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NOMENCLATURE

A Area

Cl Lift coefficient

C-Q Drag coefficient

D Drag force

E Energy transfer per pound mass

Eq Energy transfer

g- Universal constant

h Enthalphy per pound of fluid

i Angle of attack

L Lift

M Mass of fluid or Mach number

m Mass flow rate

P Pressure

Q Volume flow rate or heat flow

r Radius

s Distance

T Temperature

t time

XT Linear velocity of rotor

u Internal energy of fluid

V Absolute velocity of fluid

Vg Axial component of velocity V

Vpj Radial component of velocity V

V^ Tangential component of velocity V

Vp Relative velocity of fluid to rotor



iv

V Specific volume

c Density

0) Angular velocity

T Torque

"^
-^

Hydraulic efficiency

^ Overall efficiency



INTRODUCTION

Of various means of producing mechanical power, the turbine

is in many respects the most satisfactory. For many years steam

has proved to be a suitable working fluid for turbines, but for

the last few years a far simpler arrangement has been used,

eliminating the water-to-steam step and using hot gases to drive

the turbine. This is the gas turbine.

The gas turbine has many successful applications in the Jet

propulsion of aircraft, in power plants for ships and locomo-

tives, and in electrical power generating stations. More recent

utilization for the gas turbine has been in smaller power gener-

ation such as that for some road vehicles and for helicopters.

(See Plate I.)

The major components of a gas turbine are a compressor, a

combustion chamber, and a turbine. In order to produce expansion

through a turbine, a pressure ratio must be provided. Therefore

the first necessary step for the cycle of a gas turbine is com-

pression of the working fluid. Two principle types of compres-

sors are used for this purpose, the centrifugal and the axial,

(Plates II, III, and IV)

.

The purpose of this report is to discuss the characteristics,

usefulness, and limitations of centrifugal and axial flow com-

pressors used in small gas turbines, which develop less than 600

shaft horsepower. In the range of medium power each type of

compressor has certain advantages. This information can be used
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to help a design engineer make a selection of a centrifugal or

axial flow compressor for a particular application.

Both the centrifugal and the axial compressors are analyzed

by use of the same basic principle of fluid flow and thermody-

namics. Each type of compressor transfers rotor energy to the

fluid. The rate of energy transfer is equal to the product of

torque and angular velocity.

This report discusses the basic principles for both com-

pressors and the modifications inherent with each. Performance

curves for each of the two types of compressors are presented

and used as the topical background for analyzing the useful

range of each type on the basis of efficiency, mass flow rate,

and physical size. Examples of specific compressors are given,

and technical data, properties, and limitations are examined,

whereby the advantages and disadvantages of the two compressors

may be compared. A discussion of the various applications and

uses for both types of compressors is presented.

THE FUNDAMENTAL PRINCIPLE AND ENERGY TRANSFER
OP ROTATING MACHINES

The rotating components of a compressor and a turbine have

many features in common. They are both concerned with energy

transfer. The turbine transfers the fluid energy to the rotor

energy or mechanical energy. The compressor transfers the rotor

energy to fluid energy. The basic design relationship for all

turbomachines is a form of Newton's law of motion applied to a

fluid traversing a rotor. So it is possible to set up a quite
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general equation for the mass flow, the inlet and outlet fluid

velocities, the rotor velocities, and work exchange for all forma

of rotating mechanisms, such as compressors, centrifugal pumps,

and turbines.

First, consider the passage of a fluid through a rotor of

any shape as shown in Fig. 1.

Fig. 1.

The rotor has an axis 0-0 and is turning at a steady rate

of 0) radians per second. Fluid enters the rotor at 1, passes

through the rotor by any path and is discharged at 2. The di-

rections of the fluid at 1 and 2 are at any arbitrary angles,

and points 1 and 2 are at any radii r-|_ and rg. The following

assumptions are made for the analysis.

1. Plow behaves according to the streamline theory. It

follows that any particle of a frictionless fluid
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passing through the rotor can be enclosed in a stream

tube, and the changes of velocity and pressure can be

followed by the Bernoulli equation. Practical coef-

ficients can then be inserted to allow for friction.

2. Plow is continuous and uniform with respect to time at

both the inlet and exit points, so interferences due to

blades resulting in setting up of pressure and velocity

disturbances do not matter so long as they do not inter-

fere with the uniform inlet and exit velocities. This

idea of uniform flow means that the uniform velocity

determines the kinetic energy, whereas in case of non-

uniform flow the mean velocity does not determine the

kinetic energy since it varies as the square of the

velocity. This assumption permits the determination of

velocities from the volume flow with the use of the

equation of continuity. .
' -

3. All losses outside the rotor are neglected. In general,

some fluid will leak through the clearances at the blade

tips. All such losses are assumed to be of negligible

proportions.

Let-V-^ be the velocity of the fluid entering the rotor at

any radius r^. The velocity vector v-, can be resolved into three

mutually perpendicular components. It is convenient to make

these three components as follows:

1. Axial component Va-j^, in a direction parallel to the

axis 0-0.
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2. Radial component Vm-L, in a direction normal to 0-0

and passing through it.

3. Tangential component Vu-^, in a plane normal to 0-0

and in a direction normal to a radius.

Similarly, let V2 be the velocity of the fluid leaving the

rotor at any radius r2, and let Vag, Vm2, Vu2 be the axial,

radial, and tangential components of V2, respectively. The

change in magnitude of the axial velocity components through

the rotor gives rise to an axial force, which must be taken by

a thrust bearing to the stationary rotor casing. The change in

the magnitude of the radial velocity components is carried in

a similar manner as a journal load. Neither has any effect on

the angular motion of the rotor.

The change in magnitude and of radius of the tangential com-

ponents of velocity corresponds to a change in angular momentum

or moment of momentum of the fluid. Newton's law of motion is

applied to the fluid passing through the rotor, namely, the time

rate of change of angular momentum of a particle about an axla

is equal to the moment of the applied force. In other words,

the change in angular momentum or moment of momentum of the

fluid is equal to the summation of all the applied forces on

the rotor, which is equal to the net torque of the rotor.

Let T = net torque of the rotor

M-j^ = mass of fluid entering the rotor at a radius r-i

during time "t"

M2 = mass of fluid leaving the rotor at a radius rp

during the same interval of time "t".
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Then

II J- ItEntering angular momentiiiti in time interval t

Ml
= _ Vu-L r^

Leaving angular momentum in the same time interval "t"

M2 . .

= — VUg 1*2

Thus the change of angular momentum per unit time is

M. M2
Vu-i r-, - Vu2 r2

which is equal to the torque acting on the rotor. Therefore

Ml M2
r^ Vui

gc* Set
T = r-, Vu^ - r2 Vu2

M]_ M2
For steady flow conditions — .= — = m, the rate of mass

t t

flow. Then the torque exerted by or acting on the rotor will be

m
% = — (r^ Vui - r2 VU2) (1)

Sc

The rate of energy transfer, Eq, foot-pounds per second, is

the product of torque, foot-pounds, and angular velocity of the

rotor, CO, radians per second. So

m •

COT = Eq = — w(riVui - r2Vu2)

Sc

Now
_ cor = U, linear velocity of the rotor at radius r.

m
Thus Eq = — (cori)Vui - (cor2)Vu2 •

Sc
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m

Equations (1) and (2) are forms of the Euler equation and

are the basic relations for all forms of turbomachines, namely,

pumps, compressors, and turbines.

All the energy transfer between the fluid and rotor must be

accounted for by the difference of the two UVu terms; thus if Vu

is the ideal tangential velocity as given by the ideal velocity

triangles, then t and E are corresponding ideal torque and

energy transfer. If Vu is actual tangential velocity for real

flow with friction, then t and E must be actual torque and

energy transfer.

Energy transfer implies a change of angular momentum of the

fluid, which may be positive or negative. The usual thermody-

namic convention is that the work done by the fluid is positive.

Hence from the equation

m
Eq = — (U^Vu-^ - U2VU2)

Sc

for a turbine U-]_Vu-l > U2VU2, and for a compressor U2VU2 U-lVu-l.

However, in dealing with compressors alone it is convenient to

consider positive work when U2VU2 "7 ^l^^l*

Velocity Diagrams and Components of
Energy Transfer

The Euler equation in terms of angular momentum is the basic

form of the energy transfer equations. It is useful to transform

this equation into a relationship which is helpful in
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understanding the physical basis of the energy transfer and is

also convenient in certain aspects of design.

Figure 2 shows the ideal velocity diagrams for the inlet

and discharge for a generalized rotor.

OUTLET

INI_eT

Pig. 2. Velocity diagrams.

Let V = the absolute velocity of the fluid

V^ = the relative velocity of the fluid (relative

to the rotor)

U = the linear rotor velocity.

Let all these velocities be in the radial plane. The abso-

lute velocity is resolved into a component Vm passing through

the axis (a radial velocity) and a tangential component Vu. By

vector principles, the combination of V and U gives the relative
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velocity V . Geometrically,

and . Vm2^ = Vj, ^ - (U2 - Vu2)^

Therefore ¥2^ - Vu2^ = V- ^ - (U2^ + Vu2^ - 2 U2VU2 )

V2^ - Vu2^ = Vj. ^ - U2^ - VU2^ + 2 U2VU2

U2VU2 = - (¥2^ + ^2^ - ^ro^)
2 2

Similarly, U-lVu^ = - (V-l^ + U-^^ " ^p ^)

1
Prom equation (2), Eq = E = — (U-j^Vu-|_ - U2VU2) ; substitut-

S
ing the values of U-j_VU]_ and U2VU2 in the above equation,

llr2
2 2 2 2 2~\

E = — - V-L + U-L - Vj. - V2 - U2 + V2 J
gc 2 L- 1

E = [(V-L^ - 72^) + (Ui^ _ U22) + (Vp^^ _ ^^^2^ (3^

Thus the energy transfer may be given by the sum of the

differences of the squares of absolute fluid velocities V,

rotor velocities U, and relative fluid velocities V at inlet

and outlet of the rotor.

The first term represents energy transfer due to change of

kinetic energy. So is the change of absolute kinetic
2g^

energy or dynamic head occurring in the machine. The second

t®^^^
, represents the change of fluid energy due to
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the itiovement of the rotating fluid from one radius of rotation

to another. This is centrifugal energy or the head produced by

the centrifugal effect.

2Sc

represents the change of kinetic energy due

to change of relative velocity. Velocity V^, is relative to the

rotor and any change of this velocity results in a change of

static head or pressure within the rotor itself, similar to

that for the absolute velocity in the casing.

Thus in equation (3), the first represents a change of

dynamic head or pressure, and the other two represent a change

of static head or pressure. The total head or pressure is thus

the sum of the dynamic component and the static component. The

relative proportion of each may vary considerably in different

designs.

Thermodynamic Analysis

Let Fig. 3 represent a machine through which a gas is

flowing at a steady rate of m pounds per second.

(1) I

I

PlviTi
I

Inlet T
f
w

'—

^

Q

Fig. 3.

(2)
I

IP2V2T2
"1

I
Outlet

I
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Let P-j^ and T]_ represent the inlet pressure and temperature

of the fluid, respectively, and let v-j_, u-, , and hn be the

specific volume, internal energy, and enthalpy per pound of

fluid at the inlet condition. Similarly, Pp, Tp, Vp, Up, and

h2 represent the pressure, temperature, specific volume, in-

ternal energy, and enthalpy at the exit. Let W - Btu per pound

of flow, be the work done by the fluid, and Q - Btu per pound

of flow, be the heat added during the process.

Applying the first law of thermodynamics to the boundary

enclosing the fluid in the machine between sections 1 and 2,

dQ = du + dW (i|.)

(Changes in the kinetic and potential energy are neglected.)

In Fig. 3, assume that pistons are placed in the supply and

exhaust pipes and that these pistons are exerting a pressure of

P-j_ and ?2, respectively. If, at the inlet, the piston moves a

distance dS]_, it forces the fluid dm into the machine.

Work done = force x distance

So work done on the gas by piston at 1 = -P-j^ a-^ ds., where a-,

is the area of the piston at 1, but a^dsi = v-^dm, so work done

at 1 = -?-^ V]_ dm. Similarly, work done by the gas at Section 2

is +P V2 dm. The machine is also doing work at the rate of

W Btu per pounds of flow. Therefore

dW = -P-L v-^ dm + P2 V2 dm + Wdm.

Substituting in dQ = du + d¥ and assuming the steady flow

conditions,

Qdm = (U2 - TJ-^)<im + Wdm + P2V2dm - P]_v-,dm

Q = U2 - U-L + W + P2V2 - 'P-^v-^
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Rearranging the terms in the above equation,

Q = (U2 + P2V2) - (Ui + Piv^) + W

Q = h2 - h-|_ + ¥

or W = Q - (h2 - h;^^)

In the above analysis, the kinetic energy was neglected.

If the kinetic energy is included in the analysis, then

W = Q - (h2 + ) + (hi + ) {$)

2gc 2g^

The above equation gives work for a steady flow process by

thermodynamic analysis. The same expression can be obtained by

the steady flow energy equation. Consider the steady flow of

unit mass of fluid. Then total energy in is equal to the total

energy out. The energy of the fluid may be expressed by the

V2
internal energy uj, the flow work Pv, the kinetic energy

gZ
and the potential energy due to position — . The change

Sc

of this total energy is associated with shaft work, Wg, and

heat, Q, which is transferred in or out of the rotor. Then by

the energy balance

Vi^ g
ui + Pi vi + + — Zi + Q

^&c Sc

V2^ g
= U2 + P2 V2 + + — Z2 + W3

2gc gc

As in, the thermodynamic analysis, any change of potential energy

is neglected. By definition of enthalpy

u + P V = h
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Thus

h-| + + Q = h2 + + Wg

2go 2g.

Vg^
_

Vi^

Rearranging

Wg = Q - (h2 + -^^) + (hi + -^)
2gc 2g^

Thus for unit flow rate, ¥ is the rate of energy transfer.

This must be the same as the rate of energy transfer E obtained

by the dynamic analysis, that is, ¥g = E. This is the basic

relationship which equates the thermodynamic expression of the

problem to that of the dynamics of the energy transfer by means

of a turboma chine.

CENTRIFUGAL COMPRESSOR

Theory and Operation

A compressor is a device for increasing pressure of a flow-

ing fluid. The flow of fluid is axial for an axial flow com-

pressor and radial for a centrifugal compressor. A centrifugal

compressor consists of four elements, as shown in Pigs, i^ and 5«

1. A series of inlet buckets (or vanes) A. These buckets

are attached to the shaft so they rotate with the

shaft. They are designed in such a way as to guide

the gas onto the impeller in an efficient manner.

2. A rotating impeller B. The impeller is fitted with

radial vanes. The gas is supplied to these vanes by
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Pig. i|. Elements of a centrifugal compressor.

Collector

Fig. 5. Sectional view of a centrifugal compressor.
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the inlet buckets A, near the axis of rotation.

3. An inlet duct and the outlet ducts E.

l\.. The diffuser element F.

The shaft and the impeller B are rotated at high speed.

Thus the air contained in the passages of the rotating impeller

is subjected to a centrifugal force. This force causes the air

to flow radially outward, so that new air must enter the inlet

of the impeller to take its place. This air is then subjected

to the centrifugal force and is displaced radially. Thus a

continuous flow results.

In case of an ideal centrifugal compressor it is assumed

that the gas is accelerated in the impeller to impeller velocity.

Thus the gas would leave the periphery of the impeller with a

tangential velocity equal to that of the outer diameter of the

impeller, and it will also have a low radial velocity of flow.

Thus the effect of the impeller is to give the gas flowing

through it a high velocity of flow and a small compression due

to centrifugal force. This high velocity gas stream next enters

the diffuser passage. The diffuser has gradually increasing

passage areas. So as the gas stream passes through the dif-

fuser, its velocity decreases, and the changes of the kinetic

energy can be converted into a further increase of pressure.

The changes of pressure and velocity that occur as the air

passes through the compressor can be represented schematically

as shown in Pig. 5. The gas enters at the mean radius r^^ with

a low velocity V]_ and at approximately atmospheric pressure P-, .

As the gas passes through the impeller, it is accelerated to a
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high velocity V2 and a pressure ?2' Then In the diffuser Its

velocity decreases to V^ but the pressure Increases to Po.

Mathematical Analysis

Using the moment-um principle. It was found that the energy

1
transfer E = — (U^^Vu^ - U2VU2) . It was transformed Into

Sc

another form 0000 o o

(3)

1 r
= (^2^ - V-L^) + (U22 - JJ ^) + (V^ ^ - V^ 2)

2Sc
.

""l
"^^2

^

E
2g

The last two terms In the above equation represent the change

of static head or pressure In the rotor, where (V„ ^ - V„ ^)
^1 ^2

Is the static head due to the change In the relative velocity

of the fluid, and (U2 - ^2^) is the pressure due to the cen-

trifugal effect. Thus in Fig. $ the difference between the

pressure ?2 and P-^^ is given by the sum of the two terms

(U2 - Ui ) and (Vj,^ - V^^ )• The pressure rise from P2 to P3

is given by the first term of the equation (3), namely,

(V2 - V-j^ ) . That is, (V2 - V-j^^) represents the pressure rise

for the diffusion process in the fixed casing following the

rotor in the centrifugal compressor.

1
The Euler equation E = — (UiVu]_ - U2VU2) can be simplified

Sc

for the centrifugal compressor. Figure 6 shows the inlet

velocity diagram for an ideal centrifugal compressor. It is

seen that the fluid enters the Impeller in the axial direction.



25

that is, the tangential component of the inlet velocity Vu-i = 0.

Vi=V,

Fig. 6. Inlet velocity diagram for ideal
centrifugal compressor.

Substituting Vu-j^ = in the Euler equation,

1
E = — (U^Vui - U2VU2)

Sc

1 UoVup
E = — (-U2VU2) =

Sc gg

Thus for the axial fluid entry, which is generally the case.

the energy transfer is wholly represented by
U2VU2

Efficiency of a Compressor

The general definition of efficiency is the ratio of useful

energy delivered to the energy supplied. For the compressor

applications the following two efficiencies, are considered.

1. Hydraulic efficiency -q^ between fluid and rotor:
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useful fluid energy at final discharge
hydraulic =^v, =

mechanical energy supplied to rotor

2. Overall efficiency Tl , ,

useful fluid energy at final discharge
yi overall = 7 ~

mechanical energy supplied to shaft

For the comparison between the centrifugal and axial flow

compressors it is convenient to use the overall efficiency Y)

.

AXIAL FLOW COMPRESSOR

Theoretical Analysis

As mentioned earlier an axial flow compressor causes axial

flow of fluid, so it has no significant radial component of

velocity. Euler's equation gives

E= ^—^
(2)

-'122 22 2 2/
= j^(V2 - V-l) + (U2 - Uj^) + (Vrn - Vr2)/ (3)

2gc

For an axial flow compressor where the radial component of the

velocity is absent, the centrifugal component of the energy

transfer will be zero. Thus

= [(V2^ - V;l^) + (Vi-i^ - Vrg^yE
2g

Thus in this case the energy transfer is by means of change of

absolute kinetic energy and by relative velocity diffusion ef-

fect. As in the case of a centrifugal compressor, a diffuser
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is needed to convert the kinetic energy or the dynamic head

into static pressure. A row of stator blades is conmionly used

for this purpose. In general, a stage of an axial flow com-

pressor consists of a rotor blade row and a stator blade row.

Frequently inlet guide vanes are added before the rotor. These

are similar to stator blades included before the rotor. The

purpose of the inlet guide vanes is to direct the fluid onto the

moving blades at a suitable angle. A stage of an axial flow

compressor with inlet guide vanes is shown in Pig. ?• The

velocity diagrams for the inlet and outlet conditions are shown.

It can be seen from the velocity diagrams that the relative

velocity of the fluid is reduced as it passes through the rotor.

Thus static pressure increases in the rotor because of the

INLET

ROTOR

STATOR

Oim_CT

Pig. 7. A stage of an axial flow compressor,
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decrease in the relative velocity. Mathematically,

(Vri^ - Vr2^)
gives the pressure increase due to the change in

the relative velocity. The absolute velocity is increased in

the rotor. This kinetic energy is then converted to static

pressure in the stator. Mathematically, it is given by

(V22 - Vi2)
. Thus for an axial flow compressor the total

26c

pressure rise across a stage is given by the sum of the two

pressure rises

(V2^ - Vi^) (Vri^ - Vr2^)
+ .

2gc 2gc

Introduction to Airfoil Theory

In designing an axial flow compressor, knowledge of the

behavior of the flow of gas past blade elements is important.

Airfoil theory is useful in studying this behavior. First, let

the airfoil be parallel to the flow, as shown in Fig. 8(a). In

this case the gas divides around the body rather symmetrically.

It separates at the leading edge of the body and joins again at

the trailing edge. The main stream does not suffer a permanent

deflection. If the airfoil is not well designed, then, due to

friction of the gas, some forces will be applied to the foil.

And there will be some disturbance in the flow pattern of the

gas. But if the airfoil is well designed, the flow will have

only a negligible deflection.



29

Pig. 8. Gas flow past an airfoil.

Consider the airfoil set at some angle i degree to the gas

stream, as shown in Fig. 8(b). The angle i is called the angle

of attack. It can be seen from the figure that the flow of the

gas suffers a local deflection. And the streamline pattern is

changed. By Newton's laws, the deflection of the gas stream is

possible only if the blade exerts a force on the gas. Thus the

reaction of the gas must produce an equal and opposite force on

the airfoil. These forces appear in the form of pressure of

the stream on the body. These forces will produce a resultant

force R acting on the blade. This resultant force can be re-

solved into two mutually perpendicular components, as shown in

Pig. 9.

1. Lift L--at right angle to the undisturbed air stream

2. Drag D--tending to move the airfoil in the direction

of the motion of flow.
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By experiments it is possible to measure the lift and drag forces

for different values of the flow velocity and angle of attack for

various airfoil shapes. Using such values it is possible to de-

fine relations between the forces as follows:

Resultant
force -"iS^

I

Drag
'~bi

Angle of
incidence

Air flow

Pig. 9. Forces acting on an airfoil.

Lift L = CtA /^

V'

Drag D = Ct.A f —
2

where L = lift force in pounds

D = drag force in pounds

Cl = lift coefficient

C-Q = drag coefficient

A = area of surface, square feet

r = density of air, slugs per cubic feet

V = velocity of air, feet per second.

The coefficients Cl and G-q can be calculated from wind-tunnel

tests. These could be plotted for different angles of attack

for any desired blade section. A typical example is given in
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Pig. 10. The drag coefficient increases rapidly as the highest

lift coefficient is approached so that a larger percentage of

available energy is lost in overcoming friction, so efficiency

will be reduced. Thus there will be a point at which the most

economical operation occurs. This is measured by the amount

of effective lift for a given energy supply, which can be cal-

culated for different angles of attack and can be used to select

a blade profile for the best efficiency of an axial flow com-

pressor.

-8 -4

1 , ^

4+8 +12 +16 +20 +24
Angle of Attack

Pig. 10. Typical curves for lift coefficient
0^ and drag coefficient Cj^.
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ANALYSIS AND COMPARISON OP CENTRIFUGAL
AND AXIAL FLOW COMPRESSORS

The general form of overall characteristic of a compressor

can be given as shown in Pig. 11. The ideal characteristic is

given by the straight line Hg based on the Euler relationship

where Hg is the energy transferred per unit mass, ft-lb f/lb m,

or the change of head of the fluid. This theoretical head will .

be reduced because of the friction, turbulence, and incidence

losses. So the actual characteristic will be of the form shown

in Fig. 11. The friction, turbulence, and separation losses are

2proportional to Q , and generally increase rapidly at large

2values of Q due to high Mach numbers.

FLOW Q.

Pig. 11. Typical compressor characteristic.

The incidence losses are proportional to V^, and hence Q^,

but are also proportional to a 'drag coefficient. This drag

coefficient is minimum at the flow value near the design point

and increases either way from the design point. So the incident
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losses increase either way from the design point.

The discharge losses in the diffuser casing are also pro-

2portional to Q and to a critical value of Q where Mach niimber

becomes excessive. Thus because of all these losses, the

theoretical linear characteristic is modified to an approximately

parabolic form. This actual characteristic may be considerably

different for a particular compressor. It may have no maximum,

rising continuously from maximum flow to shut-off head, or the

characteristic may be steep.

There are some other important phenomena which affect the

perfonnance of a compressor. These are choking, stalling of

blades, and surging. At high flow rates, it is possible to get

a situation such that the mass flow remains fixed regardless of

pressure ratio, that is, the characteristic becomes vertical.

This is called "choking".

Figure 12 shows the stalling of compressor blades. The

blade is said to stall when flow separation occurs on the blade

surface as a result of an excessive angle of turn. Fluid

t-O i-W

stalled Blades

Fig. 12. Compressor blade stalling.
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turbulence increases due to this separation of the flow and so

the drag coefficient increases, which causes a greater loss in

the total pressure. Such conditions are encountered during start-

ing and low speed operation, particularly in axial flow compres-

sors. At low speed there is very little pressure rise, and the

design point of the compressor is for high speed and high pres-

sure rise from the first to the last stage. Thus at low speed

the absence of pressure rise in the last stages leads to an

axial velocity higher than design velocity, and choking occurs.

Choking limits the flow rate, which causes excessive angle of

turn, and this creates the possibility of stall.

At the lower flow rates another unstable phenomenon known

as surging occurs, which could be explained as follows. If surg-

ing could be prevented and the complete perfonTiance curve for a

compressor plotted to zero, it would be of the type shown in

Pig. 13. Let the compressor be operating at the surge point S.

If the effect of any transient variables, such as a speed

Q. Cu Ft per Min

Pig. 13. Effect of surge on characteristic
of compressor.
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fluctuation or a change of rate of flow, is considered, then

instantaneously the compressor may be required to deliver a flow

below the surge limit, such as that represented by point A. Now

the pressure P^ is less than the pressure Pg, the pressure at

the surge point. Under these conditions there is a considerable

volume of air already at pressure P3 on the delivery side of the

compressor, which is now held in place only by a pressure P^ at

the compressor outlet, so back flow from the delivery to the

suction side will occur. In order for back flow to occur, the

rate of delivery Q must pass through zero before it will reverse.

For this the pressure of delivery will travel along the delivery

line until point B is reached at pressure Pg. At this point for-

ward flow will begin again at pressure Pg. The pressure then

backs up along the curve until Pg is again reached. If the con-

ditions are such that this performance point is stable, the flow

will be steady. If, however, the disturbance is still present,

the cycle will repeat again. This periodic flow and reversal

of flow is the phenomenon of surging and may take place gently,

with instability of pressures, or violently, with a series of

loud bangs and fluctuations of pressure which can cause struc-

tural damage. This will also have the effect of decreasing

efficiency of the compressor.

Typical performance charts of a centrifugal compressor and

an axial flow compressor are given in Figs. ll\. and 15.
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Pig. 15. Typical performance curves of an axial
flow compressor showing operating line.

(Ponomareff, Westinghouse Engineer.)
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Efficiency, Mass Plow, and Pressure Ratio

The centrifugal and axial compressors both have limitations

as to pressure ratio per stage. Energy is put into the gas only

by accelerating it in the direction of rotation of the machine.

The higher the boost per stage, the higher its rate of deflec-

tion. There is a limit to the maximum allowable speed at the

tip of an inlet vane. Mach number M is defined as the ratio of

the local velocity to the sonic velocity. If the Mach number

at the tip of the inlet vane is unity or greater, there is a

possibility of shock waves which reduces efficiency of the com-

pressor. If the impeller is designed correctly for the desired

pressure ratio, then the high Mach number can be avoided. In an

actual impeller, however, mechanical limitation assumes the role

of controlling factor on the allowable tip speed; this is the

stress resulting from the centrifugal forces of the rotating

mass, particularly in centrifugal compressors. Also, boundary-

layer growth and separation losses tend to increase with in-

creased boost per stage, with resulting tendency toward lower

efficiency.

Pressure ratio per stage is a relative quantity depending

on which type of compressor is considered. In general, axial-

stage pressure ratio is much smaller than that for a centrifugal-

stage. In general, centrifugal-stage pressure ratios run be-

tween 1.5 and 3.0 for highest efficiency, while optimum axial

pressure ratios run between 1.1 and 1.25.

In an axial flow compressor a large number of stages keeps
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down tangential acceleration and high local Mach numbers, thus

avoiding resultant increased boundary-layer separation and shock.

This also offers the high overall efficiency desired while

achieving high pressure ratios.

In general an axial flow compressor can handle a higher •

volume flow more effectively than a centrifugal compressor. The

axial flow compressor has practical lower limits of flow as a

function of pressure ratio. This is shown in Pig. l6. Capac-

ities lower than those indicated in Pig. l6 cannot be effectively

met by the axial flow machine and are best handled by the cen-

trifugal type compressor of lower capacity. . %
,

.-..

25

C E 20
"So
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/
/

/
//

*f'
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4

sure

1
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> e 7
,

Pig. l6. Practical lower limits of flow for
axial flow compressors. (Ponomareff,

Westinghouse Engineer.)

The centrifugal compressor has lower efficiency in compari-

son with the axial compressor. In modern designs of centrifugal

compressors for small gas turbines, overall efficiency ranges

from 77 to 79 per cent for a pressure ratio of \\.\, An example
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is the low pressure compressor of gas turbine engine 70^ of The

Ford Motor Company. (See Plate I, and Fig. I?.) A two-stage

centrifugal compressor will operate up to pressure ratio values

of 6.0:1 to 7.0 and with efficiencies of 75 to 77 per cent.
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Fig. 17. Compressor characteristics-
of Ford 705 engine.

The axial compressor has a maximum overall efficiency of

85 to 88 per cent with pressure ratios of ij.:l to 6:1. The

pressure ratio attainable per stage of an axial compressor Is

much smaller than for a centrifugal type. Thus for a pressure

ratio of 8.0:1, from 8 to 12 stages will be required. Therefore

the cost of the axial compressor Is higher than that of a com-

parable centrifugal type.
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Operating Range

An operating range of a compressor may be defined as the

ratio of that volume larger than design value at which the effi-

ciency is reduced five points from peak value, to that volume

less than design value at which the same five-point reduction

in efficiency takes place, or the volume at which surge takes

place if reached first.'

The axial compressor usually has a shorter range of effi-

cient operation than the centrifugal compressor. In other words,

for constant speed operation the centrifugal compressor has a

greater range of volume flow for a specified efficiency varia-

tion than the axial flow compressor. The typical performance

charts of the two compressors show the difference in ranges.

This can be shown mathematically as follows.

Figure 15 shows that at a speed giving 2.2:1 maximum pres-

sure ratio and .82 efficiency, the range of a typical axial
21

compressor is approximately — = 1.1?. The range of a typical
l8

single-stage centrifugal compressor at the speed to give the same
5000

pressure ratio of 2.2:1 is, from Pig. ll^, = 1.37, approxi-
3650

mately. The shorter range of axial compressors is mainly due

to mismatching of the first and last stage other than the design

point. Limitations in the range of flow for the centrifugal

compressor result principally from off-design flow conditions

at the diffuser inlet and entrance to the impeller vanes. Sim-

ilar effects of the adverse angles of attack on the rotor and

stator blades for off-design operation limit the range of the

axial flow compressor.
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Physical Size

Physical size is an important factor in considering an

application of a particular type of compressor. In general, the

centrifugal compressor has a larger diameter than the axial

type, but it is considerably shorter in the axial direction.

Table 1 gives comparison between the axial compressors and the

centrifugal compressors for about the same volume flow and

pressure ratios.

Table 1. Comparison of relative physical size
for centrifugal and axial compressors.

Pressure ratio 6.0 3.0
Volume flow, cfm 5300 5300

Type of compressor Centrifugal: Axial Centrifugal: Axial

Number of stages

Rotor diameter, in.

2

13

10
3

8 -

6

13

6

8^

Outer diameter, in. 25
3

8 - 25
3

8 -

k

Length, in. 12 30 3.^ 20

Geometrical volume,
cu.ft. 3.i|.2 l.Oii 1.0 7

The centrifugal compressor has about three times larger

diameter than the axial compressor, but the length of the two-

stage centrifugal compressor is about three times shorter than

the axial compressor of about the same capacity. The length of

the single-stage centrifugal compressor to get a pressure ratio
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of 3«0 is only 3.5 Inches, whereas that for the axial compressor

is 20 inches. Thus in smaller sizes the centrifugal compressor

is much smaller than the axial compressor. Also, smaller

single-stage centrifugal compressors are lighter in weight and

relatively simple to design and manufacture, but they have

relatively large diameter and bulky multi-stage construction.

There are some other advantages of a centrifugal compressor

for small gas turbine applications. It is much less vulnerable

to the effects of dust in the intake air than the axial type,

where the stator and rotor blades are liable to erosion effects.

For an aircraft gas turbine, which operates for most of its life

in the air, screening of the intake air may not be essential,

but for a ground engine screening of the intake air is essential,

especially for the axial type. The single-stage centrifugal

compressor is also cheaper to manufacture as it has no multi-

stage rotor and stator system.

Applications

Centrifugal and axial gas compressors are widely used in

a variety of small gas turbine applications. For very small gas

turbine applications the centrifugal compressor is generally

used, and for somewhat bigger or medium power applications the

axial compressor or the combination of the two is used. Small

gas turbines for electric generator sets use centrifugal com-

pressors. An example is the gas turbine power unit Model GTP

70-50 Series made by AiResearch Manufacturing Division of
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Arizona of the Garrett Corporation. This 120-horsepower shaft

power unit uses a single-stage centrifugal compressor. Centrif-

ugal compressors are also used in gas turbines for missile sup-

port units and aircraft support units. A good example of this

is Model GTCP85-291, a 90-horsepower unit also made by Garrett

Corporation. This unit is also used to provide compressor bleed

air for starting the main engines of turbojet or turboprop air-

craft engines. It is also used for aircraft cabin air condi-

tioning or for ground applications such as to remove snow,

frost, and ice. A centrifugal compressor is also used for gas

pumping and marine applications. The Boeing 551 engine, which

is a ij.00 -horse power unit used for this purpose, has a centrifu-

gal compressor. The compressor is 23 inches in diameter and

weighs 385 pounds. By comparison, the Solar Aircraft Company's

Jupiter engine is a l|00-horsepower unit and has a 10-stage

axial compressor and weighs around 80O pounds. This engine was

fitted in the destroyer the U.S.S. Timmerman in 1951. Similar

axial compressors used in turbine engines made by Solar Air-

craft Company are used in pleasure boats, tow boats, and com-

mercial fishing boats. These engines are also used in remote

pumping stations. Centrifugal and axial compressors are also

used for small aircraft and helicopter applications. Messrs.

Napier Limited, of England, use a 12-stage axial compressor for

small aircraft applications of gas turbines which develops 750

horsepower, whereas AiResearch of Arizona uses a two-stage cen-

trifugal compressor for its gas turbine developing 600 horse-

power, for turboprop, turboshaft, or helicopter applications.
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Small gas turbines are used in many automobile trucks.

The centrifugal compressor is generally used for this purpose;

for example. General Motor's GT-309 engine and the Ford Motor

Company's 70^ gas turbine engine.

Also, centrifugal compressors are used in small gas turbine

units for drainage systems, fire fighting, and other water-

pumping purposes. Axial flow compressors are generally used for

bigger aircraft units or locomotive units where higher power

and better efficiency are required.

CONCLUSION

The centrifugal compressor has some advantages over the

axial compressor for a small gas turbine unit. It is light-

weight and relatively simple to design. It is more stable in

operation over a range of speeds and (limited) pressures and

less liable to appreciable variations in efficiency with changes

of air flow. It has larger diameter than the axial type but it

is considerably shorter in the axial direction. It is much

less vulnerable to the effects of dust in the intake air than

the axial type.

The centrifugal compressor has lower efficiency than the

axial compressor, but the pressure ratio attainable per stage

of the axial compressor is much smaller than for the centrifugal

type. Thus more stages are required for the axial compressor

which makes it heavier and more complicated to design.
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Centrifugal compressors will be used for smaller gas

turbines where the volume flow requirement is low and the

pressure ratio is such that it can be obtained by a single

stage and where the layer diameter is not a problem.
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The purpose of this report is to discuss the character-

istics, usefulness, and limitations of centrifugal and axial

flow compressors used in small gas turbines.

Gas turbines are widely used in power outputs ranging from

a few horsepower in portable or auxiliary units, to outputs of

over 30,000 horsepower in straightforward shaft units or in

jet engines.

The major components of a gas turbine are a compressor, a

combustion chamber, and a turbine. The two principle types of

compressors used are centrifugal and axial. Both compressors

are analyzed by use of the same basic principle of fluid flow

of thermodynamics. Each compressor transfers rotor energy to

the fluid. The rate of energy transfer is equal to the product

of torque and angular velocity.

A general equation for energy transfer between a fluid and

a rotor is derived, and, from that, useful equations for each

of the two compressors are developed. Basic principles for

both compressors are discussed.

Performance charts for both compressors are presented.

Efficiency, mass flow rate, useful range, and physical size of

the two compressors are discussed and compared.

Centrifugal compressors have lower efficiency than axial

compressors but have wider operating range for the same speed.

Centrifugal compressors have higher pressure ratio per stage

than axial compressors. They are larger in diameter but are

considerably shorter in length than axial compressors. Single-

stage centrifugal compressors are lighter in weight and simpler



to design. Thus for small gas turbines, centrifugal compressors

have the advantages of light weight, simplicity, short length,

high-pressure ratio per stage, and wider range of operation.

And so in many small gas turbine applications such as for driv-

ing generators, in missile and aircraft support units, in auto-

mobile or truck engines, or for smaller marine applications,

centrifugal compressors are more widely used. Axial compressors

are widely used in applications where higher power and higher

efficiency are required and also where the large diameter of a

centrifugal compressor is at a big disadvantage, as In high

power jet engines.


