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1. INTRODUCTION

Increasing complexity of modern equipment, both in the military and com-

mercial areas, has brought with it new engineering problems involving
high performance, reliability, and maintainability. Reliability has long
been considered, during system design, as a measure of system effective-
ness. However, it has proved to be an incompleted measure because it
does not consider maintainability, another important aspect of system
performance. With increasing complexity and the resulting high opera-
tional and maintenance costs, greater emphasis has been placed on re-
ducing system maintenance while improving reliability. In this regard
availability, which is a combined measure of maintainability and reli-
ability, has received wide usage as a measure of maintained systems
effectiveness.

Availability is defined as the probability that the system is operat-
ing satisfactorily at any point in time under stated conditions. Lie
et al. [8] surveyed and classified the literature related to the avail-
ability of various systems. Depending on the time interval considered,
availability can be classified into: (1) instantaneous availability,
(2) average uptime availability, and (3) steady-state availability.

Instantaneous availability, g(t) is defined as the probability that
the system is operational at any time t, where O<t<=, Average uptime
availability, A(T), is the proportion of time in a specified time (0,T)
that the system is available for use and is expressed as

1 T
9(T) = ¢ [ g(t)dt

o



Steady-state availability is then the instantaneous availability at time
=, which is the 1imiting case of the instantaneous availability. Since
both steady-state availability and average uptime availability are special
cases of instantaneous availability, the derivation and evaluation of
instantaneous availability is fundamentai and of interest.

Availability estimation is no more than a typical statistical esti-
mation problem. Two typical procedures can be used, namely, non-Bayesian
inference such as the maximum likelihood estimate technique and Bayesian
inference. Kuo [7] recently reported on the maximum likelihood estimator
of availability and the Bayesian estimator of availability for ganma.dis-
tributed system cycle time and on time. Properties of these estimators
have not been studied.

It is controversial to use Bayesian approach in statistical estima-
tion. However, Bayesian apprach has its merits in reliability/availability
problems especially when (1) the sample size is small due to the expensive
or time consuming testing procedure, and (2) prior information is available
in practical engineering problem from past experience.

This study is an extension of a previous study [7, 11]. Some pro-
perties of the maximum likelihood estimator of availability and the Bayesian
estimator of availability for negative exponential distributed system on
time and off time are investigated through simulation. It can be concluded
that: (1) Both the maximum 1ikelihood estimator of availability and the
Bayesian estimator of availability are biased, (2) the maximum 1ikelihood
estimator of availability has a larger variance, a wider range, and a
wider 90% C.I. than those of the Bayesian estimator of availability, and
(3) Bayesian estimator of availability is insensitive to the prior infor-

mation within at least a certain range.



Future study in the availability estimation problems is directed
toward the use of the nonparametric Bayesian estimation techniques. Some
preliminary study of the nonparametric Bayesian estimation of life dis-

tributions, which can be applied to system on time and system off time,

has been investigated.



2. THE SYSTEM AND THE ASSUMPTIONS

Statement of the System:

Consider a system which can be in one of two states, "on" or "off",
when in the "on" state, the system is operating and in the "off" state, the
system is failing and under repair., We assume that at time 0, it is "on".
The system is then in service until it fails at a random time TOn with the
distribution function Fon(t). When it fails, it is then in the "off"
state and under repair for a random time TOff with the distribution function
Foff(t)' Then the cycle repeats by being operative for a random time and
then being inoperative for another random time. Successive times to break-
down and to repair are assumed to be independent.

It is assumed that the events of either operative or inoperative are
independent of time., A complete cycle time T is also a random variable
which is equal to the addition of random variables Ton and Toff' T then
is a random variable of the time from O to the time at which the system
failed, was repaired and just restored to the operative state. (See

Fig. 1.)

The Assumptions:

Assume that a system cycle time T, and on time, Ton, are gamma

distributed with pdf's:

f1(z) = 2y ()< le™? (M
and

fr (v) = 72T () e 2

I e BY) e (2)

where a, 8>0, x, y>0, k and o are positive integers.



With the parameters A, k, 8, and « known and time, t, given, the
time-dependent availability function evaluated in [7] is
-1
g(tsr,k,B,a) = EO Po(2;st)

t a-l

A é I pglesa(t-s)]

Polasas)  ds (3)
2=0 q

when T and TOn are independent.
To estimate the availability function, our main object is to present
a Bayesian availability estimator and to compare it with the maximum likeli-

hood estimator of availability.



3. AVAILABILITY ESTIMATORS

Maximum Likelihood Estimator of Availability:

Suppose that z samples of z and y are drawn from T and TOn respectively
and the observations are denoted by (zi, yi), i=1,2,...,0n. The maximum
likelihood estimates of X and k are given in Kuo[7]. They are given by

the simultanecus solutions of

_ nk
A = E (4)
X
i=1 !
and
] n 1 n
Rnk+3£n(.f xi) znk+ﬁin(_z xi)
e Ly <k<l+e 1= (5)

Similarly the maximum 1ikelihood estimates of 8 and a are the simultaneous

solutions of

_ _Na
& = E (6)
y
i=1 1
and
T, & 1 . B
in8+ﬁﬂ( Z_yi) eng+=n{ J y.)
i=1" U = D
e <a<l+e (7)

Finally the maximum likelihood estimator of availability is given by
eq. (3) after substituting ;ML’ EML’ éML’ and ;ML obtained from eqs. (4)-
(7) into eq. (3).



Bayes Theorem

The primary mathematical tool for Bayesian analysis is called Bayes
theorem in honor of Thomas Bayes who studied the topic in the mid-1700's.
Crellin [3] discusses the theorem as well as its uses and misuses. The
philosophy behind Bayes theorem is that two sources of information exist
regarding the parameters of the data model. First, in assuming a prior
model for the parameter or parameters of interest, we suppose that the
assumed prior model summarizes and represents the totality of knowledge
available concerning the parameters prior to the observation of data.
Bayes theorem is a technique for combining the information about the para-
meters from both the prior model and the data information into a single
model.

The combined model provided by Bayes theorem is called a posterior
model because it represents the state of knowledge about the parameters
after sample data information is combined with the prior data information.
To state the Bayes theorem, let f(ti; 3) denote the data model for an
observation t, ona variable T. If p(g) is the prior model for the para-
meter vector 3, and if a sample (t1, t2, g tn) of n independent cbserva-

tions on T is observed, the posterior model for g is

@

(8)
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where Q@ is the parameter space of a.
Just as p(¥) portrays the experimenter's feelings (prior model)
regarding the possible values of § before observing sample data,

h(3|t1,t2,...,tn} expresses the probability model for § after adjusting



p(8) for the infiuence of sample data -- hence the name posterior model.
Consequently, decisions and inferences made by using the posterior meodel
are influenced by both the sample data information and the prior model

information about 3.

Bayesian Estimator of Availability:

To implement the Bayesian approach in availability, which is a measure
of system effectiveness, the joint distribution functions of A, k, 2, and
o should be assigned. This assignment is too complicated to work out
analytically, It is usually possible to fix one of two parameters in a
gamma distribution and allow the other parameter to have a certain distri-
bution. Therefore, to approach this problem, we allow k and & to be fixed
constant positive integers and A and 3 to have the variations of negative

exponential distributions

i (9)

f.(A)
and
fo(8) = ve (10)

where u and v are undetermined positive constants and * and 3 are positive
and mutually independent random numbers.

fA(K) and fB(B) are the so-called prior information or prior distributions
of A and 8, respectively. Using the Bayes theorem, we combine egs. (1) and
(9) to obtain the posterior distribution of %, and combine egs. (2) and (10)

to obtain the posterior distribution of 8. Let fx(k; XqsX .,an be the

25--

posterior distribution of X given the sample S ELUTERRES s
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fA(A; XqsXpseaesX, } == |
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0
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]_1+ z X -)\(u+.z Xi)
—(——)—r ey (A + Z X e = (11)
Similarly we can obtain
fB(B;-yi’yz.,.".,yn)

n

(vt Z ¥;) 0 -8(vt ¥s) (12)

i=1

[0+ Ly e

The mean or expected value of the availability function g{t; x, k, B, a)
is a Bayes estimator of the availability if the squared error loss function
is presumed. A Bayes estimator, aB(t; As k, 8, @) for the g(t; A, k, B, a),
is the function that minimizes the expected value of the Joss function with
respect to the posterior model (or prior model when no data are available)

of A and 8. That is
9p(tlksa) = [ 9(t]x, ks 8, @) £,(2) f () drds (13)
00
when no data are observed, and
gB(tIUs Ky v, C‘) = JO' é g(tlk’ Ky B, C‘) f‘\(l; x'] ,Xzs---yxn)

: fB(s; y1,y2,...,yn) drds (14)



when the samples (xi’ yi), i=1,2,...,n are available.

10
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4, AVAILABILITY ESTIMATORS OF EXPONENTIALLY DISTRIBUTED TOff AND Ton

If a system off time, Toff’ and on time, T__, are negative exponentially

on
distributed, k in eq. (1) and « in eq. (2) are both equal to one. Replacing

XA by n in eq. (1) we obtain
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It can be shown that the availability function with the above pdf's has
the form
n n

g(t; A, B) = —+ (1 -E;;)e

-(8+n)t
B*n " L)

Let two samples (xi, yi), i=1,2,...,n be drawn from Toff and Ton’

respectively. The maximum Tikelihood estimators of n and 8 are then given

by

"MLE T

~ _ n
BMLE = 7 (19)

and the maximum likelihood estimator of the availability function is:

~ " 8 (g g )
G £ (t3 s g) = MEE 4 (7 o —ME_ o "HLE MLE
k5 e T fmie MLE T PmLE

(20)
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To implement the Bayesian approach, let n and g be random variables
with the pdf's given by egs. (9) and (10). The posterior distributions of

n and B are special cases obtained from egs. (11) and (12):

n n
(u+ X X5 5 -n(u+‘Z Xs)
(vt Z Y5 A - (vt E1y )
- n i=
f (8, YysYpseeasyy ) —'?TE:TT— [B(v + 1§]yi)] (22)

when k = a =1,
[f sample data are not available, the Bayesian estimate of availability

is simply

(0 = [T+ (0 - g0 &P e 78 daan (23)

If, instead, the sample information (xi, yi), i=1,2,...,n are available,

the Bayesian availability estimate is

n+l ® ® Lt L - '
; @%2— [1 %0 8 a"(gr-n)" e e (BTN Gggn (24)
n B
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n
where d = u+ J x., h=v+ X ;s and f = T(n+1).
j=1 ! i=1

Notice that u is the mean repairing time and v is the mean failure time.
Hence d and h are the weighted mean repairing time and mean failure time.
In other words, the maximum likelihood estimator of availability considers
sample information only, Bayesian estimator of availability without data
considers prior mean information only, while Bayesian estimator of avail-

ability with data considers both.

Difficulty of the Proposed Bayesian Approach

When the sample data are not available, the proposed Bayesian approach

is evaluated by
- - l . s
gB(t) - Ex uuj“'f ne” ) - ) e detdy (25)

When the sample data are available, the proposed Bayesian availability is

evaluated by

~ t \n+l h (nti
!dh{n+1 ©@ n -8'ty n n _-nd -(8'-n)n
il éfgrﬁ-e In(e -n)e™e dg‘dn (26)
n

To evaluate eqs. (25) and (26), numerical integration is necessary. One
should be careful in selecting the upper and lower limits in applying the
numerical integration method. The results presented for this numerical
example are obtained by Simpson's Rule. Any advanced numerical integration

techniques may improve the results of the proposed Bayesian approach.
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5. A NUMERICAL EXAMPLE AND SIMULATION RESULTS

Two samples of size 49 each in Epstein's work [4] have been tested
and found to conform to one parameter negative exponential distributions.
Let the first set of data, denoted by y;, y; cens y;9, be the observed
failure times (on times) for a system in a life testing. Let another set
of data denoted by x{, xé, eves x;9 be the observed repair times (off
times) for the same system in the down state. It is assumed that y; and
x; are independent events for i =1, 2, ..., 49, The data for y; and x;
are given in Table 1 where the mean values of y; and x; are 1042.00 and
104.20 respectively., It is shown in the Table that the failure times are
10 times of the repair times.

It is usually expensive and time consuming to obtain all 49 pairs of
data as given by Table 1. It is common that only a small part of the 49
pairs is obtainable. Let us assume that 5 pairs of data points are avail-
able from the life testing experiment. Five data points are randomly drawn
from the 49 failure times and another 5 points from the 49 repair times as
given 1in Table 2. Let ¥; and X; be the failure time and repair time,
respectively, for i = 1, 2, ..., 5. The mean values of Yy and xi for the
sample of size 5 are 1083.80 and 95.28, respectively. It is clear that
1083.80 and 95.28 are very close to 1042.00 and 104.20 which are the mean
values of system on time and off time in the sample of size 49. Let the
sampie of size 5 with means 1083.80 and 95.28 be designated by Set 1.

By the same sampling procedure, another set of 5 data points is drawn

from the 49 failure times and a set of 5 data points is drawn from the 49
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repair times. These 5 pairs of data points are given in Table 3 and
designated by Set 2. The mean values of the failure time and repair
time in Set 2 sample are 350.8 and 132.42, respectively.

Since the failure times and repair times given in Set 1 and Set 2
are drawn from the sample of size 49 which comes from 2 negative ex-
ponential distributions, it would be valid to assume that Y3 and X3
i=1,2, ..., 51in Set 1 and Set 2 samples both have negative exponential
underlying distributions.

With equal probability that each failure time and repair time can be
drawn as in the above case, we need to simulate other possible situations
to determine the properties of the proposed Bayesian estimator. Specif-
ically, we wish to determine, the mean, the variance, the 80% C.I. and
the range of the estimator given a set of prior information as compared
with those of the maximum 1ikelihood estimator.

The simulation procedures are given as follows:

Step 1. Through a random procedure, 100 samples, each of 5 failure

times and 5 repair times, are selected from negative
exponential distributions with parameters 1042 and 104.2
for the failure time and the repair time.

Step 2.

2.1 A set of prior information on the failure times and the
repair times are specified.

2.2 Eq. (23) is used to calculate the Bayesian availability
when no data are available.

2.3 For each of the 100 samples, eq. (24) 1is used to calculate
Bayesian availabilities. The mean, the variance, and

the 90% C.I. for these estimators are calculated.
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Step 3. Eq. (20) is used to find the maximum Tikelihood estimates

of availabilities for 100 samples. The mean, the variance,
and the 90% C.I. are obtained for these estimators.

Step 4. Steps 2 and 3 are repeated for both the unsteady-state

condition (T = 200), and the steady-state condition (solu-
tion converges by time T = 400).

A Fortran program based on the proposed Bayesian approach with various
prior information is written to evaluate Step 2. The program is listed in
Appendix 1. A Fortran program to evaluate Step 3 is listed in Appendix 2.

Four different prior information are applied for the Bayesian approach
(Table 4). Prior 1 overestimates the failure time and underestimates the
repair time which results in overestimating the availability. Prior 2 under-
estimates the failure time and gives the right information on the repair
time which results in underestimating the availability. Prior 3 gives the
right information on the failure time but underestimates the repair time
which results in overestimating the availability. Prior 4 gives the right
information on the failure time and the repair time which results in the
true information on the availability.

In the following discussions, prior 1 refers to Bayesian estimation

with y = 90 and v = 1200, prior 2 with u = 104.2 and v = 800, prior 3 with

p = 80.0 and v = 1042 and prior 4 with p = 104.2, and v = 1042.

For T = 200, the maximum Tikelihood estimates of availabilities are
shown in Table 5. Bayesian estimates of availabilities with prior 1,
prior 2, prior 3, and prior 4 are shown in Table 6, Table 7, Table 8, and
Table 9, respectively. Based on Tables 5 - 9, frequency distributions of
the instantaneous availability estimators are drawn in Fig. 2. Similarly,

for the steady-state situation, the maximum likelihood estimates of avail-

abilities are shown in Table 10. Bayesian estimates of availabilities
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with prior 1, prior 2, prior 3, and prior 4 are shown in Table 11, Table
12, Table 13, and Table 14, respectively. Based on Tables 10 - 14,
frequency distributions of the steady-state availability estimators are
drawn in Fig. 3.

The means, the variances, the 90% C.I.'s, and the ranges of various
estimators are outlined in Table 15 for T = 200 and Table 16 for the
steady-state situation. Some conclusions can be drawn from these tables.
Referring to Table 15 for the instantaneous case, it is seen that (1)
Availability esimators with a small amount of data are biased whether by
the maximum 1ikelihood estimation technique or the Bayesian approach.

(2) Without sample information available, Bayesian availability with
prior 1 has the highest value (0.928), while with prior 2 it has the Tow-
est value (0.886). These results reflect the fact that prior 1 over-
estimates the failure time but underestimates the repair time, and prior
2 underestimates the failure time. These results, however, do not exist
when the sample information is available. (3) With sample information
available, there is no significant difference among the means of the
various estimators (ranged from 0.8067 of Bayesian with prior 2 to 0.8333
of Bayesian with prior 4). However, the variance of the maximum 1ikeli-
nood estimator (0.0154) is the highest among the estimators (0.0041 for
prior 1, 0.0074 for prior 2, 0.0059 for prior 3, and 0.0048 for prior 4).
This confirms the small variance property of Bayesian inference. This is
at least true for the prior information of a ratio of failure time to
repair time between 8.00 to 13.33, when the true ratio is 10.00. (4)
With the sample information available, availability estimator obtained by
the maximum T1ikelihood estimation technique has the widest 90% simulation

confidence interval (0.612, 0.924) and the widest range (0.115, 0.950)



among the 5 different estimators.
The above statements are also true for the steady-state availabili-

ties as shown in Table 16.

18
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6. CONCLUSIONS

Availability is an important measure of the system effectiveness.
In this study, negative exponential distributions have been imposed on
a system's on time and off time. Some statistical properties of the maxi-
mum likelihood and Bayesian estimators of availability have been investi-
gated through computer simulation. It has been shown that the maximum
likelihood estimator has larger variance and wider range than those of
the Bayesian estimators, while both of the estimators are biased. There-
fore, for a small amount of data, the Bayesian approach seems superior.

The Bayesian approach in this study also shows its insensitivity to
a prior chosen within a certain range. This may not be true when the prior
chosen is far from the true value.. However, prior information about a
system of interest is always available, hence Bayesian inference is
valuable in dealing with engineering reliability problems.

The proposed simulation procedures should be extended to a wider
range of parameters and to a system of TOn and Toff other than the nega-

tive exponential distributions.
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7. NONPARAMETRIC BAYESIAN ESTIMATION OF AVAILABILITIES:
PRELIMINARY RESULTS AND FUTURE INVESTIGATIONS

In the availability estimation problems, both the distribution
functions of the system on time and off time, i.e. FTon and FToff’
should be estimated. Parametric estimation of the distribution in the
Bavesian sense has been widely studied, whereas nonparametric Bayesian
approach has not been used. There is a strong impetus to use nonpara-
metric approach in solving engineering reliability problems when only a
small amount of data is available, and Bayesian inference when one wants
to use one's past experience or subjective judgment.

Several recent studies in nonparametric Bayesian estimation of life
distribution functions have been reviewed in [5]. The feature of these
nonparametric estimations of 1ife distributions is using a weak set of
assumptions, as compared to the more restrictive parametric models, te
get the estimation of the distribution. Once the estimate of the dis-
tribution is obtained, one can predict the probability of failure at
any given time. Besides, nonparametric estimation fechniques have the
advantage of being relatively insensitive to outlines in the data.

Type of data, Life testing has the following common sampling forms.

(1) Accelerated sample: Samples of certain devices are subject to con-
ditions of greater stress than that encountered under normal operation,
and from the resuits for those high-stress environments {may or may not
include normal stress), an estimate of performance of the device under
normal operation is obtained, This sampling method is used when life=-

time tends to be long and the time consumed in testing a sample of a
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certain device may be excessive. (2) Nonaccelerated sample: Samples
are tested under conditions of normal operation only.

The above sampling schemes are distinguished by the following types
of data.

(1) Type I censored data: A test is conducted on n items, as each

failure occurs, the time is recorded. X(]), X(Z)’ % 6 X(r) are the ob-
served ordered failure times of the r items, r < n. The test terminates
at a preassigned time.

(2) Type II censored data: A test is conducted on n items and as each

failure occurs, the time is recorded. X(]), X(ZJ’ L $ X(r) are the ob-
served ordered lifetimes of the r items, r < n. The test teminates when
a preassigned number of failures, r, has occurred.

(3) Mixed censored data: A test is conducted on n items and as each

failure occurs, the time is recorded. X(I)’ x(z), R § X(r) are observed
lTifetimes of the r items, r < n. The test terminates when a preassigned
number of failures, r, has occurred or a preassigned time has been reached,
whichever comes first.

In either type of data, we have two methods of sampling. (1) With
replacement: Items that fail are immediately replaced by new items having
the same expected life distribution. (2} Without replacement: Items
that fail are not replaced.

Moreover, in each operating method of Type I censored data there are
three types of observations.
(1) Real observation: Ky = x;
(2) Right censored data: X. > X (exclusive censoring) or

i

Ky 2 X (inclusive censoring)



This is usually encountered when one preassigns a different time
(ti) for each different sample, Xi'

(3) Left censored data: Xy < X%y (exclusive censoring) or

Xi <X (inclusive censoring)

For nonaccelerated type I data without replacement, the following

3 nonparametric techniques have been investigated:

(1) Kaplan and Meijer's PL method [6]. Let Tys «+.s Ty be a random

sample of values of the random variable T (called the lifetime), and

L], 4o B LN be a sample of the random variable L (called 1imits of ob-
servation) where T and L are assumed independent. \e observe ty = min(Ti,Li)

i=1,2, ..., N. For each item it is known whether one has

—
A
—
t
]

i Sl t =Ty (a death)

or

-
A
—
[aa
1}

5 i b L (a loss)

Let N be the total sample size., If one 1ists and labels the N observed

lifetimes (whether to death or loss) in order of increading magnitude
0<Ty' < tr' e g tN' » then the estimator of survival function is
P(t) = nL(N-r)/(N-r+1}]
r
where r assumes those values for which tr‘ <t,and t ' measures the time

to death.

(2) Susarla and Van Ryzin's method [10]. Let Xys eees X be the true

survival times of n individuals which are censored on the right by n



28

follow-up times, Yl’ P— Yn. It is assumed that the Xi are independent
identically distribution function F(u), where F is distributed as a
Dirichlet process on RY = (0,=), and that the parameter a(+) is known
(see Ferguson (5], P. 116 for the definition of a Dirichlet process).

The observable data are:

~
1}

min{xi,Yi}
'[1fX1.<Yi

d; = 12105 seus N
Oifx1'<Y'i

Assume that Y], P Yn are mutually independent random variables
which are also independent of X1, cens Xn where Yi is distributed as
Hys Hi(u) = Pr(Yi <u), i=1, ..., n. Note that if 8. = 1, the Zi in the
pair (Zi’ai) which is observed is a true lifetime; and if 8; = 0, then Z_i
is an exclusive right censored data. Let Z], 4 iy Zk be the real observa-
tions and Zk+1’ - Zn be the exclusive right censored observations. Also,
let Z(k+1)’ wd § 5 Z(m) denote the distinct observations among the exclusive
right censored observations Zk+1, Wy Zn. Let Aj denote the number of
exclusive right censored observations that are equal to Z(j), for j =
k+1, ..., m, and let N{(u) and N+(u) denote the number of observations
greater than or equal to u and the number greater than u, respectively.

Then the nonparametric estimator S{u) of survival function S(u) under the

squared errors loss
L(5,8) = /5(S(u)-5(u))? dw(u)

with w being a weight function, is
alZpgye=iitlizes)

2oy oaluse)+it(u) 2
i e TRy
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(3) Ferguson and Phadia's Method [5].

This method is an extension of the Susarla and Van Ryzin's Method
to a more general class of prior distribution for F(u), namely the pro-
cess neutral to the right introduced by Doksum [12].

A process F(t) is said to be a random distribution function neutral
to the right if it can be written in the form

=Y

Fit)=1-e °©

where Yt is a process with independent increments such that (a) Yt is non-

decreasing a.s., (b) Yt is right continuous a.s., (c) 11'm1+ Yt = (0 a.s.,

and (d) Iim]¢+m Vi = = a.s.

=Y
let F = 1-e E be a random distribution function neutral to the right,

and let X], s Xn be a sample of size n from F. Assume that the observa-

tional data has three forms, m; real observations X; = Xq, ..., X, = X_ ,
1 1 1 m my
s exclusive censorings Xm1+1 > xm]+l... 5 xm1+m2 > Xm1+m2 , and ms
inclusive censorings X > X s esas X > X where
mﬂ%+]- mfmf& My +my My Hm,Hng

m.|+m2+m3 = n. Let Ups eees Uy be the distinct values among X1, cees Xoo

ordered so that Uy < wue <Up. Let 51, vees Gk denote the number of real
observations at Ups «ees Uy respectively, let Ays eees Ay denote the
number of exclusive censorings at Ups wees Uy respectively, and let

Hys wees M denote the number of inclusive censorings at Ups eees Uy

respectively so that z?ai =My, z?ki =My, and z#ui = ma. Let hj =

k
i=j+1

denote the number of us less than or equal to t.

z (61+Ai+ui) denote the number of the x. greater than Uy and j{t)



Assume that the independent increments of a process Y, has gamma

t
distribution with shape parameter v(t) and scale parameter t independent

of t, and that vw(t) is continuous. Then,

vw(t)
S(t) —jt) )
J(t)+'t+1
(1) (hy_prod(hyteel)  w(uy) glhy*r +el,ey)
=1 SR+l (o) Talny A+, 65)
where

- 58 -1 -1 i ati+]

zglasB) o (530 (1) Yog (=) 821

If our prior guess at the shape of S(t) is given by So(t), then for

fixed t, v(t) is
v(t) = Tog(sy(t))/Tog(z/(z+1))

The nonparametric Bayesian estimation procedures, as the ones des-
cribed, applied to the failure time distribution can also be used to
estimate the repair time distribution.

We generate, from a gamma distribution (o=3, 8=0.5 in eq. (2)), 5
true lifetime observations and 5 exclusive right censored data. The
probabilities of survival at 10 different time indices by 3 different
estimation techniques are listed in Table 17 and drawn in Fig. 4. From
the same gamma distribution, another 19 set of observations are drawn.
The probability of survivals for the 19 sets of data are obtained by

using 3 different estimation techniques. The means, the variances, and
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the ranges for ten different time index and by different estimation
techniques are summarized in Table 18.

From Table 18, the variances of the estimators of both the Susarla
and Van Ryzin's Method and the Ferguson and Phadia's Method are smaller
than those of the Kaplan and Meier's Method. The estimates of the Kaplan
and Meier's Method drop fast with regard to time. The estimates of the
Susarla and Van Ryzin's Method are greater than the estimates of the
Ferguson and Phadia's Method by time 8., After time 8, the Susarla and
Van Ryzin's Method underestimates the survival probability, while Ferguson
and Phadia's Method overestimates the survival probabi]ity.'

The computer program to calculate Table 17 is given in Appendix 3,
For details of the computation, see [5, 6, 10].

These nonparametric (Bayesian) estimations of distributions serve
as the distributions of Ton @S well as Toff' These estimators of Ton and
Toff can be used to estimate ths availability :. according to the
methodology presented in [7]. This form of a nonparametric Bayesian esti-
mate of availability is in variance with the classical Bayesian estimators
presented in the previous chapters. It would be of interest to compare
these two kinds of availability estimates as to efficiency and robustness.
It is also of interest to follow up on this preliminary investigation and
study the properties of these nonparametric (Bayesian) estimations of life
distribution as well as the properties of the availability estimators re-

sulting from them.



10.

11,

27

REFERENCES

D. M. Brender, "The prediction and measurement of system avail-
ability: a Bayesian treatment," IEEE Trans Reliability,
vol. R-17, no. 3, pp. 127-138, (Sept., 1968).

D. N. Brender, "The Bayesian assessment of system availability:
advanced applications and techniques," IEEE Trans Reliability,
vol. R-17, no. 3, pp. 138-147 (1968).

G. L. Crellin, "The philosophy and mathematics of Bayes equation,"
IEEE Trans Reliability, vol. R-21, no. 3, pp. 131-135, (Aug.,
1972).

B. Epstein, "Tests for the validity of the assumption that the
underlying distribution of Tife is exponential: Part II,"
Technometrics, vol. 2, no. 2, pp. 167-183, (May, 1960)}.

T. S. Ferguson, E. G. Phadia, "Bayesian nonparametric estimation
based)on censored data," Ann. Statist., Vol. 7, pp. 163-186
(1979).

E. L. Kaplan, P. Meier, "Nonparametric estimation from incomplete
obser;ations," J. Amer. Statist. Assoc., Yol. 53, pp. 457-581,
(1958).

Way Kuo, "Systems Effectiveness Models via Renewal Theory and
Bayesian Inference," Ph.D. Dissertation, Kansas State Univer-
sity, Manhattan, KS. 66621, 1980.

C. H. Lie, C.L. Hwang, F. A. Tillman, "Availability of maintained
systems: a state-of-the-art survey," AIEE Trans., vol, 9,
no. 3, pp. 247-259, (1977).

D. V. Lindley, "Bayesian statistics, a review," Society for
Industrial and Applied Mathematics, Philadelphia, PA. (1972).

V. Susarla, J. Van Ryzin, "Nonparametric Bayesian estimation of
survival curves from incomplete observations," J. Amer. Statist.
Assoc., Vol. 71, pp. 897-902, (1976).

F. A. Tillman, C. L. Hwang, Way Kuo, OQptimization of Systems
Reliability, Marcel Dekker, N. Y., 1980.




12,

K. Doksum, "Tailfree and neutral random probabilities and their
posterior distributions," Ann. Prob., vol. 2, pp. 183-201,
(1974).

28



29

on

of f

Fig. 1. A complete cycle of "on" and "off" for describing
the operative characteristics of a system. Ton’ Toff’

and T are all random variables.
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4\
Method 1 [6]
~—— Method 2 [10]
Method 3 [5]
0.7¢
0.6[ \
0.5
0.4f \
0.3
0.2 —
0.1 )
r \.‘—-—_‘1\ ———
0 3 1 1 i 3 1 1 { | -

Fig. 4.

Probabilities of survivals by 3 estimation techniques.

TIME



TABLE 1: 49 Pairs of Exponentially Distributed System off time

and on time [4]

off time on time off time on time
1.2 12 95.1 951
22 22 97.9 979
4.9 49 99.6 996
5.0 50 102.8 1028
6.8 68 108.5 1055
70 70 128.7 1227
12.1 121 133.6 1256
13.7 137 144.1 1351
15.1 151 147.6 1426
15.2 152 150.6 1491
23.9 239 151.6 1516
24.3 243 152.6 1526
25..1 201 164.2 1592
35.8 358 166.8 1668
38.9 389 178.6 1746
47.9 479 185.2 1852
48.4 484 187.1 1871
49.3 493 203.0 2031
53.4 53¢ 204.3 2043
55.6 556 229.5 2295
62,7 627 253.1 2591
72.4 734 304.1 3041
73.8 736 341.7 3427
76.8 768 341.7 3427

83.8 858 354.4 3544




TABLE 2: A Sample of Size 5 (Set 1)

Observation Off Time On Time

1 144.10 2043.00

2 76.80 1746.00

3 97.90 1227.00

4 150.60 251.00

5 7.00 152,00

Mean 95,28 1083.80

34



TABLE 3: A Sample of Size 5 (Set 2)

38

Observation

=~ W M

Mean

Off Time

354.40
76.80
53,20
25.10

152.60

132.42

On Time

251.00
358.00
68.00
49.00
1028.00

350.80
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TABLE 5:

Maximum Likelihood Estimates of Availability at T = 200

ESTIMATES ARE

0.950
0.922
0.912
0.902
0.89%
0.835
0.876
0.854
0.843
0.832
J.758
0.767
0.704
J.663

0.432

0.928
J.922
0.911
0.899
0.893
0.884
0.874
0.854
0.841
0.831
0.796
0.744
0.56598
D.662

0.115

0.928
0.916
0.910
0.898
0.839
0.884
J«.874
0.853
C.840
J.831
0.791
0.738
0.686

D.8&29

0.927
0.916
0. 910
0.896
0.389
0.879
0. 869
0.851
0.840
0.819
0.788
0.737
0.670

0.612

D.927
0.615
0.907
0.896
0.8838
0.879
0.869
0.850
0.838
0.819
0.778
0.726
J.0H68

J«539

0.92%
0.914
0.505
3.896
J.887
0.878
0.862
0.849
0.3838
0.309
0.773
Da.72%
QO.663

0545

0.922
J.913
0.902
Q895
0.886
0.378
J.861
G.846
0.836
0.799
0.767
0.717
0.063

0.536
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TABLE 6:

Bayesian Estimates of Availability with Prior 1 at T = 200

ESTIMATES ARE

0.911
0.899
0.886
0.880
J.872
0.864
0.850
J.837
d.82C
0.817
0.793
D.774
0.762
3720

0.8666

0.908
0.896
0.886
0.880
U.871
Q.861
0849
0.834
0.820
0.817
J.791
0.774
0.751
0.720

J.581

Q0.879
. 867
0.860
0847
Je. 834
0.8290
0.815
0.785
Q774
0.751

0.715

0.501
J.893
J.884
0.877
O.867
0.858
0.842
U« 833
0.829
0.811
0.780
D.771
J.751

0.705

0.839
J.818
0.807
0.730
0.770
J.745

0.701

0.900
0.892
0.381
0.876
0.367
0.857
0.8440
0.827
0.818
0.807
0.777
0.769
J.730

0.693

U900
0.389
0. E81

C.873

Q.864

0.850
U.838
0.820
0.818
0.807
0.775
G.762
J.729

O.£83
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TABLE 7:

Bayesian Estimates of Availabjlity with Prior 2 at T = 200

ESTIMATES ARE

0.909
0.897
D.886
0.886
0.872
Q0.854
0.845
0.827
0.815
0.797
0.788
0.743
0.721
J.664

J.631

J.909
J.396
J.886
0.882
0.871
De854
0.845
0.827
0.811
0.796
J.761
0.735
D.718
0.658

Je452

0.906
0.396
0. 886
0.879
0.867
0.850
0.842
0.827
0.809
0735
J.761
0.736
0.680
0.657

0.903
0.894%
d.886
J.879
0.863
Je 849
0.838
0.824
0.807
0.795
Je754
0.733
0. 680

J.653

0.903
0.894
0.386
0.879
U.861
O.848
0.835
J.821
0.806
JaT94%
JeT45
JaT725
0.679

J«b651

0.897
0.890
J.886
J.876
0.358
0.848
0.831
Jd.a21
0. 806
0.792
G.745
0D.723
0.5678

J.5651

0.897
C.839
0.886
J.875
J.855
0.845
0.829
0.818
0.8C0
0.790

O.743

0.664%

0639
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TABLE 8:

Bayesian Estimates of Availability with Prior 3 at T = 200

ESTIMATES ARE

0.912
J0.897
0.890
0.880
0.869
0.859
0.842
0.831
0.812
0.808
0.773%
0.755
0.730
0.688

C.641

0.911
0.897
J.8606
0.878
0.867
0.857
0.841
0.829
0.812
0.806
0.777
0.755
0.724
D.673

0.538

0.909
0.896
0.388
0.877
0.867
0.855
0.840
C.825
0.811
J.805
0.771
0.753
0.707

0.673

J.906
0.894¢
G.886
0.877
0.867
0.855
0.838
0.823
0.309
0.805
Je 764
Ja750
D.703

V.670

0.903
0.893
0.833
0.874
0.863
0.852
0.833
0.823
J0.809
0.833
0. 764
0.746
Je.692

V. 666

0.899
0.891
U.883
0.872
0.863
0.3852
0.833
0.819
0.809
0.798
0.758
JaT41
J.692

Q.062

0.898
J. 890
0.881
0.872
De862
0.3851
C.831
0.817
0.808
J.794
0.755
0.741
0.688

C.651
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TABLE 9:

Bayesian Estimates of Availability with Prior 4 at T = 200

ESTIMATES ARE

0.950
0.922
0.912
0.902
0.894
0.885
0.876
U.854%
0.843
0.832
0.798
2.767
J.704
Je603

0.432

0.928
0.922
0.911
0.899
0.893
J.884
0.874
0.854
D.841
U.531
0.796
DeT44
0.698
D.662

0.115

0.528
J.916
0.910
0.898
C.889
0.884
J.874
0.853
0.340
0.831
0.791
C.738
0.686

0.629

0.927
Je 916
0.910
J.896
0. 889
0.879
0.869
0.851
0.840
0.819%9
0.788
0.737
0.670

O0.612

0.927
0.915
0907
0. 856
0.888
0.879
0.869
0.850
J.838
0.819
0.778
Je 726
J 668

Je«589

0.924
0.914
J.905
0.3656
0.8a7
0.378
0.862
0. 849
0.838
0.809
0.773
D.724
0.663

0.545

0.922
D.913
0.502
0.895
0.886
J.878
0.361
0.846
0.836
0.799
0.767
0.717
D.663

0.536
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TABLE 10:

ESTIMATES ARE

05920
J.909
0.893
0.881
0.875
0.E64
0.851
0.830
0.814
U792
0.764
0.7138
0.554
0.608

0.388

0.920
0.903
0.891
0.879
0.373
0.861
0.849
0.829
0.814
J.785
0.763
0.716
Je653
0.608

Jell2

0.918
0.897
0.889
0.879
0.872
0.856
JeB47
J.821
0.811
0.788
J.753
0;712
0.652

0.587

0.917
J.896
0.886
0.879
J.872
U.856
0.846
0.820
0.809
0.782
0.725
0.709
J.641

0. 58¢

0914
J.856
0.885
0.878
0.871
0.855
0.845
0.818
0.837
V. 774
0.724
Je701
Je«636

Je566

0.912
0.895
0.884
0.877
0.869
0.854
V. 336
0.817
0.805
0. 769
D.722
0.691
0.621

0.524

Maximum Likelihood Estimates of Availability at Steady-state

0.919
0.395
J.d31
0.8786
0.369
C.353
0.832
Je.816
C.756
0.766
0.721
0.689
0.€15

Jea37

42
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TABLE 11: Bayesian Estimates of Availability with Prior 1 at Steady-state

ESTIMATES ARE

0.889 0.885 0.884 O.884 0.331 0.879 0.875
0.874 0.871 Jg.871 0. 865 J.865 0.3864 0.863
0.8?3 J.862 0.861 0.861 U.858 0.358 0.850
Je354 0.854 0.853 Jed53 0.853 Jes52 0.852
38438 0.841 Q.841 0.341 Oe 837 Q.834 0.832
J.832 0.830 J.829 J.827 0.827 J.826 0.823
0.822 0.821 J.319 0.318 J.818 0.815 0.815
J.812 J.810 0.809 0.807 U. 805 0.305 0.799
0.798 J.7596 J.794 0.7590 0.790 0.786 0.785
0.785 - 0.778 0.778 0.778 0.777 0.776 0.770
Q764 0.764 0.762 0.762 0.756 0.75¢ Ve 749
0.745 0.745 C.T43 0.740 D.731 0.729 Q.726
0.725 0.721 C.720 J0.720 Je711 J.698 0.655
0.688 J.688 0.681 0.678 U676 0.661 0.651

0.634% Q.491
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TABLE 12: Bayesian Estimates of Availability with Prior 2 at Steady-state

ESTIMATES ARE

0.886 0.885 0.885 O.881 0.880 0.880 C.878
0.878 0.875 C.873 0.870 0.8¢&9 O.864% 0.863
0.857 3.857 0.856 0.853 0.852 0.852 0.852
J.351 J.849 0.346 0.846 0.845 Je844% Je842
0.842 0.841 0.841 U.837 Ue 836 J« 829 C.324
0.822 J.818 C.318 0.816 0.812 0.812 0.811
0.811 0.810 0.809 0.809 V.808 0.807 0.806
0.803 0.803 0.798 0.793 0.792 0.790 0.789
0.785 0.782 0.782 D.774 0.773 Qe771 0.768
Je 766 D.766 0.763 0762 0.752 0.752 0747
0.741 0.724 0.716 0.716 Q.70 0.707 0. 737
0.705 0.701 0.689 0.688 0.688 J.671 0.€060
Je660 0.658 0.658 0.644 D.641 J.636 0.629
D.627 0.626 0.625 0.625 V.616 0.608 J.608

0.571 J.401
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TABLE 13: Bayesian Estimates of Availability with Prior 3 at Steady-state

ESTIMATES ARE

0.889 0.889 0.886 0.883 0.880 0.880 0.879
0.878 0.877 0.876 0.874 0.871 0.868 0.867
0.862 J.862 0.860 J.859 0.857 0.856 0.852
0.852 0.4851 J«850 0.845 J«848 0.848 O. 847
0.847 0.843 0.834% 0.829 0.827 0. 827 0.826
U.82% J.821 0.821 0.821 0.321 U.813 0.818
0.815 D.811 0.810 0.809 0.807 0.307 0.807
0.804 0.802 0.801 0.800 0.797 0.793 0.787
0.786 0.786 J. 786 U. 786 0.778 0.778 0.774
0.772 J.772 0.767 0.766 0.763 J.761 Qe742
0.741 0.739 0.730 0.730 J.729 0.728 0.728
0.721 0.712 0.710 0.710 0.705 0.705 0.704
0.695 J.6T1 0.668 0.668 J«656 0.649 0.649
0.646 D.642 Je630 0.630 0.629 U.626 Q.607

0.582 0.451



TABLE 14:

ESTIMATES ARE

0.920
0.909
0.893
0.881
0.875
0.864
0.851
J..830
0.8L4
2.792
0.764
0.718
D654
0.608

0.338

0.920
J.903
J.891
J.879
J.873
0.861
0.849
0.829
C.814
0.789
0.763
0.716
0.653
J.608

0.112

C.918
0.897
0.889
0.879
0.372
0.856
0.847
0.821
0.811
0.788
0.753
0.712
C.652

J.587

0.917
3. 896
0.886
0.8753
0.872
0. 856
0.846
0.820
U« 809
0.782
0.725
0.709
O.641

0.5886

J.914
0.896
0.885
J.878
0.871
0.855
C.845
0.818
0.807
JeTT4
O.724
J.701
0.636

J566

0.512
0.835
0.884
J0.877
0. 369
0.85%
0.836
0.317

0.805

C.510
0.395

0.881

U«853
0.832
0.8196
0.796
0.766
0.721
0.639
0.615

0.497

46

Bayesian Estimates of Availability with Prior 4 at Steady-state



47

216°0  216°0 606°0 LI6'0 05670

9v5°0  8£5°0 25070 186°0 SLL'O I9NYY

906°0  668°0 £68°0 006°0  26°0

€LL°0  0/9°0 £69°0 S0°0 21970 "1°2 %06
8v00°0  6500°0  £00°0 L¥00°0 51070 . JONY THYA
€8€8°0  6218°0 /90870 b28°0 6L18°0  LL6°0 £16°0 9880 826°0  026°0 WE
p JOLAd € 4OLAd Z JOLAd | JOLAd AW p JOlAd € JOLdd 2 JoLAd | Jotad AW

eeq YILH eleq INOYILN uotyendog

00Z = | 1® S40lewL}S AIL|LGR|LRAY SnOLdep

404 S,°[°) %06 pue “sajuelaep ‘suesW  *Gl 374vL



48

688'0 6880 998°0 688°0 0260

85v°0 15470 L0t "0 (6r°0  2LL°0 JONVY

$88°0 0880 088°0 6/8°0 21670

599°0C  0€9°0 529°0 8/9°0 9850 "1' %06
0900°0  1[00°0  €800°0  8¥00°0 G910°0 JINY YA
G808°0 608L°0  SELL°0  [S6L°0 66810 188°0 888°0 268°0 ¥06°0 0160 NY3W
p JOLAd € A0LUd 2 JOl4d | JOtdd  ITW  40LAd € JOLAd 2 JOLAd | Jolad  TTW

e1e]  UILM ©3eg 3N0YFLM

uoLjendog

91015-ApRa1S 10 SJ0RWL)ST AJL|Lqe|LeAy

SNOLABA 404 S,*1°9 %06 PUe *S3duBLARN “Sued)

‘91 378yl



TABLE 17: The Probabilities of Survivals at 10 Different Time
Indices by 3 Estimation Techniques

Probabilities of Survivals

Time Method 1 [6] Method 2 [10] Method 3 [5]
2.0 1.0000 0.9835 0.9256
4.0 1.0000 0.9691 0.8482
6.0 0.8889 0.8545 0.8539
8.0 0.5556 0.5500 0.5745

10.0 0.2778 0.3071 0.3676

1.0 0.0000 0.0676 0.1574

14.0 0.0000 0.0554 0.1697

16.0 0.0000 0.0453 0.1798

18.0 0.0000 0.0371 0.1880

20,0 0.0000 0.0304 0.1947




TABLE 18: Means, Variances of the Probabilities of Survivals
at 10 Differeat Indices by 3 Different Metheds
Probabilities of Survivals
Method 1 F61 Method 2 {101 Methed 3 [5]

Time Mean Variance Mean Variance Mean Variance
2 0.9944 0.0006 0.9784 J.200¢ C.9155 C. 0CC9
4 0.9203 0-0117 0.8G84% 0.0091 0.8462 0.0073
-] 0.6641 0.0820 0.6613  2.3602 D.6563 J.0613
8 0.4308 0.0818 0.4325 0.0528 0.5064% 0.0523
10 0.2152 0.0596 0.2527 0.0421 0.3074  0.0409
i2 0.2561 C.0325 J. 1676 J.2307  0.2297 G.0208
14 0.0525 0.0166 0.11538 CG.0176 0.2019 0.0105
16 0.0337 0.0109 0.0715 C.GC17 C.1588 0. 0C7D
18 €.0137 0., 00703 0.0513 0.0046 0.1949 D.0344
20 0.0090 2.0000 0.0298 0.8300C C.18G1 0.0004




APPENDIX 1

A FORTRAN PROGRAM TO EVALUATE STEP 2

OF THE PROPQOSED SIMULATIOM PROCEDURES
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TRAP IS A DCUBLE PRECISIUM FUNCTION LSINS THE
TRAPEZGIDAL RULE TG EVALUATE THE FINITE INTEGRAL

OO0

OCOOOOMNO

OO0

CF FX.

COUBLE PRECISICN FUNCTION TRAP{A+8+MyFX)
COUBLE PRECISION A,B+SUMsHsT»V,DXJyUsQyDYJ
DOUBLE PRECISICN FX»D

COudLE PRECISICN FX1

COMMCN/BLL/DXJ

COMMUN/ 2L 3/7CYJrCaHa N

COMMON/BL2/T,4V,U

Q=(8-A) /¥

SUM=0.JCC

R=M=2

CO 6 [=2,Ky2

[2=1+1

SUM=SUM+0.2C01*FX(A+[*0) +0.4D0L*FX{A+]2%y)
SUM=SUM+0 .4COL*FX{A+Q)
TRAP=(FX{A)+FX{B)}+35UMI*(Q/{0.38Q1))

RETURN

END

FX IS A DOUBLE PRECISIGN FUNCTICN SERVING
AS AN EXTERNAL FUNCTION OF THE MAIN PRRJUOGRAM.
FX CEFINES ThE INTEGRANU USELC IN TRAP, WHEN
SAMPLT DATA INFURMATICN ARE NCT AVAILABLE.

DOUBLE PRECISICN FUNCTICN FX(2)

DOUZLE PRECISICN Z,T,VyDXJ,u

COMMCON/3L1/D0XJ

COMMCN/BLZ2/ Ty VU
FX={2.1201)/7Z*(0.1DOL-DEXP{=Z%T ) }#DEXP{-V*.)
FA=FASOXJ*CEXP(=-CxJ#(U-V)}

RETURN

END

FX1 I35 A DGUBLE PRECISICN FUNCTION SERVING
AS AM EXTERNAL FUNCTICON OF THE MAIN FROURAM.
Fx1 DEFINES TRE INTEGRANC USEC IN TRAP, wHEHN
SAMPLE DATA INFCRMATICAK ARE AVAILABLE.



OO0 OO0 OO0 O0O0n

COuBLE PRECISICN FUNCTICN FX1{Z)
ECUBLE PRECISIUON H.D

CCuBLE PRECISICN Z4,T4VsCYJdyt
CCMMCN/ BL3/0YJsCaHeN
COMMON/BL2/TV bl
FXLl=DYJ**[N+]1)%(1l.0D00-DEXP({—=2%T)])
FXL=FXL1/Z*{Z-0Y J) **N
FXL1=FX1*¥0EXP{-DYJXE(S-H} ) #D**%x(N+1)
FXI=FX1*DEXPI=Z*%H/3.0000 ) *H**(N+1)
FAX1=FX1*DEXP{-2Z*H/3.3000)
FAXL=FX1*=DEXP(=L*E/3.0000])

RETURN

END

THIS PRCGRAM CALCULATES ThHE SYSTEM AVAILABILITIES 3Y

1) CLASSICAL APPRCACH CF MAXIMUM LIKELIHCCD ESTIMATE
TECHINQUE WHEN THE SYSTEM CYCLE TIME AND CN TIME
HAVE VALID NEGATIVE EXPUNENTTIAL CISTRIZJUTICNS,

2) SAYESIAN APPROACH WHEN THE SYSTEM CYCLE TIME AND CN
TIME HAVE VALID NEGATIVE EXPCMENTIAL ECISTRIBUTIONS,
THE PARAMETERS OF THE SYSTEM CYCLE TIME aNC CN TIME
ARt EXPUNENTIALLY DISTRIBUTED, ANDC

3) 3AYESIAN APPRCACH OF CASE 2) whEN THE SAMPLE
CATA INFORMATICNS ARE AVAILAGLE.

BAYESTAN AVAILABILITY EVALUATED IN TRIS PRCGRAM [S
BASEC UPCN TFHE MEAN SQUARED ERRCS LoS3S FUNCTICN.

NUTATIONS:

Ne NUMBER OF CBSERVATICN PAIRS.
Alit FEz2AL VALUE CF ive
X{I1): RANCCM VARIASBLE OF SYSTEM CFF TIiME,TOFF,

[=1421a0erN
Y(I): RANDGM VARIABLE CF -YSTEM CN TILIHE,TCN,
I=l’2)o--,l"‘;
ALAMDA: PARAMETER OF OISTRIGBLUTICN FUNCTION CF T
ABETA: PARAMETER CF DISTRIBUTION FUNLCTION OF TONG
G: AVAILABILITY FUNCTICN, EXPRESSED EY
ALAMCA/ABETA+{1.-ALAMDA/ABETAI*EXP(—-ABETA*T).
J: PARAMETER Cr NEGATIVE EXPCNENTIAL CISTRIBUTICN
FUNCTIGCN CF ALAMOA.
V: PARAVETER CF NEGATIVE EXPCMNENTIAL DISTRISUTICN
FUNCTICH CF ABETA.
O: U+SUM CF X(1) FOR I=192)eeerlia

B3
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H: V+SUM CF YI(I) FCR I=142resssNe
5T: LOWER LIMIT CF INTEGRATICN
ST=1.00-C9 FCGR WITH AND WITHCUT CATA INFCRMATICN
ANC FGR ETA.
ED: UPPER LIMIT GF INTEGRATICN
ED=1.0D-01 FOR NOC DATA AND ETA
£D=T7.0D0-02 FOR NG DATA AND BETA
£E0=2,5D-02 FCR SAMPLE SET 1,2 ANC ETA
IN TERMS OF BETA
ED=1.9D~-02 FCR SAMPLE SET 1 AND PARAMETER SET 1
IN TERMS OF BETA
cD=2.90-02 FOR SAMPLE SET Lls2 AND PARAMETER SET 142

DOUBLE PRECISICN Bl,B2+53,T,Vv,U.,DXJ
DOUBLE PRECISICN DX,Cl,C2,C1l2
DGUBLE PRECISICN Fl,0Y0YJ,BA,388,3C 48D
DCGUBLE PRECISICN D1,02,D12,E12
COUBLE PRECISICGN H,D
DCUBLE PRECISICN CCyC34,0DyD34,G12
O0OUBLE PRECISICN TRAP
DOUBLE PRECISICN Ql1.,FA
J0UBLE PRECISION ST4ED
EXTERNAL FX
EXTERNAL FX1
3 FORMAT (Dé6.2)
9 FORMAT (I2)
19 FORMAT (2F7.2)
11 FORMAT (D8.24+CB.2)
19 FORMAT (v11',/77)
21 FORMAT (/795X "MAXIMUM LIKELIHCCUO SSTI4AT
11XyF3.6)
22 FORPMAT (5X, 'MAXIMUM LIKELIHCGD ESTIMATE CF BETA IS',
L1X,F5.6)
23 FURMAT (/75X "FAXIMUM LIKELIHGCC ESTIMATE CF',1X,
1VAVAILASILITY AT' /5%, 'TIME T GF', 1X,
2DBe e lXyVISY 1X4yF5.3)
24 FGR¥AT (//)
29 FCRMAT (//+5X,"CATA SET 2')
31 FORMAT (/// 5%, "BAYESIAN AVAILASILITY ESTIMATZS AT 1@,
1'TIME T OF'" 3 1X,C8429 /95Xy "WHEN THE SAMPLE ',
2'0ATA INFURMATICN ARE AVAILABLE, IS
3/9y5XeF5.3)
39 FORMAT (//7,5X+"PARAMETER SET',12)
41 FURMAT (/775X 'BAYESIAN AVAILAZILITY ESTIMATE AT!',1X,
I'TIME T GF',1X408.2,/5X,"ywHHEN THE SAMPLE DATA!
29! [HFCEMATICN ARE NCT AVAILASLE,!
247 IS5',/5X4F5.3)

CF ETA IS?,

m
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[ )

§5

51 FORMAT {15X212¢12XsFT742,10X,FT7.2)
52 FORMAT (/,5X,'U= 1,08.2)
53 FORMAT (/,,5X,'V= 1,D8.2)
98 FORMAT(///+10X, "OBSERVATICON® 10X, *TCFF"® ,12X,"TGN?',
1//77)
95 FORMAT('"1',////+10X,'TABLE THE DATA GF CFF AND CN TIMES')
100 FORMAT('1')

OIMENSICN X(50) ,¥Y{53),a(50)
COMMON/BLL1/DXJ
COMMON/BL3/DYJeCaHyN
COMMON/BL2/T4 VU

REACI(S5,8) T

READ(S5,9} N

REAC(S,10) (Y1) X I)sI=1,M)
aRITE{6,99)

WRITE(6,98)

NRITE(S6451) (I, X(I)sY(I},I=1,N)
SX=C.0

SY=C.0

D0 81 I=1,N

SX=SX+X{(I)

SY=SY+Y (1)

81 CONTINUE

USE THE MAXIMUM LIKELIHGCOD ESTIHA*E TECHANIQUE TC
CBTAIN LAMOA,BETA,AND AVAILABILITY.

AN=RM

HLAMCA=AN/SX

F3ETA=AN/SY
H1=HLAMCA/(HBETA+HLAMDA)
WRITE {6,19)

ARITE (6,29)

wlITE(6,21) HLAMCA
aRITE(64+22) R3ETA

O 502 KUV=1,3
REAC(S54111 U,V
WRITE(&6,+52) U
WRITE{(6,53) V

D=U+5X

H=V+5Y

BC 501 KKY=1l,2
H2=(1.0-H1)*=DEXP(-T*(HBETA+HLAMDA))
HG=h1+H2



OO0 O00 @)

OO0 OO

(m}

71
73

12
74

63

WRI[TE{65,23) T,HG

GO TC 555

USE BAYESIAN APPROACH TU EVALUATE The AVAILABILITY
FUNCTION WHEN ThE SAMPLE DATA INFORMATICON ARE

AVAILABLE.

ST=1.0D0-09

E0=2.00-01

K&K=139

OX=(ED—-ST) /KK

KKK=KK-1

KQ=KK=-2

C12=0.0000

cl12=0.0000

DXJ=5T 7
F1=TRAP{DXJ,s1.00-01,60,FX)
00 71 J=1,KKK,2
DXJ=DX*J+ ST

Cl1=0.0D320

IF (DXJ.GE.T.CD-C2) GC TC 73
C2=TRAP(DXJyT.0L~-C2,50,FX)
Cl2=4,0D0CC0*{LLl+C2)+Cl2

CO T2 J=2,KG,2

CXJ=DX*J+ST

01=C.3000
02=TRAPI(DXJ ¢y 7.CL-02960,FX)
012=2.0C000*(C1+C21)+D12
El2=0DX*{C12+012+F1)/(3.3D23)

BON=U=V/{ (U+T)*(V+T) ) +UxVv%EL12

WRITE(6,441) T,BGN

USE BAYESIAN APPROACH TO EVALUATE TrRE AVAILABILITY

56

FUNCTION WHEN THE SAMPLE UATA INFCRMATICN ARE AVAILAGLE.

CONTINUE

FA=1,.3D00
DC €0 1I=1,N
FA=sFA#®]
CONTINUE
S$T=1.3D0-09
ED=2.5D-02
KM=133



61
63

62

64

501

502

DY=(ED-ST )/ KM

KKid=KM-1

KP=KM-2

£34=0.000C

034=0.0D00

CYJ=ST
QL=TRAP(DYJ,1.80~-032,80,FX1}
00 61 J=1,KKM,2

DYJd=0Y*J+ 3T

IF (DYJ.GE.1.8D-02} GG TO 63
CC=TRAP(DYJ,1.8C0-22,80,FX1)
C34=4.0000%CC+C24

D0 62 J=24KP,2

DYJ=0Y*J+3T

IF (CYJ.GE.1.3D-02) GO TO 64
DO=TRAP(DYJ,1.3C0-02,80,FX1)
D34=2.2C00%00+D24
Gl2=DY*((34+034+Q11/7(3.3C00Q)
BA=1.00C0/FA

88=1.0000/FA

BC=(D/{T+D) )*=*{N+1)
BO=(H/(T+H) ) **{N+1)
BG=BC*3L+EA*EB*(Gl2
WRITE(6,31) T.BG

T=T%2

T=T/4.0

CONTINUE

ARITE (5,19)

aRITE(6,130)

STGP

END

57



APPENDIX 2

A FORTRAN PROGRAM TO EVALUATE STEP 3

OF THE PROPOSED SIMUATION PROCEDURES

58



/ N (I3) NP (I2)

/ P (F 5.3)

# GiF R

MLE

/ 10 F 5.3

/ 10 F 5.3

Bayesian

Prior
10 F 5.3

/ 10 F 5.3

Bayesian

L
Prior,2 10 F 5.3

Etc.

INPUT DATA FORMAT FOR APPENDIX 2
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PURPOSES: THIS PROGRAM FINJUS> THE MEANS AND THE
VAR IANCES CF GROUPS OF BAYESIAN ESTIMATES
wHICH ARE OBTAINED FRCM SIMULATTED
RESULTS. FOR EACH PRICR INFORMATICN,
THE ESTIMATES ARE ALSO PUT IN CESCENDING
ORDER.
DISTRIBUTION HISTOGRAMS WILL BE FOLLCWING THE
EDITED RESULTS CF THIS PROGRAM.

NCTATICANS:
N: NUMEBER OF CBSERVATIUNS (ESTIMATES)
NP: NUMBER CF PRIGR INFORMAT ICN
P: CLASS INTERVAL
[: INDEX TC DENCTE PRIOR INFORMATION
J¢ INDEX 71O DENCTE ESTIMATICNS
EM(I,J): ESTIMATE OBTAINED FRCOM ITH PRICOR
AND JTH CBSERVATILN
EMX(J}: JTH ESTIMATE FGR A PRIOR
AVGEMI 13: MEAN OF ESTIMATORS FOR ITh PRIGR
VAREM(I): VARIANCE CF ESTIMATCRS FUR ITH PRICR
EE({K): KTH CLASS MARK
EL{K): KTH LOWER CLASS LIMIT
EU(K): XTH JPPER CLASS LIMIT
C{K}: NUMBER CF OBSERVATIGNS IN THE KTH CLASS

FCGRMAT

1 FORMAT (I13,1I2)
1l FORMAT (10F5.3)
2l F3RMAT ('1',10X,'PRIGCR NUMBER?',I12,/,11X,
2YMEAN IS" yFT74%+/ 411Xy '"VARIANCE IS'")F7.4)
31 FCRMAT (/ /748X, 'ESTIMATES ARE',//,(5X,TF3.3/))
41 FORMAT (//,9X,"FROM',10X,'TO",9X%,
2'CLASS MYARK!' ,3Xx,'NG CF CBSZRVATICNS!)
S1 FORMAT (/43(8X,;F8.3)910X,F06.2)
61 FORMAT ('1*,///7/)
Tl FORMAT (F5.3)

MAIN PRCGRAM

JIMENSICN EM(19,120) sEMX(120),AVGEM(1J),VAREM(1Q)
DIMENSTICN CIU5C) ,EU({50),EL(50),E8B(5C)

REAC(591) NyNP

READ (5,71) P

DO 3 I=1,NP



READ(S5, 11} (EM{I.+J),J=1:N)
DO 5 J=1,N
5 EMX{J)=EM{I,J)
CALL AVGVIN»EMX,AVG,VARI
AVGEM(I)=AVG
3 VAREM{I)=VAR
D0 4 I=1,NP
ARITE (6,21) I1,AVGEM(I),VAREM(])
JC 6 J=14N
6 EMX{JI=EM{I,J)
CALL SORT{EMX,N)
ARITel6,31) (EMX{J)sd=1sN)
ARITE (6,61)
WRITE (6,411}
oG 99 XJ=1,50
ELIKJ)I=1.30-P*KJ
EU{KJI=1,00-P*{KJ-1)
99 EB(KJ)=J.50F{EUIKJ)I+ELIKJ)})
C
C FINLC ThE FREQUANCY COUNTS
c
K=1
C(K)=0.90
DO 7 Jd=1,N
IF (EMX{J).GT.EL{K)) GC TN 3
WRITE (6951) EBLIKYEU{R)EB(K),C(K)
IF {EUlK}).LEs D.00) GO TC 4
13 K=K+l
IF (EMX(J).06T.ELIK)) GC TC 12
C{K)=0,0
wRITE(6,51) EL{K)EU{K),EB(K)} (K}
GC 10 13
12 C(K)=1.2
GC TC 9
ClK)=Ci{K}+1.0
IF (J.EJ«N) GC TG 14
GO 10 7
ARITE (6451} ELIK)»cU{K]),EB{K)}yC(K]}
COUNTINUE
WRITE {(oy61)
STCP
END

O o

&~

c

C THIS IS THE SUBRCUTINE wWHICH EVALUATES THE
C MEAN ANC THE VARIANCE GF A GROUP CF DATA

c

SUBRCUT INE AVGVIN,E»AVG,VAR)
OIMENSICN E(120)
$=0.0

61



OCGOO0O

SUBRCUTINES SCRT,SORTLL,
WwHICH SGRT A GRCUP CF ESTIMATES IN

80 L I=1l,N

S=5+£(1}

AVG=S/N

Sv=C.9

CO 2 [=1yN
SV=SV+(AVG—-E(]) )*¥%2
VAR=5V/ (N-1)

RETURN

END

CROER

280

209

299

SUBRCUT INE SCRT(X.N)
OIMENSICN X£{120)
CALL SORTLL{XsNsl)
RETURN

END

SUBROUT INE SGRTL1(B,M,1I1)
CIMENSION 8(129)

I=11

IF {1.5T.(M4-1)) GO TO 200
J=1

K=1+1

CALL MAXL2{B,idydsK)

I9=K

[F {(IQ.GT.M) GC TO 200
7=8(I)

3t1)=3(J)

8(J)=T

I=1+1

GO TC 230

RETLRN

END

SUBROUTINE MAXL2{C,MM,J4J,K)
DIMENSICN €(120)

KK=K

IF (KK.GT.MM) GC TG 219

IF (C(XK).GT.C(JJ)) GO TO 130
KK=KK+1

s TG 290

JJd=KK

KK=KK+1

GO TC 250

RETURN

END

AND MAXLZ ARE THE ONES

THE CESCENDING

62



APPENDIX 3

A FORTRAN PROGRAM TO CALCULATE THE
PROBABILITIES OF SURVIVALS BY THREE
NONPARAMETRIC (BAYESIAN) LIFE
ESTIMATION METHODS
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OO0 OO0 0000000000000 00CO00COCO0000O0000

64

PURPCSE:
THIS PRCGRAM COMPUTES ESTIMATCRS CF
DISTRIBUTICN FUNCTICNS FCR ANY GIVEN TIME BY
3 NCNPARAMETRIC BAYESIAN ESTIMATICN TECHNIGQUES

SUBROUTINES REGQUIRED IN MAIN PRCGRAM:
le METHLI{(NIXI DA, AR,DBC,DL,8CT)
2e METH2(NsMyX4OFN,DP+HsMN,AR,LCT)
3+ METH3{NIXI,Y,DCT)
4e METHG(NI»XI,Y,CA,AR,CCyCC,CCTyK1sLN)
5. METHSINI,XI,Y,{D,DHN AR yDCH ,cCH,0CT)
Ho METHOINI 9 X1 oY+ ZyOR»TOW, LA, AROK1,0K2,0C,0C,0CT,K)
Te METHTINI 9X143Y3sIC,AR,CT,CCT)
8. SORTI(XI,NI,IST)
9 SOIFL(XAI Y NIJLN,IST)
10« SORT2IXI,Y ,NN)
11s SDIF2(XT,YZsNNyLN)

NCTATIONS USEC ALL THRCUGH THE MAIN FROGRAM® ANC SUZSRCUTINES:

N: NUMBER OF CISTRIBUTION FUNCTICNS

M{I[): SAMPLE SIZE OF THE ITH RANCCM SAMPLE, I IS A VARIAZLE
X{I,J): THE JTE CBSERVATICN FROM THE KTH RANCCWM

SAFFLE I=1,N, Jd=1,M{1)

NI: SAMPLE SIZE CFTSEESCB3 RA-CCOM SANMPLE

XI{J): THE JTk CBSERVATICN FRCM THE ITH RANCCM SAMPLE J=1,NI
Y{J): AN INTEGER VALUE INDICATES XI(J) IS A EREAL
CBSERVATICN CR EXCLUSIVE CENSCKED DATA CR INCLLSIVE
CENSCREL CATA

AR: PRICR SAMPLE SIZE

C: TIME SPAN

LM: AN INTEGER, LM*C=UPPER BCUNLC CF TIME INTERVAL

CA: AN EXTERNAL FUNCTICN,PARAMETER CF THE DIRICHLET PROCESS
N MAX{ M{I),I=1,N )

IC: TRE ITH INCTIVIDUAL GNE WANTS TC ESTIMATE

ITS DISTRIBUTION FUNCTIONy I=132¢eesile

DR: TIME CEPENDENT SHAPE PARAMETER [F THE

GAMMA PROCESS AND THE SIMPLE ROMCGENERGUS PRCCESS

OHN: AN EXTERMNAL FUNCTICN

TOw: SCALE PARAMETER GF THE GAMMA PRCCESS

AND THE SIMPLE ERCMOGENERCUS PRCCESS

OC: A GIVEN CCUNSTANT USELC IN CAl

DG: A GIVEN CCNSTANT UJSED IN CaAl

CCH: A GIVEN CCANSTANT USEC IN OFN1

OCH: A SIVEN CONSTANT USEDS IN DENL

It A 2-CIMENSTICNAL MATRIX

Z11,1) DENCTES THE NUMBER LCF REAL CEBSERVATICAS AT XI(I)
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130

212

65

Z124y1) CENCTES THE NUMBER OF EXCLUSIVE
CENSGRINGS AT XI(I)

Z{3,I) CENCTES ThE NUMBER OF INCLUSIVE
CBSERVATIUNS AT XI(I), WHERE XI(I) IS

AN ARRAY AFTER CALLING SDIF2 FGR [=1,K

CT: A GIVEN CCNSTSNT USED IN METFET

DCT: C*[T, A TIME INDEX AT wHICH THE PROBABILITY
CF SURVIVAL IS CALCULATELC

IMPLICIT REAL=®*8I((C)

EXTERNAL CAl,CR1,CENL
REAL*3 XIL{L1C) yChARL,ARZ2,TOW 4XI2110),XI3110)
IMTEGER Y1{10),2(3,1C},Y¥2(10),Y¥3(10)
COMMCN/FIRST/CEFN

CGMMCON/ THIRD/LCEP
COMMCN/FORTH/CES
CCMMCN/SIXTH/DSG,0SH,0SD
NI=10

LM=20

C=2.09

AR2=1.D19

ITI=1

TOwR=1.D0

LCK1=0.1443D0

CK2=0.1C0

CCs=1,D0

bC6=-0.1D0

AR1=1.D0

CC4=1.D2

004=-.10C0

EQ 1 IGt=1l,4

REAC(5,10C) (XIl(I),1=1:+5),{YL{I)yI=145)
FORMATIS(1X,F7.4),T46,511)
REAC(5,10C) (XI1(I),I=641C),,(YL{L),I=6,10)
IK=C

b0 219 I=1,NI

IK=IK+Y1(1)

X12(I)=XI1(1)

XI3(I[)=XI1(1)

Y2{i)=Y1{1)

Y3(I)=Y1(1I)

IF{YL{I) +EG. Q) Y3(I[)=2
CCNTINUE

Kl=1K+1

CALL SORT2{XIL,YLl,NI)

CALL SCRTI1(XIZ2,NI,K1)

CALL SDIF1{XI2+Y2,N1,LN,K1)
CALL SORTZ2UXI3,Y3,NI)

CALL SOIF2(XI2,Y¥3:Z,N[,K)
WRITE {4,3200)
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FORMAT('1*,///7/1777)

0C 10 IT=1,19

CCT=C=IT

CALL METHL(NI,XI1,DA1,AR2,0C&,00€,0CT)

CALL METH3(NI »XxI1,Y1,0CT)

CALL METH4(NI,XI2,Y2,DA1,ARL,CC44D04,DCTsKLsLM)
CALL METHE(NI +XI3+Y3+ZsDRL+TCwsCALy2AR2,CK1,CK24CC6,CC65CCT4K1
WRITE (&,301) DCT,0€EP,DES,ISD
FORMAT{16X,F4.L43F12.4,/)

CONTINUE

CCNTINUE

WRITE(6,4CD)

FORMAT('1")

STCP

END

FUNCTICN CAlL

LAl IS A CCUBLE PRECISION FUNCTICN SEING SERVEDR
AS AN EXTERNAL FUNCTICN OF TrHE MAIN PROGRAM,
JA1 IS A PARAMETER GCF THE ODIRICFLET FRCCESS.

FUNCTICN CAl{CL,CC,DC)
ISPLICIT REAL#8(D)
CAL=0C*CEXP(CC*CU)
RETLRN

ENC

FUNCTICN CR1

OR1 IS A CCUBLE PRECISICN FUNCTICN 3EZING SERVED
AS AN EXTERNAL FUNCTION CF TrE MAIN PR33RAM,
DR1 IS A TIME DEPENDENT AHAPE PARAMETER.

FUNCTICN CRLICT,CK}
IAPLTICIT RcAL*2({D)
CR1=DK*87

RETURN

END

FUNCTION CHNL
CENL IS A CGuBLE PRECISICMN FUANCTICH 3EINC
SERVED AS AN EXTERNAL FUNCTICN CF ThE MAIN PRCCRAN,

FUNCTICON CHNIA(I OX,0CH,DCH)
IMPLICIT REAL=*8(C)
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OHN1=OCH*CEXP(CCR*DX)
RETURN
END

SUBRCUT INE SCRT1
SCRT THE IST'TH CLEMENT TC THE NI'TH ELEMINTY CF
THE ARRAY XI IN ThE ASENCOING ORCER.

SUBROUTINE SCRTL{(XI,NI,IST)
REAL*8 XIINI), TENP
I=157

100 IF{ .GTe NIi=-1) GC TC 101
IF(AI(I) «GTa XI(I+1)) SC TC 211
GG TO 2Q2

201 CONTINUE
TEMP=XI{I+1)
J=1

300 IF(J .LE. Q) GC TG 301
IF(XI(J) oLE. TcMP) GO TC 301
X[(4+1)=XI1J)
J=J=-1
GO TC 200

301 CONTINUE
XI{J+1)=TEMP

202 CONTINUE

I=1+1
GO TC 120
101 CONTINUE
RETURN
END
SUBROUTINE SDIF1
SCRT TRE IST'TH ELEMENT TC TFE NI'TH ELEMENT CF THE
ASCENDING GRUER ARRAY XI INIC DISTINCT CESERVATICAS.
TdE TCTAL NUMBER GF CISTINCT CASERVATICONS IS LM,
SUBRCUTINE SOIFL(AI Y #NI,LN,IST)
REAL*3 XI(INI)
INTEGER Y (NT)
I=18T
MM=IST
K=IST
180 Y(x)=1

XI{RK}=XI(MM)
299 IF{I .G6T. NI-1) GG TC 101
I=1+1
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IF{XIII) JNE. XI(MM})) GG TC 291
Y{KI=Y(K)+1
GO TG 200
201 CONTINUE
MM= I
K=K+l
GO 1D 1C0
101 CCNTINUE
Lik=K
RETURN

ERE
SUBRCUTINE SCRT2

SCRT THE ARRAY X1 CF MN ELEMENTS IN ASCENCING CROER
alTh EACH NEw XI(I), I=1,KN RAVING TFE CRIGINAL
MATCHED Y VALLE.

SUSROUTINE SCRTZ2(XI,Y,NN)
REAL*3 XI(NN),TEMPL
INTEGER YI(NN),TEMP2
I=1

100 TF{I .GT. NN—-1) GO 7O 101
[FIXI{I} «GT. XI(I+1)) GC TC 201
G3 10 202

201 CONTINUE
TEMPLI=XI{1I+1)
TEMP2=Y ({I+1)
J=1

300 IF(J .LE. O0) GC TC 301
IF{xI{J) «LE., TCMPL) GO TC 301
XI{J+1l)=XI(J)
Y{Jel)=Y(J)
J=J-1
GL TC 3080

301 CCNTINUE
XI(4+1)=TEMP1
Y(J*l)=TENMP2

202 CONTINUE
[=1+1
GO T0 189

101 CONTINUE
RETURN
END

SUBFGUTINE CSIF2

SCRT THE ASCINCING CRDER ARRAY XI INTO DISTINCT
CBSERVATICHS AND FINC THE NUMEER CF REAL CBSERVATICAS,
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101
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Z{1,I), EXCLUSIVE RIGHT CENSCREC CAT2, Z(2,1),
AND INCLUSIVE RIGHT CEMSCRED CATA, 2(3,I) GF EACK
DISTINCT CBSERVATICNe THE TUTAL NUMBER OF GBSERVATICNS IS

SUSRCUTINE SDIFZIXI, Y ZsNNyLN)
REAL*8 X[ (NN)
INTEGER YINN) »Z{3,NN)

o 1 I1=1,3
GG 1 JL=1,NN
ZiT1.d10=4
£=1

I=1

Md=1

Ziy{MAd) ,K)=1

XTIKI=X [{MM)

I=1+1

IF{I .GTe« NNJ GC TO 101
IF{XI(I)  NE. XI(MM}) GG TC 201
ZIY(I}) s XK)=2Z{Y{]),K)+1
GO 7C 200

CONTINUE

MM= ]

=K+l

GC 1C 1CO

CONTINUE

LN=K

RETLRN

END

SUBRCUTINE METRI

PURPOSE:
USE FERGUSCN'S METHGCDE TO COMPUTE DEFN= PRCRARILITY
THAT THz RANGOM VARIABLE F, CISTRIBUTED ACCCRCING
TG THE DIRICHLET PROCESS WITH PaAaRAMETER LR,
IS LESS THAN CR EQUAL TU OCT. THIS ESTIMATOR IS
EVALUATED UPCN THE ¥EAN STUARED ERRCR LCSS FULMCTILN.
CK: NUMBER CF CB3SERVATICNS LESS THAN GR EQUAL TC ©CT
CFJ: CA{(OCT,CC,OC)/AK
CPN: AR/JIAR+NI)
DEFN: CUTPUT PRCBAEBILITY

SUBRCUTINE METHLIINI,XI+DA,AR,0C,CC,CCT)
IMPLICIT REAL=*8(C)

REAL*3 XI(NI)+CK,AR

CCMFCN/FIRST/LEFN

CNI=NI

CFO=CA{CCT+CC.CC)/AR

i
[

Ne
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EPN=AR/(AR+DNI)
CK=C.D0
00 103 I=1,NI
CO=CCT-XI(1)
100 IF(ED «.GEe —1.0-10)} CKX=CK+l.CO
CFN=CK/DONI
DEFN=CPN*LCFO+(1 .CO—-OPN}*CFN
CEFN=1.C0-DEFN
RETURN
END

SUBRCUTINE METH3

PYRPGSE:

USc KAPLAN AND MEIER'S METHCD TC COMPUTE CEP=
PROBABILITY CF SURVIVAL UNTIL TFHE TIME [CCT.
NCTATICNS:

DEP: CUTPUT PRCEABILITY

SUBRCUTINE METR3(NI«XI,Y,0CT)
[MPLICIT REAL=®*3(C)
REAL*8 XI(NI)
INTEGER Y(NI)
COMMCN/THIRC/CEF
I=1
CEP=1.C8
CO=XxI(I)-GCT

189 IF(LC .CGT. L.C-10} GC TO 101
DNTI=NT-I
IF{XI{I}) «LE. DCT <ANDe YI(1) oC3e 1) DEP=CEP*DNII/(ONII+1.39)
I=]+1
IF(I .67« NI1) GC TG 131
GC 710 100

101 CONTINUE

RETURN
ENE

SUZRCUT INE METH4

PURPCSE:
USE SUSARLA AND VAN RYZIN'S METHCLC Tu CuMPLTE
CES= PRCBABILITY THAT THE RANLCCOM VARIA3LE F, CISTeIBUTES
ACCCRDING TC TRE DIRICHLET PRCCESS wITK PARAMETCR CA,
[S GREATER TFAN CR EQUAL T3 CCT.
THIS ESTIMATOR IS EVALUATED LPON THE MEAN SCLAREL
ERRCR LCSS FUNCTICN.
NGTATICNS:
K: KUMBER OF REAL CBSERVATIGNS
NT: NUMBER CF CBSERVATICNS GREATER THAN DCT
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NTE: ANUMBER CF CB3SERVATIONS GREATER THAN LR EQLAL TC CIT
K2: THE LARGEST DISTINCT NUMBER wITH INCREASING

CRDER CBSERVATILNS AMONG THE EXCLUSIVE RICGhT CENSCRED DATA
WHICH IS LESS THAN CR EQUAL TC CCT.

Ki: K+1

NXZ: MJMBER CF C3SERVATICNS GREATER THAN CR
EQUAL 70 X{J) J=K1,K2

DES: CUTPUT PROBABILITY

SUBROUTINE METHA(NI o XI»Y DA, AR,DCOCDCT oKL 4LN)
iMPLICIT REAL=3(C)

REAL*3 XTINI) AR,NT

INTEGER YINI)

CCMMGN/FORTH/LES

K=K1l=-1

AT=(.00

GO 100 I=14N1

COLl=XxI(I)-DCT

[IF{CD1 +GT«. 1.0-10) NT=NT#1l.CC
CCNTINUE

K2=K

DD2=XI{K2+1)-CCT

IF{C02 .6T7. 1.0-10) GO TC 231
K2=K2+1

IF{KZ2 .EQ. LN} GC TO 201

GO TG 2C0

CONTINUE

CES=1.0C

IF{K2 .LT. K1) CC TG 30V

DO 400 J=K1ls+K2

MXJ=0

C3 401 L=1,LA

IFUXI(L) «GEe XI(J)) NAJ=NXJ+Y(L]
CES=DES*{{CA(XI(J) OC,D0)+NXJI/(CA(XI(5),0C,CO)+NXI=Y(J)))
CONTINUE

CONTINUE
JES=DES*{{DA({CCT,CC,CCI+NT)/LAR+NT))
RETURN

END

SUBRCUT INE METERé

PURPGCSE:

LSE FERGUSCN AND PHADIA'S METHGCD TC COMPUTE
{1).05G = PRCRABILITY THAT TFE RANCCM VARIAEBLE F,
CISTRIBUTED ACCCRDING TG THE SIMPLE FOUMCGENERCLS PRICESS
wlTH PARAMETER [R ANC TOW, IS GREATER THAN UR EQUAL TL JCT.
{2).05H = PRLCBAEBILITY THAT TFE RAMNDCHM VARIAEBLE F,
DISTRIBUTED ACCCRCING TG THE SIMPLE FOMOGENERCLS PROCESS
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mnITH PARAMETER DR AND TOW, IS GREATER THAN CR EQUAL TC

{3).D05D = PRCBAPRILITY THAT Tkt RANIJCM¥ VARIAGLE F,
CISTRIBUTED ACCGRDING TG THE DIRICHLET PRCCESS alTH
PARAMETER CA, IS GREATER THAN OR EQUAL TO DCT.
NOTATIONS :
JCT: TFKFE LARCGEST DISTINCT NUMBER WITH INCREASING

CRDER OBSERVATIECNS AMONG THE ARRAY XI WHICH IS
LESS THAN QR EGLAL TC DCT.

K: MUMBER OF LCISTINCT CBSERVATICNS

OHJ: CH{JCTsX+K,NI)

DFJT: DHJ+TCh

DHI1: DR{I-1,XyKyNIT)

CHI: CH{I,X KNI}

OFILT: CHIL+TCw

DRIT: DHI+TCHw

DSG: CUTPUT PRCBASILITY

DSH: CUTPUT PRCBABILITY

o30: CUTPUT PRCOBABILITY

SUBROUTINE ANC FUNCTICN SUBPRCGRAMS FREQUIRED
FUNCTICN COF
FUNCTICN LOFG

72

CCT.

SUBRCUTINE METHE(MNI s X1sYsZyDRyTCW DA AR ZyEKLyEK24EC L 42CT,»K)

IMPLICIT REAL=*8(C)

EXTERNAL CA,LCR

REAL*8 XI(NI),AR,TOW

INTEGER YINI) Z(3,NI),21
CCMMGN/SIXTH/LSG,CSH,0SD

J=1

SD=XI{J)-0CT

[FICD .GT. L.C—-10) GG T0O 101
J=Jd+1

IF(J .GT«. NI} GC 7O 191

GO TC 1CO

JCT=d-1

DHJ=OH{JCT,Z,K,NI1)
CHJIT=DHJ+TCh
D5G={DHJT/(CHJIT+1.D0) }**DR{OLT,CK1)
DSH=DEXPU-CR(LCCT,DK2)/0HJT)
OSD=(AR-DA(CCT,CCH,DC)+DHII/LAR+NT)
IFLJCT .ig.1) GC 7O 201

EQ 2C0 I=1,4CT
CHI1=DH{I-1,Z+K,NI)
CHI1T=DKI1+TCh

OHI=CHII ZsKeNI)
CHIT=0HI+TCh
CHIZ2=DKEIT+Z(2,1)

I1=7Z{1, 1}
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ODHIZ21=CHIZ2+1.C0
DSG=DSG*{DHILT/{CHILT+1.00)*(CHIT+L.LO)/DRIT)**CR{XI(1),CKL}
$+¥{DFGI(DHIZ21,21)}/CFGIDHIZ2,Z41))
CEI=DR{XI(I),0K2)*{DHL1-OHI) /{DRILT*CHIT)
CSH=DSH*DEXP(CEIV*DHIZ2/(CHTIZ2+Z(1,1})
DAN=AR-DA(XI(I),0C,DC)
DAM=AR-CA(XI{I)-1.00-20,CC,00)
CSD=DSD*={ DAM+CHIL)/(CAN+®DHI ) *{DANHCEI+Z{2,1) 1}/
$(DAM+DHI+Z{1,1)+2(2,1))

200 CONTINUE

201 CONTINUE
RETURIN
END

FUNCTICN CH

COMPUTE TRE MUM3ER CF CBSERVATIONS GREATZR THAN
XI{II} WHERE XI IS AN ARRAY AFTER CALLING SDIF2.

FUNCTIGN CH(II,ZsKeNI)
IMPLICIT REAL#*8(0)
INTEGER Z(3,NI})
IF{II .GE. K) GC TG 20
H=0
J=11I+1
0C 10 L=J,K

1) HeH+Z(Ll,L)+Z{2,L}+Z2(3,L}
CH=h
GU TG 30

20 BH=C.DO0

30 CCNTINUE
KETURN
EMD

FUNCTION DFG

EVALUATE THE EQUATICN (3.12) #ITH FARAMETERS 2 ANC I3.

FUNCTICN CFG{A,IB)
[MPLICIT REAL*8{D)
REAL=*8 A

IF{IB .EQ. C) GT TO 29
£3=18

CC 10 1I=1,18

CI=1

CAFI=A+01
OFG=(-1.00)#=*{01-1.00)*0GAMMA(I3)/DCAMAALLCL ) /CCAMHA(CB-0I+1.20)
$*OLCGI(CAFI/{CAFI-1.0C))

10 CONTINUE
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30

G0 10 3¢
CONTINUE
DFG=1.20
CONTINUE
RETURN
END
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ABSTRACT

Availability, a combined measure of reliability and maintainability,
plays an important role in the system effectiveness measure. While not
much has been written on availability from the statistical estimation view-
point, it appears that availability estimation is a natural trend toward
the use of comprehensive probabilistic methods for dealing with the un-
certainties associated with modern engineering problems.

In this study, availability is estimated by the maximum 1ikelihood
estimate technique and Bayesian inference. Statistical properties of the
maximum likelihood and Bayesian estimators such as the mean, the variance,
the range, and the 90% confidence interval (C.I.) are obtained through
simulation for a negative exponentially distributed system on time and
off time. We conclude that 1) both the maximum 1ikelihood estimator and
Bayesian estimator of availabilities are biased, 2) the maximum 1ikelihood
estimator of availability has larger variance, wider range, and wider 90%
C.I. than those of Bayesian estimators of availability, and 3) Bayesian
estimators of availability is insensitive to the prior information.

Applying Bayesian inference in availability estimator has merits

when a small amount of data is available and past experience is important.



