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INTRODUCTION

In the past several years, Kansas State University has

designed and developed several ultra-low power Analog to

Digital Converters. These converters typically consumed

far less power than the signal processing sections of

integrated systems and provided better resolution than 16-

bit single precision processors could maintain. The

Advanced Architecture Microprocessor (AAMP), Rockwell's

CMOS floating point processor provides solutions to both of

these problems. The following thesis describes an AAMP-

based microcomputer system with a measured power

consumption of under 25 milliwatts at the suggested

operating frequency of 2.6 MHz. Use of the AAMP also

supplies the system with a capacity for 32- and 48-bit

floating point arithmetic, the dynamic range and extended

precision of which should allow the processor to maintain

precision from the A/D through several stages of

multiplications without truncation errors.

Previous work at Kansas State University involving the

AAMP is presented in a thesis by K. L. Albin 1 documenting

the architecture and coding some typical signal processing

algorithms, and a thesis by G. S. Mauersberger detailing

a large-scale AAMP-based microcomputer design which he

built and tested. Mike Gaches also designed a board using



the AAMP which could be a direct replacement for 8086

boards presently in use. The system described in this

thesis was also originally designed by Mike Gaches with

several changes being made since that time.

This thesis begins with a brief description of the

AAMP detailing hardware and architecture features which

were important in the design and evaluation of this system.

Details of the design are discussed with separate sections

provided for each sub-system. Power consumption figures

for the system and most components of the system are shown

and discussed. And, finally, listing of several typical

signal processing code segments are presented with

estimated time of execution for each given.



2. Description of AAMP

The following section provides an overview of the

hardware and software features of the AAMP with emphasis on

those aspects utilized in the present design. Much more

thorough descriptions of these are given in the documents

provided by Rockwell 3 and in the previous theses dealing

with the AAMP. 1 2

2.1 Hardware

The AAMP is a 16-bit floating-point microprocessor

built in either 2-micron CMOS or 2-micron CMOS/SOS. Data

transfer is done through a 24-bit address, 16-bit data,

non-multiplexed bus with the AAMP supporting either

synchronous or asynchronous data transfer. When operated

in synchronous mode, as in this design, the AAMP provides

selection of bus timing parameters. By strapping the two

setup select pins (S Q , S->) high or low, the user can select

the total time required for a complete bus read cycle which

may allow the use of slower memory devices while still

maintaining processing speed.

The AAMP also has provisions which allow straight-

forward bus arbitration schemes to be used in large, shared

bus, multiprocessor systems. When deselected by OE being

held high, all bus outputs from the AAMP are tri-stated



allowing other users complete access to a system bus. The

Bus Request (BR) pin is, however, still active and may be

used to poll a master controller device.

Although the on-chip oscillator is rated for use from

4-20 MHz, use of an external oscillator can extend the

bandwidth DC to 30 MHz. The on-chip oscillator was,

however, found to operate at frequencies down to 1 MHz

although power consumption at the low end was relatively

high compared to the power consumption for an external

oscillator.

2.2 Packaging

The AAMP is presently being packaged in two different

forms, a chip carrier package, and pin grid array (PGA)

package. The most common package, and the one used in this

design is the 1.1" by 1.1" 68-pin PGA package. Early

versions of the AAMP had a different pin assignment than

the present version. Appendix A shows the pin assignment

for an early CMOS/SOS version, the Bulk CMOS version used

in the prototype, and for the new, top cavity device.

Current PGA versions also have an alignment pin at the C-3

location.

Bulk CMOS AAMPs are currently being produced by

Rockwell's Semiconductor Products Division (SPD) and by

American Microsystems Incorporated (AMI). For radiation

hardened applications, CMOS/SOS versions of the AAMP are



still being produced by Rockwell's Microelectronics

Research and Development Center (MRDC)

.

Future plans by Rockwell for changes in the AAMP

include a shrink to 1.2 microns which should allow a 50 MHz

operating frequency. Rockwell also plans to begin in Dec.

1986, designing a new AAMP with a 48-bit ALU , a 6-deep

stack cache, a block move instruction, and improved

microcoding of the multiply and divide operations.

2.3 Architecture

The stack architecture of the AAMP was designed to

ease translation from the intermediate level output of high

level language compilers to assembly language. The AAMP

utilizes a stack architecture in which all logic and

arithmetic operations are performed on the top members of

the stack with the result being returned back to the top of

the stack. To lessen the need for constant bus accesses to

obtain each operand of an operation and to return the

result, the AAMP maintains an on-chip cache of the top four

elements of the stack.

Programming can be run in either Executive or User

modes with Executive mode generally being used for

initialization and control of program transfers to the

various User programs. The first nine words of memory

contain entries, called the Executive Entry Table which set

the values for the various environment pointers and define



vectors for start-up, bus error, exception, trap, and

interrupt routines. Upon invoking a program in executive

mode, the first four of these entries are read while the

rest are read only as needed. A similar table, called the

User Processor State Descriptor (PSD) Table is used

similarly upon a switch to User mode. All software

evaluation for this system was done with programs written

in the Executive mode. Table 1 shows the items listed in

the Executive Entry Table.

Table 1. Executive Entry Table

$0000 Continuation Status Pointer
$0001 Initial Executive Stack limit
$0002 Initial Executive Top of Stack
$0003 Initial Executive Procedure Identifier
$0004 Bus Error Procedure Identifier
$0005 NMI Procedure Identifier
$0006 INT Procedure Identifier
$0007 Trap Procedure Identifier
$0008 Exception Procedure Identifier

To aid in the access of a 24-address bit bus with 16-

bit words, the AAMP provides environment pointers.

Effective addresses are formed by using these pointers as

the top eight or the top nine bits of the address and a

normal 16-bit word for the lower address bits. (Figure 1)

On data accesses, the Data Environment pointer (DENV)

provides the upper eight bits for all but the Universal

addressing mode in which all 24 bits are taken from the top



of the stack.
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Figure 1. Addressing Using DENV and CENV Pointers

Code addressing requires 25 bits as each 16-bit code

word often contains two separate single-byte opcodes. The

Code Environment pointer (CENV) provides the upper nine

bits of address. The 16-bit program counter provides the

lower bits, the lowest of which specifies high or low byte

within a 16-bit word of code. CENV and DENV are

automatically set to zero in the Executive mode.

Also maintained within the processor is a Local

Environment (LENV) pointer, a 16-bit word which in

combination with DENV, points to the top of the Local

Environment, a portion of memory at the bottom of the

active stack frame set aside for quick access. Address

calculation within the Local Environment is very efficient



requiring a minimum of bus accesses since only the offset

into the environment must be specified. When using Local

environment addressing, this offset is specified by the

lower nibble within the opcode itself. While using Local

Extended addressing, the offset is specified by a single

byte following the opcode.

Another powerful feature of the AAMP's architecture is

its dynamic memory allocation and parameter passage. Prior

to a CALL to a new procedure, the calling procedure may

copy into its stack a list of parameters to be passed to

the called routine. Upon invocation of the CALL

instruction, a user-specified number of arguments on the

top of the stack become the bottom values of the new

procedure's Local Environment and can be efficiently

accessed as local variables. Upon return to the original

procedure, a user-specified number of elements from the top

of the called procedure's stack are copied back to the

caller's stack. This makes parameter passage extremely

efficient and nearly automatic.

8



2.4 Instruction Set

The AAMP comes with a very powerful instruction set.

Included on-chip are 32- and 48-bit floating point add,

subtract, multiply, and divide operations which make the

AAMP a very capable single chip processor. These long

operations, however, have execution rates which depend upon

the data being processed, making exact timing prediction

almost impossible. Appendix B provides a listing,

generated by a program written by N. M. Mykris , showing

typical times of execution for the entire instruction set.

Variable length instructions are indicated with an equation

which shows dependence upon variables.

A major concern when estimating time of execution for

programs is that of "stack thrashing". Upon the loading of

an opcode into the micro-engine of the AAMP, a bit-mapping

is performed which determines how many items must be on the

stack in order for the impending operation to take place.

This bit-mapping is optimal in most cases. In a few,

unnecessary stack updating is performed during which data

is read from or written to memory and the internal cache is

rotated until the desired internal stack depth is achieved.

These operations are very time consuming and can

drastically slow down a non-optimized piece of code. By

carefully selecting an appropriate order of execution and

the proper opcodes, stack thrashing can, however, be

minimized. Table 2, borrowed from K. L. Albin1
, shows the



bit-mapping and required stack depth for each instruction.

Stack depth
Opcodes allowed

00-1F 0-3
20-3F 0-2
40-5F 1-4
60-7F 2-2
80-9F 4-4
AO-BF 3-4
CO-DF 2-4
EO-FF 2-4

Table 2 . Opcode to stack depth mapping
(from K. L. Albin 1

)

10



3 Minimal Component AAMP Board

This section describes an AAMP-based microcomputer

system designed and tested at Kansas State University for

Sandia National Laboratories. The system decribed in this

section is one used for power consumption measurements.

For software testing, the system was modified to allow the

output of data for verification of proper program

execution.

3.1 Objectives of Design

The proposed use for the minimal component AAMP board

is to provide the signal processing section of an ultra-low

powered, "shirt pocket" sized helicopter noise detection

system. The design was specified to minimize parts count

and most importantly, minimize power usage.

Since the frequencies of interest for the detection of

a helicopter are very low, 10 to 38 Hz 6
, sampling by the

A/D portion of the system can be done at a low rate.

Subsequently, data rates into the signal processing portion

are relatively low. This allows the system clock frequency

to be set low and aids in the minimization of power usage

by CMOS parts whose power consumption is almost directly

proportional to switching frequency.

The AAMP has a specified frequency range of from 4 to

20 MHz and is generally used as a high speed

11



microprocessor. Although the AAMP's speed is not fully

utilized in this design, the powerful instruction set and

its low power CMOS design make it the microprocessor of

choice.

Sampled data is provided to the system through two

16-bit buffered inputs. The only outputs from the system

are two flip-flops, one for each channel, to be set upon

the detection of a helicopter. A block diagram of the

system is shown in Figure 2 and a circuit diagram is shown

in Figure 3. The system upon which all testing has been

done was constructed using wire-wrap techniques.

Armando Corrales and Jim Heise have designed a printed

circuit board which places the entire system, less the

input buffers which may not be needed in a final system, on

a 3" by 4" board. The design was done in six layers and is

shown in Appendix C.

The original design and parts selection for the

minimal component board were performed by Mr. Gaches in

the Fall of 1985. Since the original design, changes have

been made in the chip select/address decode circuit and in

the approach taken to set the alarms.

The support components for the board can be classified

into four subsystems: address decoding, memory,

input/output, and clock. Each section, as assembled in the

test system, is discussed separately below.

12
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3.2 Memory

Program memory space for the system is provided by

two National Semiconductor NM27C32, 4096 X 8 bit UV

erasable CMOS EPROMS connected side-by-side to provide a 16

bit wide data access. Upon assertion of RST low, occuring

either on power-up or during a manual reset, the AAMP reads

the Executive Entry Table from the lowest ten words of

memory. Figure 4 shows the system memory map along with

the location of these RST pointers. The function of these

pointers is explained in the Architecture section and

typical values are used in the Software section.

System RAM space is provided by two Hitachi HM6116

ALP-20, 2048 X 8 bit, 200 nsec static CMOS RAMS also

connected side-by-side to provide a 16-bit data path.

Addressing for the RAM is also shown in Figure 4.

3 .

3

Address decoding

System address decoding and timing is performed by a

National Semiconductor MM74HC138, 3 to 8 line decoder. A

system timing diagram is shown in Figure 5. Chip enable

for specific components occurs upon the combination of

XRQ/XAK high, BG/BR low and a corresponding address. Under

this configuration, the AAMP has control of the bus at all

times, chosen by tying BG to BR, data transfer is

synchronous, chosen by connecting XAK to XRQ, and a

15
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complete bus transaction requires 8 clock cycles, set by

strapping mode select pins S^ S 2 to ground. The most

restrictive of the system timing equations pertains to a

read from the EPROM. The equation is as follows:

"cxmax + Tprmax + Tcemax + Tdv <=: 4Tcyc

Where Tcyc is the period at the oscillator input Y Q .

Tcx is the time from a rising clock edge to the
assertion of XRQ.

T_r is propagation delay through decoder

tce is the time from chip enable until valid data is
available from memory.

T^v is the length of time that valid data must be
held prior to a data read by the AAMP

Substitution of values from the AAMP Reference

Manual 3 and from the National Semiconductors CMOS Databook

revealed that for a 450 nsec EPROM, maximum frequency is

6.78 MHz, while for a 350 nsec EPROM, maximum frequency is

8.16 MHz. All other system timing equations are less

restrictive. National Semiconductor has promised a 200

nsec version, due to be available in January 1987, which

speculatively could raise the maximum frequency to 11.8

MHz.

3.4 I/O

The two 16-bit input channels of the system are each

provided by two National Semiconductor MM74HC541 Octal tri-

18



state buffers. Addressing for these is also shown in the

memory map. For software testing, one of these input

channels was changed to an output channel so that proper

program execution could be confirmed. This was done by

replacing two of the input buffers with MM74HC573 octal

latches and inverting the existing address decoding to

latch valid data from the system data bus. (Figure 6)

The original design of the system specified the alarm

circuit to be two JK flip-flops in toggle mode using the

address decoder for activation. This design was discarded

since any noise in the system could have caused the flip-

flops to toggle and since the microprocessor would not then

know in which state the flip-flop had landed. Instead, two

D flip-flops, activated by the address decoder and with

inputs connected to the data bus were used. Under this

configuration, the state of the alarm is controlled with a

much greater confidence of outcome.

The type of D flip-flop was then chosen on the basis

of power consumption. The choices were, using National

Semiconductor parts, the MM74HC74, a 14-pin dual D flip-

flop with separate preset and clear, or the MM74HC174, a

16-pin hex-package D flip-flop with single clear and no

preset. On the basis of lower power consumption, the

MM74HC174, although in a larger package and having extra

components, was chosen. The reasons for this choice are

explained in the Power Consumption section.

19
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3.5 Inverter/Oscillator

Since the AAMP's on-chip oscillator is rated for

operation from 4 to 20 MHz and since the system may be

working at frequencies below this, an external oscillator

circuit was used. The circuit used is a parallel resonant

gate oscillator which utilizes a CMOS inverter as a driver

and another inverter to "square up" the waveform. The

particular inverter chip to use is dependant upon the

system's frequency of operation.

A standard (54C/74C family) CMOS inverter will use

less power and make a more stable driver for an oscillator

than will a High Speed (HC) CMOS part. This can be

explained by examining the transfer characteristics of each

device. Standard CMOS parts have a smooth linear region

with constant although low gain whereas HC parts have very

high gain with the switching region nonlinear and suffering

from massive jitter. See Figure 7.

These non-linear portions of the waveform for the HC

parts inject higher frequencies into the loop causing the

oscillator to operate at an overtone of the crystal

frequency. The overtone problems seemed to vanish when

using crystal frequencies above 4 MHz making HC parts an

acceptable choice for higher frequency oscillators.

Unbuffered high-speed CMOS (HCU) parts which are

touted for use in gate oscillator circuits were also

21
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tested. The transfer function for the HCU parts was smooth

and linear with little jitter and the waveform output from

an HCU oscillator showed a very square waveform with short

rise and fall times. Power consumption for the HCU parts

was, however, very high and further testing was not deemed

useful.

In order for an oscillator to operate in the parallel

resonant mode, there must exist 3 60° phase change through

the loop, 180° of which must exist in each half of the

circuit. See Figure 8.

180"—

0-
f UJJBHCX

<— 180"—

>

10 M

-AAAr

t>

X-TflL __
1 -rC2

model circuit used

Figure 8. Phase Shift in Parallel Resonant Oscillator
Adapted from Holmbeck

In this system, the feedback loop consists of a

crystal connected in parallel with a large valued resistor.

The tie-down capacitors at each terminal of the crystal are

to match the effective load capacitance of the circuit

23



with that of the crystal while the resistor acts to force

the gate into its linear conducting region. At high

frequencies, the propagation delay through the inverter

causes the following phase shift:

6 = f * t r
* 360°

For a 3 MHz oscillator using the worst-case

propagation delay of 90 nsecs for standard CMOS, this value

is 97.2°. To compensate for this inductive phase change,

(output current lags input voltage) , a capacitor may be

placed in the loop as shown in Figure 9.

10 M

A/W

_L X-TflL J_
1 -rC2

Figure 9. Circuit Compensating for Gate Delay.

A suggested value for C f is 1/Ceq
8

, where Ceq is the

input impedance viewed from the output of the gate into the
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crystal feedback network. Adding this component to the

circuit indeed increased the useful bandwidth of the

system. However, power consumption was also increased.

Instead, the value of C 2 was raised and the value of C
1
was

decreased. This was done to increase Ceg and minimizing

the value needed for the now missing Cf ,
yet maintaining a

balanced load across the crystal.

Using this type of capacitive phase shifting, the

standard CMOS inverter oscillator was found to be very

reliable up to 3MHz. Above 3MHz, the slow rise time and

large propagation delay of the standard CMOS became so

dominant that the waveform no longer attained the AAMP's

required external oscillator input voltage swing of from

C.6 Vmax on the low cycle to 4.2Vm ^n on the high cycle.

The inverters are also used to produce a delayed reset

on power-up. Rockwell suggests that the reset should

remain low for around 1000 clock cycles prior to the

microprocessor being enabled which would dictate a reset

time of around 1 millisecond for the lowest clock speed

used. However, the power supplies used in the laboratory

require nearly 4 milliseconds to reach 5 volts when

warm and nearly 20 milliseconds to reach 5 volts when

started cold. Taking this into account and designing the

reset to be delayed by a sufficiently long time resulted in

such a gradually rising output from the RC network that

25



upon switching from high to low the output of a single-

buffered network chattered. The problem is solved by

triple-buffering the reset signal from the RC network to

the Reset input on the AAMP. This raises the total gain

and causes the switching to be more abrupt, disallowing

chattering at the output.

In conclusion, while operating at frequencies below

3MHz a National Semiconductor MM74C04 hex inverter should

be used and while operating above 3MHz an MM74HC04 hex

inverter should be used. These chips are pin-for-pin

compatible and can easily be interchanged.
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4 System Power Consumption

Power consumption testing for the system was

performed by breaking into the power bus and connecting a

Fluke 8010A digital multimeter in series with the supply

voltage to the component under test and measuring the

current. To obtain an instruction mix which should be

typical for the proposed application, the Standard Widrow

Adaptive Linear Predictor algorithm, originally coded for

the AAMP by K. L. Albin 1
, was used.

Data input to the system was provided by simply tying

the inputs to ground. This prevented peripheral devices

from affecting consumption readings but also allowed many

flip-flops to remain unswitched and possibly caused a lower

power reading than real data input should cause. For this

reason and since power consumption for a particular

component varies from chip to chip, the figures presented

here should be used for comparisons and not as a guaranteed

rating.

This section discusses the power usage of the system.

Parts selections made on the basis of power consumption are

discussed in more detail here and a type of oscillator is

suggested for each portion of the system's frequency range.

Figure 10 shows the power supply current versus

operating frequency for the total system, the AAMP and if

used, the external oscillator circuit. All system
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componets run on a five volt supply. Conversion from

current to power consumption required a multiplication by

5. A straight line has been fit to the data set indicating

the trend for the data in the reliable regions of each

configuration. Although worst case timing showed that the

system should only be expected to operate up to 8.16 MHz,

testing of power consumption was continued up to 10 MHz.
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Figure 10. Power Consumption of System

Straight-line approximations for the external

oscillators show a good fit. Consumption for the system

using the on-chip oscillator however, showed a slight

exponential increase but is still reasonably approximated

with a straight-line fit.
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4.1 AAMP

The AAMP itself shows a y-intercept value

uncharacteristic of CMOS parts. The varying y-intercept

values for the three oscillator configurations can be

related to the amount of gain required by the AAMP's clock

input gate. While using the AAMP's on-chip oscillator, the

buffer at the Y Q pin is required to act like a linear

device. In this mode, rise times are long and the gate

spends a large amount of time between the on and off

states. Nearly all power consumption by CMOS gates can be

attributed to the amount of time spent in this state. The

sharp square wave output of the high-speed CMOS oscillator,

on the other hand, causes the y-intercept of the AAMP to be

lowest in this configuration. Standard CMOS waveforms have

slower rise times and cause a slightly higher y-intercept.

4.2 Oscillator

As seen in the plot, the Standard CMOS oscillator was

only useful below 3 MHz but in this region showed the

lowest power usage. The oscillator circuit is shown in

Figure 11.

Trimmer capacitors were used in the test system. The

values were adjusted to minimize power consumption and

maximize voltage swing of the output. These two conditions

generally occurred simultaneously with the value of C-^

often around three forths the value of C2 and their series
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combination being approximately equal to the crystal's

specified load capacitance.

RAMP

Figure 11. External Oscillator Circuit Used for System

The circuit of Figure 11 was also used for the HC

oscillator resulting in about the same capacitor ratio but

with the series combination now being equal to around twice

the rated load capacitance. As seen in the plot, the HC

external oscillator should be used in the frequency range

from 4 to 6 MHz.

In the range of frequencies from 3 to 4 MHz and again

above 6 MHz, the AAMP's on-chip oscillator should be used.

Although its operation is reliable throughout the tested

range of 1 to 10 MHz, power consumption is generally higher

than that of the others outside this suggested range. The

on-chip oscillator of the AAMP uses the same equivalent

circuitry as the external oscillator in Figure 11. The

suggested circuit for using the on-chip oscillator requires

no load capacitors. 3 Power consumption can however be
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lessened by attaching a small load capacitor with a value

near the specified load capacitance of the crystal to the

Y± pin. (Figure 12)

RflMP

c =b

X-TflL

10 n

Figure 12. Configuration for On-chip AAMP Oscillator

4 . 3 Support Components

Power consumption for support components is shown in

Figure 13. Values for power usage by support components

are well fit by a straight line with no noticeable y-

intercept. During power measurements, data was static

therefore creating an artificially low amount of gate

switching in the RAM. The slope for the RAM will , of

course, change with the amount of gate switching on writes.

The type of flip-flop used for the alarm was chosen

on the basis of power consumption. The configuration used

calls for the flip-flop to load the values from the data

bus upon a write from the microprocessor with the clock

31



input to the flip-flop held high except in the rare case of

the detection of an intruder.
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Figure 13. Power Consumption of Support Components

Under these conditions, and although no output

switching was being performed, the MM74HC74 dual D Flip-

Flop used around five times as much power as the MM74HC174

hex D Flip-Flop. A call to Larry Wakeman, Applications

Engineer for National Semiconductors, confirmed that the

MM74HC74 dual package was a poorly designed CMOS part,

with flaws that make it non-ideal for ultra-low power

systems. These problems are shown in Figure 14.

The dual package routes the input through two buffers

and directly into two logic gates whereas the hex package

runs the input through a single inverter then uses a
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transmission gate to virtually isolate the single-buffered

input from the rest of the circuit. The more densely

packed hex inverter also requires smaller internal

component size than the less space-restrictive design of

the dual package. Figure 14 shows the effective circuitry

of the two packages.

-£>—

'

STFHE HCLCING
LOGJC

^
^>

STRTC HOLDING
LOGIC

MM74HC174 MM74HC74

Figure 14. Effective Input Circuits of D Flip-Flops

Although power consumption for either component, while

not being clocked, but under the highest bus rate possible

is under one milliwatt, the MM74HC174 hex flip-flop was

chosen for the design. The extra flip-flops may also be

used to control a proposed wait state mode.

4.4 Wait State Operation

The following section describes a technique where,

through hardware, the need for exact timing of algorithms
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may be eliminated. The method would allow the AAMP to

perform all necessary calculations for a sampling interval,

then go to a high-impedance, lessened-power state until

awakened by a signal from a controller upon the next

completed sample conversion. The added hardware is shown

in Figure 15. The flip-flop controller was taken from the

spares of the MM74HC174 Hex package. Therefore, no active

components are added to the design, with circuit additions

being only resistors, diodes and added traces.

STSTOI Offffl

•5V

-R*l

ADDRESS
DECODER

* i

=G^a ->
CH I RLRRfl

Vj£^
->

->
CH II ALARH

i

>
TO OE ON RAMP

<
FROM EXTERNAL TIMER

Figure 15. Wait State Circuitry Maintaining Two Alarm
Outputs

During the high impedance state, the controller flip-

flop will hold the OE pin high until a new clock signal is
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received from an external timer at which time the

controller flip-flop will be cleared. Timer and decoder

clocking of the flip-flops are wire ANDed to allow either

to pull the clock low. During clocking of the flip-flops

by the timer, the present states of the alarms are

maintained by the identity feedback resistors while the

input to the controller is pulled low by a high valued

pull-down resistor.

Programming to reach the high impedance state would

simply require that a hexadecimal four be ORed with the

alarm state and written to the alarms as the final

instruction of the routine. Upon being awakened from the

wait mode, a dummy read should be performed and program

execution may then be restarted.

The present version of the system has two alarm

outputs. If it were possible to run the system with only

one alarm for output, a more straight-forward wait

controller could be built. Figure 16 shows the simplified

controller which is made possible by using the MM74HC74

which has individual asynchronous clears. Software using

this version would require a write to the alarms upon

completing the processing of a set of samples and a dummy

read upon being awakened. This method, although using the

less efficient MM74HC74, would probably require less power

since pull-down and identity feedback resistors would no
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longer be needed.

SYSTEM DRTfl BUS

Q*5V

R

XAK/XRQ

RDDRESS

DECODER

>
RLRRH OUT

>
TO OE ON RflnP

<
FROM EXTERNRL

TIMER

Figure 16. Wait State Circuitry Converting Alarm Output
to Controller

The operation is the same when using either type of

controller. With the OE pin held high, the AAMP will try

to assert a transfer request (XRQ) signal which would be

read at the transfer acknowledge (XAK) pin and would allow

program execution to continue. Instead XRQ is tri-stated

and program execution is suspended. In this mode of

suspension, all output pins except Bus Request (BR) are

tri-stated and only the oscillator portion of the processor

is switching. The AAMP, however, buffers the clock signal
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several times before using it throughout the processor and

therefore power consumption does remain considerable during

this high impedance state.

Power consumption for the total system in the high

impedance state is shown in Figure 17. Dashed lines

indicate total power for normal operation, while solid

lines show a best-fit line for wait mode power consumption.

While using the AAMP oscillator, power consumption stays a

near-constant eight milliamps with even a slight decrease

in power consumption as the frequency of operation

approaches the frequency for which the oscillator was

primarily designed. When using the on-chip oscillator, the

break-even point for using the high impedance wait mode as

compared to continuous operation occurs around 3.5 MHz

while when using either of the external oscillators a

slight decrease is seen at all frequencies.

Effective power consumption for the system while using

wait state mode can be calculated by adding each phase

multiplied by its duty cycle. Programming time overhead is

not large, requiring only an additional 15.5 clock cycles

for the masking of the data bit and a non bus-access

function during wake-up.

This method allows accurate timing of sampling rate to

be performed by an external device which should be possible

if, like previous low-power A/D's built at KSU, the A/D
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chosen for the system utilizes a microcontroller with fixed

times for instruction execution.
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Software Evaluation

In order to properly evaluate the performance of the

AAMP as a signal processor, various digital filtering sub-

programs were coded. The time of execution figures listed

here should provide rough estimates of processing speed and

should provide a useful basis for comparing the AAMP to

other signal processors.

5.1 Verification of output

Several of the algorithms have been tested on the

proto-type board and the actual time of execution is shown

for those. Program segments from which timing figures were

taken are shown in Appendix D. Testing was performed with

the system operating at 1 MHz which was chosen to allow

easy conversion to the number of cycles and to allow the

test equipment, an HP 9845B with GPIO, to keep up with data

transfers while debugging and testing of program segments.

Time of execution for the segments tested on the

proto-type system was measured using an HP 1611A Logic

State Analyzer. Output from the filter was monitored for

proper execution using an HP 9845B computer with data

transfer exchanged through a half-handshake board-to-GPIO

controller. (Figure 18)
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1/0 o
PCI I L>

Figure 18. Half-handshake Controller for GPIO Interface

HP's GPIO provides a programmable control register

which allows the user to determine mode of transfer and

type of handshaking. This register is, however, programmed

by installing the appropriate wire-wrap jumpers and cannot

be changed during program execution. Therefore, a

controller, which allows the AAMP system to run at full

speed requiring only the host computer to poll for data

transfer was used.

5.2 Speed optimization

Appendix D shows listings of the programs with time of

execution for each block of code identified. Coding of the

algorithms was done in the most straight-forward approach

possible with speed optimization done only on a near-

sighted basis.

In loop coding, speed optimization for storage and

retrieval of counters and intermediate results was
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accomplished by using the Local Environment storage area,

which contains the 16 quickest access locations. To speed

line coding, arrays of variables were placed in the Local

Environment Extended. Segments were made interchangeable

by maintaining these memory assignments in both forms of

coding.

Addressing of array elements while loop coding is

accomplished by calculating the base address of the LENV,

adding a constant offset component to specify which array

was being accessed, and adding I to find the I th element of

the array. The AAMP has quick and efficient commands for

these three actions.

A method to increase speed of execution which was

tried but with little success was that of leaving a copy of

the count variable on the stack at the end of each

iteration. Using this method, calculated times for

execution were much lower than for the final versions, but

observed times were much greater.

This difference from calculated to observed may be

attributed to stack thrashing. The prime instruction for

creating copies of the count variable is the DUP command

which, as indicated by Table 2 of the Architecture section,

is a non-optimal stack depth command. Using DUP causes the

processor to read or write from its internal cache to RAM,

each time transferring members within the internal cache
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itself, until exactly two elements are left in the internal

stack. This stack thrashing caused execution times to

greatly increase. Therefore, the use of DUP should be

avoided except when the stack depth is already two or when

the time to calculate the data on the stack was more than

that encountered during a stack penalty. (approx. 24

cycles for a one-item stack update).

5.3 Accuracy of estimates

Timing estimates, especially for loop coding, were not

extremely accurate, generally falling only within +20% of

the observed. Therefore, the timing figures listed should

only be used as a rough comparison with other processors.

Precise prediction of timing is not possible since some

parameters are data-dependant while others are dependant

upon the recent history of the processor. The large

descrepeancy between calculated and observed times for loop

coding can be justified by considering that any error in

the prediction of timing within the loop is multiplied by

the number of times through the loop. Timing estimates for

inline coding were consistent with the observed.

5.4 Timing Estimates

Table 3 shows time of execution for the various

digital filtering sub-programs which have been coded. Each

subprogram was coded in three data formats: Single

Precision Fractional, Single Precision Floating ( 24-bit

42



mantissa, 8-bit exponent), and in Double Precision Floating

(40-bit mantissa, 8-bit exponent). Where applicable,

segments were written using both loop- and linear-coding.

Overhead time for loop set-up is included in the total time

for 16 iterations while time-per-N figures exclude this

figure.

Table 3 shows the algorithms used for the software

evaluation. In the fixed-point fractional data format of

programming, alignment of data is performed in assembly

language whereas in both floating point implementations,

data is automatically aligned in the much more efficient

microcoding. This explains why the fixed-point ratio

calculation required more time than the floating-point

versions. In other sections of code, the time of execution

increases with precision.

Table 3. Algorithms used for Software Evaluation

N
FIR Filter Y = a(i) * x(i)

i=0

Filter Update

x(i + 1) = x(i) i= to N-l

Ratio Calculation

r = x2/y
2
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Decision

1 r> THETA
d =

r < THETA

Weight Update

a(i) = a(i) + da * y(i) i = to n

IIR Filter

v(m) = (1-BETA) * v(mil) + BETA * x2

Table 4 Time of Execution of Several Digital Filters

Operation Single Prec Single Prec Double Prec
Fractional Floating Floating

loop line loop line loop line

FIR Filter
time/N 269.5 137
16-coeff 4344 2213

Filter Update
time/N 143.5 33
16-coeff 2163.5 495

635.5 493 1104 936
10209.5 7918.5 17720.5 15016

153.5 43 193 107.5
2473 643 2911 1612.5

Ratio Calculation

Decision

1236 996 2048

49 103 195

Weight Update
time/N 297 169
16-coeff 4768.5 2704

IIR Filter
1 = 2 378

658.5 530,,5 1146.5 1043
10552.5 8488 18360.5 16696

___ — 1132..5 — — — 2255
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CONCLUSIONS

Although the AAMP was designed largely for use in

high-speed, large imbedded-processing systems, the AAMP

makes a very efficient microprocessor for minimal

component, minimal power systems. Its capacity for

floating point arithmetic and the inherent low power

consumption of CMOS make the AAMP a very attractive

processor for applications in remote intruder detection

systems. Bus protocol using the synchronous mode requires

a minimum number of glue chips (one) while bus transaction

time may be adjusted to allow the use of slow memories

while maintaining a high ALU speed.

Once the change-over from register-oriented assembly

language programming to stack-oriented programming is made,

code can actually be written quicker using the AAMP's high

level commands. Local variables, although slower than true

registers, may be used for quick access and temporary

storage. The various built-in data types of the AAMP make

coding for various precisions of data simple and closely

parallel.

For this thesis, a system intended to provide the

digital signal processing portion of an ultra-low power

intruder detection system was built and tested. Very few

problems were encountered while using the AAMP and, as a
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rule, items stated in the reference manual were found to be

true. However, a problem was found in the intermediate

Bulk CMOS packages as pull-up resistors were not placed on

some test pins with no mention of this made in the AAMP

manual . Pull-ups were added to the circuit solving the

problem and Rockwell has since changed packaging and

included the pull-ups in the new design.

Excellent support for the project was provided by

Rockwell through constant contact with K. L. Albin. Much

of the information given for packaging and availability of

the AAMP was gathered during a Sandia-sponsored trip to

Cedar Rapids in October, 1986. Several meetings were

arranged where, Dave Best and several other Rockwell

personnel gave presentations on the AAMP.

With the type of support for the AAMP which was shown

and with the outstanding characteristics of the AAMP

itself, the AAMP should definitely be considered when

designing any "modern" system.
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APPENDIX A

The latest version of the AAMP has a different pin-

assignent than the previous versions tested. The following

is a table of the pin-assignments for the three versions of

the AAMP seen at Kansas State. The original CMOS/SOS

version was used by G. S. Mauersberger2 and by Mike Gaches

in earlier designs. The implementation described in this

thesis uses a Bulk CMOS AAMP from a transition stage in

packaging. The AAMP is now packaged as a top-cavity (TC)

device and the pin-out has again changed. The printed

circuit board design in Appendix C uses this new design.

Present and future versions of the AAMP will follow the

newest assignment. Figure A-l, taken from the AAMP

reference manual 3 shows the pin assignment and physical

dimensions for the 68 pin pin-grid-array package.

(BOTTOM VIEW)
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Figure A-l Pin assignment for 68 pin PGA AAMP
(from AAMP Reference Manual 3

)
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Table A-l AAMP Pin Assigments by Functions

SIGNAL CMOS/SOS BULK CMOS TC BULK CMOS

Supply

VDD Bll

GND

Address

A23
A22
A21
A20
A19
A18
A17
A16
A15
A14
A13
A12
All
A10
A09
A08
A07
A06
A05
A04
A03
A02
A01
A00

Data

L6

K2
L3
K3
L4
K4
L5
K5
K6
Bl
B2
CI
C2
Dl
D2
El
E2
F2
Gl
G2
HI
H2
Jl
J2
Kl

Bll
Fl

L6
L2
A5

K2
L3
K3
L4
K4
L5
K5
K6
Bl
B2
CI
C2
Dl
D2
El
E2
F2
Gl
G2
HI
H2
Jl
J2
Kl

B2
Bl
Dl
K6
BIO
A10
F2
Fl
G10
A2

Kl
Jl
J2
HI
H2
Gl
G2
El
L10
L9
K9
L8
K8
L7
K7
L6
L5
K5
L4
K4
L3
K3
L2
K2

D15
D14
D13

A2
B3
A3

A2
B3
A3

K10
Kll
J10
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D12 B4 B4 Jll
Dll A4 A4 H10
DIO B5 B5 Hll
D09 B6 B6 Gl
D08 A6 A6 FIO
D07 B7 B7 Fll
D06 A7 A7 ElO
D05 B8 B8 Ell
D04 A8 A8 DIO
D03 B9 B9 Dll
D02 A9 A9 CIO
DOl BIO BIO Cll
DOO AlO AlO Bll

Clock

YO
Yl
CLK

DIO
Cll
CIO

DIO
Cll
CIO

B8
A9
B9

Interrupt
SIGNAL CMOS/SOS BULK CMOS TC BULK

IRQ
NMI
RST

L8
K8
L9

L8
K8
L9

D2
CI
C2

Control

BR Jll Jll B3
BG Ell Ell A7
XRQ KIO KIO A3
XAK FIO FIO B6
XER Fll Fll A6
R/W J10 JIO A4
50 Dll Dll A8
51 ElO ElO B7
OE H10 B4

Monitor

E/U G10 G10 B5
C/D Gil Gil A5

Test

SOUT L7 L7
L/S K7 K7
SCLK K9 K9
SIN LIO
HLD Kll
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HB Hll
LB H10

No connects

NC Fl
L2
L10
A5

Alignment

NC ___

Hll E2

C3
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APPENDIX B

Instruction Set Timing Estimates

The following list, adapted from a listing created by

a computer program written by N.M. Mykris 5
, shows the

calculated time of execution for the AAMP's entire

instruction set. Variable-length instructions are

indicated by an equation showing how to calculate time of

execution. For these variable-length instructions, the

number of alignments (A) and normalizations (N) is

dependant upon the data while the number of shifts (S) and

the length (L) of the segment shifted is determined by the

programmer. Typical values for these four variables are

indicated with each listing. Time of execution for LOCNL

is dependant upon the nesting level of called subroutines

from the main routine. Time of execution for RETURN

depends upon the number of arguments returned from the

routine.

The left-hand column of the listing shows the

percentage of each command used to attain a standard Gibson

benchmark. Throughput per MHz for the specified mix is

shown at the end of the list.
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Table B.l Timing Estimates for Instruction Set

Mix =

Mix =

ABS
ABSD
ABSF
ABSFE

6.10%, ADD
ADDD

6.90%, ADDF

Mix = 1.60%,

"50",
"DC",
"DE",
"AE",
"E4",
"80",

Time
Time
Time
Time
Time
Time

13.0 eye
15.0 eye
5 .

5

eye
9 . eye
9 . eye

13.0 eye
"84", Time =153.0 eye A=6, N=l

Time = 125 + 4* (A + N) eye

ADDFE "92", Time =229.0 eye A=6, N=l
Time = 173 + 8* (A + N) eye

AND "E8", Time = 5.5 eye
ARS "B8", Time =49.0 eye S = 8

Time = 17 + 4 * S eye

ASNBX
ASND
ASNDC
ASNDI
ASNDL
ASNDLE
ASNDU
ASNDX
ASNDXI
ASNF

Time

ASNS
ASNSC
ASNS I

ASNSL
ASNSLE
ASNSU
ASNSX
ASNSXI
ASNT
ASNTC
ASNTI
ASNTLE
ASNTU
ASNTX
ASNTXI
CALL
CALLI
CALLP
CALLPI

"A4"
"A8"
"A9"
"F6"
•i C m

"8B"
»8C"
"AA"
"9E"

= 108

"D3"
»D4"
ii 5 4 ii

ii 411

"5C"
"A7"
"A6"
"D5"
"98"
i' 9 9 ••

"B6"
"B5"
"9A"
"9B"
"9C"
"5D"
"23"
"5E"
«ipii

Time = 43.0 eye
Time =14.0 eye
Time = 19.5 eye
Time = 25.0 eye
Time =14.0 eye
Time =19.5 eye
Time = 26.0 eye
Time = 22.0 eye
Time = 25.0 eye
Time =108.5 eye

5 + 4*(S - L) eye

Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time

10.0
15.5
21
10
15
22
14
21
18
23
29
23
44
44
33
68
75
81
88

L=8, S=8

eye
eye
eye
eye
eye
eye
eye
eye
eye
eye
eye
eye
eye
eye
eye
eye
eye
eye
eye
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CALLU "64", Time =68.5 eye
CVTBIT "F8" , Time =13.0 eye
CVTDF "D9", Time =137.0 eye N = 15

Time = 77 + 4 * N eye

CVTDFE "6C", Time =225.0 eye N = 15
Time = 105 *= 4 * N eye

CVTDS "DA", Time =13.5 eye
CVTFD "DB" , Time =113.5 eye A = 15

Time = 53.5 + 4 * A eye

CVTFED "AF", Time =113.5 eye A
Time = 53.5 + 4 * A eye

= 15

CVTFEF "B4", Time = 49.0 eye
CVTFFE "6D", Time = 13.0 eye
CVTSD "65", Time = 9.0 eye
DECS "7F", Time = 20.0 eye
DECSI "7E", Time = 31.0 eye
DECSLE "7D", Time = 25.5 eye

Mix = 0.20%, DIV "FA", Time =109.0 eye
DIVD "97", Time =313.0 eye

Mix = 1.50%, DIVF "87", Time =313.0 eye
Time = 309 + 4 * N eye

DIVFE "95", Time 706.0 eye
Time = 698 + 8 * N eye

DIVI "E7", Time =109.0 eye
DIVID "83", Time =317.0 eye
DO "8F", Time = 45.0 eye
DUP "6A", Time = 5.5 eye
DUPD "6B", Time = 9.0 eye
DUPT "79", Time = 49.5 eye
ENDO "9F", Time = 41.0 eye
EQ "EB", Time = 13.0 eye
EQD "88", Time = 15.0 eye
EQT "90", Time = 29.5 eye

Mix = 5.30%, EXCH "ED" , Time = 13.0 eye
EXCHD "8D", Time = 25.0 eye
EXCHT "9D", Time = 47.0 eye

Mix = 3.80%, GR "EC", Time = 13.0 eye
GRD "89", Time = 17.0 eye
GRF "8A", Time = 49.0 eye
GRFE "91", Time = 53.0 eye
HIGHER "F5", Time = 13.0 eye
INCS "7C", Time = 20.0 eye
INCSI "7B", Time = 31.0 eye
INCSLE "7A", Time = 25.5 eye

N = 1

N = 1
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INSERT
Tir e

INTE
LIT16
LIT24
LIT32
LIT4A
LIT4B
LIT48
LIT8
LIT8N
LITDO
LOCL
LOCNL
Time = 2

LOCU
LOCX

Mix = 0.60%, MPY
MPYD

Mix = 3.80%, MPYF

8E",
93

IB"
1A"
24"
25"
1"
2"

26"
18"
19"
27"
53"
D2"
4.5

Time =93.0 eye L=8,S=8
+ 4*(S - L) eye
Time = 5.5 eye
Time = 16.5 eye
Time = 22.0 eye
Time =27.5 eye
Time = 5.5 eye
Time = 5.5 eye
Time =68.0 eye
Time = 11.0 eye
Time = 11.0 eye
Time = 9.0 eye
Time = 5.5 eye
Time =48.5 eye 1 stack
24* (Number of stacks) eye

Time =
Time =
Time =93.0 eye
Time =301.0 eye
Time =293.0 eye N = 1

9 . eye
5.5 eye

"66",
"FF",
"F9",
"96",
"86",
Time = 289 + 4 * N eye

MPYFE "94", Time =539.0 eye N
Time = 531 + 8 * N eye

= 1

Mix =

MPY I "E6",
r

Time = 93.0 eye
MPYID "82", Time =301.0 eye
NEG "51" Time = 9.0 eye
NEGD "DD" , Time = 13.0 eye
NEGF "DF" Time = 13.0 eye
NEGFE "AD" Time = 17.0 eye
NOP "20"

, Time = 5.5 eye
NOT "F4" f Time = 5.5 eye
OR "E9", , Time = 5.5 eye
POP "52" Time = 5.5 eye
POPD "B7" r Time = 9.0 eye
REFBX "Dl", Time = 42.5 eye
REFD "67", Time = 18.0 eye
REFDC "68" Time = 23.5 eye
REFDI "21", Time = 29.0 eye
REFDL it 3 ii Time = 18.0 eye
REFDLE "22", Time = 23.5 eye
REFDU "D6", Time = 29.0 eye
REFDX "D7", Time = 26.0 eye
REFDXI "69", Time = 29.0 eye
REFS "55", Time = 12.0 eye
REFSC "56", Time = 17.5 eye
REFS I "1C", Time = 23.0 eye

31.20%, REFSL " 0", Time = 12.0 eye
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Mix =

REFSLE "IE", Time = 17.5 eye
REFSU "D8"

,

Time m 23.0 eye
.00%, REFSX "DO", Time = 16.0 eye

REFSXI "57", Time as 23.0 eye
REFT "75", Time = 57.5 eye
REFTC "76", Time = 59.0 eye
REFTI "74", Time = 93.5 eye
REFTLE "77", Time = 84.0 eye
REFTU "78", Time = 36.0 eye
REFTX "6F", Time = 40.5 eye
REFTXI "6E", Time SB 79.5 eye
RETURN "5F", Time = 87.0 eye 1 Arg
Time = 63 + ;24* (Number of Args) eye

Mix = 4.40%, SHIFT "FB", Time =53.0 eye S = 8

Time = 21 + 4 * S eye

SHIFTL "FD", Time =49.0 eye
Time = 17 + 4 * S eye

S = 8

Mix = 16.60%,

SHIFTR "FC", Time =49.0 eye S = 8

Time = 17 + 4 * s eye

SKIP "59", Time =10.0 eye
SKIPI "ID", Time =12.0 eye
SKIPNZ "EF", Time =16.0 eye
SKIPNZI "5B", Time =17.0 eye
SKIPZ "EE", Time =16.0 eye
SKIPZI "5A", Time =17.0 eye
SUB "E5", Time = 9.0 eye
SUBD "81", Time =13.0 eye
SUBF "85", Time =161.0 eye A=6, N=l

Time = 133 + 4* (A + N) eye

SUBFE "93", Time =237.0 eye A=6, N=l
Time = 181 + 8* (A + N) eye

SWAPSU "AB", Time =28.0 eye
XOR "EA", Time = 5.5 eye
XTRACT "AC", Time =85.0 eye L=8 , S=8

Time = 85 + 4*(S - L) eye

Instruction throughput based on the given percentages:

25.254 KOPS
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Appendix C

The printed circuit layout shown in this section was

created by Armando Corrales and Jim Heise on an HP9845C

computer using the Engineering Graphics System (EGS).

Specifications for board connections were not known at the

time the board was laid out so traces simply lead to the

edge of the board and stop. The design uses the new Top-

Cavity PGA pin assignment for the AAMP.

Not included on this board is the input buffer section

which may or may not be needed in a final system. This

design also differs from the prototype circuit in that the

Flip-Flop used is the MM74HC74 which, as pointed out in the

power consumption section, was found to use slighlty more

power than the MM74HC174. Room is, however, available for

replacing this 14-pin chip with the 16-pin chip if deemed

necessary.
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Figure C.l Assembly Drawing
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Figure C.2 Layer 1 -Component Side
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Figure C.8 Keep-out Areas For Power and Ground Planes
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APPENDIX D

The following sub-programs were combined in an order

which allowed results to be monitored to confirm proper

program execution. The fixed precision listings show the

program as it was written for testing. Other tested code

was substituted into this original order of execution.

To make subprograms interchangeable, a filler opcode

was placed in the final high byte of code when the sub-

program consisted of an odd number of bytes. This also

made it possible to differentiate between blocks of code

during time measurements. For the same reason mentioned

with the DUP command in the Architecture section, the use

of NOP's was avoided and instead the INTE command, which

does not cause stack thrashing, was used. Timing estimate

and observation figures were altered to exclude these

filler commands.

Data types for fixed-point implementations are shown

in program headers. The values of S, L, and R in the

notation (S / L / R) represent the presence or absence of a

sign bit, the number of bits left of the decimal point and

the number of bits right of the decimal respectively.
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D.l Fractional 16-bit precision - loop coding

Executive Entry Table

$0000 00 00 Cont. Status pointer
$0001 71 00 Init. Exec Stack limit
$0002 74 FF Init. Exec Top of Stack
$0003 00 40 Init. Exec PROCID
$0004 00 00 bus error PROCID
$0005 00 00 NMI PROCID
$0006 00 00 INT PROCID
$0007 00 00 Trap PROCID
$0008 00 00 Exception PROCID

Local variables

I - Lenv(l)
Yguick - Lenv(2)
xZ - Lenv(3,4)
THETA - Lenv(5)
vfm-1) - Lenv(6)
y
2 - Lenv(7,8)

x(0) - Lenv(10) input buffer 16 long

x(F) - Lenv(lF)

a(0) - Lenv(20) coefficient table

a(F) - Lenv(2F)

y(0) - Lenv(30) output buffer 16 long

y(F) - Lenv(3F)

none used
ti ii

it ii

ii ii

ii ii
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Initial Coefficient Table
[Band-pass filter]

$0010 01 7B
$0011 09 3F
$0012 09 9D
$0013 FA IB
$0014 E8 54
$0015 EA 2F
$0016 03 00
$0017 1C 16
$0018 S3 EA
$0019 FD 00
$001A 15 Dl
$001B 17 Al
$001C 05 EA
$001D F6 6E
$001E F6 C2
$001F FE 86

a (0) = .01155124
a (1) = .07222172
a (2) = .07476273
a (3) =- .04603866
a (4) =- .18493122
a [5) =- .17043359
a (6) = .02344914
a [7) = .21941864
a [8) =- .21941864
a (9) =- .02344914
a (A) = .17043359
a (B) = .18493122
a (C) = .04603866
a CD) ss- .07476273
a (E) =- .07222172
a (F) =- .01155124

This block of code copies the initial coefficients

into the Local Environment for efficient access in the FIR

Filter subprogram. Data is assumed to be in the data

format used in the Filter routine

This is the first executable code of the program,

therefore, immediately after invocation of the program, the

executive stack mark, consisting of the program counter

(PC), the Code environment (CENV) , the Procedure identifier

(PROCID), and the Local Environment pointer (LENV) , is

copied into the four memory locations immediately above the

start of the Local Environment.
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$0020 00 32 procedure header (# local vars)

Block Move

address # cycles
$0021 10 18 1810 LIT8 16 I = 16 11

LI 11 LIT4A.1 5.5
$0022 E5 11 E5 SUB 1 = 1-1 9

41 ASNSL.l save I 10

$0023 01 41 01 REFSL.l 12

$0024 10 56 56

01

10 REFSC $10

REFSL.l

get table(I) 17.5

12

$0025 53 01 53 LOCL 5.5
$0026 20 D4 D4

01

20 ASNSC $20

REFSL.l

store a(I) 15.5

12
$0027 01 01 01 REFSL.l 12
$0028 0E 19 19 0E LIT8N 0E 11

EF SKIPNZ LI 1 = 0? 16

$0029 52 EF 52 POP kill old counter 5.5

i * Time of execution *!

Calculated Observed Error
Inside loop 138 144 - 4%
Set-up 16.5
Total 2225 2624 -15%

input x(0)

This section of code inputs data from input channel one and
stores it to x(0)

$002A 00 1C 1C 1000 REFSI $1000
$002B 5C 10 5C 10 ASNSLE $10
$002C IB 10 IB INTE

get input
store to x(0)

#cycles
23
15.5

! * Time of execution *!

Calculated Observed Error %

Time for input 38.5 38.5 0%
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FIR Filter

This block of code performs an FIR filter on the array of
input data and writes the result into the Local
Environment. Data and coefficients are in the (1 / / 15)

data format.

Y = SUM a(i) * x(i)

address

i = 1 . . 16

#cyc3 es

10 LIT4A.0
ASNSL.2$002D 42 10 42

$002E 10 18 18 10 LIT8 16

Yquick =

I = 16

5. 5

10

11

L2

F9

$002F E5 11

$0030 01 41

$0031 56 53

$0032 01 10

$0033 56 53

$0034 F9 20

$0035 E4 02

$0036 01 42

$0037 19 01
$0038 EF 13

$0039 IB 52 IB

11 LIT4A. 1

E5 SUB
41 ASNSL. 1

01 REFSL. 1

53 LOCL
56 10 REFSC $10

01 REFSL.,1
53 LOCL
56 20 REFSC $20

mpy

02 REFSL.

2

E4 ADD
42 ASNSL.2

01 REFSL.

1

01 REFSL.

1

19 13 LIT8N 13
EF SKIPNZ L2

52 POP
IB INTE

1 = 1-1

get x(I)

get a(I)

a(I) * x(l)

add to y

1 = 0?

5. 5

9

10

12
5.5
17.5

12
5.5
17.5

93

12
9

10

12
12

11
16

kill old counter 5.5

!*

Inside loop
Set-up
Total

Time of execution

Calculated
269.5
32

4344

Observed
224

3701

*!

Error %

20%

17%
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Filter Update

This block of code moves the array of time delayed input
data to one sample greater delay and leaves x(0) empty for
the next input of data. Data is maintained in the (1 / /
15) format.

x(i + 1) = x(i) i = 1 . 15

flcycles

2F

LU $003A 11 2F 11
E5

$003B 41 E5 41

01
$003C 53 01 53
$003D 10 56 56 10

01
$003E 53 01 53
$003F 11 D4 D4 11

01
$0040 01 01 01

$0041 OF 19 19 OF
EF

LIT4B.F I = 15 5.5

LIT4A.1 5. 5

SUB 1 = 1-1 9

ASNSL.

1

save I 10

REFSL.l 12

LOCL 5.5
REFSC $10 get x(i) 17.5

REFSL.l 12

LOCL 5.5
ASNSC $11 save x(i + 1) 15.5

REFSL.l 12

REFSL.l 12

LIT8N OF 11
SKIPNZ LU 1 = 0? 16

$0042 52 EF 52 POP kill old counter 5.5

i * Time of execution *!

Calculated Observed Error
Inside loop 143.5 156 - 8%
Set-up 11
Total 2163.5 2585 -16%
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Output buffer Update

This section of code shifts the array of time delayed
output data to one sample greater delay. Data type is
maintained.

y(0) = Yquick
y(i + 1) = y(i) i = 1 . .15

^cycles

02
$0043 5C 02 5C 30

LO

$0044 2F 30 2F

11
$0045 E5 11 E5

41

$0046 01 41 01
53

$0047 56 53 56 30

$0048 01 30 01
53

$0049 D4 53 D4 31

$004A 01 11 01
01

$004B 19 01 19 OF
$004C EF OF EF

52
$004D IB 52 IB

REFSL.2 12
ASNSLE $30 y(0) = Yqu:LCk 15.5

LIT4B.F I = 15 5.5

LIT4A.1 5.5
SUB 1 = 1-1 9

ASNSL.l save I 10

REFSL.l 12
LOCL 5.5
REFSC $30 get y(i) 17.5

REFSL.l 12
LOCL 5. 5

ASNSC $31 save y(i + 1) 15.5

REFSL.l 12
REFSL.l 12

LIT8N OF 11
SKIPNZ LO 1 = 0? 16

POP kill old counter 5.5
INTE

!* Time of execution *!

Calculated
Inside loop 143.5
Set-up 38.5
Total 2334.5
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Ratio Calculation

r = x /y

To make r comparable to THETA (0/8/8) in the decision
section, x is shifted 4 right prior to squaring. The full
32 bits of the intermediate result are maintained through
divide with a single precision value left on the stack upon
exit.

Overflow will occur if outside range

x2/ 256 < Y
2 < 256 x2

address

$004E 10 IE IE 10
10

$004F 2C 10 2C
$0050 0C 18 18 0C

8E

(0/8/8) set-up

REFSLE $10
LIT4A.0
LIT4B.C
LIT8 0C
INSERT

Is word
get x(0)

abed mnop

mnopOOO. . . 000

^cycles

17.5
5.5
5.5
11
93

$0051 IE 8E IE 10
$0052 14 10 14

B8
$0053 ED B8 ED

ms word
REFSLE $10 get x(0) 17.5
LIT4A.4 abed mnop 5.5
ARS ssssabed.

.
jkl 49

EXCH ls-ms order 13

End of (0/8/8) set-up

$0054 96 6B
6B
96

DUPD
MPYD X2

9

301

C3 ASNDL.3 store temp 14

$0055
$0056

$0057

IE
10

96

C3
30

6B

IE 30
10
6B
96

REFSLE $30
LIT4A.0
DUPD
MPYD

get y(0)
fractional CVTSD
y
i

17.5
5.5
9

301

33 REFDL.3 get x 2 back 18

$0058

$0059

8D

52

33

97

8D
97
52

EXCHD
DIVD
POP fractional CVTDS

25
313
5.5
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I * Time of execution *!

(0/8/8)
time of

set-up
execution

Calculated
217.5
1236

Observed
220

1132

Error %

1%
-10%

The same (0/8/8) set-up could be used to shift THETA
in the decision with the shift value then equal to 8

instead of 4.

Decision

The following section compares the result of the ratio
calculation with a threshold, placing a boolean flag
indicating T or F on the top of the stack.

d = 1 r > THETA
r < THETA

^cycles
05 REFSL.5 get THETA 12

$005A ED 05 ED EXCH 13

EC GR T if THETA > r 13

$005B 11 EC 11 LIT4A.1 5.5
EA XOR T if THETA < r 5.5

$005C IB EA IB INTE

! * Time of execution *!

Calculated Observed Error
time of execution 49 54.5 -10 5
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Weight Update

The following section of code uses past output values to
adapt the coefficients of an FIR filter. In this case,
a(i) is assumed (1 / 4 / 11)

a(i) = a(i) + da * y(i)

^cycles

$005D 10 18 18 10 LIT8 16 I = 16 11

LW 11 LIT4A.1 5.5
$005E E5 11 E5 SUB 1=1-1 9

41 ASNSL.l 10

$005F 01 41 01 REFSL.l get y(i) 12

53 LOCL 5.5
$0060 56 53 56 30 REFSC $30 17.5

$0061 1A 30 1A dada LIT16 da 16.5

$0062 da da F9 MPY 93

$0063 01 F9 01 REFSL.l get a(i) 12

53 LOCL 5.5
$0064 56 53 56 20 REFSC $20 17.5

$0065 E4 20 E4 ADD 9

01 REFSL.l 12

$0066 53 01 53 LOCL store 5.5
$0067 20 D4 D4

01

20 ASNSC $20

REFSL.

1

a(i)+da*y (i) 15.5

12

$0068 01 01 01 REFSL.l 12

$0069 13 19 19
EF

13 LIT8N 13
SKIPNZ LW

11
16

$006A 52 EF 52 POP 5.5

!* Time of execution *!

Calculated
Inside loop 297
Set-up 16.5
Total 4768.5

Observed Error
256 13%

4483.5 6%
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#cycles
IE 10 REFSLE $10 get x(0) 17.5
IE 10 REFSLE $10 17.5
F9 MPY X 2 93

IIR Filter

v(m) = (l-BETA) * v(m-l) + BETA * x * x

Assume BETA fixed and can be referenced immediate.
The temporary value x 2 was calculated in RATIO CALCULATION
section. 116 microseconds could be saved by recalling the
value and not recalculating.

$0069 10 IE
$006A 10 IE

or replacing above code

04 REFSL.4 get top 16 bits 12
of 32-bit x 2

$006B 1A F9 1A 3E68 LIT16 BETA BETA = .98 16.5

$006C 3E 68 F9 MPY 93

$006D 06 F9 06 REFSL.6 get v(m-l) 12

$006E 47 1A 1A 0147 LIT16 (l-BETA) = .02 16.5
$006F F9 01 F9 MPY 93

E4 ADD 9

$0070 46 E4 46 ASNSL. 6 store v(m) 10

I* Time of execution *!

Calculated Observed Error
normal data 378 372 2%
input = 220
overflow 401
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D.2 Fractional 16-bit Precision -Inline coding

FIR Filter

This section of code performs an FIR filter on the array
of input data and writes the result into the Local
Environment. Data and coefficients are in the (1 / / 15)
data format.

Y = SUM a(i) * x(i) i = 1 . .16

$002D 00 18 18

$002E 20 IE IE 20
$002F 10 IE IE 10

F9
$0030 E4 F9 E4

$0031 21 IE IE 21
$0032 11 IE IE 11

F9
$0033 E4 F9 E4

$005B 2F IE IE 2F
$005C IF IE IE IF

F9
$005D E4 F9 E4

$005E 30 5C 5C 30

!* Time of execution *!

Calculated Observed Error

Set-up 26.5
time per N 137 —
16 coefficients 2213 2316 -4 ;

^cycles
LIT8 00 y = 11

REFSLE $2 get a(0) 17.5
REFSLE $10 get x(0) 17. 5

MPY 93

ADD y = y + * 9

REFSLE $21 get a(l) 17.5
REFSLE $11 get x(l) 17.5
MPY 93

ADD y = y + * 9

REFSLE $2F get a(F) 17. 5

REFSLE $1F get x(F) 17. 5

MPY 93
ADD y = y + * 9

ASNSLE $30 store to y(0) 15..5
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Filter Update

This block of code moves the array of time delayed input
data to one sample greater delay and leaves x(0) empty for
the next input of data. Data is maintained in the (1 / /

15) format.

x(i + 1) = x(i) i = 1 15

$005F IE IE IE IE
$0060 IF 5C 5C IF

$0061 ID IE IE ID
$0062 IE 5C 5C IE

REFSLE $1E
ASNSLE $1F

REFSLE $1D
ASNSLE $1E

get x(E)
store to x(F)

get x(D)
store to x(E)

#cycles
17.5

17.5
15.5

$0071 10 IE IE 10
$0072 11 5C 5C 11

REFSLE $00
ASNSLE $01

get x(O)
store to x(l)

17.5
15. 5

!* Time of execution *!

Calculated Observed Error

time per N
16 coefficients
(15 iterations)

33
495

Ratio Calculation

r = (x * x) / (y * y)

This routine retains the full 32 bits after
multiplies. Numerator and denominator are then normalized
in 8-bit increments until the leading byte is non-zero.
The final divide is a full 32 bit by 32 bit fractional
divide. Finally, the LSB is discarded leaving the result,
a 16-bit unsigned fraction. (0/0/16)

offset #cyc]
$0000 10 IE IE

10
10 REFSLE $10

LIT4A.0
get x 17.5
CVTSD fractional 5.5

$0001 6B 10 6B
96

DUPD
MPYD

9

X 2 301
$0002 C3 96 C3 ASNDL.3 14
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$0003 10 IE IE 10
10

$0004 6B 10 6B
96

$0005 C7 96 C7

04
$0006 08 04 08

E9
$0007 5B E9 5B 1A

REFSLE $30
LIT4A.0
DUPD
MPYD
ASNDL.7

REFSL.4
REFSL.8
OR
SKIPNZI Over

If top word zero

17.5
5.5
9

301
14

12
12
5.5
17

I* initial set-up takes 740.5 cycles *!

$0008 03 1A 03 REFSL.3
44 ASNSL.4

$0009 07 44 07 REFSL.7
48 ASNSL.8

move full word 12
10
12
10

$000A 10 48 10
43

$000B 10 43 10
47

LIT4A.0
ASNSL.3
LIT4A.0
ASNSL.7

clear LSB's 5.5
10
5.5
10

!* double shift takes 75 cycles *!

Over
$000C 04 47

$000D E9 08
$000E 00 1A
$000F E8 FF
$0010 1A 5B 5B 1A SKIPNZI Out

04 REFSL.4
08 REFSL.8
E9 OR
1A FF00 LIT16 FF00
E8 AND

test top byte

mask out bottom

12
12
5.5
16.5
5.5
17

!* single shift test takes 68.5 cycles *!

$0011 28 07
07
28
FD

REFSL.4
LIT4B.8
SHIFTL

shift MSB
12
5.5
49

$0012

$0013

13

11

FD

53

13
53
11
Dl

LIT4A.3
LOCL
LIT4A.1
REFBX

get top 8 bits
from LSB

5.5
5.5
5.5
42.5

$0014 Dl E9 E9
44

OR
ASNSL.4

store 5.5
10

$0015 03 44 03
28

REFSL.3
LIT4B.8 shift LSB

12
5.5
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$0016 FD 28 FD
43

SHIFTL
ASNSL.3

49
10

$0017 08 43 08 REFSL.8 12

28 LIT4B.8 Shift MSB 5.5
$0018 FD 28 FD

17

SHIFTL

LIT4A.7

49

5.5
$0019 53 17 53 LOCL get top 8 bits 5.5

11 LIT4A.1 from LSB 5.5
$001A Dl 11 Dl REFBX 42 .5

E9 OR store 5.5
$001B 48 E9 48

07

ASNSL.8

REFSL.7

10

12

$001C 28 07 28
FD

LIT4B.8
SHIFTL

shift LSB 5.5
49

$001D 47 FD 47 ASNSL.7 10

!* single shift takes 435 cycles *

OUT 33 REFDL.3

$001E 37 33 37 REFDL.7

97 DIVD

$001F 52 97 52 POP

get x^ 18

get y
2 18

fractional divide 313

save top 16 bits 5.5

!* 32-bit divide and memory accesses take 354.4 cycles *!

Calculated time of execution:

Zero Shifts 1163.5
One Shift 1598.5
Two Shifts 1238.5
Three Shifts 1673.5
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Weight Update

The follwing section of code uses past output values to

adapt the coefficients of an FIR filter. In this case,

a(i) is assumed (1 / 4 / 11)

a(i) = a(i) + da * y(i)

offset tfcytri

$0000 30 IE IE 30 REFSLE $30 get y(0) 17. 5

$0001 da 1A 1A dada LIT16 da 16. 5

$0002 F9 da F9 MPY y(0) * da 93
$0003 20 IE IE

E4
20 REFSLE $20

ADD
get a(0)
y(0) + da * y(0)

17.
9

,5

$0004 5C E4 5C 20 ASNSLE $20 15..5

$0005 IE 20 IE 21 REFSLE $21 get y(l) 17..5

$0006 1A 21 1A dada LIT16 da 16..5

$0007 da da F9 MPY y(l) * da 93
$0008 IE F9 IE 21 REFSLE $21 17, , 5

$0009 E4 21 E4 ADD y(l) + da * y(l) 9

$000A 21 5C 5C 21 ASNSLE $21 15..5

$004B IE 2E
$004C 1A 2F
$004D da da
$004E IE F9
$004F E4 2F
$0050 2F 5C

IE 2F REFSLE $2F get y(F) 17..5
1A dada LIT16 da 16.,5
F9 MPY y(F) * da 93
IE 2F REFSLE $2F 17.,5

E4 ADD y(F) + da * y(F) 9

5C 2F ASNSLE $2F 15.,5

!* Time of execution *!

Calculated Observed Error

time per N 169
16 coefficients 2704
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D.3 Standard Precision Floating Point -Loop Coding

Executive Entry Table

$0000 00 00 Cont. Status pointer
$0001 71 00 Init. Exec Stack limit
$0002 74 FF Init. Exec Top of Stack
$0003 00 60 Init. Exec PROCID
$0004 00 00 bus error PROCID none used
$0005 00 00 NMI PROCID " "

$0006 00 00 INT PROCID " "

$0007 00 00 Trap PROCID " "

$0008 00 00 Exception PROCID " "

Local variables

I - Lenv(l)

Yquick - Lenv(2,3)

y
2 - Lenv (4, 5)

THETA - Lenv(6,7)

v(m-l) - Lenv (8,9)

da - Lenv (A, B)

BETA - Lenv(C,D)

1-BETA - Lenv(E,F)

x(0) - Lenv(10,ll) input buffer 16 long

x(F) - Lenv(2E,2F)
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a(0) - Lenv(30,31) coefficient table

a(F) - Lenv(4E,4F)

y(0) - Lenv(50,51) output buffer 16 long

y(F) - Lenv(6E,6F)

Initial Coefficient Table
[Band-pass filter]

= .01155124

= .07222172

= .07476273

=-.04603866

=-.18493122

=-.17043359

= .02344914

= .21941864

=-.21941864

=-.02344914

= .17043359

$0010
$0011

82
01

D3
7A

a(0)

$0012
$0013

8F
09

60
3E

a(l)

$0014
$0015

D3
09

3E
91

a(2)

$0016
$0017

67
FA

B7
IB

a(3)

$0018
$0019

2C
E8

7E
54

a(4)

$001A
$001B

3B
EA

6F
2F

a(5)

$001C
$001D

61
03

A0
00

a(6)

$001E
$001F

E8
1C

F6
15

a(7)

$0020
$0021

17
E3

05
EA

a(8)

$0022
$0023

9E
FC

60
FF

a(9)

$0024 C4 91 a(A)
$0025 15 DO
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$0026 D3 82 a(B) = .18493122
$0027 17 A6

$0028 98 49 a(C) = .04603866
$0029 05 E4

$002A 2C C2 a(D) =-.07476273
$002B F6 6E

$002C 70 50 a(E) =-.07222172
$002D F6 CI

$002E 7D 2D a(F) =-.01155124
$002F FE 85

This block of code copies the initial coefficients

into the Local Environment for efficient access in the FIR

Filter subprogram. Data is initially stored in ROM in

extended precision Fractional data format and is converted

to floating by this routine.

This is the first executable code of the program,

therefore, immediately after invocation of the program, the

executive stack mark, consisting of the program counter

(PC) , the Code environment (CENV) , the Procedure identifier

(PROCID), and the Local Environment pointer (LENV) , is

copied into the four memory locations immediately above the

start of the Local Environment.
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$0030 00 70 procedure header

Block Move

Address

$0031 20 18 18 20 LIT8 32

#local variables

I = 32

Icycles

11

Ll 12 LIT4A.2
$0032 E5 12 E5 SUB

41 ASNSL.l

$0033 01 41 01 REFSL.l
$0034 10 68 68 10 REFDC $10

D9 CVTDF

$0035 01 D9 01 REFSL.l
53 LOCL

$0036 A9 53 A9 30 ASNDC $30

$0037 01 30 01 REFSL.l
01 REFSL.l

$0038 19 01 19 OF LIT8N OF
$0039 EF OF EF SKIPNZ Ll

1 = 1-2
save I

get table(I)

store a(i;

1 = 0?

5.5
9

10

12
23.5
137

12
5.5
19.5

12
12
11
16

52 POP
$003A IB 52 IB INTE

kill old counter 5.5

I* Time of execution *!

Inside loop
Set-up
Total

Calculated
285
16.5

4576.5

Observed
296

4444

Error
- 4%

2%

FIR Filter

This block of code performs an FIR filter on the array of
input data and writes the result into the Local
Environment. Data and coefficients are in floating-point
data format.

Y = SUM a(i) * x(i) i = 1 . .16
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^cycles

10 LIT4A.0 Yquick = 5.5
$003B 10 10 10

C2
LIT4A.0
ASNDL.2

5.5
14

$003C 18 C2 18 20 LIT8 20 I = 32 11

L2 $003D 12 20 12 LIT4A.2 5.5
E5 SUB 1 = 1- 2 9

$003E 41 E5 41

01

ASNSL.

1

REFSL.l

10

12
$003F 53 01 53 LOCL 5.5
$0040 10 68 68

01

10 REFDC $10

REFSL.l

get x(I) 23 . 5

12
$0041 53 01 53 LOCL 5.5
$0042 30 68 68 30 REFDC $30 get a(I) 23.5

86 MPYF a(I) * x (I) 293

$0043 32 86 32
84

REFDL.2
ADDF

18
153

$0044 C2 84 C2

01

ASNDL.2

REFSL.l

add to y 14

12
$0045 01 01 01 REFSL.l 12

$0046 13 19 19
EF

13 LIT8N 13
SKIPNZ L2 1 = 0?

11
16

$0047 52 EF 52 POP kill old counter 5.5

i • Time of execution * i

Calculated Observed Error
Inside loop 635.5 748 -15 5

Set-up 41.5
Total 10209.5 12533 -19*
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Filter Update

This block of code moves the array of time delayed input
data to one sample greater delay and leaves x(0) empty for
the next input of data.

X(i + 1) = X(i) i = 1 . .15

address # cycle

$0048 IE 18 18 IE LIT8 3 I = 30 11

LU 12 LIT4A.2 5.5
$0049 E5 12 E5 SUB 1 = 1-2 9

41 ASNSL.l save I 10

$004A 01 41 01
53

REFSL.l
LOCL

12
5.5

$004B 68 53 68 10 REFDC $10 get x(i) 23.5

$004C 01 10 01
53

REFSL.

1

LOCL
12
5.5

$004D A9 53 A9 12 ASNDC $12 save x(i + 2) 19.5

$004E 01 12 01
01

REFSL.l
REFSL.l

12
12

$004F 19 01 19 OF LIT8N OF 11
$0050 EF OF EF SKIPNZ LU 1 = 0? 16

52 POP kill old counter 5.5

Input

The following segment inputs data from the input channel,
converts to floating, and stores is as x(0) in the Local
Environment Extended.

$0051 1C 52 1C 1000 REFSI $1000 get input 23
$0052 10 00 10 LIT4A.0 fractional CVTSD 5.5
$0053 D9 10 D9 CVTDF 137
$0054 10 F7 F7 10 ASNDLE $10 19.5
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!* Time of execution *!

Calculated Observed Error %

Inside loop 153.5 —
Set-up 16.5 —
Total 2473 2800 -12%
input 185 201 - 8%

Ratio Calculation

r = x2
/y

2

Assume x and y are stored in Local Environment Extended,
r is left on stack upon completion of segment.

offset tfcycles
$0000 50 22 22 50 REFDLE $50 get y(0) 23.5

6B DUPD 9

$0001 86 6B 86 MPYF 293
C4 ASNDL.4 store y

2 temp 14

$0002 22 C4 22 10 REFDLE $10 get y(0) 23.5
$0003 6B 10 6B DUPD 9

86 MPYF X2 293
$0004 34 86 34 REFDL.4 get y

2 back 18
87 DIVF 313

Calculated time of execution = 996 cycles

Decision

d = 1 r > THETA
r < THETA

d is boolean

Assume THETA stored in Lenv(6,7)
Assume that r was left on stack from RATIO CALCULATION
segment.

offset
$0006 36 87 36 REFDL.6

#cycles
18

$0007 8A 8D
8D
8A

EXCHD
GRF

25
49

$0008 EA 11
11
EA

LIT4A.1
XOR

toggle flag 5.5
5.5

Calculated time of execution = 103 cycles

89



Weight Update

The follwing section of code uses past output values to
adapt the coefficients of an FIR filter. Data is in
floating-point notation.

a(i) = a(i) + da * y(i)

Assume da stored in Lenv(A,B)

offset #cycles

$0000

LW

20 18 18

12

20 LIT8 3 2

LIT4A.2

I = 32 11

5.5
$0001 E5 12 E5

41
SUB
ASNSL.l

I = 1-2 9

10

$0002 01 41 01
53

REFSL.l
LOCL

12
5.5

$0003 68 53 68 50 REFDC $50 get y(i) 23.5

$0004 3A 50 3A
86

REFDL.A
MPYF

18
293

$0005 01 F9 01
53

REFSL.l
LOCL

12
5.5

$0006 68 53 68 30 REFDC $30 get a(i) 23.5

$0007 84 30 84 ADDF 153

01 REFSL.l 12
$0008 53 01 53 LOCL store 5.5
$0009 30 A9 A9

01

30 ASNDC $30

REFSL.l

a(i)+da*y (i) 19.5

12
$000A 01 01 01 REFSL.l 12

$000B 16 19 19
EF

16 LIT8N 16
SKIPNZ LW

11
16

$000C 52 EF 52 POP 5.5

!* Time of execution *!

Calculated Observed Error %
Inside loop 658.5 —
Set-up 16.5 —
Total 10552.5 —
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IIR Filter

v(m) = (1-BETA) * v(m-l) + BETA * x * x

Assume BETA and 1-BETA stored in Lenv

offset #cycles

$0000 10 22 22 10
6B

REFDLE $10
DUPD

get x(0) 23 .5

9

$0001 86 6B 86 MPYF X 2 293

3C REFDL.C get BETA 18
$0002 86 3C 86 MPYF 293

38 REFDL.8 get v(m-l) 18
$0003 3E 38 3E

86
REFDL.E
MPYF

get (1-BETA) 18
293

$0004 84 86 84 ADDF 153
C8 ASNDL.8 store v(m) 14

$0005 IB C8 IB INTE

Calculated time of execution = 1132.5 cycles

D.4 Standard Precision Floating Point -Inline Coding

FIR Filter

This block of code performs an FIR filter on the array of
input data and writes the result into the Local
Environment. Data and coefficients are in floating-point
data format.

Y = SUM a(i) * x(i) i = 1 . .16

offset ^cycles
10 LIT4A.0 5.5

$0000 10 10 10 LIT4A.0 y = 5.5

$0001 30 22 22 30 REFDLE $30 get a(0) 23.5
$0002 10 22 22 10 REFDLE $10 get x(0) 23.5

86 MPYF 293
$0003 84 86 84 ADDF y y + * 153
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$0004 32 22 22 32 REFDLE $32 get a(l) 23.5
$0005 12 22 22 12 REFDLE $12 get x(l) 23.5

86 MPYF 293
$0006 84 86 84 ADDF y = y + * 153

$002E 3E 22 22 4E REFDLE $4E get a(F) 23.5
$002F 2E 22 22 2E REFDLE $2E get x(F) 23.5

86 MPYF 293
$0030 84 86 84 ADDF y = y + * 153

$0031 50 F7 F7 50 ASNDLE $50 store to y(0) 19.5

!* Time of execution *!

Calculated Observed Error

Set-up 3 0.5
time per N 493
16 coefficients 7918.5

Filter Update

This block of code moves the array of time delayed input
data to one sample greater delay and leaves x(0) empty for
the next input of data.

x(i + 1) = x(i) i = 1 . .15

offset #cycl

$0000 2C 22 22 2C REFDLE $2C get x(E) 23. 5

$0001 2E F7 F7 2E ASNDLE $2E store to x(F) 19. 5

$0002 2A 22 22 2A REFDLE $2A get x(D) 23.5
$0003 2C F7 F7 2C ASNDLE $2C store to x(E) 19.5

$001E 10 22
•

22 10

•

REFDLE $10

•

get x(0) 23.5
$001F 12 F7 F7 12 ASNDLE $12 store to x(l) 19.5
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!* Time of execution *!

Calculated Observed Error %

time per N 4 3

16 coefficients 646
(15 iterations)

Weight Update

The follwing section of code uses past output values to
adapt the coefficients of an FIR filter. Data is in
floating-point notation.

a(i) = a(i) + da * y (i)

Assume da stored in Lenv(A,B)

offset Icycles

$0000 50 22 22 50 REFDLE $50 get y(0) 23.5
3A REFDL.A get da 18

$0001 86 3A 86 MPYF y(0) * da 293

$0002 30 22 22 30 REFDLE $30 get a(0) 23.5
84 ADDF 153

$0003 F7 84 F7 30 ASNDLE $30 save new a(0) 19.5

$0004 22 50 22 52 REFDLE $52 get y(l) 23.5
$0005 3A 52 3A REFDL.A get da 18

86 MPYF y(l) * da 293
$0006 22 86 22 32 REFDLE $32 23.5
$0007 84 32 84 ADDF 153
$0008 32 F7 F7 32 ASNDLE $32 save new a(l) 19.5

$003A 22 6C 22 6E REFDLE $6E get y(F) 23.5
$003B 3A 52 3A REFDL.A get da 18

86 MPYF y(F) * da 293
$003C 22 86 22 4E REFDLE $4E 23.5
$003D 84 4E 84 ADDF y(F) + da * y(F) 153
$003E 4E F7 F7 4E ASNDLE $4E 19.5

!* Time of execution *!

Calculated Observed Error %

time per N 530.5 —
16 coefficients 8488 —
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none used
it ii

ii ii

ii ii

ii ii

D.5 Extended Precision Floating Point -Loop Coding

Executive Entry Table

$0000 00 00 Cont. Status pointer
$0001 71 00 Init. Exec Stack limit
$0002 74 FF Init. Exec Top of Stack
$0003 00 80 Init. Exec PROCID
$0004 00 00 bus error PROCID
$0005 00 00 NMI PROCID
$0006 00 00 INT PROCID
$0007 00 00 Trap PROCID
$0008 00 00 Exception PROCID

Local variables

I - Lenv(l)

Yquick - Lenv(2,3,4)

y
2 - Lenv(5,6,7)

THETA - Lenv(8,9,A)

v(m-l) - Lenv(B,C,D)

da - Lenv(A0,Al,A2)

BETA - Lenv(A3,A4,A5)

1-BETA - Lenv(A6,A7,A8)

x(0) - Lenv(10,ll,12) input buffer 16 long

x(F) - Lenv(3D,3E,3F)

a(0) - Lenv(40, 41,42) coefficient table

a(F) - Lenv(6D,6E,6F)
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y(0) - Lenv(70,71,72) output buffer 16 long

y(F) - Lenv(9D,9E,9F)

Initial Coefficient Table
[Band-pass filter]

= .01155124

= .07222172

= .07476273

=-.04603866

=-.18493122

=-.17043359

= .02344914

= .21941864

=-.21941864

=-.02344914

= .17043359

= .18493122

= .04603866

=-.07476273

$0010
$0011

82
01

D3
7A

a(0)

$0013
$0014

8F
09

60
3E

a(l)

$0016
$0017

D3
09

3E
91

a(2)

$0019
$001A

67
FA

B7
IB

a(3)

$001C
$001D

2C
E8

7E
54

a(4)

$001F
$0020

3B
EA

6F
2F

a(5)

$0022
$0023

61
03

A0
00

a(6)

$0025
$0026

E8
1C

F6
15

a(7)

$0028
$0029

17
E3

05
EA

a(8)

$002B
$002C

9E
FC

60
FF

a(9)

$002E
$002F

C4
15

91
DO

a (A)

$0031
$0032

D3
17

82
A6

a(B)

$0034
$0035

98
05

49
E4

a(C)

$0037 2C C2 a(D)
$0038 F6 6E

95



$003A 70 50 a(E) =-.07222172
$003B F6 CI

$003D 7D 2D a(F) =-.01155124
$003E FE 85

This block of code copies the initial coefficients

into the Local Environment for efficient access in the FIR

Filter subprogram. Data is initially stored in ROM in

extended precision Fractional data format and is converted

to floating-point extended by this routine.

This is the first executable code of the program,

therefore, immediately after invocation of the program, the

executive stack mark, consisting of the program counter

(PC), the Code environment (CENV) , the Procedure identifier

(PROCID) , and the Local Environment pointer (LENV) , is

copied into the four memory locations immediately above the

start of the Local Environment.

$0040 00 A8 procedure header #local variables
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Block Move

Address #cycles

$0041 30 18 18 30 LIT8 48 I = 48 ll

Ll
$0042 E5 13

13
E5
41

LIT4A.3
SUB
ASNSL.l

1 = 1-3
save I

5.5
9

10

$0043
$0044

01
10

41
68

01
68
ce

10
REFSL.l
REFDC $10
CVTDFE

get table(I)
12
23.5
225

$0045

$0046

01

99

D9

53

01
53
99 40

REFSL.l
LOCL
ASNDC $4 store a(I)

12
5.5
23.5

$0047

$0048
$0049

01

19
EF

40

01
OF

01
01
19
EF

OF

REFSL.l
REFSL.l
LIT8N OF
SKIPNZ Ll 1 = 0?

12
12
11
16

$004A IB 52
52
IB

POP
INTE

kill old count er 5.5

1 * Time of execution *!

Inside loop
Set-up
Total

Calculated
377
16.5
6048.5

Observed Error %

FIR Filter

This block of code perforins an FIR filter on the array of
input data and writes the result into the Local
Environment. Data and coefficients are in floating-point
data format.

Y = SUM a(i) * x(i) i = 1 16
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address

$004B 10 10

$004C B5 10

$004D 18 02

L2 $004E 13 30

$004F 41 E5

$0050 53 01
$0051 10 76

$0052 53 01
$0053 40 76

$0054 77 94
$0055 92 02
$0056 02 B5

$0057 01 01

$0058 16 19

$0059 52 EF 52

^cycles

10 LIT4A.0
10 LIT4A.0
10 LIT4A.0
B5 02 ASNTLE 02

18 02 LIT8 3

13 LIT4A.3
E5 SUB
41 ASNSL.l

01 REFSL.l
53 LOCL
76 10 REFTC $10

01 REFSL.l
53 LOCL
76 20 REFTC $3

94 MPYFE

77 02 REFTLE 02
92 ADDFE
B5 02 ASNTLE 02

01 REFSL.l
01 REFSL.l

19 16 LIT8N 16
EF SKIPNZ L2

Yquick =

I = 48

1 = 1-3

get x(I)

get a (I)

a(I) * x(l)

add to y

POP

5.5
5.5
5.5
23.5

11

5.5
9

10

12
5.5
59

12
5.5
59

539

84
229
23.5

12
12

11
1=0? 16

kill old counter 5.5

Time of execution

Calculated
Inside loop 1104
Set-up 56.5
Total 17720.5

Observed

*!

Error

Filter Update

This block of code moves the array of time delayed input
data to one sample greater delay and leaves x(0) empty for
the next input of data.
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x(i + 1) = x(i) i = 1 15

$005A 2D 18 18 2D LIT8 45 I = 45

#cycles
11

LU 13
$005B E5 13 E5

41

$005C 01 41 01
53

$005D 76 53 76 10

$005E 01 10 01
53

$005F 99 53 99 13

$0060 01 13 01
01

$0061 19 01 19 OF
$0062 EF OF EF

52

LIT4A.3
SUB
ASNSL.l

REFSL.l
LOCL
REFTC $10

REFSL.

1

LOCL
ASNTC $13

REFSL.l
REFSL.l

LIT8N OF
SKIPNZ LU

POP

5.5
9

10

12
5.5
59

12
5.5
23.5

12
12

11
1=0? 16

kill old counter 5.5

1 = 1-3
save I

get x(i)

save x(i + 2)

Input

The following segment inputs data from the input channel,
converts it to floating-point extended, and stores is as
x(0) in the Local Environment Extended.

$0063 1C 52 1C 1000 REFSI $1000
$0064 10 00 10 LIT4A.0
$0065 6C 10 6C CVTDFE
$0066 10 B5 B5 10 ASNTLE $10

get input 23
fractional CVTSD 5.5

225
23.5

I * Time of execution *!

Inside loop
Set-up
Total
input

Calculated
193
16.5
2911
277

Observed Error
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Ratio Calculation

r = x /y

Assume x and y are stored in Local Environment Extended,
r is left on stack upon completion of segment.

offset ^cycles

$0000 70 77 77 70 REFTLE $70 get y(0) 84
7 9 DUPT 4 9.5

$0001 94 79 94 MPYFE 539
$0002 05 B5 B5 05 ASNTLE 05 store y

2 temp 23.5

$0003 77 C4 77 10 REFTLE $10 get y(0) 84
$0004 79 10 79 DUPT 49.5

94 MPYFE X2 539
$0005 77 94 77 05 REFTLE 05 get y

2 back 23.5
$0006 95 05 95 DIVFE 706

Calculated time of execution = 2098 cycles

Decision

d m 1 r > THETA
r < THETA

d is boolean

Assume THETA stored in Lenv(8,9,A)
Assume that r was left on stack from RATIO CALCULATION
segment.

#cycles
$0007 08 77 77 08 REFTLE 08 84

9D EXCHT 47
$0008 91 9D 91 GRFE 53

11 LIT4A.1 toggle flag 5.5
$0009 EA 11 EA XOR 5.5

Calculated time of execution = 195 cycles
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Weight Update

The following section of code uses past output values to
adapt the coefficients of an FIR filter. Coefficients are
in floating-point extended format.

a(i) = a(i) + da * y(i)

Assume da stored in Lenv (AO , Al , A2

offset ^cycles

$0000 30 18 18 30 LIT8 48 I = 48 11

LW 13 LIT4A.3 5.5
$0001 E5 13 E5 SUB 1=1-3 9

41 ASNSL.l 10

$0002 01 41 01 REFSL.l 12
53 LOCL 5.5

$0003 76 53 76 70 REFTC $70 get y(i) 59

$0004 77 70 77 A0 REFTLE $A0 84
$0005 94 A0 94 MPYFE 539

01 REFSL.l 12
$0006 53 01 53 LOCL 5.5
$0007 40 76 76 40 REFTC $40 get a(i) 84

92 ADDFE 229

$0008 01 92 01 REFSL.l 12
53 LOCL store 5.5

$0009 99 53 99 40 ASNTC $40 a (i)+da*y (i) 23.5

$000A 01 40 01
01

REFSL.l
REFSL.l

12
12

$000B 19 01 19
EF

17 LIT8N 17
SKIPNZ LW

11
16

$000C EF 17 52 POP 5.5
$OO0D IB 52 IB INTE

!* Time of execution *!

Calculated Observed Error %
Inside loop 1146.5 —
Set-up 16.5 —
Total 18360.5 —
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IIR Filter

v(m) = (1-BETA) * v(m-l) + BETA * x * x

Assume BETA and 1-BETA stored in Lenv

offset flcycles

$0000 10 77 77 10 REFTLE §10 get x(0) 84
79 DUPT 49.5

$0001 94 79 94 MPYFE x2 539

$0002 A3 77 77 REFTLE A3 get BETA 84
94 MPYFE 539

REFTLE
DUPT
MPYFE

$10 get x(0)

x 2

REFTLE
MPYFE

A3 get BETA

REFTLE
REFTLE
MPYFE

$0B
$A6

get v(m-l)
get 1-BETA

ADDFE
ASNTLE
INTE

$0B store v(m)

$0003 77 94 77 OB REFTLE $0B get v(m-l) 84
$0004 77 OB 77 A6 REFTLE $A6 get 1-BETA 84
$0005 94-A6 94 MPYFE 539

92 ADDFE 229
$0006 B5 92 B5 0B ASNTLE $0B store v(m) 23.5
$0007 IB 0B IB

Calculated time of execution = 2255 cycles
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D.6 Extended Precision Floating Point -Line coding

FIR Filter

This block of code performs an FIR filter on the array of
input data and writes the result into the Local
Environment extended. Data and coefficients are in
floating-point data format.

Y = SUM a(i) * x(i) i = 1 . . 16

offset tfcycles

10 LIT4A.0 5.5
$0000 10 10 10 LIT4A.0 5.5

10 LIT4A.0 y = 5.5

$0001 77 10 77 40 REFTLE $40 get a(0) 84

$0002 77 40 77 10 REFTLE $10 get X(0) 84

$0003 94 10 94 MPYFE 539
92 ADDFE y=y+* 229

$0004 77 92 77 43 REFTLE $43 get a(l) 84
$0005 77 43 77 13 REFTLE $13 get X(l) 84
$0006 94 13 94 MPYFE 539

84 ADDFE y = y + * 229

$002E 77 92 77 6D REFTLE $6D get a(F) 84
$002F 77 6D 77 3D REFTLE $3D get X(F) 84
$0030 94 3D 94 MPYFE 539

92 ADDFE y = y + * 229

$0031 B5 92 B5 70 ASNTLE $70 store to y(0) 23.5
$0032 IB 70 IB INTE

!* Time of execution *!

Calculated Observed Error %

Set-up 40 —
time per N 936 —
16 coefficients 15016 —
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Filter Update

This block of code moves the array of time delayed input
data to one sample greater delay and leaves x(0) empty for
the next input of data.

x(i + 1) = x(i) i = 1 15

offset
$0000 3A 77 77 3A REFTLE $3A
$0001 3D B5 B5 3D ASNTLE $3D

$0002 37 77 77 37 REFTLE $37
$0003 3A B5 B5 3A ASNTLE $3A

get x(E)
store to x(F)

get x(D)
store to x(E)

tfcycles
84
23. 5

84
23.5

$001E 10 77 77 10
$001F 13 B5 B5 13

REFTLE $10 get x(0) 84
ASNTLE $13 store to x(l) 23.5

!* Time of execution *!

Calculated Observed Error

time per N 107.5
16 coefficients 1612.5
(15 iterations)

Weight Update

The follwing section of code uses past output values to
adapt the coefficients of an FIR filter. Data is in
floating-point notation.

a(i) = a(i) + da * y(i)

Assume da stored in Lenv(A0, Al, A2)

offset #cycles
$0000 70 77 77 70 REFTLE $70 get y(0) 84

$0001 A0 77 77
94

A0 REFTLE
MPYFE

$A0 get da 84
539

$0002 77 94 77 40 REFTLE $40 get a(0) 84

$0003 92 40 92 ADDFE 229
$0004 40 B5 B5 40 ASNTLE $40 store a(0) 23.5
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$0005 73 77 77 73 REFTLE $73 get y(l) 84
$0006 A0 77 77 AO REFTLE $A0 get da 84

94 MPYFE 539
$0007 77 94 77 43 REFDLE $43 get a(l) 84
$0008 92 43 92 ADDFE 229
$0009 40 B5 B5 40 ASNTLE $43 store a(l) 23.!

$0044 9D 77 77 9D REFTLE $9D get y(F) 84
$0045 AO 77 77 AO REFTLE $A0 get a(F) 84

94 MPYFE 539
$0046 77 94 77 6D REFTLE $6D get a(F) 84
$0047 92 6D 92 ADDFE 229
$0048 6D B5 B5 6D ASNTLE $6D Store a(F) 23.5

!* Time of execution *!

Calculated Observed Error %

time per N 1043
16 coefficients 16696
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ABSTRACT

This thesis describes a hardware inplementation of a

minimal component, minimal power, microcomputer system

using Rockwell's Advanced Architecture Microprocessor

(AAMP), a high-performance 16-bit floating-point CMOS

microprocessor.

The research was funded through a contract between

Kansas State University and Sandia National Laboratories

which has traditionally supported ultra-low power designs

of A/D converters and microcomputer systems.

The system described is intended for use as the signal

processing portion of an ultra-low power, highly portable,

intruder detection system, therefore low power consumption

and minimal parts count were the main objectives in design.

The thesis briefly describes the AAMP with more

emphasis placed on items used in the design. Power

consumption is shown for the system and for each component

individually, with parts selections based on these figures

explained. Performance of the AAMP as a signal processor

is tested using several signal processing code segments

with time of execution shown for various types of data.

The final product is a floating-point capable

microcomputer system with power consumption at a proposed

2.6 Mhz operation of under 25 mW.




