal_val" 
% into training and valdation sets based on the user selected ratio 
% ("percent_cal". The model selection is based on minimum RMSE for the 
% validation ste. 
%                           Naiqian Zhang, 070620 
cal_val = [1:39]; 
spi = 1; 
percent_cal = 0.7; 

  
% N_test = 1, add testing data to exam the best PLS model 
% N_test = 0, do not add testing 

  
N_test = 0; 
if N_test == 1 
    testn = [33:39 61:67]; 
end 

  
file_property = 'Soil properties M_NO3_NH4_5SETS_before 100719.xlsx';  
% % %  use 3 replication for each file 
% file_property = 'Soil properties M_NO3_NH4_5SETS_3replications.xlsx';   
property = xlsread(file_property); 

  
prop1 = property(cal_val,spi); 
[BB,II] = sort(prop1); 
JJ = cal_val(II); 
Jsize = size(JJ); 
Jsize1 = Jsize(2); 

  
MM=0; 
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NN=0; 
for KK=1:Jsize1 
    if KK == round(1/percent_cal*(MM+1)) 
       MM = MM+1; 
       calib(MM) = JJ(1, KK); 
    else 
       NN = NN+1; 
       valid(NN) = JJ(1, KK); 
    end     
end 

  
if N_test == 1 
    prop_test = property(testn, spi); 
end 

  
% calib = [ ]; 
% valid = [ ]; 

  
% calib = calib'; 
% valid = valid'; 

  
% divide_data 
% 1 divide calibration and vilidation data into 70% and 30% 
% 0 not divide 
divide_data = 1; 

  
% mag_phs: 1 for mag, 2 for phase, 3 for mag+phase 
mag_phs =3; 

  
% replic: 1 for separating three runs, 0 for averaging three runs 
replic = 0; 

  
% compress: 0 for not compress, 1 for compress 
compress =0; 

  
% n_compress: number of frequencies the original data is compreesed to. 
n_compress = 100; 
if compress == 0 
    n_compress = 635; 
end     
% n_select: the largest number of VIP frequencies selected.  
n_VIPfreq = 200; 
%% 
% !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
% Note that n_VIPfreq+ncomp CANNOT exceed n_compress! 
% !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

  
% n_average: number of neighboring frequencies used in averaging 
% set n_average=1 if do not want to smooth the data. 
n_average = 1; 

  
%% 
%%%%%%%%%%%%%% added by Mingqiang Han 05/24/2020%%%%%%%%%%%%%%%%%%%%%%% 
% algorithm_select 
% 1 partial least square select variables, selected variables fitting 
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% PLS regression and support vector regression 
% 0 elastic regression 
algorithm_select = 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
s_train = size(calib); 
n_train = s_train(2); 
s_valid = size(valid); 
n_valid = s_valid(2); 
if N_test == 1 
    s_testn = size(testn); 
    n_testn = s_testn(2); 
end     

  
file_names(1,:) = 'no1-2019-07-27-1130.TXT'; 
file_names(2,:) = 'no1-2019-07-29-1930.TXT'; 
file_names(3,:) = 'no1-2019-07-30-1000.TXT'; 
file_names(4,:) = 'no1-2019-08-01-0900.TXT'; 
file_names(5,:) = 'no1-2019-08-02-1000.TXT'; 
file_names(6,:) = 'no1-2019-08-05-1000.TXT'; 
file_names(7,:) = 'no1-2019-08-09-1000.TXT'; 
file_names(8,:) = 'no1-2019-08-12-0900.TXT'; 

  
file_names(9,:) = 'no2-2019-07-27-1130.TXT'; 
file_names(10,:) = 'no2-2019-07-29-1930.TXT'; 
file_names(11,:) = 'no2-2019-07-30-1000.TXT'; 
file_names(12,:) = 'no2-2019-08-01-0900.TXT'; 
file_names(13,:) = 'no2-2019-08-02-1000.TXT'; 
file_names(14,:) = 'no2-2019-08-05-1000.TXT'; 
file_names(15,:) = 'no2-2019-08-09-1000.TXT'; 
file_names(16,:) = 'no2-2019-08-12-0900.TXT'; 

  
file_names(17,:) = 'no3-2019-07-27-1130.TXT'; 
file_names(18,:) = 'no3-2019-07-29-1930.TXT'; 
file_names(19,:) = 'no3-2019-07-30-1000.TXT'; 
file_names(20,:) = 'no3-2019-08-01-0900.TXT'; 
file_names(21,:) = 'no3-2019-08-02-1000.TXT'; 
file_names(22,:) = 'no3-2019-08-05-1000.TXT'; 
file_names(23,:) = 'no3-2019-08-09-1000.TXT'; 
file_names(24,:) = 'no3-2019-08-12-0900.TXT'; 

  
file_names(25,:) = 'no4-2019-07-27-1130.TXT'; 
file_names(26,:) = 'no4-2019-07-29-1930.TXT'; 
file_names(27,:) = 'no4-2019-07-30-1000.TXT'; 
file_names(28,:) = 'no4-2019-08-01-0900.TXT'; 
file_names(29,:) = 'no4-2019-08-02-1000.TXT'; 
file_names(30,:) = 'no4-2019-08-05-1000.TXT'; 
file_names(31,:) = 'no4-2019-08-09-1000.TXT'; 
file_names(32,:) = 'no4-2019-08-12-0900.TXT'; 

  
file_names(33,:) = 'no1-2019-08-14-1000.TXT'; 
file_names(34,:) = 'no1-2019-08-16-1700.TXT'; 
file_names(35,:) = 'no1-2019-08-20-0930.TXT'; 
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file_names(36,:) = 'no1-2019-08-23-1000.TXT'; 
file_names(37,:) = 'no1-2019-08-25-1900.TXT'; 
file_names(38,:) = 'no1-2019-08-27-1030.TXT'; 
file_names(39,:) = 'no1-2019-08-29-0930.TXT'; 

  
file_names(40,:) = 'no2-2019-08-14-1000.TXT'; 
file_names(41,:) = 'no2-2019-08-16-1700.TXT'; 
file_names(42,:) = 'no2-2019-08-20-0930.TXT'; 
file_names(43,:) = 'no2-2019-08-23-1000.TXT'; 
file_names(44,:) = 'no2-2019-08-25-1900.TXT'; 
file_names(45,:) = 'no2-2019-08-27-1030.TXT'; 
file_names(46,:) = 'no2-2019-08-29-0930.TXT'; 

  
file_names(47,:) = 'no3-2019-08-14-1000.TXT'; 
file_names(48,:) = 'no3-2019-08-16-1700.TXT'; 
file_names(49,:) = 'no3-2019-08-20-0930.TXT'; 
file_names(50,:) = 'no3-2019-08-23-1000.TXT'; 
file_names(51,:) = 'no3-2019-08-25-1900.TXT'; 
file_names(52,:) = 'no3-2019-08-27-1030.TXT'; 
file_names(53,:) = 'no3-2019-08-29-0930.TXT'; 

  
file_names(54,:) = 'no4-2019-08-14-1000.TXT'; 
file_names(55,:) = 'no4-2019-08-16-1700.TXT'; 
file_names(56,:) = 'no4-2019-08-20-0930.TXT'; 
file_names(57,:) = 'no4-2019-08-23-1000.TXT'; 
file_names(58,:) = 'no4-2019-08-25-1900.TXT'; 
file_names(59,:) = 'no4-2019-08-27-1030.TXT'; 
file_names(60,:) = 'no4-2019-08-29-0930.TXT'; 

  
file_names(61,:) = 'no1-2019-09-02-1800.TXT'; 
file_names(62,:) = 'no1-2019-09-04-1600.TXT'; 
file_names(63,:) = 'no1-2019-09-06-0930.TXT'; 
file_names(64,:) = 'no1-2019-09-09-1000.TXT'; 
file_names(65,:) = 'no1-2019-09-11-1000.TXT'; 
file_names(66,:) = 'no1-2019-09-13-1200.TXT'; 
file_names(67,:) = 'no1-2019-09-14-1900.TXT'; 

  
file_names(68,:) = 'no2-2019-09-02-1800.TXT'; 
file_names(69,:) = 'no2-2019-09-04-1600.TXT'; 
file_names(70,:) = 'no2-2019-09-06-0930.TXT'; 
file_names(71,:) = 'no2-2019-09-09-1000.TXT'; 
file_names(72,:) = 'no2-2019-09-11-1000.TXT'; 
file_names(73,:) = 'no2-2019-09-13-1200.TXT'; 
file_names(74,:) = 'no2-2019-09-14-1900.TXT'; 

  
file_names(75,:) = 'no3-2019-09-02-1800.TXT'; 
file_names(76,:) = 'no3-2019-09-04-1600.TXT'; 
file_names(77,:) = 'no3-2019-09-06-0930.TXT'; 
file_names(78,:) = 'no3-2019-09-09-1000.TXT'; 
file_names(79,:) = 'no3-2019-09-11-1000.TXT'; 
file_names(80,:) = 'no3-2019-09-13-1200.TXT'; 
file_names(81,:) = 'no3-2019-09-14-1900.TXT'; 

  
file_names(82,:) = 'no4-2019-09-02-1800.TXT'; 
file_names(83,:) = 'no4-2019-09-04-1600.TXT'; 
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file_names(84,:) = 'no4-2019-09-06-0930.TXT'; 
file_names(85,:) = 'no4-2019-09-09-1000.TXT'; 
file_names(86,:) = 'no4-2019-09-11-1000.TXT'; 
file_names(87,:) = 'no4-2019-09-13-1200.TXT'; 
file_names(88,:) = 'no4-2019-09-14-1900.TXT'; 

  
file_names(89,:) = 'no1-2019-09-17-1000.TXT'; 
file_names(90,:) = 'no1-2019-09-19-1000.TXT'; 
file_names(91,:) = 'no1-2019-09-22-1100.TXT'; 
file_names(92,:) = 'no1-2019-09-25-1000.TXT'; 
file_names(93,:) = 'no1-2019-09-27-1000.TXT'; 
file_names(94,:) = 'no1-2019-09-30-1000.TXT'; 
file_names(95,:) = 'no1-2019-10-02-1030.TXT'; 

  
file_names(96,:) = 'no2-2019-09-17-1000.TXT'; 
file_names(97,:) = 'no2-2019-09-19-1000.TXT'; 
file_names(98,:) = 'no2-2019-09-22-1100.TXT'; 
file_names(99,:) = 'no2-2019-09-25-1000.TXT'; 
file_names(100,:) = 'no2-2019-09-27-1000.TXT'; 
file_names(101,:) = 'no2-2019-09-30-1000.TXT'; 
file_names(102,:) = 'no2-2019-10-02-1030.TXT'; 

  
file_names(103,:) = 'no3-2019-09-17-1000.TXT'; 
file_names(104,:) = 'no3-2019-09-19-1000.TXT'; 
file_names(105,:) = 'no3-2019-09-22-1100.TXT'; 
file_names(106,:) = 'no3-2019-09-25-1000.TXT'; 
file_names(107,:) = 'no3-2019-09-27-1000.TXT'; 
file_names(108,:) = 'no3-2019-09-30-1000.TXT'; 
file_names(109,:) = 'no3-2019-10-02-1030.TXT'; 

  
file_names(110,:) = 'no4-2019-09-17-1000.TXT'; 
file_names(111,:) = 'no4-2019-09-19-1000.TXT'; 
file_names(112,:) = 'no4-2019-09-22-1100.TXT'; 
file_names(113,:) = 'no4-2019-09-25-1000.TXT'; 
file_names(114,:) = 'no4-2019-09-27-1000.TXT'; 
file_names(115,:) = 'no4-2019-09-30-1000.TXT'; 
file_names(116,:) = 'no4-2019-10-02-1030.TXT'; 

  
% Starting 10/7/2019, there were wiring problems and most data files became 
% invalid as indicated by "%". 
% no1-2019-10-07-1030, no3-2019-10-07-1030, and no4-2019-10-07-103 
% are the only valid data after 10/02/19. 
% We decide not to any data file on or after 100719. - 021920 
%%file_names(117,:) = 'no1-2019-10-07-1030.TXT'; 
% file_names(118,:) = 'no1-2019-10-12-1530.TXT'; 
% file_names(119,:) = 'no1-2019-10-17-1100.TXT'; 
% file_names(120,:) = 'no1-2019-10-20-1200.TXT'; 
% file_names(121,:) = 'no1-2019-10-23-1500.TXT'; 
% file_names(122,:) = 'no1-2019-10-28-1500.TXT'; 
%  
% file_names(123,:) = 'no2-2019-10-07-1030.TXT'; 
% file_names(124,:) = 'no2-2019-10-12-1530.TXT'; 
% file_names(125,:) = 'no2-2019-10-17-1100.TXT'; 
% file_names(126,:) = 'no2-2019-10-20-1200.TXT'; 
% file_names(127,:) = 'no2-2019-10-23-1500.TXT'; 
% file_names(128,:) = 'no2-2019-10-28-1500.TXT'; 
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%  

  
%% file_names(129,:) = 'no3-2019-10-07-1030.TXT'; 
% file_names(130,:) = 'no3-2019-10-12-1530.TXT'; 
% file_names(131,:) = 'no3-2019-10-17-1100.TXT'; 
% file_names(132,:) = 'no3-2019-10-20-1200.TXT'; 
% file_names(133,:) = 'no3-2019-10-23-1500.TXT'; 
% file_names(134,:) = 'no3-2019-10-28-1500.TXT'; 
%  
%%file_names(135,:) = 'no4-2019-10-07-1030.TXT'; 
% file_names(136,:) = 'no4-2019-10-12-1530.TXT'; 
% file_names(137,:) = 'no4-2019-10-17-1100.TXT'; 
% file_names(138,:) = 'no4-2019-10-20-1200.TXT'; 
% file_names(139,:) = 'no4-2019-10-23-1500.TXT'; 
% file_names(140,:) = 'no4-2019-10-28-1500.TXT'; 
%% 
%%%%%%%%%%%%%%%%%%% edit by Mingqiang Han  05/24/2020%%%%%%%%%%%%%%%%%% 
% divide calibration and validation data into 70% and 30% 
if divide_data == 1 
   data_Index = [calib valid]; 
   total_num = length(calib)+length(valid); 
   n_train = round(total_num*0.7); 
   randIndex = randperm(total_num); 
   calib = data_Index(randIndex(1:n_train)); 
   valid = data_Index(randIndex(n_train+1:end)); 
end 
n_valid = length(valid); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
for k = 1:n_file 
    text_file=textread(file_names(k,:),'','delimiter',','); 
    len = size(text_file); 
%   change the variable name "length" to "len" since "length" is a built-in 
%   funtcion name               Mingqiang Han 05/24/2020 
%   length = size(text_file); 
    j = 0; 
    for i = 1:len(1) 
        if text_file(i,1) ~= 1111 & text_file(i,1) ~= 5555 & text_file(i,1) 

~= 9999  
            j = j+1; 
            data(j,:) = text_file(i,:); 
        end 
    end 

  
    switch replic 
        case 1 
            for l = 1:3 
                for m = 1:635 
                    mag_digital(m,(k-1)*3+l) = data((l-1)*635+m, 3); 
                    phs_digital(m,(k-1)*3+l) = data((l-1)*635+m, 4); 
                end 
                prop((k-1)*3+l,:) = property(k,:); 
            end 
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            N_train = 3*n_train; 
            N_valid = 3*n_valid; 
            if N_test ==1 
                N_testn = 3*n_testn; 
            end     
        case 0 
            for m = 1:635 
                mag_digital(m,k) = 

(data(m,3)+data(m+635,3)+data(m+1270,3))/3.; 
                phs_digital(m,k) = 

(data(m,4)+data(m+635,4)+data(m+1270,4))/3.; 
            end 
            prop = property; 
            N_train = n_train; 
            N_valid = n_valid; 
            if N_test ==1 
                N_testn = n_testn; 
            end   
    end 
end  

  
freq = data(1:635, 2)*10000; 
for i = 1:27 
    freq(i) = 50 + 368.52*(i-1); 
end  

  
mag_train_x = zeros(635,N_train); 
mag_train_y = zeros(N_train); 
mag_valid_x = zeros(635,N_valid); 
mag_valid_y = zeros(N_valid); 
if N_test == 1 
    mag_testn_x = zeros(635,N_testn); 
    mag_testn_y = zeros(N_testn); 
end     

  
phs_train_x = zeros(635,N_train); 
phs_train_y = zeros(N_train); 
phs_valid_x = zeros(635,N_valid); 
phs_valid_y = zeros(N_valid); 
if N_test == 1 
    phs_testn_x = zeros(635,N_testn); 
    phs_testn_y = zeros(N_testn); 
end   

  
switch replic 
    case 1 
        for i = 1:n_train 
            for j = 1:3 
                mag_train_x(:,(i-1)*3+j) = mag_digital(:,(calib(i)-1)*3+j); 
                phs_train_x(:,(i-1)*3+j) = phs_digital(:,(calib(i)-1)*3+j); 
                prop_train((i-1)*3+j,:) = prop((calib(i)-1)*3+j,:); 
            end 
        end 
        for i = 1:n_valid 
            for j = 1:3 
                mag_valid_x(:,(i-1)*3+j) = mag_digital(:,(valid(i)-1)*3+j); 
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                phs_valid_x(:,(i-1)*3+j) = phs_digital(:,(valid(i)-1)*3+j); 
                prop_valid((i-1)*3+j,:) = prop((valid(i)-1)*3+j,:); 
            end 
        end 
        if N-testn == 1 
            for i = 1:n_testn 
                for j = 1:3 
                    mag_testn_x(:,(i-1)*3+j) = mag_digital(:,(testn(i)-

1)*3+j); 
                    phs_testn_x(:,(i-1)*3+j) = phs_digital(:,(testn(i)-

1)*3+j); 
                    prop_testn((i-1)*3+j,:) = prop((testn(i)-1)*3+j,:); 
                end 
            end     
        end 
    case 0         
        for i = 1:n_train 
            mag_train_x(:,i) = mag_digital(:,calib(i)); 
            phs_train_x(:,i) = phs_digital(:,calib(i)); 
            prop_train(i,:) = prop(calib(i),:); 
        end 
        for i = 1:n_valid 
            mag_valid_x(:,i) = mag_digital(:,valid(i)); 
            phs_valid_x(:,i) = phs_digital(:,valid(i)); 
            prop_valid(i,:) = prop(valid(i),:); 
        end   
        if N_test == 1 
            for i = 1:n_testn 
                mag_testn_x(:,i) = mag_digital(:,testn(i)); 
                phs_testn_x(:,i) = phs_digital(:,testn(i)); 
                prop_testn(i,:) = prop(testn(i),:); 
            end   
        end 
end        

  
switch mag_phs 
    case 1 
        train_x = mag_train_x'; 
        valid_x = mag_valid_x'; 
        if N_test == 1 
            testn_x = mag_testn_x'; 
        end             
        fr = freq; 
    case 2 
        train_x = phs_train_x'; 
        valid_x = phs_valid_x'; 
        if N_test == 1 
            testn_x = phs_testn_x'; 
        end    
        fr = freq;  
    case 3 
        train_x = [mag_train_x; phs_train_x]'; 
        valid_x = [mag_valid_x; phs_valid_x]'; 
        if N_test == 1 
            testn_x = [mag_testn_x;phs_testn_x]'; 
        end    
        fr = [freq; freq]; 
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        n_compress = n_compress * 2; 
end         

         
N_freq = size(fr); 

  
if compress == 1 
    Atrain_x = movmean(train_x,n_average, 2); 
    Avalid_x = movmean(valid_x,n_average, 2); 
    Ctrain_x = zeros(N_train, n_compress); 
    Cvalid_x = zeros(N_valid, n_compress); 
    % Cfreq = zeros(n_compress); 
    fr_step = (N_freq-1)/(n_compress-1); 
    for i = 1:n_compress 
        for j = 1:N_train 
            Ctrain_x(j,i) = Atrain_x(j,1+round((i-1)*fr_step(1))); 
        end 
        for j = 1:N_valid 
            Cvalid_x(:,i) = Avalid_x(:,1+round((i-1)*fr_step(1))); 
        end 
        %Cfreq(i) = freq(1+round((i-1)*fr_step(1)));  
        %freq = Cfreq;  
    end 
    train_x = Ctrain_x; 
    valid_x = Cvalid_x; 
    %fr = n_compress; 
    %N_freq = n_compress; 
end 

  
[divide_data,mag_phs,replic,n_compress,n_VIPfreq,n_average, N_test] 
for sp = spi:spi 
    train_y = prop_train(:,sp); 
    valid_y = prop_valid(:,sp); 
    if N_test == 1 
        testn_y = prop_testn(:,sp); 
    end     
    %algorithm selection option added by Mingqiang Han 05/24/2020 
    switch algorithm_select 
        case 0 
            Lasso_selection_062120; 
        case 1 
            %PLS_Method_1; 
            % PLS_Method_2; 
            PLS_Method_3_071020; 
             %PLS_SVM_062620_NZ_MH 
            % regression_model; 

             
    end 
end  

  
% save report8 calib valid divide_data mag_phs replic n_compress n_VIPfreq 

n_average ... 
%     t_min t_max v_min v_max CI ...  
%     Method spi MaxR2VIPn_comp MaxR2VIPncomp MaxR2VIPnVIP MaxR2TraVIPR2 

MaxR2TraRMSE1 MaxR2ValVIPR2 MaxR2ValRMSE ... 
%     Signature_1_mag Signature_1_phs Signature_2_mag Signature_2_phs 

Signature_3_mag Signature_3_phs ... 



115 

%     Weight_1_mag Weight_1_phs Weight_2_mag Weight_2_phs Weight_3_mag 

Weight_3_phs –ascii 
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Appendix G -  Matlab program for PLS regression for the outdoor 

tests 

%function VIP_separate(min_VIP, spi, calib, valid, freq, prop, mag_phs, 

mag_digital, phs_digital) 
%function VIP_separate(min_VIP, spi, calib, valid, freq, prop, mag_phs, 

mag_digital, phs_digital) 
% Combined program for searching "signature frequencies" using "Variable 

Importance  
% Projection" method to run partial least squares analysis. 
%           Naiqian Zhang 
%           September 27, 2019 

  
% Added data compaction and VIP sorting. 
%     10/12/19, Naiqian Zhang 

  

  
% 
% Change files order depanding to thier order in Excel file 
% Change Ecxel file name when use "Case=0 at switch replic" 
% 
%        Mohammed Hasan, October 27,2019 
% Comment out the useless code 
%        Mingqiang Han, 03/22/2020 
%  
% finding VIP frequencies using each PLS component number 
%        Mingqiang Han, 06/26/2020 

  

  
% clc; 
%clear all 

  
%================================================= 
% Method 3: (7/2/2020) 
% 
% 1. Run PLS with ALL freq and number of components increasing from 1 to 

N_Train-1. 
% 2. For each number of components, find the contributions of the freq and 
%    rank the freq (VIP) 
%    then run PLS with the VIP numbers increasing from 1 to n_VIPfreq and 

number of component 
%    increasing from 1 to N_train-1, find the highest validation R2 while the 

training R2 is higher 
%    than validation R2. 
% 
% Number of times the VIP ranking is done - N_Train-1. 
% 
% Note: The number of components at which the VIP are found and ranked is 

n_comp 
%       The number of components at which the highest R2 is found is ncomp. 
%       So the highest R2 is found at a number of components that may not be 

the number of components at which the VIP were selected. 
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n_component = N_train-1; 

  
MaxR2VIPncomp = 0; 
MaxR2VIPnVIP = 0; 
MaxR2TraVIPR2 = -1000; 
MaxR2ValVIPR2 = -1000; 
MinRMSEValVIP = 1000; 

  
t_min(spi) = min(train_y); 
t_max(spi) = max(train_y); 
v_min(spi) = min(valid_y); 
v_max(spi) = max(valid_y); 
rt = t_max(spi)-t_min(spi); 
rv = v_max(spi)-v_min(spi); 

  
if N_test == 1 
    tn_min(spi) = min(testn_y); 
    tn_max(spi) = max(testn_y); 
end 

  
if v_min(spi)>=t_max(spi) || t_min(spi)>=v_max(spi) 
    CI(spi) = 0; 
else 
    if v_min(spi)>=t_min(spi) 
        cv_min = v_min(spi); 
    else     
        cv_min = t_min(spi); 
    end     
    if v_max(spi)>=t_max(spi) 
        cv_max = t_max(spi); 
    else     
        cv_max = v_max(spi); 
    end     
end     
cv = cv_max-cv_min; 
CI(spi) = cv^2/(rt*rv); 

  
[spi t_min(spi) t_max(spi) v_min(spi) v_max(spi) CI(spi)]     
if N_test ==1  
    [tn_min(spi) tn_max(spi)] 
end 

  
for n_comp=1:n_component 
 %% 
 %%%%%%%%%%%%%%find VIP frequencies for each PLS component%%%%%%%%%%%%%%%%% 
    num_var(n_comp) = n_comp; 

     
%    Select the VIP frequencies for each component. 
    [Xloadings,Yloadings,Xscores,Yscores,betaPLS,PLSPctVar,MSE,stats] = 

plsregress(... 
    train_x,train_y,n_comp); 
% Calculate normalized PLS weights 
    W0 = bsxfun(@rdivide,stats.W,sqrt(sum(stats.W.^2,1))); 
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% Calculate the product of summed squares of XS and YL 
    sumSq = sum(Xscores.^2,1).*sum(Yloadings.^2,1); 
% Calculate VIP scores for NCOMP components 
    vipScores = sqrt(size(Xloadings,1) * sum(bsxfun(@times,sumSq,W0.^2),2) ./ 

sum(sumSq,2)); 

  
% Calculate VIP scores cumulatively for NCOMP components 
    vipScoresCum = sqrt(size(Xloadings,1) * sum(bsxfun(@times,sumSq,W0.^2),2) 

./ cumsum(sumSq,2)); 
    [A, VIP_freq] = sort(vipScoresCum(:, n_comp), 'descend'); 
%% 
 %%%%%%%%%%%%%%%% search for max R2 for each PLS component%%%%%%%%%%%%%%%% 
    % Added PLS regressions at combinations of 
%   VIP frequencaaaaay (1 ~ n_VIPfreq) and PLS component (1 ~ N_train-1) 
% Draw 3D surf for both Training and Validation Search for the maximum R2 
% validation 
%  
%       6/23/2020 Naiqian Zhang 
% 
    for n_VIP = 1:n_VIPfreq 
         for ncomp=1:n_VIP-1     
            if(ncomp <= N_train-1)             
                trainVIP_x = train_x(:,VIP_freq(1:n_VIP)); 
                validVIP_x = valid_x(:,VIP_freq(1:n_VIP)); 
                trainVIP_y = train_y; 

  
                

[Xloadings,Yloadings,Xscores,Yscores,betaPLS,PLSPctVar,MSE,stats] = 

plsregress(... 
                trainVIP_x,trainVIP_y,ncomp); 
                trainVIP_yfit = [ones(size(trainVIP_x,1),1) 

trainVIP_x]*betaPLS; 

  
                SigmatrainYerror(n_VIP,ncomp) = sum((trainVIP_y-

trainVIP_yfit).^2)/N_train; 

                    
                TSS = sum((trainVIP_y-mean(trainVIP_y)).^2); 
                RSS_PLS = sum((trainVIP_y-trainVIP_yfit).^2); 
                R2_trainVIP(n_VIP,ncomp)= 1 - RSS_PLS/TSS; 

  
                validVIP_yfit = [ones(size(validVIP_x,1),1) 

validVIP_x]*betaPLS; 

  
                SigmavalidYerror(n_VIP,ncomp) = sum((valid_y-

validVIP_yfit).^2)/N_valid; 
                meanvalidy = mean(valid_y); 
                TSS = sum((valid_y-meanvalidy).^2); 
                RSS_PLS = sum((valid_y-validVIP_yfit).^2); 
                R2_validVIP(n_VIP,ncomp) = 1 - RSS_PLS/TSS; 

     
                if N_test == 1 
                    testnVIP_x = testn_x(:,VIP_freq(1:n_VIP)); 
                    testnVIP_y = testn_y; 
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                    testnVIP_yfit = [ones(size(testnVIP_x,1),1) 

testnVIP_x]*betaPLS; 

                 
                    meantestnVIP_y = mean(testnVIP_y); 
                    TSS = sum((testnVIP_y-meantestnVIP_y).^2); 
                    RSS_PLS = sum((testnVIP_y-testnVIP_yfit).^2); 
                    R2_testn(n_VIP,ncomp) = 1 - RSS_PLS/TSS;  
                    SigmatestnYerror(n_VIP,ncomp) = sum((testnVIP_y-

testnVIP_yfit).^2)/N_testn; 
                end 

                 
                if (R2_validVIP(n_VIP,ncomp) > MaxR2ValVIPR2) && 

(R2_trainVIP(n_VIP,ncomp) >= R2_validVIP(n_VIP,ncomp)) 
                %if (SigmavalidYerror(n_VIP,ncomp)< MinRMSEValVIP) && 

(R2_trainVIP(n_VIP,ncomp) >= R2_validVIP(n_VIP,ncomp)) 
                    %[R2_validVIP1(n_VIP,ncomp) MaxValVIPR2 

R2_trainVIP1(n_VIP,ncomp)] 
                    MaxR2trainVIP_y = trainVIP_y; 
                    MaxR2trainVIP_yfit = trainVIP_yfit; 
                    MaxR2valid_y = valid_y; 
                    MaxR2validVIP_yfit = validVIP_yfit; 
                    if N_test == 1 
                        MaxR2testn_y = testnVIP_y; 
                        MaxR2testn_yfit = testnVIP_yfit; 
                    end     
                    MaxR2VIP_freq = VIP_freq; 
                    MaxR2A = A; 

                     
                    MaxR2TraVIPR2 = R2_trainVIP(n_VIP,ncomp); 
                    MaxR2ValVIPR2 = R2_validVIP(n_VIP,ncomp); 
                    MinRMSEValVIP = SigmavalidYerror(n_VIP,ncomp); 
                    % MaxR2TraRMSE = sqrt(MSE(2,ncomp));  
                    MaxR2TraRMSE1 = sqrt(SigmatrainYerror(n_VIP,ncomp)); 
                    MaxR2ValRMSE = sqrt(SigmavalidYerror(n_VIP,ncomp)); 
                    MaxR2VIPn_comp = n_comp; 
                    MaxR2VIPncomp = ncomp; 
                    MaxR2VIPnVIP = n_VIP; 
                    if N_test == 1 
                        MaxR2testn_y = testnVIP_y; 
                        MaxR2testn_yfit = testnVIP_yfit; 
                        MaxR2TesR2 = R2_testn(n_VIP,ncomp);  
                        MaxR2TesRMSE = sqrt(SigmatestnYerror(n_VIP,ncomp));  
                    end  
                    %[spi MaxR2VIPn_comp MaxR2VIPncomp MaxR2VIPnVIP 

MaxTraVIPR2 MaxValVIPR2] 
                end     
            end 
        end         
    end 
end 

  

  
figure  
residuals = MaxR2trainVIP_y - MaxR2trainVIP_yfit; 
stem(residuals) 
xlabel('Observation,Training set'); 
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ylabel('Residual'); 
txt = ['spi=', num2str(spi)]; 
annotation('textbox',[0.2,0.8, 0.1, 0.1],'String', txt); 

  
figure  
residuals = MaxR2valid_y - MaxR2validVIP_yfit; 
stem(residuals) 
xlabel('Observation,Validation set'); 
ylabel('Residual'); 
txt = ['spi=', num2str(spi)]; 
annotation('textbox',[0.2,0.8, 0.1, 0.1],'String', txt); 

  
if N_test ==1 
    figure  
    residuals = MaxR2testn_y - MaxR2testn_yfit; 
    stem(residuals) 
    xlabel('Observation,Testing set'); 
    ylabel('Residual'); 
    txt = ['spi=', num2str(spi)]; 
    annotation('textbox',[0.2,0.8, 0.1, 0.1],'String', txt); 
end 

  
switch spi 
    case 1 
        x_labelT = 'Actual VWC (cm3/cm3) - Training set';  
        x_labelV = 'Actual VWC (cm3/cm3) - Validation set';  
        y_label = 'Predicted VWC (cm3/cm3)'; 
        txt_box= 'VWC'; 
    case 2     
        x_labelT = 'Actual NO3 concentration (ppm) - Training set';  
        x_labelV = 'Actual NO3 concentration (ppm) - Validation set';  
        y_label = 'Predicted NO3 concentration (ppm)'; 
        txt_box = 'NO3'; 
    case 3 
        x_labelT = 'Actual NH4 concentration (ppm) - Training set';  
        x_labelV = 'Actual NH4 concentration (ppm) - Validation set';  
        y_label = 'Predicted NH4 concentration (ppm)'; 
        txt_box = 'NH4'; 
end 

  
figure  
plot(MaxR2trainVIP_y,MaxR2trainVIP_yfit,'b*') 
xlabel(x_labelT); 
ylabel(y_label); 
txt = [txt_box]; 
annotation('textbox',[0.2,0.8, 0.1, 0.1],'String', txt); 

  
figure  
plot(MaxR2valid_y,MaxR2validVIP_yfit,'b*') 
xlabel(x_labelV); 
ylabel(y_label); 
txt = [txt_box]; 
annotation('textbox',[0.2,0.8, 0.1, 0.1],'String', txt); 

  
if N_test == 1 
    figure  
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    plot(MaxR2testn_y,MaxR2testn_yfit,'b*') 
    xlabel('Actual value (testing set)'); 
    ylabel('Predicted value'); 
    txt = ['spi=', num2str(spi)]; 
    annotation('textbox',[0.2,0.8, 0.1, 0.1],'String', txt); 
end 

  
Method = 3; 

  
[Method spi MaxR2VIPn_comp MaxR2VIPncomp MaxR2VIPnVIP MaxR2TraVIPR2 

MaxR2TraRMSE1 MaxR2ValVIPR2 MaxR2ValRMSE] 

  
if N_test==1 
    [MaxR2TesR2 MaxR2TesRMSE] 
end 

  
n_mag=0; 
n_phs=0; 
X_mag=[]; 
Y_mag=[]; 
X_phs=[]; 
Y_phs=[]; 

  
for ifreq = 1:MaxR2VIPnVIP 
    if(MaxR2VIP_freq(ifreq)<= 635) 
        n_mag = n_mag+1; 
        X_mag(n_mag) = data(MaxR2VIP_freq(ifreq),2)/100; 
        if (MaxR2VIP_freq(ifreq)<=27) 
            X_mag(n_mag) = (50+368.52*(MaxR2VIP_freq(ifreq)-1))/1000000; 
        end     
        Y_mag(n_mag) = MaxR2A(ifreq); 
    else 
        n_phs = n_phs+1; 
        X_phs(n_phs) = data(MaxR2VIP_freq(ifreq)-635,2)/100; 
        if (MaxR2VIP_freq(ifreq)<=635+27) 
            X_phs(n_phs) = (50+368.52*(MaxR2VIP_freq(ifreq)-635-1))/1000000; 
        end     
        Y_phs(n_phs) = MaxR2A(ifreq); 
    end     
end 

  
if(size(X_mag) ~= 0) 
    figure  
    bar(X_mag,Y_mag) 
    %set(gca,'XScale','log'); 
    %xlim([0 635]); 
    axis([0 120 0 5]) 
    xlabel('Frequency (MHz)') 
    ylabel('VIP importance (Magnitude)') 
    txt = ['spi=', num2str(spi)]; 
    annotation('textbox',[0.2,0.8, 0.1, 0.1],'String', txt); 
end     

  
if(size(X_phs) ~= 0) 
    figure  
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    bar(X_phs,Y_phs) 
    %set(gca,'XScale','log'); 
    %xlim([0 635]); 
    axis([0 120 0 5]) 
    xlabel('Frequency (MHz)') 
    ylabel('VIP importance (Phase)') 
    txt = ['spi=', num2str(spi)]; 
    annotation('textbox',[0.2,0.8, 0.1, 0.1],'String', txt); 
end 

  
switch spi 
    case 1 
        file_VIP = 'VIP_cumulative1.xlsx'; 
    case 2 
        file_VIP = 'VIP_cumulative2.xlsx';  
    case 3 
        file_VIP = 'VIP_cumulative3.xlsx'; 
end 

  
VIP_score = xlsread(file_VIP); 
for i = 1:1270 
    New_VIP_score(i,1) = 0; 
end 

  
if mag_phs == 2 
    for i = 1:MaxR2VIPnVIP 
        New_VIP_score(MaxR2VIP_freq(i)+635,1) = MaxR2A(i)'; 
    end 
else 
    for i = 1:MaxR2VIPnVIP 
        New_VIP_score(MaxR2VIP_freq(i),1) = MaxR2A(i)'; 
    end         
end 

  
VIP_score = [VIP_score New_VIP_score]; 
xlswrite(file_VIP, VIP_score); 

  
for i = 1:1270 
    Mean_VIP(i) = mean(VIP_score(i,:)); 
end 
Mean_VIP = Mean_VIP'; 

  
n_mag = 0; 
n_phs = 0; 
X_mag=[]; 
Y_mag=[]; 
X_phs=[]; 
Y_phs=[]; 

  
for i = 1:1270 
    if i<= 635 
        n_mag = n_mag+1; 
        X_mag(n_mag) = data(i,2)/100; 
        if (i<=27) 
            X_mag(n_mag) = (50+368.52*(i-1))/1000000; 
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        end     
        Y_mag(n_mag) = Mean_VIP(i); 
    else 
        n_phs = n_phs+1; 
        X_phs(n_phs) = data(i-635,2)/100; 
        if i<=635+27 
            X_phs(n_phs) = (50+368.52*(i-635-1))/1000000; 
        end     
        Y_phs(n_phs) = Mean_VIP(i); 
    end     
end 

  

  
figure  
plot(X_mag,Y_mag) 
%set(gca,'XScale','log'); 
%xlim([0 635]); 
axis([0 120 0 3]) 
xlabel('Frequency (MHz)') 
ylabel('Mean VIP importance (Magnitude)') 
txt = ['spi=', num2str(spi)]; 
annotation('textbox',[0.2,0.8, 0.1, 0.1],'String', txt); 

  
figure  
plot(X_phs,Y_phs) 
%set(gca,'XScale','log'); 
%xlim([0 635]); 
axis([0 120 0 3]) 
xlabel('Frequency (MHz)') 
ylabel('Mean VIP importance (Phase)') 
txt = ['spi=', num2str(spi)]; 
annotation('textbox',[0.2,0.8, 0.1, 0.1],'String', txt); 

  

  

  

  
switch spi 
    case 1 
        Signature_1_mag = X_mag; 
        Signature_1_phs = X_phs; 
        Weight_1_mag = Y_mag; 
        Weight_1_phs = Y_phs; 
    case 2 
        Signature_2_mag = X_mag; 
        Signature_2_phs = X_phs;  
        Weight_2_mag = Y_mag; 
        Weight_2_phs = Y_phs; 
    case 3 
        Signature_3_mag = X_mag; 
        Signature_3_phs = X_phs; 
        Weight_3_mag = Y_mag; 
        Weight_3_phs = Y_phs; 
end 

  
% figure 
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%  
% plot(num_var, MaxTraVIPR2, num_var,  MaxValVIPR2) 
% xlabel('number of components') 
% ylabel('max PLS R^2 for each component') 
% legend('train data','valid data') 

  

  
% [spi MaxR2ncomp MaxCalR2 MaxValR2] 

  
% Step1_SPI_Magphs_ncomp_MaxCalR2_MaxValR2 = [spi mag_phs MaxR2ncomp MaxCalR2 

MaxValR2] 

  
% figure 
% plot(num_var,R2_train,num_var,R2_valid) 
% xlabel('number of components') 
% ylabel('PLS R^2') 
% legend('train data','valid data') 

  
% figure 
% plot(num_var,R2_train1,num_var,R2_valid1) 
% xlabel('number of components') 
% ylabel('PLS R^2') 
% legend('train data','valid data') 
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Appendix H - VWC, NO₃, and NH₄ values for outdoor test samples  

 

VWC Values for all samples for outdoor tests 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 

Set1 Set 

2 

Set3 Set4 Set1 Set 2 Set3 Set4 Set1 Set 2 Set3 Set4 Set1 Set 

2 

Set3 Set4 

12.7 21 30.5 21.3 11.6 29.6 35.9 22.5 11.2 26.3 35 19.9 13.5 29 37.4 23 

21.4 27.9 28.1 24.8 15.3 31.4 37 22.8 21.6 28.5 36 22 16.2 33 33.8 16.8 

22.6 28.5 21.2 22.8 14.3 36.2 37.7 25 21.8 24.4 35 22.7 16 36.4 31.9 22.3 

22.6 31.4 27.2 23.3 19.5 33.2 33 26 22.8 33 33 23.3 20.4 36.2 30 24.4 

28.9 26.4 25.6 23 28.4 34.7 27.3 25.4 30.8 31.3 34 20.8 26.4 34.7 30.4 23.4 

27.9 29.4 24 22.9 25.5 35.4 23.6 20 26.9 26.7 24 20.6 30.2 34.1 28.1 23.7 

25.6 24.3 24.5 23.3 37.3 33.8 27.9 15.5 29.4 26.5 34 23.7 33.8 33.5 23 24.5 

25.5        27.2    29    

                

12.7- 

28.9 

21- 

31.4 

21.2- 

30.5 

21.3- 

24.8 

11.6- 

28.4 

29.6-

36.2 

23.6- 

37.7 

15.5- 

26 

11.2- 

30.8 

24.4- 

33 

24- 

36 

19.9- 

23.7 

13.5- 

33.8 

29- 

36.4 

23- 

37.4 

16.8- 

24.5 

12.7 – 30.5 11.6 – 37.7 11.2-36.0 13.5 – 37.4 

 

 

NO3 Values for all samples for outdoor tests 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 

Set1 Set 2 Set3 Set4 Set1 Set 2 Set3 Set4 Set1 Set 2 Set3 Set4 Set1 Set 2 Set3 Set4 

17.8 40.1 6.6 9.1 19.2 92.4 6.2 3.8 17.6 42.7 7.5 4.1 16.8 102.5 12.2 2.4 

44.8 21.3 2.2 4.7 33.9 13.8 3.1 2.5 67.6 33.1 4.5 2.8 43.5 75.8 5.6 2.1 

54.6 17.2 1.3 5 36.8 12.7 1.1 4.5 76 33.1 0.8 3.2 44.4 50.5 1 2 

59.6 48.3 9 1.8 62 49.2 5.2 3.2 64.1 38.4 10.2 1.7 78.8 21.4 2.8 1.2 

14.2 26.8 6.2 6.4 77.7 34.6 1.7 2 38.5 30.3 3.8 1.3 91.3 41.7 5.9 1.5 

37.4 18.6 1.3 4.9 63.9 14.3 1.5 2.1 67.6 31.8 1.3 2.2 90 46.8 5.3 1.6 

17.8 23.9 1.2 51.3 85.8 28.1 1.4 2.1 51.8 28.3 4.8 8.2 116.3 34.3 1.1 7.4 

41.1        28.1    97.2    

14.2- 

59.6 

17.2- 

48.3 

1.2- 

9 

1.8- 

51.3 

19.2- 

85.8 

12.7- 

92.4 

1.1- 

6.2 

2- 

4.5 

17.6- 

67.6 

28.3- 

42.7 

0.8- 

10.2 

1.3- 

8.2 

16.8- 

116.3 

21.4- 

102.5 

1- 

12.2 

1.2- 

7.4 

1.2 – 59.6 1.1 – 92.4 0.8 – 67.6 1.00 – 116.3 
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NH4 Values for all samples for outdoor tests 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 

Set1 Set 2 Set3 Set4 Set1 Set 2 Set3 Set4 Set1 Set 2 Set3 Set4 Set1 Set 2 Set3 Set4 

9.7 3.4 5.9 5.6 8.5 6 4.7 5.9 9.7 3.2 5.3 5.3 11 4.5 5.2 5.5 

5.6 7.9 4.5 9 5.7 7.7 4.3 7 6.4 3.5 4.6 7.5 6.9 6.2 4 5.7 

6.5 7.9 6.1 5.1 6.5 5.1 5.1 9.1 8 6.6 7 6.2 6.4 6.2 6.6 8.3 

9.5 8.2 5.6 5.1 8.7 7.6 4.4 6.1 8.7 6.8 4.6 7.1 6.5 9.2 5 7.4 

8 16.4 6.3 11.2 8.5 3.5 5.4 6.9 10.1 2.9 6.4 8.7 7.4 9.8 11.1 6.7 

8.2 4.8 5.5 6.4 8.3 5 7.2 7 9.8 4.8 4.8 5.8 8 15.4 4.8 5.4 

8.5 5.3 3.3 4.4 9.1 12.4 3.6 4.9 7.9 12.1 3.3 4.5 8.6 9.6 4 4.1 

10.4    9.2    7.4    8.4    

                

5.6- 

10.4 

3.4- 

16.4 

3.3- 

6.3 

4.4- 

11.2 

5.7- 

9.2 

3.5- 

12.4 

3.6- 

7.2 

4.9- 

9.1 

6.4- 

10.1 

2.9- 

12.1 

3.3- 

6.4 

4.5- 

8.7 

6.4- 

11 

4.5- 

15.4 

4- 

11.1 

4.1- 

8.3 

3.3 – 16.4 3.5 – 12.4 2.9 – 12.1 4.00 -15.8 

 

 

 

 


