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Abstract

Wheat breeders are constantly working to develop new wheat varieties with improved 

performance for agronomically important traits such as yield and disease resistance. Identifying 

better ways of phenotyping germplasm, developing methods for predicting performance based on

genetic information, and identifying novel sources of genetic disease resistance can all improve 

the efficiency of breeding efforts. Three studies relating to these research interests were 

conducted. Synthetic hexaploid wheat lines were screened for resistance to root-lesion 

nematodes, an economically important pest of wheat. This resulted in the identification of three 

lines resistant to the root-lesion nematode species Pratylenchus thornei. Grain yield data from 

multi-location yield trials and average yields for counties in Kansas were used to identify wheat 

production areas in Kansas. Knowledge obtained from this study is useful for both interpreting 

data from yield trials and deciding where to place them in order to identify new higher yielding 

varieties. These data also aided the final research study, developing a genomic selection (GS) 

model for yield in the Kansas State University wheat breeding program. This model was used to 

assess the accuracy of GS in conditions experienced in a breeding project. Available 

measurements of GS have been constructed using simulations or using conditions not typical of 

those experienced in a wheat breeding program. The estimate of accuracy determined in this 

study was less than many of the reported measurements. This measure of accuracy will aid in 

determining if GS is a cost efficient tool for use in wheat breeding.
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model for yield in the Kansas State University wheat breeding program. This model was used to 
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Chapter 1 - Root-Lesion Nematode (Pratylenchus spp.) Resistance in

Synthetic Hexaploid Wheat

Abstract

Genetic resistance in bread wheat [Triticum aestivum L. (2n=6x=42, AABBDD)] to root-

lesion nematodes (Pratylenchus spp.) in Kansas has not been identified. Synthetic hexaploid 

wheats (2n=6x=42, AABBDD) are a potential source of resistance to root-lesion nematodes 

based on screenings conducted in Australia. A set of 200 synthetic wheats and 10 bread wheats 

was screened for resistance to P. thornei in a greenhouse study using two replications. The 40 

most resistant and three least resistant synthetic wheats were reexamined with five bread wheats 

in a four replication screening for resistance to P. thornei and a four replication screening for 

resistance to P. neglectus. Both screenings showed significant (P < 0.01 for P. neglectus and P < 

0.001 for P. thornei) differences between lines, but no correlation was observed between 

resistance to P. thornei and P. neglectus (r = -0.1, P = 0.5). Multiple comparison testing revealed 

synthetic wheats with resistance to P. thornei better than the screened bread wheats (Tukey 

adjusted P < 0.05), but not for P. neglectus. A six replication screening of P. thornei resistance 

confirmed two synthetic wheats with resistance to P. thornei better than the best tested Kansas 

variety (Tukey adjusted P < 0.05). These two synthetic wheats are a potential source of genetic 

resistance to P. thornei that can be utilized for breeding more resistant bread wheats.

Introduction

Root-lesion nematodes (Pratylenchus spp.) are an economically important pest to bread 

wheat [Triticum aestivum L. (2n=6x=42, AABBDD)] production. They have been estimated to 

cost the Australian wheat industry $36 million per year (Brennan and Murray, 1998). A study 

conducted in the Pacific Northwest (Oregon, Washington, and Idaho) estimated root-lesion 

nematodes to be responsible for up to a five percent reduction in yield resulting in a loss of up to 

$51 million per year (Smiley, 2009). In Kansas, they are estimated to reduce average annual 

grain yield by two percent (Appel et al., 2013). Field surveys have identified P. neglectus as the 

most common species of root-lesion nematode in Kansas and P. thornei, the second most 

common, occurred in just one percent of soil samples (Todd et al., 2014). 
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The best way to control root-lesion nematodes in wheat is to plant resistant varieties. 

However, there are no varieties adapted to Kansas that have been identified as resistant. To 

develop resistant varieties adapted to Kansas, a source of resistance to nematodes found in 

Kansas must first be identified. Synthetic hexaploid wheat (2n=6x=42, AABBDD), produced by 

the hybridization of Triticum turgidum L. subsp. durum (2n=4x=28, AABB) and Aegilops 

tauschii (2n=2x=14, DD), has been identified as a potential source of resistance to root-lesion 

nematodes in studies conducted in Australia (Thompson, 2008). These synthetic wheats can 

readily be crossed with bread wheat to transfer resistance genes (Gill and Raupp, 1987). One 

synthetic wheat, CPI133872, has been crossed to bread wheat to produce a genetic mapping 

population (Zwart et al., 2005). Quantitative Trait Loci (QTLs) identified in this mapping 

population showed alleles conferring resistance from the synthetic wheat line were present on 

chromosomes 6D and 4B, consistent with previous work (Zwart et al., 2005).  Since screening of

synthetic wheats was carried out on nematodes found in Australia, it is unclear if their resistance 

would be effective on nematode populations found in Kansas. To address this issue, this study 

seeks to screen synthetic wheats for resistance to P. thornei and P. neglectus populations found 

in Kansas. The goal is to identify a synthetic wheat line that can be used as a source of resistance

for breeding new resistant wheat varieties.

Materials and Methods

Plant Material

• 200 synthetic wheats produced by CIMMYT (International Maize and Wheat 

Improvement Center); seed obtained from J. Fellers was used in the first screening; seed 

from J. Raupp and B. Gill was used in subsequent screenings

• Five wheat varieties adapted to Kansas were used as checks: Jagger, Karl 92, Armour, 

Overley, and Everest

• Five wheat varieties from Oregon and Washington that have been screened for tolerance 

to root-lesion nematodes or are derived from lines which have been screened (Smiley, 

2009): Alpowa, Goetze, ORCF-102, Tubbs 06, and OR4081056

• An association mapping panel containing 234 common wheat varieties from the Great 

Plains region; seed provided by Eduard Akhunov
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Screening Trials

Screenings for synthetics were conducted in four separate greenhouse trials. The first trial

screened all synthetic wheats, Kansas checks, and Oregon and Washington lines for P. thornei 

resistance. This trial was ran in two blocks, spaced two weeks apart. Each block included one 

entry for each synthetic wheat and up to three replications of each check. The Oregon and 

Washington varieties were only present in the second block due to unavailability of seed at time 

of planting. The second and third screening trials examined the Kansas checks and the 40 most 

resistant and three most susceptible synthetic wheats as identified in the first trial. Each trial was 

laid out in a randomized complete block design with four blocks. The final trial screened for P. 

thornei resistance using the Kansas checks and six synthetic wheats representing the four most 

and two least resistant lines to P. thornei as determined in the second P. thornei screening. This 

trial used six replications in a completely randomized design. The association mapping panel was

used to screen for resistance to P. thornei. This trial used a randomized complete block design 

containing four blocks blocked by time. Each block was spaced one to two months apart.

Screening Protocol

Two seeds per replicate were planted in 500 cm3 tubes. Soil and nematodes for screening 

were collected at sites previously identified to have high incidence of a single root-lesion 

nematode species. Soil for P. thornei screenings was collected from a field near Conway 

Springs, Kansas. A field near Caldwell, Kansas was used for P. neglectus screening. Prior to 

planting, soil was homogenized and the number of nematodes was determined. If nematode 

counts were low, additional nematodes from previous screenings were added. The first two 

screenings for P. thornei used nematodes already present in the soil and each trial contained 

between 2000 and 2400 nematodes per tube. The final P. thornei screening used additional 

nematodes from an earlier screening applied 2 cm below the seeds to bring the number of 

nematodes per tube to 1500. The P. neglectus screening contained about 370 nematodes per tube 

already present in the soil and an additional 720 nematodes per tube applied 2 cm below the 

seed. For the association mapping trial, the first replication used just the nematodes already 

present in the soil (520 nematodes per tube). All subsequent replications used additional 

nematodes bring the total number per tube to 1,600 to 1,800.
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 Plants were watered from the top as needed and grown for 8 to 9 weeks at 25°C. At 

which time, the roots were extracted, cleaned, and transferred to 250 ml beakers containing about

125 ml of water. The beakers were placed on racks and aerated to collect nematodes inside the 

roots. After one week, the water was passed through a sieve and the roots were rinsed above the 

sieve to collect nematodes. The volume of water containing collected nematodes was brought to 

20 ml for each sample. A 4 ml aliquot was taken, placed on a counting plate, and the number of 

nematodes present was determined by counting half of the plate with a dissecting microscope. 

Roots were dried and weighed. The number of nematodes per gram of root was calculated. This 

number was log transformed and analyzed in an ANOVA using R (R Core Team, 2013). One-

way, simultaneous multiple comparison tests were conducted in the four replication trials to 

determine if any synthetic wheats were more resistant than any of the checks. A Tukey's honest 

significant difference (HSD) test was used on the six replication screening trial to determine 

which wheats were significantly different for nematodes per gram of root.

Results

An ANOVA for the initial two replication screening trial for P. thornei resistance found 

statistically significant (P < 0.001) differences between tested lines. The average number of 

nematodes per gram of root for each line ranged from 325 to 8704 (Figure 1.1). The four 

replication screening for P. thornei resistance also showed statistically significant (P < 0.001) 

differences between lines (Figure 1.2). A one-way, simultaneous multiple comparison test 

identified fourteen synthetics significantly (P < 0.05) more resistant than one to four of the 

checks (results not shown). No synthetic was significantly more resistant than all five checks. 

The four replication screening for P. neglectus resistance had an ANOVA with statistically 

significant (P < 0.01) differences between lines (Figure 1.3). However, no synthetic had 

resistance significantly less than any of the checks in the one-way, simultaneous multiple 

comparison test. No correlation was observed between resistance to P. thornei and resistance to 

P. neglectus (r = -0.1, P = 0.5). Statistically significant (P < 0.001) differences were observed in 

the six replication screening for P. thornei resistance (Figure 1.4). A Tukey's HSD test showed 

three of the four resistant synthetic lines tested were significantly (P < 0.05) more resistant than 

the check varieties (Table 1.1). The two susceptible synthetic lines were significantly (P < 0.05) 

more susceptible than all of the checks except for Karl 92. Among the checks, only Armour and 
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Karl 92 were significantly different (P = 0.008). However, they weren't significantly different in 

the four replication trial for P. thornei.

Very few nematodes were recovered in the fourth replication of the association mapping 

panel screening, so this replication was discarded. No significant difference was found between 

association mapping panel lines using the first three replications. A calculation of statistical 

power was performed to determined how many replications would be needed to find significant 

differences between the observed differences in the first three replications. This test determined 

that 11 replications would be needed. This was taken as an indication that there were not any 

meaningful differences in genetic resistance to P. thornei between association panel lines.
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Figure 1.1: Histogram of average P. thornei nematodes per gram of root 
for synthetic wheats examined in the two replication trial.
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Figure 1.2: Box plot of nematodes per gram of root for lines* evaluated in the four 
replication P. thornei screening trial.
*Numbers correspond to CIMMYT's synthetic ID numbers (Mujeeb-Kazi and Hettel, 1995)
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Figure 1.3: Box plot of nematodes per gram of root for lines* evaluated in the four 
replication P. neglectus screening trial.
*Numbers correspond to CIMMYT's synthetic ID numbers (Mujeeb-Kazi and Hettel, 1995)
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Figure 1.4: Box plot of nematodes per gram of root for lines* evaluated in the six 
replication P. thornei screening trial.
*Numbers correspond to CIMMYT's synthetic ID numbers (Mujeeb-Kazi and Hettel, 1995)
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Table 1.1: P-values for Tukey's honest significant difference test of nematodes per gram of 
root in the six replication P. thornei screening trial.

118 127 133 175 201 74 Armour Everest Jagger Karl 92
127 ***
133 *** NS
175 *** NS NS
201 NS *** *** ***
74 *** NS NS NS ***

Armour *** NS ** NS *** **
Everest *** ** *** ** ** *** NS
Jagger *** * *** * *** *** NS NS

Karl 92 NS NS *** *** NS *** ** NS NS
Overley *** NS *** * ** *** NS NS NS NS

NS, *, **, and *** represent P-values > 0.05, < 0.05, < 0.01, and < 0.001, respectively

Lines1:

1Numbers correspond to CIMMYT's synthetic ID numbers (Mujeeb-Kazi and Hettel, 1995)



Discussion

The three synthetic lines with resistance greater than all check varieties in the six 

replication trial are prime candidates for sources of genetic resistance to P. thornei found in 

Kansas. Having been found resistant in the two previous trials strengthens confidence that these 

lines are more resistant than the examined checks. Unfortunately, these lines were not found to 

be more resistant to P. neglectus than check varieties. This species is the predominate root-lesion

nematode species in Kansas, so resistance to P. thornei alone is not sufficient for producing a 

root-lesion nematode resistant variety for Kansas. Lack of correlation between P. thornei and P. 

neglectus resistance suggests that to develop a variety resistant to both, re-screening of a large set

of synthetics for P. neglectus would have to occur. Resistance to both species from different 

synthetics would then have to be crossed into one line to develop a wheat variety that is resistant 

to both species.
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Chapter 2 - Identifying Production Areas for Wheat in Kansas

Abstract

Accounting for genotype-by-environment interaction (GxE) in a breeding program can be

made easier with an understanding of production areas within target environments. Wheat 

(Triticum aestivum L.) production areas in Kansas were examined using data from a multi-

location yield trial which tests advanced breeding lines, and estimates for average grain yield per 

Kansas county. Hierarchical clustering and a factor analysis was applied to both data sets to 

identify putative production areas. A clear division into an eastern and a western production area 

was observed in all analyses. Indication for some greater subdivision into smaller production 

areas was observed in some analyses. Limitations in the data sets examined hindered the ability 

to draw firm conclusions about borders for these smaller production areas and the ability to 

adequately examine the impact of yearly fluctuations. Collection of new data is proposed to 

better model production areas in Kansas by modeling dynamic production area whose borders 

change according to yearly fluctuations.

Introduction

Genotype by environment interaction (GxE) can make developing plant varieties with 

improved performance challenging. This is due to the potential for relative variety rankings for 

agronomically important traits to differ according to environmental conditions. This makes it 

unlikely, and probably impossible, for there to be a single best variety for all conditions. 

Identifying a best variety is thus dependent on where and under what conditions it will be grown.

A convenient way of handling this challenge is to partition locations into regions where GxE is 

minimal. These regions will be referred to as production areas. Relative rankings within 

production areas are less volatile due to decreased GxE. Selecting improved varieties for a 

production area can then be accomplished by averaging performance over sites contained within 

that area. 

The mega-environment strategy used by CIMMYT (International Maize and Wheat 

Improvement Center) is an example of this approach. Mega-environments are defined as 

potentially non-contiguous areas spanning multiple countries that share similar biotic and abiotic 
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stresses, cropping system requirements, and consumer preferences (Gauch and Zobel, 1997). As 

implemented by CIMMYT, this strategy is used to develop germplasm with high and stable yield

across a wide range of environments (Braun et al., 1996). That is, they produce broadly adapted 

germplasm that can be utilized in several countries. Wheat (Triticum aestivum L.) production in 

Kansas is divided into two mega-environments (Braun and Payne, 2012). This split between 

mega-environments occurs at a point slightly west of the center of the state and divides Kansas 

into eastern and western halves. 

Wheat breeding at Kansas State University (KSU) focuses on developing more narrowly 

adapted varieties, relative to CIMMYT. This is done to maximize yield potential within Kansas. 

Focusing on more narrowly adapted varieties means CIMMYT's mega-environments may not 

minimize GxE enough to best serve KSU breeding efforts. Identifying regions similar too, but on

a smaller scale than CIMMYT's mega-environments may prove useful. Identification of these 

areas has previously been accomplished using replicated, multi-location yield trials. For 

example, Peterson used data from the Northern and Southern Regional Performance Nurseries to 

classify testing locations in the Great Plains (1992). His study utilized only four sites in Kansas, 

so its resolution was rather poor for the state. A testing nursery with more locations would have 

to be used to achieve adequate resolution.

The Kansas Intrastate Nursery (KIN) is a replicated, multi-location test for advanced 

wheat lines in Kansas. This nursery typically evaluates about a dozen locations each year. The 

locations are split between two breeding projects at KSU, the Hays project which focuses on 

western Kansas and the Manhattan project which focuses on central and eastern Kansas. The 

greater number of locations evaluated in this nursery should allow for adequate resolution. 

Unfortunately, the data set has its own limitations: test locations change over years; few long-

term checks are used, resulting in high yearly turnover of test varieties; and the Hays and 

Manhattan projects evaluate slightly different sets of varieties. Each project evaluates between 

30 and 40 varieties in the KIN each year. About 10 of those varieties are not common between 

the two projects.

Average county yield data may be useful as an alternative to multi-location yield trials. 

The United States Department of Agriculture's National Agriculture Statistics Service (NASS) 

makes yearly estimates of average wheat yield per acre for each county in Kansas. Since there 

are 105 counties in Kansas, this data set has a higher degree of resolution than the KIN data. 
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Explicit measurement of GxE with this data isn't possible, because yields aren't listed according 

to cultivar. Indirect measurement of GxE may be possible. An estimate for average yield in a 

county is a measurement for all wheat grown in that county. This is impacted by which cultivars 

were grown, production practices used, and environmental factors experienced. Counties with 

similar yearly fluctuations for average county yield are expected to be similarly impacted by 

these three factors. Since these factors are tied to GxE, grouping by fluctuations in county yield 

is expected to be roughly equivalent to grouping by GxE.

The goal of this study is to divide Kansas into production areas. Two data sets were used 

to accomplish this. Data from the KIN was used to identify similar testing locations using 

hierarchical clustering and factor analysis. Average county yield data from the NASS was used 

to find groups of similar Kansas counties using hierarchical clustering and factor analysis. 

Results from these analyses were compared to draw conclusions about the general structure of 

presumptive production areas in Kansas.

Materials and Methods

Eighteen years (1996-2013) of grain yield data from the KIN were examined. Only trials 

with a coefficient of variation less than thirteen and locations evaluated for more than six years 

were considered. Average cultivar yields were calculated on a by location by year basis 

according to the most appropriate statistical analysis for each trial. Correlations between 

locations were calculated using the method described by Peterson (1992). This involved first 

calculating all within year correlations between locations, applying a Fisher z-transformation to 

these correlations, averaging the transformed values across years, and finally transforming back 

to correlation coefficients. A factor analysis using the principal component extraction method 

was performed on the resulting correlation matrix. The “psych” package in R was used to 

determine the recommended number of factors based on complexity one very simple structure 

(VSS) and Wayne Velicer's minimum average partial (MAP) (Revelle, 2013). If the two criteria 

disagreed, a number of factors within the recommended numbers was chosen based on 

interpretability of the solution. An oblimin rotation was applied to the factors to aid in 

interpretability. This rotation was chosen because it allows for correlated factors. Since the 

underlying factors represent regions, they are expected to be correlated based on their proximity 
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to each other. Hierarchical clustering of locations was performed using the average distance 

method and a distance matrix calculated using one minus the correlation.

 The NASS website (http://www.nass.usda.gov/Quick_Stats/index.php) was used to find 

average wheat yield per acre for each county in Kansas over a twenty-five year period (1983-

2007). Groups of similar counties were determined using hierarchical clustering with multiscale 

bootstrap resampling implemented in the R package 'pvclust' (Suzuki and Shimodaira, 2006). 

The number of bootstraps was set to 10,000. Tree selection was performed using a 0.9 cutoff of a

biased adjusted measure for the bootstrap probability known as the approximately unbiased (AU)

p-value (Shimodaira, 2002). The number of clusters to retain was also examined using 

partitioning around medoids (PAM). A PAM clustering was performed using the 'fpc' package in

R (Hennig, 2014). The optimum number of clusters was determined using the average silhouette 

width (ASW) criterion. A factor analysis using the principal component extraction method was 

also conducted to identify regions of similar counties. The number of factors to retain was 

determined with the same method used for the KIN data. An oblimin rotation was applied to aid 

in interpretability. Factor loadings for each county were plotted using Quantum GIS (Quantum 

GIS Development Team, 2013). All statistical analyses were performed using the R language (R 

Core Team, 2013). 

Results

The VSS and MAP criteria both suggested a two component solution for the factor 

analysis of KIN data. Two factors explained 58% of the total variance and had a correlation of 

0.15 between them. Factor loadings with an absolute value greater than 0.4 are presented in 

Table 2.1. The St. John location was the only one to show split loadings. This is a site managed 

by the Hays program and is farther southeast of than any of their other sites. The remaining sites 

split into factors cleanly according to if they were managed by the Hays or Manhattan program. 

For this reason, factors were labeled as Hays and Manhattan. The cluster analysis dendrogram is 

presented in Figure 2.1. Its first split divides all sites according the program that managed them, 

except for the St. John site which clusters with Manhattan program sites. The locations of these 

site are presented in Figure 2.2 with sites colored according to the first split in the dendrogram.
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Table 2.1: Factor loadings greater than 0.4 
for testing locations in KIN data.

Manhattan Factor Hays Factor
Manhattan 0.78 Hays 0.78
Hutchinson 0.71 Colby 0.67
Belleville 0.77 Garden City 0.75
Everest 0.78 Ness 0.79
Gypsum 0.71 Osborne 0.68
Hesston 0.70 Graham 0.77
Caldwell 0.61 Ford 0.62
Barber 0.75 St. John 0.57
St. John 0.46
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Figure 2.1: Dendrogram for hierarchical clustering of locations in the KIN.

Figure 2.2: Analyzed KIN locations. Locations with blue symbols belong to the 
"Manhattan" cluster and red symbols belong to the "Hays" cluster.



Five and two factor solutions for average county yield data were suggested by MAP and 

VSS, respectively. The elbow method suggests a two factor solution which explains 76% of the 

total variance and has a 0.16 correlation between factors. Factor loadings for this solution 

indicate a vertical split that divides Kansas roughly in half (results not shown). A three factor 

solution explaining 81% of the total variance was chosen as the 'best' representation of the data 

and is presented herein. This solution was chosen since it explained a higher proportion of total 

variance, better accomplished the goal of dividing the state into smaller regions, and was readily 

interpretable when examining factor loadings. Solutions with more factors were deemed less 

interpretable. The three factors were named central, southeastern, and western based on 

geographic distribution of their loadings. The central factor correlated to the western and 

southeastern factors at 0.28 and 0.53, respectively. Correlation between the western and 

southeastern factors was -0.13. Factor loadings are presented in Figures 2.3, 2.4, and 2.5. Five 

clusters of counties were identified with the 0.9 AU p-value cutoff (Figure 2.6). Using a 0.88 AU

p-value cutoff would reduce the number of clusters to two. The two western clusters would 

merge into one and the three eastern clusters would form the other cluster. The PAM clustering 

analysis suggested two clusters using the ASW criterion.
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Figure 2.4: Factor loadings for central factor.

Figure 2.3: Factor loadings for western factor.
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Figure 2.5: Factor loadings for southeastern factor.

Figure 2.6: Clusters identified using bootstrapping and an AU p-
value cutoff of 0.9.



Discussion

The KIN sites were well explained by splitting them into an eastern and western group 

based on factor loadings and the prominent split in the cluster dendrogram. Except for the St. 

John site, these sites split strictly according to whether they were managed by the Hays or 

Manhattan projects. The Manhattan and Hays projects target their breeding efforts for the eastern

and western halves of states, respectively. Thus, the east/west division was expected due to this 

and due to CIMMYT's mega-environments. This split may be confirmation that these projects 

have picked their sites well. However, differences in data between the projects could also have 

influenced this division. Most concerning is that the difference in which lines are evaluated by 

each project. This difference could be making sites from the same program appear more similar 

than they actually are. The actual division between sites may not be as clear cut as suggested by 

data if this is the case. There was no strong evidence for a division into smaller groups than these

two. Thus, no additional insight was discovered about how to handle GxE in Kansas, beyond the 

current Hays/Manhattan split. Limited power due to short comings in this data set may be at 

fault, or smaller regions may not be as meaningful as expected.

Average county yield data gave a more nuanced view of production areas in Kansas, but 

still supported a two production area split. For example, the factor analysis identified three 

factors with a fair amount of correlation between them. When considering these correlations and 

split loadings for many counties, the factor analysis shows strong evidence of two main 

production areas. Some degree of finer subdivision may be inferred. Two correlated factors in 

the eastern portion of the state indicates there is a subdivision between the southeastern corner 

and the rest of the eastern part of the state. This may be explained by average annual 

precipitation. The southeastern corner is the wettest part of Kansas (U.S. Geological Survey, 

2005). The rest of the state follows an east-west gradient for precipitation that gets dryer in the 

west. Counties in the center of the state had split loadings on eastern and western factors. This 

may suggest a gradual transition from one region to another mirroring the precipitation gradient. 

Clusters identified using the bootstrapping method appear to orient according to the precipitation

gradient, giving further evidence of a gradual transition. 

It should be noted that the AU p-value used to identify clusters was originally developed 

for phylogenetic analyses where the number of observations exceeds the number of individuals 
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(Shimodaira, 2002). Since this condition isn't met (i.e. individuals = counties = 105, observations

= years = 25), the AU p-values should be viewed as inexact. A relatively lenient p-value cut-off 

of 0.9 was also used, so results from this method of clustering are lacking a high degree rigor. 

The ASW criterion, presumed to be more rigorous, identified just two clusters. These two 

methods tackle the problem of identifying clusters in very different manners, so a difference in 

their results wasn't unexpected. The bootstrapping method searches for clusters by identify 

counties that can reliably be grouped together. The ASW criterion seeks to identify an optimal 

number of clusters which maximizes differences between clusters while minimizing differences 

within a cluster. Taken together, results from these two methods can be interpreted in the same 

manner as results from the factor analysis. That is, there are prominent western and eastern 

production areas with evidence of a gradual transition between them. 

Dividing Kansas into two production areas is supported by results from all analyses. 

Where to make that division is less clear, as is whether any further subdivisions should be made. 

Weather and disease patterns are different each year. How representative a location is relative to 

a production area probably changes according to these yearly fluctuations. Dynamic borders for 

production areas that change according to yearly conditions are probably more representative of 

true patterns. Under these conditions, drawing firm borders between production areas and 

partitioning into production areas with minor differences would be difficult. This may be the 

source of ambiguity in the results from this experiment. Unfortunately, available data isn't 

sufficient to adequately examining these yearly fluctuations. Data from a multi-location yield 

trial with several years of data consisting of consistent locations and varieties tested across years 

is needed to thoroughly examine these yearly fluctuations and create a dynamic model. Until 

such a data set becomes available, dividing Kansas into two production areas, east and west, is 

best. Care should be taken when interpreting data in the boundary between production areas to 

ensure that they are included in the most representative production area. Care needs to also be 

taken when considering the southeastern corner of Kansas, because the data might not be 

representative of the rest of the eastern production area.
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Chapter 3 - GSwGBS: an R package for Genomic Selection with

Genotyping-by-Sequencing Markers

'GSwGBS' is an add-on package for the R programming language designed for 

performing genomic selection (GS) using markers obtaining via genotyping-by-sequencing 

(GBS). Specifically, it is for GBS markers obtained using the two restriction enzyme, de novo 

technique described by Poland et al. (2012a). There are three functions in the package to 

facilitate this task: GBSPipeline, hap2marker, and GS.model. 'GSwGBS' is freely available on 

GitHub (https://github.com/gaynorr/GSwGBS) and listed under the GNU General Public 

License. 

GBSPipeline

The GBSPipeline function implements bioinformatic steps needed to convert raw 

sequence data in fastq or qseq format to single nucleotide polymorphism (SNP) markers. Most 

code needed to perform these steps is written in Java, so the 'rJava' package is used (Urbanek, 

2013). The 'rJava' package is used to initialize the Java Virtual Machine (JVM) and create an 

instance of a Java class named GBSPipeline which is included in the 'GSwGBS' package. The 

GBSPipeline Java class depends on the TagsToSNPsNoAnchor Java class also included in the 

'GSwGBS' package and several classes and libraries found within the software program TASSEL

4.0 (Bradbury et al., 2007). To access classes and libraries within TASSEL, the user must have a 

copy of TASSEL version 4.0 standalone installed on their computer. This software is freely 

available online (http://tassel.bitbucket.org/TasselArchived.html). A path to the user's copy of 

TASSEL is supplied as an argument to the GBSPipeline function so it can be added to the JVM's

classpath. This makes classes and libraries within TASSEL available to the GBSPipeline Java 

class.

In addition to supplying a path to a copy of TASSEL, the user also supplies GBSPipeline 

with paths to their sequence data and a key file. These data are used to perform the GBS 

bioinformatic pipeline described by Poland et al. (2012a). Resulting output is written to multiple 

files in the user's work directory. Descriptions of these files can be found in TASSEL's help 

documentation for its GBS pipeline. The SNP markers are contained within three files with .hap 
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extensions. These files are assigned numbers based on the number allowable mismatches used 

during sequence alignment (i.e., 1, 2, and 3). 

hap2marker

The hap2marker function converts the three .hap files generated by GBSPipeline to a 

matrix of numerically coded SNPs for use in subsequent GS model construction. This is 

accomplished by sequentially reading in each .hap file and filtering markers for the amount of 

missing data based on a user supplied parameter. The SNPs from each file are merged together 

and any duplicated SNP markers are removed. An optional step can remove SNP data from any 

entries containing the phrase “BLANK” in their names. Such entries are used to denote a blank 

well in DNA isolation plates and is used to check that plates were properly processed. 

The SNP allele scores, which are coded in letter format, are then converted to a numeric 

format. Major alleles are given a value of 1, heterozygotes become 0, and minor alleles become 

-1. When allele frequencies are equal, the first listed allele becomes 1 and the second allele 

becomes -1. Any SNPs with equivalent numeric scores are reduced to a single representative 

SNP marker. SNPs with equal allele frequencies are tested both as scored and with a sign change

applied to their scoring to determine SNPs with equivalent scores. Finally, missing data can be 

imputed before returning the numerically scored SNPs. Methods for imputing missing data 

include using the mean, median, EM algorithm, or a random forest. 

GS.model

The GS.model function is a wrapper for obtaining GS predictions using statistical models

implemented in other R packages. The function was designed to minimize the amount of user 

generated coded needed to run these models, create a consistent method for calling each model, 

and to allow for fast computation. Genetic data is intended to come from numerically coded 

markers produced by hap2marker, but any markers similarly coded can be used. Up to five 

different GS models are used for predictions. Where possible, the 'foreach' package is used for 

parallel computing to reduce run time (Revolution Analytics and Watson, 2014).The 'rrBLUP' 

package is used to generate predictions based on estimated marker effects using a ridge 

regression best linear unbiased prediction approach or estimated line effects using a Gaussian 

kernel (Endelman, 2011). Random forest regression is implemented using the 'randomForest' 

package (Liaw and Wiener, 2002). A partial least squares regression model is implemented using
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the 'pls' package (Mevik et al., 2013). The number of components retained in this model is 

determined using 10-fold cross-validation (CV) on the training population to minimize the bias-

corrected CV estimate. The fifth model is an elastic net model produced using the 'glmnet' 

package (Friedman et al., 2010). The elastic net mixing parameter and lambda are both set using 

a grid selection, 10-fold CV approach. A sequence of mixing parameters ranging from 0 

(equivalent to the ridge regression penalty) to 1 (lasso penalty) is examined with a sequence of 

lambdas generated by the glmnet function to identify a pair of values which produce the lowest 

CV error. Predictions from all chosen methods are returned in a data frame with the average of 

all selected methods if more than one method was chosen.
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Chapter 4 - Genomic Selection for Kansas Wheat

Abstract

Advances in inexpensive, high-throughput genotyping have lead to a re-envisioning of 

marker-assisted selection (MAS) into what is known as genomic selection (GS). This technique 

uses all available genome-wide markers as predictors in a statistical model intended to improved 

predictions, relative to classical MAS, for complex traits such as yield in wheat. Current values 

for the accuracy of GS have been determined using simulation and/or conditions not 

representative of those in a breeding project. To assess GS accuracy under more representative 

conditions, GS models were developed using germplasm and historic yield data from the Kansas 

State University (KSU) wheat breeding project. These models were used to predict grain yield in 

preliminary yield trial nurseries in 2011-2014. A correlation of 0.22 between predicted yield and 

observed multi-location means was obtained by the best performing model. This is lower than 

many previously reported values. Potential factors resulting in this lower value were examined. 

Continuation of this study for additional years is recommended to improve the scope of 

inference.

Introduction

Grain yield in wheat is a complex trait controlled by many genes and highly influenced 

by genotype-by-environment interactions. Obtaining an accurate phenotype for this trait requires 

using multi-location yield trials. These trials are expensive and use a large amount of seed for 

planting. This limits their use to screenings of later generation breeding material. To account for 

these limitations, it is typical for a breeding program to screen earlier generation lines at a small 

number of locations using trials with little or no replication. The best performing lines in these 

screenings are advanced into subsequent trials which increase the number of locations and/or 

replications and the process repeated. Lines advancing to the end of this process should represent

those with the highest yield and be well characterized for this trait. Lower yielding lines are 

ideally eliminated early in the process, so resources aren't needlessly spent on them. A well 

functioning marker-assisted selection (MAS) protocol for yield could accelerate this process of 
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phenotyping and/or reduce the investment in screening poor performing lines that are ultimately 

discarded. Genomic selection (GS), a relatively new technique for MAS, may make this possible.

Traditional MAS is a multiple step procedure that requires initial research to identify and 

confirm quantitative trait loci (QTLs). Molecular markers closely linked to important QTLs are 

used to screen lines for favorable alleles (reviewed by Collard et al., 2005). The QTL 

identification step is prone to biased estimates of QTL effects and is unable to detect QTLs with 

small effects (Jannink et al., 2010). This results in poor line performance predictions and 

partially explains why large numbers of QTLs for agronomically important traits have been 

reported, but few reports exist of these QTLs being successfully utilized in MAS breeding 

programs (Bernardo, 2008). 

The GS procedure was proposed as an alternative to traditional MAS which can improve 

prediction of complex quantitative traits (Meuwissen et al., 2001). The GS procedure is 

accomplished without the need to identify QTLs. A training population with known genotypic 

and phenotypic values is used to develop a statistical model for predicting phenotypic 

performance of lines with known genotypic values and unknown phenotypic values. The 

genotypic data comes from a large set of genome-wide molecular markers. Phenotypic values are

calculated using average line performance over a target set of environments. GS uses the full set 

of markers to generate line performance predictions instead of just selected markers, as used in 

traditional MAS. Simulation studies (Meuwissen et al., 2001; Bernardo and Yu, 2007) and 

empirical results (Heffner et al., 2010; Poland et al., 2012b) indicate GS outperforms traditional 

MAS for complex traits like yield. 

Determining if GS for wheat yield would be effective in a breeding program requires a 

cost-benefit analysis. An important component of this cost-benefit analysis is the accuracy at 

which GS predicts line performance. The actual performance of a line isn't known and can only 

be estimated using observed performance in yield trials. An estimate for GS accuracy can be 

made using the correlation between predicted performance and observed performance. Using this

method, correlations between 0.17 and 0.65 have been observed in studies examining GS for 

wheat yield (Burgueño et al., 2012; Campos et al., 2009; Crossa et al., 2010; Heffner et al., 2011;

Poland et al., 2012b). One or more factors could be contributing to this wide range of 

correlations: differences in genotypic and phenotypic variances between studies, differences in 

statistical methods used for GS, and differences in phenotyping and genotyping methods. These 
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factors make it difficult to determine what level of accuracy can be obtained under conditions 

present in a breeding program.

Many previous studies examining GS accuracy for wheat yield have relied on cross-

validation (CV) approaches that randomly assign lines to training and validation populations. 

Random sampling generates populations that are representative of the larger population from 

which they are drawn. This technique fails to replicate conditions expected in GS breeding 

programs where older germplasm with phenotypic data would be used to build a model for new 

germplasm without phenotypic data. Breeders are constantly working to improve their 

germplasm by making selections. They also employ germplasm exchange to introduce new 

material in their breeding program. Both of these activities change the genetic structure of a 

breeding program's germplasm at a population level. The new germplasm, although derived from

older germplasm, represents a different population from the older germplasm. These changes 

may introduction of new alleles or change linkage-disequilibrium (LD) patterns between the 

populations. It is LD between markers and genes controlling yield that makes GS for yield 

possible (Heffner et al., 2009). Changing these patterns of LD or introducing new alleles is 

expected to reduce GS accuracy, so previous studies may report overly optimistic correlations for

GS accuracy. There may be other meaningful difference between these studies and how a GS 

breeding program would be implemented that could influence accuracy. Thus, reproducing 

conditions in a GS breeding program as closely as possible is needed to obtain a meaningful 

estimate for accuracy. 

The goal of this study is to measure accuracy of GS for wheat yield. To accomplish this, 

breeding material and phenotypic data generated by the Kansas State University (KSU) wheat 

breeding program, in the course of performing its typical breeding operations, will be examined. 

An existing conventional breeding program was chosen to simulate conditions expected in a GS 

breeding program without making a prohibitively large investment in time and money to actually

create one. A GS protocol will be optimized for this program to obtain a high level of prediction 

accuracy in early generation yield trials. Predicted performance in these trials will be compared 

to observed performance to assess accuracy of GS for wheat yield. Factors potentially limiting 

accuracy of GS, such as training population size and genetic differences between training and 

test populations, will be examined to identify which may have the greatest impact. 
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Materials and Methods

KSU Wheat Breeding

Wheat breeding at KSU is performed by two separate programs. One program is based at 

Manhattan, Kansas and focuses on breeding hard red winter wheat for central and eastern 

Kansas. The other program is based in Hays, Kansas and focuses on breeding hard red and hard 

white winter wheat for western Kansas. The Manhattan program is the focus of this study. It 

produces F5 derived lines using a selected bulk breeding strategy. New lines are derived from a 

single plant and seeded at a single location in small plots (0.75 x 2.25 m) using an unreplicated, 

augmented design. This nursery is referred to as the individual plant short rows (IPSRs). Grain 

yield is measured on these plots, but is not a major basis for selection. This is due to low 

accuracy attributed to lack of replication and differences in seeding rates due to variability in 

seed harvested from the F5 plants used to seed these plots. Lines selected in the IPSRs are 

advanced to the preliminary yield nursery (PYN). PYNs are seeded using an augmented design 

in unreplicated plots (1.5 x 4.5 m) at multiple locations. This is the first nursery where yield is an

important selection criteria. Selected lines are advanced to the advanced yield nursery (AYN). 

AYNs include lines from both the Hays and Manhattan projects and are evaluated at multiple 

locations by both projects. They are seeded in two replicate plots (1.5 x 4.5 m) using using an 

alpha lattice design for locations managed by the Manhattan program and seeded in three 

replicate plots (1.5 x 4.5 m) using a randomized complete block design (RCBD) at locations 

managed by the Hays project. Lines selected from AYNs are advanced to the Kansas intrastate 

nursery (KIN). The KIN is evaluated at the largest amount of locations and is seeded in four 

replicate plots (1.5 x 4.5 m) in a RCBD at sites managed by the Hays program and seeded in 

three replicate plots (1.5 x 4.5 m) in an alpha lattice design for Manhattan program sites. Lines 

are evaluated for multiple years in the KIN and regional performance nurseries before a decision 

on variety release is made. All of these trials are managed according to typical practices where 

they are planted. These trials are not sprayed for disease, so disease resistance has a large 

influence on observed yields.

Genotypic Data

A total of 4,966 lines predominately from KSU's Manhattan wheat breeding program 

were selected for genotyping. The majority of these lines were new additions to the IPSR 
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nurseries in 2012 (harvest year; 492), 2013 (1283), and 2014 (1,920). The remaining genotyped 

lines were taken from the 2012 PYNs (331), 2011 PYNs (106), and an assortment of other lines 

available in storage. The bulk of these other lines consisted of older germplasm and varieties 

from other programs that have been important parents in the Manhattan program. Most of the 

2012 IPSR lines genotyped entered the 2013 PYNs (382). The 2014 PYNs contained contained 

330 of the 2013 IPSRs. 

DNA extraction was performed in four sets at separate times. The first set included the 

2011 PYNs and older lines. The second, third, and forth sets were the 2012 IPSRs and PYNs, the

2013 IPSRs, and 2014 IPSRs, respectively. Four seeds from each line were grown for two weeks

prior to DNA extraction. DNA extraction was performed on bulked leaf tissue from each line 

using the BioSprint 96 DNA Plant Kit (Qiagen) with the BioSprint 96 Workstation (Qiagen). 

Genotyping-by-sequencing was used to identify single nucleotide polymorphisms (SNPs) in the 

extracted DNA following the methods of Poland et al. (2012a). The 'GSwGBS' package 

presented in chapter 3 was used to run the genotyping-by-sequencing pipeline for calling SNPs 

and to convert them to numeric coding (i.e. 1 for lines homozygous for the most common allele, 

0 for heterozygotes, and -1 for lines homozygous for the less frequent allele). Missing marker 

data was imputed using the “EM” imputation method.

Phenotypic Data

Grain yield data from 21 locations over seven years (2008-2014) were evaluated. These 

data consisted of 81 sites (year by location combinations), because not all locations were present 

each year. Three yield trial nurseries (PYNs, AYNs, and KINs) were examined. The number of 

entries and locations in each nursery varied depending on the year. The KINs were evaluated at 

between eight and thirteen locations and contained 35 to 54 entries. The AYNs contained 

between 56 and 130 entries evaluated at two to nine locations. The PYNs contained between 211

and 481 entries evaluated at three to seven locations. Depending on the year, the AYNs and 

PYNs may have been split into as many as three smaller nurseries and evaluated separately to 

account for field variation. 

Each year by location by nursery combination is referred to as a trial. Each trial was 

analyzed separately using the most appropriate statistical method for its experimental design to 
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determine line means for that trial. Data from any trial with a coefficient of variation greater than

13% were discarded. A total of 232 trials were retained resulting in 15,836 trial line means. 

A core set of locations (Manhattan, Hutchinson, McPherson, Barber County, Sumner 

County, Gypsum, Belleville, and Ellsworth) was chosen by the researcher, based on historical 

knowledge and results from chapter 2, as the locations most representative of the target 

environment for the Manhattan breeding program. The core set of locations reduced the number 

of locations to 8, sites to 41, trials to 173, and trial line means to 12,866.

Overall line means were calculated for use in GS training populations. This was 

accomplished using only data which would have been available when a training population was 

used. For example, the training population for the 2012 PYNs only uses data which would have 

been available before the 2012 PYNs were harvested. These trial line means were then used to 

calculate site line means. This was accomplished by fitting a mixed linear model containing a 

random effect for trial and a random lines effect, each site was analyzed separately. All site 

means were combined into a single mixed model containing a random site effect and a random 

line effect. This final mixed model was used to obtain the overall line means. Repeatability for 

training populations was measured using trial line means and a mixed model with random effects

for site and line. Repeatability was calculated by taking variance due to lines divided by the sum 

of variance due to lines and variance due to error. The 'lme4' package in R was used to fit these 

mixed linear models (Bates et al., 2013). 

GS Models

Five statistical methods for GS were considered. The 'GSwGBS' package was used to 

build models for: ridge regression of marker effects (RR), Gaussian kernel (GAUSS), partial 

least squares regression (PLSR), elastic net (ELNET), random forest with 1000 trees (RF), and 

the average of all methods (AVE).

Allowable missing marker data was optimized by testing maximum allowable 

missingness from the original SNP calling procedure (80%) down to 30% in increments of 10. 

Random sampling without replacement was used to choose a testing population of 100 lines out 

of all lines with genotypic and phenotypic data, from the core locations, available in the year 

2013. The remaining lines constituted the training population. A GS model was built using RR 

and the correlation of predicted values to observed line means was determined. This procedure 
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was repeated 100 times and average correlation was used to choose the optimal value for 

maximum allowable marker missingness. The RR method was chosen, because previous studies 

suggest it performs reasonably well and it is considerably computationally faster than other 

methods. The observed optimum was then used in all subsequent analyses.

Evaluation of GS Accuracy

Grain yield for the 2012, 2013, and 2014 PYNs were predicted by constructing GS 

models using all methods. The training populations for each PYN consisted of all older lines and 

older phenotypic data (i.e., the training population for the 2013 PYNs contained only data from 

2008-2012). Line means used in these training populations were constructed separately from all 

available locations and from only core locations. The precision of each GS model was 

determined by calculating correlations between predicted yields and observed multi-location 

means. Correlations between predictions from the best performing GS model and observed 

yields from individual locations were used to compare predictiveness of GS to that of a single 

location yield trial. 

Single year GS models using just data from PYNs were constructed using leave-one-out 

CV. Only the RR and GAUSS methods were examined in these models. Prediction accuracies 

measured using these models were used to confirm methods used in this study could achieve 

accuracies measured in previous empirical GS studies. They also served as a baseline for 

comparing GS using historical data in a breeding program to performing GS using a single year's

data. 

To measure the impact of training population size on 2013 PYN predictions, the same 

random sampling and CV procedures used for optimization of allowable marker missingness was

used to evaluate different sized training populations. These training populations ranged in size 

from 500 to 850 in increments of 50. One hundred samples were made for each population size.

The 2013 IPSR nursery was used to compare predictions made by GS to those made by a 

breeder. The KSU breeder chose 50 lines out of the nursery he believed to represent the highest 

yielding lines. The GAUSS method was used to select 50 lines predicted to have the highest 

yields based on GS. A permutation test using 10,000 permutations was used to determine if there

was a statistically significant overlap between lines selected by the breeder and GS. These two 

sets of selected lines were then combined and grown as one section in the 2014 PYN. A linear 
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model was constructed using trial means from this PYN section to determine if there was a 

significant difference in yield between selection methods. The linear model contained a fixed 

effect for selection method and a random effect for location.

Results

A total of 56,000 genetic markers were identified at the 80% level of allowable marker 

missingness. The CV tests for optimal allowable missingness determined a value of 70% as 

optimal. This reduced the number of markers to 38,432. A correlation of predicted yield to 

observed yield of 0.33 was obtained during optimization using this cutoff. The first three 

principal component (PC) scores for the imputed marker scores were taken to access the genetic 

structure of all genotyped lines. These PCs explained 8 percent of the total marker variation. 

Plots of these PC scores for each PYN and their training populations were used assess how 

similar a PYN was to its training population. The distribution of 2012 PYN lines was very 

different from its training population (Figure 4.1). The other PYNs showed distributions more 

similar to their training populations (Figures 4.2 and 4.3).
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Figure 4.1: Principal component scores for imputed marker scores of 2012 PYN lines (red) 
and lines in its training population (black).
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Figure 4.2: Principal component scores for imputed marker scores of 2013 PYN lines (red) 
and lines in its training population (black).
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Figure 4.3: Principal component scores for imputed marker scores of 2014 PYN lines (red) 
and lines in its training population (black).



Histograms of line means for grain yield across all years generated using all locations 

(Figure 4.4) and just core locations (not shown) both appear to follow a Gaussian distribution. 

Most lines had means within 0.2 metric tons per hectare (MT/ha) of the mean for all lines. Year 

to year variation for line means was examined by calculating correlations between years with 

more than 50 common lines (Table 4.1). Only adjacent years met this criteria. Except for 2012-

2013, all between year correlations were non-significant (P>0.05). Lines common between years 

are limited to check varieties and lines selected, in part, for high yield in the earlier year. Thus, 

these correlations are only considering a portion of the variability present in each year. Figure 

4.5 shows an example of this relationship for the 2012-2013 comparison.
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Table 4.1: Correlations between single year line 
means for years with more than 50 common lines.
Years Compared Correlation P-value Shared Lines

2009-2010 0.06 0.63 61
2010-2011 0.21 0.10 62
2011-2012 0.14 0.28 58
2012-2013 0.30 0.01 76
2013-2014 0.15 0.23 64

Figure 4.4: Histogram of all overall line means using all locations and 
years 2008-2014.



The size of training populations used for each predicted PYN (2012-2014) increased as 

the year advanced due to previous PYNs being included in the new training population (Table 

4.2). Repeatabilities for these training populations showed little variability (0.256-0.294). 

Variability in repeatabilities for the PYNs was greater (0.263-0.471). Line means for each 

predicted PYN decreased in successive years and the spread of line means was greatest in 2014 

(Figure 4.6). The majority of data in each training population came from core locations and 

means calculated using all locations and core locations were highly correlated (Table 4.2).
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Figure 4.5: Line means for 2012 and 2013. Means for shared lines are in the scatterplot and
means for all lines are displayed in boxplots.



Correlations for GS predictions of each PYN to their observed multi-location means are 

presented in Table 4.3. No correlation for the 2012 PYN was significant (P<0.05), and almost all 

correlations for the 2013 and 2014 PYNs were significant. The GAUSS method produced the 

highest correlation in 2013 using the core locations (r=0.21) and 2014 using all locations 

(r=0.22). Training populations using just core locations generated higher correlations in 2012 and

2013, but lower correlations in 2014. Predictions using the GAUSS method in 2013 with core 

locations (Table 4.4) and 2014 with all locations (Table 4.5) were not as predictive of multi-

location means as individual locations in each year's PYN. Predictions produced using leave-

one-out CV in the PYNs (Table 4.6) produced more accurate predictions of line performance 

than those made using historical data (Table 4.3).
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Figure 4.6: Multi-location line means for predicted PYNs.

Table 4.2: Summary data for predicted PYNs and their training populations.
Predicted PYN Training Pop (all locs) Training Pop (core locs)

Year Lines H Lines Trial Means H Lines Trial Means H
2012 331 0.317 566 6847 0.294 563 5138 0.299 0.94
2013 382 0.263 899 9423 0.278 895 7544 0.292 0.96
2014 330 0.471 1281 12993 0.256 1277 10745 0.263 0.96

Corr Training 
Pops

pop = population, loc = location, H = repeatability, corr = correlation
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Table 4.4: Correlations for 2013 PYN site means, overall mean, and Gaussian kernel predicted 
means (using core locations). P<0.001 for all correlations unless noted.

Belleville Gypsum Hutchinson Manhattan McPherson Sumner PYN Mean
Gypsum 0.31
Hutchinson 0.18 0.35
Manhattan 0.38 0.27 0.17
McPherson 0.41 0.40 0.23 0.34
Sumner 0.23 0.20 0.20 0.18 0.46

0.45 0.48 0.35 0.37 0.55 0.38
GS Prediction 0.22 0.21
PYN Mean1

0.12NS 0.14** 0.1NS 0.11** 0.11*

1Site being compared is excluded from mean.
NS, *, and ** indicate P>0.05, P<0.05, and P<0.01, respectively.

Table 4.5: Correlations for 2014 PYN site means, overall mean, and Gaussian kernel 
predicted means (using all locations). P<0.001 for all correlations unless noted.

Belleville Gypsum Lane Manhattan McPherson Sumner PYN Mean
Gypsum 0.61
Lane 0.63 0.64
Manhattan 0.41 0.43 0.30
McPherson 0.56 0.53 0.54 0.41
Sumner 0.60 0.56 0.55 0.30 0.46

0.73 0.69 0.67 0.42 0.62 0.62
GS Prediction 0.25 0.30 0.22
PYN Mean1

0.15** 0.04NS 0.14* 0.16**

1Site being compared is excluded from mean.
NS, *, and ** indicate P>0.05, P<0.05, and P<0.01, respectively.

Table 4.3: Correlations of predicted PYN yields to 
observed multi-location yields.

2012 PYN 2013 PYN 2014 PYN
All Core All Core All Core

RRBLUP 0.07 0.07
GAUSS 0.08 0.09
PLSR 0.05 0.10 0.13
ELNET 0.07 0.07
RF -0.08 -0.08 0.08 0.10
AVE 0.04 0.07

Locations1

0.15** 0.18*** 0.22*** 0.19***

0.15** 0.21*** 0.22*** 0.20***

0.17*** 0.17** 0.15**

0.15** 0.18*** 0.22*** 0.19***

0.15** 0.11*

0.15** 0.19*** 0.20*** 0.18**

1Locations included in the training population
 *, **, and *** represent P-values <0.05, <0.01, and <0.001, 
respectively



Testing for the impact of training population size on predicted 2013 PYN yields showed a

slight increasing in performance as training population size increased and decreasing variability 

in predictions (Figure 4.7). Performance improved from a correlation of 0.17 using 500 lines to 

0.19 with 850 lines. These findings suggest that increasing training population size alone isn't 

accounting for increased GS prediction accuracies.

A comparison between predictions from GS and those of KSU's wheat breeder used 

1,282 IPSR lines from 2013. Both GS and the breeder chose 50 lines as their best guess for the 

highest yielding lines in the next year's PYN. Five lines were chosen by both GS and the breeder.

The permutation based p-value for the probability of selecting five or more common lines was 

determined to be 0.038 using 10,000 permutations. No significant difference was observed for 

average yield for lines chosen using GS, the breeder, or both.
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Figure 4.7: Box plots for effect of simulated increase in training population size 
on GS prediction accuracy.

Table 4.6: Prediction accuracies in PYNs using 
GS models created with a leave-one-out CV 
approach. P<0.001 for all correlations.
GS Model 2012 2012 2014
RR 0.42 0.38 0.57
GAUSS 0.44 0.38 0.55



Discussion

The GS models were unable to predict 2012 PYN yields and obtained modest accuracy 

predicting 2013 and 2014 PYN yields. The inability to predict 2012 PYN is likely due to the lack

representativeness of the training population at that time (Figure 4.1). Training populations using

data from just core locations outperformed training populations using all available data in 2012 

and 2013, but underperformed in 2014. The core locations were chosen with the intention of 

improving GS performance by minimizing adverse effects caused by genotype-by-environment 

interaction. Poorer performance of models using just these locations in 2014 could be due to 

exceptional weather experienced that year. The 2014 Kansas wheat crop experienced an 

unusually cold winter and widespread drought which resulted in the lowest statewide average 

yield since 1995 (“Kansas Wheat History,” 2014). Testing GS performance in subsequent years 

would be very useful for determining if 2014 was an anomaly due to this atypical weather.

Weather and disease pressures were atypical for all three PYN years examined. The 2012

Kansas wheat crop experienced more stripe rust (Puccinia striiformis f.sp. tritici) and barley 

yellow dwarf than typical, but other economically important foliar diseases had very little impact

on the crop (Appel et al., 2014). Several record high temperatures were experienced during the 

growing season resulting in the 2012 Kansas wheat harvest being the earliest on record (“Kansas 

Wheat History,” 2014). The 2013 and 2014 wheat crops in Kansas were virtually unaffected by 

foliar diseases (Appel et al., 2014). They also experienced cool temperatures delaying both years'

harvest and moderate to severe drought (“Kansas Wheat History,” 2014). Continuing this 

experiment for additional years would be useful for determining if the GS accuracy values 

reported in this study are relevant to more “typical” years in Kansas.

It should be noted that the true values of mean line yields are not known. This means the 

observed measurements of yield which were used for comparison have error associated with 

them. Thus, the best way to assess the observed GS performance is to consider it in relation to 

phenotypic selection. One way of examining this was assessed using data from individual PYN 

sites to predict average performance over all other sites (Tables 4.4 and 4.5). Each individual site

was more predictive of multi-location yield than the best performing GS models. However, this 

isn't a fair comparison. The GS models account for average performance over several earlier 

years while the PYN site means are only considering performance in a single year. Thus, it is 

possible GS is actually providing a better prediction of performance in subsequent years. To 
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examine this possibility, phenotypic correlation across years was assessed by measuring 

correlation between the same lines in different years (Figure 4.5). Unfortunately, there is a very 

high turnover of lines in breeding programs, so only adjacent years had enough shared lines to be

useful for comparison. Five year to year comparisons ended up being made and only two of them

showed correlations as high or higher than the best performing GS models. This would appear to 

indicate that GS is performing very well in relation to phenotypic correlation. However, this 

comparison also has its flaws. Lines tend to only be present multiple years in a breeding program

if they are either being used as agronomic checks or they have been selected due to desirable 

traits. In both cases, these lines are expected to be relatively high yielding. Whereas, the 

correlations reported for GS use earlier generation breeding material which has experienced 

relatively less selection for yield. This results in less variability for yield in the year to year 

comparisons and thus correlations are expected to be lower than those obtained if the GS lines 

were grown in multiple years. Thus, it is difficult to determine precisely how well GS is 

performing in relationship to phenotypic selection.

The comparison made between the breeder and GS probably offers the best way of 

measuring GS performance. This comparison was only made in one year and that year didn't 

show any statistical difference in yield between lines chosen by the breeder or GS. This bodes 

well for GS. Unfortunately, the year in which this comparison was made was the year with 

unusually harsh weather. These harsh conditions severely stressed the crop, as seen in the much 

lower yields for the 2014 PYNs relative to other years (Figure 4.6). This environmental stress is 

probably also responsible for the higher repeatability observed in the 2014 PYNs (Table 4.2). 

Lack of statistical difference between the two methods of selection may just be a case of neither 

method being able to predict performance in this unusual year. A comparison of GS to the 

breeder in years more representative of 'typical' years in Kansas would provide a better 

comparison of their relative performances.

Several factors can limit performance of GS. These include: small training population 

size, poor genotyping, poor phenotyping, genetic differences between training and testing 

populations, and limitations of the GS procedures.

Training population size is the most straightforward issue to assess. Examination of 

training population size for the 2013 PYNs showed only a very small increase in precision going 

from 500 lines to 850 lines (Figure 4.7). Indicating that training population size is not likely to be
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a limiting factor. Extrapolating this trend suggests a drastic increase in training population size 

would be needed to achieve even a small improvement in prediction accuracy. Variance in 

prediction accuracy decreased as the training population increased. This may be due to both 

more consistent sampling of important genetic diversity decreasing occurrence of low 

correlations and less frequent sampling of “ideal” training populations, those which produce 

higher correlations than a training population using all lines. The existence of these “ideal” 

training populations suggests it may be possible to limit lines used in a training population to 

improve GS accuracy. How to choose these lines is an important avenue to explore in future 

research. The CV method used to examine population size is also partially reponsible for the 

decrease in variance. As sampled population size approaches the amount of lines available for 

sampling, there will be increasing correlation between samples due to a higher proportion of 

shared lines between those samples.

The quality of genotyping was not assessed in this study. Ideal genotyping would have 

several markers in LD with all important genes controlling yield. It is not possible to determine if

this is occurring. If genes controlling yield are assumed to be spread over the whole genome, 

assessing how well the markers cover the genome could be done instead. Genetic markers for 

wheat obtained using genotyping-by-sequencing have shown a high degree of coverage in 

reference mapping populations, so the quality of genotyping is not expected to be a limitation 

(Saintenac et al., 2013).

The quality of phenotyping in this study is limited, because the data comes directly from 

an applied breeding program. The primary goal of these programs is to turn out new varieties. 

This is done by choosing methods on the basis cost efficiency. This often means only making 

rough measurements for traits when that is all that is needed to be effective. Many selection 

decisions in these programs are made using visual assessments based on personal experience and

thus don't generate data that can be analyzed. The sheer volume of data these programs generate 

is bound to contain mistakes and these mistakes often go unnoticed. These limitations in data 

quality generated by breeding programs can be problematic for building GS models. However, 

GS needs to be able to deal with these limitations, because it is unlikely breeders will find it cost 

effective to make large changes in their programs to accommodate building GS models.

Genetic differences between training populations and testing populations can be a major 

concern and is probably the reason the 2012 PYNs were accurately predicted. The graphs of 
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marker PCs show a very complex set of genetic relationships between lines in the breeding 

program (Figures 4.1, 4.2, and 4.3). This complex relationship develops as a result of inter-

mating, selection, and introduction of new material. Introduction of new material is probably of 

the greatest concern. This can introduce new alleles not present in the training populations. When

this is the case, predictions for lines containing these alleles are not expected to be very accurate.

The difference observed between the 2012 PYNs and its training population are probably the 

result of such a new introduction. To account for these occurrences, it may be necessary to 

exclude some crosses from evaluation using GS to ensure that favorable new alleles aren't lost. 

Further research in this area is recommended. This could be accomplished by collecting 

additional years of data and tracking performance of GS in relation to the pedigree of lines being 

predicted.

Another key piece of evidence showing that genetic differences between training 

populations and testing populations may be a limiting factor comes from the PYN within year 

GS predictions using leave-one-out CV (Table 4.6). The values observed using this approach 

were much higher than the values obtaining using GS with historical data (Table 4.3). The CV 

uses just lines in the PYN for a training population, so they should be representative of the line 

being predicted. Year-to-year variation is also ignored using this approach, because training data 

only comes from a single year. The low observed correlations between years in Table 4.1 suggest

that year-to-year variation has a very significant impact on yield in Kansas. The higher 

correlations for GS using leave-one-out CV are closer to those obtained in earlier GS 

experiments which used CV. The observed lower values for GS using historical data illustrates 

the need for measuring GS accuracies under conditions representative of those experienced in an 

actual breeding project.

There is also the possibility that the statistical methods just aren't up to the task. The low 

observed between year correlations (Table 4.1) and the relatively high values for leave-one-out 

CV (Table 4.6) suggest GS statistical methods can perform relatively well at predicting a 

phenotype using genotypic data. The bottle neck appears to be generating a representative 

phenotypic value. This will require careful consideration of genotype-by-environment 

interactions. This study used a very simple approach for dealing with genotype-by-environment 

interactions by looking at using a training population consisting of only data from a “core” set of 

locations. Predictions using this approach were improved in two out of the three years. However,
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more sophisticated approaches need to be considered. Such an approach could involve modeling 

environments with covariates. Improved modeling of genotype-by-environment interactions 

could greatly improve GS predictions.

This study used data from an actual breeding program. Whereas, previous studies have 

relied on simulation data or specially designed experiments to measure GS accuracy. Thus the 

lower observed accuracy for GS using historic data suggests many of the previously reported 

accuracies are overly optimistic, because they failed to accounted for all the intricacies of a 

breeding program. At present, these lower values probably represent a better estimate of GS 

accuracy for performing a cost-benefit analysis to determine the usefulness of GS in a breeding 

program. However, further research could increase the accuracy of GS. Improving the handling 

of genotype-by-environment interaction and the selection of lines to use for a training population

appear to be the most promising areas for further research.
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