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Abstract

Variable selection from both the frequentist and Bayesian frameworks has gained in-

creasing popularity in the analysis of high-dimensional genomic data. Despite the success of

existing studies, challenges still remain as tailored methods for sparse interaction structures

are not available when the response variables are repeatedly measured and/or have heavy-

tailed distributions. These challenges have motivated the development of novel variable

selection methods proposed in the following projects. Meanwhile, powerful software pack-

ages from these projects are publically available to facilitate fast and reliable computation,

as well as reproducible research.

In the first project, we have developed a novel penalized variable selection method to

identify important lipid–environment interactions in a longitudinal lipidomics study, where

the environment factors refer to a group of dummy variables corresponding to a four-level

treatment factor. An efficient Newton–Raphson based algorithm was proposed within the

generalized estimating equation (GEE) framework. Simulation studies have demonstrated

the superior performance of our method over alternatives, in terms of both identification ac-

curacy and prediction performance. Analysis of the high-dimensional lipid datasets collected

using mice from the skin cancer prevention study identified meaningful markers that provide

fresh insight into the underlying mechanism of cancer preventive effects.

In the second project, we have proposed a sparse group penalization method for the

bi-level G×E interaction study under the repeatedly measured phenotype to accommodate

more general environment factors. Within the quadratic inference function (QIF) framework,

the proposed method can achieve simultaneous identification of main and interaction effects

on both the group and individual level. We conducted simulation studies to establish the

advantage of the proposed regularization methods. In the case study, the environment factors

include age, gender and treatment, which are either continuous or categorical. Our method



leads to improved prediction and identification of main and interaction effects with important

implications.

In the third project, a sparse Bayesian quantile varying coefficient model has been devel-

oped for non-linear G×E studies. The proposed model can accommodate heavy-tailed errors

and outliers from the disease phenotypes while pinpointing important non-linear interactions

through Bayesian variable selection based on spike-and-slab priors. Fast computation has

been facilitated by the efficient Gibbs sampler. Simulation studies and real data analysis

with age as the univariate environment factor have been performed to show the superiority

of the proposed method over multiple competing alternatives.

The open source R packages with C++ implementations of all the methods under com-

parison have been provided along this dissertation. The R packages interep and springer,

for the first two projects respectively, are available on CRAN. The R package for the last

project on Bayesian regularized quantile varying coefficient model will be released soon to

the public.
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Chapter 1

Introduction

Gene× Environment (G × E) interactions, in addition to the genetic and environmental

main effects, have important implications for elucidating the etiology of complex diseases,

such as cancer, type 2 diabetes and cardiovascular diseases (Cornelis and Hu (2012); Dempfle

et al. (2008); Flowers et al. (2012); Hunter (2005); Simonds et al. (2016)). Multiple G ×

E studies have shown that the genetic contribution to the variation in disease phenotype

or increase in disease risks are often mediated by environmental effects. Historically, G

× E interactions have been examined from the perspective of assessing specific genetic ef-

fect under dichotomous environmental exposures (Ottman (1996)). With the availability of

high-density genetic polymorphisms such as single nucleotide polymorphisms (SNPs), it has

become possible to establish the statistical associations between millions of genetic variants

and disease status or phenotype in genetic association studies (Hirschhorn et al. (2002);

Huang and Liang (2019); Huang et al. (2018); Huang and Liang (2018); Lunetta (2008); Wu

et al. (2012)), which has also made investigation of G × E interactions possible at the more

comprehensive human genome scales (Cornelis et al. (2012); Du et al. (2021); Murcray et al.

(2009); Winham and Biernacka (2013)).

The dissection of G × E interactions in genetic association studies, such as genome

wide association study (GWAS), has been mainly conducted based on the assessment of

statistical significance. For example, in the genome wide case-control association studies of
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type 2 diabetes, with body mass index (BMI) as the environmental factor, the significance

of the interaction between BMI and each one of the SNPs can be evaluated using p-values

from the marginal test accounting for the interaction (Cornelis et al. (2012)). After multiple

test adjustment, important interaction effects can be identified when the signals are beyond

the genome-wide significance level.

Furthermore, the genetic association studies can be understood from a related but dis-

tinct perspective. Consider the data matrix where the columns are corresponding to features

(or variables), such as all the main and interaction effects in a G × E study, and rows are

corresponding to samples (or observations). As the number of columns is usually much larger

than the sample size in a typical G × E interaction study, the data matrix is of “large dimen-

sionality, small sample size” nature. Thus, the central statistical task is to hunt down the

subset of important main and interaction effects that is associated with the disease outcome,

which can be reformulated as a high dimensional variable selection problem in the regres-

sion framework. Specifically, the regression coefficients of variables (representing main and

interaction effects) are continuously shrunk towards zero. A zero coefficient after shrinkage

denotes that the corresponding effect is not included in the final model, and has no associa-

tion with the response, such as the disease phenotype. Therefore, variable selection can be

performed with parameter estimation simultaneously. Such a variable selection method is

referred as penalization or regularization (Fan and Lv (2010); Wu and Ma (2015)).

1.1 Regularized Variable Selection

Generically, penalized regression coefficients can be defined as

β̂ = argmin
β

L(D; β) + P (λ; β),

where L(D; β) is a loss function based on the observed data D and regression coefficients β

to quantify the lack-of-fit. It can be a least square loss function or a negative log-likelihood

function. The penalty function, P (λ; β), measures the model complexity with tuning pa-
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rameter λ. As λ → +∞, larger amount of penalty is imposed on β̂, and more components

of β̂ become zeros. Accordingly, fewer features will be included in the final model. The

phenomena of zeros in β̂ is termed as sparsity in the literature of penalized variable selec-

tion. On the other hand, when λ→ 0, the model becomes more complex since more features

are included in the final model, Tuning parameter λ balances the tendency towards two

extremes. A properly tuned λ will lead to a reasonable number of variables with satisfactory

interpretability and superior prediction performance.

LASSO (Tibshirani (1996))is one of the most popularly used penalized regression methods

and it is a penlized least squares regression with l1 penalty, which is given in the following

form:

||Y −Xβ||22+λ|β|,

where ||Y −Xβ||22 is the unpenalized loss function, β = (β1, ..., βj)
> and λ|β|= λ

∑p
j=1|βj|. Y

is the response variable and X denotes the design matrix that contains p-dimensional genomic

features, which can be gene expression, single nucleotide polymorphysm (SNP), copy number

variation (CNV) and DNA mutation, etc. The solution to LASSO regression will yield a

penalized estimator that is continuous (continuity) with small estimated coefficients shrunk

to zero (sparsity). However, for large regression coefficients, the shrinkage will result in great

bias toward 0. To overcome the problem of bias, alternative penalties have been proposed

by other researchers. Fan and Li (2001) proposed the smoothly clipped absolute deviation

(SCAD) penalty and Zhang (2010) proposed the minimax concave penalty (MCP). The

SCAD penalty is defines as

PSCAD(βj;λ, γ) =



λ|βj| if |βj|≤ 0

−β2
j−2γλ|βj |+λ2

2(γ−1)
if λ < |βj|≤ γλ

1
2
(γ + 1)λ2 if |βj|> γλ

,
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where γ > 2 and λ > 0 are regularization parameters. The MCP panalty is defined as

PMCP (βj;λ, γ) =


λ|βj|−

β2
j

2γ
if |βj|≤ γλ

1
2
γλ2 if |βj|> γλ

,

where the regularization parameter γ > 1. It has been proved that both penalties result in

an estimator with the three properties: continuity, sparsity and unbiasedness.

Besides the high dimensionality issue, complex data structures bring more chanllenges to

variable selection in G × E studies. For instance, in the selection of a group of factor level

indicators for a categorical variable, the grouping structure is an important factor that needs

to be taken into consideration. Yuan and Lin (2006) proposed the group LASSO regression

method which enables a group-level variable selection. The group LASSO penalty is given

as

||Y −Xβ||22+λ
m∑
k=1

√
Lk||βk||2,

where βk = (βk1, ..., βkLk
)> is a coefficient vector of length Lk and β = (β>1 , ..., β

>
m)>. Besides

group LASSO, other nonconvex group penalization methods, such as group SCAD and group

MCP, have been developed to accommodate the group structure in variable selection (Huang

et al. (2012)). The group SCAD penalty is defined as

PgSCAD(||βk||2;
√
Lkλ, γ) =



√
Lkλ||βk||2 if ||βk||2≤ 0

−β>k βk−2
√
Lkγλ||βk||2+Lkλ

2

2(γ−1)
if
√
Lkλ < ||βk||2≤

√
Lkγλ

√
Lk

2
(γ + 1)λ2 if ||βk||2>

√
Lkγλ

,

where the tuning parameters γ > 2 and λ > 0. The group MCP penalty is defined as

PgMCP (||βk||2;
√
Lkλ, γ) =


√
Lkλ||βk||2−

β>k βk
2γ

if ||βk||2≤
√
Lkγλ

Lk

2
γλ2 if ||βk||2>

√
Lkγλ

,
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where the regularization parameter γ > 1.

While the group LASSO method gives a sparse set of groups, maintaining the “group-in,

group-out” characteristic, sometimes it is still necessary to achive sparsity within group. For

example, in a G × E model that involves p genetic factors and q environment factors and the

main effect and the interactions with the q environment factors of each genetic factor forms

a group of (1 + q) terms. In order to determine whether a genetic factor is associated with

the response variable, first of all, a group level selection should be performed. Moreover, if a

genetic factor has been found to be associated with the response, then it’s also necessary to

carry out an individual level selection within the group. Therefore, the sparse-group LASSO

(Simon et al. (2013) ) has been proposed based on a combination of the LASSO and group

LASSO penalties:

||Y −Xβ||22+λ1

m∑
k=1

√
Lk||βk||2+λ2|β|,

where λ1 and λ2 are the tuning parameters for the group LASSO and LASSO penalties,

respectively. The sparse group LASSO type penalties sparse group SCAD and sparse group

MCP have also been established. Similar to sparse group LASSO, the sparse group SCAD

and sparse group MCP penalties perform a bi-level selection on the group level and individual

level simultaneously. The sparse group SCAD penalty is defined as

PsgSCAD(β;
√
Lkλ1, λ2, γ) =

m∑
k=1

PgSCAD(||βk||2;
√
Lkλ1, γ) +

m∑
k=1

PSCAD(βk;λ2, γ)

and the sparse group MCP penalty is defined as

PsgMCP (β;
√
Lkλ1, λ2, γ) =

m∑
k=1

PgMCP (||βk||2;
√
Lkλ1, γ) +

m∑
k=1

PMCP (βk;λ2, γ).

When analyzing omics data, the problem of model-misspecification and heterogeneity

exists, such as data contamination in the predictors, heavy-tailed errors and outliers in the

response variables, which motivate the development of roubust methods that are robust to

these problems. In penalized regression, robustness can be achieved via the “unpenalized
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robust loss function + penalty” form. The robust loss function includes the least absolute

deviation (LAD) loss function, the check loss function, the rank-based loss function and their

variants (Wu and Ma (2015)).

1.2 Bayesian Variable Selection

Bayesian variable selection has been another classical statistical strategy for analyzing high

dimensional data. O’Hara and Sillanpaa (2009) categorized Bayesian variable selection ap-

proaches into four categories: (1) adaptive shrinkage, (2) indicator model selection, (3)

stochastic search variable selection (SSVS) and (4) model space approach. Bayesian meth-

ods have been applied to cancer genomics data and adaptive shrinkage is closely connected

with the variable selection methods in the frequentist perspective.

According to Tibshirani (1996), the LASSO estimate is equivalent to the posterior es-

timate when the regression coefficients adopt the independent and identical Laplace prior

from the Bayesian perspective. The Laplace prior is given as

π(βj|τ) =
1

2τ
e−|βj |/τ , j = 1, ..., p,

where τ = 1/λ. Park and Casella (2008) proposed Bayesian LASSO by imposing a condi-

tional Laplace prior on the regression coefficients:

π(βj|σ2) =
λ

2
√
σ2
e−λ|βj |/

√
σ2
,

with σ2 having an independent priori π(σ2), which guarantees the unimodality of the pos-

terior distribution. Kyung et al. (2010) extends this rationale of specifying the prior other

LASSO type of penalization methods, such as group LASSO, fused LASSO and the elastic

net. In particular, the Bayesian group LASSO can be achieved by inroducing a multivariate

Laplace prior:

π(βk|σ2) ∝ exp(−
√
Lkλ√
σ2
||βk||2),
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where βk is a coefficient vector of length Lk and β = (β>1 , ..., β
>
m)>.

√
Lkλ√
σ2

is the scale param-

eter in multivariate Laplace distribution. These aforementioned methods have a drawback

that they cannot shrink a posterior estimate to exactly 0. Therefore, the spike-and-slab

priors have been adopted to overcome this problem (Mitchell and Beauchamp (1988)). The

spike-and-slab priors have been defined in the follwoing form:

βj|φj ∼ φjπ0(βj) + (1− φj)π1(βj), j = 1, ..., p,

where φj ∈ {0, 1} is an auxiliary indicator variable. π0(·) denotes a spike distribution for zero

coefficients corresponding to neligibly small effects and π1(·) denotes a flat slab distribution

for nonzero effects. In practice, π1(·) adopts a normal distribution with large variance.

Kuo and Mallick (1998) sets π0(·) to a point mass prior, which is defined as δ0(βj), and

the coefficients of unimportant effects are set to zero in the spike part. When φj = 0,

βj ∼ π1(βj), which implies the jth genetic factor has nonzero coefficient in the model. Then

φj = 1 implies the absence of the jth genetic factor.

Besides, George and McCulloch (1993) proposed the SSVS method which adopts a combi-

nation of two normal distributions as the spike-and-slab prior: φjN(0, cjτ
2
j )+(1−φj)N(0, τ 2

j ),

where the spike part corresponds to the second density which is centered about zero with a

small variance. Ročková and George (2018) adopted a mixture of two Laplace distributions

as prior in the SSVS method. Many other methods use the Laplace and point mass mixture

prior in variable selection Xu and Ghosh (2015); Yuan and Lin (2005); Zhang et al. (2016).

1.3 Works in this dissertation

In Chapter 2, we developed a novel penalized variable selection method for lipid-environment

interactions in a longitudinal lipidomics study. Lipid species are critical components of

eukaryotic membranes. They play key roles in many biological processes such as signal

transduction, cell homeostasis, and energy storage. Investigations of lipid–environment in-

teractions, in addition to the lipid and environment main effects, have important implica-

7



tions in understanding the lipid metabolism and related changes in phenotype. An efficient

Newton–Raphson based algorithm was proposed within the generalized estimating equation

(GEE) framework. We conducted extensive simulation studies to demonstrate the superior

performance of our method over alternatives, in terms of both identification accuracy and

prediction performance. As weight control via dietary calorie restriction and exercise has

been demonstrated to prevent cancer in a variety of studies, analysis of the high-dimensional

lipid datasets collected using mice from the skin cancer prevention study identified meaning-

ful markers that provide fresh insight into the underlying mechanism of cancer preventive

effects.

In Chapter 3, we developed a sparse group penalization method to conduct the bi-level

G×E interaction study under the repeatedly measured phenotype. Penalized variable selec-

tion for high dimensional longitudinal data has received much attention as accounting for the

correlation among repeated measurements can provide additional and essential information

for improved identification and prediction performance. Despite the success, in longitudinal

studies, the potential of penalization methods is far from fully understood for accommodating

structured sparsity. Within the quadratic inference function (QIF) framework, the proposed

method can achieve simultaneous identification of main and interaction effects on both the

group and individual level. Simulation studies have shown that the proposed method out-

performs major competitors. In the case study of asthma data from the Childhood Asthma

Management Program (CAMP), we conduct G×E study by using high dimensional SNP

data as the Genetic factor and the longitudinal trait, forced expiratory volume in one second

(FEV1), as phenotype. Our method leads to identification of improved prediction and main

and interaction effects with important implications.

In Chapter 4, we propose a novel regularized Bayesian method to identify important non-

linear G×E interactions in quantile regression model. This is an on-going project and we have

successfully proposed the statistical model and obtained extensive simulation results that

demonstrate the superority of the proposed method over the alternative methods in terms

of identification and estimation accuracy in the case there are heavy-tailed distributions in

the response.
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Chapter 2

Penalized variable selection for

Lipid–environment interactions in a

longitudinal lipidomics study

2.1 Introduction

Longitudinal data are frequently observed in a diversity of scientific research areas, including

economics, biomedical studies, and clinical trials. A common characteristic of the longitudinal

data is that the same subject is measured repeatedly over a certain period of time; thus, the

repeated measurements are correlated. Many modeling techniques have been proposed to

accommodate the multivariate correlated nature of the data (Bandyopadhyay et al. (2011);

Verbeke et al. (2014)). The emergence of new types of data has brought constant challenges

to the development of novel statistical methods for longitudinal studies. One representative

example is the high-dimensional data where the number of variables is much larger than

the sample size. As penalization has been demonstrated as an effective way for conducting

variable selection in linear and generalized linear models with a univariate response (Fan and

Lv (2010); Wu and Ma (2015)), substantial efforts have been devoted to developing penalized

variable selection methods with longitudinal responses, such as Cho and Qu (2013); Ma et al.
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(2013); Wang et al. (2012), among many others.

This study was partially motivated by overcoming the limitations of existing penalization

methods in order to analyze the high-dimensional lipidomics data from longitudinal studies.

Lipids are a broad group of biomolecules in eukaryotic membranes, involved in various critical

biological roles such as energy storage, cellular membrane structure, or cell signaling and

homeostasis (Barona et al. (2005); Berridge (1987); Goñi and Alonso (1999); Thiam et al.

(2013)).Lipid metabolism has been found to be associated with several diseases, especially

chronic diseases such as diabetes, cancer, inflammatory disease, and Alzheimer (Markgraf

et al. (2016); Stephenson et al. (2017); Zhou et al. (2012)).

The lipid data were obtained from our previous work on the lipid changes in weight

controlled CD-1 mice (King et al. (2015)). In the current study, the phenotype of interest

is the body weight of experimental animals, which was measured every week for 10 weeks.

The environmental factor was exercise and/or dietary restriction, which had four different

levels, control (ad libitum feeding and sedentary), AE (exercise and ad libitum feeding),

PE (exercise and pair feeding), and DCR (sedentary and 20% dietary calorie restriction).

Both triacylglycerol (TG) and diacylglycerol (DG) profiles in the plasma were measured using

electrospray ionization MS/MS (King et al. (2015)). Here, we focused on the DG profiles and

treated them as lipid factors. Besides the lipid main effects, we were particularly interested in

investigating the interactions between lipids and environment/treatment effects, which will

shed novel insight in the understanding of weight changes in a longitudinal setting beyond

studies solely focusing on the main lipidomics effects. With the control as the baseline, we

created a group of three dummy variables to represent the four levels of the treatment factor

that can be treated as environmental factors in general. The product between the dummy

variable group and lipid denotes the lipid–environment interactions. The formulation of

the interaction group in our study shared the spirit of group LASSO, which was primarily

motivated by the selection of important dummy variable groups from ANOVA problems

(Yuan and Lin (2006)). As the total number of main and interaction effects was much

larger than the sample size, penalized variable selection was a natural choice to identify the

important subset of effects. Such methods for G×E interactions, including Wu et al. (2014,
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2018), however, cannot be adopted for the longitudinal studies.

On the other hand, existing penalization methods in longitudinal studies have been

mostly developed for the identification of important main effects only. For instance, Wang

et al. Wang et al. (2012) proposed the penalized generalized estimating equation (PGEE)

to select predictors that are associated with the longitudinal response. Ma et al. Ma et al.

(2013) considered the selection of important predictors and estimation of non-parametric ef-

fects through splines for repeated measures data. Cho and Qu (2013) developed a penalized

quadratic inference function (PQIF) method to conduct variable selection on main effects.

Fan et al. (2012) developed robust variable selection through a penalized robust estimating

equation to incorporate the correlation structure for repeated measurements. These studies

have ignored the interaction effects and cannot be adopted to analyze our data directly.

In addition, our limited search also suggests that user-friendly software packages for variable

selection methods in longitudinal studies have been relatively underdeveloped. For penaliza-

tion methods, only two R packages (PGEE and pgee.mixed) are available, and both packages

have focused on the selection of important main effects. The codes for most studies in this

area have not even been made publicly available.

To accommodate simultaneously the selection of individual and group structure cor-

responding to the main lipid effect and interaction effect respectively, we propose a novel

penalized variable selection method for longitudinal clustered data. Our method significantly

advances the existing penalization methods by considering the interaction effects. Through

incorporating the group structure, selection of both main and interaction effects can be

efficiently conducted within the generalized estimating equation framework (LIANG and

ZEGER (1986)). Furthermore, to facilitate fast computation and reproducible research, we

implement the proposed and benchmark methods in the R package (Zhou et al. (2020)).

The software package is open-source, and the core module has been developed in C++. The

advantage of our method over alternatives has been demonstrated in extensive simulation

studies. Analysis of the motivating dataset yields findings with important implications.
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2.2 Materials and Methods

2.2.1 Data and Model Settings

Consider a longitudinal study with n subjects and ki observations measured repeatedly

across time for the ith subject (1 6 i 6 n). Without loss of generality, we set ki = k. Yij

denotes the response for the ith subject at time j (1 6 j 6 k). Xij = (Xij1, ..., Xijp)
> is

the p-dimensional vector of lipid factors. In our study, Eij = (Eij1, ..., Eijq)
> denotes the

q-dimensional treatment factor. Suppose that the lipid factors, treatment factors, and their

interactions are associated with the longitudinal phenotype through the following model:

Yij = β0 + E>ijβ1 +X>ijβ2 + (Xij ⊗ Eij)>β3 + εij = Z>ijβ + εij (2.1)

where β = (β0, β
>
1 , β

>
2 , β

>
3 )> and Zij = (1, E>ij , X

>
ij , (Xij ⊗ Eij)

>)> are (1 + q + p + pq)-

dimensional vectors that represent all the main and interaction effects. The interactions

between lipids and treatment factors are modeled through Xij ⊗Eij, the Kronecker product

of the p-dimensional vector Xij, and the q-dimensional vector Eij within the following form:

Xij ⊗ Eij = [Xij1Eij1, Xij1Eij2, ..., Xij1Eijq, Xij2Eij1, ..., XijpEijq]
>

which is a pq-dimensional vector. β0 is the intercept. β1, β2, and β3 are unknown coef-

ficient vectors of dimensions q, p, and pq, respectively. We assume that the observations

are dependent within the same subject, and independent if they are from different sub-

jects. εi = (εi1, ..., εiki)
T follows a multivariate normal distribution Nk(0,Σi), with Σi as the

covariance matrix for the repeated measure of the ith subject across the k time points.

2.2.2 Generalized Estimating Equations

The joint likelihood function for longitudinally clustered response Yij is generally difficult to

specify. LIANG and ZEGER (1986) developed the generalized estimating equations (GEE)

method to account for the intra-cluster correlation. It models the marginal instead of the

conditional distribution given the previous observations and only requires a working corre-
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lation structure for Yij to be specified.

The first two marginal moments of Yij are denoted by E(Yij) = µij = ZT
ijβ and Var(Yij) =

υ(µij), respectively, where υ is a known variance function. Then, the estimating equation

for β is defined as:
n∑
i=1

∂µi(β)

∂β
V −1
i (Yi − µi(β)) = 0, (2.2)

where µi(β) = (µi1(β), ..., µik(β))>, Yi = (Yi1, ..., Yik)
> and Vi is the covariance matrix of

Yi. The first term in (2.2), ∂µi(β)
∂β

, reduces to Zi = (Zi1, ..., Zik)
>, which corresponds to the

k × (1 + q + p+ pq) matrix of the main and interaction effects.

Vi is often unknown in practice and difficult to estimate especially when the number of

variance components is large. In GEE, the covariance matrix Vi is specified through a simpli-

fied working correlation matrix R(η) as Vi = A
1
2
i R(η)A

1
2
i , with the diagonal marginal variance

matrix Ai = diag{Var(Yi1), ...,Var(Yik)}. R(η) is characterized by a finite-dimensional nui-

sance parameter η. Commonly adopted correlation structures for R(η) can be independent,

AR(1), and exchangeable, among others. LIANG and ZEGER (1986) showed that if η can

be consistently estimated, the GEE estimator of the regression coefficient is consistent. Fur-

thermore, the consistency holds even when the working correlation structure is misspecified.

2.2.3 Penalized Identification

When the dimensionality of lipid factors is high, the total number of main and interaction

effects is even higher. However, only a small subset of important effects is associated with

the phenotype, which naturally leads to a variable selection problem. Penalized GEE based

methods, including Wang et al. (2012) and Ma et al. (2013), have been proposed for conduct-

ing selection under correlated longitudinal responses. However, those published studies focus

on the main effects and ignore the interactions. As shown in (2.1), the lipid–environment in-

teractions are modeled on the group level, that is the interaction between all the q treatment

factors and the hth lipidomics measurement (1 6 h 6 p). Such a group structure cannot be

accommodated by variable selection methods from existing longitudinal studies. This fact

motivates us to develop a method for the interaction analysis of repeated measures data,
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termed as interep, with the following penalized generalized estimating equation:

Q(β) = U(β)−
p∑
g=1

ρ′(|β2g|;λ1, γ)sign(β2g)−
p∑

h=1

ρ′(||β3h||Σh
;
√
qλ2, γ), (2.3)

where U(β) is the score equation in GEE and ρ′(·) is the first derivative of the minimax

concave penalty (MCP) (Zhang (2010)). Since the environmental factors are usually of

low dimension and are predetermined as important ones, they are not subject to penalized

selection. U(β) is defined as:

U(β) =
n∑
i=1

ZT
i V
−1
i (Yi − µi(β)),

and the MCP can be expressed as:

ρ(t;λ, γ) = λ

∫ t

0

(1− x

γλ
)+dx,

where λ is the tuning parameter and γ is the regularization parameter. The first derivative

function of the MCP penalty is:

ρ′(t;λ, γ) = (λ− t

γ
)I(t ≤ γλ).

MCP can be adopted for the regularized selection on both individual and group level effects.

It is fast, continuous, and nearly unbiased (Zhang (2010)).

In (2.3), the vector β2 = (β21, ..., β2p)
> denotes the regression parameters for all the p lipid

factors. β3 = (β>31, .., β
>
3p)
>, which denotes the regression parameters for lipid–environment

interactions, is a vector of length pq. β3h is a vector of length q (h = 1, 2, ..., p), corresponding

to the interactions between the hth lipid feature and the environment factors. With the

control as the baseline, the environment factors have been formulated as a group of dummy

variables. With high-dimensional main and interaction effects, penalization is critical for the

identification of important effects out of the large number of candidates. In the penalized

generalized estimating equation (2.3), the first penalty term adopts MCP directly to conduct
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the selection of main lipid effects on the individual level. The second penalty, in the forms of

group MCP, imposes shrinkage on the product between the lipid factors and dummy variable

group, which corresponds to the lipid–environment interactions. The group level selection of

interaction effects is consistent with the mechanism of creating the dummy variable group of

environmental factors. Note that such a rationale of formulating the penalized generalized

estimating equation (2.3) is deeply rooted in group LASSO (Yuan and Lin (2006)).

In particular, λ1 and λ2 in (2.3) are tuning parameters. ρ′(||β3h||Σh
;
√
qλ2, γ) is the group

MCP penalty that corresponds to the interactions between the hth (h = 1, 2, ..., p) lipid

factor and the q environment factors. The empirical norm ||β3h||Σh
is defined as: ||β3h||Σh

=

(β>3hΣhβ3h)
1/2 with Σh = n−1B>h Bh. Bh = Z[, (2 + q+ p+ (h− 1)× q) : (1 + q+ p+h× q)],

and it contains the q columns in Z that correspond to the interactions from the hth lipid

factor with the q environment factors.

A variety of penalized variable selection methods for high-dimensional longitudinal data

have been developed in the past two decades for analyzing high-dimensional omics data,

such as gene expressions, single nucleotide polymorphisms (SNPs), and copy number vari-

ations (CNVs) (Ma et al. (2013); Wang et al. (2012)). However, lipidomics data have

been rarely investigated by using high-dimensional variable selection methods. We devel-

oped a package, (interep https://cran.r-project.org/package=interep) that incorpo-

rates our recently developed penalization procedures to conduct interaction analysis for high-

dimensional lipidomics data with repeated measurements (Zhou et al. (2020)).

The uniqueness of the proposed study lies in accounting for the group structure of lipid–

environment interactions through penalized identification. Therefore, the main lipid effects

and lipid–environment interactions are penalized on individual and group levels, separately,

which leads to a formulation of both MCP and group MCP penalties. Although our model

has been motivated from a specific lipidomics profiling study in weight controlled mice (King

et al. (2015)), it can be readily extended to accommodate more general cases in interac-

tion studies where the environmental factors are not dummy variables formulated from the

ANOVA setting. In such a case, for each lipid factor, the main lipid effects and lipid–

environment interactions form a group, with the leading component of the group being a
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vector of 1s. As not all the effects in the group are expected to be associated with the phe-

notype, a sparse group type of variable selection is demanded. Such a formulation has been

investigated in survival analysis (Wu et al. (2018)), but not in longitudinal studies yet. With

a simple modification of our model to penalize the main and interaction effects on the indi-

vidual and group level simultaneously, the proposed one becomes a penalized sparse group

GEE model and can be adopted to handle general environmental factors in high-dimensional

cancer genomics studies.

2.2.4 Computational Algorithms

We developed an efficient Newton–Raphson type of algorithm to obtain the penalized esti-

mate β̂. Starting with an initialized value, we can solve the penalized GEE iteratively. The

estimated β̂(d+1) in the (d+ 1)th iteration can be solved as:

β̂(d+1) = β̂(d) + [T (d) + nW (d)]−1[U (d) − nW (d)β̂(d)], (2.4)

where U (d) is the score function expressed in terms of β̂(d) at the dth iteration and T (d) is the

corresponding first derivative function of U (d):

T (d) =
n∑
i=1

ZT
i V
−1
i Zi,

which is also a function of β̂(d). The MCP penalty was imposed on both the individual level

(main lipid effects) and group level (lipid–environment interactions). Therefore, W (d) is a

diagonal matrix that contains the first derivative of the MCP penalty for the lipid factors

and the first derivative of the group MCP penalty for the lipid–environment interactions.

We define W (d) as:

W (d) = diag{0, ..., 0︸ ︷︷ ︸
1+q

,
ρ′(|β̂(d)

21 |;λ1, γ)

ε+ |β̂(d)
21 |

, ...,
ρ′(|β̂(d)

2p |;λ1, γ)

ε+ |β̂(d)
2p |

,

ρ′(||β̂(d)
31 ||Σ1 ;

√
qλ2, γ)

ε+ ||β̂(d)
31 ||Σ1

, ...,
ρ′(||β̂(d)

3p ||Σp ;
√
qλ2, γ)

ε+ ||β̂(d)
3p ||Σp

},
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where ε is a small positive number set to 10−6 to avoid the numerical instability when the

denominator is zero. The first (1 + q) elements on the diagonal of W are zero, suggesting

that there is no shrinkage imposed on the coefficients for the intercept and the environmental

factors. We can use nWβ̂ and nW to approximate the first derivative function of MCP in the

penalized score equation and the second derivative function of the MCP penalty, respectively.

Given a fixed tuning parameter, the regression parameter β̂(d+1) can be updated iteratively

till convergence. The stopping criterion is that the L1 norm for the L1 difference between

two consecutive iterations is less than 10−3, and convergence can usually be achieved within

10 iterations.

There are two tuning parameters λ1 and λ2 and a regularization parameter γ. λ1 controls

the sparsity of lipid factors, and λ2 determines sparsity among lipid–environment interac-

tions. We chose the optimal tuning parameters λ1 and λ2 using five-fold cross-validation

in both the simulation study and real data analysis. The regularization parameter γ was

obtained via a data driven approach. In our numerical study, we examined a sequence of

values, such as 1.8, 3, 4.5, 6, and 10, suggested by published studies, and found that the

results were not sensitive to the choice of the value of γ, and then set the value at 3. We

split the dataset into five equally sized subsets and took four of them as the training dataset,

leaving the last subset as the testing dataset. The penalized estimates were obtained from

the training data, and then, prediction performance was evaluated on the testing data. A

joint search over a two-dimensional grid of (λ1, λ2) was conducted to find the optimal pair

of tuning parameters.

Given fixed tuning parameters, we implemented the algorithm as follows:

(1) Set the initial coefficient vector β(0) using LASSO;

(2) Update β(d+1) using equation (2.4) at the (d+ 1)th interation;

(3) Repeat Step (2) until the convergence criterion is satisfied.

In our study, we considered the methods considering both lipid main effects and lipid–

environment interactions with exchangeable working correlation (A1), AR(1) working corre-

lation (A2), and independence working correlation (A3). For comparison with the methods

that cannot accommodate the identification of lipid–environment interactions, we also in-
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cluded A4–A6, which incorporate the exchangeable, AR(1), and independence working cor-

relation, respectively. The alternative methods A4–A6 do not ignore the interaction effects.

Instead, they treat the interaction effects individually, so the group structure considered in

A1–A3 does not exist. We computed the CPU running time for 100 replicates of simulated

lipidomics data with n = 250, ρ = 0.8, p = 75 (with a total dimension of 304) and fixed

tuning parameters on a regular laptop for A1–A6, which can be implemented using our

developed package: (interep https://cran.r-project.org/package=interep) Zhou et al.

(2020). The CPU running time in seconds was 48.8 (A1), 40.2 (A2), 29.0 (A3), 49.3 (A4),

39.7 (A5), and 27.9 (A6), respectively.

2.3 Results

2.3.1 Simulation

We evaluated the performance of all six methods (A1–A6) through extensive simulation

studies. Among them, A1–A3 were developed for accommodating the interaction structures

with different working correlations, while A4–A6 were only focused on the identification

of main effects so the structure of the group level interaction effects were not respected.

Note that there are existing studies that can also achieve the selection of main effects in

longitudinal studies. For example, Wang et al. Wang et al. (2012) adopted the smoothly

clipped absolute deviation (SCAD) penalty for conducting the selection of main effects. Since

the MCP is incorporated as the baseline penalty in A1–A3, A4–A6 have thus been developed

based on MCP and used as benchmark methods for comparison.

The responses were generated from the model (2.2) with sample size n = 250 and 500.

The number of time points k was set to five. The dimensions for lipid factors Xij were p = 75,

150 and 300. With q = 3 for Eij, we first simulated a vector of length n from the standard

normal distribution. A group of three binary dummy variables for environmental factors

could then be generated after dichotomizing the vector at the 30th and 70th percentiles. In

addition, the lipids were simulated from a multivariate normal distribution with mean zero
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and the AR1 covariance matrix with marginal variance one and auto-correlation coefficient

0.5. We simulated the random error ε from a multivariate normal distribution by assuming

a zero mean vector and an AR1 covariance structure with ρ = 0.5 and 0.8. Note that when

considering the interactions, the actual dimensionality was much larger than p. For instance,

given n = 250, p = 150, and q = 3, the total dimension for all the main and interaction

effects was 604.

The coefficients were simulated from U [0.4, 0.8] for 17 nonzero effects, consisting of the

intercept, 3 environmental dummy variables, 4 lipid main effects, and 3 groups of lipid–

environment interactions (9 interaction effects). We generated 100 replicates for the four

settings: (1) n = 250 and p = 75, (2) n = 250 and p = 150, (3) n = 500 and p = 150, and (4)

n = 500 and p = 300. All the rest of the coefficients were set to zero. For each setting, we

considered two correlation coefficients (ρ = 0.5 and 0.8) for the random error. The number

of true positives (TP) and false positives (FP) was recorded.

In addition to identification results, we also calculated the estimation accuracy in terms

of the difference between estimated and true coefficients. In particular, the mean squared

error corresponding to the true nonzero coefficients and true zero coefficients (for noisy

effects) were termed as MSE and NMSE, respectively. The total mean squared error for the

coefficient vector, or TMSE, is computed as:

TMSE =
1

100

100∑
r=1

||β̂(r) − β||2/pβ

where pβ is the dimension of β and β̂(r) is the estimated value of β in the rth simulated

dataset. MSE and NMSE were calculated in a similar way as for TMSE.

Identification results of the six methods (A1–A6) are tabulated in Tables A.1–A.4. In

general, A1–A3, which account for both the lipid main effects and lipid–environment inter-

actions, had better performance than A4–A6, which only accommodated the main effects. For

example, in Table A.1, given n = 250, ρ = 0.5, p = 75, the actual dimension is 304. A1 iden-

tified 14.5 (sd 1.9) nonzero effects out of all the 17 true positives, with a relatively small

number of false positives of 4.8 (sd 3.1). On the other hand, A4 identified a smaller number
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of true positives, 1.3 (sd 1.5), with a larger number of false positives, 6.6 (sd 4.2). Among the

identified effects, A1 identified 7.4 (sd 1.5) interactions, with 3.1 (sd 2.6) false positives. A4

identified a smaller TP of 6.1 (sd 1.1) and a higher FP of 5.1 (sd 3.3) of the lipid–environment

interactions. We could observe that the difference in identification performance between A1

and A4 came mainly from the interaction effects, which was due to the fact that A4 could

not accommodate the group level selection corresponding to the lipid–environment interac-

tions. As the dimension increased, A1 outperformed A4 more significantly. For instance, in

Table A.4, the overall dimension for n = 500, ρ = 0.8, p = 300 is 1204. A1 had a TP of 15.9

(sd 1.2) and an FP of 3 (sd 2.6), while A4 had a smaller TP 14.5 (sd 1.2) and a higher FP

4.5 (sd 3.0). Figures A.1 and A.2 are plotted based on the identification results from Tables

A.1–A.4. We can observe that overall, A1–A3 outperformed A4–A6 with a higher TP and a

lower FP under each setting.

In terms of estimation accuracy, A1–A3 also had a better performance compared with

A4–A4, as shown in Tables A.5 and A.6. For the panel corresponding to n = 250, ρ = 0.5,

and p = 75 in Table A.5, the mean squared error for the nonzero coefficients of A1 was 0.1055,

which was less than half of that of A4 (0.2321). Besides, A1 also had a smaller total mean

squared error (TMSE). All the pieces of evidence suggested that A1 had higher estimation

accuracy than A4. We can observe the pattern for the rest of the four methods. As the

dimension increased to n = 500, ρ = 0.8, and p = 300 (so the total dimension was 1204) in

Table A.6, the MSE of A1 (0.0688) was also smaller than that of A4 (0.1949). There were

no obvious differences in NMSE among these settings.

Another important conclusion we make from the simulation study is that, for the methods

that differ only in working correlation, i.e., A1 (exchangeable), A2 (AR1), and A3 (indepen-

dence), there was no significant difference in terms of either identification or estimation

accuracy, as shown by Tables A.1–A.6, as well as Figures A.1 and A.2. Such an observation

suggests that the proposed methods under the GEE framework were robust to the misspec-

ification of the working correlation, and this is consistent with the conclusions from main

effects only models in longitudinal studies (Cho and Qu (2013)).

To mimic the sample size and number of lipid factors in the case study, we also conducted
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a simulation in settings with n = 60, p = 30, and q = 3. Therefore, the overall dimension

of main and interaction effects was 124. The coefficients were generated from U [1.4,1.8] for

17 nonzero effects. The identification and prediction results are summarized in Tables A.7

and A.8 in the Appendix, respectively. Consistent patterns were observed. For example,

in terms of identification, under ρ = 0.5, A1 had a higher TP of 13.6 (sd 2.5) compared to

the 11.1 (sd 2.6) of A4, and a lower FP of 4.7 (sd 2.7), compared to the FP of 5.4 (sd 2.8)

identified by A4.

Evaluation of all the methods, especially A1–A3, was also conducted when the true

underlying model was misspecified. We generated the response (phenotype) from a main

effect only model with eight true main effects when n = 250, p = 75, ρ = 0.8 with a total

dimension of 304. Results are provided in Table A.11. When the interaction effects did not

exist, A1 had only identified a very small number of false interaction effects, with 0.7 (sd 1.7)

false positives. A2–A6 performed similarly in terms of identifying false interaction effects.

All six methods identified a comparable number of true main effects. Overall, all methods

had similar performance in identification, as well as prediction, when the data generating

model had only main effects. Such a phenomenon is reasonable by further examining the

results in Table A.1. We found that the major difference between A1–A3 and A4–A6 was due

to the identification of interaction effects. Therefore, when only main effects were present,

all the methods had comparable performances.

Penalized regression and hypothesis testing are two related, but distinct aspects in sta-

tistical analysis. The proposed study was not aimed at developing test statistics, computing

the power functions, and assessing the control of type 1 error, so these statistical test related

results are not available, just like most of the studies on penalized regression. Recently,

efforts devoted to bridging the two areas have been mainly restricted to linear models under

high-dimensional settings (Lee et al. (2016); Lockhart et al. (2014); Taylor and Tibshirani

(2015)). Extensions to interaction models have not been reported so far. In particular, we

are not aware of results reported for longitudinal models. Nevertheless, we conducted the

simulation by assuming the null model and tabulate the identification results in Table A.12.

The results should be interpreted as identification with misspecified models. As we observed,
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under the null model, all six methods led to a very small number of false positives.

To assess the consistency of variable selection in longitudinal settings, we carried out the

stability selection (Meinshausen and Bühlmann (2010)) under n = 250, p = 75, and ρ =

0.8. Each time, we selected 200 out of the total of 250 subjects without replacement and

then conducted selection. The process was repeated 100 times, which yielded a proportion

of selected effects. Larger proportions of being selected suggested stable results. Stability

selection is well known for assessing the stability of penalized selection, and it alleviates the

concern that the effects have only been identified by chance. We investigate the selection

proportions of the 17 true main and interaction effects for all six methods in Table A.13. A1

identified 14 true effects with proportions above 70%, which is consistent with the results

shown in the lower panel of Table A.1, where 13.7 TPs (sd 2.3) were identified. Such a

consistent pattern can be observed across all six methods.

Although no consensus on the optimal criterion of selecting tuning parameters has been

reached so far, cross-validation is perhaps the most well accepted criterion to select tuning

parameters in the community of high-dimensional data analysis (Fan and Lv (2010); Wu and

Ma (2015)). To further justify its appropriateness, under the setting of n = 250 and p = 75,

we performed the analysis by selecting tuning parameters using an independently generated

testing dataset with a sample size of 1000 and p = 75. The models were fitted on the

training dataset, and prediction was assessed based on the independently generated testing

dataset, so no data were used in training the model. The identification and prediction results

are tabulated in Tables A.14 and A.15, respectively. A comparison to Tables A.1 and A.5

demonstrates that the results obtained by cross-validation and validation were very close.

2.3.2 Real Data Analysis

We applied the proposed and alternative methods on a dataset from one of our previous

studies in animal models (King et al. (2015)). In the study, 60 female CD-1 mice were

assigned to four different treatment groups, which were control (ad libitum feeding and

sedentary), AE (exercise and ad libitum feeding), PE (exercise and pair feeding), and DCR
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(sedentary and 20% dietary calorie restriction). The phenotype of interest was mice’s body

weight, which was measured every week for 10 weeks. Mice were sedentary and given ad

libitum feeding in the control group, where they could eat as much as they wanted without

doing treadmill exercises. In the AE group, mice received ad libitum feeding and ran on the

treadmill every day at a speed of 0.5 mph, 1 hour per day, and 5 days a week, while mice

in the PE group did the same exercise, but were given the same amount of diet as the mice

in the control group. Mice in the DCR group had 20% less calorie intake than the control

group, but they had the same intake of protein, vitamins, and minerals. The composition

of 176 plasma neutral lipid species of interest was measured. In the current study, we only

focused on diacylglycerols. In addition, the diacylglycerol lipid species that have a majority

of samples lower than the detection limits were excluded so there were 31 diacylglycerols. In

total, there were 31 lipid main effects and 93 lipid–environment interactions.

Using the method A1 (interep with the exchangeable working correlation) as shown in

Table A.7, we identified seven lipid species that had different effects in weight control of mice

(AE, PE, or DCR) on body weight compared to those of the control mice. Among them,

C20:1/16:1 and C20:1/20:4 had negative interactions in AE mice, where C denotes carbon.

For the lipid species of C20:1/16:1, C39H76O5N , the regression coefficient was −2.9145 for

AE mice. That is, mice with an increased amount of C20:1/16:1 tended to have a lower body

weight compared to that of the control. In the AE mice, both C16:0/C16:0 and C22:6/C18:1

had strong positive associations with body weights. It is interesting that C16:0/C16:0 were

negatively associated with body weight in both PE and DCR mice. C16:0 is also called

palmitic acid and is one of most common saturated fatty acids. Increased consumption of

palmitic acid is associated with higher risk of cardiovascular disease, type 2 diabetes, and

cancer (Briggs et al. (2017)). The negative association of C16:0/16:0 and body weight in

DCR and PE suggests that when the calories of the diet are restricted, the accumulation of

saturated fat in the body actually decreased compared to the control. Another lipid that

is negatively associated with body weight in DCR and PE mice is C18:1/16:1. The lipids

that were positively associated with body weight in PE were C18:2/C16:1, C20:1/C16:1, and

C22:6/C18:1. All species contain unsaturated fatty acids. Among them, C22:6 is one of the
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omega-3 polyunsaturated fatty acids (PUFA). In DCR, the two lipids that were positively

associated with body weight were C18:2/16:1 and C20:1/20:4. Both fatty acids C18:2 and

C20:4 were PUFA. The results seem to be consistent with our previous finding that exercise

with paired feeding may increase the amount of PUFA in phospholipids in mice skin (Ouyang

et al. (2010)).

In addition, we adopted A4 to analyze the lipid data. A4 also had the exchangeable

working correlation, but it could not conduct group level selection of the lipid–environment

interactions. The identification results are tabulated in Table A.8. Note that the selection

of interactions with individual dummy environment factors was not consistent with the

formulation of the lipid–environment interactions. In terms of prediction, A1 had a smaller

prediction error (4.04) than that of A4 (4.97).

2.4 Discussion

Investigation of the potential roles of lipids in the regulation and control of cellular function

and the interactions between lipids and environmental factors are very important in the

understanding of physiology and disease processes. Traditionally, the analyses mostly focus

on the total amount of a particular type of lipid, such as total triglyceride, total cholesterol,

and omega-3 fatty acid. With the recent advances in instrumental technology, it is feasible

to analyze quantitatively a broad range of lipid species in a single platform (Bowden et al.

(2017); Jiang (2012); King et al. (2015); Stegemann et al. (2014); Zhou et al. (2012)). The

vast arrays of data generated in lipid profiling studies bring challenges to the statistical

analysis of lipidomics data (Checa et al. (2015); Kujala and Nevalainen (2015); Wenk (2005)).

In this study, we proposed a penalized variable selection method to identify important

lipid–environmental effects in longitudinal studies. Some statistical methods have already

been reported for lipidomics studies, including the marginal test and variable selection meth-

ods (Checa et al. (2015); Jiang (2012); King et al. (2015); Kujala and Nevalainen (2015));

however, they cannot be directly extended to longitudinal studies. On the other hand, ex-

isting variable selection methods for longitudinal data have been predominately developed
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for the identification of main effects and cannot accommodate the group level interaction

structure unique to our studies. Both the simulation and case study have convincingly

demonstrated the merit of the proposed interep over alternatives.

We selected tuning parameters based on cross-validation. A further investigation of dif-

ferent tuning criteria is interesting, but beyond the scope of this study, especially given

the fact that many well known variable selection methods in longitudinal studies, such as

Wang et al. (2012), have been conducted using cross-validation. To facilitate a fair cross-

comparison with existing relevant studies, we believe it is reasonable to adopt cross-validation

to choose tuning parameters. Note that the aforementioned stability selection analysis also

partially justifies the usage of cross-validation. We acknowledge that other criteria for select-

ing tunings, such as double cross-validation (Filzmoser et al. (2009)), could be a potential

reliable choice. However, as it is not a widely accepted tuning criterion for high-dimensional

data analysis and has not been adopted in any longitudinal studies so far, we postpone the

investigation to the future.

Interaction studies have been historically pursued by statisticians (Cordell (2002)). Within

the high-dimensional scenario, accounting for such a complex structure, in both gene–gene

(G × G) and gene–environment (G × E) interaction studies, is challenging, but also reward-

ing (Wu and Ma (2018)). The proposed study is among the first to investigate penalized

identification of lipid–environment interactions in longitudinal studies. Both the simulation

study and case study yielded interesting findings. G × G interaction is computationally more

challenging than G × E interactions since both main effects involved in the interactions are

of high dimensionality. Following the representative G × G interaction studies (Bien et al.

(2013); Choi et al. (2010)), we can extend the proposed study to lipid–lipid interactions,

which has not been investigated in longitudinal studies so far. Besides, when multi-omics

measurements are available, it is also of great interest to examine interaction effects through

multi-omics integration studies in the longitudinal setting (Li et al. (2019); Wu et al. (2019)).

The proposed model can also be estimated using the quadratic inference functions (QIF).

GEE relies on the working correlation matrix R(η), and it enables us to find the consistent

estimator of the regression parameter if consistent estimators of the nuisance parameters η
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can be obtained. However, consistent estimators of η do not always exist in some cases. QIF

has been proposed to avoid explicit estimation of the nuisance parameters by assuming the

inverse of the working correlation matrix R(η) can be approximated by a linear combination

of a class of base matrices (Cho and Qu (2013); Qu et al. (2000)). Thus, QIF is robust to

the misspecification of the working correlation.

In this paper, we are interested in the identification of lipid-treatment (or environment)

interactions through penalization. The success of set based analysis, including those for the

gene set (Schaid et al. (2012)) and SNP set (Wu and Cui (2014); Wu et al. (2012)), has

tremendously motivated the development of statistical methods for G × E interactions from

marginal analyses (Mukherjee et al. (2012); Wu and Cui (2013)) to penalization methods

(Wu et al. (2014, 2018, 2020)). Our model can be potentially extended in the following

aspects. First, as data contamination and outliers have been widely observed in repeated

measurements, robust variable selection methods in G × E interaction studies Wu et al.

(2018, 2015); Wu and Ma (2019); Xu et al. (2018) can be extended to longitudinal settings.

Second, recently, multiple Bayesian methods have been proposed for pinpointing important

G × E interaction effects Ahn et al. (2013); Li et al. (2015); Ren et al. (2020). Within the

framework of analyzing repeated measurements, Bayesian variable selection for interactions

has not been extensively examined. Besides, test-based approaches on the analysis of lon-

gitudinal data have also been established. For example, Wang and Zhang (2010) developed

a set of nonparametric tests for longitudinal DNA copy number data. Investigations of all

these possible directions will be postponed to the near future.
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Chapter 3

Sparse group variable selection for

gene–environment interactions in the

longitudinal study

3.1 Introduction

Longitudinal data have arisen in biomedical studies, clinical trials and many other areas with

measurements on the same subject being taken repeatedly over time. Substantial efforts

have been made to account for the correlated nature of repeated measures when modelling

longitudinal data (Verbeke et al. (2014)). Recently, the importance of longitudinal design in

genetic association studies has been increasingly recognized (Li et al. (2015); Sitlani et al.

(2014)). As the main objective of conducting association analysis is to identify key signals

associated with the disease phenotypes from a large number of genetic variants (e.g. single

nucleotide polymorphisms, or SNPs) (Cordell and Clayton (2005),Wu et al. (2012)), the

longitudinal design yields novel insight to elucidate the genetic control for complex disease

traits over cross-sectional designs.

This study has been partially motivated by analyzing the high dimensional SNP data

with longitudinal trait from the Childhood Asthma Management Program (CAMP). CAMP

27



has been launched in early 1990s and became the largest randomized longitudinal clinical

trial developed to investigate the long term influences of Budesonide and Nedocromil, the

anti-inflammatory therapy, on children with mild to moderate asthma (Childhood Asthma

Management Program Research Group (1999, 2000); Covar et al. (2012)). Including placebo,

the treatment thus has three levels. Our primary disease phenotype of interest is the forced

expiratory volume in one second (FEV1), a repeatedly measured indicator on whether the

lung growth of children has improved or not. Here, with SNPs as G factors and treatment, age

and gender as environmental (E) factors, we are interested in dissecting the gene-environment

(G×E) interactions under the longitudinal trait FEV1. As the number of main and inter-

action effects is much larger than the sample size, penalized variable selection has become a

powerful tool for interaction studies (Zhou et al. (2021)).

To date, penalization methods for interaction studies have been mainly proposed under

continuous disease traits, categorical status and cancer prognostic outcomes (Zhou et al.

(2021)). With the longitudinal phenotype, where the response on the same subject are re-

peatedly measured over a set of units (e.g. time), penalized regression methods are relatively

underdeveloped for interaction analyses. In fact, our limited literature search indicates that

majority of the variable selection methods in longitudinal studies can only accommodate

main effects. For example, Wang et al. (2012) has developed a penalized generalized es-

timating equation (GEE) for the identification of important main effects associated with

longitudinal response. Also within the GEE framework, Ma et al. (2013) has considered

an additive, partially linear model with variable selection on the main effect only. On the

other hand, Cho and Qu (2013) has conducted penalized variable selection in the main ef-

fect model based on the quadratic inference function (QIF), and showed that penalized QIF

outperforms penalized GEE under a variety of settings.

The relative underdevelopment of variable selection methods for longitudinal interaction

studies is partially due to the challenge in accommodating structured sparsity within either

the GEE or QIF framework. Consider the interaction model involving p genetic factors and q

environmental factors, where the interactions are denoted by pq product terms. Such a model

serves as the umbrella framework for a large number of G×E studies (Zhou et al. (2021)).
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For one G factor, its main effect and interactions with the q environmental factors form a

group of q+1 terms. Hence, to determine whether the genetic factor is associated with the

phenotype, a group level selection should be conducted. Furthermore, if the genetic factor

is associated with the phenotype, an individual level selection within the group is necessary.

Overall, identification of important G×E interactions essentially amounts to a sparse group

(or bi-level) variable selection problem, which becomes even more challenging when a large

number of genetic factors are jointly analyzed under repeatedly measured phenotypes.

The aforementioned interaction model serves as an umbrella framework for a large num-

ber of G×E interaction studies (Zhou et al. (2021)). On a broader scope, sparse group (or

bi–level) structure plays a very important role in high dimensional variable selection with

structured sparsity (Breheny and Huang (2009); Friedman et al. (2010); Simon et al. (2013)).

Nevertheless, the bi-level sparsity has not been examined in existing longitudinal studies by

far. Our study is novel in that it is among the first to develop the sparse group regular-

ized variable selection for high dimensional longitudinal studies. Specifically, based on the

quadratic inference function (QIF), we propose a sparse group variable selection method for

simultaneous selection of main and interaction effects on both the group and individual levels

in G×E studies. The Minimax concave penalty (MCP) is adopted as the baseline penalty

function to achieve regularized identification (Zhang (2010)).

Besides the QIF and GEE, Bayesian analysis and mixed models are also the major tools

for repeated measurement studies (Fan and Li (2012); Li et al. (2015)). Our literature survey

shows that the longitudinal bi-level variable selection has not been developed within the two

frameworks yet. Therefore, a direct comparison is not possible. While the QIF is robust to

model misspecification as well as at least a small portion of data contamination and outliers

(Cho and Qu (2013); Qu and Song (2004)), the robustness of Bayesian and mixed model

based high dimensional longitudinal analyses remains unanswered. For example, specifying

the Bayesian hierarchical model in longitudinal studies generally involves employing a covari-

ance structure, such as the first-order autoregressive (AR1) structure (Li et al. (2015)), when

the truth is not known a priori. It is not clear to what extent these methods are robust

to model misspecification. Besides, with the multivariate normal assumption on residual

29



error, Li et al. (2015) is not robust to phenotypes with long–tailed distributions. Lastly, we

have implemented the proposed and alternative methods in R package springer (Zhou et al.

(2021)). The core modules of the R package have been developed in C++ to guarantee fast

computations.

3.2 Statistical Method

3.2.1 Data and Model Settings for Longitudinal G×E Studies

We consider a longitudinal scenario where there are n subjects and ki measurements re-

peatedly taken over time on the ith subject (1 6 i 6 n). There are correlations among

measurements on the same subject, and independence is assumed for measurements between

different subjects. We denote Yij as the phenotypic response of the ith subject at the jth

time point (1 6 i 6 n, 1 6 j 6 ki). Xij = (Xij1, ..., Xijp)
> denotes a p-dimensional vector of

genetic factors and Eij = (Eij1, ..., Eijq)
> is a q-dimensional vector of environmental factors

in the study. Consider the following model:

Yij = µij + εij

= α0 +

q∑
u=1

αuEiju +

p∑
v=1

γvXijv +

p∑
v=1

q∑
u=1

huvEijuXijv + εij

= α0 +

q∑
u=1

αuEiju +

p∑
v=1

(γv +

q∑
u=1

huvEiju)Xijv + εij

= α0 +

q∑
u=1

αuEiju +

p∑
v=1

η>v Zijv + εij,

(3.1)

where α0, αu’s, γv’s and huv’s are the coefficients of the intercept, environmental factors,

genetic factors and G×E interactions, respectively. We define ηv = (γv, h1v, ..., hqv)
> and

Zijv = (Xijv, Eij1Xijv, ..., EijqXijv)
>. Zijv is a (1 + q)-dimensional vector that represents the

main effect of the vth genetic factor and its interactions with the q environmental factors.

We assume the random error εi = (εi1, ..., εiki)
> ∼ Nki(0,Σi), which is a multivariate normal

distribution with Σi as the covariance matrix for the ki repeated measurements of the ith
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subject. Without loss of generality, we let ki = k. Collectively, we can write α = (α1, ..., αq)
>,

η = (η>1 , ..., η
>
p )>, and Zij = (Z>ij1, ..., Z

>
ijp)
>. The vector η is of length p × (1 + q). Then

model (3.1) can be rewritten as:

Yij = α0 + E>ijα + Z>ijη + εij.

Denote (1 + q + p(q + 1))-dimensional vectors β = (α0, α
>, η>)> and Wij = (1, E>ij , Z

>
ij )
>,

then model (3.1) becomes:

Yij = W>
ij β + εij.

While the phenotype, the G factors and E factors all have repeated measurements in the

above model formulation for longitudinal G×E studies, such a formulation allows for flexible

model setups. For example, it also works when only one of two types of factors is longitudinal,

or neither of them have been repeatedly measured. The time-varying gene expression is a

representative example of the G factor. In this study, the G factors are SNPs that do not

change over time.

3.2.2 Quadratic Inference Function for Longitudinal G×E Inter-

actions

Modeling longitudinal response Yi is challenging, as the full likelihood function is generally

difficult to specify, due to the intra-subject/cluster correlation. To overcome such an issue,

LIANG and ZEGER (1986) has proposed the generalized estimating equations (GEE), where

a marginal model with only the working correlation for Yij needs to be specified. The first

two marginal moments of Yij are given as E(Yij) = µij = W T
ijβ, and Var(Yij) = δ(µij)

respectively, and δ(·) is a known variance function. The score equation for GEE in the G×E

setting is defined as:

n∑
i=1

∂µi(β)

∂β
V −1
i (Yi − µi(β)) = 0,

31



where µi(β) = (µi1(β), ..., µik(β))>. The first term in the equation, ∂µi(β)
∂β

, reduces to Wi =

(Wi1, ...,Wik)
>. We define Yi = (Yi1, ..., Yiki)

> and Vi = A
1
2
i Ri(ν)A

1
2
i is the covariance matrix

of the ith subject, with Ai = diag{Var(Yi1), ...,Var(Yik)}. Ri(ν) is a ‘working’ correlation

matrix that describes the pattern of measurements and can be characterized by a finite

dimensional intra–subject/cluster parameter ν. The solution of the score equation, β̂, is the

GEE estimator.

LIANG and ZEGER (1986) has shown that when the intra–subject parameter from the

working correlation matrix can be consistently estimated, GEE yields consistent estimates

of regression coefficients even if the correlation structure is misspecified. Nevertheless, the

GEE estimator is not efficient under such misspecification, let alone the nonexistence of the

consistent estimator for the intra–class parameter. Moreover, the GEE estimator is highly

sensitive to even only one outlying observation. To overcome the drawback of GEE, Qu

et al. (2000) has proposed the method of quadratic inference functions (QIF), where a direct

estimation of the correlation parameter is not needed, and the corresponding estimator

remains optimal even under structure misspecification. In addition, Qu and Song (2004)

have further shown that QIF is more robust than GEE in the presence of outliers and data

contamination, and is thus a preferable method over GEE.

In the current G×E settings, the QIF method approximates the inverse of R(ν) with a

linear combination of basis matrices as R(ν)−1 ≈
∑m

t=1 btMt, where M1 is an identity matrix,

M2, ...,Mm are symmetric basis matrices with unknown coefficients b1, ...bm. Qu et al. (2000)

has destribed the choice of the basis matrices M2, ...,Mm based on the working correlation.

With such an approximation, the score equations become

n∑
i=1

W>
i A

− 1
2

i (b1M1 + ...+ bmMm)A
− 1

2
i (Yi − µi(β)). (3.2)

Within the framework of QIF, we define φi(β), the extended score vector involving the

main and interaction effects for the ith subject, as
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φi(β) =



W>
i A

− 1
2

i M1A
− 1

2
i (Yi − µi(β))

.

.

.

W>
i A

− 1
2

i MmA
− 1

2
i (Yi − µi(β))


, (3.3)

without the estimation of the coefficients b1, ...bm. Subsequently, the extended score for all

subjects is φn(β) = 1
n

∑n
i=1 φi(β).

It can be observed that the estimation functions for G×E studies (Equation (3.2)) is

equivalent to a linear combination of components from the extended score vectors. Based

on φn(β), the extended score of the G×E studies, we define the corresponding quadratic

inference function as

Qn(β) = φn
>(β)Ωn(β)−1φn(β),

where Ωn(β) = 1
n

∑n
i=1 φi(β)φi(β)>. Then the QIF estimator β̂ for G×E interaction studies

can be obtained as β̂ = argmin
β
Qn(β).

3.2.3 Penalized identification of G×E interactions in longitudinal

studies

In a typical G×E study, the main objective is to identify an important subset of features out

of all the main and interaction effects, which is of a “large p, small n” nature. Therefore,

penalized variable selection becomes a natural tool to investigate G×E interactions (Zhou

et al. (2021)). With model (3.1), we propose the following penalized quadratic inference

function:

U(β) = Q(β) +

p∑
v=1

ρ(||ηv||Σv ;λ1, γ) +

p∑
v=1

q+1∑
u=1

ρ(|ηvu|;λ2, γ), (3.4)

where the baseline penalty function ρ(·) is a minimax concave penalty, which is defined as

ρ(t;λ, γ) = λ
∫ t

0
(1− x

γλ
)+dx on [0,∞), with tuning parameter λ and regularization parameter

γ (Zhang (2010)). As previously defined, ηv is a coefficient vector of length q + 1, corre-
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sponding to the main effect of the vth SNP and its interactions with the q environment

factors. We denote ||ηv||Σv as the empirical norm of ηv and ηvu as the uth component of

ηv(v = 1, ..., p, and u = 1, ..., q + 1).

Our choice of the baseline penalty function is the minimax concave penalty and the

corresponding first derivative function of MCP penalty is defined as ρ′(t;λ, γ) = (λ− t
γ
)I(t ≤

γλ).

Within the current longitudinal setting, identification of important G×E interactions

amounts to a bi–level selection problem. In particular, selection on the group level determines

whether the genetic factor is associated with the phenotypic response. If the coefficient vector

ηv is 0, then the G factor does not have any contribution to the response. Otherwise, an

examination on the individual level to further determine the existence of main and interaction

effects is necessary. The penalized QIF function (3.4) has been formulated to accommodate

individual and group level selection in longitudinal G×E studies with the sparse group MCP

penalty function.

In general, the regularized loss functions of penalization problems share the form of

“unregularized loss function + penalty function” (Wu and Ma (2015)). In longitudinal

studies, popular choices of unregularized loss function include GEE and QIF. Our limited

search suggests that existing penalization methods for longitudinal data are mostly focused

on main effects, therefore only baseline penalty functions such as LASSO and SCAD are

necessary (Cho and Qu (2013); Ma et al. (2013); Wang et al. (2012)). In G×E studies,

the interaction structure poses a challenge to accommodate the more complicated bi-level

sparsity, which has motivated the proposed study.

3.2.4 Computational Algorithms for Sparse Group QIF

Now, we outline an efficient Newton-Raphson algorithm that iteratively updates parameter

estimates β̂ for the penalized QIF. In particular, at the gth iteration, β̂(g+1) can be obtained
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based on the estimated coefficient vector β̂(g) from the gth iteration as follows:

β̂(g+1) = β̂(g) + [V (g) + nH(g))]−1[P (g) − nH(g)β̂(g)], (3.5)

where P (g) and V (g) are the first and second order derivative functions of the score function

of QIF, respectively. They are given as:

P (g) =
∂Q(β̂(g))

∂β
= 2

∂φn
>

∂β
Ωn
−1φn(β̂(g)),

and

V (g) =
∂2Q(β̂(g))

∂2β
= 2

∂φn
>

∂β
Ωn
−1∂φn
∂β

.

Besides, H(g) is a diagonal matrix consisting of derivatives of both the individual– and group–

level penalty functions, which is defined as:

H(g) = diag(0, ..., 0︸ ︷︷ ︸
1+q

,
ρ′(||η̂(g)

1 ||Σ1 ;
√
q + 1λ1, γ)

ε+ ||η̂(g)
1 ||Σ1

, ...,
ρ′(||η̂(g)

1 ||Σ1 ;
√
q + 1λ1, γ)

ε+ ||η̂(g)
1 ||Σ1︸ ︷︷ ︸

1+q

, ...,

ρ′(||η̂(g)
p ||Σp ;

√
q + 1λ1, γ)

ε+ ||η̂(g)
p ||Σp

, ...,
ρ′(||η̂(g)

p ||Σp ;
√
q + 1λ1, γ)

ε+ ||η̂(g)
p ||Σp︸ ︷︷ ︸

1+q

) + diag(0, ..., 0︸ ︷︷ ︸
1+q

,

ρ′(|η̂(g)
11 |;λ2, γ)

ε+ |η̂(g)
11 |

, ...,
ρ′(|η̂(g)

1(q+1)|;λ2, γ)

ε+ |η̂(g)
1(q+1)|︸ ︷︷ ︸

1+q

, ...,
ρ′(|η̂(g)

p1 |;λ2, γ)

ε+ |η̂(g)
p1 |

, ...,
ρ′(|η̂(g)

p(q+1)|;λ2, γ)

ε+ |η̂(g)
p(q+1)|︸ ︷︷ ︸

1+q

),

where ε is a small positive number adopted to ensure that the denominator is nonzero for

zero coefficients and here we set it equal to 10−6. This is a common practice to avoid nu-

merical instability in Newton–Raphson type of algorithms. The first (1 + q) elements on

the diagonal of matrix H(g) are zero, which indicates no shrinkage is added to the intercept

and the coefficients of the environmental factors. Here nH(g)β̂(g) and nH(g) can be used

to approximate the first and second order derivative functions of the sparse group penalty,

respectively. Given an initial coefficient vector, which can be estimated by LASSO, the
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proposed algorithm proceeds iteratively and update the regression parameter β̂(g+1) until

convergence which can be achieved when the L1 norm of the difference in coefficient vec-

tors from adjacent iterations is less than 0.001. Our numerical experiments show that the

convergence can usually be achieved in a small to moderate number of iterations.

There are usually two tuning parameters for sparse group penalty, controlling the indi-

vidual and group level sparsity, respectively. In the current G×E study, for a G factor, its

main effect and interactions with all the environmental factors are treated as one group. The

tuning parameter λ1 determines the amount of shrinkage on the group level, and λ2 further

tunes the shrinkage on individual effects within the group. The optimal pair of λ1 and λ2 are

obtained through a joint search over a two-dimensional grid of (λ1, λ2) based on a validation

approach. Specifically, the regularized estimate is computed on a training dataset, and then

the prediction is evaluated on an independently generated testing dataset. Our numerical

experiment shows that validation and cross validation tend to yield similar tunings, but the

first one is computationally much faster.

With the nonconvex baseline penalty MCP, we will need to determine the regularization

parameter γ which balances unbiasedness and concavity (Zhang (2010)). Relevant studies

suggests checking with a sequence of different values, and then fixing the value. We have

investigated a sequence of 1.4, 3, 4.2, 5.8, 6.9, and 10, and found that the results are not

sensitive to the value of γ. Therefore, we set γ to 3. This finding is consistent with published

studies (Ren et al. (2017); Wu et al. (2018)).

For fixed tuning parameters, the proposed algorithm proceeds as follows:

(a) Initialize the coefficient vector β̂(0) using LASSO;

(b) At the (g + 1)th iteration, update β̂(g+1) based on equation (3.5) ;

(c) Repeat Step (b) until the convergence is achieved.

We consider three working correlation structures, exchangeable, AR(1) and independence,

for the sparse group MCP based method dissecting longitudinal G×E interactions. Besides,

the group MCP which ignores the within group sparsity of G×E interactions and the MCP

only considering individual level main and interaction effects are included for comparison. In

summary, we term the bi–level, group–level and individual–level longitudinal penalization un-
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der exchangeable working correlation as sgQIF.exch, gQIF.exch and iQIF.exch, respectively.

Similarly, with AR(1) correlation, the three approaches are denoted as sgQIF.ar1, gQIF.ar1

and iQIF.ar1 correspondingly. Then sgQIF.ind, gQIF.ind, and gQIF.ind are termed accord-

ingly under independent correlation. The details of the alternative approaches are provided

in Appendix B.1. We computed the CPU running time for 100 replicates of simulated gene

expression data with n = 400, p = 200, q=5 (with a total dimension of 1206) and fixed tuning

parameters on a regular laptop for the nine methods, which can be implemented using our

developed package: springer (Zhou et al. (2021)). The average CPU running time in seconds

are 34.7 (sd 4.9) (sgQIF.exch), 36.2 (sd 6.9) (gQIF.exch), 35.7 (sd 3.5) (iQIF.exch), 24.9 (sd

4.3) (sgQIF.ar1), 32.7 (sd 1.5) (gQIF.ar1), 26.5 (sd 5.3) (iQIF.ar1), 5.8 (sd 0.5)(sgQIF.ind),

6.3 (sd 0.8) (gQIF.ind) and 5.4 (sd 0.3) (iQIF.ind), respectively.

3.2.5 Unbalanced Date Implementation

In practice, due to missing data, the repeated measurements are unbalanced when cluster

sizes vary among different subjects. The proposed method can still be implemented in such a

case by introducing a transformation matrix to each subject (Cho and Qu (2013)). Suppose

the total number of time points is denoted by k and the ith subject is repeated measured at

ki time points. Let Si denote a k×ki tranformation matrix for the ith subject. Then for the

ith subject, the transformation matrix Si is generated by deleting the columns of the k × k

identity matrix that correspond to the time points with measurement missing. According to

this strategy, transformation is performed by letting W ?
i = SiWi, Y

?
i = SiYi, µ

?
i (β) = Siµi(β)

and A?i = SiAiS
>
i . Then we can replace φi(β) in equation (3.3) by the transformed extended

score vector φ?i (β), which is defined as:
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φ?i (β) =



(W ?
i )>(A?i )

− 1
2M1(A?i )

− 1
2 (Y ?

i − µ?i (β))

.

.

.

(W ?
i )>(A?i )

− 1
2Mm(A?i )

− 1
2 (Y ?

i − µ?i (β))


,

and the QIF estimator can be further obtained for unbalanced data based on the transformed

terms.

3.3 Simulation

The performance of the nine methods has been assessed through simulation studies to demon-

strate the utility of the proposed methods. We generate the responses from model (3.1) with

sample size n=400, and set the number of time points k to 5. The dimension for genetic fac-

tors is p= 200 and there are q = 5 environmental factors. This leads to a total dimension for

all the main and interaction effects equal to 1206, which is much larger than the sample size.

We have also experimented with larger dimensionality for the G factors, and found that the

results are stable and consistent with the current setting as long as the total dimensionality

is moderately larger than sample size. The details on scalability of the proposed method to

ultra-high dimensional data is deferred to the Section of Discussion. In our simulation, the

environmental factors are simulated from a multivariate normal distribution with mean 0

and AR–1 covariance matrix with marginal variance 1 and auto correlation coefficient 0.8.

The first environmental factor is dichotomized at the 50th percentile and changed to a binary

vector. We simulate the random error ε for the longitudinal response from a multivariate

normal distribution by assuming 0 mean vector and an exchangeable covariance structure

with parameter τ = 0.8. Following all these settings, the time-independent genetic factors

are simulated in four different scenarios.

In the first scenario, the genetic factors are gene expressions, which are simulated from
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a multivariate normal distribution with mean 0 and AR–1 covariance matrix with marginal

variance 1 and an auto correlation coefficient 0.8. In the second scenario, we consider gen-

erating SNP data by dichotomizing the gene expression values from scenario 1 at the 30th

and 70th percentiles with respect to each gene, leading to the three categories (0,1,2) for

genotypes (aa,Aa,AA).

In the third scenario, we simulate the SNP data using a pairwise linkage disequilibrium

(LD) structure. Let qA and qB denote the minor allele frequencies (MAFs) for the two

risk alleles A and B from two adjacent SNPs, respectively, and δ denote the LD. Then the

frequencies of the four haplotypes can be derived as pAB = qAqB + δ, pab = (1− qA)(1− qB) +

δ, pAb = qA(1−qB)−δ, and paB = (1−qA)qB−δ. By assuming Hardy-Weinberg equilibrium,

we simulate the SNP genotypes AA, Aa and aa at locus 1 from a multinomial distribution

with frequencies q2
A, 2qA(1− qA) and (1− qA)2. Then the genotypes for SNP at locus 2 can

be generated based on the conditional genotype probability matrix (Cui et al. (2008)). If the

MAFs are 0.3 and pairwise correlation r is set to 0.3, we can get δ = r
√
qA(1− qA)qB(1− qB).

Next, in scenario 4, we consider a more practical approach to generate the SNP data. The

first 200 SNPs from the case study have been extracted as the G factors. We randomly sample

400 subjects from the real data in each simulation replicate to generate the longitudinal

responses.

The coefficients are generated from Uniform[0.3, 0.7] for 31 nonzero effects, consisting of

the intercept, 5 environmental factors, and 25 genetic main effects and G×E interactions.

We simulate 100 replicates for each scenario to evaluate the identification and prediction

performance of all the 9 methods. The average number of true positives (TP) and false

positives (FP) with the corresponding standard deviation (sd) are recorded. In addition,

prediction accuracy is evaluated based on the mean squared error.

Identification results are tabulated in Tables 3.1, 3.2 in the main text, and Tables B1

and B2 in Appendix B.2. In general, the proposed sparse group G×E interactions un-

der the exchangeable(sgQIF.exch), AR1(sgQIF.ar1) and independence (sgQIF.ind) working

correlation structures outperform the alternatives focusing only on the group level effects

(gQIF.exch, gQIF.ar1 and gQIF.ind) and individual level effects (iQIF.exch, iQIF.ar1 and
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iQIF.ind). Table 3.1 shows the result of using gene expressions as G factors from the first

scenario with n = 400, p = 200, τ = 0.8. There are 25 important main and interaction

effects with corresponding nonzero coefficients. Under the exchangeable working correlation,

sgQIF.exch identifies 21.4 (sd 1.1) true positives, while the number of false positives, 2.6 (sd

1.5), is relatively small. On the other hand, iQIF.exch only considers the individual main

and interaction effects, yielding 21.6 (sd 1.1) true positives, with 6.4 (sd 5.2) false positives.

gQIF.exch identifies an FP of 14.8 (5), which is the largest number of false positives among

the three under the same working correlation structure. It is also worth noting that the

standard deviations associated with the alternative approaches, i.e. 5 for gQIF.exch and 5.2

for iQIF.exch, are quite larger than that of the proposed one (1.5 for sgQIF.exch). A closer

look over the results shows that such all these differences mainly come from the identification

of interaction effects. sgQIF.exch has the smallest FP (2.4 with sd 1.3) for the interaction

effects, followed by iQIF.exch (5.4 with sd 4.6) and gQIF.exch (14.4 with sd 4.5).

Table 3.1: Identification results for Scenario 1. TP/FP: true/false positives. mean(sd) of
TP and FP based on 100 replicates.

Overall Main Interaction
TP FP TP FP TP FP

sgQIF.exch 21.4(1.1) 2.6(1.5) 5.4(1.1) 0.2(0.4) 16.0(1.9) 2.4(1.3)
gQIF.exch 23.4(1.1) 14.8(5.0) 6.0(1.2) 0.4(0.9) 17.4(0.9) 14.4(4.5)
iQIF.exch 21.6(1.1) 6.4(5.2) 5.4(1.1) 1.0(1.7) 16.2(1.9) 5.4(4.6)
sgQIF.ar1 21.7(1.2) 3.2(1.9) 5.5(1.0) 0.3(0.5) 16.2(1.7) 2.8(1.6)
gQIF.ar1 23.7(1.2) 14.8(4.4) 6.2(1.2) 0.3(0.8) 17.5(0.8) 14.5(4)
iQIF.ar1 21.8(1.2) 6.2(4.7) 5.5(1.0) 1.0(1.5) 16.3(1.8) 5.2(4.1)
sgQIF.ind 20.7(1.0) 2.7(2.2) 4.5(1.2) 0.2(0.4) 16.2(0.8) 2.5(1.9)
gQIF.ind 22.3(1.2) 16.5(7.0) 5.5(1.0) 1.0(1.5) 16.8(0.8) 15.5(5.5)
iQIF.ind 21.0(0.9) 5.2(3.1) 4.5(1.2) 0.5(0.8) 16.5(0.8) 4.7(2.3)

Similar patterns can be observed from other settings. For instance, Table 3.2 displays

the result for the simulated SNP data from Scenario 2. sgQIF.exch identifies an TP of 19.4

(sd 0.7) with 1.3 (sd 1.2) false positives. gQIF.exch has 21.5 (sd 1.9) true positives with a

much larger number of false positives 13.3 (sd 4.0). The number of TP and FP pinpointed

by iQIF.exch are 20.1 (sd 1.2) and 4.4 (sd 4.0), respectively. Under the same exchangeable
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Table 3.2: Identification results for Scenario 2. TP/FP: true/false positives. mean(sd) of
TP and FP based on 100 replicates.

Overall Main Interaction
TP FP TP FP TP FP

sgQIF.exch 19.4(0.7) 1.3(1.2) 3.3(0.7) 0.1(0.4) 16.1(0.6) 1.1(1.0)
gQIF.exch 21.5(1.9) 13.3(4.0) 4.4(1.6) 0.5(0.8) 17.1(0.6) 12.8(3.3)
iQIF.exch 20.1(1.2) 4.4(4.0) 3.3(1.0) 0.5(0.8) 16.9(0.6) 3.9(3.4)
sgQIF.ar1 19.0(0.9) 1.0(1.0) 3.3(0.6) 0.1(0.4) 15.7(0.6) 1.0(1.0)
gQIF.ar1 21.7(2.9) 12.7(4.0) 4.7(2.1) 0.3(0.6) 17.0(1.0) 12.3(3.5)
iQIF.ar1 20.7(0.6) 6.7(5.7) 3.7(0.6) 0.7(1.2) 17.0(1.0) 6.0(4.6)
sgQIF.ind 19.0(2.0) 1.8(0.7) 3.3(1.2) 0.1(0.4) 15.7(1.2) 1.6(0.7)
gQIF.ind 21.3(1.3) 15.5(8.2) 3.8(0.9) 0.8(1.8) 16.5(0.8) 14.8(7.0)
iQIF.ind 19.5(1.8) 5.3(3.6) 3.5(0.9) 1.1(1.2) 16.0(1.3) 4.1(3.0)

Figure 3.1: Identification results under 25 important genetic main effects and G×E in-
teractions (corresponding to 25 nonzero regression coefficients) in the 4 scenarios. TP/FP:
true/false positives. mean(sd) of TP and FP based on 100 replicates.

working correlation, while the number of identified TPs are comparable, both the average

and standard deviations of alternatives are much larger than the proposed method. The

identification results for the 4 scenarios are displayed in Figure 3.1, which clearly shows that

41



the proposed method outperforms the competing alternatives in the identification of longi-

tudinal G×E interactions. Figure B1 summarizes the prediction results of the 4 scenarios.

In Scenario 1 under the exchangeable working correlation, sgQIF.exch has a prediction error

less than that of the gQIF.exch and iQIF.exch. We have similar findings in other settings as

well, which indicates the proposed bi-level method has superior prediction performance over

the group level and individual level based methods.

In longitudinal studies, the QIF framework is robust to the misspecification of working

correlations (Qu et al. (2000)). In our simulation, although the results without misspecifying

working correlation appear to be better, overall, they are comparable across different settings.

Such a property is especially appealing when the ground truth on working correlation is not

available. Another fold of robustness in QIF comes from its insensitivity to small portions of

outlying observations and data contamination, which has been theoretically and empirically

investigated in Qu and Song (2004). Meanwhile, the GEE based ones, as well as models

assuming Gaussian responses and working independence among repeated outcomes, are not

robust and lead to biased results given the presence of even a single outlier. A comprehensive

evaluation of this fold of robustness is beyond the scope this study, and will be conducted

in the near future.

3.4 Real Data Analysis

Asthma is a chronic respiratory disease with lung inflammation and reversible airflow ob-

struction, resulting in difficulty in breath. According to the Centers for Disease Control and

Prevention (CDC), more than 25 million Americans have asthma. 7.7 percent of adults and

8.4 percent of children in the U.S. have asthma (Akinbami (2006); CDC (CDC)). Asthma is

the leading chronic disease among children. We analyze the data from Childhood Asthma

Management Program (CAMP) in our case study (Childhood Asthma Management Program

Research Group (1999, 2000); Covar et al. (2012)). The SNP and phenotype datasets (with

accession pht000701.v1.p1) from CAMP have been downloaded and pre–processed. Subjects

who are 5 to 12 years and diagnosed with chronic asthma have been selected and moni-
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tored over 4 years. There are three visits before treatment with each visit 1-2 weeks apart.

Thirteen visits are made after treatment. The first two visits after treatment are 2 months

apart and the remaining visits are 4 months apart. The twelve visits that are 4 months

apart after treatment are selected in our study. Two types of treatments are given to the

subjects. Treatments Budesonide and Nedocromil are assigned to 30% of the subjects, and

the rest receive placebo. We consider treatment, age and gender as environmental factors.

The phenotype of interest is the forced expiratory volume in one second (FEV1), which is

the total volume of air expelled out of the lung in one second and it’s repeatedly measured

during each visit. The genotype information of each subject contains over nine hundred

thousand SNPs. We match genotypes with phenotypes based on subject id’s and remove the

SNPs with minor allele frequency (MAF) less than 0.05 or deviation from Hardy-Weinberg

equilibrium and obtain a working dataset with 438 Caucasian subjects and 447,850 SNPs.

For computational convenience in studies with ultrahigh dimensionality, such as the

Genome Wide Association Studies (GWAS) and multi–omics integration studies, marginal

feature prescreening needs to be conducted first so that regularization can be applied on

datasets with reasonably large scale (Fan and Lv (2010); Wu et al. (2019)). For instance,

Li et al. (2015), Jiang et al. (2015) and Wu et al. (2014) have adopted single SNP analysis

for prescreening before applying the proposed variable selection methods in longitudinal and

multivariate GWAS studies, respectively. Here, we use a marginal G×E model with FEV1

as the response to filter SNPs. The predictors of the marginal model consist of E factors,

the single SNP main effect, as well as their interactions. The SNPs with at least one of the p

values that correspond to G and G×E interactions in the marginal model less than a certain

cutoff (0.005) are kept. 261 SNPs have passed the screening.

We apply the method sgQIF.exch under the exchangeable working correlation and analyze

the data together with the alternative method iQIF.exch, which consider all the effects

individually. The optimal tuning parameters are achieved through a 5-fold cross-validation.

We obtain the predicted mean squared error after refitting using selected variables from the

orginal data. sgQIF.exch has a smaller prediction error (0.16) than that of iQIF.ind (0.23).

The identification results are tabulated in tables C1 and C2 in Appendix B.3. Methods that
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consider group effects only show inferior performance in the simulation study are not adopted

in the real data analysis. The proposed method sgQIF.exch identifies 130 effects in total, 34 of

which are genetic main effects and the remaining 96 are interaction effects. iQIF.exch totally

identifies 130 effects, with 28 genetic main effects and 102 interaction effects. sgQIF.exch

and iQIF.exch commonly identify 22 genetic main effects and 62 interaction effects. There

are twelve SNPs that are uniquely identified by the proposed method sgQIF.exch and they

will provide some useful implications. They can be mapped to the corresponding genes and

some of the genes have been found to be related to the development of asthma. For instance,

sgQIF.exch identifies the main effect of the SNP rs17390967 and its interactions with the

environment factors treatment and gender. The SNP rs17390967 is located within the gene

SCARA5. SCARA5 is a member of the scavenger receptor A (SR-A), which is found to be

protective to the lung using the ovalbumin-asthma model of lung injury (Arredouani et al.

(2007)). The interaction with treatment indicates that the expression level of SCARA5 may

influence the effect of medical therapy in the treatment of asthma. Another example is

the SNP rs767006, which is located in the gene CYFIP2. The prposed method sgQIF.exch

identifies the main effect of rs767006 and its interaction with gender. CYFIP2, together with

CYFIP1 make up the CYFIP family. It has been found that there is a strong association

between asthma and polymorphisms in CYFIP2 (Noguchi et al. (2005)). Method sgQIF.exch

also identifies rs6914953 and its interaction with gender. The identified SNP rs6914953 is

located in F13A1. F13A1 codes for the α subunit of Factor X111, which is the last enzyme

generated in the blood coagulation cascade and it stabilizes blood clots with cross-linking

fibrin. F13A1 has been considered as a susceptible locus for obesity and it has been found

that there is a consistent link between asthma and obesity (Sharma et al. (2014)). Another

identified SNP is rs4647108, that is mapped to the gene ERCC8. ERCC8 has also been

found to be related with the development of asthma (Wilson et al. (2015)). The method

sgQIF.exch identifies the main effect of rs4647108 and its interaction with gender. This

result is consistent with previous findings that over-expression of ERCC8 is associated with

a higher FEV1, which indicates a development of asthma.
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3.5 Discussion

In general, regularization methods work well when the dimensionality is up to the order that

is moderately larger than sample size. To handle ultra-high dimensional data, the two stage

variable selection consisting of a quick marginal screening stage and a post-screening refining

stage with the direct applications of regularization has been widely used (Fan and Lv (2010)),

including the longitudinal GWAS (Jiang et al. (2015); Li et al. (2015)). The marginal feature

screening, preferably with theoretical guarantees such as the sure independence screening

(Fan and Lv (2008); Li et al. (2014); Song et al. (2014)), is necessary for reducing the

ultra-high dimensionality of features to a reasonable order so regularized variable selection

is applicable (Fan and Lv (2010)). By far, consensus on the optimal screening strategy with

repeated measurements has not been reached yet. In this study, we have adopted a marginal

G×E model to conduct screening, which is more consistent with the nature of regularization

at the refining stage.

There are published studies on variable selection in varying coefficient models with re-

peated measurements (Wang et al. (2008), Noh and Park (2010) and Tang et al. (2013),

among others). A common limitation in these studies is that the within–subject correlation

has not been taken into account. From the perspective of G×E interactions, the time varying

effects investigated in these studies can be viewed as nonlinear G×E interactions (Li et al.

(2020); Ma and Xu (2015); Ma et al. (2011); Wu and Cui (2013); Wu et al. (2015, 2018)).

In our study, the interaction effects is modeled as the product between G and E factors,

which is under the linear G×E interaction assumption (Zhou et al. (2021)). To the best

of our knowledge, no published studies have been developed for variable selection in G×E

interaction studies with linear assumptions.

The bi–level structure plays a critical role in studies concerning the more general linear

G×E interactions (Zhou et al. (2021)). The key contribution of the proposed study lies in

developing sparse group regularization within the QIF framework to accommodate within–

cluster correlations among repeated measurements. As a major competitor of GEE, QIF is

more efficient when the working correlation is misspecified. Our work is significantly differ-
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ent from Zhou et al. (2019) in that the lipid–environment interaction analysis of repeated

measurements has been developed based on GEE, and, more importantly, the interaction is

pursued only on a group level and does not lead to the within group sparsity. So it is not

applicable to the current setting.

This study can be extended in multiple horizons. For instance, marginal regularization

has been demonstrated as an effective approach to dissect G×E interactions (Lu et al. (2021);

Zhang et al. (2019)). Our methods can be readily adopted to conduct marginal identification

of interaction effects when the phenotypes are repeatedly measured. In addition, robust

variable selection for G×E interactions have been proposed (Ren et al. (2020); Wu et al.

(2018); Zhang et al. (2020)). In longitudinal G×E studies, the robustness of QIF framework

to data contamination in the response can be potentially improved by modifying the weight

in estimating equation to downweigh the influences of outliers. Recently, Wang et al. (2021)

have revealed the benefit of accounting for network structure in large scale G×E studies.

By incorporating the network constrained regularization, the proposed method can better

accomodate the correlation among SNPs due to linkage disequilibrium.
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Chapter 4

The Regularized Bayesian Quantile

Varying Coefficient Model

4.1 Introduction

The varying coefficient model has been proposed by Hastie and Tibshirani (1993) to account

for the dynamic effects of predictors on the response variable. As an extension of the linear

regression model, its regression coefficients are nonparametric functions of other variables (i.e.

effect modifiers termed in Hastie and Tibshirani (1993)). For example, if the effect modifier

is the variable time, then the coefficients of the model are allowed to vary smoothly with the

measurements on time to capture the nonparametric time-changing effects that cannot be

properly modeled through linear regression. Classical estimation and inference procedures

for the varying coefficient model are mainly based on the basis expansion and splines (Huang

et al. (2002) and Huang et al. (2004)), the local-kernel polynomial smoothing (Fan and Zhang

(2008) and Hoover et al. (1998)), and smoothing splines (Hastie and Tibshirani (1993),

Hoover et al. (1998) and Chiang et al. (2001).)

The varying coefficient model enjoys wide popularity and application in a broad spectrum

of scientific research areas due to its superior flexibility and interpretability over parametric

models. However, as it has been developed for conditional mean regression, the varying coef-
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ficient model is not robust to heavy-tailed errors and outliers in the response variable which

are frequently encountered in practice. As a powerful alternative to accommodate the non-

robustness, the quantile varying coefficient model has therefore received much attention. In

literature, Cai and Xu (2009) and Kim (2007) have examined the quantile varying coefficient

model through local polynomials and B splines, respectively. Wang et al. (2009) has studied

a family of marginal semiparametric quantile models with potential varying coefficients.

With the emergence of high dimensional data, regularized variable selection has been

extensively studied for varying coefficient models. Wang et al. (2008) and Wang and Xia

(2009) have developed regularization procedures for the varying coefficient model based on

splines and local polynomial smoothing, respectively. The selection of important varying

coefficients amounts to group level selection with group SCAD and adaptive group LASSO.

In addition, Huang et al. (2010) have studied variable selection for nonparametric additive

models via adaptive group LASSO. In quantile regression, in addition to variable selection

for linear regression models including Wu and Liu (2009) and Peng and Wang (2015), reg-

ularization for quantile varying coefficient models has also been considered in Tang et al.

(2013) and Noh et al. (2012) using adaptive group LASSO and group SCAD. Tang et al.

(2012) has further investigated structural identification of varying coefficients by separating

the varying, nonzero constant and zero effects.

Despite the success in regularization for variable selection in quantile varying coefficient

models, within the Bayesian framework, this important topic is not well studied. Li et al.

(2010) has proposed a Bayesian regularized quantile regression by incorporating the Bayesian

LASSO prior (Park and Casella (2008)) in the likelihood function based on asymmetric

Laplace distribution. However, their study aims at linear quantile models. On the other

hand, Li et al. (2015) has developed Bayesian group LASSO for varying coefficient models.

Ren et al. (2020) has examined the structure identification in varying coefficient models by

further considering the spike-and-slab priors. Nevertheless, these methods are vulnerable to

long-tailed distributions and outliers in the response.

To the best of our knowledge, Bayesian regularized variable selection in quantile regres-

sion models with varying coefficients has not been studied. To overcome this limitation,
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we develop a novel regularized Bayesian quantile varying coefficient model to identify the

important covariates associated with the response. In order to shrink the coefficients of

unimportant effects to exactly zero, we adopt the spike and slab priors in our model. As

a comparison, Bayesian Lasso cannot shrink a posterior estimate exactly to zero. We de-

velop an efficient MCMC algorithm for the proposed Bayesian quantile varying coefficient

model. The identification of varying coefficients is equivalent to the selection of a group

of basis functions and we efficiently perform Bayesian shrinkage on group level, borrowing

the strength from the spike and slab priors. The simulation results have shown the supe-

riority of the proposed method over the alternatives in terms of identification, estimation

and prediction accuracy for heavy-tailed distributions. To facilitate fast computation and

reproducible research, we implement the proposed and alternative methods in C++ and we

will encapsulate them in a publicly available R package in the future work.

4.2 Statistical Methods

4.2.1 The Quantile Varying Coefficient Model

Let (Yi,X i, Ui,Ei), i = 1, ..., n, be an i.i.d. sample. Y = (Y1, ..., Yn)> is the response

variable. X i = (Xi0, Xi1, ..., Xip)
> denotes the (1 + p)-dimensional design vector of genetic

factors with the first element Xi0 = 1. The scalar Ui ∈ IR1 is the univariate index variable.

Ei = (Ei1, ..., Eiq)
> represents the q-dimensional design vector of clinical covariates. We

consider the following varying coefficient model:

Yi =

q∑
k=1

Eikβk +

p∑
j=0

γj(Ui)Xij + εi, (4.1)

where Eik denotes the kth component of Ei. Xij is the jth component of X i and γj(·)’s are

unknown smooth varying-coefficient functions. The random error εi’s have the θth quantile

equal to 0. The covariates E = (E1, ...,En)> are linearly associated with the response,

but the regression coefficients of X = (X1, ...,Xn)> vary with the univariate index variable
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U = (U1, ..., Un)>. Due to the fact that only some of the covariates in X are relevant to

the response variable in practice, while the irrelevant ones have varying-coefficient functions

equal to zero almost surely, the model 4.1 is proposed to identify the important relevant

covariates and estimate the corresponding nonzero coefficients.

In the estimation procedure, the varying coefficient function γj(Ui) is approximated using

polynomial splines. Suppose the index variable U takes values from the interval [a, b] with

a < b. Let tj denote a partition of the interval [a, b], with M interior knots

tj = {a = tj,0 < tj,1 < · · · < tj,M < tj,M+1 = b}.

With tj as knots for the polynomial splines, the order O + 1 splines functions are O-degree

(or less) of polynomials on the intervals [tj,h, tj,h+1), h = 0, ...,M − 1, and [tj,M , tj,M+1] with

O − 1 continuous derivatives globally.

Let πj(Ui) = (πj1(Ui), ..., πjd(Ui))
> be a set of B-spline basis with d = M +O+ 1. Then

for j = 0, ..., p,

γj(Ui) =
d∑
s=1

πjs(Ui) · αjs = α>j · πj(Ui),

whereαj = (αj1, ..., αjd)
> is the coefficient vector. LetZij = πj(Ui)·Xij = (πj1(Ui)Xij, ..., πjd(Ui)Xij)

>,

then the original varying coefficient model becomes

Yi =

q∑
k=1

Eikβk +

p∑
j=0

α>j Zij + εi. (4.2)

The quantile regression is well known for its robustness to long-tailed distributions in

response. The quantile regression estimators for quantile θ are obtained by

(β1, ..., βq,α0, ...,αp) = argmin
βk,αj

n∑
i=1

ρθ(Yi −
q∑

k=1

Eikβk −
p∑
j=0

α>j Zij),
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where ρθ(·) is the check loss function

ρθ(m) =


θm if m ≥ 0

−(1− θ)m if m < 0

.

Assume that εi’s follow a skewed Laplace distribution:

π(ε|τ) = θ(1− θ)τexp[−τρθ(ε)] = θ(1− θ)τ


e−τθε if ε ≥ 0

eτ(1−θ)ε if ε < 0

Then the joint distribution of the varying coefficient model is given as:

π(Y |E,Z,β,α, τ) = θn(1− θ)nτnexp
(
− τ

n∑
i=1

ρθ(Yi −
q∑

k=1

Eikβk −
p∑
j=0

α>j Zij)
)
,

where β = (β1, ..., βq)
> and α = (α>0 , ...,α

>
p )>. Thus, the previous minimization problem

becomes the case of maximizing the joint likelihood. According to Li et al. (2010), assume

the random variables v ∼ Exp(1) and W ∼ N(0, 1). Define

ξ1 =
1− 2θ

θ(1− θ)
,

and

ξ2 =

√
2

θ(1− θ)
,

then ε = ξ1v+ξ2

√
vW follows a skewed Laplace distribution and the original model becomes

Yi =

q∑
k=1

Eikβk +

p∑
j=0

α>j Zij + τ−1ξ1vi + τ−1ξ2

√
viWi,

with vi ∼ Exp(1) and Wi ∼ N(0, 1). Let ṽi = τ−1vi ∼ Exp(τ−1) and ṽ = (ṽ1, ..., ṽn), then
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the model can be reparameterized as:

Yi =

q∑
k=1

Eikβk +

p∑
j=0

α>j Zij + ξ1ṽi + τ−
1
2 ξ2

√
ṽiWi.

4.2.2 The Regularized Bayesian Quantile Varying Coefficient Model

Basis expansion results in a high-dimensional dataset. As shown in 4.2, the expanded basis

are modeled on the group level, while only a small subset of the effects are associated with the

disease phenotype. Therefore, the group-level penalized variable selection becomes necessary

and the previous minimization problem becomes:

min
β,α

n∑
i=1

ρθ(Y i −E>i β −Z>i α) + λ

p∑
j=1

√
d||αj||2,

where λ > 0 is the tuning parameter.

We have the following hierarchical model specification:

Yi = E>i β +Z>i α+ ξ1ṽi + ξ2τ
− 1

2

√
ṽiWi, i = 1, ..., n,

Yi −E>i β −Z>i α− ξ1ṽi

ξ2τ
− 1

2

√
ṽi

∼ N(0, 1), i = 1, ..., n,

ṽ1, ..., ṽn ∼
n∏
i=1

τexp(−τ ṽi), i = 1, ..., n,

W1, ...,Wn ∼
n∏
i=1

1√
2π

exp(−1

2
W 2
i ), i = 1, ..., n,

αj|sj ∼ (1− π0)Nd(0, sjI
−1
d ) + π0δ0(αj), j = 0, ..., p,

sj|η2 ∼ (
η2

2
)
d+1
2 s

d−1
2

j exp(−η
2

2
sj), j = 0, ..., p,

π0 ∼ Beta(e, f),

τ ∼ τa−1exp(−bτ),
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η2 ∼ (η2)c−1exp(−mη2),

β ∼ Nq(0,Σβ),

where a, b, c, e, f and m are constants. The spike-and-slab priors are imposed on the d-

dimensional coefficient vectors αj’s.

4.3 The Gibbs Sampler

The joint likelihood of the unknown parameters conditional on data will be given as

α,β, ṽi,Wi, sj, π0, τ, η
2|Y ∝

n∏
i=1

1√
2πτ−1ξ2

2 ṽi
exp{−(Yi −E>i β −Z>i α− ξ1ṽi)

2

τ−1ξ2
2 ṽi

}

×
p∏
j=0

(
(1− π0)

1√
2π|sjI−1

d |
exp
(
− 1

2
α>j (sjI

−1
d )−1αj

)
I(αj 6=0) + π0δ0(αj)

)

× πe−1
0 (1− π0)f−1

×
p∏
j=0

(
η2

2
)
d+1
2 s

d−1
2

j exp(−η
2

2
sj)

×
n∏
i=1

τexp(−τ ṽi
)

×
n∏
i=1

1√
2π

exp(−1

2
W 2
i )

× τ ∼ τa−1exp(−bτ)

× η2 ∼ (η2)c−1exp(−mη2)

× 1√
2π|Σβ|

exp(−1

2
β>Σ−1

β β).
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We have the full conditional distribution of ṽi listed as follows:

ṽi|rest ∝ (ṽi)
− 1

2 exp

(
− 1

2

(
(
τξ2

1

ξ2
2

+ 2τ)ṽi +
τ(Yi −E>i β −Z>i α)2

ξ2
2

1

ṽi

))
.

Hence, the posterior distribution of ṽi is generalized inverse Gaussian distribution.

The slab part of the full conditional distribution of αj is given as:

αj|rest

∝ (1− π0)|sjI−1
d |
− 1

2 |Σj|−
1
2 exp

(
− 1

2
τξ−2

2

n∑
i=1

1

ṽi
(Yi −Z>i,−jα−j −E>i β − ξ1ṽi)

2
)

× exp(
1

2
µ>j Σ−1

j µj)× Nd(µj,Σj),

where variance

Σj = (τξ−2
2

n∑
i=1

1

ṽi
ZijZ

>
ij + s−1

j Id)
−1,

and mean

µj = Σjτξ
−2
2

n∑
i=1

Zij

ṽi
(Yi −Z>i,−jα−j −E>i β − ξ1ṽi).

The spike part is given as:

αj|rest ∝ π0exp
(
− 1

2
τξ−2

2

n∑
i=1

1

ṽi
(Yi −Z>i,−jα−j −E>i β − ξ1ṽi)

2
)
,

and the proportion of the spike part is

P (αj = 0|rest) =
π0

π0 + (1− π0)|sjI−1
d |−

1
2 |Σj|

1
2 exp(1

2
µ>j Σ−1

j µj)
.
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The full conditional distribution of τ

τ |rest

∝ τ
3
2
n+a−1exp

(
−
(1

2

n∑
i=1

τ(Yi −Z>i α−E>i β − ξ1ṽi)
2

ξ2
2 ṽi

+
n∑
i=1

ṽi + b
)
τ

)
.

Therefore, the posterior distribution of τ is

τ |rest ∝ Gamma
(3

2
n+ a,

1

2

n∑
i=1

τ(Yi −Z>i α−E>i β − ξ1ṽi)
2

ξ2
2 ṽi

+
n∑
i=1

ṽi + b
)
.

The full conditional distribution of η2

η2|rest ∝ (η2)
(d+1)(p+1)

2
+c−1exp(−(

1

2

p∑
j=0

sj +m)η2).

Therefore, the posterior distribution of η2 is

η2|rest ∝ Gamma
((d+ 1)(p+ 1)

2
+ c,

1

2

p∑
j=0

sj +m
)
.

The full conditional distribution of sj, j = 0, ..., p

sj|rest

∝

(
(1− π0)

1√
2π|sjI−1

d |
exp
(
− 1

2
α>j (sjI

−1
d )−1αj

)
I(αj 6=0) + π0δ0(αj)

)
× s

d−1
2

j exp(−η
2

2
sj).

The slab part,

sj|rest ∝ s
− 1

2
j exp

(
− 1

2
(η2sj +α>j KIdαj

1

sj
)
)

Therefore, the posterior distribution of s−1
j is Inverse-Gaussian(

√
η2

α>j αj
, η2) when αj 6= 0.

The spike part,

sj|rest ∝ s
d−1
2

j exp(−η
2

2
sj),
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which is Gamma(d+1
2
, η

2

2
). Together

s−1
j |rest ∼


Inverse-Gamma(d+1

2
, η2

2
) if αj = 0

Inverse-Gaussian(
√

η2

α>j αj
,η2) if αj 6= 0

.

The full conditional distribution of π0, i = 1, ..., n

π0|rest

∝
p∏
j=0

(
(1− π0)

1√
2π|sjI−1

d |
exp
(
− 1

2
α>j (sjI

−1
d )−1αj

)
I(αj 6=0) + π0δ0(αj)

)
× πe−1

0 (1− π0)f−1.

Let

Qj =


0 if αj = 0

1 if αj 6= 0

,

then the posterior distribution of π0 becomes

π0|rest ∝ π
1+p−

∑p
j=0Qj+e−1

0 (1− π0)
∑p

j=0Qj+f−1,

which is a beta distribution. The full conditional distribution of β is

β|rest

∝ Nq

(
(
n∑
i=1

τEiE
>
i

ξ2
2 ṽi

+ Σ−1
β )−1

( n∑
i=1

τ

ξ2
2 ṽi

(Yi −Z>i α− ξ1ṽi)E
>
i

)>
, (

n∑
i=1

τEiE
>
i

ξ2
2 ṽi

+ Σ−1
β )−1)

)
,

which is a multivariate normal distribution.

Gibbs Sampler for the alternative methods are attached in Appendix C.4.
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4.4 Simulation

We compare the performance of the proposed method, bayesian quantile regression with

group lasso penalty and spike and slab priors, which is termed as BQRVCSS, with five alter-

native methods: bayesian quantile regression with group lasso penalty (BQRVC), bayesian

group Lasso penalty and spike and slab priors (BVCSS), bayesian group Lasso (BVC), fre-

quentist quantile varying coefficient model with adaptive group lasso penalty (QRVC-adp)

and frequentist varying coefficient model with adaptive group lasso penalty (VC-adp). The

coefficients of the d basis functions of the varying coefficient γj are treated as one group

and are subject to selection at the group level.The three alternative methods, BQRVC,

BVCSS and BVC, are compared with the proposed method to evaluate the strength of the

spike-and-slab prior and the necessity of fitting quantile regression.

We comprehensively evaluate the proposed and alternative methods through simulation

studies at quantiles 0.3, 0.5 and 0.7. The responses are generated according to model 4.1

with sample size n=200 and p=100 genetic factors. When the number of basis function d=5,

the total dimension of the regression coefficient is 505, which forms 101 groups with group

size equal to 5 and the first group corresponds to the varying intercept. The coefficients are

set as γ0(U) = 2 + 2sin(2πU), γ1(U) = 2exp(2U − 1), γ2(U) = −6U(1 − U), γ3(U) = −4U3.

The rest of the coefficients are set to 0. The genetic factors are simulated in two different

scenarios. In the first scenario, the genetic factors are simulated as gene expressions from a

multivariate normal distribution with mean 0 and an AR-1 covariance matrix with marginal

mean 0 and correlation coefficient 0.5. In the second scenario, we generate the genetic factors

as SNP data by dichotomizing the gene expressoin values of each gene in Scenario 1 at the

1st and 3rd quartiles, leading to the 3-level categories (0,1,2) for genotypes (aa, Aa, AA).

We consider 5 choices of error distribution for εi’s in model 4.1: N(µ, 1)(Error 1),

80%N(µ,1) + 20%Normal(µ, 3) (Error 2), Laplace(µ,b) with the scale parameter b = 1

(Error 3), LogNormal(µ,1) (Error 4), t(2) with mean=µ (Error 5). All of them are heavy-

tailed distributions but Error 1. For each error, µ is chosen so that the θth quantile is 0. We

also consider the case of heterogeneous random errors by replacing the i.i.d random errors
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in model 4.1 by (1 +Xi2)εi and in this case the responses are generated as:

Yi =

q∑
k=1

Eikβk +

p∑
j=0

γj(Ui)Xij + (1 +Xi2)εi,

where Xi2 corresponds to the second genetic factor.

Then we evaluate the performance of each method using identification and estimation

accuracy. Identification performance is evaluated based on the proportion of times a method

underselecting (U), overselecting (O) and correctly selecting (C) the covariates with nonzero

coefficients. We use the integrated mean squared error (IMSE) to assess the estimation

accuracy of each method on nonlinear effects. Let α̂j(U) denote the estimated nonparametric

function αj(U) and (U1, ..., Ungrid
) be the grid of points where αj is evaluated. Then the IMSE

of α̂j(U) is given as IMSE(α̂j(U)) = 1
ngrid

∑ngrid

t=1 (α̂j(Ut)− αj(Ut))2 . We use the total mean

squared error (TMSE), which is the sum of all the IMSE’s, to denote the overall estimation

accuracy. Prediction performance is assessed based on the mean prediction errors, which are

calculated as check loss for quantile regression and squared loss for the rest of the methods,

on an independently generated testing dataset with the same settings. Besides, the mean

absolute prediction errors are also calculated. The simulation performance is evaluated based

on 100 replicates.

We have collected the posterior samples from the Gibbs sampler running 10,000 iterations

in wich the first 5,000 samples as burn-ins. The Bayesian estimates are calculated using the

posterior medians. As methods BQRVCSS and BVCSS incorporate spike–and–slab priors,

we consider the median probability model (MPM) to identify the important effects that

are associated with the response. We define the indicator φ
(m)
j = 1 if the jth predictor is

included in the model in the mth iteration. Suppose M posterior samples are collected from

the MCMC after burn-ins. Then the posterior probability of including the jth predictor in

the final model is given as

probj = π̂(φj = 1|y) =
1

M

M∑
m=1

φ
(m)
j , j = 1, ..., p.
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A higher posterior inclusion probability pj indicates a stronger empirical evidence that the

corresponding predictor has a non-zero coefficient and is associated with the response vari-

able. The MPM model is defined as the model consisting of predictors with at least 1
2
posterior

inclusion probability. Barbieri and Berger recommend using MPM because of its optimal

prediction performance when the goal is to select a single model. For methods without

spike–and–slab priors, the 95% credible interval (95%CI) is adopted to select important

varying effects.

The simulation results of the 4 methods are tabulated in Table 4.1, Table 4.2 and Ta-

ble C1 to Table C6 in the Appendix. In general, the proposed method, BQRVCSS, does

a better job in terms of identification, estimation and prediction accuracy compared with

the alternative methods on the heavy-tailed distributions. For example Table 4.1 and Ta-

ble 4.2 contain the result for the simulated gene expression data with i.i.d. random errors.

At each setting, BQRVCSS outperforms its alternatives. For example, at quantile 0.5 with

the t(2) error distribution, BQRVCSS correctly selects the exact model 97% of the times,

while the percentage for BQRVC is 18%, 50% for BVCSS, 4% for BVC, 88% for QRVC-adp

and 46% for VC-adp. The TMSE’s for the six methods are 0.33 (sd 0.23), 4.35 (sd 0.78),

2.04 (sd 1.48), 6.82 (sd 6.51), 0.76 (sd 0.99) and 2.05 (sd 4.32), respectively. BQRVCSS

has the smallest TMSE among them, which indicates it has the highest estimation accuracy.

Besides, BQRVCSS has the smallest prediction error, 0.17 (sd 0.04), which is also smaller

than those of its alternatives. The superior performance of BQRVCSS mainly lies in the

robustness to skewed error distribution and spike and slab priors for achieving sparsity. It

turns out all the six methods have a better performance at quantile 0.5 for all the five error

distributions, except that the better performance occurs at quantile 0.3 for the lognormal

error distribution, which is positively skewed, while the the other error distributions are all

symmetric. For instance, when the error distribution is t(2), BQRVCSS selects the correct

model 90% of the times at quantiles 0.3 and 0.7, which is less than that for quantile 0.5.

BQRVCSS has TMSE and prediction error at quantile 0.3 equal to 0.44 (sd 0.24) and 0.22

(sd 0.06), respectively, which are less than those for quantile 0.5. However, for the lognormal

error distribution, BQRVCSS has the best identification performance at quantile 0.3, with
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a correct selection percentage of 99%, which is greater than the 97% for quantile 0.5. The

percentage at quantile 0.7, which is 71%, is even lower. At quantile 0.3, the TMSE and

prediction error for BQRVCSS are 0.11 (sd 0.05) and 0.09 (sd 0.01), respectively, while both

tend to get larger as the quantile increases. The TMSE and prediction error at quantile 0.5

for BQRVCSS are 0.25 (sd 0.19) and 0.15 (sd 0.04), respectively, and they increase to 0.71

(sd 0.45) and 0.30 (sd 0.11) at quantile 0.7. Table C1 and Table C2 tabulate the simulation

result for the gene expression data with heterogeneous errors. There’s no difference for the

quantile methods between the i.i.d. and heterogeneous errors, which is due to the property of

robustness. However, the non-quantile methods perform worse when the random errors are

heterogeneous. For example, BVCSS has a correct selection percentage of 50% at quantile

0.5 with i.i.d. t(2) error. The TMSE and prediction error are 2.04 (sd 1.48) and 0.28 (sd

1.33), respectively. But for the heterogeneous t(2) error, those terms for BVCSS at quantile

0.5 are 28%, 3.33 (sd 3.15) and 0.39(sd 2.16), respectively, which suggests worse performance.

Table C3 to Table C6 have the results for the simulated SNP data with the same settings

for the simulated gene expression data and we get similar findings.

We also made plots for the varying coefficients in the simulation study. Continue using

Error 2 as an example, Figure 4.1 shows the estimated varying coefficients from the proposed

method (BQRVCSS) fit the underlying trend of varying coefficients relatively well. We assess

the convergence of the MCMC chains using the potential scale reduction factor (PSRF)

(Gelman and Rubin (1992),Brooks and Gelman (1998)) following the work of Li et al. (2015).

It implies that the chains converge to a stationary distribution if PSRF values are close

to 1. According to Gelman et al. (2013), we adopt PSRF61.1 as the cutoff threshold for

convergence. Then we compute the PSRF for each parameter in our study and it turns out all

chains converge after burn-ins. Figure 4.2 clearly shows the PSRF of the five estimated spline

coefficients of each varying coefficient function below the threshold, indicating convergence

of the Gibbs sampler.

We demonstrate the sensitivity of the proposed method BQRVCSS for variable selection

to the choice of the hyperparameters for π0 and η in the Appendix and tabulate the results

from Table C7 to Table C10. These results suggest that the MPM model is insensitive to
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different choices of the hyperparameters. We also conduct senstitivity analysis on whether the

smoothness specification of the parameters in the B spline will impact the variable selection.

The sensitivity analysis results are shown in Table C11 to Table C16 in the Appendix. It is

evident that the proposed method is insensitive to the number of spline basis in smoothness

specification. Based on this finding, we set the degree O = 2 and the number of interior

knots M = 2 for the B spline basis, which leads to d = 5 basis functions.

61



Table 4.1: Identification results for i.i.d. errors based on 100 replicates. C: correct-fitting

proportion; O: overfitting proportion; U: underfitting proportion.
θ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

θ = 0.3 Normal C 0.96 0.70 0.90 0.34 0.90 0.83

O 0.04 0.08 0.10 0.44 0.10 0.15

U 0 0.22 0 0.22 0 0.03

NormalMix C 0.89 0.38 0.86 0.24 0.82 0.80

O 0.11 0.16 0.14 0.50 0.18 0.20

U 0 0.46 0 0.26 0 0

Laplace C 0.90 0.68 0.86 0.32 0.90 0.85

O 0.10 0.12 0.14 0.58 0.10 0.15

U 0 0.2 0 0.1 0 0

Lognormal C 0.99 0.36 0.70 0.10 0.82 0.56

O 0.01 0.04 0.18 0.48 0.16 0.42

U 0 0.62 0.12 0.42 0.02 0.02

t(2) C 0.90 0.18 0.26 0.10 0.83 0.30

O 0.10 0.02 0.42 0.24 0.18 0.50

U 0 0.80 0.32 0.66 0 0.20

θ = 0.5 Normal C 0.98 0.70 0.98 0.36 0.90 0.87

O 0.02 0.16 0.02 0.6 0.10 0.13

U 0 0.14 0 0.04 0 0

NormalMix C 0.96 0.42 0.86 0.12 0.90 0.84

O 0.04 0.10 0.14 0.74 0.10 0.16

U 0 0.48 0 0.14 0 0

Laplace C 0.94 0.7 0.90 0.4 0.90 0.85

O 0.06 0.12 0.10 0.58 0.10 0.15

U 0 0.18 0 0.02 0 0

Lognormal C 0.97 0.32 0.60 0.14 0.86 0.62

O 0.03 0.08 0.32 0.42 0.10 0.38

U 0 0.60 0.08 0.44 0.04 0

t(2) C 0.96 0.18 0.50 0.04 0.88 0.46

O 0.02 0.02 0.26 0.42 0.08 0.50

U 0.02 0.80 0.24 0.54 0.04 0.04

θ = 0.7 Normal C 0.96 0.70 0.96 0.32 0.90 0.90

O 0.04 0.16 0.04 0.64 0.10 0.10

U 0 0.14 0 0.04 0 0

NormalMix C 0.90 0.36 0.86 0.16 0.82 0.84

O 0.10 0.14 0.12 0.66 0.18 0.16

U 0 0.50 0.02 0.18 0 0

Laplace C 0.90 0.56 0.89 0.32 0.88 0.70

O 0.10 0.20 0.11 0.58 0.12 0.30

U 0 0.24 0 0.10 0 0

Lognormal C 0.68 0.2 0.64 0.12 0.56 0.62

O 0.30 0.14 0.20 0.40 0.40 0.34

U 0.02 0.66 0.16 0.48 0.04 0.04

t(2) C 0.90 0.18 0.42 0.12 0.85 0.32

O 0.10 0.02 0.28 0.30 0.04 0.58

U 0 0.80 0.30 0.58 0.08 0.10
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Table 4.2: Estimation and prediction results for i.i.d. errors based on 100 replicates. TMSE:

total mean squared equared error. pred: prediction error (check loss for quantile methods and

squared loss for non-quantile methods). pred.mad: mean absolute prediction error.

θ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

θ = 0.3 Normal TMSE 0.23(0.10) 2.28(0.35) 0.45(0.09) 1.56(0.16) 0.25(0.10) 0.70(0.09)

pred 0.14(0.03) 0.31(0.02) 0.21(0.08) 1.08(0.11) 0.17(0.03) 0.23(0.02)

pred.mad 0.29(0.05) 0.72(0.04) 0.57(0.06) 0.83(0.04) 0.34(0.06) 0.66(0.04)

NormalMix TMSE 0.34(0.19) 3.9(0.62) 0.76(0.27) 3.04(0.43) 0.45(0.23) 0.92(0.16)

pred 0.18(0.05) 0.44(0.05) 0.23(0.21) 2.22(0.30) 0.22(0.05) 0.27(0.03)

pred.mad 0.35(0.07) 0.92(0.06) 0.67(0.11) 1.08(0.06) 0.44(0.08) 0.77(0.07)

Laplace TMSE 0.27(0.13) 2.97(0.45) 0.47(0.15) 2.12(0.31) 0.26(0.11) 0.71(0.11)

pred 0.17(0.05) 0.38(0.04) 0.39(0.11) 1.44(0.20) 0.18(0.05) 0.25(0.02)

pred.mad 0.31(0.06) 0.78(0.05) 0.52(0.08) 0.90(0.06) 0.34(0.07) 0.67(0.05)

Lognormal TMSE 0.11(0.05) 3.38(0.55) 1.14(0.85) 5.84(1.92) 0.18(0.41) 1.22(2.45)

pred 0.09(0.01) 0.34(0.03) 0.24(0.61) 4.42(1.50) 0.10(0.05) 0.36(0.10)

pred.mad 0.19(0.03) 0.78(0.07) 1.12(0.16) 1.18(0.15) 0.24(0.10) 1.13(0.26)

t(2) TMSE 0.44(0.24) 5.01(1.16) 2.63(5.24) 8.35(9.76) 0.84(0.98) 2.58(3.22)

pred 0.22(0.06) 0.58(0.09) 0.32(3.27) 8.90(4.58) 0.29(0.14) 0.42(0.18)

pred.mad 0.39(0.08) 1.05(0.11) 0.99(0.49) 1.35(0.25) 0.54(0.23) 1.05(0.36)

θ = 0.5 Normal TMSE 0.21(0.06) 2.42(0.36) 0.40(0.06) 1.57(0.16) 0.21(0.07) 0.62(0.11)

pred 0.14(0.02) 0.36(0.02) 0.23(0.04) 1.80(0.08) 0.16(0.03) 0.28(0.02)

pred.mad 0.28(0.04) 0.71(0.04) 0.52(0.04) 0.72(0.04) 0.31(0.05) 0.55(0.04)

NormalMix TMSE 0.31(0.17) 3.75(0.6) 0.74(0.24) 2.71(0.49) 0.35(0.16) 0.92(0.11)

pred 0.16(0.03) 0.46(0.04) 0.27(0.12) 1.87(0.33) 0.19(0.03) 0.31(0.03)

pred.mad 0.32(0.07) 0.92(0.08) 0.39(0.08) 0.95(0.08) 0.38(0.06) 0.61(0.06)

Laplace TMSE 0.22(0.06) 3.07(0.48) 0.46(0.08) 1.83(0.28) 0.22(0.09) 0.70(0.08)

pred 0.15(0.02) 0.39(0.03) 0.17(0.05) 1.21(0.20) 0.15(0.03) 0.29(0.02)

pred.mad 0.30(0.04) 0.78(0.06) 0.31(0.05) 0.79(0.06) 0.30(0.06) 0.58(0.04)

Lognormal TMSE 0.25(0.19) 4.59(0.94) 1.18(1.69) 5.09(2.28) 0.40(0.56) 1.26(0.68)

pred 0.15(0.04) 0.46(0.06) 0.38(1.13) 3.95(1.80) 0.18(0.06) 0.43(0.08)

pred.mad 0.30(0.08) 0.92(0.11) 0.83(0.22) 1.03(0.14) 0.36(0.12) 0.85(0.16)

t(2) TMSE 0.33(0.23) 4.35(0.78) 2.04(1.48) 6.82(6.51) 0.76(0.99) 2.05(4.32)

pred 0.17(0.04) 0.49(0.04) 0.28(1.33) 5.05(4.55) 0.27(0.14) 0.34(0.26)

pred.mad 0.35(0.08) 0.99(0.09) 0.89(0.26) 1.20(0.19) 0.52(0.23) 0.91(0.56)

θ = 0.7 Normal TMSE 0.21(0.08) 2.53(0.41) 0.41(0.08) 1.58(0.18) 0.23(0.1) 0.71(0.10)

pred 0.15(0.03) 0.32(0.02) 0.36(0.07) 1.08(0.12) 0.16(0.03) 0.23(0.02)

pred.mad 0.29(0.04) 0.74(0.05) 0.53(0.07) 0.83(0.05) 0.33(0.06) 0.65(0.05)

NormalMix TMSE 0.33(0.14) 3.84(0.58) 0.78(0.3) 3.03(0.53) 0.45(0.26) 0.92(0.18)

pred 0.19(0.04) 0.44(0.03) 0.65(0.21) 2.25(0.35) 0.22(0.04) 0.26(0.02)

pred.mad 0.36(0.06) 0.93(0.06) 0.68(0.11) 1.10(0.07) 0.42(0.07) 0.73(0.06)

Laplace TMSE 0.29(0.11) 3.22(0.49) 0.49(0.16) 2.18(0.34) 0.3(0.17) 0.73(0.12)

pred 0.18(0.04) 0.39(0.03) 0.23(0.12) 1.50(0.20) 0.18(0.04) 0.24(0.02)

pred.mad 0.33(0.06) 0.8(0.05) 0.52(0.08) 0.92(0.05) 0.35(0.07) 0.66(0.05)

Lognormal TMSE 0.71(0.45) 5.44(1.52) 0.99(0.9) 4.19(2.07) 0.96(0.95) 1.35(3.65)

pred 0.30(0.11) 0.60(0.15) 0.35(0.59) 2.87(1.39) 0.33(0.16) 0.36(0.23)

pred.mad 0.50(0.15) 0.99(0.18) 0.55(0.2) 1.07(0.11) 0.6(0.23) 0.73(0.46)

t(2) TMSE 0.42(0.35) 5.07(1.21) 2.65(3.35) 9.10(11.24) 0.97(1.42) 2.02(1.75)

pred 0.22(0.07) 0.58(0.11) 0.35(2.31) 7.08(9.51) 0.30(0.18) 0.38(0.17)

pred.mad 0.39(0.10) 1.07(0.12) 0.95(0.38) 1.39(0.30) 0.57(0.29) 0.96(0.32)
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Figure 4.1: Simulation study for Error using the proposed method (BQRVCSS). Red line:

true parameter values. Black line: median estimates of varying coefficients from BQRVCSS.

Blue lines: 95% credible intervals for the estimated varying coefficients.
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Figure 4.2: Potential scale reduction factor (PSRF) versus iteractions for the varying func-

tions in Figure 4.1. Black line: PSRF. Red line: the threshold of 1.1. α̂j1 to α̂j5(j = 0, ..., 3)

represent the five estimated spline coefficients for the varying coefficient function γj, respec-

tively.

4.5 Real Data Analysis

We analyze the dataset from the Nurse’s Health Study (NHS). The body mass index (BMI),

which can quantify the obesity leve, is set as the response. We focus on SNPs on chromosome

2. We consider age as the environment factor since it is known to be associated with the

variations in the obesity level. Besides, three clinical covariates are included: total physical

activity, trans fat intake and cereal fiber intake. Only the health subjects in the NHS are

selected in our case study. We clean the data by keeping subjects with matched phenotypes
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and genotypes, removing SNPs with minor allele frequency (MAF) less than 0.05 or deviation

from Hardy-Weinberg equilibrium and obtain a working dataset that contains 1716 subjects

with 53,408 SNPs. We impute the missing data using fastPHASE (Scheet and Stephens

(2006)).

We reduce the feature space through prescreening to make it more attainable for variable

selection. For example, Li et al. (2015) perform the single SNP analysis to filter SNPs in

a GWA study before downstream analysis. In our case study, we screen the SNPs using

the established procedure as described by Ma et al. (2011) and Wu and Cui (2013). Here,

we conduct three statistical tests to evaluate the penetrance effect of a variant under the

environmental stimuli to test whether the interaction effects are nonlinear, linear, constant,

or zero. We keep the SNPs with p-values less than a certain cutoff (0.005, for instance) from

any of the tests with BMI as the response. 300 SNPs pass the screening.

We analyze the screened data using the proposed method BQRVCSS at the median and

the alternative BVCSS. Other methods, such as BQRVC and BVC are not considered since

they have inferior performance in the simulation studies. BQRVCSS identifies 11 SNPs

while BVCSS identifies 9 SNPs. The identification results are displayed in Figures 4.3 and

4.4. We can see 6 SNPs are commonly identified by both methods. Besides, the proposed

method uniquely identified 5 other SNPs and the genes where the SNPs are located have

been found to be associated with body weight change. For example, BQRVCSS identifies

the SNP rs17783776, which is located in the gene ALK. ALK (anaplastic lymphoma kinase)

has been identified as a thinness gene which suggests it could be the target gene for obesity

treatment (Orthofer et al. (2020)). As a comparison, the alternative method BVCSS misses

this important gene. The proposed method also identifies rs 41349646, a SNP that is mapped

to the gene NPAS2. NPAS2 has been found to play an essential role in the regulation of pe-

ripheral circadian response and hepatic metabolism, therefore affects weight change (O'Neil

et al. (2013)). The SNP rs10933420 is also uniquely identified by our proposed method and

it is located in the gene NGEF. Kim et al. (2015) has found NGEF associated with intra-

abdominal fat accumulation. Besides, our proposed method BQRVCSS identifies rs4854071

as well. The SNP rs4854071 is located within the gene NDUFA10 (NADH:Ubiquinone Ox-
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idoreductase Subunit A10), which has been found to be involved in the NAFLD pathway

regulating weight loss together with 10 other genes (Mirhashemi et al. (2021)).

We also applied the proposed method BQRVCSS to the screened data at other quantiles,

such as 0.3 and 0.7. BQRVCSS identifies 11 SNPs at quantile 0.3. Compared with the iden-

tification result of BVCSS, BQRVCSS uniquely identifies 10 SNPs and the remaining 1 SNP

is also identified by BVCSS. Looking into this difference, we obtain some interesting find-

ings. For example, BQRVCSS identifies the SNP rs10084365 at quantile 0.3, while BVCSS

doesn’t. We locate the SNP rs10084365 to the gene GPR39, which is a constitutively active

7TM receptor, and its deficiency has been found to be associated with obesity (Petersen

et al. (2011)). BQRVCSS also identifies the SNP rs11885893, which is mapped to the gene

PLEKHH2. Benton et al. (2015) has found PLEKHH2 associated with weight loss through

the regulation of DNA methylation. At the quantile 0.7, BQRVCSS identifies 10 SNPs, 3 of

which are commonly identified by BVCSS. Interestingly, BQRVCSS also identifies the SNP

rs4854071 as it does at the median. BQRVCSS uniquely identifies the SNP rs752833 at

quantile 0.7, while BVCSS misses this SNP. SNP rs752833 is located to the gene ACOXL,

which a member of the acyl-CoA oxidase family involved in lipid metabolism and therefore

associated with obesity (Vuillaume et al. (2014)). Besides, BQRVCSS uniquely identifies

the SNP rs17533992, which is located within the gene SPRED2. Ohkura et al. (2019) has

uncovered that SPRED2 regulates high fat diet-induced obesity negatively. BQRVCSS also

identifies rs4894108. The identified SNP rs4894108 is located in ZNF385B, which has been

found to be associated with obesity (Kim et al. (2012))

It is difficult to evaluate the selection performance with real data objectively. The pre-

diction performance is evaluated as it may provide partial information on the relative perfor-

mance of different methods. We refit the selected model of each method by Bayesian LASSO

following the methods in Li et al. (2015) and Yan and Huang (2012). The prediction mean

squared errors (PMSEs) and prediction mean absolute deviations (PMADs) are computed

based on the posterior median estimates. The proposed method BQRVCSS has the PMSE

and PMAD equal to 13.13 and 1.34, respectively, while the PMSE and PMAD for BVCSS

are 15.04 and 3.05, which are both larger than the counterparts of BQRVCSS. Therefore,
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the proposed method has better performance.
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Figure 4.3: Real data analysis using the proposed method (BQRVCSS). Black line: median

estimates of varying coefficients for BQRVCSS. Blue dashed lines: 95% credible intervals for

the estimated varying coefficients.
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Figure 4.4: Real data analysis using the alternative method (BVCSS). Black line: median

estimates of varying coefficients for BVCSS. Blue dashed lines: 95% credible intervals for

the estimated varying coefficients.

4.6 Discussion

High-dimensional data, which have the ”large p, small n” nature, frequently occur in biomed-

ical studies, such as genomewide association studies and clinical research. As only a subset of

the covariates is associated with the response variable while the rest are irrelevant, penalized

variable selection methods have been developed to overcome ”the curse of dimensionality”.

Besides, in practice, parametric models are not sufficient enough to capture the true underly-

ing relationship between the response variabe and the covariates when the dynamic changes

of the regression coefficients exist. This brings obstacles to identify the important covariates
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that are associated with the response.

In particular, we are interested in the varying coefficient model (Hastie and Tibshirani

(1993)) where the regression coefficients depend on some covariate through a nonparametric

function, thus the VC model provides more flexibility than the linear models and reduces

biases. Although the asymptotic theory for the varying coefficient model has been well devel-

oped, a Bayesian approach has also been established. Biller and Fahrmeir (2001) proposed

a Bayesian B-spline basis function approach to varying coefficient models with adaptive

knot selection. Reich et al. (2010) introduced a Bayesian variable selection procedure for

multivariate spatially varying coefficient regression. Li et al. (2015) incorporated Bayesian

group lasso algorithm to the high-dimensional varying coefficient model, which is applied to

functional genome-wide association studies.

Although the penalized linear squares approach has become an useful tool in variable

selection, there is a drawback in that it summarized the average relationship between the

response variable and covariates based on the conditional mean function, which only provides

a partial view of the relationship. It is possible that a certain covariate may not have a

significant effect on the mean of the response but have a greater influence at other segments

of the conditional distribution. Quantile regression provides the capability of describing the

relationship at different points in the conditional distribution of the response variable.

Quantile regression has become more and more popular in recent years as it is robust

to non-normal errors and outliers while the ordinary least squares methods is inefficient.

Quantile regression also provides richer information of the data than the classic mean re-

gression. The development of regularized variable selection methods allows us to build a

regularized quantile regression model. Koenker (2004) penalized the random effects in a

mixed-effect quantile regression model and shrank the random effects towards zero. Li and

Zhu (2008) incorporated the Lasso penalty to quantile regression and developed its piecewise

linear solution path. Wu and Liu (2009) demonstrated the oracle properties of the SCAD

and adaptive lasso penalties in regularized quantile regression. Li et al. (2010) developed

regularized Bayesian quantile regression using Lasso, elastic net and group Lasso penalties.

Noh et al. (2012) developed a penalized variable selection method for varying coefficient
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models in quantile regression. There’s a limitation in these studies that Bayesian regularized

variable selection in quantile models with varying coefficients has not been well established.

Therefore, we propose a novel Bayesian regularized quantile varying coefficient model to iden-

tify the important genetic covariates that are associated with the phenotype. Besides, we

develop a C++ based R package, which incorporates the proposed and alternative Bayesian

methods in this project and the package will be submitted to CRAN soon.
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Chapter 5

Summary

In this dissertation, we aim at the development of data-driven penalized variable selec-

tion methods that enable efficient variable selection on longitudinal and nonlinear gene-

environment interactions within both frequentist and Bayesian frameworks. The correlation

nature within each cluster of repeated measurements on the response brings challenges to the

methodology development, while existing penalized methods in longitudinal studies mainly

focus on the identification of main effects only (Wang et al. (2012), Cho and Qu (2013).,

Ma et al. (2013)). In Chapter 2, a novel Newton-Raphson based penalized variable selection

method has been proposed to identify important lipid-environment interactions within the

GEE framework in a longitudinal lipidomics study. Our method significantly advances the

existing ones by considering the interaction effects. Simultaneous selection of both the main

and interaction effects can be accommodated by the incorporation of the group structure

within GEE. The paper associated with this study has been published at the Genes (Zhou

et al. (2019)). As penalized variable selection has become a powerful tool in longitudinal

interaction studies, we move on and develop a sparse group penalization method to carry

out a bi-level selection on G×E interactions for the repeatedly measured phenotype. The

penalized QIF framework is adopted as it has better performance compared with penalized

GEE under a variety of settings. The proposed method enables a simultaneous identification

of main and interaction effects on both the group and individual level. Simulation studies
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and a case study have demonstrated that the proposed method outperforms the compet-

ing alternatives in terms of both identification and prediction with satisfactory computation

speeds. In the last chapter of this dissertation, we have proposed a regularized Bayesian

quantile varying coefficient model to identify non-linear G×E interactions. This method

provides the capability of describing the relationship between the response and predictors

at different quantiles of the response variable while effectively accommodating robustness

to heavy-tailed errors and outliers in the response variable within the Bayesian framework.

Moreover, this method accounts for sparsity in the identification of the non-linear G×E in-

teractions. We have developed open-source R packages with core modules written in C++

for each project to facilitate fast computation. We have published the R packages interep

and springer, which correspond to the first and second projects respectively, on CRAN. The

R package associated with the third project will be publicly available in the near future.
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Appendix A

Appendices for Chapter 2

Table A.1: Identification results for n = 250, p = 75 with an actual dimension of 304.
mean(sd) based on 100 replicates. A1–A3: methods accommodating the lipid–environment
interactions with exchangeable, AR(1) and independence working correlations, respectively.
A4–A6: methods not accommodating the lipid–environment interactions with exchangeable,
AR(1) and independence working correlations, respectively.

n = 250 p = 75 Overall Main Interaction

TP FP TP FP TP FP

ρ=0.5 A1 14.5(1.9) 4.8(3.1) 7.2(0.8) 1.7(1.2) 7.4(1.5) 3.1(2.6)

A2 14.7(1.8) 5.0(3.2) 7.2(0.9) 1.7(1.3) 7.5(1.4) 3.2(2.6)

A3 14.7(1.7) 5.0(3.3) 7.2(0.8) 1.8(1.4) 7.6(1.3) 3.2(2.6)

A4 13.3(1.5) 6.6(4.2) 7.2(0.7) 1.6(1.4) 6.1(1.1) 5.1(3.3)

A5 13.3(1.5) 6.8(4.4) 7.2(0.8) 1.7(1.4) 6.1(1.1) 5.2(3.5)

A6 13.3(1.5) 7.3(4.7) 7.2(0.8) 1.8(1.5) 6.1(1.1) 5.5(3.7)

ρ=0.8 A1 13.7(2.3) 4.1(2.8) 7.2(0.8) 1.5(1.0) 6.5(2.1) 2.7(2.4)

A2 13.9(2.4) 4.1(2.8) 7.2(0.8) 1.5(1.0) 6.6(2.1) 2.7(2.4)

A3 14.2(2.3) 4.5(2.9) 7.2(0.7) 1.6(1.0) 7.0(2.2) 2.9(2.5)

A4 12.9(1.9) 5.5(2.7) 7.2(0.7) 1.1(1.0) 5.6(1.6) 4.5(2.3)

A5 12.9(1.9) 5.8(2.9) 7.2(0.7) 1.1(0.9) 5.7(1.6) 4.7(2.5)

A6 13.0(1.8) 6.5(3.5) 7.2(0.7) 1.2(0.9) 5.8(1.4) 5.5(3.2)
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Table A.2: Identification results for n = 250, p = 150 with an actual dimension of 604.
mean(sd) based on 100 replicates. A1–A3: methods accommodating the lipid–environment
interactions with exchangeable, AR(1) and independence working correlations, respectively.
A4–A6: methods not accommodating the lipid–environment interactions with exchangeable,
AR(1) and independence working correlations, respectively.

n = 250 p = 150 Overall Main Interaction

TP FP TP FP TP FP

ρ=0.5 A1 13.9(2.3) 5.0(3.0) 7.2(0.7) 1.7(1.1) 6.7(2.0) 3.3(2.6)

A2 14.0(2.2) 5.0(3.0) 7.2(0.7) 1.7(1.1) 6.8(1.9) 3.3(2.6)

A3 14.4(2.2) 5.1(3.2) 7.3(0.7) 1.8(1.2) 7.1(1.9) 3.3(2.8)

A4 12.9(1.9) 5.7(2.5) 7.3(0.8) 1.4(0.9) 5.6(1.5) 4.4(2.3)

A5 13.0(1.8) 5.9(2.6) 7.2(0.8) 1.4(0.9) 5.7(1.4) 4.5(2.3)

A6 13.0(1.8) 6.4(2.7) 7.2(0.8) 1.4(1.0) 5.8(1.5) 5.0(2.5)

ρ=0.8 A1 13.5(2.0) 5.3(3.0) 7.2(0.9) 2.1(1.2) 6.3(1.9) 3.2(2.4)

A2 13.5(2.0) 5.4(3.2) 7.2(0.9) 2.2(1.3) 6.3(1.9) 3.2(2.5)

A3 13.4(2.1) 6.0(3.0) 7.1(0.9) 2.4(1.3) 6.2(1.9) 3.6(2.7)

A4 12.5(1.9) 7.6(3.3) 7.3(0.7) 1.8(1.2) 5.2(1.7) 5.7(2.7)

A5 12.6(1.8) 7.8(3.4) 7.3(0.7) 1.9(1.2) 5.3(1.6) 5.9(2.8)

A6 12.6(1.8) 8.4(4.1) 7.3(0.8) 1.9(1.2) 5.4(1.7) 6.5(3.6)
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Table A.3: Identification results for n = 500, p = 150 with an actual dimension of 604.
mean(sd) based on 100 replicates. A1–A3: methods accommodating the lipid–environment
interactions with exchangeable, AR(1) and independence working correlations, respectively.
A4–A6: methods not accommodating the lipid–environment interactions with exchangeable,
AR(1) and independence working correlations, respectively.

n = 500 p = 150 Overall Main Interaction

TP FP TP FP TP FP

ρ=0.5 A1 15.7(1.4) 2.7(1.9) 7.7(0.5) 1.3(0.7) 8.0(1.4) 1.4(1.7)

A2 15.8(1.3) 2.7(2) 7.7(0.5) 1.3(0.7) 8.1(1.3) 1.3(1.8)

A3 16.2(1.2) 2.7(1.9) 7.8(0.4) 1.3(0.8) 8.4(1.2) 1.3(1.6)

A4 14.7(1.0) 2.5(1.7) 7.8(0.4) 0.9(0.8) 6.9(1.0) 1.6(1.4)

A5 14.7(1.1) 2.6(1.7) 7.8(0.4) 0.9(0.7) 6.9(1.0) 1.7(1.4)

A6 14.9(1.0) 2.7(2.0) 7.8(0.4) 0.8(0.7) 7.0(0.9) 1.8(1.6)

ρ=0.8 A1 15.5(1.7) 3.0(2.9) 7.7(0.6) 1.1(0.8) 7.9(1.5) 1.9(2.2)

A2 15.4(1.7) 2.9(2.8) 7.7(0.6) 1.1(0.8) 7.8(1.5) 1.8(2.2)

A3 15.7(1.6) 2.6(2.6) 7.7(0.5) 1.2(0.9) 8.0(1.4) 1.4(2.1)

A4 14.8(1.4) 3.7(1.8) 7.5(0.6) 1.2(0.7) 7.2(1.2) 2.5(1.5)

A5 14.7(1.3) 3.6(1.9) 7.5(0.5) 1.1(0.7) 7.2(1.2) 2.5(1.5)

A6 15.0(1.3) 3.8(1.9) 7.7(0.6) 1.1(0.7) 7.4(1.1) 2.7(1.6)
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Table A.4: Identification results for n = 500, p = 300 with an actual dimension of 1204.
mean(sd) based on 100 replicates. A1–A3: methods accommodating the lipid–environment
interactions with exchangeable, AR(1) and independence working correlations, respectively.
A4–A6: methods not accommodating the lipid–environment interactions with exchangeable,
AR(1) and independence working correlations, respectively.

n = 500 p = 300 Overall Main Interaction

TP FP TP FP TP FP

ρ=0.5 A1 16.1(1.2) 3.2(2.4) 7.6(0.6) 1.4(0.8) 8.5(1.0) 1.8(2.2)

A2 16.3(1.1) 3.2(2.4) 7.7(0.5) 1.4(0.8) 8.5(0.9) 1.8(2.2)

A3 16.3(1) 2.9(2.2) 7.8(0.5) 1.4(0.8) 8.6(0.8) 1.5(1.9)

A4 14.8(0.8) 2.9(2.1) 7.8(0.4) 1.0(0.8) 7.0(0.8) 1.9(1.7)

A5 14.8(0.9) 3.1(2.3) 7.8(0.4) 1.0(0.8) 7.0(0.8) 2.0(1.9)

A6 14.9(0.9) 3.3(2.6) 7.8(0.4) 1.0(0.8) 7.1(0.9) 2.3(2.1)

ρ=0.8 A1 15.9(1.2) 3(2.6) 7.6(0.5) 1.5(0.8) 8.3(1.1) 1.5(2.2)

A2 15.9(1.3) 3.0(2.7) 7.6(0.5) 1.5(0.9) 8.2(1.1) 1.5(2.2)

A3 15.8(1.4) 3.1(2.8) 7.7(0.5) 1.6(1.0) 8.1(1.2) 1.6(2.2)

A4 14.5(1.2) 4.5(3.0) 7.8(0.6) 1.0(0.7) 6.8(1.0) 3.5(2.6)

A5 14.5(1.2) 4.7(3.3) 7.8(0.6) 1.1(0.8) 6.7(0.9) 3.6(2.9)

A6 14.5(1.1) 4.9(3.6) 7.8(0.6) 1.0(0.8) 6.7(0.8) 3.8(3.3)
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Figure A.1: Plot of the identification results for n = 250. p = 75 with an actual dimension
of 304. p = 150 with an actual dimension of 604. A1–A3: methods accommodating the lipid–
environment interactions with exchangeable, AR(1) and independence working correlations,
respectively. A4–A6: methods not accommodating the lipid–environment interactions with
exchangeable, AR(1) and independence working correlations, respectively.

Table 1 n=250 p=75

Table 2 n=250 p=150

A1 A2 A3 A4 A5 A6A1 A2 A3 A4 A5 A6

𝜌 = 0.5 𝜌 = 0.8
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Figure A.2: Plot of the identification results for n = 500. p = 150 with an actual dimension
604. p = 300 with an actual dimension of 1204. A1–A3: methods accommodating the lipid–
environment interactions with exchangeable, AR(1) and independence working correlations,
respectively. A4–A6: methods not accommodating the lipid–environment interactions with
exchangeable, AR(1) and independence working correlations, respectively.
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A1 A2 A3 A4 A5 A6A1 A2 A3 A4 A5 A6

𝜌 = 0.5 𝜌 = 0.8
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Table A.5: Estimation accuracy results for n = 250. p = 75 with an actual dimension of
304. p = 150 with an actual dimension of 604. mean(sd) based on 100 replicates. A1–A3:
methods accommodating the lipid–environment interactions with exchangeable, AR(1) and
independence working correlations, respectively. A4–A6: methods not accommodating the
lipid–environment interactions with exchangeable, AR(1) and independence working correla-
tions, respectively.

n = 250

p = 75 p = 150

MSE NMSE TMSE MSE NMSE TMSE

ρ=0.5 A1 0.1055 0.0026 0.0043 0.1264 0.0045 0.0072

A2 0.1042 0.0026 0.0042 0.1259 0.0045 0.0072

A3 0.1030 0.0026 0.0042 0.1174 0.0041 0.0066

A4 0.2321 0.0018 0.0056 0.2435 0.0032 0.0084

A5 0.2304 0.0018 0.0055 0.2402 0.0031 0.0082

A6 0.2288 0.0018 0.0055 0.2346 0.0030 0.0080

ρ=0.8 A1 0.1187 0.0087 0.0135 0.129 0.0048 0.0075

A2 0.1163 0.0085 0.0132 0.1295 0.0048 0.0075

A3 0.1066 0.0075 0.0118 0.1319 0.0049 0.0077

A4 0.2410 0.0060 0.0162 0.2531 0.0038 0.0092

A5 0.2426 0.0060 0.0162 0.2487 0.0038 0.0091

A6 0.2335 0.0058 0.0157 0.2431 0.0037 0.0089
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Table A.6: Estimation accuracy results for n = 500. p = 150 with an actual dimension of
604. p = 300 with an actual dimension of 1204. mean(sd) based on 100 replicates. A1–A3:
methods accommodating the lipid–environment interactions with exchangeable, AR(1) and
independence working correlations, respectively. A4–A6: methods not accommodating the
lipid–environment interactions with exchangeable, AR(1) and independence working correla-
tions, respectively.

n = 500

p = 150 p = 300

MSE NMSE TMSE MSE NMSE TMSE

ρ=0.5 A1 0.0754 0.0026 0.0042 0.0660 0.0010 0.0017

A2 0.0731 0.0026 0.0041 0.0659 0.0010 0.0017

A3 0.0648 0.0022 0.0035 0.0663 0.0010 0.0017

A4 0.1872 0.0015 0.0055 0.1635 0.0007 0.0024

A5 0.1837 0.0015 0.0054 0.1612 0.0007 0.0024

A6 0.1792 0.0013 0.0052 0.1603 0.0007 0.0024

ρ=0.8 A1 0.0708 0.0023 0.0037 0.0688 0.0010 0.0018

A2 0.0716 0.0023 0.0038 0.0688 0.0011 0.0018

A3 0.0704 0.0025 0.0039 0.0718 0.0012 0.0020

A4 0.1480 0.0013 0.0049 0.1949 0.0007 0.0028

A5 0.1492 0.0013 0.0045 0.1945 0.0007 0.0028

A6 0.1479 0.0012 0.0044 0.1899 0.0007 0.0027
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Table A.7: Real data analysis result from Method A1 (method accommodating the lipid–
environment interactions with exchangeable working correlation).

Lipid AE PE DCR

C16:0/16:1 0 0.0117 -0.0239 -0.0057

C18:2/16:1 0 0.1544 3.3322 0.3924

C18:1/16:1 0 0.4857 -0.6299 -0.5559

C20:1/16:1 0.5966 -2.9145 0.1299 -1.4836

C16:0/16:0 0 1.3742 -0.8817 -1.8070

C20:6/16:0 0.0369 0 0 0

C20:0/18:3 -1.3628 0 0 0

C18:0/18:2 -1.6154 0 0 0

C22:6/18:1 1.1717 1.7526 0.2287 -0.4079

C18:2/20:4 1.1497 0 0 0

C18:1/20:4 0.8490 0 0 0

C20:1/20:4 0 -0.2169 -0.6096 3.0537

Table A.8: Real data analysis result from Method A4 (method not accommodating the lipid–
environment interactions with exchangeable working correlation).

Lipid AE DCR PE

C16:0/16:1 0 0 -0.0024 0

C18:2/16:1 -2.1856 0 3.2306 0

C18:1/16:1 0 0 -1.4641 -2.3563

C20:1/16:1 0.0042 -2.6768 0 -1.7757

C16:0/16:0 0 2.8757 -0.9389 -2.6791

C18:2/16:0 0 0 0 -1.7688

C20:6/16:0 0.1481 -0.1276 0 0

C18:1/18:3 0 0 1.2917 0

C20:0/18:3 -1.6171 0 0 0

C18:0/18:2 -1.7695 0 0 0

C22:6/18:1 0.8851 3.4714 0.4809 0

C18:1/18:0 0 -1.2901 0 0

C22:7/18:0 0 -0.9839 0 0

C18:2/20:4 2.5871 0.6150 0 1.9327

C18:1/20:4 0 0 -0.0031 0

C20:1/20:4 0.7542 -1.1147 0 3.5396
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Table A.9: Identification results for n = 60, p = 30 with an actual dimension of 124.
mean(sd) based on 100 replicates. A1–A3: methods accommodating the lipid–environment
interactions with exchangeable, AR(1) and independence working correlations, respectively.
A4–A6: methods not accommodating the lipid–environment interactions with exchangeable,
AR(1) and independence working correlations, respectively.

n = 60 p = 30 Overall Main Interaction

TP FP TP FP TP FP

ρ=0.5 A1 13.6(2.5) 4.7(2.7) 7.4(0.8) 2.1(1.6) 6.2(2.1) 2.5(2.6)

A2 13.6(2.5) 4.8(2.8) 7.3(0.8) 2.2(1.6) 6.2(2.1) 2.6(2.6)

A3 13.7(2.5) 4.9(3.0) 7.4(0.7) 2.1(1.6) 6.3(2.1) 2.7(2.7)

A4 11.1(2.6) 5.4(2.8) 6.4(1.1) 1.1(1.0) 4.6(1.9) 4.3(2.3)

A5 11.1(2.6) 5.4(2.8) 6.4(1.1) 1.1(1.0) 4.6(1.9) 4.3(2.3)

A6 11.1(2.5) 5.5(2.8) 6.5(1.2) 1.1(1.0) 4.7(1.8) 4.4(2.3)

ρ=0.8 A1 13.2(2.2) 4.4(2.9) 7.5(0.6) 2.4(1.7) 5.7(2.1) 1.9(2.1)

A2 13.2(2.2) 4.4(2.9) 7.5(0.6) 2.4(1.7) 5.7(2.1) 2.0(2.1)

A3 13.4(2.0) 4.4(3.0) 7.5(0.6) 2.4(1.7) 5.9(1.9) 2.0(2.1)

A4 11.0(2.4) 5.5(2.5) 6.5(1.4) 1.3(1.2) 4.5(1.8) 4.2(2.1)

A5 11.0(2.4) 5.6(2.6) 6.5(1.4) 1.3(1.2) 4.5(1.8) 4.2(2.2)

A6 11.1(2.4) 5.8(2.7) 6.5(1.4) 1.4(1.3) 4.5(1.8) 4.3(2.2)

Table A.10: Estimation accuracy results for n = 60, p = 30 with an actual dimension
of 124. mean(sd) based on 100 replicates. A1–A3: methods accommodating the lipid–
environment interactions with exchangeable, AR(1) and independence working correlations,
respectively. A4–A6: methods not accommodating the lipid–environment interactions with
exchangeable, AR(1) and independence working correlations, respectively.

n = 60, p = 30

ρ = 0.5 ρ = 0.8

MSE NMSE TMSE MSE NMSE TMSE

A1 0.9352 0.1928 0.2732 0.9820 0.2108 0.2944

A2 0.9387 0.1924 0.2733 0.9809 0.2105 0.2940

A3 0.9324 0.1914 0.2717 1.0098 0.2063 0.2933

A4 1.9732 0.1560 0.3528 1.9910 0.1488 0.3484

A5 1.9709 0.1556 0.3523 1.9887 0.1487 0.348

A6 1.9629 0.1543 0.3502 1.9795 0.1474 0.3458
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Table A.11: Data simulated based upon the underlying main effect only model. Identifica-
tion results for n = 250, p = 75, ρ = 0.8 with an actual dimension of 304. mean(sd) based
on 100 replicates. A1–A3: methods accommodating the lipid–environment interactions with
exchangeable, AR(1) and independence working correlations, respectively. A4–A6: methods
not accommodating the lipid–environment interactions with exchangeable, AR(1) and inde-
pendence working correlations, respectively.

Overall Main Interaction

TP FP TP FP TP FP MSE NMSE TMSE

A1 7.7(0.9) 0.7(1.7) 7.7(0.9) 0.0(0.0) 0.0(0.0) 0.7(1.7) 0.1025 0.0000 0.0014

A2 7.8(0.6) 0.4(1.3) 7.8(0.6) 0.0(0.2) 0.0(0.0) 0.4(1.3) 0.0730 0.0000 0.0010

A3 7.9(0.3) 0.5(1.2) 7.9(0.3) 0.3(0.7) 0.0(0.0) 0.2(0.8) 0.0288 0.0000 0.0004

A4 7.3(1.1) 0.8(0.9) 7.3(1.1) 0.0(0.0) 0.0(0.0) 0.8(0.9) 0.2530 0.0000 0.0034

A5 7.2(1.1) 0.9(1.1) 7.2(1.1) 0.0(0.0) 0.0(0.0) 0.9(1.1) 0.2273 0.0001 0.0031

A6 7.5(0.7) 1.2(1.1) 7.5(0.7) 0.0(0.2) 0.0(0.0) 1.2(1.1) 0.1932 0.0001 0.0027

Table A.12: Null models. mean(sd) based on 100 replicates. A1–A3: methods accommodat-
ing the lipid–environment interactions with exchangeable, AR(1) and independence working
correlations, respectively. A4–A6: methods not accommodating the lipid–environment inter-
actions with exchangeable, AR(1) and independence working correlations, respectively.

n = 250 n = 500

p = 75 p = 150 p = 150 p = 300

ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8

A1 0.00(0.00) 0.03(0.18) 0.03(0.18) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

A2 0.03(0.10) 0.03(0.18) 0.30(0.70) 0.10(0.31) 0.00(0.00) 0.00(0.00) 0.03(0.18) 0.00(0.00)

A3 0.13(0.51) 0.17(0.44) 0.97(1.47) 0.77(0.81) 0.10(0.40) 0.50(0.20) 0.10(0.31) 0.10(0.25)

A4 0.00(0.00) 0.03(0.18) 0.03(0.18) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

A5 0.03(0.10) 0.03(0.18) 0.30(0.70) 0.10(0.31) 0.00(0.00) 0.00(0.00) 0.03(0.18) 0.00(0.00)

A6 0.13(0.51) 0.17(0.44) 0.97(1.47) 0.77(0.81) 0.10(0.40) 0.50(0.20) 0.10(0.31) 0.10(0.25)
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Table A.13: Stability selection percentages for all the 17 true effects in the simulated data
when n = 250, p = 75, ρ = 0.8 with an actual dimension of 304. A1–A3: methods accommo-
dating the lipid–environment interactions with exchangeable, AR(1) and independence work-
ing correlations, respectively. A4–A6: methods not accommodating the lipid–environment
interactions with exchangeable, AR(1) and independence working correlations, respectively.

true effect A1 A2 A3 A4 A5 A6

1 1 1 1 1 1 1

2 0.73 1 1 0.82 0.98 1

3 1 0.80 1 1 1 1

4 1 1 1 1 1 1

5 1 0.45 1 1 0.93 0.98

6 0.13 0.14 0.38 0.65 0.98 0.98

7 0.58 0.65 1 0.99 1 0.92

8 0.61 0.25 0.45 0.89 1 1

9 1 0.84 1 0.46 0.02 0.10

10 1 0.86 1 0.07 0.01 0.10

11 1 0.83 1 0.70 0.66 0.84

12 0.77 0.91 0.72 0.36 0.87 0.01

13 0.77 0.91 0.73 0.39 0.94 0.45

14 0.75 0.94 0.77 0.48 1 0.98

15 0.81 0.82 0.98 0.30 0.55 1

16 0.80 0.86 0.99 0.98 0.75 0.99

17 0.80 0.87 0.99 0.66 0.93 1
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Table A.14: Validation methods. Identification results for n = 250, p = 75 with an actual
dimension of 304. mean(sd) based on 100 replicates. A1–A3: methods accommodating the
lipid–environment interactions with exchangeable, AR(1) and independence working correla-
tions, respectively. A4–A6: methods not accommodating the lipid–environment interactions
with exchangeable, AR(1) and independence working correlations, respectively.

n = 250 p = 75 Overall Main Interaction

TP FP TP FP TP FP

ρ=0.5 A1 14.1(2.1) 4.6(3.1) 7.0(0.8) 1.1(0.8) 7.0(1.8) 3.5(2.9)

A2 14.2(2.1) 4.7(3.1) 7.0(0.9) 1.1(0.9) 7.1(1.8) 3.6(2.8)

A3 14.4(1.7) 4.6(3.2) 7.1(0.8) 1.1(0.9) 7.2(1.5) 3.5(3.0)

A4 13.1(1.1) 6.1(2.8) 6.9(0.8) 1.0(0.8) 6.1(0.9) 5.3(2.6)

A5 13.1(1.1) 6.4(2.8) 6.9(0.8) 1.0(0.8) 6.1(0.9) 5.6(2.5)

A6 13.0(1.2) 6.7(3.1) 6.9(0.8) 1.0(0.8) 6.1(1.0) 5.9(2.9)

ρ=0.8 A1 13.7(2.6) 4.7(2.9) 7.2(0.8) 1.4(0.9) 6.5(2.3) 3.2(2.5)

A2 13.8(2.6) 4.6(3.1) 7.3(0.8) 1.4(1.0) 6.6(2.3) 3.1(2.6)

A3 13.8(2.5) 5.1(3.0) 7.3(0.7) 1.5(0.8) 6.5(2.1) 3.6(2.9)

A4 12.9(2.1) 5.7(2.5) 7.3(0.8) 1.3(0.9) 5.6(1.6) 4.5(2.1)

A5 12.9(2.1) 5.8(2.6) 7.3(0.8) 1.3(1.0) 5.6(1.6) 4.5(2.2)

A6 12.9(2.2) 6.8(2.7) 7.3(0.7) 1.4(0.9) 5.6(1.8) 5.5(2.5)

Table A.15: Validation methods. Estimation accuracy results for n = 250, p = 75 with an
actual dimension of 304. mean(sd) based on 100 replicates. A1–A3: methods accommodat-
ing the lipid–environment interactions with exchangeable, AR(1) and independence working
correlations, respectively. A4–A6: methods not accommodating the lipid–environment inter-
actions with exchangeable, AR(1) and independence working correlations, respectively.

n = 250, p = 75

ρ = 0.5 ρ = 0.8

MSE NMSE TMSE MSE NMSE TMSE

A1 0.1126 0.0074 0.0120 0.1205 0.0085 0.0134

A2 0.1095 0.0071 0.0115 0.1200 0.0085 0.0133

A3 0.1082 0.0071 0.0115 0.1245 0.0090 0.0140

A4 0.2344 0.0051 0.0150 0.2610 0.0060 0.0171

A5 0.2335 0.0050 0.0149 0.2627 0.0060 0.0171

A6 0.2302 0.0048 0.0146 0.2565 0.0058 0.0166
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Appendix B

Appendices for Chapter 3

B.1 Derivations of Alternative Methods

The alternative methods fall into the following two categories: (1) gQIF.exch, gQIF.ar1

and gQIF.ind only conduct penalized identification on the group level, corresponding to the

penalized group QIF, and (2) iQIF.exch, iQIF.ar1 and iQIF.ind ignore the group level effects,

and only focus on the individual level effects (penalized QIF).

B.1.1 Penalized Group QIF

The penalized group QIF methods considered in this study (gQIF.exch, gQIF.ar1 and

gQIF.ind) can only identify the main and interaction effects on a group–in/group–out basis.

The corresponding score equation is defined as

U(β) = Q(β) +

p∑
v=1

ρ(||ηv||Σv ;
√
q + 1λ1, γ),

where ρ denotes MCP penalty with tuning parameter λ1 and regularization parameter γ. As

defined in Section 3.2.2, the coefficient vector β corresponds to all the main and interaction

effects. ηv, the vector of length q+1 in β, represents the main effect of the vth G factor as

well as its interactions with the q environment factors. The penalty is imposed on ||ηv||Σv ,
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the empirical norm of ηv. Thus the penalized identification can merely performed on group

level.

We have developed a Newton-Raphson based algorithm to obtain the penalized QIF

estimate β̂. The estimate β̂(g+1) in the (g + 1)th iteration can be solved based on the

previous coefficient vector β̂(g) in the gth iteration:

β̂(g+1) = β̂(g) + [V (g) + nH(g))]−1[P (g) − nH(g)β̂(g)],

with P (g) and V (g) as the first and second order derivative of the score function of QIF,

respectively. They are defined as:

P (g) =
∂Q(β̂(g))

∂β
= 2

∂φn
>

∂β
Ωn
−1φn(β̂(g)),

V (g) =
∂2Q(β̂(g))

∂2β
= 2

∂φn
>

∂β
Ωn
−1∂φn
∂β

.

H(g) is a diagonal matrix containing the derivatives of the penalty function and it’s defined

as:

H(g) = diag(0, ..., 0︸ ︷︷ ︸
1+q

,
ρ′(||η̂(g)

1 ||Σ1 ;
√
q + 1λ1, γ)

ε+ ||η̂(g)
1 ||Σ1

, ...,
ρ′(||η̂(g)

1 ||Σ1 ;
√
q + 1λ1, γ)

ε+ ||η̂(g)
1 ||Σ1︸ ︷︷ ︸

1+q

, ...,

ρ′(||η̂(g)
p ||Σp ;

√
q + 1λ1, γ)

ε+ ||η̂(g)
p ||Σp

, ...,
ρ′(||η̂(g)

p ||Σp ;
√
q + 1λ1, γ)

ε+ ||η̂(g)
p ||Σp︸ ︷︷ ︸

1+q

),

where λ1 is the tuning parameter of genetic effects and gene-environment interactions and

γ is the regularization parameter. The first (1 + q) elements on the diagonal of matrix H

are set to zero, since there is no shrinkage imposed on the intercept and the coefficients of

the environmental factors. We can use nHβ̂ and nH to approximate the first and second

drivative functions of the the group MCP penalty. Starting with an inital coefficient vector,

we can repeat the proposed algorithm and update the regression parameter β̂(g+1) through

iterations. We set the stop criterion mean(|β̂(g+1) − β̂(g)|) < 0.001 and convergence can

usually be achieved in a small to moderate number of iterations.
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B.1.2 Penalized QIF

iQIF.exch, iQIF.ar1 and iQIF.ind are the second category of alternative methods considering

only the individual level effects. The derivations for the three methods proceeds in a similar

fashion. We have the penalized score function as:

U(β) = Q(β) +

p∑
v=1

q+1∑
u=1

ρ(|ηvu|;λ1, γ),

where ηvu denotes the uth element of ηv. The Newton-Raphson update of β̂ can be obtained

as:

β̂(g+1) = β̂(g) + [V (g) + nH(g))]−1[P (g) − nH(g)β̂(g)],

where P (g) and V (g) are given as the corresponding first and second order derivatives of the

score function of QIF as follows:

P (g) =
∂Q(β̂(g))

∂β
= 2

∂φn
>

∂β
Ωn
−1φn(β̂(g)),

V (g) =
∂2Q(β̂(g))

∂2β
= 2

∂φn
>

∂β
Ωn
−1∂φn
∂β

.

The main diagonal of the diagonal matrix H(g) consists of the first order derivative of MCP:

H(g) = diag(0, ..., 0︸ ︷︷ ︸
1+q

,
ρ′(|η̂(g)

11 |;λ2, γ)

ε+ |η̂(g)
11 |

, ...,
ρ′(|η̂(g)

1(q+1)|;λ2, γ)

ε+ |η̂(g)
1(q+1)|︸ ︷︷ ︸

1+q

, ...,

ρ′(|η̂(g)
p1 |;λ2, γ)

ε+ |η̂(g)
p1 |

, ...,
ρ′(|η̂(g)

p(q+1)|;λ2, γ)

ε+ |η̂(g)
p(q+1)|︸ ︷︷ ︸

1+q

),

where λ2 and γ are the tuning and regularization parameters, respectively. There is no

shrinkage on the intercept and the coefficients of the environmental factors. Hence the first

(1 + q) elements on the diagonal of matrix H are set to zero. Here nHβ̂ and nH can also be

used to approximate the first and second drivative functions of the the MCP penalty. The

iterative update of β̂ can be conducted till convergence.
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B.2 Other Simulation Results

Table B1: Identification results for Scenario 3. TP/FP: true/false positives. mean(sd) of
TP and FP based on 100 replicates.

Overall Main Interaction
TP FP TP FP TP FP

sgQIF.exch 19.4(1.0) 2.1(1.1) 3.1(1.1) 0.9(0.7) 16.3(0.8) 1.3(0.8)
gQIF.exch 22.1(1.6) 19.6(6.0) 4.9(0.9) 1.1(1.1) 17.3(1.0) 18.4(5.2)
iQIF.exch 19.7(1.4) 9.0(4.8) 3.1(1.2) 2.0(1.2) 16.6(1.1) 7.0(4.0)
sgQIF.ar1 19.6(1.3) 2.8(1.3) 3.2(1) 0.6(0.7) 16.5(0.8) 2.2(1.4)
gQIF.ar1 22.1(1.4) 18.5(5.3) 4.6(0.9) 0.9(1) 17.5(0.8) 17.6(4.5)
iQIF.ar1 20.0(1.5) 9.2(4.4) 3.5(1.3) 1.6(1.3) 16.5(0.9) 7.5(3.6)
sgQIF.ind 19.3(1.5) 3.0(2.6) 3.0(1.0) 0.3(0.6) 16.3(1.5) 2.7(2.1)
gQIF.ind 21.7(1.2) 16.3(5.1) 4.3(1.2) 1.7(1.2) 17.3(1.2) 14.7(4.0)
iQIF.ind 20.0(1.0) 8.0(4.4) 3.0(1.0) 1.0(1.0) 17.0(1.0) 7.0(3.5)

Table B2: Identification results for Scenario 4. TP/FP: true/false positives. mean(sd) of
TP and FP based on 100 replicates.

Overall Main Interaction
TP FP TP FP TP FP

sgQIF.exch 21.9(1.6) 4.7(2.4) 6.6(0.5) 0.2(0.1) 15.3(1.5) 4.5(2.4)
gQIF.exch 21.1(2.7) 19.2(4.4) 6.4(0.9) 3.1(1.6) 14.7(2.0) 16.1(3.1)
iQIF.exch 22.3(1.3) 7.1(2.3) 6.8(0.5) 0.1(0.1) 15.5(1.2) 7.1(2.3)
sgQIF.ar1 22.3(2.1) 4.0(1.0) 6.7(0.6) 0.1(0.1) 15.7(1.5) 4.0(1.0)
gQIF.ar1 22.4(1.9) 17.1(7.4) 6.9(0.4) 2.4(2.2) 15.6(1.8) 14.7(5.5)
iQIF.ar1 23.3(0.6) 10.0(3.5) 7.0(0.6) 0.3(0.1) 16.3(0.6) 10.0(3.5)
sgQIF.ind 20.3(1.0) 3.5(1.3) 5.8(0.5) 0.1(0.1) 14.5(0.6) 3.5(1.3)
gQIF.ind 22.5(0.7) 16.5(6.2) 7(0.3) 2.5(2.1) 15.5(0.7) 14.0(4.0)
iQIF.ind 21.8(0.5) 9.5(1.3) 6.8(0.5) 0.1(0.1) 15.0(0.8) 9.5(1.3)
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Figure B1: Prediction (MSE) results of the 4 scenarios. mean(sd) of prediction error based

on 100 replicates.

B.3 Real Data Analysis

Table C1: Identification results on CAMP data using the bi-level selection method under the

exchangeable working correlation (sgQIF.exch). The identified SNPs and the corresponding

genes are listed in the first two columns. The third column contains the coefficients of the

main effects for each SNP. The last three columns correspond to the interactions between

the SNPs and environmental factors.

SNP Gene trt age gender

rs1276888 FAM46A 0 0.116 0 0

rs10139964 AKAP6 0 0 0.125 0

rs10852830 AC005703.2 0 0 0.111 0
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rs10995722 RP11-170M17.1 -0.398 0.103 0 0

rs329614 NDUFAF2 0 0 0 0.598

rs17431749 DKK2 0 -0.246 0 0.325

rs2453021 TNFRSF9 0 0 0 -0.123

rs1922134 RP11-170M17.1 -0.143 0 0 0

rs290505 NDUFAF2 -0.155 0 0 0.300

rs4969059 SLC39A11 -0.212 0 0 0

rs4730738 CAV2 0 0 0 0.145

rs162240 NDUFAF2 0.198 0 0 0

rs6869332 ELOVL7 -0.246 -0.221 0 0

rs167912 NDUFAF2 0 0 -0.282 0

rs158928 ERCC8 0 -0.151 0 0.214

rs131815 NCAPH2 0 0 0.129 0

rs4280657 AC144521.1 0 0 0 -0.274

rs11778333 TOX 0 0 -0.299 0

rs11803207 KCND3 0 0 0 -0.139

rs12299421 rs12299421 0 0 -0.105 0

rs11257102 PFKFB3 -0.582 0 0 -0.353

rs8141896 MICAL3 0.218 0 0 -0.152

rs162231 NDUFAF2 0 -0.347 0 0

rs10857493 RP11-123B3.2 0.468 -0.123 -0.495 0

rs11257103 PFKFB3 -0.508 0 0 -0.192

rs1251577 ST6GALNAC3 0 0 0.112 0

rs4897284 LAMA2 0 0 0 -0.177

rs10491881 RP11-202G18.1 0.128 -0.342 0.339 0

rs566979 CAT 0 0 -0.105 0

rs4904516 FOXN3 0 0.178 0 0
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rs681561 PCCA 0 0 -0.286 0.258

rs1618870 CATSPERB 0 0.432 0 -0.489

rs17010079 RP11-123B3.2 -0.214 0 0.364 0

rs11031570 RCN1 0.291 0 -0.504 0

rs909768 RPS6KA2 0 0 0 0.304

rs9891809 SLC39A11 0 0.158 0 0

rs8079240 SLC39A11 0 0.158 0 0

rs7951816 SYT9 0 0 0.141 0

rs1180286 CAV2 0 0 0 -0.152

rs17813724 RP11-202G18.1 0 0.209 0 0.192

rs17241424 TOX -0.147 0 0.270 0

rs11708933 AC144521.1 0 0 0 0.423

rs197394 FAM212B 0 0 -0.276 0

rs6008813 CELSR1 0 0.142 0 -0.119

rs742267 RPS6KA2 0 0 -0.194 0

rs7712473 ELOVL7 0 0 0 -0.154

rs1704630 CATSPERB 0 0.638 0 -0.493

rs10995701 RP11-170M17.1 0 0 -0.312 0

rs4647078 ERCC8 -0.105 0.515 0 -0.115

rs6877849 ELOVL7 0 0 0.405 0

rs7029556 RP11-63P12.6 0 -0.119 0 0

rs6449502 ELOVL7 0 0 -0.266 0

rs12101359 UNC13C 0.107 0 0 0

rs4716370 RP1-137D17.1 -0.227 0 0.215 0

rs12060403 SLC35F3 0 0 -0.139 0

rs12071173 SLC35F3 0 0 -0.139 0

rs513555 SPRR2G 0 -0.289 0.291 0
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rs767006 CYFIP2 0.198 0 0 -0.164

rs4700398 ELOVL7 0 0.205 0 -0.480

rs197380 FAM212B 0.254 0 -0.479 0

rs6914953 F13A1 -0.318 0 0 -0.227

rs264356 NRG2 0 0 0.189 0

rs10972815 CLTA 0 -0.108 0 0.253

rs4700392 ELOVL7 -0.279 -0.916 0 0

rs13194966 F13A1 -0.426 0 0.664 0

rs1119266 SPRR2B 0 0.186 0 0

rs11031563 RCN1 0.423 0 -0.549 0

rs12101884 UNC13C -0.225 0 0.436 0

rs4647108 ERCC8 0.239 0 0 -0.607

rs7718320 IQGAP2 -0.192 0 0.561 0

rs2303921 TAF1B 0 0 0 -0.174

rs1136062 CCNF 0 -0.125 0.191 0

rs17390967 SCARA5 0.107 -0.196 0 -0.101

rs7243734 ZBTB7C -0.544 0 0 0

rs17023415 AFF3 -0.305 0.383 0 0

rs10995687 RP11-170M17.1 0.169 0 -0.294 0

rs13265701 MYOM2 -0.218 0.263 0 0

rs4940195 ZBTB7C -0.51 0 0 0

rs2918528 ZNF717 0 0 0.290 -0.148

rs17819589 RP11-392P7.6 0 0 -0.157 0

rs1360176 RP11-82L2.1 -0.268 0 0 0.213

rs17660456 MYO5B -0.138 0.157 0 0

rs10871386 RP11-525K10.3 0 0 -0.105 0.201
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Table C2: Identification results on CAMP data using the individual-level selection method

under the exchangeable working correlation (iQIF.exch). The identified SNPs and the corre-

sponding genes are listed in the first two columns. The third column contains the coefficients

of the main effects for each SNP. The last three columns correspond to the interactions be-

tween the SNPs and environmental factors.

SNP Gene trt age gender

rs10050758 SLC36A2 0 -0.136 0.135 0

rs1276888 FAM46A 0 0 0 -0.168

rs10852830 AC005703.2 0 -0.138 0 0

rs10995722 RP11-170M17.1 -0.419 0 0.413 0

rs329614 NDUFAF2 0 0.153 0 0

rs1922134 RP11-170M17.1 0.178 0 0.332 0

rs290505 NDUFAF2 0 0 0 0.429

rs4969059 SLC39A11 0 0.257 0 0

rs4730738 CAV2 0 0 -0.132 0

rs162240 NDUFAF2 -0.374 0 0 0.817

rs6869332 ELOVL7 -0.498 0.696 0 0

rs167912 NDUFAF2 -0.210 0 0 0.378

rs158928 ERCC8 0 0.314 0 0

rs131815 NCAPH2 0 0 0.146 0

rs4280657 AC144521.1 0 0.222 -0.250 0

rs11778333 TOX 0 -0.235 0 0.255

rs11803207 KCND3 0 0 -0.241 0.175

rs11257102 PFKFB3 -0.238 0 0 -0.233

rs8141896 MICAL3 0.278 0 -0.370 0

rs162231 NDUFAF2 0 -0.262 0 -0.218

112



rs10857493 RP11-123B3.2 0.451 0 -0.536 0

rs10796011 CCDC3 0 0 0 0.145

rs11257103 PFKFB3 -0.170 0 0 0

rs1251577 ST6GALNAC3 0 0 0.133 0

rs4897284 LAMA2 0 -0.273 0.290 0

rs10491881 RP11-202G18.1 0 -0.169 0 0

rs4904516 FOXN3 0 0.247 0 0

rs681561 PCCA 0 0 -0.258 0.263

rs1618870 CATSPERB 0 -0.16 0.686 -0.551

rs17010079 RP11-123B3.2 -0.227 0 0.428 0

rs11031570 RCN1 0.410 -0.670 0 0

rs909768 RPS6KA2 0 0 0 0.142

rs7951816 SYT9 0 0 0.133 0

rs1180286 CAV2 0 0 0 -0.221

rs17241424 TOX 0 0 0 0.210

rs17044664 AC144521.1 0 0.248 0 -0.159

rs11708933 AC144521.1 0 0 0 0.163

rs197394 FAM212B 0 0.270 0 -0.224

rs6008813 CELSR1 0 0.156 0 0

rs742267 RPS6KA2 0 0 -0.371 0

rs742269 RPS6KA2 0 -0.144 0 0

rs7712473 ELOVL7 -0.271 -0.567 0 0.722

rs1704630 CATSPERB 0 0 0.569 -0.575

rs17015079 ROBO2 -0.357 0.548 0 0

rs10995701 RP11-170M17.1 0 0 0 -0.348

rs4647078 ERCC8 -0.214 0 0 0.335

rs6877849 ELOVL7 0 0 0.993 -0.414
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rs7029556 RP11-63P12.6 0 0 0.315 0

rs6449502 ELOVL7 0 0 0.491 -0.867

rs12101359 UNC13C 0.133 0 0 0

rs34673 TNPO1 0 0.198 0 0

rs12060403 SLC35F3 0 0 -0.344 0

rs12071173 SLC35F3 0 0 -0.344 0

rs12073596 SLC35F3 0 0 -0.159 0

rs12085211 SLC35F3 0 0 -0.159 0

rs1545854 LINC00880 0 0.139 0 -0.149

rs513555 SPRR2G 0 -0.290 0 0

rs4700398 ELOVL7 -0.507 0 0 0.160

rs197380 FAM212B 0.224 0 -0.273 0

rs6914953 F13A1 0 0 0 -0.275

rs264356 NRG2 0 0 0.270 0

rs463221 CTD-2193G5.1 -0.156 0.154 0 0

rs4700392 ELOVL7 0.365 -0.982 0 0

rs13194966 F13A1 -0.178 0 0.391 0

rs1119266 SPRR2B 0 0.291 -0.264 0

rs11031563 RCN1 0.542 -0.474 0 0

rs12101884 UNC13C -0.176 0 0.364 0

rs4647108 ERCC8 0 0.319 0 -0.389

rs719628 TASP1 0 0.154 0 0

rs7718320 IQGAP2 0 0 0.355 -0.409

rs1136062 CCNF 0 -0.131 0.135 0

rs7243734 ZBTB7C -0.703 0 0 0

rs17023415 AFF3 -0.225 0.353 0 0

rs17128269 SH2D4A 0 0 -0.342 0.196
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rs10995687 RP11-170M17.1 0 0 -0.173 0.171

rs10734883 SLC2A14 -0.133 0.173 0 0

rs13265701 MYOM2 -0.245 0.157 0 0

rs4940195 ZBTB7C -0.708 0 0 0

rs2918528 ZNF717 0 0 0.218 0

rs1360176 RP11-82L2.1 0 0 0 0.246

rs17660456 MYO5B 0.229 0 -0.398 0

rs10871386 RP11-525K10.3 0 0 -0.199 0.184
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C.1 Other simulation results

Table C1: Identification results for heterogeneous errors based on 100 replicates. C: correct-

fitting proportion; O: overfitting proportion; U: underfitting proportion.
θ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

θ = 0.3 Normal C 0.96 0.72 0.94 0.32 0.88 0.86

O 0.04 0.14 0.06 0.68 0.12 0.14

U 0 0.14 0 0 0 0

NormalMix C 0.92 0.20 0.64 0.06 0.92 0.59

O 0.08 0.04 0.2 0.38 0.08 0.41

U 0 0.76 0.16 0.56 0 0

Laplace C 0.94 0.50 0.76 0.12 0.91 0.80

O 0.06 0.06 0.20 0.76 0.09 0.21

U 0 0.44 0.04 0.12 0 0

Lognormal C 0.93 0.2 0.28 0.08 0.87 0.26

O 0.07 0 0.46 0.32 0.10 0.7

U 0 0.8 0.26 0.60 0.08 0.04

t(2) C 0.93 0.16 0.24 0.08 0.89 0.20

O 0.07 0.04 0.3 0.28 0.07 0.64

U 0 0.8 0.46 0.64 0.04 0.16

θ = 0.5 Normal C 0.97 0.54 0.89 0.24 0.80 0.87

O 0.03 0.14 0.11 0.64 0.20 0.13

U 0 0.32 0 0.12 0 0

NormalMix C 0.96 0.22 0.58 0.08 0.90 0.56

O 0.04 0.04 0.26 0.34 0.10 0.24

U 0 0.74 0.16 0.58 0 0.2

Laplace C 0.95 0.44 0.74 0.20 0.88 0.76

O 0.05 0.06 0.26 0.54 0.12 0.24

U 0 0.50 0 0.26 0 0

Lognormal C 0.97 0.14 0.40 0.06 0.92 0.38

O 0.03 0.02 0.26 0.38 0.04 0.58

U 0 0.84 0.34 0.56 0.04 0.04

t(2) C 0.96 0.20 0.28 0.08 0.93 0.22

O 0.04 0.08 0.24 0.08 0.05 0.64

U 0 0.72 0.48 0.84 0.02 0.14

θ = 0.7 Normal C 0.95 0.60 0.92 0.36 0.92 0.86

O 0.05 0.16 0.08 0.56 0.08 0.14

U 0 0.24 0 0.08 0 0

NormalMix C 0.92 0.14 0.64 0.06 0.94 0.54

O 0.08 0 0.18 0.24 0.05 0.42

U 0 0.86 0.18 0.70 0.01 0.04

Laplace C 0.90 0.4 0.76 0.14 0.82 0.74

O 0.10 0.04 0.24 0.42 0.18 0.26

U 0 0.56 0 0.44 0 0

Lognormal C 0.94 0.10 0.36 0.1 0.93 0.38

O 0.06 0.08 0.3 0.16 0.03 0.56

U 0 0.82 0.34 0.74 0.03 0.06

t(2) C 0.88 0.16 0.22 0.04 0.83 0.13

O 0.06 0.04 0.18 0.14 0.10 0.55

U 0.06 0.80 0.60 0.82 0.07 0.32
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Table C2: Estimation and prediction results for heterogeneous errors based on 100 replicates.

TMSE: total mean squared equared error. pred: prediction error (check loss or squared loss).

pred.mad: mean absolute prediction error.

θ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

θ = 0.3 Normal TMSE 0.35(0.15) 3.44(0.54) 0.94(0.30) 2.82(0.37) 0.37(0.20) 0.95(0.17)

pred 0.20(0.03) 0.43(0.04) 0.24(0.28) 2.08(0.36) 0.21(0.05) 0.29(0.02)

pred.mad 0.39(0.06) 0.89(0.07) 0.7(0.12) 0.97(0.08) 0.4(0.08) 0.76(0.07)

NormalMix TMSE 0.50(0.24) 5.05(0.99) 1.04(1.20) 5.79(1.7) 0.45(0.23) 1.62(0.61)

pred 0.26(0.05) 0.59(0.06) 0.49(0.70) 4.13(1.07) 0.22(0.05) 0.57(0.03)

pred.mad 0.46(0.09) 1.11(0.09) 0.71(0.23) 1.27(0.13) 0.44(0.08) 0.77(0.07)

Laplace TMSE 0.35(0.15) 4.04(0.79) 1.03(0.67) 3.57(0.9) 0.41(0.21) 0.94(0.27)

pred 0.21(0.05) 0.49(0.05) 0.81(0.47) 2.59(0.66) 0.22(0.05) 0.29(0.04)

pred.mad 0.37(0.07) 0.93(0.07) 0.66(0.16) 1.02(0.09) 0.41(0.08) 0.75(0.11)

Lognormal TMSE 0.20(0.09) 4.18(0.93) 2.55(2.57) 9.84(4.87) 0.37(0.54) 3.59(2.03)

pred 0.15(0.03) 0.47(0.06) 0.36(1.91) 7.81(3.61) 0.17(0.09) 0.51(0.13)

pred.mad 0.29(0.07) 0.95(0.11) 1.37(0.27) 1.35(0.22) 0.34(0.18) 1.38(0.27)

t(2) TMSE 0.64(0.39) 5.87(1.29) 2.99(2.83) 10.94(6.72) 1.37(1.59) 3.27(1.27)

pred 0.29(0.08) 0.73(0.12) 0.52(2.01) 8.82(6.62) 0.34(0.13) 0.55(0.22)

pred.mad 0.51(0.12) 1.25(0.15) 1.16(0.34) 1.58(0.27) 0.65(0.21) 1.30(0.38)

θ = 0.5 Normal TMSE 0.27(0.21) 3.38(0.53) 0.93(0.17) 2.21(0.36) 0.28(0.16) 0.96(0.16)

pred 0.15(0.04) 0.4(0.03) 0.23(0.19) 1.48(0.23) 0.17(0.04) 0.30(0.03)

pred.mad 0.30(0.09) 0.8(0.06) 0.65(0.09) 0.82(0.06) 0.33(0.07) 0.76(0.05)

NormalMix TMSE 0.29(0.12) 4.61(0.82) 1.12(0.94) 5.2(1.48) 0.35(0.16) 1.62(0.61)

pred 0.17(0.03) 0.5(0.05) 0.28(0.41) 3.74(0.98) 0.19(0.03) 0.31(0.03)

pred.mad 0.33(0.07) 1.00(0.09) 0.54(0.27) 1.14(0.11) 0.38(0.06) 0.61(0.06)

Laplace TMSE 0.21(0.1) 3.84(0.67) 0.98(0.41) 3.18(0.72) 0.21(0.12) 1.06(0.33)

pred 0.14(0.03) 0.44(0.04) 0.28(0.43) 2.34(0.52) 0.14(0.03) 0.31(0.03)

pred.mad 0.28(0.06) 0.87(0.07) 0.56(0.10) 0.93(0.08) 0.28(0.07) 0.63(0.06)

Lognormal TMSE 0.29(0.16) 4.36(0.95) 2.09(2.13) 8.26(3.61) 0.40(0.48) 2.45(2.17)

pred 0.18(0.04) 0.46(0.06) 0.54(1.91) 6.33(3.33) 0.18(0.09) 0.53(0.15)

pred.mad 0.33(0.08) 0.91(0.12) 0.98(0.28) 1.19(0.18) 0.37(0.17) 1.05(0.3)

t(2) TMSE 0.38(0.22) 5.31(1.12) 3.33(3.15) 11.94(15.06) 1.16(2.2) 3.92(5.56)

pred 0.18(0.04) 0.54(0.05) 0.39(2.16) 10.45(6.85) 0.26(0.13) 0.52(0.29)

pred.mad 0.36(0.08) 1.09(0.09) 1.02(0.68) 1.40(0.28) 0.53(0.26) 1.19(0.56)

θ = 0.7 Normal TMSE 0.33(0.11) 3.65(0.59) 0.85(0.25) 2.71(0.47) 0.38(0.16) 1.06(0.27)

pred 0.20(0.04) 0.44(0.04) 0.23(0.23) 2.00(0.37) 0.21(0.05) 0.30(0.03)

pred.mad 0.37(0.06) 0.90(0.07) 0.66(0.11) 0.96(0.07) 0.41(0.08) 0.78(0.1)

NormalMix TMSE 0.51(0.22) 5.32(0.89) 1.22(1.04) 5.91(1.57) 0.78(0.56) 1.65(0.61)

pred 0.25(0.05) 0.61(0.08) 0.35(0.91) 4.45(1.09) 0.30(0.10) 0.36(0.06)

pred.mad 0.47(0.09) 1.17(0.10) 0.80(0.23) 1.31(0.12) 0.55(0.17) 0.93(0.15)

Laplace TMSE 0.42(0.22) 4.25(0.73) 0.93(0.42) 3.37(0.72) 0.42(0.24) 1.1(0.39)

pred 0.23(0.05) 0.51(0.06) 0.79(0.35) 2.55(0.61) 0.21(0.06) 0.3(0.04)

pred.mad 0.41(0.08) 0.98(0.10) 0.66(0.14) 1.03(0.12) 0.41(0.1) 0.77(0.12)

Lognormal TMSE 0.80(0.58) 6.85(1.71) 2.47(8.41) 7.98(6.94) 2.72(6.07) 2.54(3.39)

pred 0.33(0.13) 0.80(0.17) 0.35(6.38) 6.04(6.79) 0.32(0.30) 0.49(0.28)

pred.mad 0.58(0.17) 1.30(0.21) 0.86(0.38) 1.31(0.18) 0.78(0.56) 1.00(0.52)

t(2) TMSE 0.62(0.29) 6.44(1.31) 5.37(4.67) 13.41(12.08) 1.27(1.13) 3.32(3.06)

pred 0.28(0.06) 0.79(0.12) 0.62(3.36) 11.13(10.49) 0.32(0.13) 0.59(0.28)

pred.mad 0.50(0.10) 1.38(0.16) 1.42(0.44) 1.71(0.32) 0.63(0.25) 1.26(0.44)
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Table C3: Identification results for simulated SNPs with i.i.d. errors based on 100 replicates.

C: correct-fitting proportion; O: overfitting proportion; U: underfitting proportion.
θ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

θ = 0.3 Normal C 0.96 0.78 0.94 0.46 0.92 0.89

O 0.04 0.16 0.06 0.54 0.08 0.11

U 0 0.06 0 0 0 0

NormalMix C 0.88 0.62 0.89 0.18 0.84 0.83

O 0.12 0.18 0.11 0.72 0.14 0.15

U 0 0.2 0 0.1 0.02 0.02

Laplace C 0.91 0.7 0.87 0.3 0.88 0.83

O 0.09 0.18 0.13 0.68 0.12 0.17

U 0 0.12 0 0.02 0 0

Lognormal C 0.99 0.62 0.8 0.06 0.89 0.76

O 0.01 0.02 0.18 0.76 0.05 0.14

U 0 0.36 0.02 0.18 0.06 0.1

t(2) C 0.92 0.34 0.5 0.1 0.84 0.38

O 0.08 0.06 0.24 0.42 0.08 0.32

U 0 0.6 0.26 0.48 0.08 0.3

θ = 0.5 Normal C 0.98 0.88 0.96 0.5 0.94 0.91

O 0.02 0.1 0.04 0.5 0.06 0.09

U 0 0.02 0 0 0 0

NormalMix C 0.94 0.44 0.86 0.18 0.88 0.84

O 0.06 0.26 0.14 0.72 0.1 0.14

U 0 0.3 0 0.1 0.02 0.02

Laplace C 0.96 0.76 0.88 0.24 0.91 0.82

O 0.04 0.16 0.12 0.74 0.09 0.16

U 0 0.08 0 0.02 0 0.02

Lognormal C 0.98 0.4 0.79 0.06 0.91 0.72

O 0.02 0.04 0.11 0.48 0.06 0.2

U 0 0.56 0.1 0.46 0.03 0.08

t(2) C 0.97 0.3 0.54 0.12 0.91 0.4

O 0.03 0.06 0.22 0.36 0.09 0.28

U 0 0.64 0.24 0.52 0 0.32

θ = 0.7 Normal C 0.97 0.82 0.95 0.3 0.93 0.88

O 0.04 0.08 0.05 0.68 0.07 0.12

U 0 0.1 0 0.02 0 0

NormalMix C 0.87 0.6 0.84 0.2 0.82 0.79

O 0.13 0.22 0.16 0.72 0.16 0.18

U 0 0.18 0 0.08 0.02 0.04

Laplace C 0.88 0.78 0.87 0.32 0.88 0.79

O 0.12 0.16 0.13 0.66 0.12 0.21

U 0 0.06 0 0.02 0 0

Lognormal C 0.65 0.24 0.76 0.16 0.54 0.78

O 0.35 0.36 0.12 0.56 0.34 0.16

U 0 0.4 0.12 0.28 0.12 0.06

t(2) C 0.88 0.18 0.64 0.18 0.82 0.4

O 0.11 0.1 0.1 0.38 0.12 0.4

U 0.01 0.72 0.26 0.44 0.06 0.2
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Table C4: Estimation and prediction results for simulated SNPs with i.i.d. errors based on

100 replicates. TMSE: total mean squared equared error. pred: prediction error (check loss

or squared loss). pred.mad: mean absolute prediction error.
θ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

θ = 0.3 Normal TMSE 0.23(0.1) 2.32(0.4) 0.45(0.12) 1.51(0.19) 0.28(0.11) 0.79(0.14)

pred 0.15(0.03) 0.32(0.02) 0.4(0.11) 1.09(0.14) 0.17(0.03) 0.25(0.02)

pred.mad 0.31(0.06) 0.74(0.05) 0.55(0.08) 0.84(0.06) 0.34(0.05) 0.68(0.05)

NormalMix TMSE 0.34(0.17) 3.47(0.59) 0.76(0.23) 2.92(0.46) 0.53(0.35) 0.98(0.27)

pred 0.19(0.04) 0.44(0.04) 0.68(0.19) 2.29(0.4) 0.23(0.06) 0.26(0.03)

pred.mad 0.37(0.07) 0.94(0.07) 0.69(0.1) 1.1(0.07) 0.45(0.1) 0.75(0.08)

Laplace TMSE 0.26(0.1) 2.91(0.53) 0.45(0.12) 2.06(0.32) 0.34(0.15) 0.8(0.11)

pred 0.19(0.04) 0.38(0.04) 0.39(0.11) 1.48(0.23) 0.19(0.05) 0.25(0.02)

pred.mad 0.33(0.05) 0.8(0.06) 0.52(0.08) 0.91(0.07) 0.36(0.07) 0.69(0.05)

Lognormal TMSE 0.11(0.07) 3.23(0.61) 1.76(0.64) 4.7(1.38) 0.28(0.51) 1.45(0.76)

pred 0.09(0.01) 0.34(0.03) 1.52(0.47) 3.85(1.23) 0.12(0.06) 0.35(0.05)

pred.mad 0.21(0.04) 0.81(0.07) 1.06(0.13) 1.13(0.12) 0.26(0.11) 1.11(0.16)

t(2) TMSE 0.38(0.17) 4.7(1.07) 1.99(1.66) 7.91(9.55) 1.3(1.3) 1.54(1.52)

pred 0.22(0.06) 0.57(0.08) 1.5(1.17) 6.19(7.8) 0.34(0.17) 0.38(0.2)

pred.mad 0.39(0.08) 1.06(0.1) 0.91(0.32) 1.34(0.2) 0.63(0.27) 0.99(0.39)

θ = 0.5 Normal TMSE 0.19(0.07) 2.14(0.38) 0.41(0.09) 1.21(0.14) 0.28(0.12) 0.76(0.1)

pred 0.14(0.02) 0.35(0.02) 0.41(0.10) 0.8(0.09) 0.16(0.03) 0.28(0.02)

pred.mad 0.29(0.05) 0.71(0.04) 0.56(0.05) 0.72(0.04) 0.33(0.05) 0.67(0.03)

NormalMix TMSE 0.27(0.12) 3.67(0.58) 0.73(0.16) 2.65(0.43) 0.49(0.37) 1.03(0.32)

pred 0.17(0.03) 0.47(0.03) 0.66(0.15) 1.93(0.32) 0.21(0.05) 0.31(0.04)

pred.mad 0.33(0.05) 0.94(0.06) 0.63(0.09) 0.97(0.06) 0.41(0.09) 0.72(0.08)

Laplace TMSE 0.16(0.05) 2.88(0.43) 0.45(0.09) 1.87(0.35) 0.28(0.19) 0.78(0.23)

pred 0.13(0.02) 0.39(0.03) 0.48(0.11) 1.28(0.22) 0.15(0.03) 0.3(0.03)

pred.mad 0.26(0.04) 0.79(0.05) 0.52(0.07) 0.8(0.06) 0.31(0.07) 0.65(0.06)

Lognormal TMSE 0.23(0.13) 4.16(0.83) 1.55(1.14) 5.3(2.43) 0.44(0.45) 1.43(0.66)

pred 0.15(0.03) 0.46(0.05) 1.23(0.73) 4.22(1.75) 0.19(0.06) 0.37(0.08)

pred.mad 0.31(0.06) 0.93(0.11) 0.83(0.2) 1.06(0.12) 0.37(0.12) 0.95(0.17)

t(2) TMSE 0.31(0.18) 4.17(0.83) 1.94(1.63) 7.49(7.61) 1.25(1.23) 2.14(1.9)

pred 0.17(0.03) 0.5(0.05) 1.53(1.09) 6.09(6.96) 0.29(0.15) 0.36(0.18)

pred.mad 0.34(0.06) 1(0.1) 0.76(0.44) 1.21(0.18) 0.59(0.3) 0.93(0.36)

θ = 0.7 Normal TMSE 0.19(0.07) 2.37(0.46) 0.41(0.1) 1.5(0.18) 0.3(0.16) 0.78(0.12)

pred 0.15(0.04) 0.32(0.02) 0.37(0.09) 1.06(0.12) 0.17(0.03) 0.23(0.02)

pred.mad 0.3(0.06) 0.73(0.04) 0.53(0.08) 0.83(0.05) 0.34(0.06) 0.65(0.05)

NormalMix TMSE 0.35(0.15) 3.49(0.53) 0.7(0.19) 2.94(0.45) 0.52(0.3) 1.11(0.39)

pred 0.21(0.05) 0.45(0.03) 0.61(0.15) 2.28(0.35) 0.22(0.06) 0.26(0.03)

pred.mad 0.39(0.08) 0.94(0.06) 0.65(0.08) 1.11(0.08) 0.44(0.1) 0.76(0.09)

Laplace TMSE 0.25(0.13) 2.76(0.46) 0.46(0.13) 1.99(0.27) 0.36(0.16) 0.86(0.19)

pred 0.17(0.04) 0.38(0.03) 0.4(0.11) 1.49(0.22) 0.18(0.05) 0.25(0.02)

pred.mad 0.32(0.07) 0.79(0.06) 0.53(0.08) 0.91(0.06) 0.36(0.07) 0.66(0.06)

Lognormal TMSE 0.78(0.79) 5.24(1.38) 1.06(1.07) 4.21(1.91) 1.05(0.88) 0.49(0.77)

pred 0.34(0.13) 0.63(0.14) 0.71(0.63) 3.29(1.66) 0.32(0.12) 0.33(0.08)

pred.mad 0.55(0.18) 1.04(0.16) 0.58(0.22) 1.11(0.12) 0.59(0.17) 0.98(0.13)

t(2) TMSE 0.46(0.38) 4.83(1.35) 1.9(1.67) 7.59(7.54) 1.13(1.01) 1.77(1)

pred 0.23(0.07) 0.6(0.13) 1.46(1.13) 6.03(5.75) 0.31(0.13) 0.34(0.1)

pred.mad 0.42(0.1) 1.1(0.15) 0.9(0.28) 1.38(0.22) 0.57(0.2) 0.89(0.18)
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Table C5: Identification results for simulated SNPs with heterogeneous errors based on 100

replicates. C: correct-fitting proportion; O: overfitting proportion; U: underfitting proportion.
θ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

θ = 0.3 Normal C 0.96 0.62 0.9 0.14 0.88 0.82

O 0.04 0.28 0.1 0.8 0.12 0.18

U 0 0.1 0 0.06 0 0

NormalMix C 0.91 0.34 0.8 0.16 0.87 0.74

O 0.09 0.04 0.14 0.42 0.07 0.22

U 0 0.62 0.06 0.42 0.06 0.04

Laplace C 0.93 0.52 0.88 0.22 0.86 0.84

O 0.07 0.18 0.12 0.68 0.1 0.12

U 0 0.3 0 0.1 0.04 0.04

Lognormal C 0.97 0.44 0.74 0.04 0.94 0.38

O 0.03 0.02 0.16 0.58 0.06 0.34

U 0 0.54 0.1 0.38 0 0.28

t(2) C 0.95 0.16 0.4 0.1 0.89 0.24

O 0.03 0.04 0.1 0.22 0.08 0.4

U 0.02 0.8 0.5 0.68 0.03 0.36

θ = 0.5 Normal C 0.98 0.74 0.81 0.22 0.85 0.83

O 0.02 0.18 0.19 0.78 0.15 0.17

U 0 0.08 0 0 0 0

NormalMix C 0.95 0.46 0.86 0.06 0.76 0.74

O 0.05 0.06 0.06 0.66 0.18 0.14

U 0 0.48 0.08 0.28 0.06 0.12

Laplace C 0.98 0.46 0.9 0.18 0.87 0.78

O 0.02 0.16 0.1 0.64 0.13 0.18

U 0 0.38 0 0.18 0 0.04

Lognormal C 0.94 0.26 0.72 0.04 0.86 0.36

O 0.06 0.06 0.12 0.44 0.12 0.4

U 0 0.68 0.16 0.52 0.02 0.24

t(2) C 0.96 0.14 0.38 0.02 0.92 0.24

O 0.04 0.02 0.18 0.26 0.06 0.32

U 0 0.84 0.44 0.72 0.02 0.44

θ = 0.7 Normal C 0.94 0.5 0.87 0.2 0.82 0.79

O 0.06 0.28 0.13 0.72 0.18 0.19

U 0 0.22 0 0.08 0 0.02

NormalMix C 0.89 0.24 0.76 0.16 0.78 0.75

O 0.11 0.1 0.22 0.46 0.14 0.17

U 0 0.66 0.02 0.38 0.08 0.08

Laplace C 0.91 0.46 0.9 0.16 0.85 0.76

O 0.09 0.08 0.1 0.64 0.09 0.14

U 0 0.46 0 0.2 0.06 0.1

Lognormal C 0.93 0.18 0.74 0.08 0.85 0.4

O 0.07 0.02 0.23 0.28 0.13 0.32

U 0 0.8 0.03 0.64 0.02 0.28

t(2) C 0.91 0.06 0.38 0 0.86 0.29

O 0.09 0 0.1 0.1 0.12 0.28

U 0 0.94 0.52 0.9 0.02 0.43
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Table C6: Estimation and prediction results for simulated SNPs with heterogeneous errors

based on 100 replicates. TMSE: total mean squared equared error. pred: prediction error

(check loss or squared loss). pred.mad: mean absolute prediction error.

θ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

θ = 0.3 Normal TMSE 0.26(0.11) 3.17(0.57) 0.83(0.24) 2.71(0.44) 0.35(0.24) 1.13(0.3)

pred 0.2(0.04) 0.43(0.03) 0.74(0.21) 2.05(0.33) 0.2(0.05) 0.3(0.03)

pred.mad 0.35(0.06) 0.91(0.06) 0.65(0.09) 0.94(0.07) 0.38(0.08) 0.79(0.09)

NormalMix TMSE 0.4(0.2) 4.59(0.79) 1.72(0.86) 5.66(1.35) 0.63(0.54) 1.63(0.57)

pred 0.23(0.06) 0.59(0.07) 1.4(0.61) 4.42(1.02) 0.27(0.1) 0.35(0.05)

pred.mad 0.42(0.1) 1.13(0.09) 0.9(0.2) 1.28(0.12) 0.48(0.15) 0.92(0.13)

Laplace TMSE 0.3(0.14) 3.72(0.68) 0.9(0.36) 3.74(0.8) 0.42(0.45) 1.17(0.49)

pred 0.22(0.06) 0.51(0.07) 0.76(0.31) 2.93(0.63) 0.21(0.08) 0.3(0.04)

pred.mad 0.37(0.08) 0.98(0.09) 0.66(0.13) 1.05(0.09) 0.39(0.13) 0.77(0.1)

Lognormal TMSE 0.17(0.08) 3.54(0.67) 3.7(2.01) 8.86(3.66) 0.72(0.98) 4.32(3)

pred 0.16(0.03) 0.48(0.04) 2.99(1.2) 7.24(3.2) 0.21(0.13) 0.52(0.15)

pred.mad 0.29(0.06) 0.98(0.09) 1.3(0.24) 1.3(0.19) 0.4(0.23) 1.41(0.29)

t(2) TMSE 0.66(0.65) 5.92(1.54) 4.64(5.71) 16.16(23.82) 2.09(4.68) 3.78(4.41)

pred 0.31(0.12) 0.76(0.15) 3.36(4.59) 12.58(18.66) 0.38(0.2) 0.51(0.2)

pred.mad 0.53(0.16) 1.31(0.17) 1.26(0.68) 1.65(0.47) 0.67(0.31) 1.24(0.38)

θ = 0.5 Normal TMSE 0.17(0.08) 3.11(0.48) 0.82(0.21) 2.1(0.29) 0.25(0.18) 1.09(0.31)

pred 0.13(0.03) 0.4(0.03) 0.72(0.19) 1.49(0.2) 0.15(0.04) 0.3(0.02)

pred.mad 0.26(0.06) 0.8(0.06) 0.63(0.07) 0.81(0.05) 0.3(0.08) 0.80(0.094)

NormalMix TMSE 0.25(0.12) 4.2(0.71) 1.66(0.63) 4.56(1.02) 0.68(0.73) 1.74(0.71)

pred 0.16(0.04) 0.49(0.04) 1.26(0.58) 3.49(0.74) 0.21(0.09) 0.39(0.07)

pred.mad 0.32(0.08) 0.99(0.07) 0.55(0.16) 1.11(0.1) 0.43(0.19) 0.97(0.14)

Laplace TMSE 0.18(0.12) 3.78(0.63) 0.46(0.26) 3.18(0.55) 0.23(0.16) 0.85(0.45)

pred 0.13(0.03) 0.44(0.04) 0.35(0.17) 2.44(0.48) 0.14(0.04) 0.32(0.05)

pred.mad 0.27(0.07) 0.88(0.09) 0.42(0.09) 0.93(0.09) 0.28(0.09) 0.65(0.1)

Lognormal TMSE 0.17(0.08) 4.2(0.74) 2.88(4.66) 9.86(9.94) 0.7(1.14) 2.79(3.26)

pred 0.13(0.03) 0.46(0.05) 2.03(2.83) 7.64(7.7) 0.19(0.12) 0.52(0.17)

pred.mad 0.26(0.05) 0.92(0.1) 0.94(0.36) 1.18(0.24) 0.39(0.24) 1.04(0.33)

t(2) TMSE 0.3(0.16) 4.75(0.66) 3.19(4.68) 12.78(12.71) 1.55(1.46) 3.78(3.64)

pred 0.17(0.04) 0.53(0.04) 2.23(3.35) 10.21(10.03) 0.31(0.15) 0.51(0.18)

pred.mad 0.34(0.08) 1.06(0.08) 0.99(0.57) 1.43(0.31) 0.62(0.3) 1.31(0.36)

θ = 0.7 Normal TMSE 0.25(0.11) 3.4(0.59) 0.8(0.22) 2.63(0.39) 0.3(0.13) 1.12(0.29)

pred 0.19(0.05) 0.45(0.03) 0.73(0.2) 2.04(0.31) 0.19(0.04) 0.31(0.03)

pred.mad 0.35(0.07) 0.94(0.06) 0.66(0.1) 0.95(0.08) 0.36(0.06) 0.8(0.07)

NormalMix TMSE 0.39(0.17) 4.77(0.76) 1.35(0.49) 4.76(0.97) 0.94(1.08) 1.85(0.77)

pred 0.25(0.05) 0.62(0.06) 1.18(0.44) 3.94(0.81) 0.3(0.13) 0.38(0.08)

pred.mad 0.43(0.06) 1.2(0.09) 0.82(0.16) 1.25(0.1) 0.55(0.23) 0.96(0.18)

Laplace TMSE 0.25(0.11) 4.14(0.7) 0.88(0.25) 3.57(0.64) 0.43(0.53) 1.3(0.5)

pred 0.21(0.04) 0.53(0.05) 0.76(0.23) 2.82(0.54) 0.2(0.08) 0.33(0.05)

pred.mad 0.36(0.06) 1.02(0.08) 0.66(0.1) 1.05(0.09) 0.36(0.14) 0.82(0.11)

Lognormal TMSE 0.58(0.23) 6.55(1.35) 5.32(22.78) 9.11(11.68) 1.26(1.18) 2.15(2.68)

pred 0.29(0.08) 0.81(0.15) 3.26(13.26) 7.85(12.78) 0.35(0.17) 0.42(0.17)

pred.mad 0.52(0.1) 1.32(0.17) 0.84(0.32) 1.32(0.18) 0.63(0.26) 0.87(0.32)

t(2) TMSE 0.49(0.25) 6.08(0.99) 5.98(9.18) 18.73(22.33) 3.2(3.84) 4.94(5.77)

pred 0.28(0.06) 0.8(0.12) 5.12(8.74) 15.91(20.98) 0.54(0.31) 0.65(0.27)

pred.mad 0.48(0.1) 1.39(0.14) 1.48(0.58) 1.72(0.36) 0.98(0.55) 1.45(0.58)
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C.2 Hyper-parameters sensitivity analysis

Table C7: Sensitivity analysis on the choice of the hyperparameter for π0 using different

Beta priors for the Laplace error dirstribution for the 30% quantile.

C O U TMSE pred pred.mad

Beta(0.5,0.5) 0.9 0.1 0 0.27(0.12) 0.19(0.08) 0.33(0.06)

Beta(1,1) 0.9 0.1 0 0.28(0.12) 0.19(0.08) 0.33(0.06)

Beta(2,2) 0.9 0.1 0 0.28(0.11) 0.19(0.08) 0.33(0.06)

Beta(1,5) 0.9 0.1 0 0.27(0.11) 0.19(0.07) 0.33(0.06)

Beta(5,1) 0.9 0.1 0 0.27(0.11) 0.19(0.07) 0.33(0.06)

Table C8: Sensitivity analysis on the choice of the hyperparameter for η using different

Gamma priors for the Laplace error dirstribution for the 30% quantile.

C O U TMSE pred pred.mad

Gamma(0.1,1) 0.9 0.1 0 0.29(0.17) 0.2(0.09) 0.33(0.06)

Gamma(1,1) 0.9 0.1 0 0.29(0.16) 0.2(0.09) 0.33(0.06)

Gamma(1,5) 0.9 0.1 0 0.3(0.16) 0.2(0.09) 0.33(0.06)

Gamma(2,5) 0.88 0.12 0 0.3(0.16) 0.2(0.09) 0.33(0.06)

Gamma(5,1) 0.9 0.1 0 0.29(0.16) 0.2(0.09) 0.33(0.06)

123



Table C9: Sensitivity analysis on the choice of the hyperparameter for π0 using different

Beta priors for the Laplace error dirstribution for the 50% quantile.

C O U TMSE pred pred.mad

Beta(0.5,0.5) 0.92 0.08 0 0.22(0.05) 0.16(0.03) 0.29(0.04)

Beta(1,1) 0.94 0.06 0 0.22(0.06) 0.14(0.03) 0.29(0.04)

Beta(2,2) 0.94 0.06 0 0.22(0.06) 0.14(0.03) 0.29(0.04)

Beta(1,5) 0.94 0.06 0 0.22(0.06) 0.14(0.03) 0.29(0.04)

Beta(5,1) 0.92 0.08 0 0.22(0.06) 0.15(0.03) 0.29(0.04)

Table C10: Sensitivity analysis on the choice of the hyperparameter for η using different

Gamma priors for the Laplace error dirstribution for the 50% quantile.

C O U TMSE pred pred.mad

Gamma(0.1,1) 0.96 0.04 0 0.22(0.05) 0.15(0.03) 0.29(0.04)

Gamma(1,1) 0.94 0.06 0 0.22(0.05) 0.15(0.03) 0.29(0.04)

Gamma(1,5) 0.94 0.06 0 0.23(0.05) 0.16(0.03) 0.29(0.04)

Gamma(2,5) 0.94 0.06 0 0.22(0.06) 0.15(0.03) 0.29(0.04)

Gamma(5,1) 0.94 0.06 0 0.22(0.05) 0.15(0.03) 0.29(0.04)

C.3 Sensitivity analysis on smoothness specification

Let O denote the degree of B spline basis and K denote the number of interior knots. For

quadratic and cubic splines corresponding to O=2 and O=3 respectively, we conduct a

sensitivity analysis for the proposed model.
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Table C11: Sensitivity analysis on smoothness specification for the Laplace error dirstribu-

tion for the 30% quantile.

O=2 K 1 2 3 4 5

Laplace C 0.88 0.90 0.92 0.89 0.91

O 0.12 0.1 0.08 0.11 0.09

U 0 0 0 0 0

TMSE 0.33(0.19) 0.28(0.12) 0.31(0.14) 0.24(0.12) 0.25(0.15)

pred 0.18(0.05) 0.17(0.05) 0.21(0.05) 0.19(0.04) 0.20(0.05)

pred.mad 0.32(0.07) 0.32(0.06) 0.30(0.07) 0.35(0.06) 0.34(0.07)

O=3 K 1 2 3 4 5

Laplace C 0.89 0.90 0.92 0.86 0.88

O 0.11 0.10 0.08 0.14 0.12

U 0 0 0 0 0

TMSE 0.25(0.11) 0.28(0.12) 0.28(0.15) 0.26(0.19) 0.25(0.16)

pred 0.17(0.04) 0.21(0.05) 0.19(0.04) 0.23(0.05) 0.22(0.04)

pred.mad 0.30(0.06) 0.38(0.08) 0.35(0.06) 0.34(0.08) 0.33(0.06)

125



Table C12: Sensitivity analysis on smoothness specification for the Normal error dirstribu-

tion for the 30% quantile.

O=2 K 1 2 3 4 5

Normal C 0.97 0.96 0.98 0.95 0.94

O 0.03 0.04 0.04 0.05 0.06

U 0 0 0 0 0

TMSE 0.26(0.12) 0.22(0.09) 0.29(0.16) 0.23(0.12) 0.22(0.18)

pred 0.15(0.04) 0.14(0.03) 0.17(0.04) 0.17(0.03) 0.16(0.03)

pred.mad 0.30(0.06) 0.29(0.05) 0.26(0.06) 0.26(0.06) 0.29(0.07)

O=3 K 1 2 3 4 5

Normal C 0.96 0.94 0.97 0.94 0.95

O 0.04 0.06 0.03 0.06 0.05

U 0 0 0 0 0

TMSE 0.24(0.09) 0.26(0.14) 0.21(0.10) 0.25(0.19) 0.24(0.12)

pred 0.15(0.03) 0.16(0.03) 0.16(0.03) 0.18(0.03) 0.18(0.03)

pred.mad 0.29(0.05) 0.28(0.06) 0.30(0.05) 0.28(0.06) 0.26(0.04)
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Table C13: Sensitivity analysis on smoothness specification for the Laplace error dirstribu-

tion for the 50% quantile.

O=2 K 1 2 3 4 5

Laplace C 0.96 0.94 0.92 0.95 0.96

O 0.04 0.06 0.08 0.05 0.04

U 0 0 0 0 0

TMSE 0.25(0.11) 0.21(0.09) 0.29(0.16) 0.28(0.11) 0.25(0.19)

pred 0.14(0.03) 0.14(0.03) 0.17(0.03) 0.16(0.02) 0.17(0.03)

pred.mad 0.29(0.06) 0.28(0.05) 0.33(0.06) 0.31(0.05) 0.37(0.07)

O=3 K 1 2 3 4 5

Laplace C 0.95 0.93 0.94 0.96 0.93

O 0.05 0.07 0.06 0.04 0.07

U 0 0 0 0 0

TMSE 0.24(0.07) 0.31(0.14) 0.26(0.12) 0.22(0.16) 0.26(0.13)

pred 0.13(0.02) 0.15(0.03) 0.15(0.03) 0.17(0.03) 0.17(0.03)

pred.mad 0.29(0.05) 0.31(0.07) 0.30(0.05) 0.35(0.06) 0.34(0.05)
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Table C14: Sensitivity analysis on smoothness specification for the Normal error dirstribu-

tion for the 50% quantile.

O=2 K 1 2 3 4 5

Normal C 0.97 0.98 0.96 0.99 0.98

O 0.03 0.02 0.04 0.01 0.02

U 0 0 0 0 0

TMSE 0.21(0.06) 0.23(0.13) 0.22(0.07) 0.24(0.14) 0.22(0.09)

pred 0.12(0.03) 0.11(0.04) 0.13(0.03) 0.14(0.04) 0.13(0.04)

pred.mad 0.30(0.06) 0.28(0.08) 0.28(0.06) 0.29(0.08) 0.29(0.07)

O=3 K 1 2 3 4 5

Normal C 0.98 0.96 0.98 0.98 0.97

O 0.02 0.04 0.02 0.02 0.03

U 0 0 0 0 0

TMSE 0.19(0.07) 0.29(0.11) 0.25(0.07) 0.24(0.14) 0.23(0.08)

pred 0.13(0.02) 0.15(0.02) 0.15(0.02) 0.12(0.02) 0.14(0.02)

pred.mad 0.27(0.04) 0.30(0.04) 0.29(0.04) 0.26(0.04) 0.27(0.03)
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Table C15: Sensitivity analysis on smoothness specification for BVCSS with the Normal

error dirstribution for the 30% quantile.

O=2 K 1 2 3 4 5

Normal C 0.90 0.94 0.93 0.94 0.92

O 0.10 0.06 0.07 0.06 0.08

U 0 0 0 0 0

TMSE 0.55(0.13) 0.47(0.11) 0.46(0.15) 0.43(0.12) 0.49(0.22)

pred 0.23(0.10) 0.21(0.10) 0.25(0.10) 0.23(0.10) 0.22(0.11)

pred.mad 0.57(0.08) 0.56(0.08) 0.61(0.07) 0.57(0.08) 0.54(0.07)

O=3 K 1 2 3 4 5

Normal C 0.92 0.91 0.90 0.94 0.93

O 0.08 0.09 0.10 0.06 0.07

U 0 0 0 0 0

TMSE 0.42(0.08) 0.48(0.18) 0.48(0.09) 0.51(0.25) 0.56(0.1)

pred 0.27(0.07) 0.27(0.09) 0.24(0.08) 0.25(0.1) 0.23(0.08)

pred.mad 0.53(0.06) 0.57(0.06) 0.55(0.06) 0.61(0.06) 0.56(0.06)
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Table C16: Sensitivity analysis on smoothness specification for BVCSS with the Normal

error dirstribution for the 50% quantile.

O=2 K 1 2 3 4 5

Normal C 0.92 0.90 0.94 0.96 0.98

O 0.08 0.10 0.06 0.04 0.02

U 0 0 0 0 0

TMSE 0.42(0.12) 0.41(0.05) 0.47(0.19) 0.43(0.07) 0.46(0.25)

pred 0.24(0.04) 0.21(0.03) 0.23(0.07) 0.24(0.04) 0.31(0.09)

pred.mad 0.57(0.05) 0.55(0.03) 0.55(0.06) 0.52(0.04) 0.51(0.06)

O=3 K 1 2 3 4 5

Normal C 0.96 0.96 0.92 0.95 0.93

O 0.04 0.04 0.08 0.05 0.07

U 0 0 0 0 0

TMSE 0.45(0.05) 0.42(0.15) 0.41(0.06) 0.45(0.22) 0.43(0.10)

pred 0.21(0.03) 0.21(0.06) 0.23(0.03) 0.29(0.08) 0.26(0.04)

pred.mad 0.54(0.04) 0.53(0.06) 0.52(0.04) 0.53(0.06) 0.53(0.04)

C.4 Posterior inference

C.4.1 Posterior inference for BQRVCSS

Priors

Y i = E>i β +Z>i α+ ξ1ṽi + ξ2τ
− 1

2

√
ṽiWi, i = 1, ..., n,

ṽ1, ..., ṽn ∼
n∏
i=1

τexp(−τ ṽi), i = 1, ..., n,

W1, ...,Wn ∼
n∏
i=1

1√
2π

exp(−1

2
W 2
i ), i = 1, ..., n,

αj|sj ∼ (1− π0)Nd(0, sjI
−1
d ) + π0δ0(αj), j = 0, ..., p,
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sj|η2 ∼ (
η2

2
)
d+1
2 s

d−1
2

j exp(−η
2

2
sj), j = 0, ..., p,

π0 ∼ Beta(e, f),

τ ∼ τa−1exp(−bτ),

η2 ∼ (η2)c−1exp(−mη2),

β ∼ Nq(0,Σβ).

Gibbs Sampler

• The full conditional distribution of ṽi, i = 1, ..., n

ṽi|rest

∝ 1√
2πτ−1ξ2

2 ṽi
exp
(
−1

2

(Y i −E>i β −Z>i α− ξ1ṽi)
2

ξ2
2τ
−1ṽi

)τexp(−τ ṽi
)

∝ (ṽi)
− 1

2 exp
(
−1

2

(Y i −E>i β −Z>i α)

ξ2
2τ
−1ṽi

− 1

2

ξ2
1 ṽi

τ−1ξ2
2

− τ ṽi
)

∝ (ṽi)
− 1

2 exp

(
− 1

2

(
(
τξ2

1

ξ2
2

+ 2τ)ṽi +
τ(Y i −E>i β −Z>i α)2

ξ2
2

1

ṽi

))
.

Hence, the full conditional distribution of ṽi is generalized inverse Gaussian distribution.

• The full conditional distribution of αj, j = 0, ..., p

αj|rest

∝
n∏
i=1

exp
(
− τ

2ξ2
2 ṽi

(Y i −Z>i,−jα−j −Z>ijαj −E>i β − ξ1ṽi)
2
)

×

(
(1− π0)

1√
2π|sjI−1

d |
exp
(
− 1

2
α>j (sjI

−1
d )−1αj

)
I(αj 6=0) + π0δ0(αj)

)
.
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The slab part,

αj|rest

∝
n∏
i=1

exp
(
− τ

2ξ2
2 ṽi

(Y i −Z>i,−jα−j −Z>ijαj −E>i β − ξ1ṽi)
2
)

× (1− π0)
1√

2π|sjI−1
d |

exp
(
− 1

2
α>j (sjI

−1
d )−1αj

)

∝ (1− π0)
1√

2π|sjI−1
d |

exp
(
− 1

2
τξ−2

2

n∑
i=1

1

ṽi
(Y i −Z>i,−jα−j −E>i β − ξ1ṽi)

2
)

× exp

(
− 1

2

(
α>j (τξ−2

2

n∑
i=1

ZijZ
>
ij

ṽi
+ s−1

j Id)αj

− 2τξ−2
2

n∑
i=1

1

ṽi
(Y i −Z>i,−jα−j −E>i β − ξ1ṽi)Z

>
ijαj

))
.

Let the variance

Σj = (τξ−2
2

n∑
i=1

1

ṽi
ZijZ

>
ij + s−1

j Kj)
−1

and the mean

µj = Σjτξ
−2
2

n∑
i=1

Zij

ṽi
(Y i −Z>i,−jα−j −E>i β − ξ1ṽi),

then

αj|rest

∝ (1− π0)|sjI−1
d |
− 1

2 |Σj|−
1
2 exp

(
− 1

2
τξ−2

2

n∑
i=1

1

ṽi
(Y i −Z>i,−jα−j −E>i β − ξ1ṽi)

2
)

× exp(
1

2
µ>j Σ−1

j µj)× Nd(µj,Σj).
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The spike part,

αj|rest

∝ π0exp
(
− 1

2
τξ−2

2

n∑
i=1

1

ṽi
(Y i −Z>i,−jα−j −E>i β − ξ1ṽi)

2
)
.

Proportion of the spike part

P (αj = 0|rest) =
π0

π0 + (1− π0)|sjI−1
d |−

1
2 |Σj|

1
2 exp(1

2
µ>j Σ−1

j µj)
.

• The full conditional distribution of τ is

τ |rest

∝
n∏
i=1

√
τexp

(
− τ(Y i −Z>i α−E>i β − ξ1ṽi)

2

ξ2
2 ṽi

)
×

n∏
i=1

τexp(−τ ṽi)× τa−1exp(−bτ)

∝ τ
3
2
n+a−1exp

(
−
(1

2

n∑
i=1

τ(Y i −Z>i α−E>i β − ξ1ṽi)
2

ξ2
2 ṽi

+
n∑
i=1

ṽi + b
)
τ

)
.

Therefore, the posterior distribution of τ is

τ |rest ∝ Gamma
(3

2
n+ a,

1

2

n∑
i=1

τ(Y i −Z>i α−E>i β − ξ1ṽi)
2

ξ2
2 ṽi

+
n∑
i=1

ṽi + b
)
.

• The full conditional distribution of η2 is

η2|rest

∝
p∏
j=0

(
η2

2
)
d+1
2 exp(−η

2

2
sj)× (η2)c−1exp(−mη2)

∝ (η2)
(d+1)(p+1)

2
+c−1exp(−(

1

2

p∑
j=0

sj +m)η2).
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Therefore, the posterior distribution of η2 is

η2|rest ∝ Gamma
((d+ 1)(p+ 1)

2
+ c,

1

2

p∑
j=0

sj +m
)
.

• The full conditional distribution of sj (j = 0, ..., p) is

sj|rest

∝

(
(1− π0)

1√
2π|sjI−1

d |
exp
(
− 1

2
α>j (sjI

−1
d )−1αj

)
I(αj 6=0) + π0δ0(αj)

)
× s

d−1
2

j exp(−η
2

2
sj).

The slab part,

sj|rest

∝ s
− d

2
j exp

(
− 1

2
(η2sj +α>j Idαj

1

sj
)
)
.

Therefore, the posterior distribution of sj is

s−1
j |rest ∝ invGamma(

√
η2

α>j αj
, η2), if αj 6= 0.

The spike part,

sj|rest ∝ s
d−1
2

j exp(−η
2

2
sj),

which is Gamma(d+1
2
, η

2

2
). Together

s−1
j |rest ∼


Inverse-Gamma(d+1

2
, η2

2
) if αj = 0

Inverse-Gaussian(
√

η2

α>j αj
,η2) if αj 6= 0

.
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• The full conditional distribution of π0, i = 1, ..., n

π0|rest

∝
p∏
j=0

(
(1− π0)

1√
2π|sjI−1

d |
exp
(
− 1

2
α>j (sjI

−1
d )−1αj

)
I(αj 6=0) + π0δ0(αj)

)
× πe−1

0 (1− π0)f−1

Let

Qj =


0 if αj = 0

1 if αj 6= 0

,

then the posterior distribution of π0 becomes

π0|rest ∝ π
1+p−

∑p
j=0Qj+e−1

0 (1− π0)
∑p

j=0Qj+f−1,

which is Beta(1 + p−
∑p

j=0 Qj + e− 1,
∑p

j=0Qj + f).

• The full conditional distribution of β

β|rest

∝
n∏
i=1

exp
(
− τ

2ξ2
2 ṽi

(Y i −Z>i α−E>i β − ξ1ṽi)
2
)

exp(−1

2
β>Σ−1

β β)

∝ exp

(
− 1

2

(
β>(

n∑
i=1

τEiE
>
i

ξ2
2 ṽi

+ Σ−1
β )β − 2

n∑
i=1

τ

ξ2
2 ṽi

(Y i −Z>i α− ξ1ṽi)E
>
i β
))

∝ Nq

(
(
n∑
i=1

τEiE
>
i

ξ2
2 ṽi

+ Σ−1
β )−1

( n∑
i=1

τ

ξ2
2 ṽi

(Y i −Z>i α− ξ1ṽi)E
>
i

)>
, (

n∑
i=1

τEiE
>
i

ξ2
2 ṽi

+ Σ−1
β )−1)

)
,

which is a multivariate normal distribution.
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C.4.2 Posterior inference for BQRVC

Priors

Yi = E>i β + Z>i α+ ξ1ṽi + ξ2τ
− 1

2

√
ṽiWi, i = 1, ..., n,

ṽ1, ..., ṽn ∼
n∏
i=1

τexp(−τ ṽi), i = 1, ..., n,

W1, ...,Wn ∼
n∏
i=1

1√
2π

exp(−1

2
W 2
i ), i = 1, ..., n,

αj|sj ∼ Nd(0, sjI
−1
d ), j = 0, ..., p,

sj|η2 ∼ (
η2

2
)
d+1
2 s

d−1
2

j exp(−η
2

2
sj), j = 0, ..., p,

π0 ∼ Beta(e, f),

τ ∼ τa−1exp(−bτ),

η2 ∼ (η2)c−1exp(−mη2),

β ∼ Nq(0,Σβ).

Gibbs Sampler

The full conditional distribution of ṽi, i = 1, ..., n

ṽi|rest

∝ 1√
2πτ−1ξ2

2 ṽi
exp
(
−1

2

(Yi −E>i β −Z>i α− ξ1ṽi)
2

ξ2
2τ
−1ṽi

)τexp(−τ ṽi
)

∝ (ṽi)
− 1

2 exp
(
−1

2

(Yi −E>i β −Z>i α)

ξ2
2τ
−1ṽi

− 1

2

ξ2
1 ṽi

τ−1ξ2
2

− τ ṽi
)

∝ (ṽi)
− 1

2 exp

(
− 1

2

(
(
τξ2

1

ξ2
2

+ 2τ)ṽi +
τ(Yi −E>i β − Z>i α)2

ξ2
2

1

ṽi

))

Therefore, the full conditional distribution of ṽi is generalized inverse Gaussian distribution.
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The full conditional distribution of sj(j = 0, ..., p) is

sj|rest

∝ 1√
2π|sjI−1

d |
exp
(
− 1

2
α>j (sjI

−1
j )−1αj

)
× s

d−1
2

j exp(−η
2

2
sj)

∝ s
− 1

2
j exp

(
− 1

2
(η2sj +α>j αj

1

sj
)
)

Therefore, the posterior distribution of sj is

s−1
j |rest ∝ invGaussian(

√
η2

α>j αj
, η2).

The full conditional distribution of αj, j = 0, ..., p

αj|rest

∝
n∏
i=1

exp
(
− τ

2ξ2
2 ṽi

(Yi −Z>i,−jα−j −Z>ijαj −E>i β − ξ1ṽi)
2
)

× 1√
2π|sjI−1

d |
exp
(
− 1

2
α>j (sjI

−1
j )−1αj

)

∝ exp
(
− 1

2
τξ−2

2

n∑
i=1

1

ṽi
(Yi −Z>i,−jα−j −E>i β − ξ1ṽi)

2
)

× exp

(
− 1

2

(
α>j (τξ−2

2

n∑
i=1

ZijZ
>
ij

ṽi
+ s−1

j Id)αj − 2τξ−2
2

n∑
i=1

1

ṽi
(Yi −Z>i,−jα−j −E>i β − ξ1ṽi)Z

>
ijαj

))

Denote the variance

Σj = (τξ−2
2

n∑
i=1

1

ṽi
ZijZ

>
ij + s−1

j Ij)
−1

and the mean

µj = Σjτξ
−2
2

n∑
i=1

Zij

ṽi
(Yi −Z>i,−jα−j −E>i β − ξ1ṽi),
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then the posterior distribution αj|rest is

αj|rest ∝ Nd(µj,Σj).

The full conditional distribution of τ

τ |rest

∝
n∏
i=1

√
τexp

(
− τ(Yi −Z>i α−E>i β − ξ1ṽi)

2

ξ2
2 ṽi

)
×

n∏
i=1

τexp(−τ ṽi)× τa−1exp(−bτ)

∝ τ
3
2
n+a−1exp

(
−
(1

2

n∑
i=1

τ(Yi −Z>i α−E>i β − ξ1ṽi)
2

ξ2
2 ṽi

+
n∑
i=1

ṽi + b
)
τ

)

Therefore, the posterior distribution of τ is

τ |rest ∝ Gamma
(3

2
n+ a,

1

2

n∑
i=1

τ(Yi − Z>i α− E>i β − ξ1ṽi)
2

ξ2
2 ṽi

+
n∑
i=1

ṽi + b
)
.

The full conditional distribution of η2

η2|rest

∝
p∏
j=0

(
η2

2
)
d+1
2 exp(−η

2

2
sj)× (η2)c−1exp(−mη2)

∝ (η2)
(d+1)(p+1)

2
+c−1exp(−(

1

2

p∑
j=0

sj +m)η2)

Therefore, the posterior distribution of η2 is

η2|rest ∝ Gamma
((d+ 1)(p+ 1)

2
+ c,

1

2

p∑
j=0

sj +m
)
.
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The full conditional distribution of β

β|rest

∝
n∏
i=1

exp
(
− τ

2ξ2
2 ṽi

(Yi −Z>i α−E>i β − ξ1ṽi)
2
)

exp(−1

2
β>Σ−1

β β)

∝ exp

(
− 1

2

(
β>(

n∑
i=1

τEiE
>
i

ξ2
2 ṽi

+ Σ−1
β )β − 2

n∑
i=1

τ

ξ2
2 ṽi

(Yi −Z>i α− ξ1ṽi)E
>
i β
))

∝ Nq

(
(
n∑
i=1

τEiE
>
i

ξ2
2 ṽi

+ Σ−1
β )−1

( n∑
i=1

τ

ξ2
2 ṽi

(Yi −Z>i α− ξ1ṽi)E
>
i

)>
, (

n∑
i=1

τEiE
>
i

ξ2
2 ṽi

+ Σ−1
β )−1)

)

which is a multivariate normal distribution.

C.4.3 Posterior inference for BVCSS

Priors

Y |β,α, σ2, τ 2
j ∼ Nn(Eβ +Zβ, σ2In), i = 1, ..., n; j = 0, ..., p,

αj|τ 2
j , σ

2 ∼ (1− π0)Nd(0, σ
2τ 2
j Id) + π0δ0(αj), j = 0, ..., p,

τ 2
j |λ2 ∼ Γ(

d+ 1

2
,
λ2

2
), j = 0, ..., p,

π0 ∼ Beta(a, b),

σ2 ∼ invGamma(s, h),

λ2 ∼ Γ(t, θ),

β ∼ Nq(0,Σβ).
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Gibbs Sampler

The full conditional distribution of αj, j = 0, ..., p

αj|rest

∝ exp(− 1

2σ2
||Y −Z−jα−j −Zjαj −Eβ||2)

×

(
(1− π0)

1√
2π|σ2τ 2

j Id|
exp
(
− 1

2
α>j (σ2τ 2

j Id)
−1αj

)
I(αj 6=0) + π0δ0(αj)

)

The slab part,

αj|rest

∝ exp

(
− 1

2σ2

(
α>j Z

>
j Zjαj − 2αjZ

>
j (Y −Eβ −Z−jα−j)

))
exp(− 1

2σ2
||Y −Z−jα−j −Eβ||2)

× (1− π0)(2π)−
d
2 (σ2τ 2

j )−
d
2 exp

(
− 1

2
α>j (σ2τ 2

j Id)
−1αj

)
∝ (1− π0)(2π)−

d
2 (σ2τ 2

j )−
d
2 exp(− 1

2σ2
||Y −Z−jα−j −Eβ||2)

× exp

(
− 1

2σ2

(
α>j (Z>j Zj + τ−2

j Id)αj − 2αjZ
>
j (Y −Eβ −Z−jα−j)

))

Denote the variance

Σj = (Z>j Zj + τ−2
j Id)

−1

and the mean

µj = ΣjZ
>
j (Y −Eβ −Z−jα−j),
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then when αj 6= 0, the posterior distribution of αj becomes

αj|rest

∝ (1− π0)(τ 2
j )−

d
2

√
|Σj|exp(− 1

2σ2
||Y −Z−jα−j −Eβ||2)

× exp
(
− 1

2
µ>j (σ2Σj)

−1µj

)
× Nd(µj, σ

2Σj)

The spike part

αj|rest

∝ π0exp(− 1

2σ2
||Y −Z−jα−j −Eβ||2)

Proportion of the spike part

P (αj = 0|rest) =
π0

π0 + (1− π0)(τ 2
j )−

d
2

√
|Σj|exp

(
− 1

2
µ>j (σ2Σj)−1µj

)
The full conditional distribution of σ2

σ2|rest

∝ (σ2)−
n
2 exp(− 1

2σ2
||Y −Zα−Eβ||2)× (

1

σ2
)s+1exp(− h

σ2
)

×
p∏
j=0

(
(1− π0)

1√
2π|σ2τ 2

j Id|
exp
(
− 1

2
α>j (σ2τ 2

j Id)
−1αj

)
I(αj 6=0) + π0δ0(αj)

)

Let

Qj =


0 if αj = 0

1 if αj 6= 0
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then the posterior distribution of σ2 becomes

σ2|rest

∝ (σ2)−
n
2 exp(− 1

2σ2
||Y −Zα−Eβ||2)× (

1

σ2
)s+1exp(− h

σ2
)

×
p∏
j=0

(1− π0)Qj(σ2)−
d
2

∑p
j=0Qj

p∏
j=0

π
1−Qj

0 exp
(
− 1

σ2
· 1

2

p∑
j=0

(τ 2
j )−1α>j αj

)

∝ (σ2)−
n
2
− d

2

∑p
j=0Qj−s−1exp

(
− 1

σ2
(
1

2
||Y −Zα−Eβ||2+

1

2

p∑
j=0

(τ 2
j )−1α>j αj + h)

)

Therefore, the posterior distribution of σ2 is

σ2|rest ∝ invGamma
(n

2
+
d

2

p∑
j=0

Qj + s,
1

2
||Y −Zα−Eβ||2+

1

2

p∑
j=0

(τ 2
j )−1α>j αj + h

)
.

The full conditional distribution of τ 2
j , j = 0, ..., p

τ 2
j |rest

∝
p∏
j=0

(
(1− π0)

1√
2π|σ2τ 2

j Id|
exp
(
− 1

2
α>j (σ2τ 2

j Id)
−1αj

)
I(αj 6=0) + π0δ0(αj)

)

× (τ 2
j )

d−1
2 exp(−λ

2

2
τ 2
j )

The slab part

τ 2
j |rest

∝ (τ 2
j )−

1
2 exp(−1

2
(
α>j αj

σ2

1

τ 2
j

+ λ2τ 2
j ))

therefore (τ 2
j )−1 ∝ invGaussian(

√
σ2λ2

α>j αj
, λ2)
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The spike part

τ 2
j |rest

∝ (τ 2
j )

d−1
2 exp(−λ

2

2
τ 2
j )

∝ Γ(
d+ 1

2
,
λ2

2
)

Together

(τ 2
j )−1|rest ∼


Inverse-Gamma(d+1

2
, λ2

2
) if αj = 0

Inverse-Gaussian(
√

σ2λ2

α>j αj
,λ2) if αj 6= 0

The full conditional distribution of λ2

λ2|rest

∝
p∏
j=0

(
(
λ2

2
)
d+1
2 exp(−λ

2

2
τ 2
j )
)
× (λ2)t−1exp(−θλ2)

∝ (λ2)
1
2

(d+1)(p+1)+t−1exp(−(
1

2

p∑
j=0

τ 2
j + θ)λ2)

∝ Γ(
1

2
(d+ 1)(p+ 1) + t,

1

2

p∑
j=0

τ 2
j + θ)

which is a gamma distribution.
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The full conditional distribution of π0

π0|rest

∝
p∏
j=0

(
(1− π0)

1√
2π|σ2τ 2

j Id|
exp
(
− 1

2
α>j (σ2τ 2

j Id)
−1αj

)
I(αj 6=0) + π0δ0(αj)

)

× πa−1
0 (1− π0)b−1

∝ π
1+p+a−

∑p
j=0Qj−1

0 (1− π0)b+
∑p

j=0Qj−1

∝ Beta(1 + p+ a−
p∑
j=0

Qj, b+

p∑
j=0

Qj)

which is a Beta distribution.

The full conditional distribution of β

β|rest

∝ exp(− 1

2σ2
||Y −Eβ −Zα||2)× exp(−1

2
β>Σ−1

β β)

∝ exp

(
− 1

2

(
β>(

E>E

σ2
+ Σ−1

β )β − 2 · 1

σ2
(Y −Zα)>Eβ

))

∝ Nq((
E>E

σ2
+ Σ−1

β )−1(
1

σ2
(Y −Zα)>E)>, (

E>E

σ2
+ Σ−1

β )−1)

which is a multivariate normal distribution.

C.4.4 Posterior inference for BVC

Priors

Y |β,α, σ2, τ 2
j ∼ Nn(Eβ +Zβ, σ2In), i = 1, ..., n; j = 0, ..., p,

αj|τ 2
j , σ

2 ∼ Nd(0, σ
2τ 2
j Id), j = 0, ..., p,
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τ 2
j |λ2 ∼ Γ(

d+ 1

2
,
λ2

2
), j = 0, ..., p,

σ2 ∼ invGamma(s, h),

λ2 ∼ Γ(t, θ),

β ∼ Nq(0,Σβ).

Gibbs Sampler

The full conditional distribution of αj, j = 0, ..., p

αj|rest

∝ exp(− 1

2σ2
||Y −Zα−Eβ||2)exp

(
− 1

2
α>j (σ2τ 2

j Id)
−1αj

)
∝ exp

(
− 1

2σ2

(
α>j Z

>
j Zjαj − 2αjZ
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exp
(
− 1

2
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)
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(
− 1

2σ2

(
α>j (Z>j Zj + τ−2

j Id)αj − 2αjZ
>
j (Y −Eβ −Z−jα−j)

))

Denote the variance

Σj = (Z>j Zj + τ−2
j Id)

−1

and the mean

µj = ΣjZ
>
j (Y −Eβ −Z−jα−j),

then the posterior distribution of αj is

αj|rest ∝ Nd(µj, σ
2Σj).
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The full conditional distribution of β

β|rest

∝ exp(− 1

2σ2
||Y −Eβ −Zα||2)× exp(−1

2
β>Σ−1

β β)

∝ exp

(
− 1

2

(
β>(

E>E

σ2
+ Σ−1

β )β − 2 · 1

σ2
(Y −Zα)>Eβ

))

∝ Nq((
E>E

σ2
+ Σ−1

β )−1(
1

σ2
(Y −Zα)>E)>, (

E>E

σ2
+ Σ−1

β )−1)

which is a multivariate normal distribution.

The full conditional distribution of τ 2
j , j = 0, ..., p

τ 2
j |rest

∝ 1√
2π|σ2τ 2

j Id|
exp
(
− 1

2
α>j (σ2τ 2

j Id)
−1αj

)

∝ (τ 2
j )−

1
2 exp(−1

2
(
α>j αj

σ2

1

τ 2
j

+ λ2τ 2
j ))

therefore (τ 2
j )−1 ∝ invGaussian(

√
σ2λ2

α>j αj
, λ2)

The full conditional distribution of λ2

λ2|rest

∝
p∏
j=0

(
(
λ2

2
)
d+1
2 exp(−λ

2

2
τ 2
j )
)
× (λ2)t−1exp(−θλ2)

∝ (λ2)
1
2

(d+1)(p+1)+t−1exp(−(
1

2

p∑
j=0

τ 2
j + θ)λ2)

∝ Γ(
1

2
(d+ 1)(p+ 1) + t,

1

2

p∑
j=0

τ 2
j + θ)

which is a gamma distribution.
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The full conditional distribution of σ2

σ2|rest

∝ (σ2)−
n
2 exp(− 1

2σ2
||Y −Zα−Eβ||2)× (

1

σ2
)s+1exp(− h

σ2
)

×
p∏
j=0

1√
2π|σ2τ 2

j Id|
exp
(
− 1

2
α>j (σ2τ 2

j Id)
−1αj

)

∝ (σ2)−
n
2
− d(p+1)

2
−s−1exp

(
− 1

σ2
(
1

2
||Y −Zα−Eβ||2+

1

2

p∑
j=0

(τ 2
j )−1α>j αj + h)

)

Therefore, the posterior distribution of σ2 is invGamma
(
n
2

+ d(p+1)
2

+ s, 1
2
||Y − Zα −

Eβ||2+1
2

∑p
j=0(τ 2

j )−1α>j αj + h
)

.
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