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CHAPTER I
INTRODUCTION

The combinatorial problem is concerned with the study of the
arrangement of elements into sets. The elements are usually finite
in number, and the arrangement is restricted by certain boundary
conditions imposed by the particular problem under investigation [53].
Most combinatorial problems can be classified inte four types. In
the first, the existence of the particular arrangement is unknown
and the problem is to find whether the particular arrangement exists
or not. These are called existence problems, In the second, the
existence of the arrangement is known and the problem is to find
that arrangement. These are called construction or evaluation
problems, Finding all the possible arrangements comes under the
third type which are known as enumeration problems. When it is
necesséry to choose the best combination defined using some criteria,
the problems fall under the fourth type. These are known as extremization
problems. Most of the combinatorial problems are one of these types,
although the distinction is not always precise [ 7].

Various combinatorial problems such as shop scheduling, assembly-
line balancing, delivery, travelling salesman, capital allocation and
fixed-charge problems come under the category of extremization problems.
In these problems, a given objective is to be optimized subject to a
set of constraints arising due to the characteristics of the problem.

Because the number of combinations increases non-linearly, direct



Searéh is not practically feasible except for very small problems,
Hence methods have to be devised to limit the search to a smaller
subset of all solutions. In real situations, all the elements

are integers and therefore the solution cbtained must be integer-
valued. Thus these problems can be formulated as integer pro-
gramming problems so that the results are integers. By the proper
utilization of zero-one variables, these problems can be converted
into a zero-one program and can be solved By using the pseudo-Boolean

program,

1.1 Zero-one Linear Programming

The inﬁeger linear programming problem may be stated as
minimize
4% + ) + ess + cnxn

subject to

allxl + alzxz + ... +a, x >P

321x1 + 322x2 + ,.. + a
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and

denotes the jth unknown integer valued variable,

c denotes the unit cost of the variable x

j!

P denotes the level of ith requirement,



aij denotes the number of units of xj which satisfies the
requirement Pi.
In addition, if the value of x is limited to either zero or one, the
zero-one linear programming problem is obtained. Any integer linear
programming problem can usually be converted into zero-one linear
programming problem by using either simple expansion technique (17]
or Balas binary device [51] discussed in Appendix A.

The solution of linear programming without any integer restriction
has been obtained by Dantzig [15] in collaboration with Giesler,
Orden, Wood among others. In certain types of problems, a linear program
without any integer constraints will have integer-valued solution.
This occurs in the class of mathematically equivalent problems which
include the assignment, transportation and network flow problems.
Dantzig [17] has pointed out that the transportation problem, and
hence this class of problems, always has integer solutioms, given
intege;-valued demands and supplies.

If the solution of a linear programming problem does not have
the required integer property then integer constraints have to be
incorporated. Numerous algorithms have been proposed for the solution
of general integer linear programming starting with those of Gomory
[28,29] and Land and Doig [41]. These algorithms can be broadly
divided into four classes according to the method employed:

1, Algebraic Appreach
2., Combinatorial Approach
3. Enumerative Approach

4. Heuristic Approach



First, the algebraic approach is based on methods which generate
new constraints, called cuts or cutting planes so as to restrict the
solution space without eliminating any feasible integer points,

Second, combinatorial approach is the method which is combinatorial in
nature for %hich algebraic rather than exponential bounds are

available for the number of steps required to solve a problem, Third,
enumerative approach is the method of search over all possible solutions
which limit the extent of search. Finally, heuristic approach refers

to collection of heuristic rules for obtaining local optimal solutions
utilizing computers,

The history of integer linear programming started with the
significant contribution of Gomory [28,29]. Reviews by Beale [ 6] and
Balinsky [ 3,4 ] provide an excellent coverage of the available
literature. These reviews cover various important algorithms classified
according to the above outlined scheme,

Aigebraic Approach, The basic idea is that of successively

deducing supplementary linear constraints, until a new linear program,
whose solution satisfies the integer requirements, is obtained., New
constraints, called cuts or cutting planes are generated so as to
restrict the solution space without eliminating any feasible integer
points. Gomory [28,29,31] has proposed this approach for solving a
pure integer problem in which all variables are required to be Integer-
valued, Gomory [30] has generalized his method for the problem where

a,. 1s integer-valued, Young [59] has developed a primal integer

ij
programming algorithm which he simplified later [¢p]. Glover has
worked on the cuts proposed by Gomory [26] and Ben-Israel and Charnes [27]

with a view to developing a general class of cuts. However Glover



has not been successful in embodying these cuts in an efficient
algorithm,

Combinatorial Approath. TFor integer programming problems which

are not of transportation type, very few examples of this approach
exist, There are two main instances. One due to Gomory [28] is a
combinatorial, recursive procedure for obtaining an optimal solution
to the asymptoticproblem, The computation proceeds on the finite
group, G, and an algebraic upper bound on the number of steps necessary
to obtain an optimal solution is known as a priori. The other main
instance is concerned with integer programming problems related to
graphs, Edmonds [19] has been the first to develop an algorithm on
these lines for simple matching problems. Balinsky [ 4 ) has improved
the work of Edmonds by reducing the storage requirements. Edmonds,
Johnson and Lockhart [40] made further progress in simple matching
and covering problems.

Enumerative Approach. This can be broadly classified into two

subclasses: (1) single-branch search which is exemplified by the
method of Balas [ 1] for zero-one problem; and (2) multi~branch
search which is exemplified by the methods of Land and Doig {41]
for the mixed integer problem and Little et al. [44] for the travelling
salesman problem., Because of the large computer memory required,
relatively little computational experience has been reported regarding
multi-branch schemes,

Algorithms belonging to single-branch search are used primarily
to solve zero—one linear programming problems. Two of the successful

algorithms are the additive algorithm of Balas [ 1 ] and the multiphase



dual algorithm of Glover [27]. Goeffrion's algorithm [22]) and Balas
filter method [ 2 ] proceed along the same lines. Pseudo-Boolean pro-
gramming proposed by Hammer and Rudeanu [35] utilizes the idea of
Fortet [21] about the nature of Boolean functions in solving the
zero—one linear programming problems. By embodying multiple steps,
Rao [5]1] improved the additive algorithm proposed by Balas and others.

Heuristic Approach. These methods involve either solution of

one or a sequence of derived problems or the use of some heuristics

or reasonable rules for finding a local optimum, The notable research
on this apﬁroach was done by Lin [45] who obtained approximate
solutions to travelling salesman problems, Some of the algorithms
have been compﬁtationally inefficient or made use of certain problem
characteristics, These include the Boolean algebra approaches used
by Fortet [21] and Camion [13] and a dynamic programming approach
proposed by Glass [24] and refined by Rao [52]. The latter suffers

from the dimensionality difficulty.

‘1,2 Proposed Research

This thesis makes use of an algorithm proposed by Hammer and
Rudeanu [35] in solving the zero-one programming problems, Briefly,
the algorithm utilizes a branching and bounding procedure using a
set of rules. These rules are due to the properties of pseudo-Boolean
functions, A systematic procedure in applying the rules will result
in obtaining the optimal solution,

The basic approach of the pseudo-Boolean algorithm is discussed
in Chapter IT. The fundamental concepts of the alborithm are discussed

and a sample problem is presented for illustration. A computer



program is written in Fortran IV for IBM 360/50 computer. Details
of the computer program are shown in Appendix B,

The combinatorial problems, namely, shop scheduling, line
balancing, delivery, travelling salesman, capital allocation, and
fixed-charge problems are formulated as zero-onme linear programming
problems in Chapter III, A sample problem for each type is presented
and the results discussed.

Several problems have been solved and the computational results

are reported in Chapter IV. Conclusions are given in Chapter V.



CHAPTER II
LINEAR PSEDUO-BOOLEAN ALGORITHM

In the late forties, the theory of Boolean Algebra has been
first applied in the study of the switching circuits, This is due to
the fact thatreach element of the switching circuit can be either
in "ON" or in "OFF" condition, and thus they can be easily represented
by using zero-one varisbles. Since then the use of zero-one
variables to represent binary decisions became a2 general practice.
Binary decision problems are frequently found in the theory of graphs,
combinatorial and other discrete optimization problems.

Pgseudo-Boolean programming, a method for solving zero-one
programs, has been developed by Rosenburg et al. [36] using a method
proposed by Fortet [21]. The present algorithm has been developed
by Hammer and Rudeanu [35] using the principle of dynamic programming
and Boolean procedures, This chapter is devoted to the discussion
and illustration of the linear pseudo-Booclean algorithm. A computer
program has been written in FORTRAN IV for IBM 360/50 computer. The

listing of the program with a sample problem is shown in Appendix B,

2,1 Basic Concepts

The approach used in this thesis is based on properties of
Pseudo-Boolean functions. A pseudo-Boolean function may be defined
as a real-valued function f(xl, Koy snes xn) with zero-one variables,
An equation (or inequality) involving only pseudo-Boolean functions
on both sides, is called a pseudo-Boolean equation (or inequality).

A pseudo-Boolean program is a procedure to optimize a pseudo-Boolean



function., The variables involved may be either uﬁrestricted dr sub-
jected to constraints expressed by a system of pseudo-Boolean equalities
and inequalities. Whenever the function and the constraints are

linear, the problem reduces to linear pseudo-Boolean programming.

The method utilizes branching procedure and is categorized as
an enumerative and testing technique, It uses a set of rules
dependent on the properties of pseudo-Boolean functions., The method
limits the number of branches to be investigated to a smaller subset,
Incorporating a bounding technique with the objective function,
the search converges to the optimal value rapidly. Improved results
at each successive trial are utilized to improve the convergence.

The linear pseudo-Boolean programming may be stated as follows: -

Minimize

allxl + 812x2 + an | a, X i-Pl
subjecF to

Soi® T Mao¥s F s H 8K, 2By

331%) F Agp%p Foeee Fag w2 By

a 1%y + a %, + see kb amnxn-i Pm
where

xj =0orl, i=1,2, «ioey n
and

Pl = upper bound of the objective function.
The properties of pseudo-Boolean equations and inequalities are

shown in Tables 2.1 and 2.2, To obtain the solution to the problem,
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Table 2.3 Preferential Order

Equation Inequality
Preferential Order (Table 2.1) (Table 2,2) Characterization
1, 5 3
First 2, 6 1, 4 Determinate
3, 7 5
Partially
Second 4 2 Determinate

Third 8 6 Indeterminate
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each équation (or inequality) is subjected to the rules in a systematic
manner. This fixes the value of some of the variables, The original
system can be reduced to a much smaller system by substitution of

these values. The repeated application of the rules ultimately

results in the optimal solution,

Tables 2.1 and 2,2 represent three cases, namely when

(1) some of the variables are fixed:

(2) there is no solution; and g

(3) the equation or inequality is redundant.

These cases may be referred to as determinate cases. 1In other cases
there is no information available and the search has to be continued
using the branching procedure. These can be called indeterminate
cases, In yet other cases the search has to be extended to a number
of possible values of the variables and can be called partially
determinate cases, Table 2.3 shows this classification.

If some of the equations and inequalities are determinate, the
available information is obtained and collated., Three situations
may arise:

(1) an equation or inequality has no solution;

(2) two or more distinct equations or inequalities provide

contradictory results; and

(3) the results are consistent.

In the first two cases, the system has no solution in the particular
branch under investigation., The last case indicates a feasible
solution and determines the values of certain variables.

If no determinate case exists in the system, the variable having

the largest absolute value of coefficient in the objective function
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serves as a node for branching. That is, it is assigned a value of
1 and O respectively and the resulting two branches are subjected to
exploration.

To restrict the search to a smaller subset of all branches, a
bounding procedure is utilized, An additional constraint is formed
which places an upper bound on the cbjective function, The branches
which indicate the value of the objective function in excess of this
value are excluded from the search., Whenever a better result is
obtained, it is utilized to improve the bounding.

An additional procedure, referred to as an accelerating process,
is used to further limit the investigation to still fewer branches,
Whenever a feasible solution is obtained in one branch, the technique
will indicate whether a better solution exists or not in the second
branch. In the latter case the search along the second branch is
discontinued,

Tﬁus, using the branching, bounding and accelerating processes,
the complete enumeration of 2" possible values is reduced considerably.
By fixing the value of some of the variables, the properties of
pseudo-Boolean functions further reduce the number of branches. The
elimination process is, therefore, so devised that the optimal
value always lies in the set in which the search is conducted. This

guarantees the optimal value in finite number of steps.

2,2 Sample Problem

The linear pseudo-Boolean programming algorithm will be illustrated

by the following sample problem,



Minimize

z=3x1+6x2+x

6
subject to
x1+5x2—2x3- x4+x5 - % =0
4x1+3x2— x3-5x4-x5+x6 —x8=0
Xy + X, =1
X, + X, =1
x1+ X, =1
.and
xj=00r1, j=1, 2, vy 8

The solution to the above problem is shown step by step as follows:
Step 1. Modify the problem. First, the problem is rewritten as
minimize

+ 0.x, + 0.x

z=3,%x. +6,x. +0,x, +0,x, +0,x_+ 1l.x 7

1 2 3 [ 5 6
subject to

8

l.xl + 5.x2 - 2.x3 - l.x4 + 1.x5 + 0.x6 - 1.x7 + 0.x8 =0

4.x1 + 3.x2 - 1.x3 - 5.x4 - l.x5 + l.ox, - 0.x7 - l.xa =0

l.xl * 0.x2 + 1.x3 + l'.!.x‘,+ + 0.x5 + 0.x6 + 0.x7 + 0.x8 =1

O.xl + 1.x2 % O.x3 + 1.:1:4 + O.xs + 0.::6 + 0.x7 + O.xB =1

l.xl + 1.x2 + 0.:c3 + ().x4 + 0.:.:5 + 0.x6 + O.x.l, + O.XB =1
and

xj=00rl, 3= 1y 2y oy B

Second, a2 supplementary constraint is constructed such that



30%; + 6.%, + 0uxy + 0ux, + 0uxg + Lox + 0.x, + 0% < 3+ 6+ 1,

1 2 5 6

+ 0,x, < 10

+ 0.x g =

+ 0.x. + 1.x, + 0.%

30x) + 6.xy + Oux 4 5 6 7

3

or

= 3.x) = 6.x) + 0.x5 + 0.%, + 0.%; = Lox, + 0.%, + 0.xg > ~10.

Finally, the negative sign in all the constraints is eliminated such
that

+ 0.x

+ 0.x8 > -10

3 4 5 7

1.x, + 5.%, - 2(1—-§3) . 1(1-5;4) + 1,x

1 9 5 5 = 1(1—x7) + 0.x8 =0

- 1(1-xp) =0

4.x1 + 3.x2 1(1-x3) - 5(1—x4) - l(l-xs) + l.x6 + 0.x 8)

l.x, + 0.5:2 + 1.%x, + 0.5, + 0.x. + 0ux, + O0ux, + 0.x, = 1

1 3 4 5 6

0.x1 + 1.x, + 0.x., + 1.1:4L + 0.,x_ + 0,x, +0,x, + 0.}:8 =1

2 3 5 6

l.x, + l.xz + 0.x3 + 0.!{4 * 0.x5 + 0.x6 + 0.x7 * O0uxg = 1

where

;{j-l—xj’ j=1’ 2, -.0’8

or

+ 6.%X, + 0.%, + 0.%x, + 0.x_. + 1.X, + 0.x, + 0.x

3.x) 2 3 4 5 6

+
o
.
L]
{1
£

+ 5.x. + 2.%. 4+ 1.%, + 1.x. + 0.x_ + 1.x

Loxy 2 3 & 5 6 7

+ 1.x. + 1.x, + O0.x

+ 5.x% 5 p

+ 3.x. + 1.x

4.xl 9 3

4

o
l.:‘t1 0.x2 + l.x3 + 0.X4 + 0.x5 + 0.x6 + 0.x

O.x. + 1.x, + 0.,x

1 9 3+1.x4+0.x + 0.x% +O.x7+0.x =1

5 6

l.x, + 1.x, + 0,x., +0.x, + 0.x. + 0.x_ + t'.).x7 + 0.x, =1

1 2 3 4 5 6



Step 2,

Step 3.

Step 4.

18

Branch from the term having the maximum coefficient in the

supplementary constraint such that

aiJ = m;x [alj] =6 and J = 2,
Substituting §2 = ] in the system and simplifying, we get
3.x; + Lx, > -6 : (2.1)
loxg + 2%, + Lk, + Lax, + LX, = 4 (2.2)
boxy + 1oxy + 5.8, + Lx, + lux, + L.k = 8 (2:3)
l.xl + 1.x3 =1 (2.4)
x, =1 (2.5)
x, = 1. (2.6)

Check for the determinate cases. Equation (2.5) gives
x, = 1, (2.6) gives X = 1.

Substituting the values in all the constraints, we get

2.x5 + lxg + L.x, = 3 (2,8)
1.:':3 + 1.:':5 + Lox, + 1.5':8 = 4 (2,9)
1.33 = 0, (2.10)

Checking again for the determinate cases; equation {2.10)
gives Xy = 1 and equation (2.9) gives Xg = Xo = Xg = 1.

Substituting the values of §3 and x. in equation (2.8),

we get x, = 1, All variables have been determined,

7
Improve the bounding and apply the accelerating test., The

feasible solution is given by



X, = 1, X = o,
x, = 0, Xe ™ 1,
Xy = 0, X, = 0,
x, =1, Xg = 0.

The value of the objective function is

z J.x, + 6.x, + 1,x

1 2 6
3(1) + 6(0) + 1(1)

= 4,
Replace the supplementary constraint by

3.xl + 6.x2 + l.x, < 4,

6

- 3.xl - 6.x2 - Lxg > - 4,

- 3(1—x1) - 6(1—x2) - 1(1—x6} > -4,
or
3x1 #F 6::2 + xe > 6.
Now apply the accelerating test.

The coefficient of the branch point 5'{2 =a, = 6,

The variables xj in the branch which are having the value 1 if
it is ;:j, or 0 if it is x, in the supplementary constraint are
% and Xg»

The sum of the coefficients of Xy and X is 3+ 1= 4.

Since a,, > sum of the coefficients (that is, 6 > 4), the

branch with :_:2 = 0 need not be investigated.

Thus the only feasible solution (and hence optimal) is given by

19
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Minimum value of the objective function = 4,

Figure 2.1 shows the branching done in attaining the solution.
The branch with §2 equal to 1 leads to a solution and the branch
with }_:2 equai to 0 is terminated after applying the accelerating
test, The value of the variables obtained in the branch is also

shownt,

—_—— e T T et — = — = Level = 0

Termination

—Level = 2

Solution

Figure 2,1 Branching Tree for Sample Problem

2.3 Computational Algorithm

The linear pseudo~-Boolean algorithm may be stated in a formal

step by step procedure as follows:

-
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Step 1. Modify the problem,

1.1 Set up the initial problem in the form

minimize

T By TR T e T Ry

subject to

a,1%; + Y] + sew F a, ¥ 2 or= P2

31%1 T B3p%p F eee Foag ¥, 2 o1 = By

2n1*1 + 2n2*2 T paw 3y = OF T Pm

where

xg = 0 orl, 4 =1,72, 4u., 1,

and

aij's and Pi's are positive or negative integers,

1.2 Construct a supplementary constraint such that
By FA Ky Ba P ARE, 38,
where P1 is the known upperbound on the objective
function, or the sum of the positive coefficients,
Multiply next the supplementary comstraint by -1,
which then takes the form,

- a8, X > - Pl'

T %1% 7 %12 7 0t T Bran
1,3 Eliminate the negative sign in all the constraints such that

- aijxj =] e aij(l_xj) i l, 2. seng MM
j = 1, 2, |.n-, n,
where X, = (1-x.) and a >0

3 J ij

Step 2. Branch from the term having the maximum coeffiéient in the

supplementary constraint.



Step 3.

Step 4.
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2.2

22

Select the term which has the maximum coefficient in

the supplementary constraint,

X =
a¥; = max [aij]
3
* = % = i
If af; 0, check if ad 0. Continue until a term
a;J # 0, I mly 2y voay D

Substitute the value of X; in the system such that

x, =1,

where Xy = Xy or §J appearing in the corresponding

J

constraint and simplify the system,

No branch exists if

aiJ = 0, L= 1, 24 sun, MW

Then a feasible solution is obtained. Go to step 4.

Check for the determinate cases.,

3.1

3.2

3.3

3.4

1f a determinate case exists, find the corresponding x
values and substitute them in the system. Go to step 2.
If no determinate case exists, go to step 2 for further
branching.

If infeasibility occurs, then there is no solution to
the problem in that branch. Change the branch by

-

setting Xy = 0.

If there is no feasible solution in either branch, return
to the previous branch point and change the branch.
Repeat this until (1) a feasible solution is obtained.
Then go to step 2, or (2) all the branches are considered

and no feasible solution exists; the search is then

terminated.

Improve the bounding and apply the accelerating test.
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4,1 The feasible solution and the value of the objective

4,2

4,3

function z are printed.

Replace the supplementary constraint by
2y1%; + a;9%, Foyee T 81,5, < 2.

Change the sign such that
81171 7 212%p T e0r T Fp*pn 2T 3
Eliminate the negative sign such that

o~ aljxj - alj(l—xj) j‘= l’ 2, seny Il
where

xj = (1—xj) and alj's are positive

Apply the accelerating test.

Find the variables x, in the branch x5 which are having

3
the value xj such that
1, if x, = %
- {’ i
3 0, 1if xj = xj

in the supplementéry constraint,
Sum the coefficients of xj in the objective function.

If a,g is greater than the sum of the coefficients,

the branch with x_. = 0 need not be investigated, Set

J
J = J-1 and repeat the accelerating test.

If a;g is less than or equal to the sum of the coefficients,
the branch with Xy = 0 is investigated,

When J = 0, the final solution is optimal and the search

is terminated.
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CHAPTER 1I1
APPLICATION TO COMBINATORIAL PROEBLEMS

The combinatorial problem, as defined in Chapter I, is concerned
with the study of the arrangement of elements into sets. In most
industrial problems, the best one out of the possible arrangements
has to be selected, Such problems are categorized as extremlization
problems. Shop scheduling, assembly-~line balancing, delivery,
travelling salesman, capital allocation and fixed-charge problems are
different types of combinatorial problems., Since the solutions obtained
must be integer-valued, these problems can be formulated as integer
programming problems. By the proper utilization of zero-one variables,
these problems can be converted into zero-one programming problems
and can be solved by using a zero-one algorithm.

This chapter describes the formulations of shop scheduling,
assembiy—line balancing, delivery, travelling salesman, capital allocation
and fixed-charge problem as zero-one programming problems. A sample

problem in each type is presented and the associated solution discussed.

3.1 Shop Scheduling Problem

The shop scheduling problem in its simplest form consits of J
jobs to be performed on M machines. Each job has a number of operations .
to be performed on the various machines in a prespecified machine
ordering. It is required to determine a feasible sequence which
results in the minimum completion time,

This problem can be formulated as a linear programming problem,
The constraints which arise out of the inherent characteristics of the

2
/

problem, are due to the following restrictions: ///
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1. Each job is to be processed according to its machine ordering.

2, Each job should not be processed by more than one machine at
the same time,

3. Two jobs should not be processed on the same machine
simultaneously.

4, Each job has to be completed on a machine before the next job
is performed on that machine.

5. In-process inventory is allowed,

6. The processing times are integer units and are known for

all jobs.

The objective function and constraints are linear and therefore
linear programming formulation provides a suitable approach. Since
the results must be integers, integer linear programming is necessary.
- At present there exist three such formulations, due to Wagner [58],
Bowman [11] and Manne [4¢]. Because of the smaller number of
variables and constraints the formulation of the three-machine
problem [25] is the only one that can be solved on computers due
to the rapid increase in the number of constraints and variables.

The following notations are used in the formulationm.

J total number of jobs

j job designation, j =1, 2, ..., J

jk job j in sequence position k, k=1, 2, ,.,, J

M total number of machines = 3

m machine designation, m =1, 2, 3

tjkm processing time of job jk on machine m

ujkm waiting time of job in sequence position k between machines

m and mhl //
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fjkm idle time on machine m between jobs in sequence position
k and kt+1
Xjk zero—-one variable having a value one if job j is scheduled
in sequence position k, zero otherwise
X'k a column vector [Xlk, sz, i XJk}
Pm row vector of integer processing times for jobs

1, 2, ..., J on machine m
The three machines job shop problém i¢ distinguished by the fact
that, without loss of optimality, the search may be confined to
schedules which sequence the J jobs in the same order on all three
machines [ 55].
The constraints are given such that

1, A job j is assigned to the sequence position k.

J _
jlejk=1, k=1, 2y eeu; J

2. One of the sequence positions is assigned to job j.
J
Xj =1, j:l’ 2' oun.J
k=1 -k
3. A job j is not processed on two machines simultaneously and a

machine m does not process tow jobs at once,

v 4+ P X 4+ u -1 -P.X ~v =0
N T L S A
and
P.X + u - -PX -v =0
Pirr Jt Bt 2% 32

k=1, 2, ..., (J-1)
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It has been shown by Johnson [39] and Béllman [ 9] that minimizing
the total time span to complete all items is equivalent to minimizing
the idle time on machine 3. Hence Wagner's formulation suggests the
following form of objective function.

Minimize

J-z-l
Z=[P,+P.]K + v
273 Ty e i

0
In such a formulation, the total number of variables is
{Jz + 4(J-1)} and the number of constraints becomes (4J-3). The integer
valued variables u.jk and vjk are conﬁerted into zero-one variables
using Balas binary technique.
The following sample problem will illustrate the above formulationm.
Consider a flow shop problem having the following machine ordering

and processing time matrix, It is required to minimize the total

processing time,

11 12 13 2 1 4
m= T =

21 22 23 1 5 3

The objective function is to

ninimize

f= [P + P ] X +v
1 2 1 j13
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The constraints are given such that
1. One of the job j is assigned to the sequence position k.
J

2 xjk =1 k=1, 2

2, One of the sequence position is assigned to a job j.
J

£, w1 j=1, 2
k=1 K

In the above four equations, one equation is redundant and therefore

can be dropped.

3. A job j is not processed on two machines simultaneously and a

machine m does not process two jobs at once,

PX -PX -v + v -u =0
3 “y 2 "5 j12 j13 j22
Xll X12
[4 3] - [1 5] + v + v u =0
le Xzz j12 j13 322
4X + 3X - X - 5X -V + v -u =0
l1 21 12 22 j12 j13 j22
and
P.X - P.X + v -u =0
2 1 1 2 j12 j21



xll le
[1 5] Xz - [2 1] Xz + vjlz uj21 =0
1 2
X + 5X - 2X - X + v u =0
11 21 12 22 j12 j21

Substituting zero-one variables xj, 3 1, 2, ..., 8 as shown

below,
X, = Xll, xs = vjl2 ‘
*2 7% %6 T V33
x3 = Xlz, x7 = ujzl
x4 = Xzz, x8 = uj22

the problem reduces to the following: -
minimi ze

f = 3x, + 6x2 + x

1

subject to

X + 5x2 - 2x3 - X, _ B = Xy =0
X + Xq = 1
X, + X, = 1
Xy + x, = 1
and
xj =0orl, 3=1, 2, .v., 8

The total number of zero-one variables is 8 and the number of
constraints is 5. The solution of this problem is demonstrated in

Section 2,2, The solution is given by

29
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X, = 1, X = 0]
X, = o, X = 3
Xq = o, X; = 0
X, = 1, xg = 0

and
minimum £ = £% = 4,
Minimum schedule time is given by the following:
minimum schedule time = processing time of 2 jobs on machine 3 + f*
=4+ 3+ 4
= 11,

= 1 and X, = K2 = ] indicate that the optimal sequence
i 2

S* = {1, 2} ,

1

The optimal schedule is represented on the Gantt chart in Figure 3.1.

Figure 3.1 Gantt Chart for a (2x3) Flow-Shop Sample Problem
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3.2 Assembly-line Balancing Problem

An assembly-line consists of a number of work statioms. To
assemble a product, a number of tasks must be performed subject
to certain sequencing requirements concerning the order in which they
are performed. Given a cycle time, the assembly-line balancing
problem consists of minimizing the number of work statioms.

The following notations are used in the formulation due to

Bowman [12].

K total number of work stations
J total number of tasks
X.j the initial time when task j is started

i=1,2, ..., J

- 1, 1if task c precedes task d
o {0, otherwise
T maximom clock time a2 product takes to come out of the
assembly-line
c cycle time
tj processing time for task j, 3= 1y 24 ewuy J
T number of time units the product is on the assembly-line
uj integer-valued variable which can take any value from

0 to XJ, 1™ Ly 2y eawy J
The constraints are given such that
1. Each task is performed in accordance with the ordering requirements.
+
Xj tj ixjﬂ,

2, Each work station can take up a task only after it leaves the

j=1’ 2’ LRI J-l.

previous statiom.
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(T+ t (X

#10 ygry Y& - X)) 2ty
and '

(T+tj)(l- -Xj)_)_tj, j=1, 2, RS J'"l-

1 +
st e
3., Each work station should not be overloaded and the tasks must be
completed before being passed on to the next station.
X, + t, < ecu, + ¢
h | 1="13

and

X, > cu

5 = Yy J =1y 2 weny Je
4, All operations are over within the total completion time with no
followers in a specified ordering.
XS + tg X1 for each §,
where

S is a set of statioms without any succeeding statioms,

The objective of minimizing the number of work stations is to
distribute the work load uniformly on all work stations., This will
reduce the number of time units the product is on the assembly-line.
Hence the objective function becomes
m;nimize

z =T,

The formulation utilizes 2J+1 integer-valued variables and about
J zero-one variables (the exact number depends on the ordering re-
quirements)., The total number of comnstraints is about 5J (again the
exact number depends on the ordering requirements),

The following sample problem illustrates the formulation of the

assembly-line balancing problem as an integer programming problem.



Consider an assembly-line as shown in Figure 3,2, The ordering
and the initial times are shown for the four tasks as shown below,
It is required to reduce the number of time units the product is on

the assembly-line.

R
a b

Fig. 3.2 Ordering Position for Sample Problem.

Station a b c d

Initial 1-20 21-40 41-60 61-80
time

The objective is to minimize the total number of time units the
product is on the assembly line, Hence the objective function is
given by
minimize

z=T,

The comstraints are such that
1. Each task 1s done in accordance with the ordering requirements.,

Xy + g <X,

X, + 1l <X
X, + 14 <X

X+ 14 < X

§ =1, 2, eeu, J-1

d

33
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and

and

34

Each work station can take up a task only after it leaves the

previous station.

(T +t + (X ) &%

1~ %1

j+l} Ij (3+1) j+1

n

)+(x -X)>t

3 = j’ j l: 2’ toey J-1

(T + t,)(1 -

3 j(:]"*l)
(80 + 14) I_ + (Xa"xb)314

(80 + I(1 =T ) + (X, -X)>11
(80+9)Ibc+(xb-xc)_>_9' '
(80 + 14)(1 - I, ) + (X - X)) > 14
(80 + 5) I, + (X - X 5

(80 + 14)(1 - T ) + (X; - X)) > 14

v

Each work station is not overloaded and the tasks must be completed
before being passed on to the next statien.

X, +t, <cu, +c¢

3 i= 3

X > cu

3 i L
X + 11 < 20u_+ 20
a - a

ij=1, 2, «eup, J

X > 20u
a
xb+14_§_20ub+20

% 20,

X + 9 < 20u + 20
c - c

X > 20u
c - c
Xy + 55 20u;+ 20
Xd m>_20uc1

All operations are completed within the total completion time with

no followers in a required ordering.
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e
0
+
¥
| A
-

Xd + 5=<r1

This problem utilizes 9 integer-valued variables and 3 zero-one

variables, The total number of constraints is 19, The integer-valued
variables are converted to zero-one variables using Balas binary
technique in which 7 zero-one variables are used for each of the

integer-valued variables Xa to X 3 zero-one variables are used for

dl
each of the integer-valued variables u, to uy and 7 zero-one variables

are used for t. This substitution results in the problem size of 50
variables and 19 constraints.,

Solving this problem by zero-one programming,
we get

X =0, u =0
a

Xb = 23, u = 1

X, = 40, u =1

24

b "L m dyg™ 3

43, u, =1

and

mininum © = 49

This is the minimum time that a job takes to come out of the
assembly-line, Stations 'b' and 'd' are grouped together. The job
takes 20 units of cycle time in Stations 'a' and 'b', After completing
9 time units in Station "'c¢' the job emerges from the assembly-line, thus

requiring a total of 49 time units,

3.3 Delivery Problem

The delivery problem arises whenever commodities are to be trans-

ported from a central warehouse to a number of customers at different
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destinations within a specified region. The orders received at the
warehouse are grouped and delivered in batches. The deliveries are
arranged so that each customer receives his entire order in one
delivery but the delivery schedules are set by the shipper on the
basis of the availability of carriers. The objective of the shipper
is to minimize the total cost of tranmsportation in fulfilling customer
orders,

The following notations are used in the formulation due to Balinski

m number of destinations

n number of feasible combination of orders - number of
activities

Aj activities column vector each having m entities. The ith
entry of Aj = 1, 1if activity j delivers order i and Aj =0
otherwise j=1,2, so.y, n

éj cost of the activity Aj

r number of possible geographical routes

E column vector of m 1's

Xj Zero—one variable having a value 1 if the activity Aj is

used, zero otherwise.
The constraints are given such that
1, A given carrier can combine a number of orders to be delivered
together, provided their destinatioms lie along one of a number
of permissible geographical routes and a given destination can
recelve delivery via a number of different routes.

n
jZl ijj = E
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The objective is to minimize total shipping cost.
Minimize

n
2T jil 3™

The total number of zero-one variables used in this formulation
is n and the total number of comstraints becomes m,

The following sample problem will illustrate the formulation of
the delivery problem as a zero-one integer‘programming problem.

Consider a warehouse shipping orders to 4 destinations as shown
in figure 3,2, The total number of permissiﬁle geographical routes,

m = 4, The number of activities n and associated costs are as

shown below. The objective is to minimize total cost of tramsportation,

3/
Origin—< ~——— ===~ m e e =
Fig. 3.3 Delivery Routes for Sample Problem.
1 X 0 0
- 19/, 0f, _ |1, _ |1
AL = 1P Aol A3 T (1P AT o
0 1 0 1

e}
1]
(=]
0
it
oo
-
e
L
1
D
G
0
o~
]
(=23
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The delivery problem can now be formulated as

minimize
)
z = c.X
= 6x1 + 8x2 + 9x3 + 6x4
subject to
Z Ax, =E
j=lj:'l
1 1 0 0 1
0 0 1 1 _ 11
i *rt ol ®2F 1l 3 jo| = 11
0 1 0 1 1
or
xl + x2 =1
x3 + x4 =1
xl + x3 =1
x2 + x4 =1
and
i, = 0 or 1, j=1, 2, 3, 4,

The total number of zero-onevariables is 4 and the number of
constraints is 4, Solving this problem by zero-one programming,

we get

and
minimum z = 12,
This indicates that shipping in the routes 1 and 4 will minimize

the transportation cost.



3.4 Travelling Salesman Problem

The travelling salesman problem in simple terms may be stated as
follows., A salesman, starting from one city, visits each of the
other n cities once and only once and returns to the starting city,
The problem is to find the order in which he should visit the
cities to minimize the total distance traveled. Any other measure
of effectiveness such as time or cost may be substituted for distance.
This measure of effectiveness between all pairs of cities are presumed
to be known.

The distances between the city palrs can be arranged in a matrix
form, Since it is mot possible to travel from one city to the same

city in one step, the corresponding element in the matrix is a very

39

large value. Thus an infinitely large number is placed in each element

on the diagonal of such a matrix.

The following notations are used in the formulation due to
Miller et al. [48],

n number of cities to be visited

d distance from city i to city j, i=0,1, 2, ,4., 1

i3
j=0,1,2, ..epn

uy arbitrary real-valued variables used to eliminate subtours
i=1,2, ..., n
Xij zero-one variable having a value of one if the salesman

proceeds from city i to city j, zero otherwise
The constraints are given such that
1, Arrival at each city from any other city is only once excluding

the starting city which can be visited any number of times,
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I
X,, =1, §=1,2, vu., n.
gup

Y

2. Departure from each city to any other city is once only excluding

the starting city which can be visited any number of times,

n
z X =I‘:I., i=1, 2, seey Ilg
g=0 1
I#
3. Tour should commence and end at the starting city and no tour
should visit more than n cities.
ug - uy + nXij <n-1, 1<i#j<n,
The objective is to minimize the total distance covered and
hence the objective is given by

minimize

z = z d X ...
Q5;#j§p 13743

The total number of variables is n2 + 2n and the number of
constraints becomes n2 +‘n. The integral-valued variables ui(i=1,2,...,j)
are converted into zero-onevariables using Balas binary technique.

The following sample problem will illustrate the integer linear
programming formulation of the travelling salesman problem, Consider
a problem in which there are 3 cities to be visited starting from
city 0. The distance matrix is as shown below and it is required to
find the route which minimizes the total distance travelled,

0 1 2 3 |
Oje 4 2 3
D = [dij] =145 = 2 6

213 5 = 4

304 3 5 «f



41

The objective function is to minimize the total distance.

Minimize

d
0<i#j<1

N
I

13743

=d,,X.. +d d d d

01%01 * 992%02 * d03%03 * d10%10 T 912512 t 415513

Fdog¥ao T d91Xpy T dygXog T dgXqg + dgyXgy + dyoXg,

= 4X01 + ZXUZ + 3X03 + 5X10 + 2X12 + 6X13

+3X20 + 5X21 + 4X23 + 4X30 + 3X3l + 5X32 .

The constraints are given such that

1, Arrival to each city from any other city is only once.

)

X.. =1 j=1, 2, ..., 0,
j=g 4

i#j

Xgp ¥ Xy ¥ X5, =1

oz T gt %5, =1

03 ¥ X3t X3 =1

2, Departure from each city to any other city is only once,

X

X

n

) X,=1 Bowde e was g s
j=0 1

¥

Kyg * Xyp + Xqg = 1

Xpo ¥ Xpg + Xy = 1

X +X.. +X.,.=1

30 31 32
3. Tour should commence and end at the starting city, and no tour

should cover more than n cities.
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+ nXij <n-1

- 3X12 < 2

~ Mg 2

= 3X21 < 2

- 3%,y 22

- 3X3l < 2

- 33,22
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three-city problem results in a 15 variables, 9 constraints

integer linear programming problem. The following substitution is

made to convert the problem into zero-one integer programming

problem,
X = %10 X7 = Xy
Xy = Xp20  Xg =Xy
X3 = Xp30 Xg = Xyq
% = %00 *10" %30
X5 = X190 X1 Xyy
X6 = Lyys  Fpp= gy
8x13 + 4x14 + 2x15 + X6 = %
.8x17 + 4x18 + 2x19 + X0 = Yy
8x21 + szz + 2x23 + Xy, = Uy
The problem now reduces to
minimize

z = 4x1 + 2x

+3x

7

subject to

2

3

+ 3x, + 5x

4

+ 2x

+ Sxa + 4x9 + 4x10+ 3x

5

1

+ 6x

1+ 5x

6

12



Xy + Xg + Xy = 1

X, + X + X5 = 1

Xq + Xe + Xy = 1l

X, + Xe + X, = 1

x5 + Xg + Xg = 1

' TR TR
8x13 + 4x14 + 2x15 + X6 = 8x17 - 4x18 - leg = Xpg T 3x5 < 2
8x13 + 4x14 +- 2x15 + X0 8x21 - 4x22 - 2§23 - X5, - 3x6 < 2
8x17 + 4x18 + 2x19 - Xpg = 8x13 - 4x14 - 2x15 - X6 3x8 < 2
Bx g + bx) g + 2x10 + Xy = Bryy = 4%y, = 2X55 - Xy, - 3Xg < 2
8x21 + 4x22'+ 2x23 + x5, = 8x4 - 4x14 = 2%j5 = X0 3xll_§ 2
8x21 + 4x22 + 2x23 + Xgy = 8x17 - 4x18 - 2xl9 - Xpq 3x12:i 2
and

xj =0or1l, 1 =21 25 veus 2%

The total number of zero-one variables is 24 and the number of

constraints is 5, The solution of the problem is given by

and

minimum z = 11,

This indicates that the salesman travels from city 0 to 3, 3 to 1,
l to 2 and 2 to 0 resulting in a minimum distance of 11 units,

3.5 Capital Allocation Problem

The allocation problem arises in the capital budgeting of a firm.
It consists of finding an optimal way in which a firm should allocate
the available capital to various projects., This problem can be

formulated as an integer programming problem due to Weingartner [33].

43
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The following notations are used in the formulation.

n total number of projects under consideration

b total amount of investment available

cj present worth of all future profits from project j, j=1,2,...,n
dj amount of capital required for project j, j =1, 2, vy, n

xj zero-one variable having a value one if project j is

taken, zero otherwise
The constraint is such that
1, The total capital invested on all the projects undertaken is less
than or equal to the capital available,
. :
jzl dyx, < b
The objective is to maximize the present worth of all the future

profits from the projects undertaken and is given by

maximize
IZI L]
zZ = e, X, .
n=1 417

The total number of zero-one variables is n and the constraint is
one only.

The following sample problem will illustrate the above formulation.

Consider a case where there are 10 projects under consideration.
The total available capital is 55, The amount of capital required for
the projects and the present worth of all future profits from the
projects is as shown below.

d; = 30; = 20

o |

d2 = 25; ¢, = 18
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3 3
d4 = 18; ¢, = 15
d5 = 17; cg = 15
d6 =11; ¢, =10
d7 = 5% cy = 5
d8 = 23 cg = 3
d9 = 1; cg = 1
Crg” B g™ L

The objective is to select the projects such that the present
worth of all future profits is maximized,

The problem can now be formulated as

maximize
10
z = c.X
P
= 20x1 + 18x2 + 17x3 + le4 + 15x5 + le6 + Sx7 + 3x8 + Xy + %10
subject to
n
dx, <b
jzl G I
or
30xl + 25x2 + 20x3 + 18x4 + 17x5 + 11x6 + 5x7 + 2x8 + Xq + X109 2 55
and
xj =0 or 1, g mcls 2y owasy 10s
Solving this problem of 10 variables and 1 constraint the solution
yields
X) = ¥y = %3 =0,
X, = Xg = X = Xy = Xg = Xg = Xpo 0= 1
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and a maximum profit of 50,
This indicates that the available of 55 units 1s distributed
to projects 4, 5, 6, 7, 8, 9 and 10, The projects 1, 2 and 3

are dropped. This decission results in a maximum profit of 50 units,

3.6 Fixed-Charge Problem

The fixed-charge problem arises in situations where a certain
fixed amount of cost is incurred whenever an activity takes place.
The corresponding costs are known as fixed-charges. For example,
in transportation, a fixed-charge is incurred regardless of the
quantity shipped, or in the building of production facilities where
a plant under construction must have a certain minimum size. Because
of these fixed-charges, such problems attain special characteristics.
If there is a fixed-charge associated with each variable, then every
extreme point of the convex set of feasible solutions yields a local
optimum and this complicates the task of solving fixed-charge
problems,

The following notations are used in the formulation due to

Hadley [33].

n number of activities

fj fixed-charge for activity X,, ji=1,2, ...y, n
cj variable cost of activity 3, J=dy By wssyd
A coefficient matrix

P column vector of right hand side
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dj zero-one variable having a value 1 if the activity Xj is
used, zero otherwise, i=1, 2, .v., n

uj upper bound on the variable Kj, § ® Ly 2y eauny N

; column vector of X i=1,2, ..., n

j!
The constraints are given such that

1., The sum of the resources needed for all activities is equal to the

available resources.

AX =P

2. A fixed-charge is incurred when an activity xj 1s used

X, = u,d, <0, =1, 2, vvu,n

The objective is to minimize the total cost incurred and is
given by

minimize

o
z = Z (f

i1 ij + ¢,X.).

371

The total number of integral-valued variablesg Xj is n., This is
converted to zero-one variable using Balas binary technique.

The following sample problem will illustrate the above
formulation,

Consider a case where there are 3 activities each with a fixed-

charge of 1 and variable cost of 1, The upper bounds on Xl, X2, and



X3 are given by 5, 4 and 3 respectively. The problem is to

minimize
z=2Xl+2}(2+2X3
subject to
Xl + X2 + X3 = 6
ZXl+X2+3X3 = 10
X - Sdl <0
X, —4d2 <0
x3 -3d3<0
and .
xjio = Ly 2y ewwy D

The following substitution is made to convert the problem into

zero—-one integer programming problem.

4xl+2x +x, =X

2 3 1

4x4 + 2x5+ X = X,
2x7+ Xg = X3
xg-dl

*10" 9

%117 93

The problem now reduces to the following:

minimize
z = Bxl + 4x2 + 2x3 + 8x4 + 4x5 + 2x6 + 4x7 + 2):8
subject to
4xl+2x2+ x3+4x4+2x5+ x6+2x7+ x8=6
8xl + &xz + 2x3+ 4x4 + 2x5 + Xe + 6x7 + 3x8 = 10
4x1+2x2+ x3—5x9 <0

48
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and

xj =0orl, A= 1y 25 sawy Ll

The total number of zero-one variables is 11 and the number of
constraints is 5. Solving this problem by zero-one programming,

we get

X, =0
and the value of the objective function
z =12,
This indicates that activity 1 and 2 are used and activity 3 is

dropped with the resultant minimum cost of 12,
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CHAPTER 1V

COMPUTATIONAL EXPERIENCE

This chapter comprises of two sections. The first section includes
the experience obtained in solving various combinatorial problems, namely,
shop scheduling, assembly-line balancing, delivery, traveling salesman,
capital allocation and fixed-charge problems were solved on IBM 360/50
by using the pseudo-Boolean program, The same problems were solved
using DZLP developed by Salkin and Spielberg [54]. The computational
time taken by the two programs are compared and discussed in Section 4.1.
The computational difficulties faced in solving the pro%lems are

discussed in Section 4.2.

4.1 Results of the Pseudo-Boolean Algorithm

Results using the pseudo~Boole§n algorithm discussed in Chapter II
are detailed'in this section. Capital allocation [57] and fixed-charge
problems [34] were taken from the literature and all other problems
were randomly generated, The problems were converted to zero-one
programming problem as indicated in Chapter III, Each equality
constraint had to be broken into two inequality constraints when DZLP
was used. Since a pseudo-Boolean program could handle equality
constraints, they were retained.

The flow shop problems have all equality constraints. The con-
straints arise mainly due to sequencing and non interference restrictions,
The (3x3) problem requires about 33 zero-one variables and 9 constraints

whereas a problem of size (4x3) utilizes 52 zero-one variables and



13 constraints. The variables increase quadratically with the in-
crease in the number of jobs but the increase in the number of
constraints is only linear. Since the total number of branches to

be investigated is 2" for n variables, the computation time increases
nonlinearly with the increase in the number of jobs. The constraints
include an "assignment constraint matrix" and this favours the
computational aspect of the pseudo-Boolean programming by fixing the
values of many variables in one branch. This process reduces the
number of branches to be investigated to a great extent. Two problems
in (4x3) flow shop problems did not converge within 15 minutes and
the problem was terminated while using the pseudo-Boolé;n programming,
This was due to the large number of branches generated in these
problems and the fixation of values of the variables in the branches
was poor,

The assembly-line balancing problems have all inequality con-
straints. A large number of matrix and cost coefficients are zero.
The constraints arise mainly due to ordering and noninterference
restrictions. A 4-task problem requires about 50 zero-one variables
and 19 constraints and an 8-task problem about 96 zero-one variables
and 42 constraints, The increase in the number of variables and
constraints is linear, Because of the absence of "assignment matrix
constraints", the fixation of values to the variables in various
branches was very poor. This increases the number of branches and
the amount of search to a great extent, The convergence was very
slow while using the pseudo-Boolean programming and the program had

to be terminated after 15 minutes without reaching the optimal value,
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The delivery problems have all equality constraints with the
constraint matrik coefficients being either zero or one. The con~
straints arise mainly to satisfy the requirement that the demand
is equal to the supply and the commodity has to be shipped in one
of the permissible geographical routes, The total number of zero-one
variables is equal to the number of feasible combinations of orders
and the number of constraints is equal to the number of destinatioms.
The increase in the number of variables and the number of constraints
is linear, Due to the zero-one coefficients and unit right hand
gide imn the constraint matrix the number of branches is reduced
to a great extent and the search converges very rapidlyt In case of
DZLP the equality constraints were split into two inequality con-
straints. The greater than or equal to constraints were converted
to less than or equal to constraints, The DZLP fixed all the variables
at zero value thereby violating the constraints. It failed to reach
the optimal value, Several parameter modifications were tried without
any success. The reason for this failure could not be determined,

The traveling salesman problems have half equality and half in-
equality constraints, The constraints arise due to the fact that
each city should be visited only once without any overlapping of the
tour., The increase in the number of variables and constraints is
quadratic with the increase in the number of cities to be visited.

This fact imposes a severe restriction on the size of the problem

that can be solved by utilizing this formulation., The constraints in-
clude an "assignment constraint matrix" and this favours pseudo-Boolean
programming, The convergence was very good while using the pseudo-Boolean

programming,
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All the nine capital allocation problems are the same except
for the right hand side of the constraint matirx., These problens
differ from others by having dense coefficient matrix., That is, all
the coefficients are greater than zero. Pseudo-Boolean programming
shows better results in solving the capital allocation problems,

The solution of the fixed-charge problems is made difficult
by a number of local optimal sclutions which obscure the global
optimum, Results on nine test problems from Haldi [34] indicate that
the convergence of pseudo-Boolean programming is faster than that of

DZLF in solving fixed-charge problems.

4,2 Computational Difficulties

The size of the problem which can be solved by using the pseudo-
Boolean algorithm has to be restricted because of the large storage
requirements. An attempt was made to use H level Fortran but it had
to be discontinued since the H level program was not running smoothly.

It was observed that a considerable amount of time is spent in
substituting the value of the variable obtained in one equation or
inequality, in all the remaining equations and/or inequalities and
simplifying the system, Further, if one variable is fixed in a
simplification, again the substitution and simplification are to be
made which consume a lot of computer time, Several different methods
were tried to reduce this time. It was found that starting the
constraints with equations, if any, produced better results.

An 8-task line balancing problem taken from Bowman [12] was
tried in DZLP. It resulted in a problem size of 96 variables and 42
constraints. The program failed to attain the optimum value within one

hour and has to be terminated.
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CHAPTER V
SUMMARY AND CONCLUSIONS

The combinatorial problem deals with the study of the arrangement
of elements into sets. Whenever it is necessary to choose the best
combination out of all possible arrangements, the problems are known
as extremization problems, Various combinatorial problems such
as shop scheduling, assembly-line balancing, delivery, traveling
salesman, capital allocation and fixed-charge problem come under the
category of extremization problems, In real situations, all the
elements are integers and therefore these problems can'Le formulated
as integer programming problems. By the proper utilization of zero-
one variables, these problems can be converted into zero-one pro-
gramming problems.

An algorithm proposed by Hammer and Rudeanu [ 35] is used to
solve the zero-one programming problems. The algorithm makes use of
the properties of pseudo-Boolean functions. A pseudo-Boolean function

may be defined as a real-valued function f(x — xn) with

1* *20
zero-one-variables. A pseudo-Boolean program is a procedure to

- optimize a pseudo-Boolean function. The program uses a set of rules
dependent on the properties of pseudo-Boolean functions. Using a
branching and bounding procedure the search of all the branches is
avoided. Improved results at each successive trial are utilized to
improve the convergence to the optimum value.

Various combinatorial problems such as shop scheduling, assembly-

line balancing, delivery, traveling salesman, capital allocation and
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fixed-charge problems were formulated as zero-one programming problems.
The shop scheduling problem consists of J jobs to be performed on M
machines in a prespecified machine ordering, The objective is to
minimize the total completion time, The assembly-line balancing
proﬁlem consists of minimizing the number of work stations for a
constant cycle time, The delivery problem is concerned with the
minimization of total shipping cost in fulfilling customer orders,

The traveling salesman problem finds the route a traveling salesman
should follow in visiting n cities so as to minimize the total
distance traveled, In the capital allocation problem, a given amount
of available investment should be so allocated to différent projects
50 as to maximize the profit. In the fixed-charge problem, it is
necessary to reduce the total cost involved while meeting the necessary
requirements, All the above problems are similar in nature having
linear objective functions, linear constraints and integer-valued
variables. Hence all these problems can be formulated as zero-one
programming problems.

The various combinatorial problems mentioned above were formulated
as zero-one programming problems and were solved using the pseudo-
Boolean programming, The same problems were solved using DZLP and
the computational results were compared, In general the convergence
of pseudo-Boolean program was better than DZLP for smaller and
medium problems. The results of (3x3) flow shop problems show a
marked reduction in computation time by using pseudo-Boolean program.
Two (4x3) flow shop problems and all ten line balancing problems did
not converge while using the pseudo-Boolean program. This was due

to the poor fixation of values to the variables in various branches,
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Due to the zero-one coefficients and unit right hand side in the
constraint matrii, delivery problems converge to the optimal value
rapidly while using the pseudo-Boolean program. The failure of
DZLP in obtaining the solution of simple delivery problems came
as a surprise, The reason for this failure could not be found out.
Because of the assignment matrix constraints pseudo-Boolean program
.converges better than DZLP. Test problems in capital allocation
and fixed-charge indicates the superiority of pseudo-Boolean program
over DZLP in solving those-problems.

The main draw back of the pseudo-Boolean program is the large
amount of core locations it requires to store the node values of
the branching tree. Hence pseudo-Boolean programming is a very

efficient technique in solving small and medium sized problems.
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APPENDIX A

CONVERSION OF INTEGER PROGRAMMING PROBLEM TO

A ZERO~-ONE FORM

The conversion of the integer linear programming to a zero—one
form is discussed in this appendix, The conversion can be done either
by the simple expansion technique [f;} or by the Balas binary device
[gi]. For the conversion, it is necessary to know the upper bound on
the value of each variable, 1In practical problems usually this upper

bound is available.

A,1 The Simple Exparnsion Technique

For each integer valued variable Xj substitute zero-one variables
le such that

Xj = le + sz + ... ijj

where U, is the upper bound on the value of X,.

3 3

Consider an example in which it is required to

ninimize
zZ = 2X1 - 3X2
subject to
X, -X,>1
- Xl >=-3
- Xz >=-2
and

Xl, X2 non-negative integers.



The upper bound for Xl is 3 from the second constraint and the
upper bound for X, is 2 from the third constraints,

X, <U, =3

i 1

X, S U, =2

2
The following substitution is therefore mode for the conversion
of integer programming problem to zero-one form,

+ x + x

X =yt Y x

X, =x + x

2 21 22

The problem now reduces to the following

minimize .
; = 2x11 + 2x12 + 2x13 - 3x21 - 3x22
subjggt té
Xt Xt X3 ¥y v Fp 2l
e S IV Sl E 2= 3
- Xy T Xp2- 2

and

all xij =0 or 1.

A,2 The Balas Binary Device.

Determine for each Xj a value Lj such that

Lj = [log2 Uj] +1
where Uj represents the upper bound on the value of the integer variable,

Xj and the bracket indicates the integer part of the quantity within the

brackets. Then, for each X, substitute L, zero-one variables such that

3 i
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Thus considering the same general integer programming problem as
before, we get

L, = [log2 3] +1

1
=1+1
=2,

and

g
0

{log2 2] + 1

1+1

= 2,
The following substitutions are therefore made for the conversion
of integer programming problem to zero-one form,

Xl = lel & x12

Xz = 2x21 + x22

The problem now reduces to the following

minimize
z = 4311 + 2x12 - 6x21 - 3x22
subject to
2yt Xppm gy - Xy 21
s PR T -3
- 2x21 = Xpy - 2
and

all xij =0 or 1.

The conversion by the Balas binary device always results in less

than or atmost equals to the number of zero-one variables than does



conversion by the simple expansion technique, Computationally, the
Balas binary device expansion helps in the attainment of optimal

solution in a shorter time than that of simple expansion technique,
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APPENDIX B
COMPUTER PROGRAM LISTING

This appendix includes the computer program listing. The
program is written in Fortran IV for IBM 360/50 computer., Data
set 1 is used for input and logical unit 3 is used for printed
output., The maximum number of variables and constraints are 60
and 25 respectively while using G Level Fortran. Program capacity
can be changed by making changes in the DIMENSION statements. The

computer program listing is shown on the following pages.



ILLEGIBLE

THE FOLLOWING
DOCUMENT (S) IS
ILLEGIBLE DUE
TO THE
PRINTING ON
THE ORIGINAL
BEING CUT OFF

ILLEGIBLE
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PRCGRAMED BY

% g ot e e e e e

NPROB
N

M
NPRINT

ISTART

NPOINT

NDLT)
NC(I,J)
NTYPEL(T)

NTYPE{ L)

oo de sk ek ek

NZCOL(J})

NZ(T,J)

KPOINT
KP{J)yNPLY)

NOBJ (D)
[MAX(KPOINT)

JMAX(KPOINT)

ﬁfﬁﬁfﬁﬁf?ﬁ(ﬁﬁ(ﬁf”ﬂﬂtﬁﬁ(ﬁﬁCﬁﬁfﬁﬁfﬁﬁCWﬁfﬁﬁtﬁﬁtﬁﬁCﬂﬁfﬁﬁ(ﬁﬂtﬁﬁfﬁﬁcﬂﬁCﬁﬁcﬁﬁCWHfﬁﬁtﬁﬁfﬁﬁfﬁﬁfﬁ

MAIN DATE = 69322 45

LINEAR PSEUDO-BOODLEAN PROGRAMMING

Na S« ANANTHA RANGA CHAR,
DEPARTMENT OF INDUSTRIAL ENGINEERING
KANSAS STATE UNIVERSITY

BASED ON THE ALGORITHM PROPOSED BY

PETER Lo HAMMER & SERGIU RUDEANU

st e e ok o ol ol e ol e s o el sl o oo ol ol oot ok ok e o s o o e o ot ol e ol e ok ok o o o e sl o ol ot e o ol o sl o ol e kel

VARTABLES EXPLANATION :
Ao s sk o o st e s ol e e e s oot s e o s e e o s e o e sl sl ol e ool sl ok st o e ool s el sl e e ol ok ook ko

INPUT VARIABLES e s ok sk sl skok

NUMBER CF PRODOBLEMS

NUMBER OF VARIABLES

NUMBER OF CONSTRAINTS (INCLUDING OBJeFNe)
EQUALS O IF NODE VALUES ARE NOT TO BE
PRINTED

EQUALS 1 IF NODE VALUES ARE TO BE PRINTED
EQUALS 2 FOR SCHEDULING, LINE BALANCING
AND FIXED CHARGE PROBLEMS

EQUALS 1 FOR TRAVELING SALESMAN,DELIVERY
AND CAPITAL ALLOCATION PROBLEMS

EQUALS 0 FOR OBTAINING MULTIPLE OPTIMUM
POINTS

EQUALS 1 FOR OBTAINING SINGLE OPTIMUM
POINT

RIGHT HAND SIDE OF THE CONSTRAINTS WITH
NC(1) AS UPPER BOUND ON THE OBJas FNs
COEFFICIENT MATRIX (INCLUDING 0OBJas FN,)

EQUALS 1 IF CONSTRAINT IS OF TYPE (+EQs)
EQUALS 2 IF CONSTRAINT IS OF TYPE (.GEs)
EQUALS 3 IF CONSTRAINT IS OF TYPE {e.LEa.)
EQUALS 2 FOR MAXIMIZATION PROBLEMS
EQUALS 3 FOR MINIMIZATICN PROBLEMS
PROGRAM VARIABLES o Aok ok K

ZEROD-ONE VARIABLE X({J) WHOSE VALUE IS

TO BE DETERMINED

INDEX USED TO KEEP TRACK WHETHER THE
VARTABLE X(J) IS POSITIVE OR NEGATIVE
EQUALS 3 INDICATE POSITIVE X{J)

EQUALS 4 INDICATE NEGATIVE X{J)

LEVEL INDICATOR

INDICATORS TO CHECK WHETHER A BRANCH IS
EXPLORED OR NOT

STORED VALUE OF THE VARIABLE X%{J)

WITH X(J)=2 PERTAINING TO FREE VARIABLES
CONSTRAINT USED FOR DETERMINING BRANCHING
AT LEVEL KPOINT

VARTABLE X(J) USED FOR DETERMINING
BRANCHING AT LEVEL KPOINT

11,
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K INDICATOR TO TO NOTE WHETHER ANY VARIABLE
HAS BEEN DETERMINED IN A SEARCH DR NOT

g e o ok ohe o e e 9t sk e s ofe o s o e o ofe ot oot o o o ook o kol o ol ok sl ook oo e ke e o o e e o e e ok e

INPUT INSTRUCTIONS =@
e e it e e o sl e e o o oot o sl sl e ol ol sl ol ol ol s o e o ol e e s ol e ek ol e kol R kR R ok R Rk

CARD 1 NPROB,NPRINT, ISTART,NPOINT FORMAT(1615)
CARD 2 Ny M FORMAT(1615)
CARD 3 {(NTYPELT ) IH#L,M)

CARD 4 (NDU1),I=1,M) FORMAT(1615)
CARD 5 CONSTRAINT MATRIX STARTING FROM OBJECTIVE

FUNCTION. START EACH CONSTRAINT IN NEW
ROW FORMAT(1615) ;
REPEAT FROM CARD 2 FOR EACH PROBLEM ;
PROGRAM HALTS AFTER EXECUTING NPROB NUMBER OF PRUBLEMS :

e o s e o e ool sl s sk ok ol o o e ok st sl o oo o o o ool o o o ot ok ol ol ot kol ool o ok e il

MAIN PROGRAM
el oh b e e st ole o ol sl ool s s o oo ol st sl e e e e e s e o e ol sl ol sl ool s o ol oo sk e o st ol e ok o e

OO0 0000

0Co1 IMPLICIT INTEGER*2{I-N) .
0Co2 INTEGER®4 AT1,AT2 j
0C03 COMMON MyN, 14Ky KPOINToNPRINT §
CCO4 COMMON NZ (25,60)3NC(25,60),ND(25),NTYPE(25), |

INZSTRI60,60) NCSTR(60,25460),NICOL(60), IMAX{25), ;

2JMAX (2513 NOBJ{60) yNDSTR( 25,601 ¢NP(60) KP(60) s NSOLN(60)
c
o FORMAT STATEMENTS |
C
0C05 1 FORMATU(IH ,2515)
0006 2 FORMAT (1HO® THE MINIMIZING POINTS ARE GIVEN BY')
0C07 3 FORMAT(' THE NEW BOUND ON THE OBJECTIVE FUNCTION='I5)
0C08 4 FORMAT(1HO'*THE NEW VALUE OF THE OBJECTIVE FUNCTION='I5)
0009 5 FORMAT(1HD,'SEARCH IS OVER',//)
0c10 6 FORMATI1H1,40(1H#*),"PROBLEM NUMBER =1',13,40(1H%))
0C11 7 FORMAT(1HO,"MINIMUM VALUE CF THE OBJECTIVE FUNCTION',
1110)
0C12 8 FORMAT [1H )
0C13 9 FORMAT (1HO, *DATA INPUT TO THE PROBLEMT)
0Cl4 10 FORMAT{1HO,'RIGHT HAND SIDE 1)
cCls 11 FORMAT(LHO'THE COEFFICIENT MATRIX')
6C16 12 FORMAT{1HO*UPDATED BOUND AT LEVEL = '15,15X,15)
0C17 : 13 FORMAT(1HO, 'MODIFIED OBJECTIVE FUNCTION') /
oc1e 14 FORMAT{1HO,'ACCELERATING TEST INDICATES TERMINATION IN® :
1' THIS BRANCH X{*,12,%)%)
0C19 20 FORMAT(1HO,'TIME TAKEN FOR COMPUTATION =',F7+2,
1' SECONDS®)
0020 21 FORMAT(1HO,'BRANCHING POINT GOING ABOVE UPPER LIMIT!
110X *CHECK FOR ERROR?)
0021 22 FORMAT(1HO,*END OF DATA WHILE READING N AND M IN PROBL®
1'EM NDe'13)
0C22 23 FORMAT(1HO,*ERROR ENCOUNTERED WHILE READING N AND M IN? :
1'PROBLEM NO4'I3) .
0023 24 FORMAT(1HO,YEND OF DATA WHILE READING NTYPE IN PROBLEM® :
1' NOo*13)
0C24 25 FORMAT{1HO, 'ERROR ENCOUNTERED WHILE READING NTYPE IN !
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cc25
0C26
0cz27
cczs8

0029
0c30

0c31
0C32
0C33
0C34

0035

0C36
0037
oc3s8
0039
0C4&0
0041
0042

0043
0Ca4
0C45
0C46
0Ca7
0048
0C49
0C50
0c51

0C52
0C53
0C54
0C55
0C56
0057
0cs8

0C59
0C60
Q061
0Cc6e2
0063

IV G LEVEL 1, MOD 4 MAIM DATE = 69322 75

OO0

OO

OO0

1*PROBLEM NOg'I3)

26 FORMAT(1HO,*END OF DATA WHILE READING RHS IN PROBLEM !
1'NO.'13)

27 FORMATI(1HO,*ERROR ENCUUNTERED WHILE READING RHS IN PRO'
1'BLEM NOL'I13)

28 FORMAT(1HO,"END OF DATA WHILE READING COEFFICIENTS IN?
1* EQUATION',1I3,*0F PROBLEM',13)

29 FORMAT(1IHO,*ERROR ENCOUNTERED WHILE READING COEFFICIE!
1*NTS IN EQUATION ',13,'0F PROBLEM',13)

30 FORMAT(1HO,120(1H*))

31 FORMAT(1HO,'LINEAR PSEUDO-BCOLEAN PROGRAMMING®//11X
1'PROGRAMED BY?)

32 FORMATI(1HO, 10X, "NeSeANANTHA RANGA CHARL')

33 FORMAT(1HO,10X, *DEPTs OF INDUSTRIAL ENGINEERING')

34 FORMAT{1HO,10X,*KANSAS STATE UNIVERSITY')

35 FORMAT(1HO,20X'BASED ON THE ALGORITHM PROPCSED BY ¢
1'"PETER L HAMMER & SERGIU RUDEANU?Y)

41 FORMAT{1615)

WRITE(3,30)
WRITE(3,31)
WRITE(3,32)
WRITE(3,33)
WRITE(3,34)
WRITE(3,35)
WRITE(3,30)

READ THE DATA CARDS

READ{1,41) NPROByNPRINT,ISTARTsNPOINT
NPRB=1
45 WRITE(3,6) NPRB
CALL TIME(AT1)
READ(1,41,END=T0Q0,ERR=T05) N,M
READI(] ¢41 yEND=T10,ERR=TLS)INTYPE(I )}y I=14M)
READ(14414END=T20,ERR=T25) (ND(I),I=1,M)
CO 50 I=1:M
50 READ(1441,END=T30,ERR=T35}{(NC(I,J)yJ=1,N)

PRINT NUT THE DATA

WRITE(3,9)
WRITE(3,10)
WRITE(341)(ND(I)yI=14M)
WRITE(3,11)
D0 52 I=1,M
WRITE(3,8)

52 WRITE(331)(NC(Isd)sd=1,N)

IF PROBLEM IS MAXIMIZATION CHANGE TO MINIMIZATION

IFINTYPE(1)eNEa2) GO TO 53
DO 49 J=1,N

49 NC(1lyJd)=-NCI(1l,sJ)
ND({l)==ND(1)}
NTYPE(1)=3

IF INEQUALITY IS OF TYPE («LEs) MAKE IT OF TYPE (aGEa)

—
et
PO

0 o S L B s

R e

o e
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0C64
CC65
0Cs&6
0ce7
0068
0Cs69
cc70
cC71
0072

0073
0074
0075
0076
0077
0078
0079
ocs8o0

ocal
ccaz2
0C83
0C84
cC85
cc8e6
ocBs7

WOEER

oces

cC90
0C91
ccs2
cC93
0C94
0cas
0C9s
0co7

gcaos
0cs9
0100

0101
0102
0103
0104
0105

#

OO0

laNelyl

OO0

OGO

leNeNel

53
54
55

57

58

59

90
100

212

214

245

250
255

l, MOD 4 MAIN DATE = 69322 7¢ 114

CO 54 J=1,N :
NOBJ(J)=NC{1,J) i
BO 58 I=1,M %
IF(NTYPF{I)<NE.3) GO TO 58
CO 57 J=14N
NCUTyJ)==NCII,J)
ND(T)==ND(T)

NTYPE(T)=2

CONT INUE

INITIALISE THE VALUES AND STORE THE OBJECTIVE FUNCTIGN

NOLD=10000

AN=N+1

NRHS=0

CO 59 J=1,N

IF(NC(leJ}elTeQ) NRHS=NRHS-NC{1lsJ)
NPILJ)=2

KPlJ4)=2

NZCOL(J)=2

ELIMINATE THE NEGATIVE SIGNS

CO 100 I=1,M

CO 90 J=1,N

NZ(TI,J)=3
IFINC({I,J)eGEsOQ) GO TU 90
NC{I,yJ)==NC(I,J)
NZ(TyJd)=4
ND(I)=ND({II+NC(I,J)
CONTINUE

CONTINUE

PRINT MODIFIED EQUATIONS IF NPRINT.EQ.1

IFI(NPRINTLEQs0) GO TO 214
WRITE(3,13)

WRITE(3,10)
WRITE(3,1)(ND{I)sI=1,M)
WRITE(3,11)

DO 212 I=1.,M
WRITE(3,1){(NZ(TI4J)yJ=1,N)
WRITE{3:1}(NC(IyJ)sd=1,N)}

STORE THE STARTING VALUES

KPDINT=0
CALL RECORDI(E&1000)
IFIKPOINT.GTaNN) GO TO 900

SELECT THE BRANCH POINT

MAX=0
IF{ISTART4EQe0) ISTART=1

CO 270 I=ISTART,M

CO 260 J=1,N
IF(NC(T,J)sLEaMAX) GO TO 260
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0106
c107
0108
0109
0110
0111
0112
0113
Clls4
0115

Cllé6
Cl17
0118
0l1l9
0120
0121

0122
0123
0124
0125
0126
o127
0128
0129
0130
0131

0132
0133
0134
0135
0136
0137
0138

0139
0140
0141
0142
0143
0144
0145
0146
0147
Cl48

OO0

OO0

sNeRel

(e Nalel

260
270
272

275

276

280

281

285

290
300

310
311
317

315

316

320

330
340
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MAX=NC(I,J)

IMAX({KPOINT)=1

JMAX(KPOINT )=J

CONTINUE

[IF(MAXsGTe0) GO TO 272
CONTINUE

GO TC 450

IMAX1=TIMAX (KPOINT)
IMAXZ2=JMAX(KPOINT)
IFINZ(1+IMAX2)eEQe3) GO TO 350

IF NZ=7BAR SUBSTITUTE Z=0

NZCOL(IMAX2)=0

NP{KPOINT =0

CO 280 INDEX=1,M
IFINZ(INDEX,IMAX2).EQs3) GO TO 280
ND(INDEX)=ND(INDEX)-NC(INDEX, IMAXZ)
NCUINDEX, IMAX2)=0

'SUBSTITUTE THE BRANCH VALUES IN ALL CONSTRAINTS

K=0
CO 300 I=1,M
IFINTYPE(I)eNEs1) GO TO 290
CALL EQUAL{E&31C)

IF{KeEQsl) GO TO 281

GO TO 300

CALL INEQL(&310)

CONTINUE

IF{K.EQel) GO TO 281

GO TD 245

IF Z=0 FATILS TRY Z=1

CALL UPDATE(E10C0)

NZCOLITIMAX2)=1

KP{KPOINT) =1

CO 315 INDEX=1,M
ITF{NZ(INDEX,IMAXZ)}aEQe4) GO TO 315
ND{INDEX)=ND{INDEX)=NC{INDEX,IMAX2)
NC{INDEXy IMAX2)=0

SUBSTITUTE THE BRANCH VALUES IN ALL CONSTRAINTS

K=0

CO 340 I=1,M
IFINTYPE({I)+.NEsl) GO TO 330
CALL EQUAL{&345)

IFIKsEQel ) GO TO 316

GO TO 340

CALL INEQLUE345)

CONTINUE

IF(KeEQel) GO TO 316

GO 7O 245

IF Z=0 & Z=1 FAILS GO ONE LEVEL DOWN AND
CHANGE THE BRANCH
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c
0149 345 KPOINT=KPOINT-1
€150 IF(KPOINT.LTS.1) GO TO 1000
0151 IFI{NP(KPOINT)eEQeO)aANDs [KP(KPOINT)eEQe1l)) GO TO 345
0152 IMAX1=TMAX(KPOINT)
0153 ITMAX2=JMAX({KPOINT)
0154 NDUMMY=NZCOL (IMAX2)
0155 CALL UPDATE(&1000)
0156 IFINDUMMYsEQeQ) GO TO 311
0157 GO TO 376
C
C IF NZ=7 SUBSTITUTE Z=1
C
0158 350 NZCOL(IMAX2)=1
0159 KP{KPOINT )=1
0160 CO 355 INDEX=1eM
0161 IFINZ(INDEX,IMAX2).EQ.4) GO TC 355
0162 ND(INDEX)=ND(INDEX)-NC({INDEX, IMAX2)
0163 355 NC{INDEX, IMAX2)=0C
C
c SUBSTITUTE THE BRANCH VALUES IN ALL CCNSTRAINTS
C
0l64 356 K=0
0165 CO 370 I=1,M
0166 IFI(NTYPE(I)aNEs1l) GO TO 365
Cle7 360 CALL EQUALI(E&375)
0168 IF(KsEQel) GC TO 356
0169 GO TO 370
0170 365 CALL INEQL{E375)
0171 370 CONTINUE
0172 IF(KsEQel) GO TO 356
0173 GO TO 245
C
C IF Z=1 FAILS TRY 2=0
C
0174 375 CALL UPDATE(E1QQO)
0175 376 NZCOL{IMAX2)=0
Q176 NP(KPOINT)=0
o177 379 CO 380 INDEX=1lsM
0178 IFINZ(INDEX,IMAX2)sEQs3) GO TO 380
g179 NDCINDEX)=ND{INDEX)=NC(INDEX, [MAX2)
0180 380 NCUINDEX, IMAX2}=0
c
c SUBSTITUTE THE BRANCH VALUES IN ALL CONSTRAINTS
C
o181 381 K=0
0182 DO 400 I=1,M
0183 IFINTYPE(I)eNEs1) GO TO 390
0184 385 CALL EQUALI(&410)
0185 IFIKsEQs1) GO TO 381
0186 GO TO 400
0187 390 CALL INEQL{E410)
0188 400 CONTINUE
0189 IF{KeEQel) GO TO 381
0190 GD TO 245

OO0

IF Z=1 & Z=0 FAILS GO ONE LEVEL DOWN AND
CHANGE THE BRANCH

11/
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c |
0191 410 KPOINT=KPOINT-1
0192 IF{KPOINT.LT,1) GO TO 1000
0193 IF({NP(KPOINT)aEQe0) e ANDs (KP(KPOINT)4EQse1)) GO TO 410
0194 IMAX1=TMAX(KPOINT)
0165 IMAX2=JMAX{KPOINT)
0196 NDUMMY=NZCOL ( IMAX2)
0197 CALL UPDATE(E&1000)
0198 IFINDUMMY,EQ.0) GO TO 311
0159 GO T0O 376
o
o ESTABLISH NEW BOUND ON THE OBJECTIVE FUNCTION
o
0200 450 OO 460 J=1,N
0201 460 NSOLN(JI=NZCOL(J)
0202 NEW=0
0203 O 500 J=14N
0204 500 NEW=NEW+NOBJ(J)*NZCOL(J)
0205 NOLD=NEW
0206 NADD=-NEW+NRHS—NDSTR (1, 1)+NPOINT
e
C PRINT THE FEASIBLE SOLUTION
o
0207 _ WRITE(3,2)
0208 WRITE(3,1) {NSOLN(J),J=1,N)
0209 WRITE(344)INEW
0210 WRITE(3,8)
o
o CONTINUE THE SEARCH
o
0211 KPDINT=KPOINT-1 »
0212 IF{KPOINT.LTel) GO TO 1000
0213 CO 509 K=1,KPOINT
0214 509 NDSTR(1,K)=NDSTR{1,K)+NADD
0215 IF(NPRINToNE2aQ) WRITE(3412) ((KyNDSTR(14K))yK=1,KPOINT)
0216 GO TO 515
0217 510 KPOINT=KPOINT-1
0218 IF(KPOINT,LTel) GO TO 10060
0219 515 IMAX1=IMAX(KPOINT)
0220 IMAX2=JMAX (KPDINT)
0221 NDUMMY=NZCOL ( IMAXZ)
0222 CALL UPDATE(&10CO}
0223 IF((NP{KPOINT)aEQe0)sANDs (KP(KPDINT)sEQel)) GO TO 510
c
( ACCELERATION TEST
C
0224 530 NSUM=0
0225 DD 540 J=1,N
0226 IFINZCOLIJ)aNEe2) GO TO 540
0227 IFtJaFQaIMAX2) GO TO 540
0228 IF(INZ(lyJ)eFQe3)aANDa (NSOLN(J)eEQeO})
INSUM=NSUM+NCSTR(1y14J)
0229 IFC(NZ{1lyJ)eEQe&) s ANDs (NSOLN(J)oEQasl))
LNSUM=NSUM4NCSTR(1,14J} |
0230 540 CONTINUE §
0231 IF(NC({1,IMAX2)sLEsNSUM) GO TO 545

0232 [IFINPRINTeNEeO) WRITE(3,14) IMAXZ
0233 GO TO 510 :
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0234
0235

0236
0237
0238
0238
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251

0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265

OO0

OO0

700
705
710
2158
720
725
730

735

900
1000

1001
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IF(NDUMMY.EQs0) GO TO 311
GO TO 376

PRINT ERROR MESSAGES IN CASE OF ERROR IN DATA

WRITE(3,22) NPRB
GO TO 1001
WRITE(3,23) NPRB
GO 7O 1001
WRITE(3424) NPRB
GO TO 1001
WRITE(3,24) NPRB
GC DO 1cC01l
WRITE(3,26) NPRB
GO TO 1001
WRITE{3,27) NPRSB
GO TO 1001
WRITE(3,28)1,NPRB
GO TO 1001
WRITE(3,29) 1,NPRB
GO TO 1001

SEARCH 1S OVER s PRINT THE RESULT AND TIME TAKEN »

WRITE(3,21)

WRITE(3,5)

WRITE(3,30)

WRITE(3,2)
WRITE{3,1)(NSOLN(J)yJ=1yN}
WRITE(3,7) NEW

CALL TIME(AT2)
TTIME=(AT2-AT1)/100.
WRITE(3,20) TTIME
WRITE(3,30)

NPRB=NPRB+1
IF(NPRBsLEsNPROB) GO TO 45
STOP

END

11/
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0co1

0C02
0003
0004

0CO05

Qcos

0007
ccos
0009
0010
cCl1
0Cl1l2
0C13

0Cls
0Cl15
0Clé6
0Cc17
ccls
0C19
0020
0021
cgc22
0023

0C24
0C25
0C26

ocC27
0028
0cz2s
CC30
0C31

SUBROUTINE EQUAL{*)

ke e e ole s s e st e e ok st e s o o o o ok o ol ot ol o o ok ol ok ok o o o ol sl ek kol ook e ok R ok Kok kR
THIS SUBROUTINE COMPUTES THE VWALUE OF THE VARIABLE
APPEARING IN EQUALITY CONSTRAINTS .
THE ROUTINE TESTS WHETHER ANY EQUATION SATISFIES
DETERMINATE CASES.
IF ANY DETERMINATE CASE IS SATISFIED THE VALUE IS

FIXED ACCORDING TO THE PARTICULAR CASE.
S5 e e e o o st e ok ot oo ofe s o ok s o ool ot kol s e o e o o ol ot el ool oot ok o ol e ook e o ok ook e e ek

OO0 0O0O00O0

IMPLICIT INTEGER*Z2(I-N)

COMMON MaNy I Ky KPOINT,NPRINT

COMMON NZ(25,60)4NC(25,60)4ND(25)4NTYPE(25),

INZSTR{60,60)yNCSTRI60,+25+60)4NZICOL(6C) IMAX(25]),
2JMAX(25) yNOBJ(60),NDSTR(25,60)yNP{60),KP{60)4NSOLN(60)

2 FORMAT{(*®* NO SOLUTION IN THIS BRANCH,CHANGE THE BRANCH')
IFINDII)s GEsO) GO TO 5

IF PROGRAM ENTERS THIS POINT IT IS CASE 1

e NeRe

IFINPRINTeNEo-O) WRITE(3,2)
RETURNI1
5 NSUM=D
CO & J=14N
6 NSUM=NSUM4NCI(I,J)
IF{INSUMaEQeO) s ANDo (ND(I)aEQs0)) RETURN
10 IFIND(I)aGTL0) GO TO 32

THIS IS CASE 2

OO0

CALL ENTRY1
DO 20 TNDEX=1,4M
20 IF((NTYPE(INDEX)sEQsal)eANDs (NDIINDEX)aLT«0)) RETURNI]
K=1
GO 7O 100
25 NSUM=D
CO 30 J=1,N
30 NSUM=NSUM+NC(I,J)
32 IF(NSUMsEQeO) RETURNI
31 IF(NSUMGGE.ND(I})) GO TO 40

FHLS I8 CASE 5

OO0

IFINPRINTaNE«O) WRITE(3,2)
RETURNL :
40 ITFINSUM.GT.NDI(I}) GO TO 50

THIS IS CASE 6

OO0

CALL ENTRY?2
CO 45 INDEX=1sM
45 TF{(NTYPE(INDEX)eEQel) e ANDs (NCIINDEX)WLTo0)) RETURNI1
K=1
GO TO 100

11/




FCRTRAN IV G LEVEL

0032
0033
0C34
0C35
0036
0C37
0038
0039
0C40
0C41
0042
0C43
0C44
0045
0C46
0Ca47
0048
0049
0C50
0C51
0C52
0C53
0C54
0CES
0C56
0C57
0c58

0C59
0C60
0061
0062
0063
0C64
0Cé5
0Ceb
0067
0C68
0Ce9
oQvo
a071
0072
0C73
0C74
0075
0C76
0077
0078
0079
0Cso0

SO0

50

55

60

65

70

80

85

30

94

95

99

100

1, MOD 4 EQUAL DATE = 69322 82

USE CASE 3 FOR ANY VARIABLE If IT APPLIES

DO 80 J=1,4N
IF(NC(I,J)eLEND(I)) GO TO 8C
IFINZ(I,J)sEQa3)G0 TO 65
NZCDLIJ)=1

CO 60 INDEX=1,M
IF(NZ(INDEXsJ)eEQe4) GO TO 60
NDCINDEX)=ND(INDEX)-NC{INDEX,J)
NCUINDEX,J41=0

K=1

GO TO 80

NZCOL (J)=0

CO 70 INDEX=1,M
IFINZ({INDEX,J)eEQe3)G0O TO 70
NDOINDEX)=ND{ INDEX)=NC(INDEX,J)
NCCOINDEX,J)=0

K=1

CONTINUE

NSUM=0

CO 85 J=1,N

NSUM=NSUM+NCI{1,J)
IF{{NSUMaEQeO) s ANDa (ND{I)eNEsQ))IRETURNL
IF(NSUMeEQe0) GO TO 100
IFINSUMeLESNDI(I)) GO TO 31
NDUMMY=NC(TI,1)

IND=1

DD S0 J=2,N

IF (NDUMMY 4 GEsNC(I,J)) GO TG 90

TRY CASE 7

NDUMMY=NC({I,J)

IND=J

CONTINUE

NSUM1=NSUM-NDUMMY
IF{NSUM1.GELND(I}) GO TO 1C0
IFINZ(I,IND)sEQs3)G0 TO 95
NZCOL(IND) =0

CO 94 INDEX=1,M
IF(NZ{INDEX,IND)«EQs3) GO TO 94
ND(INDEX)=ND(INDEX)-NC{INDEX, IND}
NC{INDEX, IND)=0

K=1

GO TO 5

NZCOL(IND)=1

DO 99 INDEX=1,M
IFINZ(INDEX,IND)sEQe4) GO TO 99
NDUINDEX)=ND{INCEX)-NC(INDEX, IND}
NC(INDEX, IND}=0

K=1

GO T 5

RETURN

END

114
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FORTRAN IV G

0col

0Co2
CCOo3
0004

0005

0Ccos6
ocor

ocos
0Co9
0010
0Cl11
0C12
0C13
0Cl4

| 0C15
0C16
0017

cclse
cC19
0cz20
0021
Qcz22
cc23

0C24
0025
0C26
ocav
ocz2s8
0c29

LEVEL 1, MDD 4 INEQL DATE = 69322 83

SUBROUTINE INEQL(%*)

e o s o e o sfe otk o e s e ok e sk e et sl o e ol ok skl ol sl ok kol sk ool ok ok ke e ol ok ek
THIS SUBRODUTINE COMPUTES THE VALUE OF THE VARIABLE
APPEARING IN INEQUALITY CONSTRAINTS.

THFE ROUTINE TESTS WHETHER ANY INEQUALITY SATISFIES
CETERMINATE CASES.
IF ANY DETERMINATE CASE IS SATISFIED THE VALUE IS

FIXED ACCORDING TO THE PARTICULAR CASE.
e e sk e o s s e s ot ol sk etk kol ek ok skl ol o ok o ok ok s ook e ko kool e e ok

OO OO0

IMPLICIT INTEGER*2(I-N)

COMMON MyNsI4K,KPOINT,NPRINT

COMMDON NZ(25,60)4NC(25460)4+ND{25)y,NTYPE(251],

INZSTRI60Q,60) yNCSTR(60,25,60)4NZCOL(60), IMAX(25),
2IJMAX(25) 4NOBJ(60) 4y NDSTR(25560) 4NP(60) 4KP(60) 4NSOLN(6DC)
2 FORMAT(® NO SOLUTION IN THIS BRANCH,CHANGE THE BRANCH')

IFIND{T)eGT«0) GO TO 10

c _THIS IS REDUNDANT INEQUALITY , CASE 1
GO TO 90

TEST FOR CASE 2

e Nelel

10 CO 20 J=1,4N
TF(NC{I,J)sGE.ND(I)) GO TO 90

20 CONTINUE

25 NSUM=0
CO 30 J=1,N

30 NSUM=NSUM+NC(1,J)
IFINSUM,EQeO)RETURNL

TEST FOR CASE 3

OO0

IFINSUMsGESNDII)) GO TC 40
IF{NPRINTeNEsO) WRITE(3,2)
RETURN1

TEST FOR CASE 4

e EeNe]

40 TF{NSUMGT.NDI(TI)) GO TO 50
CALL ENTRY2
CO 45 INDEX=1.M
45 IF(INTYPE{INDEX)eEQal)eANDo (ND(INDEX)aLT20)) RETURNIL
K=1
GO TO 90

TEST FOR CASE 5

OO0

50 NOUMMY=NCI(I,1)
IND=1
CO 60 J=2,N
[FINDUMMY .GE-NC(I,J)) GO TO 6C
NDUMMY=NC(1,J)
IND=J

11/




FORTRAN 1V

0030
0031
0032
0C33
0034
0035
0036
0037
0038
0C39
0C40
0041
0042
0043
0C44
0045
0C4a6
0047
0048
0C49

G LEVEL

60

65

70

75

80

90

1, MOD & INEQL DATE = 69322

CONTINUE

NSUM1=NSUM=-NDUMMY

IF(NSUMle, GEsND(I)}) GO TO 90
IFINZ(I,IND)«EQWs3) GC TOD 75
NZCOLUIND)=0

CO 70 INDEX=14M
IF(NZ{INDEX,IND)«EQe3) GO TO 70
NDOINDEX)=ND(INDEX)-NC{INDEX, IND)
NC{INDEX, INDI=0

K=1

GO 70 10

NZCOLTIND) =1

DO 80 INDEX=1,M
IFINZ({INDEX,IND)sEQsa%) GO TO 80
NDUINDEX}=ND(INDEX)-NC(INDEX,IND)
NC(INDEX, IND)=0O

K=1

GO TO 10

RETURN

END

84

11/




FORTRAN IV G LEVEL 1, MDD 4

0C01

0co2
0Cco3
0C04

acos
0goe
0007
gcos8

gcae
0Cl10
0Cl11
0C12
0C13
0Cl4
0C15
0Cl6
co17
oCls
cCl9
goz20
0C21

agz22
0G¢23
CC24

ac2s5
0C26
0c27
0028
co29
0030
0C31
0Q32
0033
0034
0035
0C36
0C37
0C38

 RECORD DATE = 69322 85

SUBROUTINE RECORD(*)
.
st e ol s ok oo ok s ook ok ook ook ook ook ok R ok Rlefok ok ok ok ko ko ko
c THIS SUBROUTINE KEEPS TRACK OF THE VALUE OF
C THE VARIABLES APEEARING AT ALL BRANCH POINTS.
C THE LEVELS ARE INDICATED BY THE VARIABLE *KPOINT!

(s 5 o o o o e ofe st o e o oo ool e ol ol e oot o o o ok o o ol o ool ok s oo sk e oot o o ok ok o kool ol ok

c
IMPLICIT INTEGER*2(I-N)
COMMON MeMN,T1,KsKPOINT,NPRINT
COMMON NZ(25,60)sNC(25,60),ND{25)}s NTYPE(25),
INZSTR(60,60) yNCSTR{60,25,60)4NZCOL(60) 4 IMAX(25),
2IJMAX(25)4,NOBJ(60),NDSTR(25,60) yNP(60) 4KP{60) 4NSOLN(60)

FORMAT(1HO*STORED VALUES?')
FORMAT(1HO'LEVEL = 'I2)

FORMAT (1IHO'VALUES OF NZ STORED?')
FORMAT(1H ,251I5)

W~

KPOINT=KPOINT+1
5 CO 15 J=14N
CO 10 I=1,M
NDSTR(T+KPOINTI=ND(I)
10 NCSTR{KPOINT,I4J)=NCI(I,J)
15 NZSTRIKPDINT,J)¥=NZCOL{J)
IFINPRINT.EQeO0) GO TO 25
WRITE(3,1)
WRITE(3,2)KPOINT
WRITE(3,3)
WRITE(344) (NZSTRIKPOINT+J) yJ=1,N)
25 RETURN
ENTRY UPDATE(*)
C
(C e e e o o o sl o e o ook ek e e oo ok ot oo o ofe ke o okl kol s o ol o e el o oo e el oo ol ofe o o e e o
C THIS ROUTINE SUPPLIES THE VALUE OF THE VARIABLES
C STORED AT DIFFERENT BRANCH POINTS .
& THE MAIN PROGRAM SUUPLIES THE LEVEL "KPOINT®
C AT WHICH THE VALUES ARE REQUIRED
C ot seoteoteoskaf ok e okt e seste e e afeoteode o oo oo ok ol ol odeode ol oo st okt ok skl ek ok kbl
c
6 FORMAT(1HO'THE VALUES ARE UPDATED TO THE LEVEL = 'I5)
7 FORMAT(1HO'VALUES OF NZ')
8 FORMAT(1H ,25I51}

IF{KPOINTSLTe1) RETURNIL
CO 40 J=1,N
DO 30 I=1,.M
NDIT )=NDSTR(I,KPOINT)
30 NCUIyJ)=NCSTRIKPOINT,I,J)
40 NICOL{J)=NZSTR{KPOINT,+J)
IFINPRINTLEQ.Q) GO TO 55
WRITE(346) KPOINT
WRITE(3,7)
WRITE (3,8) (NZICOL(J),J=1,4N)
55 LP=KPOINT+1
CO 60 K=LPg¢N,1l
NP(K)=2
60 KPIK)=2

114
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0C39 RETURN
0C40 END

—
st

T Rt s



FORTRAN

0col

0Qo2
0Cco3
C004

¢cos
0006
cCcov
0cog
0009
0C1l0
0Cl1
c012
0013
0C14
0015
0016
0C17
0Cl18
0C1s
0czo0
0021

IV 6 LEVEL 1, MOD 4 ENTRY1 DATE = 69322 87

C

SUBROBUTIME ENTRYL

% e e o o o i o o o ool et s ol o o e e ook ol e o o o e o o o ok o o ol ol ok ke o o o e e ool o e e ok el e

G
C

THIS SUBROUTINE FIXES UP THE VALUES OF ALL VARIABLES
IF THE EQUALITY CONSTRAINT SATISFIES CASE 2

e et s s 3 st ot ol ol ool o o o o s o o o o e ool e ool e e o o ol o ol ool ook o o ol ko e e e sl koo kol kol ok

c

IMPLICIT INTEGER*Z2(I-N)
COMMON MeNoI Ky KPOINT,NPRINT
COMMON NZ (25,60)+NC(25460) 4NDI25)4NTYPE(25]),
INZSTR(605,60)3NCSTR{60,25,60)yNICOL{60),IMAXK(25),
2JMAX(25) 4NOBJ(60) 4y NDSTR(25,60)4NP(60)4KP(60)4NSOLN({60)
10 DD 40 J=1,N
IFINC(T4J)eEQs0) GO TO 40
IFINZ{T4J)aEQe3) GO TO 25
15 NZCOL(J)=1
CO 20 INDEX=1,M
IF(NZ(INDEXyJ}eEQe4) GO TO 20
NDLINDEX)=ND(INDEX)=NC(INDEX,J)
20 NCUINDEX,J)=0
GO T 40
25 NZICOL(J)=0
DO 30 INDEX=1,M
IF{NZ{INDEX,J1-EQs3) GO TO 30
NDUINDEX)=ND({INDEX)-NC(INDEX,J)
30 NCUINDEX,J)=0
40 CONTINUE
RETURN
END

114




FCRTRAN IV G LEVEL 1, MOD 4 ENTRYZ2 DATE = 69322 gg -
0co1 SUBROUTINE ENTRY2
0co2 IMPLICIT INTEGER*2(I-N)
c
(C e s 3 o 3 ok ool ol ke ke e Sfeade e o o e ol s ol sl sl koo sl sl s e ool ke ol ke ke e e e ke e e ek ek ok o R ook ok
c THIS SUBROUTINE FIXES UP THE VALUES OF ALL VARTABLES
c IF EQUALITY CONSTRAINT SATISFIES CASE 6 DR
C THE INEQUALITY CONSTRAINT SATISFIES CASE 4
(C 3 ade e e o ok e e o ok e ddeoie ol ol e e e v sl ofe e ol o ok ol o e ol e ok o e e e e o ol e o ol o ofe ool o e ol e e o ole o e e ol e ke
C
0003 COMMON MaMN, I,K; KPOINTyNPRINT
0Co4 COMMON NZ(25,60)14NC(25,60),ND{25)4NTYPEL(25),
INZSTRU6C, 60) yNCSTRI60,25460) +NZCOL (60) s IMAX(25),
2JMAX(25) 4yNOBJ(60) 4 NDSTR(25,60)4NP(60)4KP{60)4NSOLN(6D)
0C05 10 DO 40 J=1,N
0Caeé IFINC{TI,J)eEQ.Q) GO TO 40
06007 IFINZI(IsJ)eEQe4) GO TO 25
ocos 15 NZCOL(J)=1
0C09 CO 20 INDEX=1,M
cC10 IF{NZ{INDEXsJ)aEQe4) GO TO 20
0C11 NDCINDEX)=ND(INDEX)-NC(INDEX,J)
0C12 20 NCUINDEXyJ)=0
oc13 GO TO 40
0€Cl4 25 NZICOLt{J)=0
0C15 DO 30 INDEX=1,M
0Clé IFINZ{INDEXyJ)eEQa3) GO TO 30
CC17 NDCINDEX)=ND(INDEX)=NC(INDEX,J)
0cls 30 NCUINDEX.J)=0
0Cl9 40 CONTINUE
0C20 RETURN
0021 END
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Edok dok kool okt ok ok S ok kR kAR kR Rk Rokk kX XPROBLEM NUMBER = 1 sk e o e e e ok e e ok B et ke

DATA INPUT TO THE PRCBLEM

RIGHT HAND SIDE
¢ -8 -15 0 0

THE COEFFICIENT MATRIX

-4 =2 -1 -4 =2 -1 -4 =2 -1 ) 0
-4 -2 =1 -8 -4 -2 -8 -4 -2 =2 -3
-8 -4 -2 -4 =2 -1 -8 =4 -2 =3 =2
-4 -2 -1 0 0 0 0 0 0 6 0
c 0 0 -4 -2 -1 0 0 0 ¢ 7
THE MINIMIZING POINTS ARE GIVEN BY
0 0 0 1 1 1 0 0 0 0 1
THE NEW VALUE OF THE OBJECTIVE FUNCTION= -7

SEARCH IS QOVER

s o ok ook o ook e ol ok ot o ook ok ot ol ok ot ol o sl ol ool o ok e kol ok o o ook e o e o sk ol ol sk s e e e ol ool ok ok ok ok ok ok

THE MINIMIZING FOINTS ARE GIVEN BY

C 0 g 1 1 1 o 0 0 0 1
JINIVUM VALUE OF THE CBJECTIVE FUNCTION =i
[TME TAKEN FOR COMPUTATION = Re55 SECONES

ot ot o ot ok o o ot ol e ol o oot o ok ook o ol o ok o ook o e e ool e e o e o o st e s e ok o e o o e e el o ol e o o el o o el e ek ek e e ek
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The combinatorial problems deal with the study of the arrange-
ment of elements into sets, Whenever it is necessary to choose
the best combination out of all possible arrangements, the problems
are known as extremization problems, Various combinatorial
problems such as shop scheduling, assembly-line balancing, delivery,
traveling salesman, capital allocation and fixed-charge problem
come under the category of extremization problems. These problems
are similar in nature, having linear objective functions, linear
constraints and integer-valued variables. Therefore these problems
can be formulated as integer programming problem. By the proper
utilization of zero-one variables, these problems can be converted
into zero-one programming problems.

The linear pseudo-Boolean algorithm proposed by Hammer and Rudeanu
is used to solve the zero-cne programming problems, The program uses
a set of rules dependent on the properties of pseudo-Boolean
functions., Using a branching and bounding procedure the search is
restricted to a limited number of branches. Improved results at
each trial are utilized successively to improve the convergence to
optimum value,

The various combinatorial problems mentioned above were formulated
as zero-one programming problems and were solved using the pseudo-
Boolean programming, The same problems were solved using IBM program
DZILP developed by Salskin and Spielburg. In general, the convergence
of pseudo-Boolean program was better than that of DZLP for small and
medium-sized problems. Two (4x%3) flow-shop problems and the line
balancing problems did not converge while using the pseudo-Boolean
program, DZLP failed in obtaining the solution of simple delivery

problems,



The main drawback of the pseudo-Boolean program is the large
amount of core storage it requires for the node values of the
branching tree, Hence pseudo-Boolean programming is a very efficient

technique in solving small and medium-sized problems.



