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ABSTRACT 

In this thesis we give a Baire Category type proof of the existence of functions 

F : R -* R which are differentiable at every point but monotone on no interval having 

positive length and whose derivative are bounded (Theorem 3.2). We also deduce further 

properties that any such functions F must also have (Chapter 4) for example, F possesses 

both a local maximum and a local minimum on any given nonvoid open interval 

(Property 5). Also, the sets Z(F') = { x 6 R : F'(x) = 0 }, 

P(F') = { X e R : F'(x) > 0 } and N(F') = { x G R : F'(x) < 0 } are each dense in 

R and for any nonvoid open interval I of R the sets inP(F'), IPiN(F') both have positive 

Lebesgue Measure (Property 9). It follows from this that F ' cannot be Riemann 

integrable over any closed interval of positive length (Property 10). 
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INTRODUCTION 

The purpose of this thesis is to prove the existence of real-valued functions on R that 

are everywhere differentiable but are monotone on no interval and to examine further 

peculiar properties of any such function. Examples of such functions are seldom given, 

or even mentioned, in books on real analysis. The explicit construction of such a function 

was given by Kopcke (1889). An example due to Pereno (1897) is reproduced in [9]. An 

elegant and rigorous explicit construction of such a function was given in the American 

Mathematical Monthly Vol. 81, No. 4, April, 1974 (pp 349 - 354) by Y. Katznelson and 

Karl Stromberg. The presentation here is based on an idea of Professor Clifford Weil. 

It does not "construct" the desired function. Instead, it proves their existence by 

application of Baire's Category Theorem to a certain Banach space of bounded functions. 
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Chapter 1 

The Space of Bounded Derivatives 

1.1 Definition : Let D denote the set of all bounded functions f : R -* R for which 

there exists some differentiable function F : R -> R such that F'(x) = f(x) V x G R. 

Supply the set D with the uniform metric: 

d(f,g) = || f-g ||u 

= Sup { f(x) - g(x)| : x G R }, for f, g G D. 

We call D the Space of bounded derivatives. 

1.2 Theorem : The metric space D is complete. 

Proof : We need to prove that each Cauchy sequence in D converges to an element of 

D. Let (fn)n€N C D be a Cauchy sequence. Choose Fn such that F n '= f n and Fn(0)=0. 

Since (fn)neN is a Cauchy sequence, for every e > 0 there exists N G N s u c h that 
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| fn(x)-fm(x) | < e whenever m,n > N and x E R. Thus the sequence (fn)neN is 

uniformly convergent on R. So there exists f : R R such that || fn - f ||u -» 0; 

i.e. || Fn ' - f ||u -*• 0. 

Thus Fn ' f uniformly on R. It follows from Theorem (4.56), pp. 214 of [18] that (Fn) 

converges uniformly on R to some differentiable function F and F ' = f. Thus f E D and 

d(fn, f) = || fn - f || u 0. Hence, the metric space D is complete. • 

1.3 Theorem : For each f 6 D, the set Z(f) = { x E R : f(x) = 0 } is a Go-set in 

R. Recall that this means that Z(f) is the intersection of some countable family of open 

subsets of R. [We call Z(f) the zero set o f f . ] 

Proof : Since f 6 D, 3 some differentiable function F : R R such that F ' = f. Let 

= F(x + l/n)-F(x) ^ R i 

1/n 

Then lim fn(x) = F ;(x) = f(x), for every x e 

n.-'co 

For a E R, we have 

\Aa) | = lim | fn(a) \ = lim \fn(a) \ so 
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where Ak,n = { x E R : |fn(x)| < 1/k }. 

Since F is differentiable on R, it is continuous on R and hence, each fn is also continuous 

on R. It follows that each Ak n is open in R and so 

is a Ga - set in R. • 

1.4 Definition : Let D0 = { f E D : Z(f) is dense in R }. 

We next prove that D0 is a real vector space. 

1.5 Theorem : If f and g are in D0 and a 6 R, then f + g and af are in D( 

Proof: Let f, g € D0 and let a G R. Notice that 

BO OO OO 

= n n u Ak,n k=l m=l n=m 

3 



So Z(af) is dense in R and af E D0. 

One formulation of the Baire Category Theorem states that the intersection of any 

countable family of dense open subsets of a complete metric space is dense in that space 

[see Theorem (3.57) on page 110 of [18]]. We apply this and theorem (1.3) in the 

complete metric space R to see that Z(f) n Z(g) is dense in R. Plainly Z(f + g) includes 

this dense set so it too, is dense in R. Thus f + g E D0. • 

1.6 Theorem : The set D0 is a closed subset of D. Hence D0 is also a complete metric 

space. 

Proof : Let (f„)neN C D0 and f E D and d(fn, f) 0. Then 

d(fn, f) > | fn(x) - f(x) | 0 for all x E R. It follows that 

QO 

n z(fn) c Z(f) 

O0 

because x 6 f j Z( f n ) =» fn(x) = 0 V n e N 

- f(x) = lim fn(x) = 0 
II— 00 

=> X € Z ( f ) . 
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Since ( f„)n 6N c Do> z ( f J is dense in R for each n G N. By Theorem (1.3), each Z( f J 

is a - subset of R. Thus, by the Baire Category Theorem, 

n Z ( Q 
n=l 

is dense in R and so its superset Z(f) is also dense in R. This proves f E D0. Thus, D0 

is closed in the metric space D. • 

1.7 Theorem : If I is a nonvoid open interval of R, then the sets 

A = { f E D0 : f(x) > 0 V x E I } 

and B = { f E D0 : f(x) < 0 V x E I } 

are closed and nowhere dense in the complete metric space D0. 

To prove this theorem we need some preliminary results so we postpone its proof until 

Chapter 3. 
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Chapter 2 

A Nontrivial Construction 

In this chapter we prove an important theorem which has the feature that it allows us to 

construct a strictly increasing function belonging to D0. We begin with a lemma. 

2.1 Lemma : Let (rn)n£N c R and put 

(t - o 1 / 3 
g„(t) = for t e R and n e N. 

D ( 1 - l r . r 

Then the formula 

Oo 

(1) h(t) = t + x : 2 - \ a ) 
n = l 

defines a function h : R -* R that is continuous, strictly increasing and onto R. 
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It follows from the Weierstrass M-test that the series (1) converges uniformly on each 

bounded interval of R. Since each gn is continuous on R, it follows that h is too. 

Note that if u < v in R, then gn(v) - gn(u) > 0, for all n. So h(v) - h(u) > v - u > 0. 

Thus h is a strictly increasing function on R. 
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Fix any a E R. 

If the series in (2) diverges and /3 > 0 in R, we can find N E N for which the Nth 

partial sum of that series exceeds (3 and then we can find 5 > 0 such that if 

8 

It follows that h is neither bounded above nor bounded below. Now, an application of 

the Intermediate Value Theorem shows that h maps R onto R. 

Now we turn to the proof of (2). First notice that if u v ^ 0 in R, then 
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This proves in this case that h is differentiable at a and (2) holds. If k G N, it follows 

from (2), (*), and (**) that 

By use of (*), we now see that 

0 < |t - a | < 5 , then 

Thus, h'(a) = oo if the right-hand side of (2) equals oo. 

Now suppose the series (2) converges and let e > 0. Choose N G N for which 



As a consequence of (2.1), we have the following remarkable fact. 

2.2 Theorem : There exists a differentiable strictly increasing function H : R-» R with 

H(R) = R and 0 < H'(x) < 1 for all x G R, such that both of the sets 

Z(H') = { x G R : H'(x) = 0 } 

and P(H') = { x 6 R : H'(x) > 0 } 

are dense in R. 

Proof : Let {rn}n£N be an enumeration of the set Q of all rational numbers and then let 

h be as in the preceding lemma. Since h : R -» R is a homeomorphism, so is its inverse 

H = h"1. Plainly, H (like h) is strictly increasing and H(R) = R. 

Let b G R. Choose a G R with h(a) = b, H(b) = a. Then 

lim " W - = lim t - a 

x-b x - b »-, h(t) - h(a) 

1/h '(a) , if h'(a) < » 

0 , if h'(a) = ~ 

Thus H'(b) G [0, 1[ for every b G R. If b = h ( r j , then H'(b) = 0 because 

h'0"n) = oo. Thus h ( 0 C Z(H'), and so Z(H') is dense in R because h(Q) is dense in 

R. To prove P(H') is dense in R, let I be any nonvoid open interval of R. Then 

I P| P(H') jt 0 [otherwise, I C Z(H') so H is constant on I]. This proves that P(H') is 

dense in R too. • 
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Chapter 3 

Closed Nowhere Dense Sets in D0 

We now prove Theorem (1.7). 

Proof of Theorem (1.7) : Let I be a nonvoid open interval of R, and let 

A = { f e D0 : f(x) > 0, V x 6 I } 

and B = { f € D0 : f(x) < 0, V x G I }. 

Let (f„)n6N C A and let f E D0 with d(fn , f) 0. Then | fn(x) - f(x) | < d(f„ , f) 0 

and so fn(x) -* f(x), for all x 6 R. Thus f(x) > 0 for all x G I which means f E A. 

Thus A is closed in D0. Similarly, B is closed in D0. 

It remains to prove that both A and B have empty interiors. Assume that A has an 

interior point f. Then there exists e > 0 such that 

g e Do, II f - g IIu < e=>g e A. (*) 

Let H be as in Theorem (2.2). Since H is differentiable on R, 0 < H' < 1, and Z(H') 
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is dense in R, we have H' G D0. Since P(H') is dense in R, we can find a G R with 

H'(a) > 0. Since Z(f) is dense in R, we can choose b G Z(f) n I and then define g on 

R by 

g(x) = f(x) - eH'(x - b + a). 

It follows from Theorem (1.5) that g G D0. The fact that 0 < H' < 1 yields 

II f - g llu = e|| H' | | u < e . 

We infer from (*) that g G A. But b G I and g(b) = f(b) - eH'(a) = -eH'(a) < 0 so 

g ^ A. This contradiction proves that the interior of A is empty. A similar argument 

proves that the interior of B is also empty. Thus A and B are both nowhere dense in D0. 

3.1 Theorem : The set of all f G D for which the three sets 

Z(f) = { x G R : f(x) = 0 }, 

P(f) = { x G R : f(x) > 0 }, 

and N(f) = { x G R : f(x) < 0 } 

are all dense in R is a dense subset of D0. 

Proof : Let W = { f G D : P(f), Z(f), and N(f) are each dense in R }. Plainly W C 

D0. We must show that W is dense in D0. 

Let (I„)„eN b e a n enumeration of the family of all nonvoid open intervals of R having 

rational endpoints. For each n, define 

An = { f G D0 : f(x) > 0 , V x £ U , 

and Bn = { f G D0 : f(x) < 0 V x G I„ } 
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By Theorem (1.7) An and Bn are closed and nowhere dense in the complete metric space 

D0. Then 

U (A. u BJ 
0 = 1 

is a set of the first category in D0. [Recall : Let X be a topological space. A set A C X 

is said to be of first category in X if A is the union of some countable family of sets that 

are nowhere dense in X]. Thus the set 

E = D0 \ (J (An U i y 
n=l 

is residual in D0. [Recall that a subset E in a topological space X is called residual in X 

if X \ E is of first category in X.] By the Baire Category Theorem, E is dense in D0. We 

complete the proof by showing that E C W. Let f 6 E be given. To show that f € W, 

it suffices to show that In D P(f) and In Pi N(f) are both nonvoid whenever n E N (since 

f E E f G D0=> Z(f) is dense in E). But this is obvious since f belongs to neither Bn 

nor An so there exists x , y E I„ with f(x) > 0 > f(y). Thus E C W and so W too is 

dense in D0. • 

3.2 Main Theorem : There exist functions F : R -» R such that F'(x) exists with 

-1 <F'(x) < 1 at each x E E, but yet there is no nonvoid open interval of E on which 

F is monotone. [We might say that F is reasonably smooth and wiggles everywhere.] 
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Proof : Choose f as in theorem (3.1) with || f ||u < 1. Since f G D, there exists a 

differentiable function F : R -> R such that F ' = f. Then 

|F ' (x) | = | f (x) | < | | f | | u < 1 V x G R. 

Thus, F'(x) exists and -1 < F'(x) < 1, V x G R. Now let I be any nonvoid open 

interval of R. Since P(F') = P(f) is dense in R, 3 a G I with F'(a) > 0 and so F cannot 

be monotonically nonincreasing (decreasing) on I. Likewise, N(F') = N(f) is dense in 

R so 3 b G I with F'(b) < 0. Thus, F cannot be monotonically nondecreasing 

(increasing) on I either. Thus, F is not monotone in I. • 
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Chapter 4 

Additional Properties of Everywhere Differentiable, Nowhere 

Monotone Functions 

The preceding three chapters were devoted to a proof of the existence of functions 

F : R -* R having the following three properties : 

(a) F is differentiable at every point of R. 

(IS) F is monotone on no nonvoid open interval of R. 

(7) -1 < F'(x) < 1 for every x G R. 

In this chapter we deduce a number of other important properties that any F : R -* R 

having properties (a), (/?), and (7) must also have . Thus, let F be any such function. 

Property 1 : If a < b in R, then | F(b) - F(a) | < b - a. 

15 



Property 2 : If a < b in R, then F is absolutely continuous on [a , b]. 

Proof : let e > 0 and take 5 = e. Suppose { ]aj , bj[ }n
j=I is a finite pairwise disjoint 

family of subintervals of [a , b], the sum of whose lengths is < 5. 

Then from property 1, 

Thus F is absolutely continuous on [a , b]. • 

Property 3 : If a < b in R, then F is of finite total variation over [a , b] : 

Proof : By the Mean Value Theorem there exists x G ]a, b[ such that 



Then Va
b F = sup { V(P , F) : P is a sub division of [a , b] } s b - a. • 

Property 4 : The two sets N(F') = { x G R : F'(x) < 0 } and 

P(F') = { x E R : F'(x) > 0 } are both dense in R. 

Proof : Let I be any nonvoid open interval of R. Assume N(F') f l I = 0 . T h e n 

F'(x) > 0 V x E I. It follows from the Mean Value Theorem that F is monotone 

nondecreasing on I contrary to (13). Thus N(F') f l I ^ 0 . Similarly, P(F') ( 1 1 ^ 0 . 

Property 5 : If a < b in R, then F has a local minimum at some u E ]a , b[ and a 

local maximum at some v G ]a , b[. 

Proof : From property 4 we can first find c G N(F') and then d G P(F') with 

a < c < b and c < d < b. Use the Extreme Value Theorem to find u G [c , d] such 

that F(u) < F(x), V x G [c , d]. Then a < u < b. Since F'(c) < 0 3 a G ]c , d[ such 

c < x < a
 F(x)- F(c)< o 

So F(u) < F(x) < F(c) => u * c. This proves u ^ 0. 
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Since F'(d) > 0, 3 0 G ]c , d[ such that 

p < x < d - - m > o 
K x - d 

so F(u) < F(x) < F(d). Thus u ^ d. 

Now we know c < u < d and F(u) < F(x) V x G ]c , d[. 

This means F has a local minimum at u. c < u < d and f(u) < f(x) V x G ]c , d[. 

Since -F also satisfies (a), (0), and (7), we can apply the preceding paragraph to find 

p < v < q in ]a , b[ such that -F(v) < -F(x) V x G ]p , q[. Thus F has a local 

maximum at v. • 

Property 6 : Z(F') is a dense in R. 

Proof : Since F ' G D, Theorem (1.3) shows that Z(F') is a G5 in R. If F has a local 

minimum (or maximum) at w G R, then F'(w) = 0 so w G Z(F'). Thus, it follows 

from Property 5 that Z(F') is dense in R. • 

Property 7 : If F ' is continuous at x, then F'(x) = 0. 

Proof : Suppose F ' is continuous at x. By Property 4, F ' takes on both positive and 

negative values in every neighborhood of x so F'(x) = 0. • 
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Property 8 : The function F ' is of Baire Class 1 on R. [Recall: Let X be a topological 

space. A function f : X -* € is said to be of Baire Class 1 on X if there exists some 

sequence of complex-valued functions which are continuous on X that converges to f at 

every point of X.] 

Proof : For n E N, define fn : R R by 

fn(x) = n[F(x + 1/n) - F(x)], x E R. 

By (a), F is continuous on R so each fn is also continuous on R. 

Obviously F'(x) = lim fn(x) V x e R. • 
n-® 

Property 9 : The sets A = { x E R : F'(x) > 0 } and B = { x E R : F'(x) < 0 } 

satisfy X(A Pi I) > 0 and X(B n I) > 0 for every nonvoid open interval I C R . Here 

X is Lebesgue measure on R. 

Proof : Assume X(A Pi I) = 0 for some nonvoid open interval I C R. Let a < b in 

I. By Property 2, F is absolutely continuous on [a , b]. So by the Fundamental Theorem 

of Calculus 

b 

F(b) - F(a) = f F' <; 0 
a 

Thus F(a) > F(b) V a < b in I. So F is nonincreasing on I, which is a contradiction. 
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Thus \ ( A D I) > 0. Similarly, X(B n I) > 0. • 

Property 10 : If a < b in R, then F ' is not Riemann integrable over [a , b]. 

Proof : Let A = P(F') as in property 9 and D = { x E [a , b] : F ' is discontinuous 

at x }. By property 7, [a , b] H A C D and so Property 9 shows 

\ (D) > X([a , b] Pi A) > 0. 

Thus F ' is not continuous a. e. on [a , b] and hence F ' is not Riemann integrable over 

[a , b]. • 
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