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Abstract 

The Flint Hills ecoregion in Kansas, USA, represents the largest remaining tract of native 

tallgrass prairie in North America. Anthropogenic landscape change (e.g., urbanization, 

agricultural production) is affecting native biodiversity in this threatened ecosystem. Our 

understanding of how landscape change affects spatial distributions of carnivores (i.e., species 

included in the Order ‘Carnivora’) in this ecosystem is limited. I investigated the influence of 

landscape structure and composition on site occupancy dynamics of 3 native carnivores (coyote 

[Canis latrans]; bobcat [Lynx rufus]; and striped skunk [Mephitis mephitis]) and 1 nonnative 

carnivore (domestic cat, [Felis catus]) across an urbanization gradient in the Flint Hills during 

2016-2017. I also examined how the relative influence of various landscape factors affected 

native carnivore species richness and diversity. I positioned 74 camera traps across 8 urban-rural 

transects in the 2 largest cities in the Flint Hills (Manhattan, pop. > 55,000; Junction City, pop.  

> 31,000) to assess presence/absence of carnivores. Cameras were activated for 28 days in each 

of 3 seasons (Summer 2016, Fall 2016, Winter 2017) and I used multisession occupancy models 

and an information-theoretic approach to assess the importance of various landscape factors on 

carnivore site occupancy dynamics. Based on previous research in other ecosystems, I expected a 

negative relationship between both coyote and bobcat occurrence with increasing urban 

development but a positive relationship for domestic cat and skunk occurrence with increasing 

urban landcover. I also predicted grassland landcover to positively influence site occupancy for 

all carnivores except domestic cats. I expected that coyotes, the apex predator in this ecoregion, 

may limit domestic cat distributions through intraguild competition. Thus, I predicted a negative 

relationship between site occupancy of domestic cats and coyote occupancy probabilities. 

Because urban development results in habitat loss and fragmentation, I expected native species 



  

richness and diversity to decline with increased urban development. Coyotes had lower 

occupancy and colonization rates in areas with increased urban landcover. Bobcat occupancy 

was insensitive to urban landcover and colonization rates were greater in grassland landcover 

and row-crop agriculture fields. Site occupancy of bobcats was highly influence by forested 

areas and greater edge densities. Contrary to my hypothesis, striped skunk occupancy and 

colonization rates were negatively related to urban landcover. As expected, domestic cats were 

more likely to occur in and colonize sites with increased urban development and less likely to 

occur at sites with high coyote occupancy probabilities. Native carnivore species diversity and 

richness were negatively related to urban landcover. Occupancy dynamics of carnivores were 

shown to be influenced by landscape structure and composition as well as intraguild interactions. 

My results show urban landcover has a strong influence on the spatial distributions of carnivores 

in the northern extent of the Flint Hills. 
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Chapter 1 - Introduction 

Urban landscapes cover ~3% of Earth’s surface, yet can affect the structure and function of 

ecosystems both regionally and globally (McKinney 2002, Grimm et al. 2008, McDonald et al. 

2008, Liu et al. 2014). Towns and cities began appearing between 7,000 – 8,000 years ago 

(Davis 1955) with civilized urban life emerging ~5,000 years ago (Blackett 1957). Thus, these 

systems are relatively new on an evolutionary scale (Davis 1955) with a majority of urban 

expansion only beginning in past 200 years (Grimm et al. 2008). These novel environments are 

driven by human activity and have the ability to influence ecological processes both within and 

beyond city boundaries (Grimm et al. 2008, Warren et al. 2010). Human activities affect a 

multitude of natural phenomena including biotic diversity, soil quality, microclimates, air 

quality, and hydrology (Arnold and Gibbons 1996, Alberti et al. 2003). As urban areas continue 

to destroy and fragment natural habitats, distances among critical habitat areas also increases 

(McDonald et al. 2008). As such, humans are more likely come in contact with wildlife and 

influence evolutionary processes such as selection (Vitousek et al. 1997, Chapin et al. 2000, 

Polumbi 2001, Alberti et al. 2003). As a result of human interactions, urbanization is considered 

a primary driver for decline in native biodiversity and threatens rare species and ecosystems 

throughout the world (Czech et al. 2000, Marzluff and Ewing 2001, McKinney 2002, McDonald 

et al. 2008).  

 

Urbanization continues to fragment natural landscapes, eliminating native habitat as well 

creating smaller isolated patches (Andren 1996, Fahrig 1999). New urban environments provide 

novel challenges to native wildlife (Gehrt et al. 2010), and carnivores are particularly sensitive to 

these changing environments because of their high trophic position, slower population growth 
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rates, and large home range requirements (Gittleman et al. 2001, Crooks 2002). Carnivores may 

act as keystone species, shaping ecosystems from the top down (Terborgh and Winter 1980, 

McLaren and Peterson 1994, Wilmers et al. 2003) and also be effective indicators of ecosystem 

health (Eisenberg 1980, Noss et al 1996). Carnivores face many conservation challenges (Treves 

and Karanth 2003) including population declines (Treves 2009) and range constriction, which 

can ultimately lead to extinction (Ripple et al. 2014). Direct conflict with humans can occur in 

several ways: threats to human safety in terms of physical contact and disease transmission 

(Graham et al. 2004); extermination in response to livestock depredation (Treves and Karanth 

2003); and persecution for international trading of skins and body parts (Woodroffe 2000). Other 

challenges in urban areas include fragmentation and loss of habitat, which contribute to reduced 

gene flow, local extinctions, and increased mortality due to car collisions (Clark et al. 1996, 

Carroll et al. 2001, Ordeñana et al. 2010). All of these challenges affect species distributions, 

space use, movement, and survival (George and Crooks 2006, Gosselink et al. 2007, Gehrt et al. 

2009). 

 

Cities represent a gradient of developed landcover, with intensity of development decreasing 

from the center to surrounding areas (McDonnell et al. 1997). This natural gradient provides an 

opportunity to study effects of urbanization on wildlife (Pickett et al. 2001, Randa and Yunger 

2006). Urbanization can restrict carnivore distributions (Comiskey et al. 2002, Ahlers et al. 

2016). Additionally, past research suggests carnivores select natural areas as compared to 

developed landscapes (Riley et al. 2003, Randa and Yunger 2006, Magle et al. 2016). Urban 

landcover may mediate intraguild competition among carnivores as these areas can function as 

refugia for mesopredators when apex predators are unwilling or unable to exploit these 
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developed environments (Crooks and Soulé 1999; Lewis et al. 1999; Gosselink et al. 2003, 

2007). However, published studies documenting species-specific responses to urban landcover 

have been contradictory (Fedriani et al. 2001, Gosselink et al. 2003, Randa and Yunger 2006, 

Gehrt et al. 2009, Ordeñana et al. 2010). For instance, Fedriani et al. (2001) found a positive 

correlation between coyote densities and highly developed areas in the Santa Monica Mountains 

of California, where as Gosselink et al. (2003) revealed that coyotes (Canis latrans) generally 

avoid human residential areas in east-central Illinois. Additionally, Ordeñana et al. (2010) 

reported coyote occurrence increased with human development in the south coast ecoregion of 

California, while Gehrt et al. (2009) reported that coyotes selected native habitat patches and 

avoided developed landscapes in the Chicago metropolitan area. These conflicting results 

highlight the need for more studies to elucidate the importance of urban landcover in structuring 

carnivore populations. 

 

Imperiled landscapes are host to large numbers of endangered species (Noss et al. 1995) and 

contemporary landscape conversions (especially to urban development) may magnify extinction 

risks to these species (Myers et al. 2000, Ricketts and Imhoff 2003). Tallgrass prairie is one of 

the most critically endangered ecosystems in the world as these areas have been reduced to 4% 

of their historic distribution in North America (Noss et al. 1995). The largest remaining 

contiguous tract of tallgrass prairie is located in the Flint Hills ecoregion of Kansas and 

Oklahoma, USA (Knapp and Seastedt 1986, Samson and Knopf 1994, Deluca and Zabinksi 

2011). Urban development is expected to increase in this ecoregion and is considered an 

emerging threat to native biodiversity (The Nature Conservancy 2000). Although the Flint Hills 
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is host to a diverse carnivore community, little is known about how landscape composition or 

structure influences carnivore distributions in this ecoregion. 

 

My thesis research focuses on the effects of expanding urban landscapes on the distribution and 

richness/diversity of native and nonnative carnivores found in the tallgrass prairie ecosystem of 

the Flint Hills. I used camera traps to determine presence/absence of carnivore species along an 

urban-rural gradient in the 2 largest cities of the Flint Hills and a multiseason occupancy 

modeling approach to uncover potential relationships between site occupancy dynamics and 

various landscape factors. To my understanding, this research is one of the first studies to 

investigate factors affecting carnivore distributions in the Flint Hills. 
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Chapter 2 - Urban landcover affects carnivore diversity and 

distributions in remaining tallgrass prairie   

 Abstract 

The Flint Hills ecoregion in Kansas, USA, represents the largest remaining tract of native 

tallgrass prairie in North America. However, contemporary land-use change (e.g., urbanization, 

agricultural production) is likely affecting native biodiversity in the ecoregion. I used presence-

absence data from repeated camera-trap surveys to investigate how landscape structure, 

composition, and intraguild competition influenced site occupancy dynamics of 3 native 

carnivores (coyote [Canis latrans]; bobcat [Lynx rufus]; and striped skunk [Mephitis mephitis]) 

and one nonnative carnivore (domestic cat [Felis catus]) in the Flint Hills in 2016-2017. I also 

examined the effects of landcover composition on native carnivore species richness and 

diversity. I placed a single camera trap at sites (n = 74) on 8 transects that were positioned along 

urban-rural gradients in the Flint Hills. I expected to observe a negative relationship between 

coyote and bobcat occurrence with increasing urban development but a positive relationship for 

domestic cat and skunk occurrence with increasing urban landcover. I also predicted positive 

relationships for all species except domestic cat between grassland landcover and occupancy. As 

predicted coyotes had lower occupancy ( = -0.60, SE = 0.33) and colonization rates ( =  -3.00, 

SE = 1.26) in urban areas. Initial occupancy of bobcats was not influenced by developed 

landcover. However, bobcats were more likely to occur in forested areas ( = 0.60, SE = 0.34) as 

well as areas containing high edge densities ( = 0.76, SE = 0.42). Bobcat colonization rates 

were greater in grassland landcover ( = 1.82, SE = 1.01 and row-crop agriculture fields ( = 

0.73, SE = 0.78). Contrary to my predictions, striped skunk occupancy and colonization was 
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negatively influenced by urban development. Domestic cats were more likely to occur ( = 1.20, 

SE = 0.54) in and colonize ( = 0.82, SE = 0.33) urban environments. Cats avoided areas with 

high coyote occupancy. As expected, urban development was seen as the most influential factor 

in species richness and diversity declines. Landscape structure, composition, and intraguild 

interactions were all observed influencing occupancy dynamics of carnivores. My results suggest 

urbanization has a large effect on the spatial distributions of carnivores in the northern extent of 

the Flint Hills. 

 

 Introduction 

Urban landscapes cover ~3% of Earth’s surface, yet can affect the structure and function of 

ecosystems both regionally and globally (McKinney 2002, Grimm et al. 2008, McDonald et al. 

2008, Liu et al. 2014). Urbanization is a primary driver of biodiversity loss (Fahrig 1999, 

Marzluff and Ewing 2001, McKinney 2002) and has been categorized as a significant threat to 

native species (Czech et al. 2000). In the United States, urban areas have quadrupled in size 

(Lubowski et al. 2006) since 1945, as humans have increasingly relocated to and remained in 

these areas (Brown et al. 2005). Additionally, exurban development in the United States (lower 

density residential development; Hansen et al. 2005) has increased 5-fold over the past 50 years 

(Brown et al. 2005). These novel landscapes present unique challenges to native wildlife 

(Ditchkoff et al. 2006, Lowry et al. 2013) and are generally associated with reduced species’ 

richness and diversity (Blair 1996, Marzluff 2001, Ordeñana et al. 2010, Aronson et al. 2014). 

 

Urbanization often results in habitat loss and fragmentation (Riley et al. 2003, Randa and Yunger 

2006, Ordeñana et al. 2010), which can subsequently affect species distributions, space use, and 
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survival (George and Crooks 2006, Gosselink et al. 2007, Gehrt et al. 2009). Carnivores can be 

particularly sensitive to urban-dominated environments because of their high trophic position, 

slower population growth rates, and large home range requirements (Gittleman et al. 2001, 

Crooks 2002). Urban areas can mediate intraguild competition among carnivores by functioning 

as refugia for mesopredators when apex predators are unwilling or unable to exploit these 

environments (Crooks and Soulé 1999; Lewis et al. 1999; Gosselink et al. 2003, 2007). 

However, studies documenting species-specific responses to urban landcover have been 

contradictory (Fedriani et al. 2001, Gosselink et al. 2003, Randa and Yunger 2006, Gehrt et al. 

2009, Ordeñana et al. 2010). For instance, Fedriani et al. (2001) and Ordeñana et al. (2010) 

found a positive correlation between coyote (Canis latrans) densities and occurrence in urban 

areas in the south coast ecoregion of California, whereas Gosselink et al. (2003) reported coyotes 

generally avoid residential areas in east-central Illinois. Additionally, Gehrt et al. (2009) found 

coyotes selected native habitat patches while avoiding developed landscapes in the Greater 

Chicago metropolitan area.  

 

Tallgrass prairie is one of the most critically threatened ecosystems in the world (Noss et al. 

1995) and has been reduced to 4% of their historic range in North America. The largest 

remaining tract of tallgrass prairie is located in the Flint Hills ecoregion of Kansas and 

Oklahoma, USA (Knapp and Seastedt 1986, Samson and Knopf 1994, Deluca and Zabinksi 

2011; Figure 2.1). Urban development is expected to increase in this ecoregion and considered 

an emerging threat to native biodiversity (The Nature Conservancy 2000). Although the Flint 

Hills has a diverse carnivore community, little is known about how landscape composition or 

structure influences carnivore distributions in this ecoregion and this gap in knowledge is likely 
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impeding management efforts. Previous research in the Flint Hills suggests resident coyotes 

select grassland-dominated landscapes (Kamler and Gipson 2000b). Bobcats (Lynx rufus) in the 

Flint Hills exhibited seasonal habitat-selection patterns in which forests are selected in the winter 

and native grasslands are selected in the summer (Kamler and Gipson 2000a).  Our 

understanding of how other carnivores are distributed in the Flint Hills remains unclear. 

Additionally, we have limited knowledge of how land-use change, particularly urbanization, 

structures carnivore communities in this ecoregion.  

 

I used multiple presence-absence surveys and an occupancy modelling approach to investigate 

how landscape composition, structure, and intraguild competition impact the spatial distribution 

of carnivore communities in the Flint Hills. Additionally, I assessed the importance of various 

landscape factors to carnivore species’ richness and diversity in the ecoregion. Although I 

identified 9 carnivore species in the Flint Hills, I had adequate data to estimate occupancy and 

turnover rates for 4 species (coyote, bobcat, striped skunk [Mephitis mephitis], and domestic cat 

[Felis catus]).  The relationship between coyotes and urban landcover is largely unresolved 

(Gehrt et al. 2010, Lesmeister et al. 2014, Poessel et al. 2016, Lombardi et al. 2017). If urban 

development restricts coyote distributions in the Flint Hills, I predict site occupancy and 

colonization rates will be negatively related to urban landcover and local extinctions would be 

positively related to urban landcover. Concurrent with past research in the ecoregion, I also 

predicted greater occupancy and colonization rates, and lower extinction rates, in areas 

surrounded by grassland (Kamler and Gipson 2000b).  
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Previous studies conducted elsewhere have documented negative associations between bobcat 

occurrence and dense urban areas, likely because of their solitary social behavior and strictly 

carnivorous diet (Crooks 2002, Ordeñana et al. 2010). I predicted a negative relationship 

between bobcat site occupancy and urban landcover. Because bobcats often utilize habitat edges 

as foraging areas (Clare et al. 2015), I predicted a positive relationship between bobcat 

occupancy probabilities and greater edge densities as well as with forested areas (Kamler and 

Gipson 2000a). I predicted that striped skunk site occupancy and colonization rates would be 

greater, and extinction rates lower, in urban environments because cities may provide significant 

amount of food resources (McKinney 2002, Ordeñana et al. 2010, Lesmeister et al. 2014) and 

denning sites (Larivière and Messier 1998, Gehring and Swihart 2003, Dragoo 2009). Domestic 

cats, often pets, are associated with urban areas (Gehrt et al. 2010, Horn et al. 2011, Elizondo 

and Loss 2016) but are also subject to intraguild predation by coyotes (Crooks and Soulé 1999, 

Grubbs and Krausman 2009). I expected site occupancy and colonization rates to be positively 

related to, and extinction rates to be negatively related to, the proportion of urban landcover 

surrounding sites. I also predicted cat occupancy and colonization rates to be negatively 

associated at sites with high probability of coyote occurrence. Lastly, if urban landcover 

constrains the distribution of native carnivore species, I expect that native carnivore species 

richness and diversity will be negatively related to the proportion of urban landcover.   
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 Methods 

 Study area 

I conducted this study along urban-rural gradients in the 2 largest cities (Manhattan and Junction 

City) in the Flint Hills Ecoregion (Flint Hills) of Kansas, USA (Figure 2.1; 39.1836° N, 96.5717° 

W). Human population censuses for Manhattan and Junction City were approximately 56,000 

and 31,500 respectively (U.S. Census Bureau 2015). Fort Riley is a United States Army 

installation that houses approximately 7,500 residents and directly adjacent to Junction City. The  

study area received 40.1 cm of precipitation and average temperatures ranged from -18 -  33 C 

during the duration of the study (Weather Underground 2016). Along with native tallgrass prairie 

and expanding urban landcover, the gradient also included a mix of row-crop agriculture (e.g., 

corn [Zea mays], soybeans [Glycine max], and wheat [Triticum aestivum]), hayland/pasture, 

forest, and wetlands. 

 

 Site selection 

I established 74 sampling sites on 8 transects (9 sites along 6 transects, 10 sites along 2 transects) 

that extended along an urban-rural land use gradient in the Flint Hills ecoregion (4 transects in 

Manhattan and 4 transects in Junction City; Figure 2.1). All transects originated from the center 

of their respective municipality and extended ~10 km away from the urban center. Sites were 

spaced ≥1 km apart along each transect and located in areas that represented the potential for 

wildlife use (city parks, backyards, cemeteries, woody patches within the city, pastures, and 

agriculture fields; Magle et al. 2016). Site selection was restricted to areas that allowed year-

round access for camera maintenance and data collection. The sampling design was similar to a 

broader sampling scheme used by the Urban Wildlife Information Network (UWIN; 
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http://www.lpzoo.org/conservation-science/projects/urban-wildlife-information-network-uwin) 

to investigate urban landcover effects on wildlife species across the United States.  

 

At each site, I secured a single motion-triggered infrared camera (Bushnell Trophy Cam®; Model 

#119436C) to a tree or abandoned power line pole ~1.0 m off the ground. Cameras were oriented 

away from the sun to avoid solar glare on photos. I baited sites with a fatty acid tablet (Pocatello 

Supply Depot, Pocatello, ID, USA), housed in a commercial tea bag, to encourage carnivores to 

pass in front of the camera. Bait was placed 3–5 m in front of the camera and stapled to a tree or 

log at a height of approximately 0.5–1.0 m (Magle et al. 2015).  

 

Cameras were deployed for 28 days in each of 3 seasons (Summer [22 June – 21 August, 2016], 

Fall [10 October – 11 November, 2016], Winter [03 January – 10 February, 2017]; hereafter 

‘seasons’). Once cameras were activated for a particular season, I revisited each site 14 days later 

to exchange memory cards and batteries (if needed) and replace scent disks. I retrieved memory 

cards once each camera had been active for 28 days and removed remaining scent discs. Primary 

sampling periods were separated into 7-day sampling units providing 4 repeat surveys at each 

site during each season.  Thus, detection histories for each site included 4 weekly sampling 

periods in each of 3 primary sampling periods (seasons).  I archived site-specific photos in a 

custom database (Colorado Parks and Wildlife Photo Warehouse 4.0, Colorado Parks and 

Wildlife, Fort Collins, CO, USA). I identified animal species in each photo and considered 

species-specific photos independent if they were separated by >30 min (O’Brien et al. 2003, 

Johnson et al. 2006, Jenks et al. 2011, Si et al. 2014).  
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I chose to evaluate the relative influence of several landscape factors on site occupancy of 

carnivores identified as important for structuring wildlife distributions in other studies (e.g., 

Prange et al. 2003, Gehrt et al. 2009).  I extracted site-level landscape information from the 

Kansas digital land-cover map (USDA NASS 2015 Cropland Data Layer; 30-m x 30-m raster 

cell size) using a 1-km circular buffer centered each site (Environmental Systems Research 

Institute, Inc., Redlands, CA, USA). I chose this scale of measurement to make this study 

comparable to others (Kays et al. 2008, Long et al. 2011, Gompper et al. 2016).  Additionally, an 

a priori assessment of measured landscape values at alternative scales (500 m and 2-km) 

revealed moderate-to-high collinearity among these variables (│r │≥ 0.61). I used FRAGSTATS 

4.2 (University of Massachusetts, Amherst, MA, USA) to calculate edge density (m/ha; sum of 

landcover edge lengths divided by total area) and proportions of row-crop agriculture (corn, 

soybeans, wheat, and milo [Sorghum bicolor]), grassland, urban landcover (high, medium, and 

low density), and forest landcover for each site. I choose not to investigate the effects of 

developed green space (Duggan et al. 2011, McClure and Hill 2012) because this landcover type 

was rare in the study area. 

 

 Species richness and diversity 

I used generalized linear mixed-effects models (lme4; Bates et al. 2015) in R (R Version 3.3.2, R 

Core Team 2016) to investigate effects of landcover types on native carnivore species richness 

and diversity. I modeled species richness at each site (number of native carnivore species 

observed at each site; range = 0 - 7) and diversity (Shannon- Weiner) as a function of the 

landcover type(s) surrounding each site. I included transect location (Manhattan or Junction 

City) as a random effect in all models. Species richness models included a Poisson distribution, 
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therefore, the response variable (species richness) was transformed using a log link function to 

meet model assumptions (Zeileis et al. 2008). Shannon-Weiner diversity estimates were natural 

log transformed prior to analysis. The model sets (n = 12) for both richness and diversity 

included models that incorporated 4 landcover types (Urban, Grassland, Forest, Agriculture 

[tillable landcover]) as single effects (n = 4) as well as in additive combinations (n = 7). A 

constant model (Intercept only) was also included in both model sets. I did not use ‘Urban’ and 

‘Grassland’ in combination because of high multicollinearity (|r | ≥ 0.60). I evaluated support for 

models of diversity and richness using Akaike’s Information Criteria, adjusted for small sample 

size (AICc; Burnham and Anderson 2002). Support for competitive models (<2.00 AICc) was 

based on their relative changes in goodness-of-fit and respective model weights (Burnham and 

Anderson 2002, Arnold 2010). 

 

 Site occupancy 

I used multi-season occupancy models (unmarked; Fiske and Chandler 2011) in R and an 

information-theoretic approach (Burnham and Anderson 2003, Arnold 2010) to investigate the 

influence of the measured covariates on site occupancy and turnover by carnivores across an 

urban-rural gradient. Because of low naïve occupancy for American badger (Taxidea taxus), gray 

fox (Urocyon cinereoargenteus), domestic dog (Canis lupus familiaris), and red fox (Vulpes 

vulpes) (<0.20; Table 2.1), I was only able to model site occupancy for 4 carnivore species 

(coyote, bobcat, striped skunk and domestic cat). Site occupancy by raccoon (Procyon lotor) was 

extremely high (naïve occupancy across seasons = 0.93; Table 2.1), which also precluded me 

from modeling occupancy dynamics for this species. Because of very low detections for bobcat 
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(n = 5) and striped skunk (n = 4) during summer, I limited models of bobcat and striped skunk 

occupancy to fall and winter seasons only.  

 

To control for seasonal effects and the potential diminishing influence of the bait attractant, I 

incorporated detection covariates ‘Season’ (either summer, fall, or winter primary sampling 

period) and ‘Scent’ (number of days since scent disk was applied or reapplied at site) into 

competitive models of species-specific detection while holding all other parameters (initial 

occupancy, colonization, and extinction) constant. For all 4 species, the candidate model set for 

detection included 4 models with only single effects (n = 2; Season; Scent), the additive 

combination of both effects (n = 1; Season + Scent), and a constant model (Intercept Only; n = 

1).  For each species, I chose the most parsimonious detection model to subsequently model 

remaining rate parameters. 

 

I derived a variable, Coyote, to assess the potential intraguild influence of coyotes (the apex 

predator) on occupancy dynamics of bobcat and domestic cat. I did not evaluate this effect on 

striped skunks as previous studies have suggested habitat selection by striped skunks is not 

influenced by presence of coyotes (Prange and Gehrt 2007, Lesmeister et al. 2015). I used 

model-averaged occupancy estimates from the candidate set of coyote occupancy models 

(models within wi = 0.95, n = 13) to assign a probability of coyote occupancy at each site 

during each sampling season (Cosentino et al. 2011, Ahlers et al. 2016). Conditional occupancy 

= 1 at sites where coyotes were detected at least once. Occupancy probabilities at sites where 

coyotes were not detected were <1 (Ahlers et al. 2016). I chose not to use a multi-season, 2-

species model to avoid overparameterization issues (Cosentino et al. 2011, Ahlers et al. 2016). 
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After choosing the most-supported detection model for each species, I sequentially fit species-

specific models of initial site occupancy, colonization, and extinction. I did not include variables 

in the same model that exhibited high multicollinearity (|r | ≥ 0.60). I limited models to 

combinations of ≤3 covariates for each parameter to reduce the chance of model 

overparameterization. Thus, for coyotes and striped skunks, the candidate model set for each 

parameter (n = 22) included single effects (n = 5), additive combinations of the main effects (n = 

16), and a constant model (Intercept only). Bobcat and domestic cat model sets included a coyote 

covariate adding to the total candidate model set (n = 32). Because of model convergence issues, 

bobcat colonization models were limited a combination of ≤2 covariates, lowering the total 

candidate model set (n = 20). I was not able to model site extinction for bobcat, striped skunk, or 

domestic cat because of the low number of observed extinction events occurring between 

seasons (Table 2.1).   

 

 Results 

I documented 5,125 independent observations of 9 carnivore species (raccoon, n = 3,809; feral 

cat, n = 445; coyote, n = 426; red fox, n = 144; striped skunk, n = 187; bobcat, n = 73; domestic 

dog, n = 33; American badger, n = 7; gray fox, n = 1) in 6,104 trap nights. I detected the 

presence of ≥1 carnivore species at all 74 sites during all seasons (range = 1- 9). The maximum 

number of species detected each season was similar (summer, n = 8; fall, n = 8; winter, n = 7). 

Species-specific naïve occupancy was dynamic across seasons (Table 2,1).  
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Native carnivore species richness at each site ranged from 0 – 5.  The top ranked model for 

native species richness included a single negative effect of urban landcover ( = -0.37, SE = 

0.21; Table 2.2). Grassland landcover was included in the competitive model set and showed a 

positive effect on richness ( = 0.37, SE = 0.27). Generally, native carnivore species richness 

was reduced in areas with increased urban landcover, although there was some model-selection 

uncertainty (Table 2.2). Native carnivore diversity varied across sites (range of Shannon-Weiner 

diversity estimates across sites = 0 - 1.2) The only competitive model for native carnivore 

diversity also revealed a negative relationship between diversity and urban landcover ( = -0.80, 

SE = 0.17; Table 2.2).  

 

 Coyote 

Coyote detection probabilities were relatively high (0.60) as I documented coyotes at 63 sites 

across all seasons. The highest ranked model of detection included the negative effect of ‘Scent’ 

( = -0.04, SE = 0.02; Table 2.3). Thus, I used this model to subsequently fit models of initial 

occupancy, colonization, and extinction. While holding all other parameters constant, 

colonization probability was 0.53 (SE = 0.10) and extinction probability was 0.14 (SE = 0.07).  

The most-supported model of initial occupancy included the single negative effect of urban 

landcover ( = -0.60, SE = 0.33) indicating that coyotes were more likely to occur at sites with a 

low proportion of urban landcover (Figure 2.2A). Although there was moderate model-selection 

uncertainty, models incorporating the variable ‘Urban’ accounted for 44% of all model weights 

for occupancy (Table 2.3). I used the top model for occupancy (Urban) to subsequently fit 

models of colonization and extinction.  
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The top-ranked colonization model for coyotes indicated that colonization probabilities were 

negatively related to the proportion of urban landcover surrounding sites ( =  -3.00, SE = 1.26; 

Table 2.3). Coyotes were less likely to colonize sites that had large proportions of urban 

landcover (Figure 2.3A). The most-supported model of extinction included the positive effects of 

‘Urban’ ( = 0.67, SE = 0.62; Table 2.3) and ‘Forest’ ( = 0.89, SE = 0.41; Table 2.3).  Site 

extinction probabilities were greater at sites with large proportions of urban landcover and forest 

(Figure 2.4A, B). The positive effect of ‘Forest’ ( = 0.73, SE = 0.35) was also included in a 

competitive extinction model (Table 2.3).   

 

 Bobcat 

I used the top-ranked model of detection (Intercept Only; Table 2.4) to subsequently fit initial 

occupancy and colonization parameters. the highest ranked model of initial occupancy (Forest + 

Edge; Table 2.4) indicated that site occupancy for bobcats was positively influenced by both the 

amount of forest ( = 0.60, SE = 0.34) and edge ( = 0.76, SE = 0.42) areas at sites (Figure 2.2B, 

C). While holding detection and initial occupancy constant, site colonization probability by 

bobcats was 0.21 (SE = 0.06). The top-ranked model for colonization (Grass + Ag; Table 2.4) 

suggested that site colonization by bobcats was positively influenced by the proportion of 

grassland landcover ( = 1.82, SE = 1.01, Figure 2.3B) and slightly by row-crop agriculture ( = 

0.73, SE = 0.78, Figure 2.3C) at sites.  

 

 Striped skunk 

The highest ranked model for detection included the single positive effect of ‘Scent’ ( =  0.04, 

SE = 0.04). The constant model (Intercept Only) was also included in competitive detection 



18 

models (Table 2.4) but I choose to use the ‘Scent’ model to fit remaining parameters. The most-

supported initial occupancy model (Urban + Forest; Table 2.5) indicated striped skunk site 

occupancy was negatively influenced by both the proportion of urban landcover ( = -1.40, SE = 

0.41; Figure 2.3D , E) and forest areas (= -1.05, SE = 0.44; Figure 2.3D, E) at each site. 

Another competitive model (Urban + Forest + Edge) also included the variable ‘Edge’.  

However, relative changes in model fit suggest the variable ‘Edge’ was noninformative. 

Predicted site colonization for striped skunks was 0.25 (SE = 0.07) while holding detection and 

initial occupancy constant. Of the 2 competitive models of colonization (Urban; Urban + Edge; 

Table 2.5), the top-ranked model included the single effect of ‘Urban’ ( = -1.80, SE = 0.67). 

Striped skunks were more likely to colonize sites with low proportions of urban landcover 

(Figure 2.3D). Minimal changes in model fit between both models indicate the variable ‘Edge’ 

was noninformative (Table 2.5).    

 

 Domestic cat 

None of the measured covariates sufficiently explained variation in detection so I used a constant 

model (Intercept only) to fit initial occupancy and colonization models. The highest ranked 

initial occupancy model suggested that domestic cats were positively associated with urban 

landcover (‘Urban’,  = 1.20, SE = 0.54, Figure 2.2G) and negatively related to coyote 

occupancy probabilities (‘Coyote’,  = -0.94, SE = 0.46, Figure 2.2F) and row-crop agriculture 

(‘Ag’,  = -1.80, SE = 1.73; Figure 2.2H). Another competitive model (Coyote + Forest + Ag) 

included forest landcover. However, relative changes in model fit suggest the variable ‘Forest’ 

was noninformative. Holding all rate parameters constant, site colonization probabilities by 

domestic cats was 0.16 (SE = 0.04). The highest ranked model of colonization included the 
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positive effect of ‘Urban’ ( = 0.82, SE = 0.33, Figure 2.3E) suggesting that domestic cats were 

likely to colonize areas with increased urban landcover. Again, minimal changes in model fit 

between the remaining competitive model (Urban + Edge; Table 2.6) suggest ‘Edge’ was 

noninformative.  

 

 Discussion 

My results suggest that urban landcover can affect carnivore distributions in the Flint Hills. As 

predicted, native carnivore diversity and richness were negatively related to the proportion of 

urban landcover surrounding sites. These results are concurrent with other studies documenting 

declines in carnivore community richness with increasing urban intensity and human activities 

(Mathewson et al. 2008, Ordeñana et al. 2010). Moreover, site occupancy by both coyote and 

striped skunk (native carnivores in this ecoregion) were negatively related to the proportion of 

urban landcover surrounding sites.  Additionally, site occupancy by domestic cat, a nonnative 

carnivore to this ecoregion, was positively associated with urban landcover. These results, in 

combination with others, highlight the effects of urban development across a wide-range of city 

and municipality sizes (Blair 1999, Fahrig 2003, Hansen et al. 2005, Ordeñana et al. 2010, 

Aronson et al. 2014).  

 

Coyotes were less likely to occur and colonize sites with high urban landcover. Additionally, 

coyotes were more likely to leave sites with increased urban landcover. Although Gehrt et al. 

(2009) observed coyote home-ranges within urban areas, coyotes typically avoided areas of 

urban development and selected for natural land use. Gosselink et al. (2003) found similar results 

as coyotes were found to avoid urban areas. Avoidance of urban areas by coyotes in this 
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ecoregion may stem from human avoidance behavior or lack of suitable resources (Tigas et al. 

2002, Gosselink et al. 2003, Riley et al. 2003, Gehrt et al. 2009). Although coyotes generally 

avoided urban development in this ecoregion, I observed coyotes at some sites occurring in 

urban areas. These anecdotal observations may be related to increased prey resources in these 

areas (e.g., eastern cottontail rabbits [Sylvilagus floridanus; Brillhart and Kaufman 1994, 1995; 

Gipson and Kamler 2002]) as habitat selection by coyotes may be influenced by an interaction of 

land use and prey availability (Massolo and Meriggi 1998, Carroll et al. 1999, Husseman et al. 

2003, Valeix et al. 2012). Unfortunately, I was unable to estimate eastern cottontail rabbit 

abundance at all of the sites and could not directly test this hypothesis. Future research should 

work towards identifying potential interactions between coyote habitat selection and prey 

abundances across varying levels of urban landcover.  

 

Although the influence of urban landcover was the dominant effect for initial site occupancy by 

coyotes, there were seven other competitive models. Both the negative effects of ‘Urban’ and 

positive effects of ‘Forest’ were included in almost all remaining competitive models. Turnover 

rates suggested coyotes were less likely to colonize and more likely leave forested areas.  

Transient coyotes in the Flint Hills selected for forested areas as compared to resident coyotes 

selecting for grasslands (Kamler and Gipson 2000b) suggesting social status may influence 

habitat selection by this species (Person and Hirth 1991, Kamler et al. 2005, Hinton et al. 2015). 

Alternatively, avoidance of forest landcover by coyotes may reflect seasonal resource changes as 

coyotes will exploit fruit and invertebrates during the summer and then shift towards mammalian 

prey items during the fall and winter (Brillhart and Kaufman 1994,1995; Gipson and Kamler 

2002). Edge density also had a positive effect on coyote occupancy, which is consistent with 
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other studies (Tigas et al. 2002, Hinton et al. 2015, Lesmeister et al. 2015) and likely a result of 

their foraging behavior (Theberge and Wedeles 1989). 

 

Contrary to my hypothesis, site occupancy and turnover by bobcats appeared insensitive to urban 

landcover. Rather, initial occupancy by bobcats was influenced positively by the amount of edge 

structure and forested areas surrounding sites. The Flint Hills are experiencing aggressive 

population expansions of eastern redcedar (Juniperus virginiana) into otherwise native 

grasslands (Briggs et al. 2002). Although I did not quantify forest composition in the analyses, 

many of the forested areas were dominated by eastern redcedar likely creating a very 

homogenous environment at sites. Bobcats often select habitats with varying forest types and 

areas with greater edge densities (Major and Sherburne 1987, Koehler and Hornocker 1991, 

Tucker et al. 2008, Donovan et al. 2011). Additionally, bobcats were more likely to colonize 

sites with larger proportions of grassland and row-crop agriculture. This is similar to past studies 

that have documented bobcats selecting grassland habitats (Kamler and Gipson 2000a, Tucker et 

al. 2008). Bobcats were likely colonizing sites with greater proportions of row-crop agriculture 

as these areas are largely near streams, creeks, or rivers in this ecoregion. Tucker et al. (2008) 

demonstrated stream densities to be a significant predictor of home range and core area sizes for 

bobcats; thus, bobcats in Flint Hills are likely using riparian areas as movement corridors.  

 

Contrary to my predictions, striped skunks were less likely to occur in and colonize urban areas. 

This result was unexpected given their ability to use a wide range of food resources and known 

space-use patterns (Greenwood et al. 1999, Dragoo 2009). Lesmeister et al. (2015) reported that 

skunks had a positive association with anthropogenic features including greater occupancy 
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probabilities near urban development. On the other hand, Ordeñana et al. (2010) observed that 

skunks were less likely to occur as the percentage of urban development increased and generally 

selected for native landscapes. Skunks may be avoiding urban development for multiple reasons. 

Skunks generally avoid crossing roads with high vehicle traffic (Gehrt 2005) and select for more 

open areas (Baldwin et al. 2004). Vehicle-related mortality for striped skunks is generally high 

(Barthelmess and Brooks 2010). Movements within urban areas may result in increased striped 

skunk mortality risks and preclude them from exploiting these sites. It is unclear why occupancy 

probabilities of striped skunks were lower in forested areas, although it may be a result of the 

homogenous vegetation structure seen in eastern redcedar forests. Shirer and Fitch (1970) 

reported that striped skunks select grassland landcover types over forested areas in northeast 

Kansas. Future research should focus on fine-scale habitat selection of striped skunks and also on 

understanding why forested areas may be underutilized in this ecoregion.  

 

Domestic cats, the only non-native carnivore observed in my study, were more likely to occupy 

and colonize sites with increased urban landcover. Other studies have also documented a positive 

correlation between housing density and cat occupancy (Crooks 2002, Sims et al. 2008, Kays et 

al. 2015). Domestic cats are considered a threat to native biodiversity conservation and have 

been identified as a significant source of mortality for native birds and mammals (Loss et al. 

2013, Kays et al. 2015). Increased housing development will likely lead to greater introductions 

as well as create more available habitat for domestic cats in the Flint Hills. Along with negative 

effects of urbanization (e.g., habitat loss, habitat fragmentation), domestic cats may pose an 

additive risk to native biodiversity affected by these novel land use changes.  
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Domestic cats were less likely to occur at sites with both high coyote occupancy probabilities 

and sites surrounded by agriculture. Intraguild predation of domestic cats by coyotes is common 

(Quinn 1997, Grubbs and Krausman 2009) and coyote presence is likely limiting domestic cat 

distributions in the Flint Hills (Gehrt et al. 2013, Kays et al. 2015). Indeed, apex predators can 

restrict mesopredator distributions (Crooks and Soulé 1999, Prugh et al. 2009, Newsome et al. 

2017) and urban areas may be providing domestic cats refugia from negative intraguild 

interactions in this ecoregion. Albeit a moderate effect, site occupancy by domestic cats was 

negatively related to row-crop agriculture. Horn et al. (2011) reported that domestic cats selected 

row-crop fields during the summer. However, their study occurred in a landscape dominated by 

row-crop agriculture (85% of the region was dominated by corn and soybean production; Illinois 

Department of Agriculture 2000) and not representative of the Flint Hills grassland-dominated 

landscape. Domestic cats may be avoiding row-crop agriculture in the Flint Hills as these areas 

are associated with greater coyote occupancy. However, future research is needed to test this 

hypothesis. 

 

Though I was unable to model habitat associations of red fox because of limited data, anecdotal 

evidence suggests that red foxes in the Flint Hills are more likely associated with human- 

modified landscapes. I detected almost twice as many independent red fox photos in areas with 

≥50% urban landcover. Historically abundant in the Flint Hills (Zumbaugh and Choate 1985), 

red fox currently appear limited in their spatial distributions. Berry et al. (2017) found similar 

results, suggesting that restored grasslands in Illinois were void of red fox populations. Coyotes 

may be influencing red fox distributions through direct predation (Sargeant et al. 1984, Gese et 

al. 1996, Henke and Byrant 1999), suggesting foxes in the Flint Hills may be using areas of 
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urban development as a refugia from coyotes. Gosselink et al. (2003) found similar results with 

red fox selecting human-related habitats as coyotes were generally avoiding anthropogenic 

features in east-central Illinois. Future studies should elucidate the cascading influence that 

coyotes, as an apex predator, have on prairie ecosystems. 

 

 Management Implications 

My study identified landscape features having the greatest influence on carnivore distributions in 

the northern Flint Hills, with urban landcover being an important driver of carnivore diversity 

and habitat use.  As urban areas and human population growth expand, understanding effects of 

urban development on wildlife populations will benefit conservation mitigation actions. Negative 

influences of urban landcover and domestic cat populations are well documented.  As urban 

areas expand in the Flint Hills, creating available habitat for domestic cats and limiting the 

distribution of other carnivore species, managers may need to mitigate the potential negative 

cascading effects that have the potential to affect biodiversity in this critical ecosystem. These 

consequences are also important for city planners and developers to recognize as urban 

expansion will likely necessitate the need for connected native habitat patches in or surrounding 

urban areas. As tallgrass prairies have been reduced to < 4% of their historical range, continued 

biodiversity research in the Flint Hills will likely help with future conservation and management 

efforts. 
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Figure 2.1 Carnivore occupancy study area in the Flint Hills ecoregion (outlined in black shape) 

of Kansas, USA. Study site locations (n = 74) were positioned along 8 transects 

representing urban-rural gradients in the municipalities of Manhattan and Junction during 

2016 and 2017. 
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Figure 2.1 Influence of urban (A) (D) (F), forest (B) (E), edge densities (C), coyote occupancy 

(G), and row-crop agriculture (H) landscape covariates on site occupancy probabilities for coyote 

(Canis latrans), bobcat (Lynx rufus), striped skunk (Mephitis mephitis), and domestic cat (Felis 

catus) across an urban-rural gradient in the Flint Hills ecoregion of Kansas, USA. Site occupancy 

(n = 74) was assessed using camera traps distributed across 8 transects covering the 

municipalities of Manhattan and Junction City, Kansas, during 2016 and 2017. Coyote 

occupancy was estimated from model-averaged single-season occupancy models. Solid lines 

(predicted occupancy probabilities) and dashed lines (95% confidence intervals) were 

determined from most-supported colonization model for each species. 
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Figure 2.2 Influence of urban (A) (D) (E), grassland (B), and row-crop agriculture (C) landcover 

types on colonization probabilities for coyote (Canis latrans), bobcat (Lynx rufus), striped skunk 

(Mephitis mephitis), and domestic cat (Felis catus) across an urban-rural gradient in the Flint 

Hills ecoregion of Kansas, USA. Site occupancy (n = 74) was assessed using camera traps 

distributed across 8 transects covering the municipalities of Manhattan and Junction City, 

Kansas, during 2016 and 2017. Solid lines (predicted colonization probabilities) and dashed lines 

(95% confidence intervals) were determined from most-supported colonization model for each 

species. 
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Figure 2.3 The effects of urban (A) and forested landcover (B) on extinction probabilities for 

coyote (Canis latrans) across an urban-rural gradient in the Flint Hills ecoregion of Kansas, 

USA. Site occupancy (n = 74) by coyotes was assessed using camera traps distributed across 

eight transects covering the municipalities of Manhattan and Junction City, Kansas, during 2016 

and 2017. Solid lines (predicted extinction probabilities) and dashed lines (95% confidence 

intervals) were estimated from the most-supported extinction model (Urban + Forest).   
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Table 2.1 Site occupancy, colonization, and extinction dynamics of coyote (Canis latrans), 

bobcat (Lynx rufus), red fox (Vulpes vulpes), gray fox (Urocyon cinereoargenteus), raccoon 

(Procyon lotor), striped skunk (Mephitis mephitis), domestic cat (Felis catus), domestic dog 

(Canis lupus familiaris), and American badger (Taxidea taxus) across Summer (July 2016), Fall 

(October 2016), and Winter (December 2017) seasons in the Flint Hills ecoregion of Kansas, 

USA. Presence of species at each site (n = 74) was determined using camera traps distributed 

across 8 urban-rural transects occurring in the Manhattan and Junction City municipalities.  

 

Species 

 

Season 

 

Naïve occupancya 

 

Ψb (SE) 

Naïve 

colonizationc 

Naïve 

extinctiond 

Coyote Summer 0.50 0.61 (0.07)   

 Fall 0.57 0.73 (0.05) 21 14 

  Winter 0.70 0.77 (0.06) 18 4 

Bobcat Summer 0.08 0.14 (0.06)   

 Fall 0.20 0.30 (0.06) 14 4 

  Winter 0.26 0.38 (0.08) 10 6 

Red fox Summer 0.09    

 Fall 0.14  9 5 

 Winter 0.19  11 7 

Gray fox Summer 0.01    

 Fall 0.00  0 1 

 Winter 0.00  0 0 

Raccoon Summer 0.79    

 Fall 0.89  11 3 

 Winter 0.74  1 10 

Striped skunk Summer 0.07 0.18 (0.10)   

 Fall 0.30 0.33 (0.05) 17 0 
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 Winter 0.39 0.42 (0.06) 13 6 

Domestic cat Summer 0.18 0.19 (0.05)   

 Fall 0.31 0.30 (0.05) 14 2 

 Winter 0.36 0.39 (0.06) 7 4 

Domestic dog Summer 0.08    

 Fall 0.09  6 4 

 Winter 0.09  6 5 

American badger Summer 0.00    

 Fall 0.05  4 0 

 Winter 0.00  0 4 

aNaïve occupancy = number of sites where the target species was detected/ total number of sites 
bΨ is the estimate of occupancy by target species after controlling for detection  
cNaïve colonization is the number of sites that a species was detected during a given season but 

not the previous season  
dNaïve extinction is the number of sites that a species was not detected during a given season but 

was detected the previous season. 
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Table 2.2 Competitive generalized mixed models explaining native carnivore species richness 

and diversity across sites (n = 74) distributed along an urban-rural gradient in the Flint Hills 

ecoregion of Kansas, USA. I used camera traps to document the presence of native carnivore 

species at each site during the summer (July 2016), fall (October 2016), and winter (January 

2017) seasons. Covariates ‘Urban’, ‘Grass’, ‘Forest’, and ‘Ag’ represent proportions of 

landcover types within a 1-km buffer surrounding camera sites. Models are ranked by 

descending ΔAICc values (Akaike’s Information Criteria, adjusted for small sample size). wi = 

model weight. -2l = -2(Log likelihood); K = number of parameters in each model.  

Category Model ΔAICc wi -2l K 

Richness Urban 0.00 0.27 250.74 3 

 Intercept Only 0.85 0.15 253.77 2 

 Grass 1.11 0.13 251.85 3 

 Urban + Forest 1.74 0.10 250.25 4 

Diversity Urban 0.00 0.52 368.87 3 

 Intercept Only 13.19 0.00 384.30 2 
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Table 2.3 Competitive species specific multi-season occupancy models explaining detection, 

initial occupancy, colonization, and extinction of coyote (Canis latrans) across sites (n = 74) 

distributed along an urban-rural gradient in the Flint Hills ecoregion of Kansas, USA. I used 

camera traps to document the presence of coyotes at each site during the summer (July 2016), 

fall (October 2016), and winter (January 2017) seasons. Detection covariate ‘Scent’ represents 

the number of days since a fatty acid tablet disk was applied. Covariates ‘Urban’, ‘Forest’, and 

‘Ag’ represent proportions of landcover types within a 1-km buffer surrounding camera sites. 

‘Edge’ also represents edge densities within the same buffer. Models are ranked by descending 

ΔAICc values (Akaike’s Information Criteria, adjusted for small sample size). wi = model 

weight. -2l = -2(Log likelihood); K = number of parameters in each model. 

Parameter Model ΔAICc wi -2l K 

Detection Scent 0.00 0.68 964.85 5 

 Intercept only 2.72 0.18 969.87 4 

Occupancy  Urban 0.00 0.16 960.87 6 

 Forest 1.03 0.09 961.90 6 

 Intercept only 1.60 0.07 964.85 5 

 Edge 1.64 0.07 962.51 6 

 Forest + Ag 1.78 0.06 960.21 7 

 Urban + Forest 1.78 0.06 960.21 7 

 Forest + Edge 1.83 0.06 960.26 7 

 Urban + Edge 1.89 0.06 960.32 7 

Colonization  Urban 0.00 0.34 949.61 7 

 Urban + Forest 1.97 0.13 949.05 8 

 Intercept only 8.82 0.00 960.87 6 

Extinction  Forest 0.00 0.23 944.76 8 

 Urban + Forest 1.33 0.12 943.49 9 

 Forest + Ag 1.48 0.11 943.65 9 

 Intercept Only 4.29 0.03 949.05 8 
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Table 2.4 Competitive species specific multi-season occupancy models explaining detection, 

initial occupancy, colonization, and extinction of bobcats (Lynx rufus) across sites (n = 74) 

distributed along an urban-rural gradient in the Flint Hills ecoregion of Kansas, USA. I used 

camera traps to document the presence of bobcats at each site during the fall (October 2016) and 

winter (January 2017) seasons. Detection covariate ‘Scent’ represents the number of days since a 

fatty acid tablet disk was applied and ‘Season’ represents the effect of different trapping seasons 

(October) (January). Covariates ‘Urban’, ‘Grass’, ‘Forest’, and ‘Ag’ represent proportions of 

landcover types within a 1-km buffer surrounding camera sites. ‘Edge’ also represents edge 

densities within the same buffer. Coyote occupancy covariate was estimated from model-

averaged single-season occupancy models. Models are ranked by descending ΔAICc values 

(Akaike’s Information Criteria, adjusted for small sample size). wi = model weight. -2l = -2(Log 

likelihood); K = number of parameters in each model.  

Parameter Model ΔAICc wi -2l K 

Detection Intercept only 0.00 0.51 278.57 4 

 Scent 1.80 0.21 278.07 5 

 Season 1.83 0.20 278.09 5 

Occupancy Forest + Edge 0.00 0.15 271.28 6 

 Edge 0.62 0.11 274.27 5 

 Forest  1.22 0.08 274.88 5 

 Edge + Urban 1.41 0.07 272.68 6 

 Intercept only 2.61 0.04 278.57 4 

Colonization  Grass 0.00 0.31 257.82 7 

 Grass + Ag 0.70 0.22 256.00 8 

 Grass + Coyote 1.55 0.14 256.85 8 

 Intercept only 11.02 0.00 271.28 6 
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Table 2.5 Competitive species specific multi-season occupancy models explaining detection, 

initial occupancy, colonization, and extinction of striped skunk (Mephitis mephitis) across sites 

(n = 74) distributed along an urban-rural gradient in the Flint Hills ecoregion of Kansas, USA. I 

used camera traps to document the presence of striped skunk at each site during the fall (October 

2016) and winter (January 2017) seasons. Detection covariate ‘Scent’ represents the number of 

days since a fatty acid tablet disk was applied and ‘Season’ represents the effect the different 

trapping season (October) (January). Covariates ‘Urban’, ‘Grass’, ‘Forest’, and ‘Ag’ represent 

proportions of landcover types within a 1-km buffer surrounding camera sites. ‘Edge’ also 

represents edge densities within the same buffer. Models are ranked by descending ΔAICc values 

(Akaike’s Information Criteria, adjusted for small sample size). wi = model weight. -2l = -2(Log 

likelihood); K = number of parameters in each model. 

Parameter Model ΔAICc wi -2l K 

Detection Intercept only 0.00 0.47 448.29 4 

 Scent 1.28 0.25 447.27 5 

 Season 1.88 0.18 447.87 5 

Occupancy Urban + Forest 0.00 0.39 430.11 7 

 Urban + Forest + Edge 1.99 0.14 429.59 8 

 Intercept only 12.34 0.00 447.27 5 

Colonization  Urban 0.00 0.37 416.77 8 

 Urban + Edge 1.87 0.14 416.05 9 

 Intercept only 12.82 0.00 429.59 8 

 

  



35 

Table 2.6 Competitive species specific multi-season occupancy models explaining detection, 

initial occupancy, colonization, and extinction of domestic cat (Felis catus) across sites (n = 74) 

distributed along an urban-rural gradient in the Flint Hills ecoregion of Kansas, USA. I used 

camera traps to document the presence of free ranging cats at each site during the summer (July 

2016), fall (October 2016), and winter (January 2017) seasons. Detection covariate ‘Scent’ 

represents the number of days since a fatty acid tablet disk was applied. Covariates ‘Urban’, 

‘Forest’, and ‘Ag’ represent proportions of landcover types within a 1-km buffer surrounding 

camera sites. ‘Edge’ also represents edge densities within the same buffer. Coyote occupancy 

covariate was estimated from model-averaged single-season occupancy models. Models are 

ranked by descending ΔAICc values (Akaike’s information criteria, adjusted for small sample 

size). wi = model weight. -2l = -2(Log likelihood); K = number of parameters in each model. 

Parameter Model ΔAICc wi -2l K 

Detection Intercept only 0.00 0.63 530.76 4 

 Scent 1.91 0.24 530.37 5 

Occupancy  Urban + Coyotes 0.00 0.16 502.30 6 

 Urban + Coyotes + Ag 0.25 0.14 500.11 7 

 Coyotes + Forest + Ag 0.78 0.11 500.64 7 

 Urban + Edge 1.24 0.08 503.54 6 

 Urban 1.62 0.07 506.30 5 

 Intercept only 23.79 0.00 530.76 4 

Colonization  Urban 0.00 0.24 494.37 8 

 Urban + Edge 1.85 0.09 493.62 9 

 Intercept only 2.96 0.05 502.30 6 
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Chapter 3 - Conclusion 

Tallgrass prairie is one of the most critically endangered ecosystems in the world (Noss et al. 

1995). Native tallgrass prairie has been drastically reduced to 4% of its historic range in North 

America with the last largely contiguous tract occurring in the Flint Hills of Kansas and 

Oklahoma, USA (Knapp and Seastedt 1986, Samson and Knopf 1994, Deluca and Zabinksi 

2011). Although relatively safe from conversion to row crop agriculture, urban development is 

expected to increase in the Flint Hills and is considered an emerging threat to native biodiversity 

(Hamilton et al. 2000). Urban land development fragments natural landscapes and destroys 

native habitats (Andren 1996, Fahrig 1999). Along with native tallgrass prairie and expanding 

urban landcover, this ecoregion also includes a mix of row-crop agriculture (e.g., corn [Zea 

mays] and soybeans [Glycine max]), hayland/pasture, forest, and wetlands. Relatively little 

research has been done to increase our understanding of the potential effects that urbanization 

has on carnivore communities in this imperiled ecosystem. Carnivores have high trophic 

posititions, slower population growth rates, and large home range sizes (Gittleman et al. 2001, 

Crooks 2002). These new urban environments may have a greater effect on carnivores because 

of their ecological traits.  

 

I used 3 seasons of presence-absence data to elucidate occupancy dynamics of 4 carnivore 

species occurring in this ecoregion. Using camera traps distributed along an urban-rural gradient, 

I quantified effects of urban landcover on carnivore communities in the Flint Hills. I detected 9 

different carnivore species including 7 native carnivores; coyote (Canis latrans), bobcat (Lynx 

rufus), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), American badger (Taxidea 

taxus), red fox (Vulpes vulpes), and gray fox (Urocyon cinereoargenteus), and two nonnative 
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species; domestic cat (Felis catus) and domestic dog (Canis lupus familiaris). Species-specific 

detection varied throughout the year, but I was able to observe ≥1 carnivore species at 97% of 

the camera sites across 3 seasons. Unfortunately, due to limited data, I was unable to analyze 

habitat associations for all species observed. Low numbers of detection for 5 of the species 

limited my analyses to a subset (coyote, bobcat, striped skunk, and domestic cat) of all detected 

species. My results suggest that coyotes and skunks tend to avoid urban landscapes and 

populations may be restricted by urban development. A non-native carnivore, domestic cat, 

appeared to use habitats in or close to urban development. My results, in combination with 

others, suggest that effects of urban development occur in a range of urban sizes and are not 

restricted to low or highly developed areas. 

 

My study uncovered a decrease in native carnivore richness and diversity as urban development 

increased. This result agrees with other research reporting that urban landcover has a negative 

effect on species diversity (McKinney 2002, Aronson et al. 2014). Urbanization has eliminated 

many native species and accounts for high extinction rates around the world (Blair 1996, 

Marzluff 2001, McKinney 2002). Mathewson et al. (2008) and Ordeñana et al. (2010) had 

similar findings where carnivore richness declined with increased urban intensity and human 

activities. Nonnative species have also been shown to increase as urban development increase 

(Blair 1996). Although not included in the most-supported model of native carnivore richness, it 

is interesting to note that grasslands or prairie landscapes had a positive effect on species 

richness. 
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Tallgrass prairie is a critically endangered ecosystem, and home to many imperiled plants and 

animals (Samson and Knopf 1994, Noss et al. 1995). The Flint Hills represent the largest 

remaining tract of tallgrass prairie in North America, though this ecoregion is currently 

threatened by urban expansion (The Nature Conservancy 2000). My research has provided the 

first look into how urban expansion is affecting carnivore communities in this threatened 

ecosystem. Using presence-absence data and multi-season modeling approaches, I uncovered 

support for landscape variables that had the greatest influence on carnivore distributions through 

the northern Flint Hills. Understanding how wildlife populations are distributed across 

landscapes could potentially benefit management efforts targeted at restoring/maintain 

biodiversity or reducing negative human conflicts. Continued research focused on understanding 

fine-scale factors influencing species’ movements may provide additional insight into how 

carnivore communities are structured in the Flint Hills. 
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