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Abstract 

 Hydrogels are three-dimensional, water-swollen, highly crosslinked polymers that can be 

designed to provide biocompatible and biofunctional interfaces for cells and biomolecules. With 

facile fabrication and precise control over chemistry, pore size, and mechanical properties, 

hydrogels have been studied extensively in various areas of biomedical and bioengineering, 

particularly in drug delivery and tissue engineering applications. However, hydrogels have not 

been well-studied or well-applied to many emerging applications in microbiology. This thesis 

explores two new applications involving hydrogel interfaces: (1) photodegradable hydrogels for 

high-throughput screening and isolation of rare bacteria and (2) hydrogels for protection of 

electroactive biofilms from environmental shocks in microbial electrolysis cell systems. 

 The initial portion of this thesis focuses on the use of photodegradable hydrogels for 

microbial cell screening and rare cell isolation. The photodegradable hydrogel used here was 

formed with polyethylene glycol (PEG) o-nitrobenzyl acrylate and PEG-tetrathiol macromers, 

which form three-dimensional hydrogels through thiol-acrylate addition reactions to encapsulate 

heterogenous populations of bacterial cells. The individual entrapped cells can be cultured into 

clonal microcolonies due to the suitable hydrogel mesh size for nutrient transport to the cells. Cells 

are monitored en masse and rare cells showing unique growth phenotypes are identified and 

extracted from the hydrogel interface using a high-resolution light patterning tool. The optimum 

experimental setup for achieving high throughput observation and clean extraction was developed. 

Release kinetics with light dose, the effect of light pattern on cell morphology, and the DNA 

quality of the extracted cells after exposure to 365 nm light patterns was also investigated. We 

demonstrated the use of this approach as a screening interface by rapidly screening a mutant library 



  

of the Gram-negative bacteria Agrobacterium tumefaciens to identify, isolate, and genetically 

characterize strains with rare growth profiles. The reported method offers an inexpensive and 

practical approach to cell screening and cell sorting and can be applied to a wide range of 

applications where isolating phenotypically pure cells from complex, heterogenous mixtures is 

essential. This includes applications in microbiology, microbial therapeutics, and biomedical 

diagnostics. 

 The next section of this thesis focuses on developing PEG-based hydrogels that are 

designed to protect electroactive biofilms from harsh environmental stressors. The coating was 

fabricated using PEG-tetrathiol and PEG-divinyl sulfone macromers that form hydrogels with 

crosslinks resistant to degradation from acid or base hydrolysis, while still promoting nutrient 

diffusion and electron transport. Methods of fabricating anodes containing electroactive biofilms 

with the hydrogels are first reported, followed by investigation of the hydrolytic stability of the 

coatings. Transport of a carbon source (acetate) through the coating is then modeled, and the long-

term stability and compatibility of the coating over the biofilm is investigated. Lastly, the effect of 

the coating on the biofilm recovery from an environmental shock (ammonium exposure) is 

demonstrated to emphasize the potential benefit of the coating. 

 Finally, the future directions of hydrogels in these applications are recommended, which 

include discussion on developing a hydrogel chemistry that is degradable on exposure to a near-

infrared (NIR) light source as well as discussion on chemical and biological hydrogel additives 

that will improve its performance. 
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of the Gram-negative bacteria Agrobacterium tumefaciens to identify, isolate, and genetically 

characterize strains with rare growth profiles. The reported method offers an inexpensive and 

practical approach to cell screening and cell sorting and can be applied to a wide range of 

applications where isolating phenotypically pure cells from complex, heterogenous mixtures is 

essential. This includes applications in microbiology, microbial therapeutics, and biomedical 
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designed to protect electroactive biofilms from harsh environmental stressors. The coating was 

fabricated using PEG-tetrathiol and PEG-divinyl sulfone macromers that form hydrogels with 

crosslinks resistant to degradation from acid or base hydrolysis, while still promoting nutrient 

diffusion and electron transport. Methods of fabricating anodes containing electroactive biofilms 

with the hydrogels are first reported, followed by investigation of the hydrolytic stability of the 

coatings. Transport of a carbon source (acetate) through the coating is then modeled, and the long-

term stability and compatibility of the coating over the biofilm is investigated. Lastly, the effect of 

the coating on the biofilm recovery from an environmental shock (ammonium exposure) is 

demonstrated to emphasize the potential benefit of the coating. 

 Finally, the future directions of hydrogels in these applications are recommended, which 

include discussion on developing a hydrogel chemistry that is degradable on exposure to a near-

infrared (NIR) light source as well as discussion on chemical and biological hydrogel additives 

that will improve its performance. 
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Chapter 1 - ,QWURGXFWLRQ 

1.1 Synthetic Interfaces for Traditional Applications in Microbiology 

 Since the Industrial Revolution, there has been a rapid development  in advanced materials 

research, which has led to the widespread use of synthetic polymers.1 Due to their tunable chemical 

and physical properties, synthetic polymers have been widely used in various applications such as 

drug delivery,2 biomedical implants,3 tissue engineering,4 antibacterial coating,5 food sciences,6 

and water treatment.7 Innovations in polymer synthesis have led to developing a broad range of 

synthetic interfaces with different structures such as polymer brushes or hydrogel networks.8 These 

biomaterials are of great interest because of the engineered properties, which may include 

biodegradation, sensitivity to various external stimuli, mechanical properties, and cross-linking 

density.9 

 In microbiology, the primary use of synthetic polymers has been in antimicrobial and 

antifouling applications. Biofouling occurs when non-specific microbes or proteins adhere or 

adsorb onto material surfaces.10 Biofouling often leads to constant challenges in a broad range of 

industries and for any surfaces which is in direct contact with biological samples. When biofouling 

occurs on biomedical materials for in vivo use, such as devices, implants, or tissue engineering 

scaffolds, it can lead to harmful impacts on health, like chronic infection.11 Another example of 

the damaging influence of biofouling is the unwanted adsorption of organisms onto surfaces in the 

marine environment, which causes severe technological impacts such as increasing the corrosion 

rate of the manufactured materials underwater.12 To address biofouling issues, antimicrobial or 

antifouling interfaces have shown to assist in preventing the non-specific adsorption of proteins or 

organisms.13 



2 

 Synthetic polymers are also utilized to sense, detect, and capture microorganisms due to 

their ability for modification and functionalization with desired biomolecules and their intrinsically 

high attachment points for various bioconjugation chemistries.14 Continuous advancements in 

polymer chemistry and better control over the polydispersity of the synthesized materials result in 

an accurate display of affinity ligands on synthesized polymers improving cell capture.14 While 

synthetic material interfaces have been well-explored in antifouling, sensing, and capture 

applications, there has been considerably less attention given to developing synthetic interfaces 

for other applications in microbiology. Chapter 1 of this thesis provides background on 1) current 

cell isolation techniques, and 2) bioelectrochemical systems and highlights how polymeric 

material interfaces can offer beneficial enhancements to both systems. 

 1.2 Importance of Cell Isolation 

 A significant and widespread challenge in cellular biology is identification of genetic 

characteristics that are responsible for certain cell functionality, or phenotype.15 To correlate 

phenotype to genotype, understanding the degree and significance of cellular heterogeneity is 

crucial.15 However, most laboratory methods only analyze bulk cell populations where cell 

populations are considered homogeneous.16 Therefore, cell analysis from bulk populations distorts 

the properties and unique phenotype of individual cells, while analyzing single cells or small clonal 

populations can uncover rare molecular biomarkers and other factors regulating the phenotype of 

individual cells.17 Analyzing individual or clonal cell populations requires isolation methods that 

can physically separate them from the bulk population.18 Additionally, cell isolation from a 

heterogeneous mixture is a crucial step towards engineering bacterial communities that  can be 

designed to  enable the production of new materials or improvement of established compounds in 



3 

different areas of biotechnology and bioremediation.19,20 Currently, there are several techniques 

that are used for cell isolation and detection such as flow cytometry, microfluidics and others.21 

 1.3 Conventional and Merging Methods for Cell Isolation 

 1.3.1 Flow Cytometry 

 Flow cytometry is a powerful and high-throughput single-cell analysis technology utilized 

in various applications. Flow cytometry has been used in  studying bacteria physiology, such as in 

Mycobacterium tuberculosis,22 screening of cellular libraries,23 and for diagnostic applications 

such as the diagnosis of leukemias and lymphomas.24 This optical-based technology can detect 

and measure multiple cellular parameters in a sizeable and heterogeneous population of cells, by 

tagging various receptors with fluorescence markers or by sensing light scattering. In flow 

cytometers cells are partitioned into droplets and flow in a stream through a channel and laser 

beam. When the laser hits the moving cells, photonic detectors sense the scattered light and 

fluorescence signal.25 The scattered signal is correlated to the structural and morphological 

characteristics of cells, while the acquired fluorescent signal from the cells is related to the 

presence and quantity of the  cellular marker that was targeted.26  Although flow cytometry is used 

in various fields, it has several downsides, such as being limited in distinguishing the cell subgroup 

with similar marker expression and the need for several dilution steps before the analysis, lowering 

the device's sensitivity. This is why flow cytometers are often used in conjunction with other 

techniques such as qPCR to obtain precise results.27 
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 1.3.2 Fluorescent Activated Cell Sorting (FACS) 

 Fluorescence-activated cell sorting (FACS) is a type of flow cytometry with the ability to 

sort cells from a population based on the signals from fluorescently labeled proteins or 

fluorescence in situ hybridization probes.28 In FACS individual cells are encapsulated in droplets. 

Droplets are then charged and electrostatically deflected into collection containers.29 FACS 

provide exceptional high-throughput beneficial for applications with abundant cells. In the field of 

microbiology, FACS has been used for applications including isolation of microbial populations 

for molecular analysis,30 single-cell screening for bacterial promoters with appropriate expression 

properties,31 and rapid detection of specific microbes.29 However, FACS demands expensive 

equipment due to their complex sorting mechanism. Therefore FACS is often limited to core 

research facilities, requiring highly trained  personnel for its operation.32,33 Another limitation of 

FACS is the necessity of having more than 10,000 cells in each suspension, which is impractical 

for applications dealing with a limited number of cells.34 Aerosol production by the cell sorter 

before the sorting process leading to possible sample contamination is among other drawbacks of 

FACS.35 

 1.3.3 Microfluidics 

 For the last two decades, microfluidics has been a rapidly developing field for a myriad of 

applications in biology and biotechnology.36±38 Microfluidic devices are commonly fabricated 

using soft lithography methods that involve placing a polydimethylsiloxane (PDMS) layer over a 

silicon master substrate, then curing in an oven. The PDMS device then contains patterned 

microchannels that can be attached to a polymer surface, glass slide, or an additional PDMS layer. 

Fluids can be introduced to the system and pass through channels, while the small channel 
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dimensions (typically ranging between 10 nm to several hundred micrometers 39 in width and 

channel aspect ratios between 0.5 and 10 40,41) ensure low Reynolds numbers and laminar flow, 

which provide well controlled hydrodynamic conditions 42 and a remarkable degree of control over 

the chemical and physical microenvironment of the cells.43 Microfluidics also have the ability of 

confining single cells into micron-scale chambers and lower dilution effects to increase detection 

sensitivity.44 Micron-scale sizes, lower consumption of reagents, and the control over the cellular 

microenvironment, make microfluidic platforms a suitable high-throughput technology.45 

 Microfluidic devices integrated with microvalves and droplet assays are among the primary 

devices used for single-cell studies as they allow spatial and temporal control. Droplet 

microfluidics has become a popular platform for studying bacteria as these devices can generate, 

manipulate, and screen droplets that carry single bacteria cells or small populations of bacteria in 

a high-throughput manner as they can generate droplets at rates as high as 20,000/sec.46 These 

platforms use a two-phase system. In this system, aqueous microdroplets that are 0.05 pL to 1 nL 

in volume are surrounded by an immiscible oil, isolating cells from each other and eliminating the 

risk of cross-contamination that is likely to happen in other microfluidic approaches.47±49 These 

features can pave the way for fundamental bacteria studies, rapid detection of cells and improve 

rare cell cultivation ability.50,51 Different research groups have used these devices for various 

applications including identification of pathogens,52 antibiotic resistance,53 cultivation of unknown 

microbes,54 study microbial interactions,55 study microbial physiology,56 and detection of 

metabolic activity of bacteria.57 For instance, Mao et al. took advantage of the laminar flow in 

microfluidic channels to create gradients of repellents and attractants to study bacterial 

chemotaxis.58 They reported the higher sensitivity of their microfluidic system by three orders of 

magnitude compared to a conventional capillary-based chemotaxis assay. In another study, 
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Boedicker et al. used single cell isolation in microfluidic droplets to discover that individual 

Pseudomonas aeruginosa cells could self-activate through diffusive quorum sensing pathways that 

were classically considered to be an intercellular phenomena.59 Cottinet et al. 60 developed a drop-

based microfluidic platform to study microbial growth in microdroplets in parallel. The growth of 

individual cells in each droplet allowed for heritable phenotype changes in single cells to be 

amplified and quantified, even though these changes could not be detected at the single-cell level. 

Jeong et al. 61 developed a microfluidic static droplet assay to study quorum sensing. Their 

approach was used to study the impact of population ratio on cell-cell interaction between the 

signal sender cells, SCs, (production of signal molecules), and receiver bacteria. Leung et al. 62 

developed a programmable droplet-based microfluidic device with wettability control over the 

flow for single-cell studies. Their platform could sort bacteria phenotypically and analyze them at 

a single-cell level by integrating a cell sorting module and applying an elution process downstream 

to analyze the recovered samples. 

 While droplet microfluidics is considered a high-throughput platform, they face 

considerable limitations. For instance, small volumes of droplets cause a high surface area to 

volume ratio. Droplets are produced by a comminatory water and oil system, and the higher 

surface-to-volume ratio means water and oil are more in contact at their interface. Since the 

interface must be stable, it is crucial to use a suitable surfactant, which is often difficult.48 In 

addition, labeling droplets in specific, confined regions of the device requires a need for complex 

control strategies for multiple fluid streams, and difficulty in monitoring target cells in droplets 

that pass through the device are other cons of these platforms.63 Moreover, bacteria in 

microdroplets are devoid of a host surface, which is often present in natural habitats and biofilms 

environments. However, perhaps most critical limitation in these systems comes from the fact that 
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cells confined within droplets are not easily retrieved from the platform. This limits the analysis 

of these cells to on-chip measurements, which most often is with microscopic observation. 

However, powerful molecular information that could be provided from "-omic" technologies is 

inhibited without cell retrieval for off-chip analysis. This includes genomic analysis (ex. 16S 

amplicon sequencing, whole genome sequencing), proteomic analysis, transcriptomic analysis, 

and metabolomic analysis.  Without retrieval capabilities, connecting molecular information, such 

as genotype with phenotype will continue to be difficult. 

 1.3.4 Microwell Arrays 

 Recently, bacterial microarrays have been used to partition, trap, and culture single bacteria 

cells in microwells. Microwell arrays are of great interest for unique high-throughput screening 

assays (THS) that monitor dynamic cellular responses. Microwells can be observed in parallel in 

an array format, depending on the microscope's field of view. 64,65 For example, a novel microwell 

array was developed by Lim et al. 63 in which a fluid array was used to insulate bacteria in 

microwells and allowed for selective extraction of cells of interest based on their phenotype for 

additional culture using capillary tubes. In this platform, they seeded the microwells with bacteria 

solution, and for compartmentalization of the microwells, the platform was inverted into an oil. 

Due to the immiscible properties of oil and aqueous solution and their different specific gravity, 

the aqueous solution containing bacteria was compartmentalized. This platform was further used 

for the growth-based screening of a mutant library. Random mutants were sorted based on their 

nutrient consumption as implication of their growth rate. Zhang et al. 66 proposed an agarose-based 

microwell array that allowed nutrient transport and cell growth. To get individual bacteria in each 

microwell, they optimized the size of the wells and density of the inoculation culture. This resulted 

in having a clonal population of bacteria in microwells, which facilitated the observation and 
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detection process. The proposed platform was used to monitor functional lipase-expressing 

bacteria. 

 While microwell arrays hold a great potential for cell screening applications, they still 

require to be prepared in microfabrication facilities, which not all laboratories can easily access. 

As with droplet microfluidics, retrieval of cells from wells for "-Omics" analysis remains difficult, 

particularly when wells are relatively small (diameters <100 Pm), at which point they cannot be 

picked from wells or extracted in a clean or specific manner. The limitations of cell retrieval after 

observation in these formats have motivated the work presented in this thesis involving the use of 

photodegradable hydrogels for cell retrieval. 

 1.4 Hydrogels 

 Hydrogels are three-dimensional water-swollen cross-linked polymeric networks that are 

created by hydrophilic polymer chains.67 These cross-linked structures can encapsulate and 

immobilize biomolecules, active agents, etc., and release these material on an environmental cue. 

Hydrogels can be made of both natural and synthetic materials.68 Two examples of natural 

hydrogels that are found in nature are gelatin and agar and have been widely used in various 

microbiology applications. However, the physical and biochemical features of natural hydrogels 

can often be difficult to modify and control with a high degree of precision. On the other hand, 

synthetic hydrogels have wide-ranging tunable physical and chemical properties, making them 

more favorable for designing scaffolds of various tissue types in different fields such as 

biomedical, pharmaceutical, and biotechnology.69 Synthetic hydrogels also have a high water 

content, and they can be designed to  mimic natural living tissue and show high biocompatibility 

with cells.67 The majority of synthetic hydrogels use poly(ethylene glycol) (PEG) as the hydrogel 
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backbone due to the remarkable advantages PEG offer for hydrogels.70 The cross-linked network 

of these hydrophilic biomaterials can offer well-controlled viscoelastic properties and can be used 

to tune diffusive transport and interstitial flow properties.71 Due to their excellent biocompatibility 

and non-cytotoxic properties,72 PEG hydrogels also provide an effective chemistry for cell 

encapsulation.73 PEG-containing hydrogels are also known to be excellent antifouling materials.74 

PEG is, in fact, the most often used polymer for antifouling purposes 75 as it reduces the non-

specific adsorption of proteins, cells, and bacteria. One of the most successful applications of these 

hydrogels has been for marine antifouling purposes. With these beneficial properties, PEG-based 

hydrogel materials can also be used for cell screening applications. Polyacrylamide (PAA) 

hydrogels are among other well studied hydrogels. These hydrogels have been utilized for different 

applications including food packaging, water treatment,76 and to explore the influence of hydrogel 

stiffness on cell morphology.77 Other synthetic hydrogels employ polypeptide chains, such as Arg±

Gly±Asp (RGD) peptides, as the hydrogel backbone to provide adhesion sites to promote adhesion 

and proliferation of mammalian cells.76 In one study, Zhou et al. reported the development of a 

peptide-based bioactive hydrogel as a three-dimensional cell scaffold. Here, the hydrogel was 

fabricated through combination of Fmoc-FF (Fluorenylmethoxycarbonyl-diphenylalanine) and 

Fmoc-RGD. The developed hydrogel allowed the culture of human dermal fibroblast within the 

hydrogel matrix for studying the morphology and viability of the cells. Due to simple and 

inexpensive nature of these hydrogels, they hold promise for cell screening in tissue regeneration, 

and other biological applications.76  

 1.4.1 Hydrogel Crosslinking Chemistries  

 PEG-based hydrogels are made by different polymerization mechanisms including chain 

polymerizations and step polymerizations,78 which are described here. 
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 1.4.1.1 Chain-Growth Polymerization 

 Chain growth polymerization reactions require initiators such as free radical initiators or 

anionic and cationic initiators.79 Initiators are activated to generate free radicals on light exposure, 

heat, or free redox reactions. Chain polymerizations occur by propagating free radicals through 

unsaturated vinyl or acrylate bonds on the PEG macromer with only monomers reacting with the 

active site of growing chains.80 Cross-linking via chain-growth polymerization is usually 

completed in a relatively short time, seconds to minutes.81 

 1.4.1.1.1 Chain-Growth Free Radical Photopolymerization 

 Photopolymerization is a category of free-radical polymerization where light is used to 

initiate the polymerization. Photoinitiated crosslinking is a suitable method for hydrogel formation 

in situ as it offers spatiotemporal control over the hydrogel formation.82 Rapid polymerization rate 

and polymerization under physiological conditions are other advantages of photopolymerized 

hydrogels. With the mentioned benefits, PEG hydrogels generated by the photoinitiated 

polymerization have shown potential for cell encapsulation applications.83 

 However, hydrogels formed by chain-growth polymerization are also known to contain 

network non-idealities compare to those made through step-growth polymerization.84 For example, 

the arbitrary nature of radical propagation and termination in chain-growth polymerization causes 

cross-link functionality heterogeneity across the hydrogel.85 Moreover, chain growth 

polymerization initiated by radicals are inhibited by oxygens, which is often a limiting factor when 

cells are present.86 This is due to the relatively stable nature of peroxide radicals that slows the 

polymerization rate, and due to oxygen molecules forming reactive oxygen species which can put 

oxidative stress on cells.81 
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 1.4.1.2 Step-Growth Polymerization 

 Unlike chain-growth polymerization, step-growth polymerization forms more homogenous 

hydrogels with uniform crosslinking densities.87 This is because the polymerization occurs when 

at least two multifunctional monomers with mutually reactive groups act as cross-linking points 

and are reacted together. This polymerization usually does not require free-radical initiators and 

can proceed on mixing of monomer precursors under ambient conditions.84 

 1.4.1.2.1 Michael Type Addition 

 0LFKDHO� DGGLWLRQ� LV� WKH� QXFOHRSKLOLF� DGGLWLRQ� RI� D� QXFOHRSKLOH� WR� DQ� Į�ȕ-unsaturated 

carbonyl compound.88 Michael-type addition reaction is the most widespread bioconjugation 

reaction,89 which usually uses thiols as nucleophiles and electron-poor double bonds as 

electrophiles such as (meth)acrylates, acrylamides, vinyl sulfones and maleimides.90 Among 

various Michael-type addition reactions, thiol-acrylate, thiol-maleimide, and thiol-vinyl sulfone 

reactions have been broadly studied.91 

 Thiol-acrylate reaction has been extensively used for hydrogel fabrication and surface 

functionalization.92 Thiol-acrylate reactions have especially been used for formation of 

hydrolytically degradable hydrogels as the ester groups present in their chemistry is susceptible to 

hydrolysis. Yom-Tov et al. investigated the impact of different hydrogel preparation techniques 

on thiol-acrylate hydrogel properties. They reported that manipulation of the hydrogel preparation 

method, could result in achieving desired properties, such as polymerization time, crosslinking 

structure, etc. for specialized biomedical applications.93 These tunable properties of thiol-acrylate 

hydrogels are mainly achieved by changing the thiol-to-acrylate molar ratio. Khan et al. developed 

a biodegradable thiol-acrylate hydrogel as a three-dimensional cell culture platform for in vitro 
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applications. Here they investigated the impact of different formulation for hydrogel preparation 

on viability and growth of breast cancer cells cultured over time to find the optimum formulation.94 

Hubbell and co-workers used the step-growth polymerization method to form a series of 

degradable hydrogels by cross-linking acrylated star PEG polymers and dithiols through a 

Michael-type addition reaction for protein drug delivery.95 In another study, Elia et al. reported the 

development of a hydrogel through thiol-acrylate addition reaction for in situ delivery of loaded 

growth factors to localized sites in a mouse model.96 

 Maleimides, another reactive groups with thiols, are widely used in bioconjugation of 

peptides due to their rapid reaction and high specificity for thiol groups under physiological 

condition.97 Phelps et al investigated the potentials of a thiol-maleimide hydrogel for regenerative 

medicine and reported the promise of these interfaces for cell delivery due to fast crosslinking 

reaction (1-5 minutes) suitable for clinical use and in situ gelation under mild reaction conditions. 

Although, the fast polymerization reaction of thiol and maleimide is of great interest for tissue 

engineering, rapid polymerization rate can lead to heterogenous hydrogel network and crosslinking 

gradient 98 which is reported to potentially decrease the reproducibility in the cell response such 

as correlating cell function to hydrogel stiffness.98 Moreover, retro-Michael type addition can 

occur between thiol-maleimide linkage even at physiological pH and temperature, decreasing the 

hydrogel stability.99  

 In contrast, thiol-vinyl sulfone reaction results in a very stable thioether bond that is not 

prone to hydrolysis and that offers significantly greater stability for applications requiring a range 

of different environments.100 In one study, Liu et al. developed a biologically inert hydrogel 

through the thiol-vinyl sulfone addition reaction. The hydrogel was generated through mixing a 4-

arm PEG- vinyl sulfone and a multi-arm, macromer with terminal thiol groups. The hydrogel in 
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this study was used as a cell encapsulation matrix to study the epithelial cyst formation. The 

polymerization rate of the developed hydrogel was suitable for in situ cell encapsulation, holding 

promise for other potential in situ applications.101 

 1.4.2 Stimuli Responsive Hydrogels 

 Stimuli-responsive hydrogels, or "smart" hydrogels, are designed to respond to various 

external or internal stimuli to undergo changes in their network structure, mechanical strength, 

swelling behavior, or permeability. Some of these stimuli are temperature, pH, light, magnetic 

field, and electric current.102 These smart hydrogels have proven to be extremely useful in drug 

delivery, tissue engineering, and cell encapsulation,103±105 and are reviewed here. 

 1.4.2.1 Temperature Responsive Hydrogels 

 Temperature-responsive hydrogels are one of the most studied stimuli-responsive 

hydrogels. These hydrogels change their swelling and shrinking behavior upon shifts in the 

surrounding fluid temperature 106 and can be categorized as negative or positive temperature-

responsive systems.69 Negative temperature hydrogels that exhibit a lower critical solution 

temperature (LCST) shrink at temperatures above the LCST as these polymers become 

hydrophobic because of enhanced polymeric interactions.107±109 LCST systems are used in 

different applications such as reversible switches for sensors, drug delivery carriers and 

diagnostics. For instance, hydrogels showing an LCST lower than human body temperature have 

the potential to be injected into the human body, as they can be tuned to be liquid at room 

temperature and shrink or gel once introduced to body fluids due to an increase in temperature.110 

Guenther et al. used a temperature-responsive gel in their hydrogel-based chemical sensors. The 

hydrogel used in their system experienced changes in its swelling behavior to bend a thin silicon 



14 

membrane, leading to an electrical output voltage of the sensor chip.111 Another example of LCST 

systems is the one developed by Uchiyama et al. who used a temperature-responsive polymer with 

fluorescent units to measure the local temperature in organelles of living cells utilizing the 

variances in fluorescence intensity made by dehydration.112 Unlike LCST systems, positive 

temperature hydrogels exhibiting an upper critical solution temperature (UCST) contract by 

cooling below the UCST due to phenomena such as hydrogen bonding and electrostatic 

interactions. UCST systems can also be used in applications such as sensors and protein 

separation.113 For instance, Danko et al. reported the preparation of a thermo-responsive hydrogel 

using carboxybetaine and sulfobetaine based monomers. The developed hydrogel was able to turn 

transparent above UCST, offering the potential to serve  as a simple means of thermal warning 

detection for required cooling.114 

 1.4.2.2 pH Responsive Hydrogels 

 pH-responsive hydrogels are another category of smart hydrogels that have been widely 

studied and applied. These hydrogels have ionic pendant groups capable of accepting and donating 

protons because of changes in the environmental pH. Ionization of the pendant groups and the 

quick transformation in their net charge generate electrostatic repulsive forces controlling pH-

dependent swelling or deswelling of the hydrogel.115 pH-responsive hydrogels are also suitable for 

specific drug and therapeutic delivery since different human body locations, such as blood vessels 

and the gastrointestinal tract, have various pH values and can support a good base for releasing 

pH-responsive drugs.115,116 In one study, Xu et al. developed a pH-responsive hydrogel by 

combining poly(L-lactide)-co-polyethyleneglycol-co-poly(L-lactide) dimethacrylates with acrylic 

acid and N-isopropylacrylamide. The hydrogels were loaded with two drugs and had the ability to 

shrink at pH 1.2 and swelling at pH 7.4 with each pH favoring one of the drugs to be released in a 
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slow release or rapid release pattern. The developed hydrogel with pH triggered differential drug 

release functionality successfully killed d HeLa cells while inhibiting the growth of Escherichia 

coli.117 

 1.4.2.3 Light Responsive Hydrogels 

 Light proves to be an advantageous stimulus for controlling the behavior of biomaterials 

as it can be tuned spatially and  in terms of light intensity, exposure time, and wavelength.118,119 

Light-responsive polymers usually undergo degradation or bonding reactions as a response to the 

light energy.120 In photoreleasable hydrogels, degradation occurs upon photocleavage of the 

covalent bonds. These hydrogels are created by integrating photoresponsive moieties such as o-

nitrobenzyl (o-NB) groups (Scheme 1.1) into the hydrogel network.121 The oဨ1%�PRLHW\�and its 

derivatives have found the most widespread use in photoresponsive hydrogels.122 oဨ1%�JURXSV�

cleave at the ester bond upon UV light exposure and result in the production of aldehydes and 

carboxylic acids (Scheme 1.1).123 Photocleavage wavelength can also be manipulated through 

functionalization of the benzene group to achieve photoresponse to light wavelength from 350 to 

450 nm.121 These properties allow for direct hydrogel degradation manipulation, which is 

favorable in many applications where spatiotemporal control over degradation is required.124 For 

instance, photodegradable hydrogels are a good candidate for therapeutics, where controlled drug 

release is essential. Their three-dimensional structure allows encapsulation of different drugs, and 

the light-triggered gel-to-sol transition results in the release of the loaded drugs.125 Another 

application of photodegradable hydrogels is in wound dressing, where hydrogels are required to 

attach to the tissue for a specified time and then get removed or degrade gradually. Villiou et al. 

designed a photodegradable hydrogel suitable for wound dressing applications. The developed 
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hydrogel was capable of cross-linking in situ, encapsulating cells, adhering to tissue, and on-

demand releasing of cells upon light exposure and ultimately detaching from the tissue.126 

 

Scheme 1.1. Cleavage mechanism of o-nitrobenzyl groups upon UV light exposure. 

 

 1.5 Photodegradable Hydrogels for Cell Isolation 

 Photodegradable hydrogels provide biocompatible cell capture and release with the ability 

of selective release of target cells. Recently, LeValley et al. developed a patterned, antibody-

conjugated photodegradable PEG-based hydrogel for cell capture and on-demand cell release. 

Using this photodegradable hydrogel allowed them to capture target cells from whole blood with 

enhanced purity due to the selective release of cells.127 Shin et al. also functionalized a 

photodegradable hydrogel with antibodies to isolate specific cells from a heterogeneous cell 

population and further took advantage of photodegradability of the hydrogels for selective release 

of cells down to the single-cell level.128 Variations in reactivity of oဨ1%�GHULYDWL]HG�OLQNHUV�HQDEOHG�

Kasko and Griffin 129 to establish a series of macromers integrated with o-NB groups in their 

backbone to form hydrogels with different photodegradation rate constants at 370 nm, capable of 
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encapsulating and releasing human mesenchymal stem cells without compromising the cell 

viability. While these materials have been reported for isolation of mammalian cells, they have not 

been applied to the microbial kingdom until very recently. Van der Vlies et al.130 provided the first 

report of photodegradable hydrogels for isolating populations of bacteria after observation of cell 

growth in a microwell format. Here, a model bacterium, Agrobacterium tumefaciens, was seeded 

inside the microwells. The bacteria were then sealed inside the wells by attachment of a 

photodegradable hydrogel layer with a suitable pore size for nutrient exchange required for cell 

growth. Cell growth was monitored overtime utilizing fluorescence measurements. Selected wells 

were exposed to light for membrane degradation and cell release. The high control over hydrogel 

degradation, ability to screen, identifying populations with a desired or rare behavior, and selective 

well opening make this cell isolation method proper for applications requiring follow-up genetic 

analysis.130 Building off of this progress Barua et al.131 used the same cell isolation method from 

microwell arrays to discover synergistic or antagonistic interactions between rhizosphere bacteria. 

In this study, microwell arrays were used for trapping a focal species expressing fluorescence with 

multi-species communities at various ratios to track the growth of the focal species. Using this 

approach, the microwell arrays were applied to simultaneously screen positive and negative 

interactions between a plant growth-promoting rhizobacteria and a rhizosphere isolate. Target 

wells with rare behavior were then opened using a light patterning device and 16S rRNA 

sequencing was done on the isolates.131 

 Microwell arrays allow cell screening and isolation in a well-controlled manner. However, 

they still need microfabrication requiring expert personnel and fabrication facilities, which not 

every laboratory have access to. To develop a more translational method for cell screening and 

isolation, Fattahi et al. used the same photodegradable hydrogel interfaces, with the difference of 
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cell entrapment within the hydrogel matrix. Here, hydrogel interfaces were fabricated over glass 

coverslips. Hydrogel permeability allowed for formation of microcolonies from individual 

encapsulated cells. Hydrogels were then screened for cell colonies with unique growth profile, and 

selective colony extraction was done using a light patterning device with micron-scale resolution. 

This method allowed screening a model mutant library of bacteria, Agrobacterium tumefaciens 

C58, to saturation, identification of rare mutants showing desired phenotype, cell extraction with 

precision, and follow up genetic analysis to map mutation.132 

 Hydrogels, owing to their exceptional properties, including great biocompatibility, 

swelling ability, and the tunable network properties, have attracted a great interest for use in 

different applications. Specially, the continues enhancement in polymer synthesis increases the 

chemical and physical tunability of hydrogels. Thus, these interfaces can be designed to meet the 

requirements of the target industry or research area, such as many microbiology, biomedical, and 

biotechnology applications.  

 1.6 Bioelectrochemical Systems (BESs) 

 With the gradual depletion of non-renewable energy resources, there is a great need to 

enhance and develop new types of renewable energy sources.133 Bioelectrochemical systems 

(BESs) are one of the promising candidates that fit within this category. BESs are electrochemical 

cells that use microorganisms to oxidize organic compounds present in waste, like wastewater, 

which results in the production of electrons through this oxidizing process. The produced electrons 

are then used to either generate energy or value-added compounds.134,135 Two main categories of 

BESs are microbial fuel cells (MFCs), where electrons are produced by microorganisms, and 

microbial electrolysis cells (MECs), where microorganisms consume electrons (Scheme 1.2).136 
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While both systems have a similar anodic reaction with bacterial anode oxidizing a carbon source, 

the reaction occurring at the cathode differs. In MFCs, the cathode reaction results in electricity 

production.  On the other hand, in MECs, cathode reaction leads to the formation of value-added 

products such as hydrogen gas.137 

 

Scheme 1.2. Schematic representation of (A) a microbial fuel cell (MFC), and (B) a microbial 
electrolysis cell (MEC). 

 

 1.6.1 Limitations of BESs 

 Although BESs are a good candidate for producing green energy, they face several 

challenges such as lower efficiency and decreased production rate preventing them to be fully 

applicable to large-scale applications.138 To overcome these issues, it is important that the 

operation of these systems provide more benefits than the cost associated with using these systems. 

Therefore, a crucial step towards making these systems practical is to maximizing the efficiency 

of BESs to lower their operation cost.139 
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 The microbial community, and particularly the abundance and viability of electroactive 

bacteria (EAB), play a crucial role in electroactivity of the biofilm and efficiency of these 

systems.140 EAB are capable of extracellular electron transfer (EET), which enables them to 

transfer electrons to or from a solid substrate such as electrodes.141 EAB are also known as 

exoelectrogens and anode-respiring bacteria (ARB). Retaining a well-balanced microbial 

composition on the anode with an affluent EAB population is crucial for efficient electron transfer 

and achieving maximum current densities in BESs.142 A major limiting factors in the performance 

of BESs is decreased activity of the EAB and ARB within the anode-bound biofilm over time. It 

is known that harsh environmental conditions such as variations in pH values,143 temperature 

fluctuations,144 and high salinity 145 can compromise the viability and activity of the EAB. 

 1.6.2 Polymeric Material to Enhance the Efficiency of BESs 

 Recently, various studies have reported on techniques protecting the electroactive anode 

biofilm from harsh environmental stressors. Anode biofilm protection by immobilizing the biofilm 

on the anode using a protective layer is one of the techniques used for this purpose. Recently, Du 

et al. 143 used polydopamine (PDA) to encapsulate bacteria cells on the anode to protect them 

against severe acid shock. Using this method, they could achieve a limiting current density that 

was 1900% higher than their control system with a non-immobilized anode. They reported the 

bacteria protection ability of PDA against acid shock was potentially due to their biocompatibility, 

high stability, and formation of a hard shell on the bacteria surface protecting the cells inside. They 

believe this could be due to rich functional groups of the PDA binding it closely to the bacterial 

cells. 
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 There have been a couple of recent reports of hydrogel biomaterials that provide a 

biocompatible and protective matrix in BESs.142 These interfaces allow for nutrient transport to 

the electroactive biofilm and diffusion of waste materials out of the interface. Hydrogels also 

provide protections against environmental stressors such as a broad range of temperature, pH, 

solvents, and toxins.142,146 Gandu et al.142 is among the research groups that used alginate combined 

with chitosan or only alginate to immobilize the anode biofilm in an BES operating in wastewater. 

Their studies showed that using BESs containing immobilized anode biofilm increased the 

chemical oxygen demand (COD) removal from 40% to 78% compared to systems with non-

immobilized anode biofilm. After microbial diversity analysis, they observed that in their 

immobilized anode, the electroactive bacteria, Geobacter, accounted for 90 % of the microbial 

composition on the anode. In contrast, in systems with the non-immobilized anode, this number 

was 73%. In another study conducted by Luo et al. 147 anode biofilm was encapsulated using 

agarose gel, a natural polymer, to investigate the performance of the BES under high substrate 

concentration, which is known to inhibit the activity of the EAB and lower the yield of the system. 

The agarose immobilized anode used in their studies showed higher power density compared to 

the non-immobilized anode. The immobilized anode showed a power density of 610 and 370 

mW/m2 at a substrate concentration of 5 and 10 g/L, while these values for the untreated anode 

were 343 and 240 mW/m2, respectively. These three have motivated the use of our PEG-based 

hydrogels as a protective layer against environmental shocks in BESs, as described in Chapter 5.  
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Chapter 2 - 2EMHFWLYHV 

 2.1 Background 

 Poly(ethylene glycol) (PEG) based hydrogels have been one of the most broadly studied 

among the synthetic hydrogels.70 The cross-linked network of these hydrophilic biomaterials can 

offer well-controlled viscoelastic properties and can be used to tune diffusive transport and 

interstitial flow properties.71 Due to their excellent biocompatibility and non-cytotoxic 

properties,72 PEG hydrogels also provide an effective chemistry for cell encapsulation.73 PEG-

containing hydrogels are also known to be excellent antifouling materials.74 PEG is, in fact, the 

most often used polymer for antifouling purposes 75 as it reduces the non-specific adsorption of 

proteins, cells, and bacteria. One of the most successful applications of these hydrogels has been 

for marine antifouling purposes. With these beneficial properties, PEG-based hydrogel materials 

can also be used for cell screening applications. To connect phenotype to genotype determination, 

it becomes crucial to isolate the targeted cells after identification from the screen. However, most 

established methods for cell screening lack the ability to recover the target cells from the platform. 

This highlights a significant need for development of cell screening methods that also allow for 

selective cell isolation for genetic analysis after microscopic observation. 

 The motivation behind the final portions of this thesis to investigate the methods for 

improving the efficiency of bioelectrochemical systems (BESs) stem from the great potential of 

this technology to serve as a sustainable environmentally benign source of energy.133 Despite the 

promises that BESs holds, they face several problems that constrain this technology to laboratories 

and prevent them to be commercialized. In these systems, electroactive bacteria (EAB) capable of 

harvesting energy from waste material are one of the key components of the system efficiency.148 
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As mentioned in (Chapter 1), environmental shocks such as pH shock,143 temperature 

fluctuations,144 and high salinity 145 can compromise the metabolic activity of the EAB. The well-

known sensitivity of EAB to environmental pressure, and the direct dependance of the current 

density on anode biofilm metabolic activity, makes MFC systems, a category of BESs, a good 

candidate as toxicity sensors especially for water monitoring.149 For instance, introducing toxic 

substances such as Pb2
+ would affect the biofilm metabolic activity and lower the current density 

of the MFC. However, even in MFC sensors that environmental stressors experiencing by the 

biofilm is the key feature of the system, repeated exposure to toxins or high concentrations of 

toxins can affect the anode biofilm metabolic activity in an irreversible way decreasing the sensor 

sensitivity. Therefore, for BESs operation in actual environment, that can potentially contain high 

concentrations of toxins or experience extreme conditions related to temperature, pH, etc., the 

EAB metabolic activity needs to be maintained or have the ability to re-acclimate after extreme 

environmental shocks. To this end, there is a great need for development of methods capable of 

protecting EAB from extreme conditions, and ultimately increasing the efficiency of the system. 

 Only a few studies have utilized polymeric hydrogel materials for improving the efficiency 

of BESs by providing a protective barrier around the anode biofilm. However, the long-term 

stability of these hydrogels has not been well-characterized. For BESs to be practically applicable 

to most applications, they need to have the ability to remain stable in the environment for weeks 

to months during operation. Otherwise, there is a continuous need for changing the material after 

a short period of time, increasing the operation cost. Therefore, there is a great need to further 

investigate the polymeric material with high stability that can potentially answer the current 

limitations for commercialization of BESs. 
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 2.2 Motivation 

 The first section of this thesis focuses on the development of a facile, high-throughput 

method for cell isolation that is translational to common microbiological labs with no fabrication 

need. Incorporating stimuli responsive, photocleavable chemical moieties into the hydrogel 

network enables cleavage of covalent bonds, degradation of the network structure, and release of 

bacteria cells from the hydrogel. With this, it is hypothesized that photodegradable polymeric 

materials can be designed with small (10-20 nm) pore sizes to encapsulate and culture cells in a 

bulk format that effectively serves as a miniaturized version of standard plating methods, allowing 

for cell screening and isolation of selected cell population in a defined chemical environment with 

high spatiotemporal control using a patterned light source. The second portion of the thesis 

emphasizes an inexpensive method for encapsulation of electroactive anode biofilms in BESs with 

a hydrogel coating. Here we hypothesize that the hydrogel can be designed with high pH stability, 

nutrient diffusion to keep the biofilm viable, and can be used to protect the biofilm from 

environmental shocks. Successful development of this coating will open the door to a new 

application of PEG-based hydrogels that may address some of the critical limitations in current 

BESs associated with reduced biofilm activity over time. 

The goals motivating this research are outlined by the following objectives: 

Aim 1: Characterize the degree of control over the cell isolation and cell viability after light 

exposure using photodegradable hydrogels. Hydrogel degradation using a UV light source with 

programable features, such as user defined light patterns, and light dose will be evaluated. 

Different light intensity, exposure time, and release patterns will be tested to achieve appropriate 

release mechanism for different applications. Purity of this extraction method and procedures to 
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minimize the chance of contamination are demonstrated. DNA quality measurements will be 

conducted to evaluate the influence of UV light exposure on cell viability using various light 

patterns. The advantages, and limitations of this isolation method will be compared to existing 

approaches. 

Aim 2: Demonstrate the potential of PEG-based hydrogels for high throughput screening of 

mutant libraries. Bacteria can be mutated randomly; however, only rarely might a strain have a 

mutation that affects function. Traditional methods for screening mutant libraries (ML) for 

discovering strains with unique function are time-consuming and laborious as they involve 

potentially observing tens of thousands of different colonies after plating mutant libraries on solid 

media in order to ensure that every gene mutation has been accounted for in the screen. Therefore, 

early portions of this thesis focus on developing PEG hydrogels to serve as a miniaturized version 

of a standard plating methods, reducing the labor and materials cost by increasing the throughput. 

The studies will describe preparation of PEG hydrogels as a three-dimensional cell culture matrix 

capable of encapsulating cells while having a proper pore size to provide sufficient nutrients 

transfer required for cell growth. Optimum preparation procedure of the hydrogels will be 

discussed along with the important experimental factors, such as cell seeding density to increase 

the high-throughput and the effect of light pattern and intensity on cell release. A model system 

based on interactions between Agrobacterium tumefaciens C58 (C58) and the biocontrol agent 

Rhizobium rhizogenes K84 (K84), a potent antagonist against A. tumefaciens, the causative agent 

of crown gall disease will be used to screen, identify, and isolate the rare C58 mutants resistant to 

antagonizing K84. The genome of the isolated strains is mapped with whole genome sequencing 

to identify the mutations responsible for resistance. This model system will provide a first display 
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of a phenotype-to-genotype demonstration using the photodegradable hydrogel screening 

approach for bacteria cells. 

Aim 3: Demonstrate the use of hydrolytically stable PEG hydrogels on enhancing the 

efficiency of BESs by protecting the anodic biofilm from environmental shocks. It is 

hypothesized that using hydrogel coating can protect the anode biofilm from environmental shocks 

that affect the biofilm metabolic activity. The hydrolytic stability of the PEG hydrogel containing 

divinyl sulfone chemistry will be evaluated. A simple and practical method for coating the 

hydrogel layer over the anode electrode will be investigated. After anode coating, the effect of the 

protective coating on biofilm activity will be studied. The addition of an ammonia spike in the 

system will be used as a model of a toxic shock to assess the impact of the protective layer on the 

biofilm activity compared to an uncoated control system. 
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Chapter 3 - 3KRWRGHJUDGDEOH�+\GURJHO�,QWHUIDFHV�IRU�%DFWHULD�

6FUHHQLQJ��6HOHFWLRQ��DQG�,VRODWLRQ1 

 3.1 Overview 

 Biologists have long attempted to understand the relationship between phenotype and 

genotype. To better understand this connection, it is crucial to develop technologies that enable 

both cellular observation and screening with cell isolation for downstream genetic analysis. Here, 

we describe the use of photodegradable poly(ethylene glycol) hydrogels for screening and isolation 

of bacteria with unique growth phenotypes from heterogeneous cell populations. The method relies 

on encapsulating or entrapping cells with the hydrogel, followed by microscopic screening, then 

use of a high-resolution light patterning tool to enable spatiotemporal control of hydrogel 

degradation to release cells into solution for retrieval. Applying different light patterns allows for 

control over the morphology of the extracted cell, and patterns such as rings or crosses can be used 

to retrieve cells with minimal direct UV light exposure to ensure minimal DNA damage to the 

isolates. Moreover, the light patterning tool delivers an adjustable light dose to achieve various 

cell release rates and allows for degradation at high resolution, enabling release with micron-scale 

precision. Here, we demonstrate the use of this material to screen and retrieve bacteria from both 

bulk hydrogels and from microfabricated, lab-on-a-chip devices. The method is inexpensive, 

simple, and can be used for emerging applications in microbiology, including isolation of 

 
1 Manuscript: Fattahi, N.; Barua, N.; Van der Vlies, A. J.; Hansen, R. Photodegradable hydrogel 

interfaces for bacteria screening, selection, and isolation. Submitted to Journal of Visualized 

Experiments. 
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antagonistic or symbiotic collections of bacteria and isolation of bacterial strains with rare growth 

profiles for genomic characterization through 16S amplicon or whole-genome sequencing. 

 

 3.2 Introduction 

 Isolation of cells with unique behaviors from a heterogeneous cell population is 

fundamental for obtaining genetic information in biology.150 Some of the most established methods 

of cell isolation include flow cytometry, fluorescent activated cell sorting (FACS), and 

microfluidics.151 Although these isolation methods are of high value in cell analysis, they are often 

labor-intensive, experimentally complex, expensive, and troubled by high cell loss, making them 

infeasible for practical implementation or for applications where the number of cells is limited.152 

Recently, microfluidic flow cytometry has obtained much attention, which compare to 

conventional flow cytometry, allows for a significant reduction in the sample volume required.153 

However, further innovation on practical cell screening and isolation techniques is required for 

widespread use in many laboratories. 

 In microbiology, selection of rare or unique cells from heterogenous mixtures after 

observation is important in many applications. This includes selection of phenotypically rare 

strains from mutant libraries,63 selection of keystone microorganisms from complex microbial 

communities,18,154 or selection of phenotypically rare but important bacteria from isogenetic 

populations. Isolation of viable but non-culturable cells (VBNC) from a bacteria population is one 

important example of the latter, where cells with the VBNC phenotype are often hidden in bacteria 

populations at ratios between 1:102 to 1:105.155,156 Due to the widespread difficulties in bacteria 

isolation, much remains unknown about many phenotypically rare microorganisms. These 
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limitations emphasize the need for cell isolation techniques to first identify the target cell or cells 

from a mixture and then retrieve and isolate them for downstream analysis.157 

 This paper presents a material-based approach for bacteria screening and isolation. The 

method uses of photodegradable hydrogels for cell encapsulation, culture, microscopic 

observation, and then on-demand release and recovery of targeted bacteria with unique 

phenotypes. This is a key procedure in novel microbial screening and selection applications that 

we have recently reported.130±132 Hydrogels are designed to contain 10 nm mesh size, where each 

crosslink contains photocleavable poly(ethylene glycol) (PEG)-o-nitrobenyzl groups. This allows 

the material to encapsulate cells either within bulk hydrogels or to trap them within microwell 

surfaces while enabling diffusion of nutrients and waste products to and from cells during culture. 

Exposing the surface to a patterned UV light source with an upright microscope enables local 

ablation of the hydrogel entrapping individual microcolonies, triggering selective cell release and 

recovery for downstream analysis, which may include genomic, proteomic, or transcriptomic 

analysis. The method is demonstrated here with a model Gram-negative organism (Escherichia 

coli) and a model Gram-positive organism (Bacillus subtilis) but has been readily extended to a 

variety of other bacteria. 

 3.3 Experimental section and protocols 

 3.3.1 Bacterial strains and culture protocols 

1. Streak colonies of Bacillus subtilis (strain 1A1135, Bacillus Genetic Stock Center) on 

ATGN (0.079 M KH2PO4, 0.015 M (NH4)2SO4, 0.6 mM MgSO4.7H2O, 0.06 mM CaCl2.2H2O, 

0.0071 mM MnSO4.H2O, 0.125 M FeSO4.7H2O, 28 mM glucose, pH: 7 ± 0.2, 15 g/L Agar) agar 
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plates supplemented with 100 µg/ml spectinomycin and E. coli (strain 25922, ATCC) on ATGN 

agar plates supplemented with 100 µg/mL ampicillin. 

2. Pick colonies of both strains from ATGN agar plates and start overnight cultures at 37 °C 

while shaking at 215 rpm in ATGN liquid medium for 24 hours. Store the cell cultures in 50% 

glycerol at -80 °C for future use. 

3. Pick colonies of both strains from glycerol stocks using sterile inoculation loops and 

incubate in ATGN liquid media for 24 hours at 37 °C and 215 rpm. 

 3.3.2 Preparation of the material needed for hydrogel formation 

 3.3.2.1 Photodegradable PEG-o-NB-diacrylate synthesis  

NOTE: The in-house synthesis of the PEG-o-NB-diacrylate has been well-described and 

previously reported.130,158 Alternatively, because the synthesis is routine, it can be outsourced from 

a chemical synthesis facility. 

 3.3.2.2 Crosslinking buffer 

1. Take the recipe of the selected medium for the bacterial strain and prepare media with 2X 

nutrients. 

2. Add phosphate, i.e., NaH2PO4, to the medium to a final concentration of 100 mM. 

3. Adjust the pH value to 8 using 5 M NaOH (aq). 

4. Sterilize the buffer solution and store at -20 °C until further use. 

NOTE: Leave out any transition metals present in the media, as these metals catalyze the oxidation 

of the thiols to a disulfide. 
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 3.3.2.3 PEG-o-NB-diacrylate solution 

1. For each mg of the aliquot PEG-o-NB-diacrylate (3,4K MW) powder add 3.08 µL ultrapure 

water to reach 49 mM concentration of PEG-o-NB-diacrylate (98 mM acrylate concentration). 

2. Vortex the solution until it is well mixed. 

3. Store this solution at -20 °C until further use. 

 3.3.2.4 Thiol solution 

1. For 4-arm PEG-thiol (10K MW) preparation, add 4 µL of ultrapure water per mg powder 

to reach a 20 mM concentration (80 mM of thiol concentration). 

2. Vortex this solution until it is well-mixed. 

3. Store this solution at -20 °C until further use. 

 3.3.3 Preparation of perfluoroalkylated glass slides 

1. Place up to 5 glass slides (25×75×1 mm) inside a polypropylene slide mailer. 

2. Sonicate the slides with a 2 % (w/v) alconox solution for 20 minutes. 

3. Rinse the slides within 3 times with ultrapure water and sonicate these slides in water for 

20 minutes. Then dry the slides using a stream of N2. 

4. Plasma clean both sides of the glass slides according to the protocol in Section 3.3.4.1 for 

2 minutes. 

5. Place the plasma cleaned slides back into the slide mailer and fill the container with a 0.5 

% (v/v) solution of trichloro(1H, 1H, 2H, 2H,-perfluorooctyl)silane in toluene. Allow these glass 

slides to be functionalized for 3 hours at room temperature. 

6. After slides are functionalized, rinse the slides within the slide mailer, first with toluene 
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and next ethanol (3 times with each solvent). 

7. Dry each functionalized slide using a N2 stream. 

 3.3.4 Preparation of thiol functionalized glass coverslips 

 3.3.4.1 Cleaning of the glass coverslips using a plasma cleaner 

1. Place 18×18 mm coverslips in a petri dish. 

2. Place the petri dish in a plasma cleaner chamber, and power the plasma cleaner on and 

place the petri dish inside the chamber. 

3. Turn the vacuum pump on to clear the air within the chamber until the pressure gauge reads 

400 mTorr. 

4. Open the metering valve to let air into the chamber until the pressure gauge reaches a steady 

pressure (800-1000 mTorr). Then, select RF with "Hi" mode and allow the coverslips to be 

exposed for 3 minutes. 

5. After 3 minutes, turn off the RF and the vacuum pump. 

6. Take the petri dish out of the chamber, flip the coverslips, and place them back in the 

chamber to plasma clean the other side of the glass coverslip. 

7. Repeat steps 2 to 5 to plasma clean the untreated side of the glass coverslip. 

8. After completing the process, remove the petri dish from the chamber and turn the plasma 

cleaner and vacuum pump off. 

 3.3.4.2 Cleaning and hydroxylation of the coverslips with piranha solution 

NOTE: Piranha solution (Caution! Strongly Corrosive) is a 30:70 (v/v) mixture of H2O2 and 

H2SO4. 
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1. Place a 100 × 50 mm Pyrex dish on a magnetic stirrer under a fume hood and add 14 mL 

of H2SO4 to the dish. 

2. Gently place a stirring bar inside the dish. Then, turn on the stirrer and put the setup on 

slow to avoid splashing the acid. 

3. Gently add 6 mL of H2O2 to the dish and allow the solution to get well mixed. 

4. Remove the stirring bar from the dish. Next, gently place the coverslips inside the dish and 

set the temperature to 60-80 °C. 

5. After 30 minutes, gently remove the coverslips using forceps and submerge them in DI 

water 2 times to wash out the piranha solution residues. 

6. After rinsing with water, store the coverslips in DI water at room temperature until further 

use. 

7. Neutralize the piranha solution and pure it down the sink. 

 3.3.4.3 Thiol functionalization of the coverslips 

1. Prepare a 5 % (v/v) solution of 269 mM of (3-mercaptopropyl) trimethoxysilane (MPTS) 

solution in dry toluene. 

NOTE: Use at least 10 mL of solution for each coverslip. 

2. Add 10 mL of the solution to individual 50 mL falcon tubes and place one cleaned coverslip 

in each falcon tube and submerge it within the solution. 

NOTE: One coverslip per falcon tube is used to assure the thiolation of both sides of the substrate 

without being disturbed by other substrates. 

3. After 4 hours, wash each coverslip (four washes per coverslip) with toluene, a 1:1 (v/v) 

ethanol: toluene mixture, and ethanol. 
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NOTE: This is done by immersing each coverslip sequentially into falcon tubes containing the 

mentioned solutions. 

4. After rinsing the substrate, submerge them in ethanol and store them at 4 °C for further 

use. 

NOTE: The method used here could be laborious due to treating the coverslips one at the time. An 

alternative method is using Columbia jars that fit several slides at the time and are compatible with 

the functionalizing solution. 

NOTE: Thiol functionalization is needed for having a covalent bond between the hydrogel and 

base coverslip surface. 

 3.3.5 Preparation of silicon microwell arrays 

 3.3.5.1 Parylene coating 

NOTE: Silicon wafers were coated with parylene using the standard protocol described in previous 

research articles.159,160 

 3.3.5.2 Photolithography 

NOTE: Standard photolithography techniques described by Barua et al.131 were applied to 

fabricate microwell arrays on silicon wafers. 

 3.3.6 Hydrogel formation 

 3.3.6.1 Bulk hydrogel formation on glass coverslip 

Hydrogel precursor solution 
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1. Add 12.5 µL of the crosslinking buffer to an Eppendorf tube, followed by 5.6 µL of PEG-

o-NB-diacrylate crosslinker to the tube. Lastly, add 6.9 µL of PEG-tetrathiol to the mixture. 

NOTE: Adding the PEG-tetrathiol to the mixture initiates the crosslinking reaction. Thus, the 

hydrogel precursor solution should be used immediately after mixing. 

Cell encapsulation in the hydrogel precursor solution 

NOTE: For cell encapsulation, before step 1, inoculate the crosslinking buffer with the desired cell 

density. As reported previously.132 It was observed that cell density of 7.26 × 107 CFU/mL in the 

crosslinking buffer correlates to acquiring ~ 90 cells/mm2 across the hydrogel. 

1. Place the thiolated base coverslip on a clean petri dish. Place two spacers on the two 

opposing sides of the coverslip. 

2. Fix the spacers on the base coverslip by taping the spacers to the petri dish. 

3. Pipette the desired volume of the precursor solution on a non-reactive perfluoroalkylated 

glass slide. 

4. Place the perfluoroalkylated glass slide on the base coverslip (Scheme 3.1c). Wait 25 

minutes at room temperature for the hydrogel formation to complete. 

5. After gelation, gently remove the perfluoroalkylated glass slide. The hydrogel will stay 

attached to the base coverslip. 

NOTE: for 18×18 mm coverslips to obtain a 12.7 µm thick membrane, use ~ 7 µL of the precursor 

solution (Scheme 3.1a, b). 

NOTE: Using higher volume of precursor solution may result in hydrogel underneath the base 

coverslip. This may cause the base coverslip to stick to the petri dish and break upon attempt of 

removal. Also, hydrogel residue underneath the coverslip is problematic for microscopy. 

NOTE: Gentle removal of the non-reactive perfluoroalkylated glass slide is required, as fast 
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removal can damage the hydrogel. 

6. Place the substrate in a 60×15 mm petri dish in specified media for culture. Here, ATGN 

media supplemented with 100 Pg/ml spectinomycin for B. subtilis and 100 Pg/ml ampicillin for E. 

coli at 37 °C for 24 hrs. 

 

Scheme 3.1. Hydrogel formation on thiolated glass coverslips. (a) Spacers with the thickness of 
12.7 µm are placed on the edges of a base coverslip containing reactive thiol groups. (b) Hydrogel 
precursor solution is pipetted over a non-reactive fluorinated glass slide. (c) The non-reactive glass 
slide is placed on the spacers for the formation of 12.7µm thick hydrogel. (d) The non-reactive 
glass slide is gently removed, leaving the hydrogel attached to the base coverslip. (e) The prepared 
hydrogel can be incubated in media for cell culture. 

 

 3.3.6.2 Hydrogel formation over microwell arrays 

1. 700 µL of OD600= 0.1 cell suspensions were seeded over the microwell array substrates, 

and parylene lift-off method was applied to remove cells from the background by using the 

protocol described by Timm et al.161 
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2. Prepare the hydrogel precursor solution E\�DGGLQJ�����ȝ/�RI�WKH�PEG-o-NB-diacrylate with 

�����ȝ/�pH 8 phosphate buffered saline $7*1�DQG�PL[LQJ�ZLWK�����ȝ/�RI� WKH�PEG-tetrathiol 

solution. 

3. Pipette �����ȝ/ of the precursor solution on a non-reactive perfluoroalkylated glass slide 

and place two 38 µm steel spacers on two opposing sides of the microwell array substrate 

inoculated with cells. 

4. Invert the perfluoroalkylated glass slide with the precursor solution droplet and place the 

droplet in the middle of the microwell substrate. Then, incubate for 25 minutes at room temperature 

for hydrogel formation. 

5. Gently remove the glass slide from the microwell substrate. The hydrogel membrane 

should remain attached to the microwell substrate.  

6. Place the substrate in a 60×15 mm petri dish in specified media, here, ATGN media 

supplemented with 100 µg/ml spectinomycin for B. subtilis and 100 µg/ml ampicillin for E. coli 

at 37 °C for 24 hrs. 

 3.3.7 Material preparation for cell extraction 

 3.3.7.1 PDMS holder preparation  

1. Tape a stack of 10 18×18 mm coverslips together and glue this stack of coverslips to the 

bottom of a petri dish. 

2. Fabricate PDMS holders by mixing PDMS precursor and curing agent at a ratio of 10:1 

followed by degassing the mixture in a vacuum desiccator. Next, pour this mixture in the petri dish 
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and incubate in the oven for 90 minutes at 80 °C. 

3. After curing PDMS, cut around the taped block to remove the PDMS holder and place the 

PDMS holder on a glass slide for easier handling for microscopy. 

4. NOTE: This will result in a PDMS holder that fits the coverslips and the microwells and 

require less liquid volume for cell extraction. 

 3.3.7.2 Micro syringe and tubing preparation 

1. Cut 20 cm of 0.05" ID PTFE tubing and attach one end of the tubing to a 100 µL microliter 

syringe. 

NOTE: For extraction, avoid using pipettes as drawing the released cells via a pipette tip can 

damage the hydrogel surface and can lead to contamination. 

3.3.8 Polygon 400 

 3.3.8.1 Software preparation 

NOTE: The following steps described in this section are identical for both bulk hydrogels, and 

microwell arrays except for the light exposure patterns described in this section. 

1. Turn on the microscope. Then, turn on the Polygon400 device.  

2. Turn on the BioLED Analog and Digital control module. Next, turn on the BioLED Light 

Source Control Module. 

3. Open the microscope software, Infinity Analyze, and Polygon software, PolyScan2. When 

the Hardware configuration window is opened, select the Load button. 
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NOTE: You should see three devices here to be loaded. (Third-party camera, a control module, 

and the Polygon400). 

4. Press the Start button. 

NOTE: The PolyScan2 software window will now open. 

5. Select the first option, the Device Control, button on the left sidebar of the window. 

 3.3.8.2 Polygon calibration. 

NOTE: Calibration must be done with the same microscope objective and filter that will be used 

for light exposure. 

NOTE: Set the microscope objective to 10X magnification. This magnification allows enough 

working distance between the microscope lens and the sample surface. It also allows for 

monitoring and recording the retrieval process in real-time through the image window. 

1. Set the microscope lens, and filter to the settings that will be used for light exposure and 

place the calibration mirror under the microscope. 

2. In the Device Control window, press the LED Control tab. Turn on the LED #1 and set the 

light intensity to the desired number. 

3. Press the Polygon tab in the Device Control window. Then, press the Show Grid button. 

NOTE: A grid pattern will be projected on the calibration mirror. 

4. Adjust the microscope focus and camera exposure to obtain high image quality of the grid 

and rotate the camera to align the grid lines parallel to the camera window frame if needed. 
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5. Select the Calibration Wizard button under the Polygon tab and follow the instructions 

provided by the software in this window. 

NOTE: A third-party camera Setup window will be opened. 

6. A calibration Type Selection window will be opened. Select "Automatic Calibration" and 

press Next.  

7. When the Pre-calibration Adjustment window opens, follow the software instructions, and 

press the ³Next´ button. 

8. When the Mapping Information window opens, save this calibration accordingly in the 

desired folder. 

NOTE: This is done by putting in the date, microscope name, Objective Lens, Filter. 

9. After calibration, press the "Working Area Definition" button under the Polygon tab to 

define the Polygon working area if needed. 

10. Press the Sequence Design button on the left-sidebar of the software window. Then, press 

the Profile Sequence Editor button. 

11. When the Profile Sequence Editor window opens, select the New Profile option under the 

Profile List. 

NOTE: Now, a Pattern Editor window will be opened. 

12. Prepare the desired pattern for light exposure by choosing different pattern shapes and sizes 

or manually drawing the pattern, if desired. 
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Circle and broken cross patterns for bulk hydrogel. 

1. For circle patterns, define a circle with a 30 µm diameter over a target bacteria colony so 

it covers the whole colony. Choose the shape fill color white. 

2. For broken cross patterns, choose the rectangle shape from the pattern drawing window 

with the dimensions of 3×8 µm. Place 4 rectangles with this dimension on the edges of the target 

colony, while half the patterns have an overlay with the colony. 

Circle and ring patterns for microwell arrays 

1. For circle patterns, draw a 10 µm diameter circle around the well perimeter. Choose the 

shape fill color white. 

2. For ring pattern, draw a circle of diameter 20 µm and place it over the well and choose the 

shape fill color white. Draw another circle pattern of diameter 10 µm with fill shape color black 

and place it around the perimeter of the well. 

3. Edit the pattern and modify the shapes based on the desired extraction method. Ensure that 

the desired pattern exists within the Polygon working area. 

13. Place the sample in a PDMS holder and pipette the defined media on top of the sample to 

prevent sample dehydration and provide a carrier solution for released cells. Then, replace this 

with the calibration mirror. 

14. Here, light patterns can be designed while the camera view is showing the sample surface 

to test different patterns for cell extraction. 

15. Save the defined pattern. After saving the defined pattern, select the ³Session Control´ 
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section. In this section, under the Polygon tab, add the saved sequence. 

16. After adding the sequence, choose the option to simulate the pattern to view and adjust for 

the desired location of exposure. 

NOTE: Sample location can be adjusted here to assure the pattern is projected precisely on the 

targeted area. 

17. Next, adjust the light intensity to 60 % and the exposure time to 40 sec under the LED 

control tab and start the exposure process. 

18. Monitor the hydrogel degradation in real-time to ensure cell release.  

3.3.9 Cell retrieval 

NOTE: Cell retrieval procedure is identical for both microwell arrays and bulk hydrogels. 

1. After light exposure and cell release, cells can be collected using a microliter syringe and 

microfluidic tubing (Scheme 3.2). 

2. Change the microscope filter from brightfield to FITC. This allows for visualizing the 

exposed area of the sample by the naked eye. 

3. Once the exposed area is located, place the end of the tubing upon the irradiated spot. Then 

change the microscope filter back to brightfield to monitor cell retrieval in real-time. 

4. Use the syringe attached to the other end of the tubing to carefully withdraw the released 

cells. Suction 200 µL of solution. Next, Insert the solution into an Eppendorf tube for DNA 

analysis or plating. 
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Scheme 3.2. Schematic representation of the extraction method for collecting cells released from 
the hydrogel. Here, immediately after UV exposure, hydrogel degradation, and cell release, the 
microscope is used to illuminate the sample with a FITC filter, resulting in a bright spot covering 
the area where released occurred. This assists the user in identifying the spatial location for sample 
collection. After visualizing this area, tubing attached to a microliter syringe is placed at this spot 
for sample collection. Brightfield microscopy at 10X magnification is used to monitor the end of 
the tubing in real-time for precise cell collection. 

 

 3.3.10 Genomic DNA purification and DNA quality measurement 

1. Use DNeasy Blood and Tissue kit to extract DNA from bacteria isolates. 

2. )ROORZ� WKH� PDQXIDFWXUHU¶V� VSHFLILFDWLRQ� GHVFULEHG� LQ� '1HDV\� %ORRG� DQG� 7LVVXH� NLW�

handbook 18 up to the last step, step 7, requiring elution with Buffer AE. 

3. )RU�WKH�HOXWLRQ�VWHS�IROORZ�WKH�PDQXIDFWXUHU¶V�VSHFLILFDWLRQ��ZLWK�WKH�GLIIHUHQFH�RI�XVLQJ�

100 µL Buffer AE instead of 200 µL. 



44 

4. Repeat elution once as described in step 11.1.2. This step leads to increased overall DNA 

yield. 

5. Measure DNA quality by using a Nanodrop spectrophotometer. 

6. Turn on the NanoDrop. 

7. $IWHU�WKH�GHYLFH�LQLWLDOL]DWLRQ��RQ�WKH�KRPH�SDJH��VHOHFW�WKH�³GV'1$´�RSWLRQ�RQ�WKH�VFUHHQ� 

8. Next, lift the pedestal arm, and clean the pedestal position with DI water and Kimwipes. 

9. Pipette 2 µL of a blank solution, here AE buffer, on the pedestal position and gently bring 

WKH�SHGHVWDO�DUP�GRZQ�DQG�VHOHFW�³%ODQN´�RQ�WKH�VFUHHQ� 

10. Next, lift the pedestal and clean the pedestal position with DI water and Kimwipes to 

remove any residues from the previous measurement. 

11. Load your sample (2 µL) on the pedestal position, bring the pedestal arm down, and select 

the Measure button on the screen. 

12. Redo steps 10 and 11 for all samples. 

13. 2QFH�WKH�PHDVXUHPHQW�LV�GRQH��VHOHFW�³(QG�([SHULPHQWV´�RQ the screen. 

14. ,QVHUW�\RXU�IODVK�GULYH�LQWR�WKH�GHYLFH�DQG�SUHVV�³([SRUW�DDWD´�RQ�WKH�VFUHHQ� 

 3.3.11 Determining cell viability from hydrogel and microwell extracts 

1. Dilute the bacterial suspensions by a dilution factor of 105 using a 96-well plate. 
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2. 3LSHWWH����ȝ/����5 of the diluted bacterial suspension and spot three times on ATGN 

plates for each bacteria suspension. Tilt the plates to spread the cells on agar surfaces. Air-dry 

the ATGN plates containing the bacterial suspensions. 

3. Incubate the plates at 37 °C for 48 hrs. Count and record the Colony Formation Units 

(CFUs) numbers. Count all three spreads of bacterial suspensions on each plate. 

NOTE: Perform steps 1 to 3 in a biological safety cabinet to avoid contamination of the plate. 

 3.4 Representative results 

 To investigate the ability of UV light to trigger controlled hydrogel degradation for cell 

release, the percent gel degradation was calculated after UV light exposure with various light 

intensity and exposure times. A representative example of how these two parameters affect 

hydrogel degradation is shown in Figure 4.3 (appearing in next chapter). As evident, patterned 

light provided by the Polygon 400 tool provides spatial-temporal control of hydrogel degradation 

at a resolution that can enable release of only a small number of cells. 

 For cell extraction, different light patterns were used to investigate cell release (Figure 4.8 

appearing in next chapter). It was observed that different patterns influenced the morphology of 

the released cells. This is potentially beneficial for various applications. For instance, exposing a 

ring pattern around the target colony, results in release of the entire colony still encapsulated in a 

protective PEG hydrogel and without direct UV light exposure (Figure 4.8A), which may preserve 

cells and provide easy downstream purification. In contrast, by exposing part or all of the colony 

to UV light, cells can be extracted either as aggregated cell clusters (Figure 4.8B) or as free, 

individual cells (Figure 4.8C). 
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 Starting with screening from bulk hydrogels, bacteria samples were encapsulated, cultured, 

and imaged following the established protocols. A representative example of bacteria cell colonies 

in bulk hydrogels is shown in Figure 4.2 (appearing in next chapter), where cells were seeded at 

an OD600 of 3.63 × 107, resulting in a microcolony density of 90 colonies/mm2 throughout the 

hydrogel. As seen in Figure 4.2B��K\GURJHO� WKLFNQHVVHV�JUHDWHU� WKDQ������ȝP�FDQ�UHVXOW in the 

formation of overlapping colonies in the vertical direction, which may result in extraction of 

multiple colonies. Figure 4.2C shows how cross-contamination can occur during extraction due 

to overlay of colonies. Here, a top colony is targeted, while an underlying colony also is extracted 

with it. Therefore, using 12.7 µm spacers is recommended for hydrogel preparation. 

 Given the potential damage to bacteria with UV light, the effect of varied UV light 

micropatterns on cell viability was further studied using model Gram-positive bacteria (B. subtilis) 

and model Gram-negative bacteria (E. coli). Each was encapsulated within bulk hydrogels and 

cultured into microscale colonies, verifying their compatibility with the hydrogel. Targeted 

microcolonies of equivalent sizes (26 ± 1 µm diameter) were then exposed to a constant light dose 

(168 mJ/mm2), either in the form of circle patterns exposing entire microcolonies to UV light or 

cross-patterns that degrade only hydrogel edges to minimize light exposure to cells. Cells were 

then recovered and plated to quantify the CFU/mL recovered from each colony. Figure 3.1A 

shows that no significant difference in cell recovery level was found. To further investigate the 

integrity of the cells, DNA was extracted from E. coli samples and analyzed using a Nanodrop 

spectrophotometer. DNA quality levels fall within a A260/A280 range between 1.8 and 2.0 as shown 

in Figure 3.1B, which is in the ideal range for genomic sequencing.162 This demonstrates that 

using UV for release under the described conditions has minimal effect on the integrity of 

recovered cells from the bulk hydrogels. 
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Figure 3.1. Impact of different light exposure patterns on cell viability and DNA quality of bacteria 
released from bulk hydrogels. (A) Cell recovery levels for both E. coli and B. subtilis after 
extraction using cross patterns and circle patterns. For this experiment extraction was done from 
the spherical colonies with the same diameter (26 ± 1 µm) to ensure the number of released cells 
from each colony were equivalent. The extracted solutions were then plated to calculate the 
CFU/mL acquired from each pattern. Statistical analysis showed no significant difference in 
CFU/mL obtained from cross and circle patterns for both E. coli and B. subtilis (P-value > 0.05). 
(B) Spectrophotometric quantification of DNA quality for isolated E. coli cells using cross and 
circle patterns. Here, statistical analysis did not show a significant difference in DNA quality for 
the patterns used (P-value > 0.05). (C) Brightfield images of the colonies with equal diameters 
exposed to cross and circle patterns. 

 

 Microwell arrays provide an alternative screening interface that has been useful for 

studying bacteria growth under spatial confinement,163 and most recently for discovery of 

symbiotic and antagonistic interactions between different bacterial species.131 Cellular extraction 

from wells for genomic analysis such as 16S amplicon sequencing is also important in these 

applications. Using the same tool, UV light can be exposed over a well containing cells of interest, 
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either as circle or as ring patterns (Figure 3.2). The latter ensures hydrogel degradation only at the 

microwell perimeter to prevent direct irradiation of cells. Unlike the bulk hydrogel format, cell 

extraction here has only been observed in the shape of cell clusters.131 

 To quantify bacteria cell viability and DNA quality after extraction in this format, B. 

subtilis and E. coli cells were seeded, cultured, then released from microwell arrays using circle 

and ring patterns (Figure 3.3A, B). Released cells were then plated on ATGN agar plates and the 

DNA quality of the extracted cells was quantified. To ensure that a consistent number of cells was 

present during each extraction, microwells with similar fluorescent intensities (~ 6000 A.U.) and 

therefore similar number of cells were targeted for release. As shown in Figure 3.3C, the number 

of viable cells extracted using circle pattern was not significantly different from the number of 

viable cells extracted using ring pattern for either bacteria. Also, the DNA quality levels were not 

significantly different between the circle and ring patterns for either bacteria as shown in Figure 

3.3D. Hence, similar to findings in bulk hydrogels, the application of UV light at the intensity and 

duration specified here had a negligible impact on the viability and DNA integrity of cells extracted 

from the microwell arrays. These findings demonstrate that viable bacteria cells can be selectively 

retrieved from microwells with minimal damage, essential for downstream genomic analysis. 
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Figure 3.2. Representative confocal microscopy images showing light pattern impact on cell 
isolation from microwell arrays. Adapted with permission from van der Vlies et al.130 Copyright 
(2019) American Chemical Society. (A) MicrowelOV�ZLWK�GLDPHWHU�RI����ȝP�FRQWDLQLQJ�EDFWHULD 
(red). (B) Light exposure using circle and ring patterns (blue) for 5 min at 0.7 mW/mm2. (C) 
Diffuse red fluorescence demonstrates that cells are released from irradiated wells. (D) Green 
fluorescence signal representing the fluorescein-labeled membrane, and red fluorescence signal 
representing mCherry expressing cells coming from the xy plane along the green line in E. (E) 
Fluorescence signal coming from the xz plane along the red line in D. Samples in images (C-E) 
were washed for removal of released cells, then fixed and imaged. 6FDOH�EDU� ����ȝP� 
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Figure 3.3. Impact of different patterns on cell viability and DNA quality in microwell arrays. (A, 
B) For both E. coli and B. subtilis, circle patterns and ring patterns were used for cell extraction 
from 10 µm microwells. Circle pattern with a diameter of 10 µm and ring pattern with an inner 
diameter of 10 µm and outer diameter of 20 µm were used in this experiment for cell extraction. 
Microwells with the same diameters were used to ensure that the number of released cells from 
each microwell was the same. (C) The extracted solutions were then plated to calculate the 
CFU/mL acquired from each exposure pattern. Statistical analysis showed no significant 
difference in CFU/mL obtained from circle and ring pattern for both E. coli and B. subtilis (P-
value > 0.05). (D) Spectrophotometry was used to measure the DNA quality of both E. coli and B. 
subtilis cells using circle and ring patterns. Here, statistical analysis did not show any significant 
difference in the DNA quality for the patterns used (P-value > 0.05). 

 

 3.5 Discussion 

 This manuscript demonstrates the use of photodegradable hydrogels for bacteria isolation 

from both bulk hydrogels and microwell arrays, each format with its own set of unique advantages 

and drawbacks. The separation process in both methods has been successfully used to isolate 
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bacteria that display unique growth behavior for downstream genotyping after culture and 

microscopic observation, which is a critical capability for connecting genotype to phenotype. To 

date, genomic characterization of bacteria extracted from these interfaces has included 16S 

amplicon sequencing to identify multi-species collections bacteria from environmental 

microbiomes that generate emergent growth behavior, and for whole genome sequencing to 

identify genetic mutations in rare cells present within mutant libraries. 

 Cell recovery and extraction in both formats occurs in an open-plate environment, thus 

effort is required to harvest cells efficiently while minimizing the chance of contamination from 

the external environment.151 To this end, care must be taken to acquire enough cells from the target 

colonies while also minimizing the volume of the extraction solution. To obtain enough cells for 

plating and recovery or for extraction of DNA material, we found that hydrogels must be cultured 

long enough to reach colony diameters of at least 10. To lower the required volume for cell 

extraction, we observed that using a microliter syringe and tubing (Scheme 3.2) was more efficient 

than pipetting. The tubing allowed the isolates to be drawn from the release point more accurately, 

requiring less solution volume and lowering the chance of contamination.151  

 Using bulk hydrogels for cell screening and isolation provides the most straightforward 

and simple experimental setup. Bulk photodegradable hydrogels form rapidly (25 minutes) after 

mixing the precursors over transparent glass coverslips to encapsulate cells in a 3-D cell culture 

matrix that is easily imaged and monitored with a standard upright or inverted fluorescence 

microscope. Thus, the method has potential to be highly translational to common microbiological 

laboratories that do not have microfabrication resources or expertise. Extraction with high spatial 

precision requires that the fluorescent microscope is coupled to a Polygon400 light pattering tool 

(~$22K). The drawback to this format is that cells are randomly oriented throughout the three-
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dimensional hydrogel. Therefore, cells can appear out of the focal plane when imaging with higher 

magnification objectives, and extraction can be difficult if cell colonies are oriented too close to 

each other or if there is an overlay of colonies. Depositing a thin hydrogel (<13 µm) as described 

here is essential to mitigate these drawbacks. 

 In contrast, microwell arrays provide an alternative screening interface which provides a 

more well-controlled interface, as bacteria cells are partitioned into discrete microwells that serve 

as small culture or co-cultures sites.130,131,163 Microwell dimension, pitch, and density are well-

controlled using standard photolithographic microfabrication approaches. Compared to bulk 

hydrogels, bacteria can be extracted from microwell arrays with a high degree of specificity and 

lower chance of cross-contamination, as the cells are only present at predefined locations, not 

randomly dispersed throughout the hydrogel. The concentration and ratios of bacteria cells in the 

seeding solution can also be varied to control the quantity and composition of the microwell 

inoculum, this seeding process has been well-characterized in previous reports. This capability 

gives the user flexibility in the experimental design of the screen.163 

 The primary drawback of the screening with the microwell array format is the added time, 

and expertise required for microfabrication. We estimate that in our lab, fabrication of microwells 

costs ~$10 per array, which includes material costs and cleanroom expenses.  In addition, due to 

constraints associated with Bosch etching during fabrication, microwell arrays are traditionally 

made from silicon, which can cause imaging difficulties since the substrates are non-transparent. 

Moreover, a high amount of light scattering from the silicon surface can limit imaging within the 

microwells and can decrease pattern resolution during membrane exposure with UV light from the 

Polygon tool, as evident in Figure 3.3A, and B. Similar microwells have been fabricated on quartz 
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substrates to address these types of limitations,164 however the fabrication is considerably more 

difficult. 
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Chapter 4 - 3KRWRGHJUDGDEOH�+\GURJHOV�IRU�5DSLG�6FUHHQLQJ��

,VRODWLRQ��DQG�*HQHWLF�&KDUDFWHUL]DWLRQ�RI�%DFWHULD�ZLWK�5DUH�

3KHQRW\SHV2 

 4.1 Overview 

 Screening mutant libraries (MLs) of bacteria for strains with specific phenotypes is often a 

slow and laborious process that requires assessment of tens of thousands of individual cell colonies 

after plating and culturing on solid media. In this report, we develop a three-dimensional, 

photodegradable hydrogel interface designed to dramatically improve the throughput of ML 

screening by combining high-density cell culture with precision extraction and the recovery of 

individual, microscale colonies for follow-up genetic and phenotypic characterization. ML 

populations are first added to a hydrogel precursor solution consisting of polyethylene glycol 

(PEG) o-nitrobenzyl diacrylate and PEG-tetrathiol macromers, where they become encapsulated 

LQWR����ȝP�thick hydrogel layers at a density of 90 cells/mm2, enabling parallel monitoring of 2.8 

× 104 mutants per hydrogel. Encapsulated cells remain confined within the elastic matrix during 

culture, allowing one to track individual cells that grow into small, stable microcolonies (45 ± 4 

ȝP�LQ�GLDPHWHU��RYHU�WKH�FRXUVH�RI����K��&RORQLHV�ZLWK�UDUH�JURZWK�SURILOHV�FDQ�WKHQ�EH�LGHQWLILHG��

extracted, and recovered from the hydrogel in a sequential manner and with minimal damage using 

 
2 Manuscript: Fattahi, N.; Nieves-Otero, P. A.; Masigol, M.; Van der Vlies, A. J.; Jensen, R. S.; 
Hansen, R. R.; Platt, T. G. Photodegradable Hydrogels for Rapid Screening, Isolation, and 
Genetic Characterization of Bacteria with Rare Phenotypes. Biomacromolecules 2020. 
https://doi.org/10.1021/acs.biomac.0c00543. Reproduced with permission from the American 
Chemical Society. Copyright 2020 American Chemical Society. 
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a high-resolution, 365 nm patterned light source. The light pattern can be varied to release motile 

cells, cellular aggregates, or microcolonies encapsulated in protective PEG coatings. To access the 

benefits of this approach for ML screening, an Agrobacterium tumefaciens C58 transposon ML 

was screened for rare, resistant mutants able to grow in the presence of cell free culture media from 

Rhizobium rhizogenes K84, a well-known inhibitor of C58 cell growth. Subsequent genomic 

analysis of rare cells (9/28,000) that developed into microcolonies identified that seven of the 

resistant strains had mutations in the acc locus of the Ti plasmid. These observations are consistent 

with past research demonstrating that the disruption of this locus confers resistance to agrocin 84, 

an inhibitory molecule produced by K84. The high-throughput nature of the screen allows the A. 

tumefaciens genome (approximately 5.6 Mbps) to be screened to saturation in a single 

experimental trial, compared to hundreds of platings required by conventional plating approaches. 

As a miniaturized version of the gold-standard plating assay, this materials-based approach offers 

a simple, inexpensive, and highly translational screening technique that does not require 

microfluidic devices or complex liquid handling steps. The approach is readily adaptable to other 

applications that require isolation and study of rare or phenotypically pure cell populations. 

KEYWORDS: High-throughput screening, hydrogels, mutant libraries, rare cell isolation, 

bacteria 
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Scheme 4.1. Photodegradable hydrogel interface for cell screening and isolation. (a) Hydrogel 
precursor material. (b) Hydrogel gelation and cell encapsulation. (c) UV light exposure on target 
cell colony. (d) Cell extraction and recovery. 

 

 4.2 Introduction 

 The identification and isolation of microorganisms with rare or unique functions from 

KHWHURJHQHRXV�SRSXODWLRQV�LV�D�FULWLFDO�VWHS�UHTXLUHG�WR�FRQQHFW�DQ�RUJDQLVP¶V�JHQRW\SH�ZLWK�LWV�

phenotype.18 These connections will enable researchers to gain a fundamental, predictive 

understanding of microbe function, to identify biomarkers that relate to specific diseases, and to 

engineer bacteria for applications in biotechnology. While phenotypic heterogeneity is prevalent 

in many microbial populations and communities, including among cells in populations that are 

genetically homogeneous or nearly homogeneous, 15,165 practical microbiological methods for 

screening and isolating phenotypically uniform groups of microbial cells are underdeveloped. This 

technical limitation poses a challenge to genotype-to-phenotype determination, which thus 

remains a broad knowledge gap in microbiology and biology more generally.166 Established 

methods of microbial cell isolation include flow-based sorting techniques such as fluorescence-
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activated cell sorting (FACS), which relies on a signal from fluorescently labeled proteins or 

fluorescence in situ hybridization probes to isolate cells with specific features from its 

environment.167,168 FACS allows for high-throughput, single cell analysis capable of sorting of up 

to 50,000 cells per second.169 However, subsequent cultivation and enrichment of recovered cells 

is often inhibited, as the labeling step compromises cell viability.166 Further, FACS is limited by 

the inability to sort cells by time dependent cellular properties.170 Consequently, FACS is not 

directly amenable to growth-based screening. In addition, FACS is an impractical option for many 

laboratories due to its high cost ($100í200/h) and availability often being limited to core 

research facilities. Motivated by these limitations, numerous micro- and nanoscale devices have 

been developed to isolate and study bacteria in recent years.171±173 One common approach uses 

droplet-based microfluidic devices to partition cells into picoliter droplets, offering control over 

the chemical microenvironment and high-throughput, single cell analysis.56 However, most 

devices have several limitations, a major one being that retrieval of individual cells from the device 

is difficult.174 Ultimately, this inhibits follow-up genotyping and other -omics level 

characterizations after on-chip observation. These constraints impose a major limitation for 

screening and discovery applications. Recently, Lim et al. developed an innovative microwell 

platform for rapid screening of E. coli mutant libraries for mutants with growth rate differences,63 

demonstrating the benefits of off-chip recovery of individual cell populations for follow-up 

genotypic analysis. However, many micro- and nanoscale approaches require complex fabrication 

and liquid handling capabilities; thus, they often fail to translate into nonexpert microbiology 

laboratories.166 

 Hydrogel materials can provide an alternative strategy to microbe screening and 

isolation.158,175 Here, individual cells from a suspension are encapsulated into an elastic, 
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nanoporous hydrogel matrix, most commonly alginate or agarose, that facilitates diffusive 

biomolecular exchange.176 Cells can then be cultured into high-density microcolonies, where 

enough biomass accumulates for cell preservation and follow-up characterization. Cells can be 

encapsulated into microscale hydrogel droplets using bulk emulsions177 or 3D-bioprinters.178 

However, sorting and isolation of individual droplets containing a desired cell or cell population 

still remains a limitation and is most often achieved using FACS.179 Photodegradable hydrogels 

enable an alternative mode of targeted cell recovery, thereby alleviating limitations associated with 

other hydrogel materials. Photodegradable hydrogels are designed to erode on exposure to light, 

enabling on-demand release of encapsulated cargo or manipulation of the biochemical and 

biophysical features of the microenvironment.180 Because light can be patterned at single micron 

length scales, the approach affords a high level of spatial and temporal control over on-demand 

release.181 This capability provides a distinct advantage for microbial selection and isolation 

applications in which specific cells must be released and retrieved from a screening interface with 

a high spatial precision. Recently, we reported the use of photodegradable hydrogels as a 

membrane to retrieve cell populations loaded and cultured in a microwell array format.130 The 

hydrogel was generated by combining a poly(ethylene glycol)-o-nitrobenzyl diacrylate (PEG-o-

NB-diacrylate) macromer with a four-arm PEG-thiol macromer, which generates a cross-linked 

3(*�QHWZRUN�WKURXJK�WKLROíDFU\ODWH�0LFKDHO-type addition reactions.86 Using a patterned 365 nm 

light source, cell populations cultured in individual microwells can be released from wells and into 

solution on-demand and then plated and recovered.  

 Building off of these findings, here we investigate the use of photodegradable hydrogels to 

screen and isolate phenotypically rare bacteria strains present in mutant libraries (MLs) for follow-

up genotypic analysis (Scheme 4.2). 7KH�DSSURDFK�XVHV�WKLROíDFU\ODWH�UHDFWLRQV�WR�HQFDSVXODWH�D�
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ML population into a three-dimensional PEG matrix over a thiolated glass coverslip. Encapsulated 

cells are cocultured in a defined media for screening, and individual cells with unique growth 

profiles are targeted for removal and downstream analysis. Each step in the screening procedure, 

including parallel growth monitoring of bacterial microcolonies, the effect of light pattern and 

exposure on the arrangement and viability of bacteria released from the hydrogels, and sequential 

extraction of multiple microcolonies, is developed toward high-throughput screening and recovery 

of viable cells. This enabled observation and recovery of any one of 3 × 104 mutants across a 310 

mm2 hydrogel area, a throughput that can accommodate enough mutant strains to rapidly screen 

even large bacterial genomes to saturation in a single assay (e.g., Streptomyces sp., genome of 

 8.7í11.9 Mbps,182 requiring around 60,000 mutants to achieve saturation). This capability offers

a significant reduction in the time and labor required to screen to saturation using standard plating 

techniques. To demonstrate the benefits and feasibility of this approach, a ML of Agrobacterium 

tumefaciens C58 is screened for resistance to the antagonistic impacts of cell free culture fluid 

(CFCF) from Rhizobium rhizogenes K84. K84 produces multiple chemicals inhibiting the growth 

of C58, including the bacteriocin agrocin 84.183,184 While C58 cells are susceptible to agrocin 84, 

rare mutations give rise to agrocin-resistant mutants. To identify these rare mutations, the 

phenotype of tens of thousands of mutants must first be evaluated. In a single test, we were able 

to screen, identify, and then isolate nine resistant C58 mutants from a ML containing 28,000 

unique strains. Subsequent analysis of whole genome sequences identified mutations in the acc 

locus of the Ti plasmid conferring agrocin 84 resistance. This serves as the first example of a 

successful phenotype-to-genotype determination using this rapid screening approach. 
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Scheme 4.2 Overall approach to screening and isolation of rare cells from transposon mutant 
libraries. Precursor materials consisting of (i) PEG-o-NB-diacrylate, (ii) PEG-tetrathiol 
crosslinker, (iii) a bacteria transposon mutant library and (iv) a thiolated glass coverslip is 
prepared. (A) Precursor components are then mixed, resulting in the formation of a step-
polymerized photodegradable hydrogel layer over the coverslip. (B) Cells are cultured in cell free 
culture fluid (CFCF) from an antagonistic species, to identify mutants with rare growth profiles. 
(C) Patterned light is then used to spatially degrade portions of the hydrogel. (D) Releasing 
resistant cells into solution for recovery and follow-up genotyping. 

 

 4.3 Experimental section 

 4.3.1 Materials 

 Pentaerythritol tetra (mercaptoethyl) polyoxyethylene (4 arm PEG, ((CH2)2íSH)4) was 

purchased from NOF America Corporation. PEG-diacrylate (PEGDA, MW 3400) was purchased 

from Laysan Bio. Fluorescein-5-maleimide was purchased from Cayman. Ethanol (EtOH), 

isopropanol, dimethylformamide (DMF), dichloromethane (CH2Cl2), diethyl ether (Et2O), sodium 

hydrogen sulfate (NaHSO4), anhydrous sodium sulfate (Na2SO4), and acetic acid (AcOH) were 

purchased from Fisher. D-(+)-Glucose, biotin (C10H16N2O3S), (3-mercaptopropyl) 
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trimethoxysilane, sodium phosphate monobasic dihydrate (NaH2PO4·2H2O), sodium hydroxide 

(NaOH), alconox detergent, toluene anhydrous, N-hydroxysuccinimide (NHS), dicyclohexyl 

carbodiimide (DCC), PEG-diamine (MW 3400), deuterated chloroform (CDCl3), 

phosphorpentoxide (P4O10), 4 Å molecular sieves, ninhydrin, and triethylamine (Et3N) were 

purchased from Sigma-Aldrich. Silica TLC plates were from Merck. Ammonium sulfate 

((NH4)2SO4), magnesium sulfate heptahydrate (MgSO4·7H2O), calcium chloride dihydrate 

(CaCl2· 2H2O), manganese(II) sulfate monohydrate (MnSO4·H2O), kanamycin sulfate, 

spectinomycin sulfate, and iron(II) sulfate (FeSO4) were purchased from VWR. DNeasy Blood & 

Tissue Kits were purchased from QIAGEN. The LIVE/DEAD BacLight Bacterial Viability Kit 

was purchased from ThermoFisher Scientific. All chemicals were used as received unless stated 

otherwise. 4 Å molecular sieves were heated under vacuum at 200 °C for 4 h to remove water. 

CH2Cl2 was dried with 4 Å molecular sieves. Et3N was distilled from ninhydrin at atmospheric 

pressure and stored over KOH pellets. NHS, DCC, and PEG-diamine were dried under vacuum in 

the presence of P4O10 at 40 °C for 19 h. NB-COOH (Scheme 4.3) was prepared as previously 

reported.158 The ninhydrin staining solution was prepared by dissolving 300 mg of ninhydrin in 97 

mL of EtOH and 3 mL of AcOH and stored in the dark. 

 

Scheme 4.3 Synthesis of PEG-o-NB-diacrylate. (A) NHS and DCC, CH2Cl2/DMF, 0oC o room 
temperature, 21 hrs. (B) PEG-diamine and Et3N, CH2Cl2/DMF, 20 h.  
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4.3.2 Synthetic of the photodegradable poly(ethyleneglycol) diacrylate 

 PEG-o-NB-diacrylate was prepared with slight modifications from that previously 

reported23 and is shown in Scheme S1. 519 mg (1.5 mmol) of NB-COOH and 175 mg (1.5 mmol) 

of NHS were dissolved in 4 mL of DMF and 8 mL of CH2Cl2. The clear solution was cooled on 

ice for 15 min, and a solution of 304 mg (1.5 mmol) of DCC in 2 mL of CH2Cl2 was added 

dropwise over the course of 5 min. After stirring for 21 h at room temperature, a solution of 508 

mg (0.15 mmol, 0.30 mmol NH2 groups) of PEG-GLDPLQH�DQG����ȝ/�������PPRO� of Et3N in 9 mL 

of CH2Cl2 was added dropwise over the course of 10 min to the turbid reaction mixture. After 

stirring for 20 h, spotting of the reaction mixture on a silica TLC plate followed by ninhydrin 

staining and heating showed the absence of amine groups. The mixture was concentrated in a flow 

of nitrogen to remove CH2Cl2, and the residue was diluted with 16 mL of 1 M NaHSO4 (aq). The 

suspension was passed through a glass filter, and the white residue was washed with 9 mL of 1 M 

NaHSO4 (aq). The slightly hazy filtrate was theQ�SDVVHG�WKURXJK�D�V\ULQJH�ILOWHU�������ȝP���$IWHU�

the syringe filter was washed with 1 M NaHSO4, the clear yellow filtrate (30 mL) was extracted 

with CH2Cl2 (5 × 30 mL). The extracts were combined, dried over Na2SO4, filtered through 

Whatman paper, and concentrated under reduced pressure at 30 °C. The oily residue was dissolved 

in 8 mL of CH2Cl2, and the solution was slowly diluted by adding 200 mL of Et2O. The precipitate 

was collected on a glass filter, washed with Et2O (3 × 10 mL), and dried. This Et2O precipitation 

was repeated one more time to yield PEG-o-NB-diacrylate (539 mg) as a light-yellow solid. 1 H 

NMR (CDCl3��į�������V��&+aromat), 7.00 (s, 1H, CHaromat), 6.52 (m, CH), 6.45 (bs, NH), 6.44 (d, 

CH=CHtrans), 6.16 (dd, CH=CH2), 5.87 (d, CH=CHcis), 4.10 (t, CH2CH2CH2O), 3.92 (s, OCH3), 

����í������&+2CH2O + OCH2CH2N), 2.39 (t, CH2CO), 2.17 (m, CH2CH2CH2), 1.65 (d, CH3CH). 

The degree of functionalization using MW = 3400 was 80% by comparing the integral ratios of 
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the aromatic and CH2CH2O PEG protons. The 1 H NMR spectrum is shown in Figure 4.1. 1 H 

NMR spectra were measured on a Varian System 500 MHz spectrometer in deuterated chloroform 

(CDCl3���$�WRWDO�RI����VFDQV�ZDV�FROOHFWHG��DQG�WKH�'��ZDV�VHW�WR����V��&KHPLFDO�VKLIWV��į��DUH�

reported in ppm and are referenced against the residual CHCl3 peak at 7.26 ppm. 

 

Figure 4.1. 1H NMR spectrum of PEG-o-NB-diacrylate in CDCl3. 

 

 4.3.3 Bacterial strains and culture conditions 

 All strains and plasmids used in this study are described in Table 4.1. Wildtype A. 

tumefaciens C58 (herein referred to as C58) was used for the live/ dead assay. A. tumefaciens C58 

cells constitutively expressing the fluorescent protein GFPmut3 (herein referred to as C58-GFP) 

were used as controls in the hydrogel experiments. Populations of fluorescent A. tumefaciens C58-

GFP Himar1 mutant library cells (described below and herein referred to as C58 ML) were used 

in seeding, culture, and screening experiments within the hydrogels. A. tumefaciens strain NT1 

was used as an agrocin 84 resistant control in the agrocin 84 bioassay. Unless noted otherwise, the 
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A. tumefaciens strains were grown on AT minimal medium185 supplemented with 0.5% (w/v) 

glucose and 15 mM ammonium sulfate (ATGN). Rhizobium rhizogenes strain K84 (herein referred 

WR�DV�.����EDFWHULDO�FHOOV�ZHUH�FXOWXUHG�LQ�VXVSHQVLRQ�DW�����&������USP��IRU���í���K�WR�UHDFK�DQ�

OD600 RI�����LQ�$7*1�PHGLD�VXSSOHPHQWHG�ZLWK�NDQDP\FLQ������ȝJ�P/���VSHFWLQomycin (100 

ȝJ�P/���ELRWLQ����ȝJ�P/���DQG�LURQ�DV�)H��,,��VXOIDWH��������P0���7KH�RSWLFDO�GHQVLWLHV�RI�EDFWHULD�

FXOWXUHV������ȝ/��DW�����QP��2'600) were measured using an Epoch2 microplate reader (Biotek) 

in 96-well plates for all experiments. After K84 reached an OD600 of 0.7, the bacterial culture was 

centrifuged at 2000 g for 10 min and the supernatant containing cell free culture fluid (CFCF) from 

.���ZDV�VWHULOH�ILOWHUHG�WZR�WLPHV��ILUVW�ZLWK�D������ȝP�V\ULQJH�ILOWHU�DQG�D�VHFRQG�WLPH�ZLWK�D�����

ȝP�V\Uinge filter, before being used in screening experiments. 
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Table 4.1. Strains and plasmid used in this study. 

Strain/Plasmid Relevant Features Reference 

E. coli   

S17-��Ȝ�S)'� Carries pFP1 (used as Himar1 
conjugal donor) (186) 

Agrobacterium 
tumefaciens   

C58 Carries pTiC58 and pAtC58; 
Agrocin 84 sensitive (187) 

C58-GFP Carries pTiC58, pAtC58, and 
pJZ383; Agrocin 84 sensitive (188) 

NT1 pTiC58- cured derivative of 
C58; Agrocin 84 resistant  (187) 

Rhizobium rhizogenes   

K84 Carries pAtK84b and 
pAgK84; produces agrocin 84 (189) 

Plasmids   

pFD1  Himar1 transposon vector  (186) 

pJZ383 Ptac::gfpmut3 (190) 
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 4.3.4 Transposon mutagenesis 

 The mariner transposon Himar1 was used to mutagenize C58-GFP cells using previously 

described methods.191 In brief, E. coli S17-��ȜSLU� S)'�� DQG� &��-GFP cells were mixed and 

LQFXEDWHG�RYHUQLJKW�DW�����&�RQ�D�����ȝP�SRO\HWKHUVXOIRQH��3(6��GLVN�Iilter (PALL) placed on a 

/%�SODWH��)ROORZLQJ�LQFXEDWLRQ��FHOOV�ZHUH�FROOHFWHG�DQG�IUR]HQ�DW�í����&�LQ�����JO\FHURO� 

 4.3.5 Media for screening experiments 

 8× ATGN media was prepared as the undiluted base media. For unconditioned media, 8× 

ATGN was diluted to 1× with sterile ultrapure water and then supplemented with iron (0.022 mM), 

ELRWLQ� ��� ȝJ�P/��� NDQDP\FLQ� ����� ȝJ�P/��� DQG� VSHFWLQRP\FLQ� ����� ȝJ�P/��� )RU� FRQGLWLRQHG�

media, 8× ATGN was diluted with the CFCF acquired from K84 (Section 4.3.3) to get 1× ATGN 

WKDW�ZDV� VXEVHTXHQWO\� VXSSOHPHQWHG�ZLWK� LURQ� �������P0���ELRWLQ� ���ȝJ�P/���NDQDP\FLQ� �����

ȝJ�P/���DQG�VSHFWLQRP\FLQ������ȝJ�P/�� 

 4.3.6 Thiol surface functionalization 

 Thiol functionalized surfaces can be used as a route for secondary surface modifications 

WKURXJK�WKLROíDFU\ODWH�DGGLWLRQ�UHDFWLRQs192 and are used here to provide covalent attachment of 

the hydrogel to the coverslip surface. Glass coverslips (1.8 × 1.8 cm) were cleaned with oxygen 

plasma for 3 min using a PDC-001-HGP Plasma Cleaner (Harrick Plasma). Coverslips were then 

cleaned and hydroxylated in Piranha solution, a 30:70 (v/v) mixture of H2O2 and H2SO4��DW���í���

°C for 30 min.193 (Caution! Strongly corrosive.) Coverslips were then rinsed and stored in ultrapure 

water at room temperature. For functionalization with thiol groups, coverslips were then dried 

under a N2 stream and immersed into a 269 mM (3-mercaptopropyl) trimethoxysilane (MPTS) 
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solution in dry toluene (5 v/v) for 4 h at room temperature. Substrates were then rinsed with 

toluene, ethanol/toluene (1:1), and ethanol, 4 times each.193 They were then dried under a N2 stream 

and stored at 4 °C for further use. 

 4.3.7 Hydrogel preparation and growth monitoring 

 All hydrogels were made in 1× ATGN phosphate buffer, pH 8. This was made by first 

adding NaH2PO4 to 2× ATGN and adjusting to pH 8 using 5 M NaOH (aq); the solution was then 

VWHULOH�ILOWHUHG�DQG�VWRUHG�DW�í����&�XQWLO�IXUWKHU�XVH��%DFWHULD�ZHUH�HQFDSVXODWHG�LQWR�WKH�K\GURJHOV�

E\�ILUVW�LQRFXODWLQJ���P/�RI��î�$7*1�PHGLD�ZLWK���ȝ/�RI�FHOOV�IURP�WKH�����Jlycerol stock stored 

IUR]HQ�DW�í��� �&�� IRU�ERWK� WKH�&���0/�DQG� WKH�&��-GFP control. This resulted in a C58 ML 

concentration of 3.63 × 107 CFU/mL in 1× ATGN media, pH 8. Then, a hydrogel precursor 

solution was prepared by adding photodegradable PEGDA (Mn 34���'D������ȝ/�����P0��LQ�ZDWHU�

LQWR�������ȝ/�RI�WKH�LQRFXODWHG�$7*1��/DVWO\��3(*-WHWUDWKLRO��0Q��������'D��������ȝ/�����P0��

LQ� ZDWHU� ZDV� DGGHG� WR� WKH� PL[WXUH�� UHVXOWLQJ� LQ� DQ� HTXLPRODU� DFU\ODWHíWKLRO� UDWLR�� 7KH�

concentrations of acrylate and thiol groups in the final solution were each 22 mM. The final 

VROXWLRQ�YROXPH�ZDV������ȝ/��7KH�FHOO�VXVSHQVLRQ�ZDV�DGGHG�WR�D�WKLRO-functionalized coverslip 

(Section 4.3.6) to allow for covalent attachment of the hydrogel to the glass surface through 

WKLROíDFU\ODWH� DGGLtion (Scheme 4.4)�� )LUVW�� �� ȝ/� RI� WKH� FHOO� VXVSHQVLRQ� ZDV� SLSHWWHG� RQWR� D�

chemically inert perfluoroalkylated glass slides, made as previously reported.130  This coverslip 

ZDV�WKHQ�FRQWDFWHG�ZLWK�WKH�WKLRODWHG�FRYHUVOLS��VHSDUDWHG�E\�D�IL[HG�GLVWDQFH�RI������ȝP�XVLQJ�

Stainless Steel Thickness Gage Blades (Precision Brand). The solution was incubated for 25 min 

at room temperature to allow for cross-linking of the PEG polymers and hydrogel formation. After 

gelation, the thiolated glass slide and attached hydrogel were gently removed from the 

perfluoroalkylated glass slide. Care was taken during this step to prevent the hydrogel from 
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UXSWXULQJ��:LWK� WKHVH�FRQGLWLRQV�� LW�ZDV�QRWHG� WKDW� VSDFHUV� WKLFNHU� WKDQ������ȝP�UHVXOWHG� LQ�DQ�

overlay of cells, which was not desired because cell colonies above or beneath the target colony 

are also released during light exposure, which may result in cross-contamination during cell 

retrieval (Figure 4.2). For screening experiments, hydrogels were placed in 60×15 mm Petri dishes 

and cultured in ATGN media or ATGN/CFCF media in an incubator at 28 °C. For growth 

monitoring, cells were cultured in ATGN media at 28 °C in a live cell incubation chamber (Tokai 

Hit) placed over a Nikon Eclipse Ti-E inverted fluorescence microscope. Time lapse fluorescence 

images of the bacteria during growth into microcolonies within the hydrogel were taken with a 

10×, NA 0.3 or 20×, NA 0.45 lens using NIS-Element software. Growth rates were quantified 

using Growthcurver software.194 

 

Scheme 4.4. Hydrogel preparation. Hydrogel precursor solution with seeded bacteria is placed on 
a glass slide which is then placed on a thiol functionalized coverslip with desired spacers for 
hydrogel formation and cell encapsulation. 
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Figure 4.2. Optimization of hydrogel thickness. (A) Using 12.7 µm thick spacers results in 
formation of colonies in one focal plane. (B) Spacers with thickness greater than 12.7 µm show 
overlay of colonies within the three-dimensional hydrogel. (C) Overlay of colonies can result in 
cross-contamination during cell release: (i) ring pattern exposed on a desired cell colony, (ii) 
during light exposure a second colony is observed underneath the target colony, and (iii) cells from 
the non-target colony are also released causing cross contamination when colonies are overlayed. 

 

 4.3.8 Hydrogel degradation and cell release with the Polygon 400 light patterning 

device 

 Hydrogels were exposed to various patterns of UV light from a 365 nm LED light source 

using the Polygon 400 patterned illumination tool (Mightex Systems) configured to an Olympus 

BX51 upright microscope. The tool exposes 365 nm light at micron-scale resolution across a user-

defined area for a given exposure time, enabling spatiotemporal control of hydrogel degradation 

(Figure 4.3). Intensity of the 365 nm irradiated light was controlled using Mightex PolyScan2 

software and varied between 0.7 and 7 mW/mm2. Prior to hydrogel degradation, the tool was 
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calibrated to the specific objective using a mirror and the calibration software to obtain a clean and 

sharp pattern exposed on the mirror with the selected objective. Hydrogels were then placed in a 

PDMS holder and covered with ATGN media to prevent the hydrogel from dehydration (Figure 

4.4). Targeted microcolonies were identified with the microscope and then focused on within the 

three-dimensional hydrogel. This focusing step was important to maintain a sharp UV exposure 

pattern over the targeted cells, as regions above and below the focused region of the hydrogel 

become exposed to out of focus UV light, causing the degradation pattern to become scattered in 

these regions. This is an inherent limitation of the upright microscope. Exposure occurred with a 

10×, NA 0.3 or 20×, NA 0.5 objective. Brightfield images and movies were taken during 

photodegradation using Infinity Capture Software. 

 

Figure 4.3. Spatial temporal control of hydrogel degradation. The Polygon400 light patterning 
tool allows for adjustment of UV light intensity and exposure time across a user-defined pattern 
enabling control of hydrogel degradation. Inset: representative fluorescent images of patterns 
degraded with two different light intensity and various exposure times. Hydrogels were stained 
with fluorescein-5-malemide after UV irradiation for visualization. 
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Figure 4.4 Setup used for UV light exposure and cell retrieval. During light exposure for cell 
release, the hydrogel is placed in a PDMS holder and covered with media to prevent dehydration. 

 

 4.3.9 Labeling the hydrogel with fluorescent dye 

 Fluorescence microscopy was used to image the hydrogel after UV light exposure and 

degradation by labeling with fluorescein-5-maleimide, which couples to pendant thiol groups 

within the hydrogel.195 ��ȝ/�RI�D����P0�VWRFN�VROXWLRQ�RI�IOXRUHVFHLQ�PDOHLPLGH�LQ�'0)�ZDV�

added to 1 mL of PBS buffer (pH 7.3) and then added to the hydrogel for 2 h at room temperature 

in a dark environment. The hydrogel was then rinsed with 1× PBS to remove unbound fluorophores 

and imaged. 

 4.3.10 Live/Dead assay 

 To investigate cell viability after exposure of microcolonies to UV light, a live/dead assay 

was used. Here, C58 cells were encapsulated in hydrogels containing non-photodegradable 

PEGDA (Mn = 3400 Da) instead of PEG-o-NB-diacrylate; thus, colonies remained within the 

hydrogel after UV exposure for staining and imaging. The stain mixture was prepared as 

UHFRPPHQGHG�E\� WKH�PDQXIDFWXUHU������ȝ/�RI� WKH�PL[WXUH�ZDV� DGGHG�RYHU� HDFK�K\GURJHO� DQG�

incubated in the dark for 15 min. SYTO 9 labels both intact and compromised cells, while 
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propidium iodide labels only cells with damaged membranes, resulting in the reduction of 

expressed fluorescence by SYTO 9.196 After staining, the hydrogels were washed thoroughly with 

a 0.85 wt % NaCl solution and imaged using the inverted fluorescence microscope. The percentage 

of live cells (p) was estimated from the fluorescence intensity data according to eq 1: 

 ൌ ͳͲͲ െ ൬
ݎ �െ �ݎ
ௗௗݎ െ ݎ

൰ ൈ ͳͲͲ���ሺͳሻ 

Where rUV is the measured red signal following UV exposure, r is the red signal measured when 

the hydrogel is not exposed to UV, and rdead is the red signal of the dead cell control. For this 

control, cells were killed by incubating the hydrogel in 70% isopropanol at room temperature for 

20 min. The hydrogel was then washed with ultrapure water before staining.  

 4.3.11 Cell retrieval and recovery 

 Immediately after light exposure, the free end of a 20 cm long PTFE tubing, 0.05 in. ID, 

was placed over the irradiated spot. The other end was attached to a 100 ȝL syringe that was used 

three times to aspirate the media containing the released cells. For every exposed microcolony, 

���� ȝ/� RI� VROXWLRQ�ZDV� FROOHFWHG� DQG� WUDQVIHUUHG� LQWR� DQ�(SSHQGRUI� WXEH�� )RU� HDFK� VHTXHQWLDO�

microcolony extracted, the syringe, tubing, PDMS holder, and the hydrogel were washed with 

ultrapure water at least 3 times to minimize cross-FRQWDPLQDWLRQ��)ROORZLQJ�FHOO�UHWULHYDO������ȝ/�

of the bacterial solution was plated onto selective media for recovery. The plating process was also 

H[SHFWHG� WR� GLOXWH� 3(*� GHJUDGDWLRQ� ELSURGXFWV�� ���� ȝ/� RI� WKH� VROXWLRQ�ZDV� SODWHG� RQ�$7*1�

supplemented with kanamycin and spectinomycin. Cells from the mutant library are expected to 

be resistant to both antibiotics. In contrast, C58-GFP, the parental strain used to generate the 

mutant library, is resistant only to spectinomycin. The presence of both antibiotics allowed for the 
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recovery of mutants, decreasing the chance of contamination from other sources. After inoculation, 

the plates were incubated at 28 °C for 3 to 5 days. 

 4.3.12 Agrocin 84 bioassay 

 Agrocin 84 bioassays were performed to determine if recovered mutants are resistant to 

agrocin 84, a bacteriocin produced by K84 that strongly antagonizes C58. The bioassay protocols 

were adapted from those reported by Hayman et al.197,198 K84 and recovered C58 ML mutants 

(Section 4.3.11) were grown in liquid ATGN as previously described for 24 h. All cultures were 

normalized to an OD600 of 0.6 in ATGN media. Tubes containing 10 mL of molten agar (65 °C) 

ZHUH�LQRFXODWHG�ZLWK����ȝ/�RI�WKH�&���PXWDQW�FXOWXUHV��7KH�WXEHV�ZHUH�YRUWH[HG�YLJRURXVO\�IRU�

10 s and then poured onto sterile 60 × 15 mm Petri dishes. Once the agar solidified������ȝ/�RI�WKH�

K84 cells (OD600 = 0.6) was spotted in the center of the plate and allowed to air-dry. Once the K84 

cells had dried completely, the plates were wrapped with a plastic wrap to prevent drying of the 

media, and they were incubated at 28 °C for 72 to 120 h. 

 4.3.13 Genomic DNA Purification 

 4,$*(1¶V�'1HDV\�%ORRG�	�7LVVXH�.LW�ZDV�XVHG�WR�SXULI\�EDFWHULDO�JHQRPLF�'1$�IURP�

FHOOXODU�GHEULV�DQG�DQ\�UHVLGXDO�3(*�E\SURGXFW��7KH�PDQXIDFWXUHU¶V�SURWRFRO��LQFOXGLQJ�WKH�*UDP-

negative bacteria pretreatment, was followed with minor modifications. Proteinase K incubation 

ZDV�SHUIRUPHG�IRU����PLQ�DW�����&��DQG���ȝ/�RI�51DVH�$������PJ�P/��ZDV�DGGHG�IROORZLQJ�

proteinase K incubation. Lastly, two sequential elution steps via centrifugation were included: the 

first HOXWLRQ�XVHG�����ȝ/�RI�%XIIHU�$(�ZKLOH����ȝ/�RI�%XIIHU�$(�ZDV�XVHG�IRU�WKH�VHFRQG�HOXWLRQ��

*HQRPLF�'1$�VDPSOHV�ZHUH�VWRUHG�DW�í����&�� 
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 4.3.14 Whole genome sequencing 

 Genomic DNA samples were sent to the Microbial Genomic Sequencing Center (MiGS) 

in Pittsburgh, PA. Samples were received and immediately frozen until the library preparation 

began. Qubit fluorometric quantification was used to quantify DNA concentrations. All samples 

were normalized to the same concentration and enzymatically fragmented using an Illumina 

tagmentation enzyme. Unique indices were attached to each pool of fragmented genomic DNA 

using PCR, and the resulting barcoded pools were combined to multiplex on an Illumina NextSeq 

550 flow cell.  

 4.3.15 Sequence Analysis 

 Bioinformatic analyses were performed on Beocat, the High-Performance Computing 

cluster at Kansas State University. Once sequencing reads were acquired from the MiGS, read 

mapping was performed by aligning the reads to the C58 reference genome using the Burrows-

:KHHOHU� $OLJQHU¶V� 6PLWK:DWHUPDQ� $OLJQPHQW� �%:$-SW) algorithm.199 The BWA-SW 

algorithm aligns long sequences (up to 1 Mb) against a large reference genome in a fast and 

accurate manner. A variant calling applying the Genome Analysis Toolkit (GATK) was then 

applied. GATK is a pipeline that compares the alignment of our reads to the C58 genome at a more 

detailed level while simultaneously performing a base quality score recalibration, indel 

realignment, duplicate removal, and SNP and INDEL discovery.200 Additionally, the GATK 

pipeline applies standard hard filtering parameters or variant quality score recalibration that result 

in the identification of mutations with high confidence. The purpose of the read mapping and 

variant calling is to find the mutation responsible for agrocin 84 resistance. Once the mapped reads 

and the variants were generated, regions with mutations were identified. 
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 4.4 Results and discussion 

 4.4.1 High density cell encapsulation and parallel tracking of cell growth 

 The first step in developing the hydrogel interface involved achieving high-density 

encapsulation of viable bacteria cells within the hydrogel for growth monitoring. C58 ML cells 

were seeded across a 1.8 × 1.8 cm glass coated with a hydrogel, initially 12.��ȝP�WKLFN��WKDW�UHDFKHG�

���� ȝP� LQ� LWV� VZROOHQ� VWDWH� DIWHU� LQFXEDWLRQ�� *LYHQ� WKH� JHQRPH� VL]H� RI� A. tumefaciens C58 

(approximately 5.67 Mbps),201 the observation of 28,000 mutants within a single hydrogel was 

desired to ensure that the genome could be screened to saturation with 99% certainty.202 Using 

fluorescence microscopy, it was found that seeding bacteria at a concentration of 3.63 × 107 

CFU/mL encapsulated bacteria at a density of 90 CFU/mm2, meeting this requirement.  
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Figure 4.5 Parallel growth monitoring of individual C58 cells into microcolonies within the 
hydrogel matrix after seeding. (A) Representative fluorescent images of C58 ML microcolonies at 
different time points. (B) Microcolony growth for 11 sample microcolonies within the hydrogel as 
a function of time. 

 

 As shown in Figure 4.5A, after encapsulation, cells appeared randomly dispersed and the 

vertical overlap of cells was minimal, which was desired to prevent the extraction of multiple 

FRORQLHV�GXULQJ�WKH�OLJKW�H[SRVXUH�VWHS��+\GURJHO�WKLFNQHVVHV�JUHDWHU�WKDQ������ȝP�UHVXOWHG�LQ�WKH�

vertical overlap of cells (Figure 4.2B). After encapsulation, parallel growth tracking of individual 

cells into microcolonies during culture in ATGN media was achieved. Microcolonies become 

visible under 20× magnification, 8 h after encapsulation. They then grow (k = 0.18 hí�) in diameter 

for approximately 40 h (Figure 4.5B). These observations suggest that there was sufficient mass 

WUDQVIHU� WR�VXSSRUW�FHOO�JURZWK��+\GURJHO�PHVK�VL]H��ȟ���D�FULWLFDO�GHWHUPLQDQW�RI�PDVV� WUDQVIHU�
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within the hydrogel,203 was calculated to be 10 nm on the basis of the equation described by Canal 

and Peppas,204 small enough for the immobilization of bacteria cells but large enough for the 

diffusive exchange of nutrients (e.g., glucose) and waste products. Similar growth trajectories were 

observed when monitoring the growth of free cells in a 96-well plater reader (Figure 4.6), 

suggesting that cell confinement or diffusion limitations had a minimal effect on growth within 

the hydrogel environment. Cells developed into spherical microcolonies due to deformation of the 

elastic PEG matrix caused by the local increase in cell numbers and through chemical or enzymatic 

modes of hydrogel degradation.205 These measurements were performed several times (n = 26) 

with 92% of the trials resulting in microcolony growth. At later time points (5 days), bacteria 

were observed to escape hydrogel encapsulation (Figure 4.7A). While chemical hydrolysis of 

WKLRHWKHUíHVWHU� OLQNDJHV� PD\� SOD\� D� UROH� LQ� K\GURJHO� degradation,206 follow-up studies have 

indicatHG�WKDW�K\GURJHOV�UHPDLQ�FDSDEOH�RI�LPPRELOL]LQJ�LQHUW����ȝP�IOXRUHVFHQW�EHDGV�DW�QHXWUDO�

pH over 5 days (Figure 4.7B,C)��2WKHUV�KDYH�DOVR�UHSRUWHG�PLQLPDO�PDVV�ORVV�LQ�VLPLODU�WKLROí�

acrylate PEG hydrogels over a 5-day time period at neutral pH.94 These observations suggest that 

bacteria within the microcolonies were the cause of the eventual breakdown of the hydrogel matrix. 
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Figure 4.6. Growth curve of C58 ML during culture in ATGN media at 28°C and 282 rpm in 96 
well plate format (n = 19). 

 

 

Figure 4.7. Hydrogel degradation by bacteria: Entrapped cells within the hydrogel are able to 
degrade the hydrogel and are released after 5 days incubation in ATGN media. 
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 4.4.2 Characterization of cell release and cell viability 

 Using light for extraction has the advantage of spatiotemporal control of cell release, as the 

patterned illumination tool allows for projection of user-defined, two-dimensional patterns over 

any microcolony within the hydrogel. Here, the arrangement of cells released into solution after 

exposure with different patterns was investigated. Microscale patterns including lines, rings that 

outline the microcolony perimeter, a cross, or a broken cross pattern were investigated. Patterns 

with greater coverage of the colony such as circles were avoided to minimize unnecessary UV 

light exposure in an effort to preserve bacteria viability and DNA quality. The recovered cells 

present in the extract solution were then imaged in brightfield and fluorescence modes to examine 

the cell arrangement (Figure 4.8). Light patterning offered control of the arrangement for cells 

liberated from the hydrogel interface. Ring patterns degraded the hydrogel immediately 

surrounding the microcolony, forming a hydrogel island that immediately detached from the 

interface. Examination of the extract solution revealed that cells remained encapsulated as 

microcolonies in the detached hydrogel (Figure 4.8Aiii). This pattern offers the advantage that 

extracted cells are not directly exposed to UV light and that they remain preserved in a larger, 

protective PEG layer, being potentially useful for downstream separation or processing steps. 

Cross patterns instead appeared to liberate cells as either aggregates or free cells (Figure 4.8Biii, 

Ciii), as these exposure patterns etched a direct path for cellular transport out of the hydrogel. 

Here, it was noted that the entire cell mass was liberated into the media covering the hydrogel as 

the membrane became compromised (Figure 4.9). Inspection of the recovered cells in the extract 

solution revealed that broken cross patterns favored aggregated cells, whereas cross patterns 

contained extract solutions dominated by free cells. Other patterns, such as individual lines 
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patterned at the microcolony edge, also caused a burst of free cells into solution; however, some 

of the cells appeared to remain in the hydrogel after exposure (Figure 4.9). Because removal of a 

maximum number of target cells with a minimum direct exposure to UV light was desired, the 

broken cross pattern was selected for further use.  

 

Figure 4.8. C58 ML cell arrangement after release with different light patterns. (A) Ring pattern 
for extraction of colonies protected within a PEG layer. (B) Broken cross pattern for extraction of 
aggregated cells. (C) Cross pattern for extraction of predominantly free cells. For each exposure 
pattern the following are shown: (i) the projected light pattern (white line) over a targeted colony, 
(ii) the hydrogel immediately after cell release, and (iii) brightfield and/or fluorescent images of 
the recovered cells in solution. Patterns were exposed at an intensity of 4.2 mW/mm2. 
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Figure 4.9. The efficiency of a line pattern exposure for cell release compared to a broken cross 
exposure pattern. Use of a broken cross pattern results in complete release of the microcolony, 
whereas use of a line exposure pattern results in only partial release of the microcolony. 

 

 After establishing that using broken cross pattern exposure results in lift off of the entire 

cell mass, we investigated how varied light intensities affected release time, defined here as the 

exposure time until microcolony burst is observed (Figure 4.10A). Step growth hydrogels are 

characterized by rapid erosion rates due to the low levels of network connectivity;24 here, 

degradation and cell release were noted in <180 s for all exposure intensities studied. Cell release 

time showed significant decreases with increasing light intensity up to an intensity of 4.2 mW/mm2 

(p < 0.05), this trend was expected as exposure time required for reverse gelation of the hydrogel 

is inversely proportional to light intensity.24 Beyond this, only minor decreases in release time 

were noted and a minimum light dose for release was found at 168 ± 14 mJ/mm2, corresponding 

to an intensity of 4.2 mW/mm2. Since 365 nm light can be cytotoxic to bacteria through the 

generation of reactive oxygen species,46 the effect of broken cross pattern exposure (4.2 mW/mm2, 

40 s) on cell viability was characterized using a live/dead assay (Figure 4.10B, C). Here, C58 cells 
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were first seeded within a hydrogel generated with PEG diacrylate without the photocleavable o-

NB moiety and cultured into microcolonies, and the colonies were then exposed to broken cross 

patterns of light. Removal of the o-NB group from the network backbone ensured that the 

microcolonies would remain in place during exposure so they could be subsequently stained and 

observed with fluorescence microscopy. The comparison of red signal indicating nonviable cells 

showed no significant difference between unexposed and exposed cells, both of which were 

significantly less than the dead cell control (P < 0.01). This suggests that the majority of cells 

remain viable during the extraction step for recovery and genomic analysis. Given these findings, 

these exposure conditions were used in the remaining studies. 

 

Figure 4.10. (A) Microcolony release time from hydrogels at varied 365 nm light intensity. An 
entire cell mass lift off effect was noted during broken cross pattern exposure, providing a discrete 
time point for cell release. (B) Red fluorescence signal after staining with the reagents in the 
live/dead bacterial viability kit. Microcolonies without UV exposure, with broken cross pattern 
UV exposure (4.2 mW/mm2, 40 s), and from chemically treated (70% isopropanol) dead cells are 
compared. (C) Representative green-red fluorescent images of microcolonies after staining with 
live/dead assay. Dead cells with compromised membranes appeared red. ImageJ software was used 
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to adjust images for color contrast. For each treatment (n = 3 independent trials), 30 different 
microcolonies were imaged. 

 

 4.4.3 Sequential extraction and recovery of individual microcolonies 

 Isolation of bacteria for pure cultures is one of the most important requirements in 

microbiological techniques because it enables extraction of pure genetic material, allows for 

follow-up biological and biochemical testing, and eliminates confounding observations that can 

arise from other bacteria. Here, the ability to generate pure cultures exclusively from the bacteria 

targeted for extraction was evaluated. Hydrogels were first seeded and cultured for microcolony 

development and placed inside a PDMS holder (Figure 4.4).  

 Designated areas of the hydrogel were exposed to UV light and then immediately washed 

with wash buffer to remove the released cells. Wash solutions were plated on selective media to 

quantify colony forming units (CFU/mL) in each wash solution. To verify the presence or absence 

of contaminating bacteria in the media prior to extraction, hydrogels were initially washed prior to 

light exposure. Additionally, as a negative control, areas of the hydrogel where no colonies were 

present were exposed to UV light under the same conditions used for cell release. This was done 

before and after every microcolony extraction, and washes from these blank areas were processed 

and plated in an identical manner as those solutions containing an extracted microcolony. In this 

way, carryover and cross-contamination during subsequent microcolony extraction could be 

identified. Using this approach, the purity of four sequentially extracted microcolonies was 

accessed (Figure 4.11). The initial washings of the hydrogels and negative controls generated from 

the opening of the hydrogel in areas lacking colonies showed little or no recovery after plating 

(Figure 4.11B). Conversely, solutions extracted from selected microcolonies showed significant 
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growth after plating, with average measurements ranging from 90 ± 28 CFU/mL (MC1) to 260 ± 

98 CFU/mL (MC4). The number of cells (CFU/mL) in the wash buffer after microcolony 

extraction showed no significant association with microcolony size (Figure 4.12). A small amount 

of carryover (<5 CFU/mL) was noted in blank solutions after the first microcolony extraction, 

suggesting that cross-contamination from a previously opened microcolony is a possibility during 

sequential extraction; however, these levels were minimal, representing <1% of cells recovered 

from a typical microcolony. These observations demonstrate that the extraction method allows for 

targeted and clean recovery of bacteria colonies, enabling one to sample and isolate multiple 

colonies from a single screen, if desired. 

 

Figure 4.11. Sequential extraction of targeted microcolonies from a hydrogel. (A) Brightfield 
image of a hydrogel with a sample exposure map (white lines) showing exposure locations 
targeting a blank area or a microcolony with a broken cross pattern. (B) Colony forming units 
(CFU/mL) of recovered suspensions after washing the hydrogel at various steps and plating. W = 
initial wash of the hydrogel; B = hydrogel blank; MC = microcolony. All exposures, wash steps, 
and plating steps onto selective media were performed under identical conditions (n = 3 
independent trials). 
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Figure 4.12. The density of recovered cells was not significantly associated with microcolony 
diameter (F1,42 = 2.03, p = 0.16, adjusted r2 = 0.16; �E = 28.78, t = 1.42, p = 0.16). 

 

 4.4.4 Screening and identification of rare phenotypes from transposon mutant 

libraries 

 Following the characterizations in Sections 4.4.1-4.4.3, the photodegradable hydrogels 

were evaluated for use in a model ML screening application. The screen involved seeding and 

culturing C58 ML cells in media supplemented with cell free culture fluid (CFCF) from K84, 

which contains agrocin 84, a well-known bacteriocin with activity against C58.183,185 During this 

screen, three separate hydrogels were prepared from the same hydrogel precursor solution. This 

included a positive control where C58 ML cells were incubated in liquid ATGN as in (Section 

4.4.1) to ensure normal cell growth across the population (Figure 4.13Ai). This control also 

allowed for verification that seeding density remained consistent with previous experiments 
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(approximately 90 CFU/mm2). To quantify the total number of bacteria cells that were screened 

in any trial, 10 separate areas on the positive control hydrogels were imaged. As a negative control, 

C58-GFP was also cultured in ATGN/CFCF, where no growth was expected (Figure 4.13Aiii), 

verifying that an inhibitory environment for normal cell growth was present. With these two 

controls in place, mutants within the seeded ML population that were able to grow in the presence 

of ATGN/CFCF were identified as candidate agrocin 84 resistant mutants (Figure 4.13Aii). Once 

each cell population was encapsulated in the respective hydrogels, they were immersed in ATGN 

or ATGN/CFCF media, incubated, and then imaged using fluorescence microscopy. ML cells 

seeded in positive control hydrogels consistently grew into fluorescent microcolonies (Figure 

4.13Bi) at 28 °C within 24 h, as expected. C58 ML cells in the positive control were quantified at 

a density of 90 cells/mm2, indicating that approximately 28,000 cells were present within the 

hydrogel. Test hydrogels were immersed in ATGN/CFCF solution for 72 h; fresh media were 

added to this solution every 24 h. After 72 h, the media was changed to ATGN only and incubated 

for an additional 48 h to enable the surviving, agrocin-resistant mutants to fully develop inside the 

hydrogels (Figure 4.13Bii). Resistant mutants appeared at a density of 0.057 microcolonies/mm2 

(18 ± 7 resistant mutants per hydrogel). The negative control hydrogel treated the same way as the 

test hydrogels, rarely produced microcolonies (<0.0011 microcolonies/mm2), verifying that 

parental C58-GFP cells very rarely survived when K84 CFCF was present. At the conclusion of 

the screen, the total number of rare microcolonies in a representative test hydrogel was 25, 

representing 0.089% of the cell population. Each rare colony was extracted from this hydrogel, 

plated, and recovered for genomic analysis; 23/25 microcolonies were successfully recovered. 
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Figure 4.13. (A) Schematic of the ML screen: (i) positive control: growth of C58 ML cells within 
the hydrogel, (ii) hydrogel incubation in presence of CFCF/ATGN for growth of agrocin resistant 
C58 ML cells, (iii) negative control: C58-GFP incubated in CFCF/ATGN under identical 
conditions. (B) Representative fluorescent images of the fluorescent micro-colonies in (i) positive 
control, (ii) test hydrogels, and (iii) negative control. (C) Representative data for generated micro-
colonies in each treatment (n = 3 independent trials). 

 

 4.4.5 Follow-up phenotypic and genotypic analysis of rare cells 

 Following cell retrieval and recovery, colonies were again streaked onto media containing 

kanamycin and spectinomycin. To corroborate phenotypic observations in the hydrogel with 

standard microbiological approaches, the agrocin 84 bioassay was performed as described in 

Section 4.3.12.197,198 For every extracted microcolony, a random subset (n = 5) of recovered 

colonies that showed resistance to the antibiotics, as well as a set of controls for every isolated 

mutant (Figure 4.14A), was tested for agrocin 84 resistance. The coculture of C58 with K84 was 

included as an agrocin 84 sensitive control for which we expected a zone of inhibition (a region 

near K84 with no bacterial growth due to inhibition) to form. Additionally, the coculture of A. 
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tumefaciens NT1 with K84, a bacterial strain that is known to be resistant to agrocin 84, was used 

to compare the degree of resistance/susceptibility of the hydrogel isolates. The agrocin 84 bioassay 

verified successful recovery of 9 resistant mutants. Four of these resistant mutants came from two 

recovered microcolonies, and we failed to recover resistant mutants from 16 of the 23 recovered 

microcolonies. These observations validate the agrocin 84 resistant phenotype observed in the 

hydrogel screen and also demonstrate that results observed in the screen can be corroborated using 

follow-up tests due to the ability to extract, isolate, and grow colonies of interest from the screening 

interface. 

 

Figure 4.14. (A) Observations of the agrocin 84 bioassay. As expected, NT1 shows no inhibition 
when co-cultured with K84, and was used as the positive control. The isolated C58 mutant (herein 
referred to as 100) also shows no inhibition when co-cultured with K84, similar to NT1, while C58 
bacteria show a clearing (zone of inhibition) surrounding the K84 at the plate center. K84 bacterial 
growth is contained inside the red dashed line. The boundary of the zone of inhibition, if present, 
is denoted by the gray dash line. (B) Most agrocin 84 resistant mutants carry mutations in the acc 
operon. The location of the acc operon mutations found in seven of the nine isolated mutants is 
represented with yellow diamonds, with numbers below indicating how many times a mutation in 
this position was observed. All acc mutants were recovered from different agrocin 84 resistant 
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microcolonies. Mutants with identical mutations were recovered from different hydrogels and so 
cannot be the result of cross-contamination during recovery.  Each gene is shown as an arrow, and 
they all have been drawn to scale. 

 

 The final step was to connect the observed phenotype with a genotype of the extracted 

isolates using whole genome sequencing. Previous work identified that the acc operon of the Ti 

plasmid in C58 encodes for the utilization of agrocinopines A and B and for susceptibility to 

agrocin 84 with mutations in this region resulting in agrocin 84 resistant phenotypes.183,207,208 This 

gave a clear expectation for the location of genotypic mutations that should be present in the 

mutants isolated from the hydrogels. Whole genome sequence analysis showed that 78% (7/9) of 

the isolated mutants that were sequenced from the screen had mutations in genes within the acc 

locus (Figure 4.14B). About 20% of the isolated mutants (2/9) lacked a mutation in the acc locus; 

however, they had mutations in other membrane transporter genes. It has been previously shown 

that inhibitors like agrocin 84 can enter bacterial cells through these transporters; however, more 

research is required to determine the genetic basis of agrocin 84 resistance in these mutant strains. 

Taken together, our observations verify that successful genotype-to-phenotype determinations can 

be made from rare mutants isolated from the hydrogel screen. 

 4.5 Conclusion  

 Photodegradable hydrogels have been widely studied as matrices for biological 

applications due to their biocompatibility, tunable chemical and physical properties, and 

crosslinking abilities. These materials offer a unique set of advantages for cell screening 

applications: viable, high density cell encapsulation and monitoring, molecular exchange for cell 

growth and function, and spatiotemporal control of matrix degradation for cell release and retrieval 
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when a patterned light source is used. While these materials have been developed extensively 

toward drug delivery and tissue engineering applications and have been successfully used for 

capture and on-demand release of rare circulating tumor cells,127 they have largely remained 

separate from application in microbiology. Here, we demonstrate the use of photodegradable 

hydrogels for high-throughput screening of bacterial populations. To our knowledge, this is also 

the first successful use of photodegradable hydrogel materials in a bacterial cell screening 

application. The novelty of the approach lies in the combination of high-density culture, allowing 

for parallel, microscopic observation of tens of thousands of cellular microcolonies, followed by 

sequential sampling of any desired microcolony at high resolution and with high purity, enabling 

follow-up genetic characterization of a rare or desired phenotype. 

 Given the pervasive knowledge gap between bacteria phenotype and genotype, we 

anticipate that this simple, materials-driven approach to screening and isolation will benefit a 

variety of different screens. The proof-of-principle for ML screening demonstrated here with a 

simple growth/no growth phenotype lays the foundation for more complex phenotypic screens, 

such as using fluorescence or colorimetric reporters to screen for mutations disrupting gene 

regulation,63 or growth-based screening of auxotrophic mutants that have loss of enzymatic 

function leading to metabolic deficiencies.209 Using traditional approaches, these screens typically 

require observations of tens of thousands of macroscopic colonies in hundreds of agar or agarose 

plates. This throughput can be matched with a single photodegradable hydrogel when combined 

with a high-throughput image analysis tool to rapidly identify rare cellular phenotypes.187 The 

high-throughput nature of our approach along with its repeatability and fast turnaround time also 

make this approach applicable to other cell separations in microbiomes, clinical samples, and 

mammalian cell lines. 
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Chapter 5 - 3RO\HWK\OHQH�JO\FRO�EDVHG�+\GURJHO�&RDWLQJ�IRU�

,PSURYHG�3HUIRUPDQFH�RI�0LFURELDO�(OHFWURFKHPLFDO�&HOOV 

 5.1 Overview 

 In bioelectrochemical systems, anode-bound electroactive biofilms play a crucial role in 

energy production. Electroactive bacteria in the anode biofilm are sensitive to environmental 

stressors, compromising their viability and metabolic activity in the long term. In this paper, we 

develop a polyethylene glycol (PEG) - based hydrogel over anode biofilms to serve as a protective 

barrier against environmental stressors while allowing for exchange of nutrients required for 

biofilm function. The PEG-based hydrogel utilized here is a crosslinked network of PEG-tetrathiol 

and PEG-divinyl sulfone macromers. Hydrolytic stability due to the presence of stable thioether 

sulfone bonds within the hydrogel provided long term (72 days) hydrolytic stability over a range 

of pH values (3 to 10). Finite element modeling was used to predict the concentration of the carbon 

source (acetate) throughout the hydrogel layer and at the hydrogel-biofilm interface at different 

coating thicknesses. Based on the model, coating thicknesses of 700-800 µm ensured sufficient 

acetate concentration at the hydrogel-biofilm interface to sustain biofilm function.  Long-term, 

simultaneous monitoring of coated and uncoated electrodes experimentally confirmed that the 

coating did not significantly compromise the biofilm activity. Finally, an ammonia spike was used 

to evaluate the coating's potential for biofilm protection under harsh conditions. It was observed 

that the coating provided a sponge for the ammonia, inhibiting its diffusion to the biofilm to 

decrease its negative impact. Furthermore, after changing the condition back to a standard media, 

ammonia entrapped in the coating increased the buffering capacity of the media, which improved 

the metabolic activity of the biofilm, until the NH4-N was eventually released from the coating. 



93 

KEYWORDS: Anode biofilm, immobilization, protective coating, bioelectrochemical systems 

 5.2 Introduction 

 There is a widespread effort to find alternative energy sources that are environmentally 

friendly and more sustainable than fossil fuels.210 Amongst different sources of green energy, 

bioelectrochemical systems (BESs) have obtained recent attention as an energy source useful for 

low-power applications. BESs utilize microorganisms to generate power by producing 

bioelectricity through direct biomass conversion. Biomass, unlike fossil fuels, is renewable and 

includes a wide spectrum of organics from woody biomass to waste materials.211 This energy can 

be utilized in several applications. Wastewater treatment is a widely studied example because of 

the complementary need to remediate the waste organics while sustainably recovering the products 

and energy from the waste. There are at least three categories of BESs: (1) microbial fuel cells 

(MFCs) that simultaneously remove the organic matter to treat wastewater, as well as generate 

electricity,212 (2) microbial electrolysis cells (MECs) that can generate value-added products such 

as hydrogen gas,213 and (3) microbial peroxide producing cells (MPPCs) that generate hydrogen 

peroxide, a valuable chemical, by performing the truncated oxygen reduction reaction in the 

cathode. BESs also remove nutrients or heavy metals from wastewater using the electric current 

produced to drive them into concentrated solutions.212,214,215 These devices are also being studied 

as potential sensors in soil,216 aquatic,217 and wastewater environments.218 

 In BESs, the anode biofilm is one of the critical limiting factors in performance. The 

microbial community contains an abundance of electroactive bacteria (EAB) that play a crucial 

role in the electroactivity of the biofilm and the overall efficiency of these devices.219 EAB or 

anode-respiring bacteria (ARB) are microorganisms capable of transferring electrons to or from a 
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solid substrate such as an electrode.220 Therefore, maintaining a well-balanced microbial 

community 221 with an abundance of EAB in the anode biofilm is crucial for  maintaining efficient 

electron transfer and maximum current densities.142 However, recent studies have shown that EAB 

are highly sensitive to external stressors, such as heavy metal shock,222 temperature fluctuations,217 

pH changes,223 organic solvents and other toxins.224 Electron generation and mass transfer within 

the EAB can be impacted by these stressors, which ultimately inhibits their electrocatalytic 

activity.225 Among these stressors, temperature fluctuations influence the BESs performance 

mainly by affecting the bacterial kinetics.226 Jadhav and Ghangrekar investigated the effect of 

temperature variations on their system. They demonstrated that an increase in ambient temperature 

favored the growth of the non-EAB, which affected the abundance of EAB and led to a decrease 

in current and coulombic efficiency of the system. They further studied the effect of pH variation 

on the performance of their MFC system by changing the anodic pH values between 5.5 and 7.5. 

They observed that a steady pH value of 6.5 increased the system performance to its maximum, 

whereas changing the pH value to more than 7 or less than 6 resulted in a decrease in efficiency.227 

Accidental load of toxic shock can also change the microbial composition in the MFCs by affecting 

the EAB.228 This factor is especially crucial for MFCs operating as toxicity sensors. In MFC 

sensors, EAB act as a sensing element since the presence or a change in the concentration of the 

toxic substances affects their metabolic activity and resulting electrical signal.222 Therefore, for 

MFC sensors' long-term operation in applications such as water monitoring, the decrease in 

metabolic activity of the biofilm caused by toxins should be reversible.217 However, achieving a 

high degree of recovery, influenced by several factors such as toxic concentration, anode biofilm 

density, etc., is challenging.222 To address the mentioned issues, it is crucial to develop methods 
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and materials that enhance the stability and long-term activity of BESs and specifically, their 

endurance upon environmental shocks.143,221,229 

 Encapsulation of EAB with polymeric materials can be used as means of protection from 

environmental stress factors to extend the lifetime of EAB and stabilize their catalytic activity.224 

Cell encapsulation techniques can also reduce the possibility of contamination, lower the ohmic 

losses between the cells and the anode, and increase metabolic activity.230 For instance, Du et al. 

encapsulated a living electroactive biofilm with artificial polydopamine (PDA) to protect the cells 

under extreme acid shock.143 Luo et al. were also able to keep the activity of the anode biofilm and 

stabilize the MFC performance under harsh environmental conditions by immobilizing the anode 

biofilm using an agarose gel. Here, the small porosity of the hydrogel prevented the exogenous 

bacteria from disrupting the function of electroactive bacteria on the anode, preserving the 

performance of the MFC under severe conditions.147 However, agarose is a natural polymer that 

cannot be tuned and modified and might not be a practical choice for BESs operated at various 

conditions. Unlike natural polymeric materials, synthetic hydrogels offer many advantages such 

as tunable porosity, stiffness, and stability.147 Poly(ethylene glycol) (PEG) based hydrogels are a 

good candidate for protective BESs anode coatings. PEG is a chemically and biologically inert 

material with well-known antifouling properties that can inhibit fouling of exogenous microbes on 

the anode biofilm to maintain the balance of microbial community composition on the anode. PEG-

based hydrogels have already been used for several bacteria interfaces various applications such 

as marine antifouling,231,232 bactericidal coatings,233 and antimicrobial wound dressing.234 Another 

importance of PEG hydrogels is their biocompatibility, making them suitable as a cell culture 

platform that is well-explored with mammalian cells,68,235 especially for biomedical and tissue 

engineering applications.236,237 
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 Although these interfaces have not been well studied for most microbial applications, we 

recently reported the use of PEG hydrogels for bacteria encapsulation and isolation. The results of 

these studies showed the compatibility of these materials as a 3-D matrix for bacterial cell 

culture.130,132 Despite the potential benefits of PEG, these materials have not been studied in BESs.  

In this report, the effect of PEG hydrogel protective coatings on anode biofilm efficiency is studied 

(Scheme 5.1). Coatings are designed to remain physically stable across anode surfaces, enable 

high stability across a range of pH values, and provide sufficient transport of small molecule 

metabolites to and from the biofilm interface. Comparing current densities in MECs with coated 

and uncoated anode biofilms revealed that the PEG-based coatings potential to reduce the 

environmental pressure on the biofilm, demonstrated here with an ammonia shock. 

 

Scheme 5.1. Schematic of the anode coating procedure. (i) PEG-tetrathiol macromer, (ii) PEG-
divinyl sulfone macromer, (iii) thiols and vinyl sulfone Michael-type addition reaction. (A) 
Loading the hydrogel precursor solution inside the parafilm mold. (B) Hydrogel formation at room 
temperature inside a vacuum glove box for one hour. 
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 5.3 Materials and methods 

 5.3.1 Materials 

 Pentaerythritol tetra (mercaptoethyl) polyoxyethylene (PEG-tetrathiol, MW 10,000) was 

purchased from NOF America Corporation. Vinylsulfone-PEG-Vinylsulfone (PEG-divinyl 

sulfone, MW 3400) was purchased from Creative PEGWorks. Ethanol, and isopropanol were 

purchased from Fisher. (3-Mercaptopropyl) trimethoxysilane, sodium phosphate monobasic 

dihydrate (NaH2PO4 · 2H2O), sodium hydroxide (NaOH), alconox detergent, toluene anhydrous, 

Sodium hydrogen phosphate (Na2HPO4), potassium phosphate monobasic (KH2PO4), ammonium 

chloride (NH4Cl), ethylenediaminetetraacetic acid (EDTA), cobalt chloride hexahydrate (CoCl2 · 

6H2O), calcium chloride dihydrate (CaCl2 · 2H2O), boric acid (H3BO3), sodium molybdate 

dihydrate (Na2MoO4 · 2H2O), sodium selenite (Na2SeO3), sodium tungstate dihydrate (Na2WO4 · 

2H2O), nickel chloride hexahydrate (NiCl2 · 6H2O), magnesium chloride (MgCl2), manganese 

chloride tetrahydrate (MnCl2 · 4H2O), zinc chloride (ZnCl2), copper sulfate pentahydrate (CuSO4 

· 5H2O) and aluminum potassium sulfate (AlK(SO4)2), ferrous chloride (Fe(II)Cl2), sodium sulfide 

nonahydrate (Na2S · 9H2O), and sodium hydroxide (NaOH) were purchased from Sigma-Aldrich. 

Parafilm M was purchased from VWR. Rectangular graphite electrodes were ordered from 

GraphiteStore. Ag/AgCl reference electrodes were purchased from BASi. 

 5.3.2 Hydrogel crosslinking chemistry and hydrogel hydrolytic stability 

experiments 

 The first stage in developing the hydrogel coating involved characterizing its long-term 

stability across a range of pH levels. Here, hydrogel stability experiments were done by 
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gravimetric analysis of the hydrogels adapted by Paez et al.99 For this purpose, free hydrogels, not 

in the MEC setting, were prepared.  The hydrolytic stability of PEGVS based hydrogels was also 

compared to PEG diacrylate (PEGDA) hydrogels that are susceptible to hydrolysis due to the 

presence of ester groups in acrylates.238 All hydrogels were prepared in the same manner by 

pipetting 95 µl of hydrogel precursor solution on a flat parafilm surface.  After gelation, hydrogels 

were immersed in Milli-Q water at room temperature for 48 hours to reach equilibrium, and then 

the initial mass of swollen hydrogels was measured. Hydrogels were then incubated in buffer at 

three different pH values (citric buffer, pH 3; phosphate buffer, pH 7; and carbonate buffer, pH 

10) for 72 days at room temperature. The mass of the swollen hydrogels was measured at varied 

time points, and the normalized mass of swollen hydrogels (Nm) at each time point was calculated 

(Nm = weight at time t / initial weight). Increases in Nm from 1.0 indicate changes in hydrogel 

structure.  

 5.3.3 Diffusion coefficient measurements and COMSOL modeling 

 Thick coatings over the anode biofilm can hinder the substrate transfer to cells and affect 

cell viability, lowering the performance of the MEC.224 However, thick coatings (700-800 µm) 

were desired here due to the ease of deposition and reproducibility of the coating technique 

(Scheme 5.1). The transport of the necessary carbon source was investigated to assure that the 

designed coating provided adequate flux to and from the growing bacteria and not compromise 

their viability. To model transport throughout the coatings, COMSOL modeling was used. First, 

the diffusion coefficient of the carbon source (acetate) through the coating was required as an input 

in the COMSOL model. Due to chemical interactions between the substrate and components in 

the PEG hydrogel, the diffusion coefficient was measured experimentally. 
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 For quantitative analysis of the diffusion of molecules through the hydrogels, the analytical 

VROXWLRQ�RI�)LFN¶V�VHFRQG�ODZ�RI�GLIIXVLRQ�FDQ�EH�XWLOL]HG��:KHQ�WKH�FRQFHQWUDWLRQ�JUDGLHQW�RFFXUV�

in only one dimenVLRQ��WKH�UHOHDVH�NLQHWLFV�FDQ�EH�GHVFULEHG�E\�)LFN¶V�VHFRQG�ODZ:239 
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Where C is the concentration of the molecule within the polymeric system; t, x, and D are the time, 

position, and diffusion coefficient of the molecule in the bulk liquid, respectively. Generally, to 

measure the diffusion coefficient of the solute in a solution, the solute concentration is measured 

over time. Experimental data is then fit WR� WKH� VROXWLRQ� RI� )LFN¶V� HTXDWLRQ� WR� DFTXLUH� WKH 

experimental diffusion coefficient.239 When molecules are molecularly dispersed in the hydrogel 

matrix, the hydrogels are considered monolithic systems.240 In this paper, as shown in Figure 5.1, 

a cylindrical setup is used for diffusion experiments with the monolithic acetate-loaded hydrogel 

at the bottom. Here we consider a perfect sink condition and no release from the edges of the 

cylindrical hydrogel, which means only the hydrogel surface is in contact with the release medium. 

Thus, only axial diffusion is considered, and the mathematical analysis can be limited to one 

dimension, where )LFN¶V�VHFRQG�ODZ�RI�GLIIXVLRQ�FDQ�EH�VROYHG�analytically as follows:240,241  
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Where Mt and M� are the cumulative amounts of the released molecule at time t and infinite time, 

respectively; L denotes the height of the cylindrical gel, and D is the diffusion coefficient of the 

molecule within the system. This solution is similar to a cumulative molecule released over time 
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from a slab geometry.240 When Mt/M� �������WKH�HDUO\-time approximation is valid to calculate the 

diffusion rates by the equation below: 
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 Here the PEGVS hydrogels were formed in buffer with an acetate solution concentration 

of 1-1.1 M. The hydrogel precursor solution (300 µL) was then pipetted inside a 2 mL vial, 

resulting in a cylindrical hydrogel after gelation. Then, 1.5 mL of ultrapure water was added to the 

vial, and the vial was incubated at room temperature (215 rpm). Based on the geometry of the vial 

and the volume of the used hydrogel precursor solution, the height of the cylindrical gel was 

calculated to be 6 mm. At each data point, the solution was removed from the vial and replaced 

with fresh ultrapure water. The acetate concentration in each removed solution was measured at 

210 nm using a ThermoScientific NanoDrop 1000 Spectrophotometer. 

 

Figure 5.1. Setup used for diffusion coefficient measurements. 

 

 After calculating the diffusion coefficient of the substrate through PEGVS hydrogels, finite 

element modeling was used to generate concentration profiles for the substrate through the 

hydrogel. The goal here was to understand the hydrogel thickness, at which point diffusion 

limitations could inhibit the biofilm viability and function. The transport of diluted species in 



101 

porous media model in COMSOL Multiphysics® was developed considering the following 

assumptions: (1) hydrogel deformation is negligible, (2) hydrogel degradation throughout the 

studies based on stability results is not significant, (3) the ambient medium is infinite and well-

stirred at all times, and thus, the concentration of the substrate does not change in the external 

media, (4) biofilm substrate consumption rate at the biofilm surface is 6.4 × 10-6 mol/m2. s, 

calculated based on current density data, and remains the same throughout the study, (5) no flux 

from the bases. 

 5.3.4 MEC reactor setup and current monitoring 

 These experiments set up the microbial electrochemical cells as MECs to prevent oxygen 

diffusion that could inhibit microbial activity and to provide the optimum anode potential for 

maximizing ARB growth on the anode biofilm.242 Two H-type reactors were used in the 

experiment, each containing an anode and a cathode compartment separated by an anion exchange 

membrane (AEM). The two compartments each held a volume of 585 mL. The anode compartment 

contained two rectangular graphite electrodes in the anode (www.graphitestore.com), with a total 

surface area of 32 cm2, and the cathode compartment contained one 16 cm2 rectangular electrode. 

The anode was maintained at a potential of -301 mV by an Ag/AgCl reference electrode. The 

reactors were kept in a temperature-controlled environment to maintain 30 oC conditions, while 

the anode was mixed at a rate of 100 rpm.  

 The biofilm in each of the two reactors was established by adding anaerobic sludge 

obtained from the Salina Wastewater Treatment Plant (Salina, Kansas) to the anode. The sludge 

was added at a concentration of 1% v/v to a phosphate buffer media containing the following 

composition per liter: 12.04 g Na2HPO4, 2.06 g KH2PO4, and 0.41 g NH4Cl; 10 mL of a 1 L trace 
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mineral media containing 0.5 g EDTA, 0.082 g CoCl2 . 6H2O, 0.114 g CaCl2 . 2H2O, 0.01 g H3BO3, 

0.02 g Na2MoO4 . 2H2O, 0.001 g Na2SeO3, 0.01 g Na2WO4 . 2H2O, 0.02 g NiCl2 . 6H2O, 1.16 g 

MgCl2, 0.59 g MnCl2 . 4H2O, 0.05 g ZnCl2, 0.01 g CuSO4 . 5H2O, and 0.01 g AlK(SO4)2; 1 mL of 

a 4 g/L Fe(II)Cl2 stock solution; 0.5 mL of a 37.2 g/L Na2S . 9H2O stock solution.243,244 Acetate 

was then added as an electron donor to grow and condition the biofilm at a concentration of 40 

mM. The cathode media was the same as the anode media, without the sludge or acetate, but was 

adjusted to a pH of 11.5 using sodium hydroxide. Once the biofilm began to grow on the anode 

electrodes, the media was replaced with the same composition described above, except the sludge. 

This was repeated until the reactor produced current densities of 5-8 A/m2. Once the reactor had 

reached this stable point, one of the two electrodes present could be coated with the hydrogel.  

 The electron donor concentrations were quantified by high-performance liquid 

chromatograph (HPLC) analysis (Shimadzu LC-20AT, USA) using an Aminex HPX-87H column 

(Bio-Rad Laboratories, USA) to separate the organic acids and sugars, which then were detected 

by a photodiode array and refractive index detectors. The current production from the reactors was 

continuously measured using a multichannel potentiostat, with current from both coated and 

uncoated electrodes monitored separately. 

 5.3.5 Parafilm holder for the coating process 

 After COMSOL modeling and finding the allowable thickness range for the hydrogel 

coating, a facile and reproducible method for depositing the hydrogel layer over the anode present 

in the MEC was developed. Parafilm is a cheap, flexible, waterproof sheet with hydrophobic 

properties used in most laboratories.245 For coating the anode biofilm, first, a plain electrode was 

used. Static tape (40 µm thick) was taped around the electrode to reach the desired thickness 
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(multiples of 40 µm). This process can be repeated until the full height of the electrode is covered. 

Then, a parafilm sheet was wrapped around the covered electrode until a stiff mold from the 

parafilm is obtained. Then, the mold is pressed on another parafilm sheet to close the base (Figure 

5.2). Finally, the tape-covered electrode is gently pulled out of the parafilm mold, resulting in a 

hollow cuboid that is closed off from the base. This mold can then be placed on a petri dish or 

other solid surfaces for the coating procedure of the anode. 

 

Figure 5.2. Preparation of the parafilm holder for coating process. 

 

 5.3.6 Hydrogel coating preparation 

 For preparing the hydrogel precursor solution, the crosslinking conditions are adopted from 

Fattahi et al.,132 which acquires the addition of 5.6 µL of PEGVS (Mn 3400 Da, 49 mM) in water 

into 12.5 µL of phosphate buffer, pH 8. Lastly, 6.9 µL of PEG-tetrathiol (Mn 10000 Da, 20 mM) 

in water needs to be added to the mixture to obtain equimolar ratio of vinyl sulfone:thiol. The 

concentrations of vinyl sulfone and thiol groups in the final mixture are each 22 mM, and the final 
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solution volume is 25 µL. In this paper, concentrations of the crosslinkers were kept the same at 

different volumes. 

 For the development of the coating procedure, a parafilm-based mold was used (Figure 

5.3A). The mold is placed on a petri dish. Then the anode electrode is centered in the mold, at 

which point a gap between the anode and the mold is present. This gap length can be varied 

between 600 and 800 µm depending on the thickness of the biofilm present on the anode. The gap 

is then filled with the liquid hydrogel precursor solution and allowed to react for 1 hour at room 

temperature under vacuum condition to achieve hydrogel formation. After gelation, the parafilm 

holder is gently unwrapped from the anode electrode, and the hydrogel is stabilized to the anode 

(Figure 5.3B). The anode electrode is then placed back inside the MEC setup (Figure 5.3C). 

 

Figure 5.3. Anode coating procedure. (A) Coating formation over the anode inside the parafilm 
mold. (B) Coated hydrogel over the anode electrode after gelation. (C) Coated anode electrode 
placed back inside the reactor. 
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 5.3.7 Initial testing of coating impacts on current production and longevity of coating 

 After allowing the biofilm-covered electrodes to reach high current density and coating one 

of the electrodes with hydrogel, two trials were conducted to compare the performance of the 

coated and uncoated electrodes. As previously described, the current production was continuously 

measured using a multichannel potentiostat that monitored each electrode. The current density was 

then compared, normalizing the current produced to the 16 cm2 area of each electrode. The two 

trials took place over a period of at least two weeks to assess the sustained attachment and 

longevity of the coatings. 

 5.3.8 Ammonium spike experiments 

 To assess whether these coatings protect against ammonia toxicity, and to explore what 

effect previous ammonia exposure has on the future current production and future response to 

ammonia shocks. Once the MEC reactor had received new anode media and returned to stable, 

high current density for the coated and uncoated electrode, a shock load of ammonium chloride 

was added. Once again, using the multichannel potentiostat, the current production was then 

measured for the two electrodes to compare the inhibition of the coated and uncoated biofilm. The 

response from the two electrodes was also compared after providing the reactor a new media 

without the high ammonium level. The ammonium chloride spike and media replacement were 

then repeated to test how previous exposure to high ammonia levels affected the response of the 

coated and uncoated electrodes. The experiments were conducted using NH4-N spikes that were 

6.8 g/L NH4-N and 10.8 g/L in concentration, which could also indicate whether the coating 

protects against other toxicants.  
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 5.4 Results 

 5.4.1 Hydrolytic stability of the hydrogels 

 Click chemistries represent reactions with fast reaction kinetics with high efficiency for 

connecting two molecular units.100 Bioclick reactions, including Michael-type addition, are a 

category of click reactions attractive for preparation of polymeric biomaterials. The reaction can 

be carried out in aqueous under physiological conditions with no harmful byproducts to cells.246 

Thiol-Michael type addition reaction have been broadly utilized to synthesize biocompatible PEG-

based hydrogels through step-growth polymerization mechanisms.247,248 Thiols are reactive with 

acrylates, maleimides, and vinyl sulfones through Michael addition.99 These hydrogels have been 

broadly studied in tissue engineering and drug delivery. It is well-known that thiol-acrylate 

networks degrade due to hydrolysis of ester groups present in acrylates even at physiological pH 

249 and thiol-maleimide networks can also undergo hydrolysis under mild alkaline conditions.99 

Therefore, hydrogel stability for both thiol-acrylate and thiol-maleimide crosslinks cannot be 

sustained for a long operation time. However, thiols and vinyl sulfones form a highly stable 

thioether-sulfone bond that is not readily susceptible to hydrolysis, generating pH-stable hydrogels 

for long periods of time.91,250 Because use in a wide range of pH conditions is desired for broad 

BESs applications,251,252 PEG-divinyl sulfone (PEGVS) hydrogels were chosen for studies in this 

paper. 

 Hydrogel degradation happens upon reduction in crosslinking density due to breakage of 

the bonds within the crosslinking network. One method to investigate the crosslinking density 

alteration within the hydrogels is to measure the swelling ratio of the gels over time.238 An increase 

in swelling ratio is a result of a decrease in crosslinking density.253 Hennink et al. reported that 
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hydrolysis of a crosslink in the system leads to a longer chain networks among the remaining 

crosslinks, which allows for expansion and swelling in the hydrogel.254 Following Section 5.3.2, 

gravimetric analysis of the hydrogels was conducted for 72 days. At the end of this period, the 

mass of PEGVS hydrogels incubated in pH 3, pH 7, and pH 10 only reached 1.16, 1.08, and 1.18 

times their initial mass, showing little hydrogel degradation and adequate long-term stability 

necessary for the coatings (Figure 5.4A). 

 In contrast, the PEGDA hydrogel was completely hydrolyzed and dissolved in medium 

solution after 24 hours in pH 10 buffer. Also, after 60 days, the mass of PEGDA hydrogels in pH 

3 and pH 7 reached 1.64 and 2.44 times their initial mass, indicating significant degradation of the 

hydrogel structure (Figure 5.4B, C). Some fluctuations present in the trends of the provided data 

are due to instrument variability throughout the study (less than 2% error). Given the long-term (> 

60 days) stability noted, these results suggest that PEGVS hydrogels are good candidates for a 

chemically stable, protective coating over the anode biofilm to study the MEC efficiency. 
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Figure 5.4. (A) Hydrolytic stability of PEGVS hydrogels at different pH values. Hydrogels (n=3) 
were incubated in pH 3, 7, and 10 at 25 °C for > 10 weeks. (B) Comparison of hydrolytic stability 
of PEGVS and PEGDA hydrogels at pH 3. (C) Comparison of hydrolytic stability of PEGVS and 
PEGDA hydrogels at pH 7. 

 

 5.4.2 Substrate diffusion coefficient and optimum coating thickness 

 NanoDrop measurements described in Section 5.3.3, were used to generate the release 

profile of acetate from the PEGVS and was plotted based on the released mass fraction of acetate 

using a mass balance (Figure 5.5A). 8VLQJ�)LFN¶V�ODZ�IRU�HDUO\�UHOHDVH�WLPH�(Figure 5.5B), the 

effective diffusion coefficient of acetate through the PEGVS hydrogels was calculated to be 

1.44×10-10 m2/s. This value is comparable with the diffusion coefficient of glucose through a 

similar PEG hydrogel reported in the literature, and takes into account physical and chemical 

interactions between acetate and the hydrogel that could cause diffusion limitations.255 
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Figure 5.5. (A) The cumulative mass release of acetate from PEGVS hydrogels with the initial 
concentration of 0.3 mM. (B) Early time (Mt/M� < 0.6) release profile plotted as a function of the 
square root of time that is used to determine the diffusion coefficient of the acetate through the 
PEGVS hydrogel using equations (2) and (3). 

 

 Considering the mentioned assumption for COMSOL modeling described in Section 5.3.3, 

the model allows for prediction of the concentration profile of acetate throughout the hydrogel 

(Figure 5.6A, B), and significantly, the maximum allowable thickness of the polymer coating that 

will supply an adequate flux of acetate to the biofilm for viability and growth with the given 

diffusion limitations of the hydrogel, based on the metabolic needs of the biofilm. For instance, in 

an MEC system with 40 mM of the substrate (acetate) and a mature anode biofilm with a metabolic 

consumption rate of 6.4×10-6 mol/m2. s, the maximum allowable coating thickness is 900 µm. 

Figure 5.6C, further shows the impact of biofilm maturity and its substrate consumption rate on 

the maximum allowable coating thickness. 
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Figure 5.6. (A) Substrate concentration profile of a hollow cuboid representing the hydrogel 
coating over the anode biofilm, showing the diffusion of the substrate from the media through the 
walls. The dark red color on the outer surface of the cuboid shows the higher concentration of the 
substrate, which is the same as in the external solution. The dark blue color on the inside of the 
cuboid represents the lower concentration of the substrate available to the anode biofilm. (B) Two-
dimensional concentration profile of the cuboid from the top view. (C) Effect of substrate 
consumption rate on maximum allowable coating thickness. 

 

 5.4.3 Hydrogel coating effect on microbial activity 

 To investigate the effect of the hydrogel coating on the long-term activity of the anode-

bound biofilms, current density of two anodes was analyzed in side-by-side compartments, and all 

the environmental variables for both anodes were identical, other than presence of coating on one 

of the anodes. Figure 5.7 shows the hydrogel coatings did not decrease the sustained microbial 
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electroactivity in the biofilm. The uncoated electrode produced current densities of 3.5-6 A/m2, 

and the coated biofilm maintained current densities ranging from 30-70% of the uncoated electrode 

throughout the length of the trial. This amounted to a current density deficit of approximately 1.5-

2.5 A/m2. In Figure 5.7B, the current densities for the coated and uncoated electrodes return to 

these same levels when a slug load of acetate is provided after day 12 in trial 2, when the current 

production had gone to zero due to the depletion of the electron donor. The difference in current 

densities between the electrodes is likely due to diffusion limitations of the acetate through the 

hydrogel coating. The results from Figure 5.7 demonstrate the longevity of the coatings. The 

coating was preserved for 30 days and 15 days in trials 1 and 2, respectively. It should be noted 

that the coatings did not reach the end of their useful lives, but the trials were ended to conduct 

further experiments on the electrodes. 

 

Figure 5.7. Current density comparisons between electrodes with and without a hydrogel coating 
for (A) trial 1 and (B) trial 2, showing a consistent 1.5-2.5 A/m2 gap. 
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 5.4.4 Protection of anode biofilm against ammonia shock 

 To investigate the effect of the coatings to protect from a chemical shock, anodes were 

exposed to ammonia-N in concentrations ranging from 6 ± 10 g NH4-N, this is representative of 

realistic industrial wastewaters such as fisheries, swine manure, etc.256,257 During the spike in 

concentration of 6.8 g/L NH4-N into an acetate fed MEC with typical NH4-N concentration of 

around 0.4 g N/L, there is an initial larger decrease in current density magnitude by the uncoated 

electrode than the coated electrode, with a slightly larger current density decrease as a percentage 

of pre-spike value (Figure 5.8C). After the electrodes are swapped into new reactors with regular 

NH4-N concentrations, the coated electrode reaches high levels of current density, similar to its 

original value and faster than the uncoated reactor (Figure 5.8F), eventually surpassing its pre-

spike current production. The current density gap between coated and uncoated reactors falls from 

55-65% pre-spike to 75-85% post-spike in trial 1. This gap decrease is not as significant in trial 2 

as the reactor has already been exposed to high concentrations of ammonia, reducing the pre-spike 

gap.  Likely reasons for this observation could be connected to a modified pH buffering/transport 

through the coating which had likely retained some NH4-N ions due to ion-dipole 

interactions.258,259 García-Jimen and Estelrich has previously reported a dipole±cation binding 

between the ether group of the PEG chain and the positive charge of iron oxide particles by 

disappearance of the stretching band characteristic of the C-O-C group (1080 cmí�).258 The release 

of NH4-N could help with added buffering capacity, as shown by previous research,260 which could 

lead to further increase in current density. Additional pH experiments could shed greater level of 

detail on the observed increase in current density in coated biofilm anodes after high NH4-N 

exposure. 
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Figure 5.8. 6.8 g/L NH4-N spike. Pre-spike current density difference changes from 55-65% to 
75-85% difference post spike and media replacement. 

 

 Figure 5.9 shows that at a higher ammonia concentration of 10.8 g/L, the results replicate 

that of the lower ammonia spike concentration and the coated electrodes show an even greater 

positive impact as NH4-N concentration increases. The coated electrode continues to have a more 

subdued reaction to the shock addition, while returning to high current density more quickly than 

the uncoated electrode. In fact, these effects are amplified at this higher ammonia level. The current 

density gap between the coated and uncoated electrodes narrows to 80-90%, conditioning the 

coating as with the lower ammonia addition. Additionally, during the period of exposure to the 
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high ammonia concentration, the coated reactor actually reaches a higher current density than the 

XQFRDWHG� UHDFWRU�� 7KLV� VKRZV� WKDW� WKH� FRDWHG� HOHFWURGH¶V� UHVSRQVH�� UHODWLYH� WR� WKH� XQFRDWHG�

electrode, improves as the ammonia concentration increases (Figure 5.10). This could be due to 

slower diffusion through the coating, and it suggests that the coating may provide some protection 

to the biofilm against other toxicants as well.  

 

Figure 5.9. 10.8 g/L NH4-N spike. Post spike current difference from 75-85% to 80-90% in trial 
1 and 67-77% to 80-90% in trial 2. 
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Figure 5.10. Variance reduction between the current density of the uncoated and coated 
electrode before and after ammonium spike. 

 5.5 Conclusion 

For practical applications of BESs requiring long operation times, improving the long-trem 

stability of EAB under environmental pressures is a high priority.261 In this paper we demonstrated 

the use of PEG-divinyl sulfone hydrogels as coatings over anode biofilms for EAB protection from 

changes in the chemical environment. We have demonstrated the long-term stability of the 

proposed coating in the experimental setup for more than 30 days. For exploring the potential of 

the coating for biofilm protection from environmental stressors, as a model system, the response 

of coated electrode to ammonia toxicity was evaluated. To this end, different concentrations NH4-

N were introduced to the system and the changes in current density of the coated and uncoated 

electrode was monitored. Initially, before the ammonia spike, the uncoated electrode reached a 

higher current density and this difference remained consistent over time. However, during the 

ammonia spike, the coated electrode responded slower to the negative impact of the added 
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ammonia, and less reduction in current density was observed for this electrode, eventually resulting 

in a higher current density in the coated electrode. After replacing the media with new media 

without high concentrations of ammonia, the coated electrode reached an even higher current 

density for a period of time. Although the higher current density observed for the coated electrode 

did not last and the uncoated electrode eventually surpassed it, the current density difference that 

was observed initially in the system was narrowed. It was also observed that introducing higher 

concentrations of NH4-N to the system further decreases this difference. We believe the reason 

behind this observation is due to dipole interactions between the PEG-based coating and the NH4-

N ions due to cation coordination with the ether oxygen of the PEG molecule, an effect noted with 

cationic molecules and PEG units in other reports. 258,259 Based on this hypothesis, the coatings 

likely retain some NH4-N in its network and prevent the biofilm from experiencing the high 

amount of NH4-N that the uncoated electrode experiences. Moreover, after replacing the media, 

when high concentrations of ammonia are no longer present, the NH4-N that is retained within the 

coating can likely enhance the buffering capacity and have a positive impact on the biofilm 

metabolic activity. However, due to the concentration gradient of NH4-N in the coating and in the 

bulk, this positive response fades as NH4-N diffuses out of the coating and into the bulk media. 

Future experiments with changing the pH of the media can further confirm the pH 

buffering influence of NH4-N on the system. 

$FNQRZOHGJPHQW��

7KLV�ZRUN�ZDV�VXSSRUWHG�E\�WKH�1DWLRQDO�6FLHQFH�)RXQGDWLRQ��$ZDUG����������
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Chapter 6 - 6XPPDU\�DQG�)XWXUH�5HFRPPHQGDWLRQV 

 6.1 Photodegradable hydrogels for high-throughput screening, identification, 

and on-demand isolation of rare microbial cells. 

 Hydrogels are hydrophilic polymeric materials with the ability to retain large amounts of 

water. These features, along with porous structure, allow for the exchange of oxygen, nutrients, 

and other biomolecules from these interfaces. Stimuli-responsive hydrogels are a category of 

hydrogels that can undergo changes in their physical and chemical traits in response to an external 

stimulus, enabling manipulation of the cell microenvironment. These properties make stimuli-

responsive hydrogels ideal materials for applications such as drug delivery and tissue engineering.  

 The potentials of hydrogel materials have not been well explored in microbiology. 

Therefore, most of this dissertation (Chapter 3 and 4) emphasizes the biocompatibility of 

photodegradable polyethylene glycol (PEG) o-nitrobenzyl diacrylate hydrogels for high-

throughput microbial cell growth and cell release with selectivity and specificity for downstream 

genetic analysis using a 365 nm light patterning device. 

 6.1.1 PEG-based hydrogels for high throughput screening of microbial cells.   

 Hydrogels are appropriate environments to interact with microbial cells because of their 

aqueous environment, tunable mechanical and chemical properties, and porous structure. In this 

thesis, the first portions are allocated to study the feasibility of using PEG-based hydrogels as a 

high-throughput cell culture platform. PEG-based hydrogels in these studies contained ester 

groups, which are susceptible to hydrolysis. It was observed that culturing entrapped cells within 

these hydrogels resulted in the formation of clonal microcolonies from the original individual cells. 
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We believe this is partially due to a bacteria dependent degradation in the hydrogel matrix, 

providing additional room for cell growth while remaining encapsulated in the matrix. The 

compatibility of the PEG-based hydrogel for cell growth favored the bacterial cell encapsulation 

at high-densities, allowing for the monitoring tens of thousands of cells parallelly, enabling 

genome-wide screening for bacterial cells with rare behavior. As a model system, we encapsulated 

Agrobacterium tumefaciens C58 bacterial cells within 13 µm thick hydrogels layers at a density 

of 90 cells/mm2. This seeding density allowed parallel monitoring of 28,000 C58 cells in each 

hydrogel. Hydrogels were incubated in the presence of an inhibitory molecule, agrocin 84, 

produced by the biocontrol agent Rhizobium rhizogenes K84 to the growth of C58. Monitoring the 

growth of individual cells and screening for rare growth behavior, enabled the identification of 

rare C58 mutants resistant to agrocin 84. Here, screening 28,000 C58 cells resulted in identification 

of 9 mutants that were able to grow in the presence of agrocin 84. Identified rare colonies were 

exposed to a patterned UV light source and the cells were recovered from the hydrogel. To validate 

the observed phenotype, genomic analysis of the isolates was done, demonstrating that seven of 

the resistant strains had the gene mutation (acc locus of the Ti plasmid) that was previously 

reported. This confirmed the successful application of the platform for connecting observed 

phenotypes to genotype. 

 6.1.1.1 Future work 

 Future work can explore the mechanisms of bacteria degradation in the hydrogel network. 

We believe the ability of bacteria for colony formation can have several reasons including: (1) 

Ester hydrolysis in the hydrogel network; it is known that bacteria are able to produce esterase, an 

enzyme with the ability to hydrolyze esters, which are present in the PEG hydrogel crosslinker 

here,262 and (2) pH change; metabolic activity of bacteria can also change the pH of the media, and 
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it is likely that they are able to change the localized pH and affect the hydrolysis.263 Therefore, it 

would be beneficial to investigate crosslinking chemistries that offer more stable hydrogels, such 

as thiol-maleimide, and thiol-vinyl sulfone hydrogels that do not contain ester groups and their 

susceptibility to bacteria degradation is not well characterized.  

 6.1.2 Light responsive PEG-based hydrogels for microbial cell isolation with 

spatiotemporal control. 

 In this thesis, PEG-based hydrogels incorporated with a light-responsive moiety, o-

nitrobenzyl, were used for the controlled release of target cells upon light exposure. We 

investigated the degree of control over the hydrogel degradation and cell release mechanisms. The 

ability of the light patterning device to project high-resolution patterns for hydrogel degradation 

was confirmed by using various patterns enabling cell release with different morphology. Release 

kinetics were investigated to obtain the minimum light dose necessary for cell release for 

minimizing the DNA damage to the cells by the UV light. DNA quality of the released cells after 

light exposure was measured, showing that light exposure had no measurable impact on the DNA 

quality under the light dose used in these studies.  

 The isolation of individual microbes from a heterogeneous population or community at the 

single-cell level is critical for discovering and characterizing novel or rare organisms with essential 

functions. Also, with the advent of single-cell PCR and single-cell genomics, isolation of 

unculturable microbes for sequencing is an essential but overlooked step for discovering new 

microbes with unique functions. A new approach to screen and isolate cells at individual levels at 

high purity and into low (1 nL-1 pL) solution volumes for downstream analysis would serve as a 

valuable tool for single-cell studies. Micron-scale pattern resolution of the Polygon400 light 
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patterning tool also enables the potential for release at the single-cell level. A representative image 

showing the Polygon400 light patterning tool resolution that allows for single cells release from 

the hydrogels is shown in Figure 6.1. However, this result is limited to releasing the single cell 

into large solution volumes. Coupling these hydrogels with a microfluidic device that can capture 

single cells into pL water droplets would provide a solution and would offer an approach which 

would also have a broader impact in biomedical diagnostics, such as recovery of rare cells from 

blood (e.g., circulating tumor cells, fetal cells, or vascular endothelial cells) 

 

Figure 6.1 Single-cell isolation from the hydrogel. (A) 1:1,000 of fluorescently labeled E. coli -
FM41:E. coli cells captured with the photodegradable hydrogel. The labeled E. coli represents the 
"rare" cell. (B) After identification, targeted cell is isolated in solution. 

 

 6.1.2.1 Future work 

 For future work, the photodegradable hydrogel interfaces previously developed in this 

thesis can be interfaced with a simple water-oil microfluidic device to isolate a single cell into pL 

solution volumes. For instance, the hydrogel area can overlay with a PDMS microfluidic device 

with a channel volume between 10-50 nL. This method could enable the identification of 

individual cells with rare behavior, which can then be targeted with the patterned illumination tool 
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for release into the channel. Once suspended in solution, the targeted cell could then be moved 

downstream of the hydrogel and confined in a water-oil plug using a microfluidic T-junction, 

commonly used in droplet microfluidics systems, where it can be inspected with microscopy. The 

high-purity droplet can then be removed from the device for downstream processing. 

 My second suggestion for future work is to investigate the near-infrared light source as an 

alternative to the UV light source for cell isolation. For cell release at the single-cell level, due to 

the need to use higher microscope magnifications such as 40X- 100X, the intensity of the light 

exposed by the Polygon400 device is extremely high, which could be damaging to the cell. An 

alternative could be purchasing a near-infrared light source and encapsulating upconversion 

nanoparticles (UCNPs) within the hydrogels. UCNPs are nanoparticles that can convert low-

energy near-infrared (NIR) excitation into ultraviolet emission. Therefore, by entrapping UCNP 

inside the hydrogel and NIR irradiation, the UCNPs would generate the UV light required for 

cleaving the o-nitrobenzyl groups, enabling hydrogel degradation.  

 6.2 Hydrogel coatings for covering and protecting anode biofilm of 

bioelectrochemical systems from environmental pressure. 

 Cell immobilization techniques have shown to be beneficial to decrease the effect of 

environmental stressors on microbes. Specifically, using polymers to entrap the electroactive 

bacteria (EAB) on the anode electrode can provide additional mechanical strength and protect the 

biofilm. The porous structure of these biomaterials can also allow for nutrient transport to the 

biofilm, to preserve the biofilm viability. In the last portion of this thesis, we investigated the use 

of PEG-divinyl sulfone hydrogels for anode biofilm encapsulation and its effect on MEC 

efficiency. We demonstrated that hydrogel formation through Michael type addition reaction 
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between thiol and vinyl sulfone groups resulted in a stable hydrogel network. The developed 

hydrogel was stable in various pH values (pH 3 to pH 10) for over 70 days, confirming their 

potential for BESs application operating at multiple conditions for a long time. We also 

investigated the optimum way of depositing the hydrogel coating on the anode biofilm without 

damaging the biofilm. We showed that cuboid holders can be made from parafilm based on the 

electrode size to provide a simple encapsulation method. The electrode is placed inside the holder, 

and hydrogel polymerization occurs within one hour. After the polymerization, the parafilm holder 

is removed by unwrapping the parafilm sheet from the electrode. The hydrophobicity of parafilm 

inhibited the attachment of hydrogel solution to the holder, resulting in a clean coating stabilized 

to the biofilm functionalized anode. Current density response of the coated anode compared to the 

uncoated anode was monitored overtime to investigate the effect of coating on biofilm metabolic 

activity. The results showed that in a standard-setting and without an environmental shock, the 

uncoated electrode had a higher current density, while the coated electrode responded better when 

the system was introduced to a toxin such as ammonium. We believe reduction in the current 

density in the standard-setting is likely due to the substrate transport limitation throughout the thick 

coating. Specially, we hypothesis that the better performance of the coated electrode is due to the 

hydrogel acting as an ammonium sponge, which impedes ammonium from reaching the biofilm. 

We believe this is likely due to a dipole±cation binding between the ether group and the positive 

charge of NH4
+, resulting in delaying the NH4

+ to reach the anode biofilm. 

 6.2.1 Future work 

 For future investigation, to take advantage of the full potential of hydrogel coatings for 

anode biofilm protection, it is vital to address the limitations they face. Achieving thin coatings is 

challenging and thick hydrogels such as those used here may result in substrate transport limitation, 
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reducing the current density. Therefore, it is important to explore pathways that can compensate 

for this limitation to achieve higher yields in BESs. 

 My first recommendation is including a systematic investigation of MEC performance after 

coating with hydrogels of different mesh sizes, as this will greatly impact diffusional mass transfer. 

This is beneficial for finding an optimum mesh size that better allow the substrate transport to the 

biofilm, while having a good mechanical stability over the course of the operation.  

 Another method to enhance the performance of these devices is the use of additives to the 

hydrogel such as enzymes and conductive materials. For example, by coupling enzymes 

throughout these hydrogels, we can better control the chemical environment at the 

hydrogel/biofilm interface. Glucose oxidase (GOx) is an enzyme that utilizes oxygen and produces 

hydrogen peroxide in return.264 Thus, we can couple this enzyme throughout the coating for 

oxygen depletion to ensure anerobic conditions. Lactate dehydrogenase (LDH) is another enzyme 

that can be coupled throughout the coating to break down glucose into organic acids that are readily 

consumed by bacteria in the biofilm. Therefore, addition of these enzymes can be beneficial for 

biofilm metabolism which governs the performance of BESs.  

 Carbon nanotubes (CNTs) are another material that can be incorporated into the coating 

structure. These materials have been utilized to modify the anode electrode in BES, accelerating 

electron transfer to enhance the performance. Therefore, we hypothesize that adding this material 

to the coating could accelerate electron transfer and compensate for the reduction in current density 

due to the transport limitation, improving the efficiency. Furthermore, CNTs may also serve as an 

enhancer of the mechanical integrity of the coating, making it more stable. 
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Appendix A - /LVW�RI�PDWHULDOV�IURP�&KDSWHU�� 

Name  Company 
Material  
(3-Mercaptopropyl)triethoxysilane Sigma-Aldrich 
Alconox Detergent Powder Alconox 
Ammonium Sulfate Fisher Chemical 
Calcium Chloride, Anhydrous Fisher Chemical 
Citric acid monohydrate Sigma-Aldrich 
D-Glucose (Dextrose) VWR Amresco Life Science 
Dneasy Blood & Tissue Kit (50)  
DOWSIL 184 Silicone Elastomer Base The Dow Chemical Company 

DOWSIL 184 Silicone Elastomer Curing Agent 
DOW SILICONES 
CORPORATION 

Ethanol, Anhydrous Fisher Chemical 
Fisherbrand Microscope Cover Glass Fisher Scientific 
Fisherfinest Premium Microscop Slides Plain Fisher Scientific 
Hydrogen peroxide solution Sigma-Aldrich 
Isopropanol Sigma-Aldrich 
Magnesium Sulfate, 7-Hydrate Macron Fine Chemicals 
Methanol Sigma-Aldrich 
Nitrogen, Compressed Matheson 
PBS Phosphate Buffer Sali 10X  
Pentaerythritol tetra(mercaptoethyl) polyoxyethylene (4 arm-PEG) NOF America Corporation 
Phosphate Buffered Saline (PBS), 10X VWR Amresco Life Science 
Polydimethyl Siloxane (PDMS) Slygard 184 Dow Corning 
Premium Microscope Slides Fisher Scientific 
Sodium chloride Sigma Life Science 
Sodium hydroxide Sigma-Aldrich 
Sodium phosphate monobasic dihydrate Sigma-Aldrich 
Stainless Steel Thickness Gage Precision Brand Products 
Sulfuric acid Sigma-Aldrich 
Toluene, anhydrous, 99.8% Sigma-Aldrich 
Trichloro (1H,1H,2H,2Hperfluorooctyl) silane (TPS), 97% Sigma-Aldrich 
Tryptic Soy Broth Sigma-Aldrich 
Name  
Equipment   
Autoclave SK300C Yamato Scientific 
BioStack Microplate Stacker BioTek Instruments 
Brightfield Upright Microscope Olympus Corporation 
Centrifuge 5702 Eppendorf 
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Incu-Shaker Mini Benchmark 
NanoDrop OneC Spectrophotometer Thermo Scientific 
Oxygen Plasma Cleaner Harrick Plasma 
Plasma Cleaner Harrick Plasma 
Polygon400 Mightex 
Ultrasonic Sonicator Fischer Scientific 
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Appendix B - /LVW�RI�$EEUHYLDWLRQ 

Name Abbreviation 
 Lead (II) ion Pb2

+  
(3-mercaptopropyl) trimethoxysilane  MPTS 
A. tumefaciens C58-GFP Himar1 mutant library   C58 ML 
Acetic acid  AcOH 
Agrobacterium tumefaciens A. tumefaciens  
Ammonium ion NH4

+  
Ammonium ion nitrogen content NH4-N 
Anhydrous sodium sulfate  Na2SO4 
Anion exchange membrane AEM 
Anode-respiring bacteria  ARB 
Arg±Gly±Asp  RGD 
Bioelectrochemical systems  BESs 
Cell free culture fluid CFCF 
Chemical oxygen demand COD 
Colony formation units  CFU 
Deionized water DI water 
Deoxyribonucleic Acid DNA 
Deuterated chloroform  CDCl3 
Dichloromethane CH2Cl2 
Dicyclohexyl carbodiimide DCC 
Diethyl ether  Et2O 
Dimethylformamide DMF 
Electroactive bacteria EAB 
Escherichia coli E. coli 
Ethanol EtOH 
Extracellular electron transfer  EET 
Fluorescein isothiocyanate FITC 
Fluorescent activated cell sorting  FACS 
Glucose oxidase  Gox 
High-performance liquid chromatograph HPLC 
High-throughput screening assays THS 
Hydrogen peroxide H2O2  
Lactate dehydrogenase  LDH 
Lower critical solution temperature  LCST 
Microbial electrolysis cells  MEC 
Microbial fuel cells  MFC 
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Microbial Genomic Sequencing Center  MiGS 
Microbial peroxide producing cells (MPPCs)  
Mutant libraries  ML 
Near-infrared light NIR light 
N-hydroxysuccinimide  NHS 
o-nitrobenzyl  o-NB 
PEG-divinyl sulfone PEGVS 
Pentaerythritol tetra (mercaptoethyl) polyoxyethylene  PEG-tetrathiol 
Poly(ethylene glycol) diacrylate  PEGDA 
Polyacrylamide PAA 
Polydimethylsiloxane  PDMS 
Polydopamine PDA 
Polyethylene glycol  PEG 
Polymerase chain reaction PCR 
Rhizobium rhizogenes K84  K84 
Signal sender cells SCs 
Sodium hydrogen phosphate  NaH2PO4 
Sodium hydrogen sulfate NaHSO4 
Sodium hydroxide NaOH 
Sodium phosphate monobasic dihydrate NaH2PO4·2H2O 
Sulfuric acid H2SO4 
Triethylamine Et3N 
Ultraviolet light UV light 
Upconversion nanoparticles  UCNPs 
Upper critical solution temperature  UCST 
Viable but non-culturable cells  VBNC 
Weight average molecular weight MW 
Wildtype A. tumefaciens C58 C58 

 

 
 
 

 


