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Abstract 

Water availability is a key driver of many plant and ecosystem processes in tallgrass 

prairies, yet we have a limited understanding of how grassland plants utilize water through space 

and time. Considering that tallgrass prairies experience tremendous heterogeneity in soil 

resources, identifying spatiotemporal variation in plant ecohydrology is critical for understanding 

current drivers of plant responses to water and for predicting ecosystem responses to future 

changes in climate. Here, I investigated the patterns, drivers, and ecological consequences of 

plant water use (e.g., water uptake, water redistribution, and water loss) in a native tallgrass 

prairie located in northeastern Kansas, USA. Using a combination of leaf gas exchange, sap 

flow, and isotopic techniques, I addressed four main questions: 1) How does fire and grazing by 

bison impact use of water from different sources and niche overlap for common grasses, forbs, 

and shrubs? 2) Does hydraulic lift occur in grazed and ungrazed tallgrass prairie, and does this 

impact facilitation for water within grassland communities? 3) What are the patterns and drivers 

of nocturnal transpiration in common grassland species? 4) How does diel stem sap flow and 

canopy transpiration vary among common grassland species? 

I found that bison grazing increased the depth of water uptake by Andropogon gerardii 

and Rhus glabra, reducing niche overlap with co-occurring species. Conversely, grazing did not 

affect hydraulic lift, which was generally uncommon and likely limited by nocturnal 

transpiration. Further, leaf gas exchange measurements indicated that nocturnal transpiration 

occurred commonly in tallgrass prairie plants and was greatest among grasses and early in the 

growing season. Nocturnal transpiration was not driven by vapor pressure deficit or soil 

moisture, as commonly observed in other systems, but was regulated by nocturnal stomatal 

conductance in most species. Finally, I found that daytime sap flow rates were variable among 



  

species and functional types, with larger flux rates among woody species. Nocturnal sap flow 

rates were more consistent across species, which caused nighttime sap flow and transpiration to 

account for a larger proportion of daily flux rates in grasses than in forbs or shrubs. These results 

show that water uptake, water redistribution, and water loss are all influenced by different biotic 

and abiotic drivers and have varying ecological impacts across a heterogeneous landscape. 

Additionally, extensive differences in water flux exist among co-occurring species and plant 

functional groups, which likely reflect varying strategies to tolerate water limitation. These 

results suggest that shifts in the abundance of these species with future climate changes, or with 

ecosystem state changes, will likely impact ecosystem-level water balance. 
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Abstract 

Water availability is a key driver of many plant and ecosystem processes in tallgrass 

prairies, yet we have a limited understanding of how grassland plants utilize water through space 

and time. Considering that tallgrass prairies experience tremendous heterogeneity in soil 

resources, identifying spatiotemporal variation in plant ecohydrology will be critical for 

understanding current drivers of plant responses to water and for predicting ecosystem responses 

to future changes in climate. Here, I investigated the patterns, drivers, and ecological 

consequences of plant water use (e.g., water uptake, water redistribution, and water loss) in a 

native tallgrass prairie located in northeastern Kansas, USA. Using a combination of leaf gas 

exchange, sap flow, and isotopic techniques, I addressed four main questions: 1) How does fire 

and grazing by bison impact use of water from different sources and niche overlap for common 

grasses, forbs, and shrubs? 2) Does hydraulic lift occur in grazed and ungrazed tallgrass prairie, 

and does this impact facilitation for water within grassland communities? 3) What are the 

patterns and drivers of nocturnal transpiration in common grassland species? 4) How does diel 

stem sap flow and canopy transpiration in vary among common grassland species? 

I found that bison grazing increased the depth of water uptake by Andropogon gerardii 

and Rhus glabra, reducing niche overlap with co-occurring species. Conversely, grazing did not 

affect hydraulic lift, which was generally uncommon and likely limited by nocturnal 

transpiration. Further, leaf gas exchange measurements indicated that nocturnal transpiration 

occurred commonly in tallgrass prairie plants and was greatest among grasses and early in the 

growing season. Interestingly, nocturnal transpiration was not driven by vapor pressure deficit or 

soil moisture, as commonly observed in other systems, but was regulated by nocturnal stomatal 

conductance in most species. Finally, I found that daytime sap flow rates were variable among 



  

species and functional types, with larger flux rates among woody species. Nocturnal sap flow 

rates were more consistent across species, which caused nighttime sap flow and transpiration to 

account for a larger proportion of daily flux rates in grasses than in forbs or shrubs. These results 

show that water uptake, water redistribution, and water loss are all influenced by different biotic 

and abiotic drivers and have varying ecological impacts across a heterogeneous landscape. 

Additionally, extensive differences in water flux exist among co-occurring species and plant 

functional groups, which likely reflect varying strategies to tolerate water limitation. These 

results suggest that shifts in the abundance of these species with future climate changes, or with 

ecosystem state changes, will likely impact ecosystem-level water balance. 
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Chapter 1 - Introduction 

 Overview 

Although considered relatively mesic ecosystems, tallgrass prairies are often water-

limited for much of the year. The tallgrass prairies of North America, for example, receive the 

majority of annual precipitation primarily early (May-June) and late (September) in the growing 

season, and are typically dry during July and August. When growing season precipitation does 

occur, rain events are intermittent and fall in large, infrequent events, resulting in long dry 

periods during which shallow soil water rapidly declines (Abrams and Knapp 1986; Williams 

and Rice 2007; Zeglin et al. 2013). Soil water recharge occurs during the non-growing season, 

when water is able to infiltrate to deep soil layers (> 2 m deep) (Ransom 1998; Nippert and 

Knapp 2007a). Deep water is typically available during the entire year, which helps develop a 

moisture gradient throughout the soil profile (e.g., dry shallow soil – wet deep soil). Further 

complicating this system, soil water content is patchy across the landscape and is modulated by 

topography (Nippert et al. 2011) and disturbance regimes such as fire (Hulbert 1969; McMurphy 

and Anderson 1965) and grazing (Archer and Detling 1986; Harrison et al. 2010; Greenwood 

and McKenzie 2001; Hamza and Anderson 2005). 

Numerous aspects of tallgrass prairie structure and function are sensitive to variation in 

soil water content. Considering that water limitation is most prevalent during the middle of the 

growing season, when the majority of vegetative growth occurs (Nippert et al. 2011), 

precipitation and soil water are positively correlated with aboveground net primary productivity 

(Briggs and Knapp 1995; Knapp and Smith 2001). Soil water availability can also impact plant 

community composition and structure, having variable effects on species diversity (Knapp et al. 

2002; Jones et al. 2016) and intraspecific variation in genetic diversity (Avolio et al. 2013). 
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Others have shown that soil water variability shifts microbial communities (Zeglin et al. 2013) 

and alters many ecosystem processes such as soil CO2 flux (Knapp et al. 2002; Harper et al. 

2005), decomposition rates (Schuster 2016), and nitrogen cycling (Groffman et al. 1993). At 

larger scales, precipitation drives earth-atmosphere exchange of landscape carbon and water 

fluxes (Petrie et al. 2012; Logan and Brunsell 2015). 

Despite the recognized importance of water in tallgrass prairies we still have a limited 

understanding of the mechanistic processes that underpin community and ecosystem responses to 

water availability. While leaf physiological responses to water have been well studied in 

grasslands, the vast majority of research examining mechanisms of plant water use does not 

consider how these processes vary across the landscape or at different temporal scales. For 

example, previous studies have shown that leaf gas exchange and water potential are sensitive to 

changes in soil water, and this varies both inter-specifically (Knapp 1984; Nippert et al. 2007, 

2009) and intra-specifically (Avoilio et al. 2013; Hartman et al. 2011; O’Keefe et al. 2013). 

Different species and plant functional types also exhibit varying water uptake strategies (Nippert 

et al. 2007a,b), drought tolerance traits (Tucker et al. 2011), and hydraulic strategies (Ocheltree 

et al. 2013) to persist through periods of water limitation. However, plant water-use is typically 

only studied in one or a few locations, or in common garden experiments, which does not reveal 

potential variation in these responses across a heterogeneous landscape (Knapp et al. 1993). 

These studies also utilize instantaneous measurements across a growing season, which do not 

fully describe the potential dynamic variation in these responses through time. Finally, most 

research on tallgrass prairie ecohydrology has only investigated water relations in dominant 

grasses; comparisons among various growth forms and subdominant species are rarely 

considered. Thus, previous investigations of grassland ecohydrology have not captured the full 
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extent of potential patterns across a heterogeneous landscape or through time. Considering that 

tallgrass prairies experience tremendous spatiotemporal variability in soil moisture and other 

resources, identifying spatial and temporal variation in plant ecohydrology will be critical for 

predicting ecosystem responses to future changes in climate. 

Many sources of spatiotemporal variation in plant ecohydrology exist in tallgrass prairies. 

First, water use may vary across the landscape as a function of topography, fire frequency, or 

large herbivore grazing. Upland soils are shallower, rockier, and drier than lowland soils (Jantz 

et al. 1975; Oviatt 1998), which could induce variation in plant water-use across topographic 

gradients (Nippert et al. 2007a,b; Nippert et al. 2011). Numerous factors associated with fire and 

grazing, including changes in root growth (Johnson and Matchett 2001; Klumpp et al. 2009; 

Nippert et al. 2012) and soil moisture (Archer and Detling 1986; Harrison et al. 2010; 

McMurphy and Anderson 1965), could also alter water-use dynamics in grasslands. Assessing 

how plant water-use varies across the landscape in response to topography or common grassland 

management practices could provide mechanistic insight into how various ecological processes 

such as niche partitioning, interspecific competition, and community composition vary across 

space, and could also improve predictions of how these processes may change in the future.  

Second, patterns of water use may vary within individual plants as water redistribution 

across roots (i.e. hydraulic lift). Hydraulic lift, the passive movement of water across soil water 

potential gradients through plant roots (Breazeale 1934; Richards and Caldwell 1987; Caldwell 

et al. 1998), has been observed in a wide range of arid and semi-arid ecosystems (reviewed in 

Neumann and Cardon 2012; Prieto et al. 2012; Sardans and Penuelas 2014). Although not 

previously observed in grasslands, hydraulic lift may play an important role in tallgrass prairies 

because most tallgrass prairies plants have deep roots (Weaver 1919) that extend between areas 
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of dry, shallow soil and deep, wet soil (Abrams and Knapp 1986; Williams and Rice 2007; 

Zeglin et al. 2013). Understanding if, when, and where water redistribution occurs in tallgrass 

prairies is important because this process could represent an unidentified drought avoidance 

strategy, with potential consequences for community interactions such as facilitation (Caldwell 

1990; Dawson 1993; Moreira et al. 2003; Warren et al. 2007) and competition (Ludwig et al. 

2003, 2004) among neighboring plants. 

Third, water use may vary through time, at daily, intra-annual, and inter-annual time 

scales. Spot measurements of leaf gas exchange across a growing season and continuous eddy 

covariance measurements across the landscape show that water fluxes do indeed vary across time 

in tallgrass prairies (Nippert et al. 2007; Logan and Brunsell 2015). However, instantaneous leaf 

level measurements do not capture high-resolution temporal flux dynamics, while eddy 

covariance measurements integrate water fluxes over large spatial scales and cannot be used to 

identify species-specific drivers of these fluxes. Thus, we lack an understanding of continuous 

water use in individual species. Additionally, we have no knowledge of how diel water fluxes 

vary throughout a single day. While many studies have shown that substantial rates of nocturnal 

transpiration occur in other ecosystems (Caird et al. 2007; Dawson et al. 2007), whether 

nocturnal water loss occurs in tallgrass prairie is unknown. Evaluating diel patterns of water loss 

will therefore improve estimates of tallgrass prairie water budgets and also provide insight into 

whether this phenomenon exists as an important ecohydrological strategy in diverse grassland 

communities. 

 Objectives and Hypotheses 

The primary goal of this dissertation was to better understand the patterns, drivers, and 

ecological consequences of grassland water fluxes at fine spatial and temporal scales, focusing 
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on water uptake (Chapter 2), water redistribution (Chapter 3), and water loss (Chapters 4-5). 

Using a combination of leaf gas exchange, sap flow, and isotopic techniques, I addressed the 

following questions: 1) How does fire and grazing by bison impact water source use and niche 

overlap for common grassland grasses, forbs, and shrubs? 2) Does hydraulic lift occur in grazed 

and ungrazed tallgrass prairie, and does this impact facilitation for water within grassland 

communities? 3) What are the patterns and drivers of nocturnal transpiration in common 

grassland species? 4) What are the patterns and drivers of stem sap flow and canopy transpiration 

in common grassland species? 

 

 Chapter 2: Water Uptake 

Fire and grazing are important disturbances in grasslands, yet we know little about how 

they impact plant physiological processes, such as plant water uptake. To address this knowledge 

gap, I evaluated whether fire and grazing alter water source use in common grassland species, if 

changes in source water alter niche overlap among species, and how these patterns vary across 

topographic gradients and through time. Using stable isotope techniques I tested the following 

hypotheses: 

1) Because grazing can reduce shallow grass root biomass, the presence of bison will lower 

the depth of water utilized by a dominant grass (Andropogon gerardii). 

2) The presence of bison will also lower the depth of water utilized by forb and woody 

species because grazing reduces soil moisture and because these species can shift 

dependence on water source according to availability.  

3) Forbs and woody species will use deeper water in recently burned areas because fire can 

also reduce surface soil moisture. 
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4) Shifts in water uptake associated with varying combinations of grazing and fire 

treatments will alter niche overlap among species. 

5) Responses to low soil moisture associated with fire and grazing would be exacerbated in 

xeric uplands and later in the growing season, when soil water is more limiting.  

 

 Chapter 3: Water Redistribution  

Hydraulic lift is a key ecohydrological process in many water-limited ecosystems, though 

the occurrence and relevance of this phenomenon in grasslands is unknown. However, hydraulic 

lift may be an important drought avoidance strategy in tallgrass prairies because these 

ecosystems are often limited by water and because many prairie plants have deep roots that 

extend between wet and dry soil layers. Here, I assessed whether hydraulic lift occurs in a 

tallgrass prairie, if bison grazing or nocturnal transpiration limits hydraulic lift, and if water 

redistribution results in facilitation for neighboring grasses. I tested four hypotheses: 

1) Common grass, forb, and woody species will all exhibit hydraulic lift because they are all 

deep-rooted (≥ 2 m deep). 

2) Because grazing reduces shallow root biomass, the presence of bison will reduce water 

efflux from shallow roots and ultimately limit hydraulic lift. 

3) Reductions in hydraulic lift will also be associated with higher rates of nocturnal 

transpiration. 

4) If a dominant grass, A. gerardii, does not exhibit hydraulic lift, it will instead utilize 

water lifted to shallow soil by neighboring shrubs or forbs. 
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 Chapters 4 & 5: Water Loss 

Tallgrass prairies are diverse ecosystems that are currently undergoing extensive 

landscape changes. However, predicting corresponding changes in ecosystem fluxes is a major 

challenge because we do not know how transpiration dynamics vary at high-resolution temporal 

scales or among co-existing growth forms. In Chapter 4 I measured diel patterns of leaf gas 

exchange to assess whether nocturnal transpiration occurs among coexisting tallgrass prairie 

species, how patterns of nocturnal transpiration change over time, and whether nocturnal 

transpiration is regulated by plant stomata. Specifically, I tested the following hypotheses: 

1) Nocturnal transpiration will occur among coexisting plant functional types including 

grasses, forbs, and shrubs. 

2) Daytime and nocturnal transpiration will vary intra-annually and will be greatest early in 

the growing season, during periods with the highest soil water availability. 

3) Nocturnal water loss will be actively regulated by nocturnal stomatal conductance. 

 

In Chapter 5 I use external heat balance sap flow sensors and a Bayesian modeling 

technique to investigate continuous patterns of diel whole-plant water use in a grassland 

community. I tested two hypotheses: 

1) Diurnal and nocturnal fluxes will vary among common grasses, forbs, and woody 

species, with the highest rates observed among woody species. 

2) Flux rates will vary across a growing season and will be greatest during periods of high 

soil moisture. 
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Chapter 2 - Grazing by bison is a stronger driver of plant 

ecohydrology than fire history 
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The citation for this chapter is: O’Keefe K, Nippert JB (2016) Grazing by bison is a stronger 

driver of plant ecohydrology than fire history. Plant and Soil DOI 10.1007/s11104-016-3048-1 

 Abstract 

Fire and grazing are important disturbances in grasslands, yet we know little about how 

they impact a variety of plant physiological processes such as plant ecohydrology. Here, we 

assessed the impact of fire history and grazing by Bison bison on the source of water uptake and 

niche overlap in common grassland species at the Konza Prairie Biological Station, a temperate 

mesic grassland located in northeastern Kansas, USA. We used the stable isotopic signature of 

soil and xylem water to evaluate water uptake in Andropogon gerardii, Vernonia baldwinii, 

Amorpha canescens, and Rhus glabra within varying grazing (grazed, ungrazed), fire (0,1,2 or 3 

years since last burn), topography (upland, lowland), and month (July, August) contrasts over 

three years (2013-2015). The presence of grazers, not fire history, altered water uptake patterns 

in these common grassland species. Particularly, grazing increased the proportion of shallow 

water utilized by A. gerardii and R. glabra, reducing niche overlap with other co-occurring 

species. However, these responses varied intra-annually and were often modulated by 

topography. These results suggest that grazing can alter aspects of grassland ecohydrology at 

small scales, which may extend to impact community and ecosystem processes at larger spatial 

scales.  
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 Introduction 

Fire and grazing are important drivers of ecosystem structure and function in grasslands 

and savannas worldwide (Bond and Keeley 2005; Knapp et al. 1999). In mesic grasslands, 

grazing and fire can have strong but contrasting effects on vegetation dynamics such as primary 

productivity, plant diversity, and vegetation heterogeneity. Depending on the evolutionary 

history of grazing (Cingolani et al. 2005; Milchunas et al. 1988), large herbivores can increase 

species diversity and structural heterogeneity (Belsky 1992; Collins et al. 1998; Eby et al. 2014; 

Hartnett et al. 1996; Knapp et al. 1999) because they preferentially graze on dominant C4 grasses 

over subdominant C3 grasses, forb, and shrubs (Fahnestock and Knapp 1993; Veen et al. 2008). 

Conversely, fire reduces diversity and increases productivity by creating high light, low nitrogen 

environments that favor the growth of dominant C4 grasses (Briggs and Knapp 1995; Collins 

1992; Collins and Calabrese 2012; Collins and Smith 2006; Seastedt et al. 1991; Veen et al. 

2008). However when fire and grazing occur together, these drivers interact to create highly 

productive, diverse, and heterogeneous ecosystems (Anderson et al. 2006; Archibald et al. 2005; 

Collins et al. 1998; Collins and Calabrese 2012; Collin and Smith 2006; Hartnett et al. 1996; 

Noy-Meir 1995; Veen et al. 2008; Vinton et al. 1993). Consequently, these disturbances have 

been extensively studied and are often used as management tools to maintain grassland 

biodiversity (Fuhlendorf and Engle 2004; Hamilton 2007) and ecosystem structure (Briggs et al. 

2002; Briggs et al. 2005; Uys et al. 2004). 

Although vegetation responses to fire and grazing have been well studied at the 

community and ecosystem levels, comparatively little is known about the physiological 

mechanisms that underpin these patterns. Most research detailing physiological responses to fire 

and grazing have been limited to studies of leaf-level gas exchange and water potential. These 
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studies have shown that grazing generally increases photosynthetic rates following defoliation, 

allowing for rapid regrowth (Detling et al. 1979; Harrison et al. 2010; Painter and Detling 1981; 

Peng et al. 2007; Wallace 1990). Defoliation also reduces leaf area and thus, the amount of water 

transpired per ground area, which can increase soil moisture and leaf water potential of both the 

grazed plants (Archer and Detling 1986; Harrison et al. 2010; Svejcar and Christiansen 1987) 

and neighboring ungrazed plants (Fahnestock and Knapp 1993,1994). Conversely, fire increases 

photosynthesis soon after burning but reduces leaf water potential later in the growing season 

due to enhanced transpiration during hot, dry periods (Knapp 1985), although responses are often 

species specific and can vary across ecosystems (Hodgkinson 1992; Knapp 1985; Potts et al. 

2012; Turner et al. 1995).  

While many studies show sensitive leaf-level responses to grassland disturbances, it is 

unclear how fire and grazing affect other aspects of plant functioning such as whole-plant 

ecohydrology. Grassland ecohydrology is complex, even without considering the effects of fire 

and grazing, because ecohydrological processes are often influenced by environmental 

heterogeneity. For example, shallow and deeply rooted grassland species commonly exhibit 

vertical niche partitioning of water from contrasting soil depths (Ward et al. 2013; Weaver 1968; 

Weaver and Albertson 1943). However, the extent of niche partitioning can vary through space 

and time, as C4 grasses typically have a fixed reliance on water from the shallowest soil layers, 

while C3 forbs and shrubs exhibit more opportunistic plasticity to utilize water from multiple soil 

layers depending upon availability (Asbjornsen et al. 2008; Kulmatiski and Beard 2013; Nippert 

and Knapp 2007a,b; Priyadarshini et al. 2015). The observation that plant water uptake shifts in 

response to changing resources suggests that water use is likely sensitive to environmental 

changes associated with grassland disturbances as well.  
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Multiple factors associated with fire and grazing, including changes in root growth and 

soil moisture, could alter water use dynamics in grasslands. Grazing often reduces shallow root 

biomass as plants allocate carbon aboveground for regrowth (Johnson and Matchett 2001; 

Klumpp et al. 2009; Nippert et al. 2012), which may limit shallow water uptake in grasses. 

Grazing can also increase soil moisture by reducing transpiration (Archer and Detling 1986; 

Harrison et al. 2010; Svejcar and Christiansen 1987) or reduce soil moisture by compacting soil 

and limiting infiltration (Greenwood and McKenzie 2001; Hamza and Anderson 2005; Naeth et 

al. 1991). Similarly, fire can reduce soil moisture by removing detrital layers and exposing soil to 

higher temperatures and evaporation rates (Hulbert 1969; McMurphy and Anderson 1965). Drier 

soil resulting from either disturbance may shift plant dependence on deeper water, as has been 

observed in certain grassland species during seasonal drought (Asbjornsen et al. 2008; Nippert 

and Knapp 2007a,b). Water uptake should therefore be responsive to fire and grazing, which 

could have compounding impacts on other ecological processes such as niche partitioning, 

interspecific competition, and community composition. Thus, assessing how water uptake varies 

across a range of disturbance regimes will improve our understanding of how ecological 

interactions respond to common grassland management practices. 

Here, we evaluated the role of common grassland disturbances on vertical water 

partitioning within a tallgrass prairie community. Specifically, we asked: 1) Does grazing by 

Bison bison (bison) alter the depth of water uptake in common grass, forb, and woody species? 

Grazing can reduce shallow grass root biomass (Johnson and Matchett 2001; Nippert et al. 

2012), so we predicted that the presence of bison would lower the depth of water utilized by a 

dominant grass (Andropogon gerardii Vitman, big bluestem; Figure 2.1). Because grazing can 

also reduce soil moisture (Archer and Detling 1986; Greenwood and McKenzie 2001; Hulbert 
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1969), and because forbs and shrubs can shift dependence on water source according to 

availability (Asbjornsen et al. 2008; Nippert and Knapp 2007a,b), we predicted that bison would 

also lower the depth of water utilized by forb and woody species (Figure 2.1). 2) Does time since 

last prescribed fire modify the depth of water uptake in these species? Fire can also reduce soil 

moisture, so we predicted that forbs and woody species would use deeper water in recently 

burned areas compared to areas that were burned less recently (Figure 2.1). 3) Do shifts in water 

uptake alter the degree of niche overlap among species? We predicted that shifts in water 

associated with varying combinations of grazing and fire treatments would alter niche overlap 

among species (Figure 2.1). 4) Are these responses modulated by topography or by time of year? 

Finally, we predicted that responses to low soil moisture associated with fire and grazing would 

be exacerbated in xeric uplands and later in the growing season, when soil water is more 

limiting.  

 

 Methods 

 Site Description 

Research was conducted at the Konza Prairie Biological Station (KPBS), a 3,487-ha 

native tallgrass prairie supported by the NSF Long Term Ecological Research Network. KPBS is 

located within the Flint Hills of northeastern Kansas, USA (39.1°N, 96.9°W), where long-term 

weathering has created a topographically complex landscape consisting of flat upland ridges, 

deep-soiled lowlands, and steep slopes that span a relief of 40-70 m within watershed basins 

(Oviatt 1998). Layers of limestone and Permian shale alternate across the terrain (Jantz et al. 

1975) and soil depth varies by topography, with shallow (<0.5 m), rocky soil in the uplands and 

deep (>2.0 m) silty-clay loams in the lowlands. Lowland soils are generally wetter than uplands 
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and deep lowlands soils have water available throughout the growing season (Figure A.1). KPBS 

is divided into watersheds that receive varying combinations of fire frequency (burned every 1, 

2, 4, or 20 years) and grazing (grazed by cattle, bison, or ungrazed) treatments. The landscape is 

dominated by a few perennial C4 grass species and also contains numerous sub-dominant C3 

grass, forb, and woody species (Smith and Knapp 2003). 

The Flint Hills region experiences a mid-continental climate, with cool, dry winters and 

warm, wet summers. Mean annual precipitation for the region (1982-2014) is 829 mm, of which 

73% occurs during the growing season (April – September). Precipitation was 783 mm in 2013 

(77% of which occurred during the growing season), 706 mm in 2014 (68% of which occurred 

during the growing season), and 1002 mm in 2015 (75% of which occurred during the growing 

season). The average coldest month of the year (1982-2014) is January, with mean minimum and 

maximum air temperatures of -7.14°C and 4.87 °C, respectively. The average warmest month 

(1982-2014) is July, with mean minimum and maximum air temperatures of 19.78 °C and 32.69 

°C, respectively. Mean minimum air temperatures during July 2013, 2014, and 2015 were 

18.46°C, 17.06°C, and 20.67°C respectively. Maximum air temperatures during July 2013, 2014, 

and 2015 were 30.99°C, 31.7°C, and 32.02°C, respectively. 

 

 Sampling Description 

We sampled four species representative of different plant functional types, including one 

C4 grass (A. gerardii), one C3 forb (Vernonia baldwinii Torr., Baldwin’s ironweed), one 

leguminous C3 sub-shrub (Amorpha canescens Pursh., leadplant), and one C3 shrub (Rhus glabra 

L., smooth sumac). These species are deep-rooted (Weaver 1968; Weaver and Albertson 1943) 

and are common across KPBS. Additionally, A. gerardii is the only of these species that is 
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grazed by bison, as bison prefer the highly nutritious, palatable new growth of C4 grasses 

(Coppedge and Shaw 1998; Fuhlendorf and Engle 2001; Plumb and Dodd 1993;). Although 

white-tailed deer (Odocoileus virginianus) are also present at the site, they also prefer to browse 

on herbaceous growth rather than woody species (van der Hoek et al. 2002). Sampling occurred 

in two grazed (N4B and N4D) and two ungrazed (4B and 4F) watersheds at KPBS. All 

watersheds were burned once every four years, but not in the same calendar year (Table 2.1). 

Samples were collected from three spatially separate 50 x 50 m permanent plots (>100 meters 

apart) in both topographic positions within each watershed, and one sample per species was 

collected from a random location within each plot, resulting in n=3 for each species. R. glabra 

was not present in N4D lowlands. Due to the destructive nature of collecting plant tissue for 

isotopic analyses, separate but similarly sized individuals were randomly sampled within each 

sampling location during each collection period. 

Samples were collected two times per growing season, during early July (mid growing 

season) and during late August (late growing season) for three consecutive years (2013-2015). 

During each sampling period, all samples were collected when no precipitation had occurred for 

at least five days to prevent contamination of soil water with the isotopic signature of rainwater.  

 

 Isotope Samples 

To assess the source of water uptake in each species, approximately 20-30 g of non-

photosynthetic crown tissue was collected from each species. Plant tissue was collected from one 

stem per species at each sampling location excluding A. gerardii, which required 5-10 tillers to 

produce enough water for analyses. Samples were immediately stored in exetainer vials (Labco, 

UK) on ice until transferred to a 1-2 °C refrigerator. One 25 cm deep soil core per replicate 
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sampling location was also collected with a hand corer. Soil cores were split into 5 cm sections 

(0-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, and 20-25 cm depths), placed in double-layered plastic 

bags, and stored on ice until transferred to a -5 °C freezer. The frozen soil was later transferred to 

exetainer vials for water extraction. All isotope samples were collected on two consecutive days 

within each sampling period due to time constraints, on climatically similar days during which 

no precipitation occurred. Water was extracted from plant and soil tissue using the cryogenic 

vacuum distillation method (Ehleringer and Osmond 1989; Nippert and Knapp 2007a). The 

stable hydrogen (δD) and oxygen (δ18O) ratios of water samples were then analyzed using a 

Picarro WS-CRDS isotopic water analyzer and possible interference or contamination were 

checked using ChemCorrect software. The δD and δ18O ratios are reported as deviations from an 

international standard in parts per thousand (‰) using δ-notation: 

𝛿 = !!"#$%&

!!"#$%#&%
− 1 ∗ 1000               (1) 

where R is the absolute ratio of the rare and common isotope for the sample and standard. 

 

 Leaf Water Potential 

Midday leaf water potential (Ψmd) was measured on one individual per species in every 

sampling location and during every sampling period. Measurements were made on different days 

with similar weather conditions to those when isotope samples were collected. The youngest, 

fully developed leaf was collected from similarly sized individuals, stored in a darkened, 

humidified plastic bag, and allowed to equilibrate for an hour. Leaf water potential was then 

measured with a Scholander pressure chamber (PMS Instrument Company, Albany, OR). 
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 Soil Moisture 

The relative water content (RWC) of the top 10 cm soil was measured with a Hydra 

Probe II Soil Sensor (Stevens Water Monitoring Systems, Portland, OR, USA) in units of water 

fraction by volume (wfv). Five subsample measurements were made randomly within each 

sampling location during days on which isotope samples were collected. These subsamples were 

then averaged to calculate a mean shallow soil moisture value for each sampling location. 

 

 Statistics 

All analyses were conducted using the statistical program R V3.1.0 (R Core Team 2012). 

We used Information Theoretic (IT) model averaging (Burnham and Anderson 2004) to assess 

the influence of grazing, time since last fire, month, and topographic position on xylem δ18O, 

midday leaf water potential, and soil RWC. For all response variables, model averaging was 

performed for each species individually. First, we created a linear mixed effects global model 

including all factors using the ‘lmer’ function of the ‘lme4’ package V1.1-7 (Bates et al. 2014). 

In each global model, grazing treatment, time since fire, month, and topography were fixed 

effects, and sampling year and sampling location within watershed were random effects. After 

the global model was defined we standardized the input variables with the ‘standardize’ function 

in the ‘arm’ package (Gelman et al. 2009). We then created a full submodel set with the ‘dredge’ 

function in the ‘MuMIn’ package (Barton 2009) and obtained the top model set using 4AICc as a 

cutoff with the ‘get.models’ function in the ‘MuMIn’ package, according to Grueber et al. 

(2011). The top model set was then averaged using the zero method with the ‘model.avg’ 

function in the ‘MuMIn’ package. Relative importance was determined for each parameter 

included in the final average model. Relative importance is a unitless metric that sums Akaike 
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weights for all top models in which the parameter appears and ranges from 0 (indicating that the 

parameter has no explanatory weight) to 1 (indicating that the parameter is included in all top 

models) (Burnham and Anderson 2004). 

Stable Isotope Analysis in R (SIAR), a Bayesian mixing model, was used to estimate the 

proportion of surface and deep water sources in plant tissue (Parnell 2010). We ran two sets of 

analyses; the first set ran individual models for each grazing x month x topography combination 

and the second set ran individual models for each fire x month x topography combination. Each 

analysis ran for 500,000 iterations, of which the first 50,000 iterations were discarded. Surface 

water sources were obtained from the 5-10 cm deep section of the soil cores collected at each 

location and the corresponding sample for each watershed x topography x month contrast was 

used for each analysis (Table A.1). A deep soil core (1-2 m deep) was collected from five 

random lowland locations across KPBS with a 540MT Geoprobe Systems hydraulic-push corer 

(Salina, KS, USA) and was used as the deep source in all analyses. 

To evaluate whether shifts in source water alter niche overlap with other species, we 

calculated the proportional similarity index (PS) (Colwell and Futuyma 1971) of source water 

between all possible species pairs using the following equation: 

 PS = 1− 0.05   |𝑝!!!
!!! − 𝑝!!|    (2) 

where p is the proportional contribution of source i for species 1 and 2, and n= 2 sources (surface 

and deep). Proportional similarity values range from 0 (no niche overlap) to 1 (complete niche 

overlap). 
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 Results 

 Isotope Samples 

Variability in xylem water δ18O was best described by the individual effects of grazing 

and month for A. gerardii, V. baldwinii, and R. glabra (importance ≥ 0.98 for both predictors in 

each species; Figure 2.2; Tables A.2,3,5). Xylem δ18O was lower (more depleted) in ungrazed 

areas compared to grazed areas for A. gerardii, V. baldwinii, and R. glabra (Table A.6). Xylem 

δ18O was also lower in July for A. gerardii and V. baldwinii, and lower in August for R. glabra 

(Table A.6). Conversely, A. canescens δ18O was lower in ungrazed areas, but only in August 

(grazing x month importance = 1.0; Figure 2.2; Tables A.4,6). Topography and fire were 

generally less important in describing xylem water δ18O for all species (Figure 2.2; Tables A.2-

5). However, xylem δ18O was lower in lowland locations for all species except R. glabra (Table 

A.6), and lower during years 1 and 3 post-fire (Table A.7). 

We estimated the proportion of surface and deep water used by each species within each 

month, grazing, and topography contrast and found that the effects of month, grazing treatment, 

and topography on source water were variable across species. A. gerardii generally used more 

surface water (5-10 cm deep) than the other species and used more surface water in August (63-

90%) than in July (53-72%) (Figure 2.3). Grazing generally increased the proportion of surface 

water used by A. gerardii, although this shift primarily occurred in lowland locations. A. gerardii 

used 12% more shallow water in grazed areas compared to ungrazed areas during July (Figure 

2.3c-d) and 16% more in grazed areas during August (Figure 2.3g-h). No shift in water source 

occurred in upland locations during July, and A. gerardii used 11% less shallow water in upland 

grazed areas than in upland ungrazed areas during August. 
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Although the effects of grazing and month on V. baldwinii and A. canescens δ18O had 

high importance values (Figure 2.2), the modeled estimates of surface and deep water sources 

used by these species were generally consistent across treatments (Table 2.2). These species used 

≥ 90% deep water across all treatment contrasts, and any detectable variation typically occurred 

in the shape of the posterior density distributions (Figure A.2-3), rather than in mean source 

values. R. glabra also primarily used deep water, although the proportion of surface and deep 

water occurring in R. glabra xylem water varied by months and grazing treatments (Figure 2.4). 

R. glabra used proportionally more surface water in July (4-19%) than in August (2-4%). Like A. 

gerardii, R. glabra also used more surface water in grazed watersheds, both in upland (8% 

increase) and lowland locations (9% increase) during July. 

We also estimated the proportion of shallow and deep water used by each species within 

each month, topography, and fire contrast, and found that source water varied little by time since 

previous fire. V. baldwinii, A. canescens, and R. glabra used proportionally more shallow water 

during 1 and 3 years since the previous fire, but these trends were variable across months and 

topographic positions (Table A.8). 

Finally, we used the modeled estimates of source water contribution to evaluate niche 

overlap between each species pair (Table 2.3). A. gerardii had lower niche overlap with all other 

species in lowland grazed areas (0.279-0.323 in July and 0.210-0.303 in August) compared to 

lowland ungrazed areas (0.402-0.462 in July and 0.370-0.423 in August). R. glabra also had 

lower niche overlap with other species in lowland grazed areas (0.270-0.854) than in ungrazed 

areas (0.402-0.954), but only in July. V. baldwinii and A. canescens consistently had high niche 

overlap with each other (0.950-0.999). 
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 Leaf Water Potential 

Midday leaf water potential was best explained by different variables for each species 

(Tables A.9-12). Generally, leaf water potential values were higher in July than in August, 

particularly for A. gerardii (importance = 1.0; Table A.9; Figure 2.5a) and A. canescens 

(importance = 1.0; Table A.11; Figure 2.5c). Leaf water potential values were also greater in 

ungrazed areas compared to grazed areas during July (Figure 2.7a,b,d) for V. baldwinii 

(importance = 1.0; Table A.10) and R. glabra (importance = 1.0; Table A.12). Finally, A. 

gerardii had lower leaf water potential values in upland (-1.738 MPa ± 0.085 SE) than in 

lowland (1.442 MPa ± 0.065 SE) areas, as well as in watersheds that were burned the previous 

year (-2.123 MPa ± 0.177 SE) than in years 0, 2, or 3 post-fire (-1.476 MPa ± 0.088 SE, -1.358 

MPa ± 0.508 SE, and -1.746 MPa ± 0.091 SE, respectively). 

 

 Soil Moisture 

Variability in soil moisture was best described by month x topography, grazing x 

topography, and month x fire interactions in the average model for soil RWC (importance = 1.0 

for each interaction; Table A.13). Soil RWC was lower in upland locations than lowland 

locations, and ungrazed upland locations had lower soil RWC than grazed upland locations 

during July (Figure 2.6). Finally, soil RWC was lower during years 1 and 3 since the previous 

burn, but only during August (Table A.14). 

 

 Discussion 

We used the stable isotopic signatures of soil and xylem water to assess the impacts of 

bison grazing and fire history on water uptake and hydrological niche overlap in common 
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grassland species of North America. Our results are consistent with previous observations of 

source water partitioning in grasslands, where dominant C4 grasses generally rely on water from 

shallow depths while some C3 forbs and shrubs exhibit plasticity in water use depending on 

availability. However, we also found that grazing, not fire, impacted water uptake in certain 

species (A. gerardii and R. glabra), and that changes in the depth of water uptake were 

associated with shifts in niche overlap among co-occurring species. Grazing responses also 

varied intra-annually and were altered by topography. Our results suggest that grazing can 

impact grassland ecohydrology at small scales, although responses are species-specific and are 

modulated by other spatial and temporal factors. 

We expected that grazing-induced reductions in shallow root biomass (Kitchen et al. 

2009; Nippert et al. 2012) and soil moisture (Greenwood and McKenzie 2001; Hamza and 

Anderson 2005; Naeth et al. 1991) would cause grasses to rely on deeper water in grazed areas 

than in ungrazed areas, increasing niche overlap with co-occurring species (Figure 2.1). Contrary 

to our hypothesis, we found that grazing actually increased the proportion of shallow water used 

by both A. gerardii and R. glabra, and this resulted in reduced niche overlap (Figures 2.3,4; 

Table 2.3). Soil moisture availability did not likely drive this trend, since soil RWC did not differ 

between grazing treatments (Figure 2.6). It is also unlikely that changes in shallow root biomass 

altered depth of water uptake because our data show increased reliance on water from shallow 

depths. These results suggest that A. gerardii can effectively use shallow water in grazed 

locations, despite reduction in root biomass, and is likely able to maintain constant water use due 

to physiological drought tolerance (Knapp 1984; Nippert et al. 2009; Tucker et al. 2011). 

Rather than the amount of soil moisture or root biomass, we suggest that the shift in 

proportional water uptake is related to varying plant communities in grazed and ungrazed 
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watersheds. Bison preferentially graze on C4 grasses such as A. gerardii, which reduces 

dominant grass cover and increases the cover of forb and woody species. For example, the 

presence of bison at the Konza Prairie have been shown to reduce the percent cover of A. 

gerardii (Hartnett et al. 1996; Vinton et al. 1993) and increase the percent cover of V. baldwinii 

(Vinton et al. 1993), A. canescens (Hartnett et al. 1996), and common shrubs and trees (Briggs et 

al. 2002). As a result, locations that are grazed also have greater plant diversity, richness, and 

evenness (Hartnett et al. 1996). Previous work has shown that local diversity can impact resource 

acquisition and niche space within communities (Grossiord et al. 2014; Kunert et al. 2012; 

Verheyen et al. 2008). Niche partitioning of resources results from either: 1) interspecific 

differences in traits that allow plants to inherently exploit different resources, or 2) interspecific 

interactions that cause plastic shifts in resource use as species avoid competition (Valverde-

Barrantes et al. 2013; von Felton et al. 2009). When plasticity arises from interspecific 

interactions, niche breadth and overlap are often reduced in an effort to reduce competition 

(Silvertown et al. 1999). In this case, depth of water uptake may shift as plants alter niche space 

to avoid competition in diverse communities (Hoekstra et al. 2014; Grossiord et al. 2014; 

Meißner et al. 2012).  

Our results suggest that the high plant diversity resulting from the presence of grazers 

(Belsky 1992; Collins et al. 1998; Eby et al. 2014; Hartnett et al. 1996; Knapp et al. 1999) may 

create more numerous and smaller hydrological niches in this system. Reduced niche space per 

species may influence A. gerardii towards increased reliance on surface water to avoid niche 

overlap with species that use water at deeper depths (Figure 2.3; Table 2.3), particularly because 

this grass species can tolerate drier soils than the other abundant species at this site (Knapp 1984; 

Nippert et al. 2009; Tucker et al. 2011). Previously, Hoekstra et al. (2014) found that grasses 
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shift reliance to shallow water when grown in mixtures with deep-rooted species. We also found 

that R. glabra used proportionally less deep water in grazed areas, which reduced niche overlap 

with other deep-rooted species, while V. baldwinii and A. canescens continued to rely primarily 

on deep water (Figure 2.4; Tables 2.2-3). These results indicate that plasticity and tolerance of 

niche overlap are species-specific. Shifts in niche overlap due to grazing also suggest that 

competition for water may be lower in high diversity, grazed locations, although further 

investigation comparing community diversity with competition for water is required. 

Grazers also impacted leaf-level physiology, as midday leaf water potential was lower in 

grazed areas than in ungrazed areas for A. gerardii, V. baldwinii, and R. glabra during July 

(Figure 2.5). This result may have occurred despite the higher soil RWC measured in grazed 

watersheds during July (Figure 2.6) because grazed areas are often characterized by more bare 

ground than ungrazed areas. Depending on the amount of solar radiation, the albedo of soil and 

plant cover, and the roughness of the terrain, bare ground can increase sensible heat and may 

consequently increase leaf temperatures and reduce leaf water potential (Nippert et al. 2013). 

This result is contrary to the commonly observed increases in leaf water potential with grazing 

(Harrison et al. 2010; Svejcar and Christiansen 1987), and may explain why others have also 

reported conflicting results (Archer and Detling 1986). Thus, grazing can impact additional 

aspects of plant ecohydrology independent of changes in soil moisture or source water use. 

Although grazing can alter depth of water uptake and niche overlap in some species, fire 

history was generally not an important predictor of source water, particularly for A. gerardii and 

R. glabra (Figure 2.2; Tables A.2-5). The SIAR mixing models showed that surface water 

contributed proportionally more to V. baldwinii, A. canescens, and R. glabra xylem water in 

years 1 and 3 since last burn (Table A.8). However, “time since burn” had low importance values 
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for all species except A. canescens, suggesting that, when the variability associated with “year” 

was accounted for as a random effect, this trend was simply an artifact of the calendar year in 

which the “time since burn” treatment occurred (i.e., years 1 and 3 since last burn both occurred 

in 2014, while years 0 and 2 occurred in both 2013 and 2015; Figure 2.2; Table 2.1; Tables A.2-

5). If plant diversity of the local community is indeed the primary driver of differences in water 

uptake between grazed and ungrazed locations, we would not expect fire history to impact source 

water because all watersheds studied here are burned every four years and therefore have similar 

plant diversity within grazing treatments despite being burned in different calendar years.  

Finally, we investigated seasonal patterns and topographic differences in water uptake. 

Seasonal differences occurred in R. glabra, as source water varied among grazing treatments 

only in July (Figure 2.4). As is typical in other studies of C3 woody species, (Asbjornsen et al. 

2008; Kulmatiski and Beard 2013; Nippert and Knapp 2007a,b; Priyadarshini et al. 2015), R. 

glabra shifted reliance to deep water during drier periods, regardless of grazing treatment 

(Figures 2.4,6). Thus, soil water availability is still an important mediator of vertical niche 

partitioning for water, even when differences in partitioning are associated with varying plant 

communities. We also observed topographic differences in water uptake, particularly in A. 

gerardii. Whereas lowland A. gerardii consistently increased its reliance on surface water in 

grazed areas, upland A. gerardii did not use different water sources among grazing treatments 

during July and used proportionally less shallow water in grazed areas during August (Figure 

2.3). 

To conclude, the results from this study provide novel insights into the role of 

disturbance-driven heterogeneity in water uptake patterns and niche overlap in a diverse 

grassland community. Grazers modified functional niches in this tallgrass prairie plant 
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community by altering the depth of water uptake and degree of niche overlap. These results 

highlight that A. gerardii, a dominant C4 grass in the region, is more plastic in its water use than 

previously described, and it suggests that niche partitioning may be very sensitive to changes in 

plant diversity within this heterogeneous ecosystem. These responses to grazing varied within 

growing seasons and are dependent on topography, suggesting that spatiotemporal variation in 

resource heterogeneity is an important driver of plant functioning in mesic grasslands. These 

results clearly show that grassland disturbance can have strong impacts on plant functioning at 

small scales, with important consequences for local ecohydrology. 
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Table 2.1 Fire histories for the grazed and ungrazed watersheds burned in different 
calendar years. Numbers indicate years since last burn within each sampling year. 0 = 
burned that year, 1 = 1 year since previous burn, 2 = 2 years since previous burn, and 3 = 3 
years since previous burn. 

 2013 2014 2015 

Ungrazed    

4B 0 1 2 

4F 2 3 0 

Grazed    

N4B 2 3 0 

N4D 0 1 2 
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Table 2.2 SIAR estimates of the proportion of shallow and deep water used by V. baldwinii 
and A. canescens within each month, topography, and grazing contrast. Shown are mean 
estimates for shallow and deep sources, with the 95% credible interval in parentheses. 

  July August 

  Surface Deep Surface Deep 

V. baldwinii      

Grazed Upland 0.038 (0.000, 0.116) 0.962 (0.884, 1.006) 0.045 (0.000, 0.134) 0.955 (0.866, 1.006) 

 Lowland 0.045 (0.000, 0.136) 0.955 (0.864, 1.007) 0.043 (0.000, 0.125) 0.957 (0.875, 1.006) 

Ungrazed Upland 0.047 (0.000, 0.140) 0.953 (0.860, 1.007) 0.050 (0.000, 0.149) 0.950 (0.851, 1.007) 

 Lowland 0.048 (0.000, 0.143) 0.952 (0.857, 1.007) 0.043 (0.000, 0.127) 0.957 (0.873, 1.006) 

A. canescens      

Grazed Upland 0.050 (0.000, 0.150) 0.950 (0.850, 1.007) 0.038 (0.000, 0.110) 0.962 (0.890, 1.005) 

 Lowland 0.044 (0.000, 0.134) 0.956 (0.866, 1.006) 0.093 (0.000, 0.249) 0.907 (0.751, 1.011) 

Ungrazed Upland 0.050 (0.000, 0.147) 0.950 (0.853, 1.007) 0.042 (0.000, 0.120) 0.958 (0.880, 1.006) 

 Lowland 0.059 (0.000, 0.183) 0.940 (0.817, 1.009) 0.053 (0.000, 0.163) 0.947 (0.837, 1.008) 
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Table 2.3 Proportional similarity of source water use between different species pairs. 
Shown are comparisons between combinations of all A. gerardii (AG), V. baldwinii (VB), A. 
canescens (AC), and R. glabra (RG) pairs. 

 July August 

 Ungrazed Grazed Ungrazed Grazed 

Comparison Upland Lowland Upland Lowland Upland Lowland Upland Lowland 

AG – VB 0.520 0.462 0.491 0.323 0.138 0.423 0.252 0.303 

AG – RG 0.470 0.402 0.441 0.279 0.096 0.370 0.214 0.210 

AG – AC 0.517 0.450 0.479 0.324 0.146 0.413 0.259 0.253 

VB – AC 0.997 0.989 0.998 0.999 0.992 0.990 0.993 0.95 

VB – RG 0.989 0.954 0.918 0.854 0.981 0.980 0.981 0.996 

AC – RG 0.986 0.966 0.930 0.853 0.989 0.970 0.988 0.946 
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Figure 2.1 Hypothesized changes in source water use and niche partitioning for grass, forb, 
and woody species with changes in grazing and fire. 
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Figure 2.2 Relative importance of all parameters included in the average δ18O models for 
all species. 
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Figure 2.3 Posterior density estimates for the proportion of surface and deep water sources 
used by A. gerardii in ungrazed (a,c,e,g) and grazed (b,d,f,h) watersheds, upland (a,b,e,f) 
and lowland (c,d,g,h) topographic positions, and during July (a-d) and August (e-h). 
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Figure 2.4 Posterior density estimates for the proportion of surface and deep water sources 
used by R. glabra in ungrazed (a,c,e,g) and grazed (b,d,f,h) watersheds, upland (a,b,e,f) and 
lowland (c,d,g,h) topographic positions, and during July (a-d) and August (e-h). 
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Figure 2.5 Midday leaf water potential (Ψmd) measured on A. gerardii (a), V. baldwinii (b), 
A. canescens (c), and R. glabra (d) in ungrazed and grazed locations. Shown are mean ± 
1SE.  
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Figure 2.6 Soil relative water content (RWC), measured in units of water fraction by 
volume (wfv) within the top 10 cm of the soil in all grazing treatments, months, and 
topographic locations. Shown are mean ± 1SE.  
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Chapter 3 - An assessment of diurnal water uptake in a mesic 

prairie: evidence for hydraulic lift? 

This chapter is formatted for submission to the journal “Oecologia” 

The citation for this chapter is: O’Keefe K, Nippert JB. An assessment of diurnal water uptake in 

a mesic prairie: evidence for hydraulic lift? In Revision at Oecologia. 

 Abstract 

Hydraulic lift, the passive movement of water through plant roots from wet to dry soil, is 

an important ecohydrological process in a wide range of water-limited ecosystems. This 

phenomenon may also alter plant functioning, growth, and survival in mesic grasslands, where 

soil moisture is spatially and temporally variable. Here, we monitored diurnal changes in the 

isotopic signature of soil and plant xylem water to assess (1) whether hydraulic lift occurs in 

woody and herbaceous tallgrass prairie species (Rhus glabra, Amorpha canescens, Vernonia 

baldwinii, and Andropogon gerardii), (2) if nocturnal transpiration or grazing by large ungulates 

limits hydraulic lift, and (3) if a dominant grass, A. gerardii, utilizes water lifted by other 

tallgrass prairie species. Broadly, hydraulic lift does not appear to be widespread or common in 

this system, but isolated instances suggest that this process does occur within tallgrass prairie. 

Grazing did not impact patterns of hydraulic lift, nor did neighboring grasses utilize water lifted 

by target plants. We suggest that the topographic complexity of this tallgrass prairie and the high 

rates of nocturnal transpiration observed in this study likely limit the frequency and occurrence 

of hydraulic lift. These results suggest that hydraulic lift is not likely an important 

ecohydrological process in tallgrass prairie and that hydraulic lift is a patchy process, particularly 

in heterogeneous landscapes. 
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 Introduction 

Tallgrass prairies are dynamic ecosystems that experience tremendous spatial variability 

in water availability through time (Knapp et al. 1993; Nippert et al. 2011). Precipitation occurs 

intermittently in these systems, resulting in long dry periods during which plants must either 

tolerate water stress (Tucker et al. 2011) or access deep water sources (Nippert and Knapp 

2007a,b; Asbjornsen et al. 2008) to persist through drought. Another strategy that may allow 

deeply rooted prairie plants to survive drought is hydraulic lift, the passive movement of water 

across soil water potential gradients through plant roots (Breazeale 1934; Richards and Caldwell 

1987; Caldwell et al. 1998). Hydraulic lift typically occurs at night when plant stomata close and 

the water potential gradient between shallow and deep soil is more pronounced than the gradient 

between deep soil and plant leaves. This gradient redistributes deep water to shallow soil, 

reducing water limitation in the rhizosphere for both the plant lifting the water and for 

neighboring plants that grow within the zone of lifted water (Dawson 1993; Moreira et al. 2003).  

Hydraulic lift is most commonly observed in arid and semi-arid ecosystems (reviewed in 

Neumann and Cardon 2012; Prieto et al. 2012a; Sardans and Penuelas 2014). Few examples of 

hydraulic lift exist in grasslands or herbaceous plants and these instances have only been 

observed in semi-arid regions (Espeleta et al. 2004; McCulley et al. 2004), deserts (Schulze et al. 

1998; Yoder and Nowak 1999), and greenhouses (Armas et al. 2012). However, hydraulic lift 

may play an important role in tallgrass prairies because the long dry periods that occur during the 

growing season cause significant drying within the shallow soil layers (0-30 cm; Abrams and 

Knapp 1986; Williams and Rice 2007; Zeglin et al. 2013), and should therefore produce the soil 

water potential gradient necessary to drive hydraulic lift. Most tallgrass prairies plants are also 

deep-rooted (typically ≥ 2m deep; Weaver 1919) and utilize at least some deep soil water during 
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the growing season (up to 47% deep water in grasses, 56% deep water in forbs, and 76% deep 

water in shrubs; Nippert and Knapp 2007a). Thus, these species should have the capability to 

utilize deep water via hydraulic lift, if environmental conditions are favorable. 

However, certain characteristics of the prairie may also limit water redistribution. In 

grasslands that are grazed, large ungulates such as Bison bison (American bison) reduce shallow 

root biomass (Johnson and Matchett 2001; Klumpp et al. 2009; Nippert et al. 2012), which may 

reduce water efflux from the shallow roots of grazed grasses. Grazers also reduce leaf area, and 

thus, transpiration, which can increase soil moisture (Archer and Detling 1986; Svejcar and 

Christiansen 1987; Harrison et al. 2010) and eliminate the driving gradient necessary for 

hydraulic lift for both grazed and nearby ungrazed plants. Additionally, the substantial rates of 

nocturnal transpiration that occur in grassland plants (O’Keefe and Nippert, unpublished data) 

may create a competing sink for water movement and reduce the magnitude of hydraulic lift 

(Donovan et al. 2001, 2003; Kavanagh et al. 2007; Scholz et al. 2008; Howard et al. 2009). 

Considering the heterogeneous nature of the tallgrass prairie, as well as the dependence of 

hydraulic lift on certain biotic and abiotic features, it seems likely that hydraulic lift may be 

spatially and temporally variable within a tallgrass prairie. However, it is unknown if hydraulic 

lift occurs in tallgrass prairie ecosystems or how this process may change along a grassland 

landscape. 

Here, we assessed whether hydraulic lift occurs in a native tallgrass prairie located in 

northeastern Kansas, USA. Previous studies have identified hydraulic lift with methods that are 

typically time consuming, destructive, or require expensive equipment (e.g., time-domain 

reflectrometry probes, soil psychrometers, sap flow sensors, enriched stable isotope tracers, or 

radioactive dye; reviewed in Prieto et al. 2012a). In this study, however, we used the natural 
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variation in the isotopic signature of soil water to identify hydraulic lift, which is a relatively 

cheap and non-destructive approach. The stable isotopic signature of soil water varies 

predictably by depth due to evaporation-driven fractionation, with enriched water found near the 

soil surface and depleted water found in deep soil (Ehleringer and Dawson 1992). If hydraulic 

lift occurs, shallow soil water should develop a depleted δ18O signature overnight as deep water 

is redistributed (Figure 1). Furthermore, this shift in δ18O should be reflected in plant stem water 

because tallgrass prairie plants typically utilize some water overnight (O’Keefe and Nippert, 

unpublished data) and because the isotopic signature of water within the stem reflects the water 

source used (White et al. 1985).  

By analyzing diurnal changes in the isotopic signature of plant and soil water, we 

addressed the following questions: (1) Does hydraulic lift occur in common woody, forb, and 

grass species in a tallgrass prairie? We hypothesized that each species will exhibit hydraulic lift 

because they are all deep-rooted (≥ 2 m deep) and have the capability to conduct deep soil water 

(Nippert and Knapp 2007a). (2) Is hydraulic lift limited by bison grazing or nocturnal 

transpiration? Bison can reduce shallow root biomass (Johnson and Matchett 2001; Klumpp et al. 

2009; Nippert et al. 2012) and increase soil moisture (Archer and Detling 1986; Svejcar and 

Christiansen 1987; Harrison et al. 2010), which may limit water efflux in shallow soil or reduce 

the soil water potential driving gradient required for hydraulic lift. Thus, we hypothesized that 

the presence of bison will limit hydraulic lift. We also hypothesized that reductions in hydraulic 

lift will be associated with higher rates of nocturnal transpiration, as nocturnal transpiration can 

create a competing water sink for hydraulic lift (Donovan et al. 2001, 2003; Kavanagh et al. 

2007; Scholz et al. 2008; Howard et al. 2009). (3) If a dominant grass, Andropogon gerardii 

Vitman, does not exhibit hydraulic lift, does it benefit by using water lifted by neighboring deep-
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rooted forbs and shrubs? Although A. gerardii is deep-rooted (maximum rooting depth = 1.8 m; 

Weaver 1919), this grass also has a greater reliance on water from shallow soil layers using a 

fibrous root system (Nippert and Knapp 2007a,b). Previous studies have also shown that grasses 

with fibrous shallow roots can utilize water lifted by nearby plants (Dawson 1993; Moreira et al. 

2003). Thus, if A. gerardii does not exhibit hydraulic lift, we hypothesized that it will instead 

utilize water lifted to shallow soil by neighboring shrubs or forbs.  

 

 Methods 

 Site Description 

Field work was conducted at the Konza Prairie Biological Station (KPBS), a Long-Term 

Ecological Research (LTER) site located in the Flint Hills region of northeastern Kansas, USA 

(39.1°N, 96.9°W). KPBS is a 3487 ha tallgrass prairie that is dominated by a few perennial C4 

grass species along with numerous sub-dominant C3 grass, forb, and woody species (Smith and 

Knapp 2003). The site is divided into watershed-level plots that are burned at different 

frequencies (every 1, 2, 4 or 20 years) and are either grazed or ungrazed by cattle and the 

ungulate Bison bison. KPBS is also topographically heterogeneous, with layers of Permian shale 

and limestone alternating across a non-uniform terrain of flat upland ridges, steep slopes, and 

lowland valleys (Jantz et al. 1975; Oviatt 1998). Soil depth varies by topographic position; 

upland ridges are characterized by shallow, rocky soils (< 0.5 m) derived from the chert-bearing 

Florence limestone, while lowlands are characterized by deep (> 2 m) silty-clay loams (Tully soil 

series) derived from alluvial-colluvial deposits (Oviatt 1998; Ransom 1998). Clay content in 

lowland soils ranges from 35-40% at the surface and 45-60% in the lower subsoil (Ransom 

1998). Although lowland soils are generally deep, many areas are shallower and contain 
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numerous rock fragments (up to 15% rock fragment by soil volume; Ransom 1998). Lowland 

soils are also moderately well-drained, and deep soil water is recharged during the non-growing 

season when precipitation events infiltrate to a greater depth in the soil and move laterally 

between layers of shale and limestone (Ransom 1998; Nippert and Knapp 2007a). Due to these 

topoedaphic differences, the deep lowland soils are typically more mesic and have higher 

primary productivity than shallow upland soils (Knapp et al. 1993; Nippert et al. 2011).  

The Flint Hills region of Kansas experiences a mid-continental climate, characterized by 

warm, dry summers and cool, wet winters. Long-term mean annual precipitation at KPBS is 829 

mm (1982-2014), with 73% occurring during the growing season (April – September). 

Precipitation was 783 mm in 2013 and 706 mm in 2014 (77% and 68% of which occurred during 

each respective growing season; Figure B1). July is the warmest average month of the year 

(1982-2014), with mean maximum and minimum air temperatures of 32.69 °C and 19.78 °C, 

respectively. January is the coldest average month is (1982-2014), with mean maximum and 

minimum air temperatures of 4.87 °C and -7.14°C. Maximum air temperatures during July 2013 

and 2014 were 30.99°C and 31.7°C, respectively. Minimum air temperatures during July 2013 

and 2014 were 18.46°C and 17.06°C, respectively.  

 

Sampling Description 

We sampled from two watersheds that are burned in 4-year intervals, as these locations 

are most representative of historic burn frequencies for tallgrass prairie in northeastern Kansas 

(Frost 1998), and they also contain more forb and woody plant diversity than annually or 

biannually burned plots (Collins and Calabrese 2012; Koerner and Collins 2014). To assess the 

impact of large herbivore grazing on hydraulic lift, we sampled in one watershed grazed by bison 
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and one ungrazed watershed. While watershed treatments were not replicated due to their large 

size and low availability at KPBS, we sampled from three spatially separated lowland sites (>100 

m apart) within each watershed to achieve spatial independence among samples, as is common in 

large experimental landscapes.    

We sampled four different species that have widespread distribution and abundance at 

KPBS: one clonal C3 shrub (Rhus glabra L., smooth sumac), one leguminous C3 sub-shrub 

(Amorpha canescens Pursh., leadplant), one C3 forb (Vernonia baldwinii Torr., Baldwin’s 

ironweed), and one C4 grass (A. gerardii, big bluestem). These species have the potential to 

exhibit hydraulic lift because they are all deeply rooted, having maximum rooting depths of 2.3 

m (R. glabra), 2.3 m (A. canescens), 3.3 m (V. baldwinii), and 1.8 m (A. gerardii) (Weaver 

1919). Additionally, R. glabra, A. cancescens, and V. baldwinii utilize deep water as a primary 

water source in this system (Nippert and Knapp 2007a,b; O’Keefe and Nippert, unpublished 

data). Although grazing typically increases the abundance of forbs and shrubs relative to 

ungrazed sites, all four species were present at each study site included here. 

We conducted four sampling campaigns throughout 2013 (DOY 187 and 241) and 2014 

(DOY 188 and 233). In each year we sampled once in early July (mid growing season) and once 

in late August (late growing season). These sampling times were chosen because the majority of 

growing season precipitation occurs earlier in the year (April-June) at this site and thus, strong 

water potential gradients do not typically exist throughout the soil until later in the growing 

season (Abrams and Knapp 1986; Williams and Rice 2007; Zeglin et al. 2013). Additionally, 

each sampling campaign occurred at least 5-7 days after a rainfall event to promote the 

development of a soil water potential gradient across different depths (Figure B1).  
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During each campaign we collected plant samples for isotopic analysis at 18:00 h 

(“night”) and again at 05:00 h the following morning (“morning”). We sampled individuals that 

were located at least 1 m apart from other deep-rooted plants to reduce the possibility of 

detecting hydraulic lift from neighbors. Due to the destructive nature of isotope sampling (see 

below), we could not sample the same individual more than once and thus had to sample 

similarly sized individuals for each time point. One individual per species was sampled at each 

site within a watershed for all time points (n=3 plants per species in each watershed at each 

sampling time point; total n=24 per time point). To assess whether A. gerardii utilizes lifted 

water by shrubs or forbs, we sampled one “isolated” A. gerardii and one “neighboring” A. 

gerardii adjacent to each “target plant” (R. glabra, V. baldwinii, and A. canescens) at each 

sampling site during each time point (n=3 isolated/adjacent A. gerardii plants in each watershed 

and time point; total n=24). Isolated A. gerardii functioned as a control and were located at least 

1 m from other deep-rooted forbs or shrubs, and the neighboring A. gerardii were located within 

a 0.25 m radius from the main stem of the target plant.  

 

 Water Isotope Samples 

Plant tissue and soil cores were collected for isotope analyses during each night and 

morning sampling time points. For plant isotope samples, we collected 20-30 g of non-

photosynthetic stem or crown tissue, which is located immediately below ground level but above 

any rhizomes or root tissue. We collected one stem for all species except A. gerardii, which 

required 5-10 tillers to provide enough water for the extraction and analysis processes. Plant 

tissues were immediately sealed in exetainer vials (Labco, Ltd., UK) and stored on ice until 

transferred to a 1-2°C refrigerator. We collected soil samples adjacent to the stems sampled for 
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plant tissue using a 25 cm hand corer. The core was split up into 5 cm deep segments (0-5 cm, 5-

10 cm, 10-15 cm, 15-20 cm, and 20-25 cm depths), stored in double-layered plastic bags, and 

placed on ice until transferred to a -5°C freezer. The soil was then later removed from the freezer 

and immediately placed in exetainer vials for water extraction. Deep soil cores (1-2 m deep) 

were also collected for use as a “deep” endpoint in an isotopic mixing model (see Statistics). 

Cores were collected at five random lowland locations using a 540MT Geoprobe Systems 

hydraulic-push corer (Salina, KS, USA). The soil from the very bottom of these cores was 

collected and saved in exetainer vials for later water extraction and analysis. 

We extracted xylem and soil water using the cryogenic vacuum distillation method 

(Ehleringer and Osmond 1989; Nippert and Knapp 2007a) and analyzed the stable hydrogen 

(δD) and oxygen (δ18O) signatures of these water samples using a Picarro WS-CRDS isotopic 

water analyzer.  

 

 Leaf Water Potential Measurements 

To assess whether hydraulic lift is associated with differences in leaf pressure potential, 

we measured predawn (Ψpd) and midday (Ψmd) leaf water potential on the same plants collected 

for isotope analyses. Ψmd was measured on each night individual at 12:00 h the day of night 

measurements. Ψpd was measured on each morning individual immediately before each plant was 

harvested for morning isotope samples. For all measurements, the youngest, most fully 

developed leaf was cut and placed in a dark, humidified plastic bag for approximately one hour. 

After the equilibration period, leaf water potential was measured using a Scholander pressure 

chamber (PMS Instrument Company, Albany, OR). We made Ψpd and Ψmd measurements on all 
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four study species at each sampling site (n=3 plants) as well as A. gerardii adjacent to R. glabra, 

V. baldwinii, and A. canescens (n=3 plants). 

 

 Nighttime Transpiration Measurements 

To assess whether nocturnal water loss is associated with a potential absence of hydraulic 

lift, as has been observed in other species (Howard et al. 2009), we measured nocturnal 

transpiration using an Li-6400xt open gas exchange system (Li-Cor, Inc., Lincoln, NE). 

Measurements were made during 2014, between 22:00 – 01:00 h the night before isotope 

samples were collected. The youngest, fully developed leaf of each plant was allowed to stabilize 

in the Li-6400xt cuvette for 2-3 minutes and then measurements were logged every 10 seconds 

for 3 minutes. The last minute of data was averaged as a representative measurement for each 

plant. Measurements were made on all four study species at each sampling site (n=3 plants), as 

well as one A. gerardii adjacent to each target plant (n=3 plants). 

 

 Soil Water Content Measurements 

In addition to stable isotope measurements, we measured soil water content adjacent to 

each night and morning plant to evaluate whether hydraulic lift could be detected using soil 

moisture measurements alone. Soil water content was measured using two methods. First, we 

measured the relative water content (RWC) in the top 10 cm soil within a 10 cm radius from the 

main stem of each plant at the time it was sampled for isotope analyses. RWC was measured in 

situ with a Hydra Probe II Soil Sensor (Stevens Water Monitoring Systems, Portland, OR, USA) 

as a proportion in units of water fraction by volume (wfv). Second, we measured the gravimetric 

soil moisture content (GWC, θg) of each soil core depth using subsamples of the soil collected 
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for isotopic analysis. The wet weight of the soil was determined with a microbalance (± 0.1 mg; 

Ohaus Pioneer, Ohaus Corporation, Parsippany, NJ, USA). The soil was dried at 60°C for 48 

hours, reweighed to measure the soil dry weight, and gravimetric water content was calculated 

following Black (1965).  

 

 Statistics 

The Bayesian isotopic mixing model Stable Isotope Analysis in R (SIAR) was used to 

quantify the proportion of deep and shallow water sources to the isotopic signature of plant 

xylem water (Parnell 2010). We used separate SIAR analyses for each sampling campaign (July 

2013, August 2013, July 2014, and August 2014) and ran each model for 500,000 iterations, of 

which we discarded the first 50,000 iterations. We used shallow (0-5 cm deep) and deep soil 

water (1-2 m deep) as the two source endpoints in all analyses. For the shallow sources, we 

averaged the isotopic signatures of 0-5 cm soil collected at night for each year x month 

combination and used that average value (n=24) for the corresponding SIAR model analysis. For 

the deep soil water source, we used the mean isotopic signature of soil water extracted from the 

bottom of 1-2 m deep soil cores (n=5) for all SIAR analyses. Each analysis produced a posterior 

distribution predicting the proportion of shallow and deep source water contribution for each 

species at every sampling location and time point. We then used the mean value of each 

distribution to calculate the difference in deep water used by each species between night and 

morning time points for every grazing treatment x month x year combination. See Parnell (2010) 

for a full description of the model. 

We compared leaf water potential data among treatment combinations using a linear 

mixed-effects model in a completely randomized design (CRD) with year (2013 and 2014), 
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month (July and August), grazing treatment (grazed and ungrazed), and species (R. glabra, A. 

canescens, V. baldwinii, and isolated A. gerardii) as fixed effects. Sampling site within 

watershed was included as a random effect to account for variability associated with grouped 

data (Pinheiro and Bates 2000). Nighttime transpiration data were analyzed using a linear mixed-

effects model in a CRD with month, grazing treatment, and species as fixed effects and site 

within watershed as a random effect. We also conducted separate analyses comparing leaf water 

potential and nocturnal transpiration among differently positioned A. gerardii using year, month, 

grazing treatment, and A. gerardii location (isolated A. gerardii, A. gerardii near R. glabra, A. 

gerardii near A. canescens, and A. gerardii near V. baldwinii) as fixed effects and site within 

watershed as a random effect. 

Soil water isotope data were analyzed using a linear mixed-effects model in a CRD with 

year, month, grazing treatment, sampling time (night, morning), species, and soil depth as fixed 

effects and site within watershed as a random effect. Soil RWC data were analyzed using a linear 

mixed-effects model in a CRD with year, month, grazing treatment, sampling time (night, 

morning), and species as fixed effects and site within watershed as a random effect. Finally, soil 

GWC data were analyzed using a linear mixed-effects model in a CRD with month, grazing 

treatment, sampling time, and soil depth as fixed effects and site within watershed as a random 

effect. Homogeneity of variances was assessed by examining residuals versus fitted plots, all 

data were checked for normality by examining normal qq-plots (Faraway 2005), and post-hoc 

multiple comparisons were calculated using Tukey’s Honest Significant Difference test (Tukey 

1949). All analyses were conducted using the ‘lmer’ function of the ‘lme4’ package V1.1-7 

(Bates et al. 2014) in the statistical program R V3.1.0 (R Core Team 2012). 
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 Results 

 

 Soil Moisture Data 

We found a significant year x month x grazing x species interaction (p=0.02) among 

RWC values, and significant month x grazing (p=0.03) and species x grazing (p=0.01) 

interactions among GWC values (Table B1). RWC was greater in July than August and lower in 

ungrazed locations than in grazed locations, while GWC was greater in July and greater in 

ungrazed locations (Tables B2-3). We did not detect evidence of hydraulic lift with either 

method, as there were no significant differences between night and morning sampling times 

(p>0.05; Table B1).  

 

 Soil Isotope Data 

We found a significant year x month x grazing x sampling time x species interaction 

(p=0.01) for soil core δ18O signatures, indicating considerable variation in the isotopic signatures 

of soil cores (Table B4; Figures 3.2-3). Due to the complexity of interpreting a significant five-

way interaction, we chose to report significant lower-order interactions as well, which include 

significant year x month x depth (p<0.01), year x grazing x species (p=0.03), grazing x depth 

(p<0.01), grazing x sampling time (p=0.04), and month x grazing (p<0.001) interactions. Of the 

soil cores that exhibited shifts to deeper water signatures, only six instances were statistically 

different (Figure 3.2e,h,l,n; Figure 3.3h,l). However, non-significant shifts to deeper δ18O 

signatures were also observed in additional soil cores representative of all species, in all grazing 

treatments, months, and years (Figures 3.2-3). Positive overnight shifts in the isotopic signature 

of soil water were generally not observed.  
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 Relative Deep Soil Water Use 

SIAR analyses showed that the proportion of deep water in plant xylem tissue varied 

between night and morning samples, and that these changes were variable across species and 

sampling periods (Figure 3.4). Most species typically used less deep water during the morning 

time point compared to night, suggesting that hydraulic lift did not occur (indicated by negative 

values in Figure 3.4). Several exceptions were observed when species used deeper water during 

morning than night (indicated by positive values in Figure 3.4). These instances included grazed 

V. baldwinii and ungrazed A. canescens collected during July 2013, as well as ungrazed R. 

glabra collected during all time periods except 2013. We found no evidence of hydraulic lift or 

use of water lifted by target plants in neighboring A. gerardii (Table B5). 

 

 Nighttime Transpiration Data 

Nocturnal transpiration (Enight) was observed in all species and locations, in both July and 

August 2014 (Table 3.1). Mean Enight rates ranged from 0.21 mmol H2O m2s-1 to 0.84 mmol H2O 

m2s-1 (Table 3.1, Table B6). However, there were no significant differences in Enight among 

months, grazing treatments, or species (p>0.05; Table B7). There were also no differences in 

Enight between isolated A. gerardii and A. gerardii near target plants (p>0.05; Table B7). 

 

 Leaf Water Potential Measurements 

Predawn leaf water potential (Ψpd) showed a significant year x month x species x grazing 

interaction (p=0.02; Table A8). Ψpd was lower in August than in July and lower in 2014 than 

2013 (Table B9). Ψpd was also lower in grazed areas than in ungrazed areas in August 2013 and 
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July 2014, for all species with the exception of A. gerardii (Table B9). Similarly, we found a 

significant year x month x species interaction (p<0.01; Table B8) for midday leaf water potential 

(Ψmd). Ψmd was lower in August than in July and also lower in 2014 than 2013 (Table B10). Ψmd 

was similar among species, with the exception of the low values observed for A. gerardii and A. 

canescens in August 2013 (Table B10). There was no significant effect of grazing treatment on 

Ψmd (p>0.05; Table B8). 

We found no differences in Ψpd or Ψmd between isolated A. gerardii and A. gerardii near 

target plants (p>0.05; Table B8). There were significant year (p<0.01) and month (p<0.01) 

effects when comparing Ψpd among A. gerardii samples (Table B8), as Ψpd was lower in 2014 

than in 2013 and lower in August than in July (Table B11). Similarly, there were significant year 

(p<0.01) and month x grazing (p=0.02) effects observed for Ψmd compared across A. gerardii 

samples (Table B8). Ψmd was lower in 2014 than 2013 and lower in August than in July, 

although this was more prevalent in ungrazed areas than in grazed areas (Table B12).  

 

 Discussion 

Hydraulic lift is an important ecohydrological process in water-limited ecosystems, 

though the occurrence and relevance of this phenomenon in mesic grasslands is unknown. Here, 

we tested the hypotheses that (1) hydraulic lift does occur in deep-rooted grass, forb, and woody 

species in a tallgrass prairie, (2) any reductions in hydraulic lift will be associated with bison 

grazing or nocturnal transpiration, and (3) a dominant grass, A. gerardii, will utilize water lifted 

by neighboring forbs and shrubs if it does not lift water itself. We observed overnight shifts in 

the isotopic signature of soil water adjacent to deep-rooted plants, suggesting that our method 

was sufficient to detect hydraulic lift in a native tallgrass prairie. However despite our 
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predictions, we found that hydraulic lift was uncommon, did not differ between grazing 

treatments, and did not facilitate water use by neighboring grasses. We did measure substantial 

rates of nocturnal transpiration among all species, suggesting that nocturnal water loss may limit 

hydraulic lift in this system. Overall, our work demonstrates that hydraulic lift can occur, but is 

generally not widespread or common in tallgrass prairie. 

 

 (1) Does hydraulic lift occur in common woody, forb, and grass species in a 

tallgrass prairie?  

Using the stable isotopic signature of soil and plant water, we tested the hypothesis that 

all four deep-rooted species utilize hydraulic lift in a tallgrass prairie. We found evidence of 

short-term shifts in the stable isotopic signature of soil and plant water, indicating that hydraulic 

lift does occur in this system. These changes occurred rapidly between dawn and dusk and could 

not be explained by other slower processes such as capillary action. However, instances of 

hydraulic lift were rare and inconsistent across treatment combinations. For example, hydraulic 

lift occurred in ungrazed R. glabra throughout all sampling months with the exception of July 

2013, whereas July 2013 was the only month that hydraulic lift occurred in grazed V. baldwinii 

(Figure 3.4). Additionally, diurnal shifts in δ18O did not always occur simultaneously in both soil 

and plant tissue. Of the plants that experienced overnight δ18O shifts, only two instances showed 

corresponding shifts in soil δ18O (Figures 3.2-4), and there were several instances of overnight 

shifts in soil δ18O without associated shifts in plant δ18O (Figures 3.2-4). Consistent with these 

results, hydraulic lift did not correspond with shifts in leaf water potential, as has been observed 

in previous studies (Kurz-Besson et al. 2006; Cardon et al. 2013).  
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The inconsistent isotopic shifts we observed between plant and soil water may have 

occurred for several reasons. In cases when δ18O shifts were observed only in plant tissue, the 

deeply rooted plants may have lifted water to a soil depth below that of the 25 cm soil cores. A 

similar phenomenon has been previously reported by Bleby et al. (2010), illustrating that water 

can be redistributed to intermediate root depths by deep lateral roots. Alternatively, the shift in 

xylem δ18O could represent a shift in the relative contribution of different soil layers to direct 

water uptake associated with nocturnal transpiration, rather than hydraulic lift. In the instances 

when δ18O shifts were observed only in soil water, plants may have lifted water to shallow soil, 

where the soil water potential driving gradient was greatest, but concomitantly used water from 

greater depths, where water content was higher. This mechanism would not be surprising 

considering that forbs and shrubs typically utilize water from soil zones with the highest 

availability (Nippert and Knapp 2007a,b; Asbjornsen et al. 2008; Kulmatiski and Beard 2013; 

Priyadarshini et al. 2015).  

The rarity of hydraulic lift observed here is interesting, considering that this system is 

characterized by deep lowland soils (Knapp et al. 1993), plants with deep-rooted dimorphic roots 

(Weaver 1919; Weaver and Albertson 1943), and seasonal drought that reduces shallow soil 

moisture (Nippert et al. 2011). The fact that hydraulic lift generally does not occur under 

conditions that should promote this process raises several questions. Specifically, why does 

hydraulic lift not occur when conditions are favorable? What other environmental or biotic 

factors limit hydraulic lift? Does spatial and temporal heterogeneity within an ecosystem impact 

the occurrence of hydraulic lift? We propose several alternative explanations for the lack of 

hydraulic lift observed here. First, the heterogeneous structure of the tallgrass prairie may 

prevent hydraulic lift from occurring uniformly across the landscape. Although lowland areas are 
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generally characterized by deep silt-clay loams, patches of shallower soil and rocks are common 

throughout these locations (Ransom et al. 1998). Thus, it is possible that hydraulic lift only 

occurs when soil conditions are appropriate (e.g., the soil is sufficiently deep and free of rocks). 

If this is true, our results suggest that hydraulic lift is a patchy process and that topoedaphic 

features should be considered when observing and modeling hydraulic lift in heterogeneous 

environments. Second, hydraulic lift may not have been detected in R. glabra if the individuals 

we monitored transferred lifted water through its clonal network before being released into 

shallow soil, as has been observed by Ye et al. (2016). Finally, the low replication of this study 

(n=3), as well as the limited spatial and temporal sampling design, may have limited our ability 

to detect hydraulic lift, particularly if soil water potential gradients were not strong. Had we 

sampled with greater intensity, or directly measured soil water potential gradients, we may have 

detected stronger evidence for this variable process. 

 

 (2) Is hydraulic lift limited by grazing or nocturnal transpiration? 

Considering that a variety of factors can influence the pattern and magnitude of hydraulic 

lift (Caldwell et al. 1998; Burgess et al. 2000; Egerton-Warburton et al. 2007; Scholz et al. 2008; 

Nadezhidina et al. 2009; Bleby et al. 2010; Prieto et al. 2012b; Wang et al. 2011; Neumann et al. 

2012; Priyadarshini et al. 2015), we hypothesized that grazing and nocturnal transpiration would 

limit hydraulic lift in this system. Grazing by bison can have significant impacts on plant 

diversity, vegetation structure, soil physical properties, and nutrient cycling (Knapp et al. 1999). 

Grazing has also been shown to reduce shallow root biomass, as carbon allocation is shifted 

aboveground during regrowth following defoliation (Johnson and Matchett 2001; Klumpp et al. 

2009; Nippert et al. 2012). Reduced shallow root biomass due to grazing may therefore reduce 
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hydraulic lift because fewer shallow roots should reduce root-soil contact and limit water efflux 

from roots. Grazing also increases shallow soil moisture due to reduced transpirational water loss 

(Archer and Detling 1986; Svejcar and Christiansen 1987; Harrison et al. 2010), which could 

reduce the soil water potential gradient necessary to drive hydraulic lift. However, we did not 

find that grazing impacts hydraulic lift in this system, as the few instances of hydraulic lift 

occurred in both grazed and ungrazed locations. Despite this weak relationship, we should still 

consider land management practices such as grazing in future hydraulic lift studies, particularly 

in ecosystems where hydraulic lift may be more prevalent. 

Previous studies have shown that incomplete stomatal closure and transpiration at night 

reduces hydraulic lift by creating a competing sink for water movement through plant canopies 

(Donovan et al. 2001, 2003; Kavanagh et al. 2007; Scholz et al. 2008; Howard et al. 2009). 

Reductions in hydraulic lift by nocturnal transpiration can be substantial, in some cases limiting 

the amount of water released by roots into soil by 73% (Howard et al. 2009). We found few 

instances of hydraulic lift but observed consistent rates of nocturnal transpiration in all species 

(Table 3.1). These results suggest that nocturnal transpiration likely limits hydraulic lift to some 

extent, although both processes can occur depending on how the environment drives competing 

sinks between the plant and soil (Scholz et al. 2002; Donovan et al. 2003; Howard et al. 2009). 

Nocturnal transpiration may also explain why high predawn leaf water potential values were not 

always observed when hydraulic lift occurred, since nocturnal transpiration can prevent 

nocturnal equilibrium between soil and xylem water potential (Donovan et al. 2001, 2003).  

 



76 

 (3) If a dominant grass, A. gerardii, does not exhibit hydraulic lift, does it benefit by 

using water lifted by neighboring deep-rooted forbs and shrubs?  

Finally, we tested the hypothesis that, if A. gerardii does not exhibit hydraulic lift, it will 

utilize water by neighboring forbs and shrubs. Our results show that A. gerardii did not exhibit 

hydraulic lift, nor did it utilize water lifted by neighboring target plants. The lack of hydraulic lift 

utilized by A. gerardii is somewhat surprising considering that this species is deep-rooted and 

utilizes a small proportion of deep water (Weaver 1919; Nippert and Knapp 2007), and because 

hydraulic lift has been observed in some grasses (Schulze et al. 1998; Yoder and Nowak 1999; 

Espeleta et al. 2004; Leffler et al. 2005; Armas et al. 2012). The lack of facilitation observed in 

cases where hydraulic lift occurred is also surprising considering that facilitation of hydraulically 

lifted water by neighboring grasses or understory shrubs is so often reported in the literature 

(Caldwell 1990; Dawson 1993; Moreira et al. 2003; Warren et al. 2007; Hawkins et al. 2009).  

Facilitation by hydraulic lift may not occur in this system for several reasons. First, 

competition for lifted water occurred between the lifting plants and neighboring grasses, 

outweighing any facilitative impact of hydraulic lift. A similar phenomenon has been observed in 

semi-arid African savannas, where Acacia trees utilized a substantial amount of lifted water in 

shallow soil layers, reducing soil moisture as well as the biomass of neighboring grasses 

(Ludwig et al. 2003, 2004). However, A. gerardii has high rates of diurnal transpiration (Table 

3.1; O’Keefe and Nippert, unpublished data) and has a fibrous root system (Weaver 1954) that 

only utilizes shallow soil water (Nippert and Knapp 2007a,b; Asbjornsen et al. 2008), suggesting 

that this grass should be an effective competitor for lifted water in shallow soil layers. Another 

explanation could be that hydraulic lift moved deep soil water to intermediate depths below 

which A. gerardii can access, as previously discussed.  
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 Conclusion 

In summary, hydraulic lift occurred infrequently in a native tallgrass prairie, making it 

unlikely that this process is an important component of local ecohydrology under current climate 

conditions. However, climate models predict that precipitation patterns will become increasingly 

variable in the North American Great Plains over the next century which, when coupled with 

elevated air temperatures, will result in drier conditions throughout the region (Christensen et al. 

2007). Simulations show that future climate conditions will decrease soil moisture and carbon 

assimilation in grasslands, with concomitance increases in growing season carbon and water flux 

variability (Petrie et al. 2012). Additional models have shown that hydraulic lift can maintain 

shallow soil moisture and transpiration during drought, which could maintain these canopy-scale 

water and carbon fluxes (Domec et al. 2010). Thus, hydraulic lift may buffer the negative 

consequences of future climate change under conditions drier than those experienced during this 

study. 

In the few instances where we did observe hydraulic lift we found no evidence that this 

process is influenced by grazing, nor does it result in facilitation for neighboring grasses. The 

rarity of hydraulic lift found here is somewhat surprising, considering the ecology and climate of 

North American tallgrass prairies. However, identifying the conditions when hydraulic lift is 

infrequent in water-limited ecosystems provides insight as important as identifying the 

mechanisms and drivers of this phenomenon when it occurs. In this grassland, high rates of 

nocturnal transpiration, topographic complexity, and patchy resource availability likely reduce 

the occurrence of hydraulic lift. Ultimately, our study provides further evidence that hydraulic 

lift is an extremely patchy process regulated by many factors, and that multiple physiological and 
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environmental factors should be considered in studies of hydraulic lift in heterogeneous 

landscapes.  
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Table 3.1 Nocturnal transpiration (mmol H2O m2s-1) during July and August 2014. 
Measurements were made on A. gerardii, V. baldwinii, A. canescens, and R. glabra in 
ungrazed and grazed locations. Shown are mean ± 1 SEM. 

 July 2014  August 2014  

 Ungrazed Grazed Ungrazed Grazed 

A. gerardii 0.5803 ± 0.2181 0.6282 ± 0.2520 0.5658 ± 0.3256 0.4495 ± 0.0869 

V. baldwinii 0.3806 ± 0.1104 0.5577 ± 0.1840 0.4798 ± 0.0579 0.4683 ± 0.0984 

A. canescens 0.4352 ± 0.1938 0.4837 ± 0.0506 0.3574 ± 0.0644 0.4797 ± 0.1251 

R. glabra 0.2562 ± 0.0476 0.3141 ± 0.01272 0.2113 ± 0.0543 0.3310 ± 0.0999 

 

  



92 

 

Figure 3.1 Predicted diurnal changes in soil water δ18O (‰) within soil cores adjacent to 
plants. Shown are predictions for no diurnal change (a), and a negative shift indicating 
hydraulic lift (b). 

  

5

10

15

20

25

−11 −9 −7 −5 −3 −1

So
il 

D
ep

th
 (c

m
)

morning
night

5

10

15

20

25

−11 −9 −7 −5 −3 −1

a) no shift b) hydraulic lift

δ18O (‰)
1 1



93 

 
Figure 3.2 Soil water δ18O (‰) measured at various depths within soil cores adjacent to 
each plant in ungrazed locations. Shown are soil cores collected at night and morning time 
points adjacent to A. gerardii (a-d), V. baldwinii (e-h), canescens (i-l), and R. glabra (m-p) 
during July 2013 (a, e, i, m), August 2013 (b, f, j, n), July 2014 (c, g, k, o), and August 2014 
(d, h, l, p). Shown are mean ± 1 SEM. 
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Figure 3.3 Soil water δ18O (‰) measured at various depths within soil cores adjacent to 
each plant in grazed locations. Shown are soil cores collected at night and morning time 
points adjacent to A. gerardii (a-d), V. baldwinii (e-h), canescens (i-l), and R. glabra (m-p) 
during July 2013 (a, e, i, m), August 2013 (b, f, j, n), July 2014 (c, g, k, o), and August 2014 
(d, h, l, p). Shown are mean ± 1 SEM. 
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Figure 3.4 Change in the proportion of deep water in plant xylem from night to morning 
time points, measured during July (a, b) and August (c, d) in 2013 and 2014. Positive values 
indicate an increase in deep water contribution to xylem water from night to morning, 
while negative values indicate a decrease in deep water contribution to xylem water from 
night to morning. Samples were collected for A. gerardii, V. baldwinii, A. canescens, and R. 
glabra in ungrazed and grazed locations. Values were calculated from the posterior 
distributions of the SIAR analyses. 
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Chapter 4 - Nocturnal water loss accounts for a substantial portion 

of plant water-use in a diverse grassland community 

 Abstract 

Nocturnal transpiration can have significant consequences for plant functioning and 

earth-atmosphere water fluxes, yet little is known about how this process varies within diverse 

communities, particularly in grassland ecosystems. We measured leaf-level nighttime 

transpiration and daytime photosynthetic rates on eight grass, forb, and woody species in a North 

American tallgrass prairie. Measurements were made periodically across a two growing seasons 

(May-August 2014-2015) on three C4 grasses (Andropogon gerardii, Sorghastrum nutans, and 

Panicum virgatum), two C3 forbs (Vernonia baldwinii and Solidago canidensis), one C3 sub-

shrub (Amorpha canescens) and two C3 shrubs (Cornus drummondii and Rhus glabra). We 

observed the highest rates of nocturnal transpiration in grasses and C. drummondii. All species 

showed a strong relationship between nocturnal transpiration and nocturnal stomatal 

conductance, suggesting that nocturnal water loss is regulated by plant stomata in this system. 

Additionally, nocturnal transpiration was equivalent to a large proportion of daytime 

transpiration rates, reaching over 35% in the C4 grasses. Finally, both daytime and nighttime gas 

exchange rates were highly variable among species, within growing seasons, and across years. 

Our results suggest that patterns of nocturnal transpiration are variable within a community, are 

dynamic through time, and can be a considerable portion of a plant water budget. The regulation 

of nocturnal water loss by stomatal conductance also suggests that nocturnal transpiration may 

have functional significance as a competitive strategy in this ecosystem. Further characterization 

of this process will improve ecohydrological estimates in model forecasts of earth-atmosphere 

fluxes in grassland ecosystems.  
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 Introduction 

Nocturnal transpiration has historically been ignored due to the conventional assumption 

that plants close their stomata at night to prevent water loss when carbon gain is absent. 

However, research over the past two decades has shown that nocturnal transpiration occurs often 

and can contribute significantly to total plant water use (Dawson et al. 2007). In fact, nighttime 

water flux typically ranges between 5-15% of daytime transpiration rates (Caird et al. 2007), and 

has even been reported to be up to 69% of total transpiration in certain species (Forster 2014). 

Substantial nighttime transpiration has been observed in a wide range of plant taxa and 

ecosystem types (Caird et al. 2007), including temperate forests (Barbour et al. 2005; Daley and 

Phillips 2006), tropical montane cloud forests (Alvarado-Barrientos et al. 2015), deserts (Snyder 

et al. 2003; Ogle et al. 2012), tropical savannas (Domec et al. 2006), and tropical rainforests 

(Wallace and McJannet 2010). Considering the widespread occurrence of this phenomenon, 

nocturnal transpiration likely contributes greatly to global-scale evapotranspiration (Zeppel et al. 

2014; Resco de Dios et al. 2015). 

Despite the importance of this phenomenon, the ecological advantage of nocturnal 

transpiration is still highly debated. Incomplete stomatal closure and transpiration at night can 

represent a significant cost to plant functioning and ecosystem water balance. Nocturnal water 

loss without concomitant carbon gain decreases water-use efficiency (Christman et al. 2008; 

Coupel-Ledru et al. 2016), prevents nocturnal equilibrium between soil and xylem water 

potential (Donovan et al. 2001, Bucci et al. 2004; Kavanagh et al. 2007), and reduces leaf water 

potential, water storage recharge in plant tissues, and daytime transpiration rates (Dawson et al. 

2007). Nighttime plant water use also has the potential to deplete water in the rhizosphere and 
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accelerate the rate at which plants become drought stressed, particularly under dry conditions. 

These observations have led to the suggestion that nocturnal transpiration has no adaptive value 

and is simply the result of “leaky” stomata (Barbour et al. 2005). 

Yet others argue that nocturnal transpiration is not as costly to plant function as initially 

proposed (Caird et al. 2007; Cirelli et al. 2015). High rates of nocturnal water flux through a 

plant may repair partial xylem cavitation (Snyder et al. 2003), prevent excess turgor in leaf tissue 

experiencing high osmotic potentials (Donovan et al. 2001), or promote bulk flow of water and 

nutrients through the soil (Scholz et al. 2007). Nocturnal transpiration can also stimulate early 

morning photosynthesis (Daley and Phillips 2006; Dawson et al. 2007), increase carbohydrate 

export (Marks and Lechowicz 2007), and increase oxygen concentrations in sapwood (Daley and 

Phillips 2006). Enhancing water, nutrient, or carbon relations can improve plant growth and 

survival, providing these species with a competitive advantage over species that do not transpire 

at night.  

Elucidating whether nocturnal water loss has functional significance in ecological 

communities will first require a detailed understanding of how nocturnal transpiration varies 

among co-existing species. Although nocturnal transpiration is a widely reported phenomenon, 

most studies report rates of nocturnal water flux in either one or a few co-occurring species. 

Further, nocturnal transpiration has been primarily documented in dominant tree species of forest 

ecosystems (Daley and Phillips 2006; Dawson et al. 2007; Kavanagh et al. 2007; Buckley et al. 

2011; Barbeta et al. 2012; Zeppel et al. 2010) or, to a lesser extent, crops (Caird et al. 2007; 

Fuentes et al. 2013; Rogiers and Clarke 2013) and herbaceous plants such as Helianthus or 

Arabidopsis grown in greenhouses (Howard and Donovan 2006; Christman et al. 2008; Escalona 

et al. 2013; Auchincloss et al. 2014; Neumann et al. 2014). Considerably less is known about 
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interspecific variation in nocturnal transpiration within the same ecosystem, particularly among 

different plant functional types (e.g., herbaceous versus woody species) (Ogle et al. 2012; Resco 

de Dios et al. 2015; Snyder et al. 2003). Here, we address this knowledge gap by observing 

community-level variation in nocturnal transpiration in a tallgrass prairie. 

The tallgrass prairie of North America is an ideal ecosystem in which to test questions 

regarding the functional significance of nocturnal transpiration within plant communities. 

Although nocturnal transpiration has not yet been observed in grasslands, water loss occurring at 

night may be an important ecohydrological process here because tallgrass prairies experience 

tremendous temporal variability in soil moisture at small spatial scales (Knapp et al. 1993; 

Nippert et al. 2011). As a result, prairie grasses, forbs, and shrubs have developed an array of 

water-use strategies to coexist within variable and often limiting conditions. Previous research in 

this ecosystem has revealed considerable interspecific variation in traits such as drought 

tolerance (Tucker et al. 2011; Ocheltree et al. 2016) and source water uptake (Asbjornsen et al. 

2008; Nippert and Knapp 2007a,b; O’Keefe and Nippert 2016; Ratajczak et al. 2011). 

Furthermore, interspecific variation in these traits can shift niche overlap and potentially alter 

competitive interactions within communities (O’Keefe and Nippert 2016). Considering the 

diversity of water-use traits observed in this system, as well as the role these traits play in 

determining interspecific interactions and species coexistence, nocturnal transpiration may be an 

important ecohydrological strategy here as well. However, evaluating the functional significance 

of nocturnal water loss in tallgrass prairie first requires a comprehensive assessment of whether 

nocturnal transpiration occurs in this system, if it varies among coexisting species, and how 

patterns of nocturnal transpiration change over time. 
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In the present study, we evaluated patterns of nocturnal transpiration in commonly 

occurring species in a tallgrass prairie. Using leaf-level measurements of diel gas exchange, we 

addressed four primary questions: (1) Does nocturnal transpiration occur in a tallgrass prairie? 

(2) How does nocturnal transpiration vary within a diverse community of grasses, forbs, and 

shrubs? (3) How do patterns of diel gas exchange vary intra- and inter-annually? (4) Is nocturnal 

transpiration regulated by nocturnal stomatal conductance or is it passively driven by nocturnal 

vapor pressure deficit? We hypothesized that (1) nocturnal transpiration will occur among 

coexisting plant functional types including grasses, forbs, and shrubs, (2) daytime and nocturnal 

transpiration will vary intra-annually and will be greatest early in the growing season, during 

periods with the highest soil water availability, and (3) nocturnal water loss will be actively 

regulated by nocturnal stomatal conductance. 

 

 Methods 

 Study Location 

This research was conducted in 2014 and 2015 at the Konza Prairie Biological Station 

(KPBS), a Long Term Ecological Research (LTER) site located in the Flint Hills region of 

northeastern Kansas, USA (39.1°N, 96.9°W). KPBS is a 3,487-ha native tallgrass prairie that is 

divided into experimental watersheds, each of which receive varying combinations of grazing 

(grazed by Bison bison, cattle, or ungrazed) and prescribed fire (burned every 1, 2, 4, or 20 

years) treatments. Long-term weathering has created a topographically heterogeneous landscape 

consisting of shallow, rocky uplands, steep slopes, and deep, loess soiled lowlands. KPBS is 

dominated by a few perennial C4 grass species along with numerous sub-dominant C3 grass, forb, 

and woody species (Smith and Knapp 2003). 
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The Flint Hills region of Kansas experiences a mid-continental climate, characterized by 

cool, wet winters and warm, dry summers. Long-term mean annual precipitation at KPBS is 829 

mm (1982-2014), with 79% occurring during the growing season (April – September). 

Precipitation was 706 mm in 2014 and 1002 mm in 2015 (68% and 75% of which occurred 

during each respective growing season). The warmest average month of the year is July (1982-

2014), with mean maximum and minimum air temperatures of 32.69 °C and 19.78 °C, 

respectively. The coldest average month is January (1982-2014), with mean maximum and 

minimum air temperatures of 4.87 °C and -7.14°C. During July 2014, mean maximum and 

minimum air temperatures were 31.7°C and 17.06°C, respectively. During July 2015, mean 

maximum and minimum air temperatures were 32.02°C and 20.67°C. 

 

 Experimental Design 

The current study was conducted in lowland prairie of an ungrazed watershed that is 

burned every four years (last burned in 2013). A four-year fire interval is similar to the historic 

frequency of fire for the region (Frost 1998) and results in a landscape characterized by greater 

forb and shrub diversity than annually burned prairie (Collins and Calabrese 2012; Koerner and 

Collins 2014). We sampled commonly occurring species at KPBS including three dominant C4 

grasses (Andropogon gerardii Vitman, big bluestem; Panicum virgatum L., switchgrass; 

Sorghastrum nutans (L.) Nash., indiangrass), two C3 forbs (Solidago canadensis L., Canada 

goldenrod; Vernonia baldwinii Torr., Baldwin’s ironweed), one legumous C3 sub-shrub 

(Amorpha canascens Pursh., leadplant), and two C3 shrubs (Rhus glabra L., smooth sumac; 

Cornus drummondii C.A. Mey., rough-leaf dogwood). All measurements were made from May 

through September of each year during the study. 
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 Environmental Conditions 

A micrometeorological station located at a lowland position within the same 

experimental watershed (< 50 m from all study plants) was used to measure air temperature, 

relative humidity, and soil moisture. Vapor pressure deficit was calculated from air temperature 

measurements made with a 100 K thermistor (Betatherm, Hampton, VA, USA) and relative 

humidity measurements made using a HM1500A sensor (Humierl, Hampton, VA, USA). Soil 

moisture was measured at 10 cm and 30 cm depths using Hydraprobe II sensors (Stevens Water 

Monitoring Systems, Portland, OR). Data were recorded as 30 minute averages using a CR10X 

datalogger (Campbell Scientific Inc. Logan, UT) throughout each growing season of the study. 

 

 Leaf physiology measurements 

Leaf physiology measurements (midday gas exchange, nocturnal gas exchange, midday 

water potential, and predawn water potential) were made six times per growing season, 

approximately once every 2-4 weeks. For each sampling time point, all measurements were 

made on the youngest, fully developed leaf from 3-5 randomly selected individuals per species. 

Leaf gas exchange was measured with an Li-6400XT gas analyzer (Li-Cor, Inc., Lincoln, NE, 

USA). Midday measurements were made on clear days between 1000-1400 hours and included 

maximum CO2 assimilation at ambient Ca (Amax), daytime stomatal conductance of water vapor 

(gsday), and daytime transpiration rate (Eday). Daytime cuvette conditions were set to [CO2] = 400 

µmol CO2 mol-1, relative humidity = 40-60%, and photosynthetically active radiation = 1500 

µmol m-2s-1 photon flux density.  
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Nocturnal measurements were made on the same day as daytime gas exchange 

measurements, approximately one hour following sunset, and typically lasted 2-3 hours. At 

night, cuvette conditions were also set to [CO2] = 400 µmol CO2 mol-1 and relative humidity = 

40-60%, but the light source was turned off. Nocturnal measurements were made on the same 

leaves used for daytime gas exchanges measurements and included nocturnal stomatal 

conductance (gsnight), nocturnal transpiration rate (Enight), and vapor pressure deficit at the leaf 

surface. In the few instances where leaves were damaged between daytime and nocturnal 

measurements, a morphologically and developmentally similar leaf on the same plant was 

chosen for the nocturnal measurement. For all gas exchange measurements, each leaf was 

allowed to stabilize within the cuvette for 2-5 minutes and then a single measurement was 

recorded. Gas exchange calculations were adjusted for leaf area within the cuvette during data 

processing, if necessary. 

Predawn (Ψpd) and midday (Ψmd) leaf water potentials were measured on adjacent and 

climatically similar days to those during which gas exchange measurements were performed. 

Leaves for predawn measurements were collected approximately one hour prior to sunrise and 

leaves for midday measurements were collected at 1200 hours the same day that predawn 

measurements were made. Each leaf was cut with a razor blade, sealed in dark, humidified 

plastic bag, and allowed to equilibrate for one hour prior to measurement with a Scholander 

pressure chamber (PMS Instrument Company, Albany, OR, USA). 

 

 Statistics 

All analyses were performed with the statistical program R V3.1.0 (R Core Team 2012). 

For all physiological response variables, differences among treatment contrasts were evaluated 
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using a three-way linear fixed-effects model in a completely randomized design with species, 

within-season sample period, and year as main effects. The percent nocturnal transpiration of 

daytime transpiration rate (%Enight) was calculated for day-night measurement pairs on each leaf 

and was also compared among treatment contrasts using a three-way linear fixed effects model. 

Post-hoc multiple comparisons were calculated using Tukey’s Honest Significant Difference test 

(Tukey 1949). To assess whether nocturnal transpiration can be predicted from nocturnal 

stomatal conductance or nocturnal VPD, we compared the relationship between nocturnal 

transpiration and nocturnal VPD measured at both the leaf level (Leaf VPD) and at the 

atmospheric level (Bulk VPD) using linear and nonlinear regression analyses. Leaf VPD was 

recorded by the Li-6400XT during nocturnal gas exchange measurements and a single bulk VPD 

measurement was recorded at daily minimum (03:00 h) conditions for each measurement night 

by the nearby micrometeorological station. Separate regression analyses were conducted for all 

species, averaged over all sample periods and years. Homogeneity of variances was assessed by 

examining residuals versus fitted plots and all data were checked for normality by examining 

normal qq-plots (Faraway 2005).  

 

 Results 

 Environmental Conditions 

Soil moisture measured at 10 cm and 30 cm depth declined over each growing season 

(Figure 4.1a-b) with highest values at DOY 161 in 2014 and DOY 156 in 2015. Lowest soil 

moisture values occurred at DOY 242 in 2014 and DOY 249 in 2015. Soil moisture was 

generally higher in 2015 than in 2014, which was associated with greater annual precipitation 

and larger precipitation events in 2015 compared to 2014 (Figure 4.1c-d). Vapor pressure deficit 
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was variable over each growing season but was generally higher in 2014 than 2015 (Figure 4.1e-

f). Maximum VPD values measured during the day (15:00 h) occurred on DOY 236 in 2014 and 

DOY 249 in 2015, while minimum VPD values measured at night (03:00) occurred on DOY 219 

in 2014 and frequently reached 0.0 kPa throughout 2015.  

 

 Nocturnal Gas Exchange 

Measurable rates of nocturnal conductance and transpiration occurred in all species, for 

all measurement periods and years (Figure 4.2). Nocturnal gas exchange varied significantly 

among species and within-growing season dates (significant species x date interactions for Gsnight 

and Enight; Table C.1), as well as among years and dates (significant year x date interactions for 

Gsnight and Enight; Table C.1). In 2014, nocturnal stomatal conductance was high on the first two 

and last sampling days, but declined between DOY 196-229 (Figure 4.2a). However, in 2015 

nocturnal conductance was high on the first sampling day (DOY 152) and on DOY 211, and was 

lower between these dates as well as at the end of the growing season (Figure 4.2b). Grasses and 

C. drummondii had the highest nocturnal conductance values during these days of high overall 

nighttime conductance, while the remaining shrubs (A. canescens and R. glabra) had consistently 

low rates of nocturnal conductance (Figure 4.2a-b). 

Nocturnal transpiration showed similar intra-annual trends over both growing seasons 

(Figure 4.2c-d). During 2014, grasses and C. drummondii had the highest rates of nocturnal 

transpiration early in the season (DOY 172 and 184), but rates declined and were comparable 

with other species during the remainder of the growing season. Throughout most of 2015, 

grasses had the highest rates of nocturnal transpiration, with A. gerardii having the overall 
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highest values on DOY 211 (Figure 4.2d). Shrubs and forbs had the lowest and intermediate 

nocturnal transpiration rates throughout 2015, respectively (Figure 4.2d). 

The percent nocturnal transpiration of daytime transpiration rates also varied among 

species, years, and within-growing season dates (Table C.1). Generally, nocturnal transpiration 

represented a higher proportion of daytime transpiration rates early and late in the growing 

season, for both years (Figure 4.2e-f). During these periods, grasses had the highest proportion, 

with A. gerardii having nocturnal transpiration rates reach almost 40% of daytime rates during 

DOY 152 in 2015 (Figure 4.2f). Forbs also had nocturnal transpiration rates that comprised a 

high percent of daytime rates during DOY 212 and 229 in 2014. 

Variation in nocturnal transpiration was best explained by nocturnal stomatal 

conductance for all species (Figure 4.3-5). Nocturnal transpiration increased nonlinearly with 

increasing stomatal conductance for all species, although the rate of this increase and the strength 

of this relationship varied among species. Conversely, nocturnal transpiration showed a very 

weak relationship with vapor pressure deficit at both the atmosphere and the leaf scale. 

 

 Daytime Gas Exchange 

Daytime gas exchange rates varied significantly among species, years, and within-

growing season measurement dates (Table C.2). All gas exchange rates steadily declined 

throughout the 2014 growing season but increased mid-season before declining at the end of the 

growing season in 2015 (Figure 4.6). Grasses typically had the highest photosynthetic rates 

compared to forbs or shrubs, with P. virgatum having overall highest rates in 2014 and S. nutans 

having the highest rates in 2015 (Figure 4.6a-b). Forbs had the lowest photosynthetic rates, with 

S. canescens having the absolute lowest rates in 2014 and V. baldwinii having lowest rates in 
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2015. The woody species, A. canescens, R. glabra, and C. drummondii, had fairly consistent 

rates of photosynthesis over time, with little decline in 2014 compared to other species, little 

increase in 2015 compared to other species, and little difference between years. 

Daytime stomatal conductance to water vapor and daytime transpiration showed similar 

intra- and inter-annual trends, but variation among species differed compared to photosynthesis. 

Grasses generally had the overall lowest stomatal conductance in both 2014 and 2015, while S. 

canescens and R. glabra had the highest stomatal conductance during both years (Figure 4.6c-d). 

Grasses and shrubs generally had consistent stomatal conductance across both years, while the 

forbs showed the largest decline in 2014 and increase in 2015. Daytime transpiration was less 

static over time than stomatal conductance (Figure 4.6e-f). S. canadensis had the highest 

transpiration rates early in the 2014 growing season and the lowest rates by mid-season, but 

consistently had the highest transpiration rates throughout 2015. R. glabra had the highest 

transpiration rates by mid-season in 2014. Transpiration rates were generally similar among all 

other species over both growing seasons. 

 

 Leaf Water Potential 

Leaf water potential varied significantly among species, years, and within-growing 

season measurement dates (Table C.3). Both predawn and midday water potential were greater in 

2015 than in 2014 (Figure 4.7). Predawn leaf water potential declined during the middle of the 

2014 growing season for all species, but remained consistently high throughout 2015 (Figure 

4.7a-b). All species had similar predawn water potential values during both years except R. 

glabra, which consistently had lower predawn water potential values than all other species on 

each sampling date in 2015. Midday leaf water potential declined over both growing seasons, but 
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to a greater extent in 2014 than in 2015. In 2014, R. glabra and S. canescens had the highest 

midday water potential values earlier in the growing season, while A. canescens had the lowest 

values later in the growing season. In 2015, A. canescens and R. glabra had the lowest midday 

water potential values throughout most of the growing season. 

 

 Discussion 

Although nocturnal transpiration has been observed in a variety of ecosystems, whether 

this phenomenon occurs in grasslands or how it may vary within a diverse grassland community 

has not been previously studied. To address this knowledge gap we compared patterns of diel gas 

exchange among eight common grass, forb, and shrub species in a tallgrass prairie over two 

years. We present four main conclusions: 1) substantial rates of nocturnal transpiration occur in 

all species measured here, with the highest rates observed among grasses and the clonal shrub C. 

drummondii; 2) nocturnal transpiration is equivalent to a large proportion of daytime 

transpiration rates, reaching over 35% in some instances; 3) diel leaf physiology is highly 

variable among species, within growing seasons, and across years, and 4) nocturnal transpiration 

is driven by changes in stomatal conductance, not VPD. Combined, these results suggest that 

nocturnal transpiration is actively regulated by grassland plants and may impact plant 

physiology, community interactions, and landscape-scale water fluxes. 

We measured substantial rates of nocturnal water loss in all grasses, forbs, and shrubs. 

These rates ranged from 0.02 – 1.44 mmol m-2s-2 and were equivalent to 0.5-35.5% of daytime 

transpiration rates, suggesting that nocturnal loss is variable within a community and can 

represent a significant portion of the water lost from this ecosystem. The dominant C4 grasses in 

this system (A. gerardii, P. virgatum, and S. nutans) and the clonal shrub C. drummondii had the 
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highest rates of nocturnal transpiration throughout both years, while the remaining forbs and 

woody plants generally exhibited lower rates of nocturnal conductance and water loss (Figure 

4.2). Additionally, interspecific differences in nocturnal conductance and transpiration were 

greater during periods of high soil moisture availability, which may represent species-specific 

responses to changes in the drivers of nocturnal transpiration, as has been observed in other 

studies (Cirelli et al. 2015; Daley and Phillips 2006; Ogle et al. 2012). 

Nocturnal transpiration as a proportion of daytime transpiration also varied greatly 

among species, with maximum values ranging from up to 35.5 % in grasses, 15.5% in forbs, and 

23.6% in shrubs. The significant portion of water lost at night in grasses likely occurs because 

these C4 species maintain lower stomatal aperture during the day (Figure 4.6c-d) yet retain 

higher stomatal conductance at night compared to C3 species (Figure 4.2a-b). Interestingly, this 

observation is contrary to previous evidence showing that plants with high daytime conductance 

also have high nocturnal conductance (Barbour et al. 2005; Synder et al. 2003). However, this 

discrepancy may simply result from an underrepresentation of C4 grasses in the nocturnal 

transpiration literature (reviewed in Caird et al. 2007). Considering the overwhelming dominance 

of C4 grasses in mesic grasslands (Epstein et al. 1998), nocturnal transpiration likely accounts for 

a significant proportion of the total water budget in this ecosystem. 

Interspecific differences in nocturnal transpiration suggest that there may be a functional 

significance associated with water loss at night in mesic grasslands. One explanation may be that 

nocturnal transpiration promotes rapid water loss as a competitive strategy within a community. 

Under wet conditions, high rates of nocturnal transpiration may quickly diminish water in the 

rhizosphere. If the plant transpiring at night can persist through periods of low water availability, 

they may have a competitive advantage over neighbors that are less resistant to drought. We 
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found that the drought-tolerant C4 grasses in this ecosystem, which grow quickly when resources 

are available and can tolerate periods of resource limitation (Nippert et al. 2007a; Tucker et al. 

2011), had the highest rates of nocturnal transpiration. Thus, these species may take advantage of 

wet periods and continuously lose water to reduce the total amount of water available for 

coexisting species that may have greater susceptibility to drought stress.  In this scenario, the loss 

of a community-level resource would have more significant negative consequences on species 

sensitive to periods of low-water availability.  Another functional role of nocturnal transpiration 

may be to increase nutrient availability. Previous studies have shown that the bulk flow of soil 

water associated with nocturnal water fluxes can increase nutrient availability for the transpiring 

plants, particularly when soil moisture availability is high or when nutrient availability is low 

(Scholz et al. 2007; Kupper et al. 2012; Resco de Dios et al. 2013; Rohula et al. 2014). 

Considering that the tallgrass prairies of North America are fairly nutrient-limited (Fay et al. 

2015; Klodd et al. 2016), and that nocturnal transpiration rates were highest under wetter 

conditions, nocturnal water fluxes may indeed facilitate nutrient transfer and uptake in this 

system. Combined, these hypotheses warrant further mechanistic evaluations of nocturnal 

transpiration in tallgrass prairies. 

Nocturnal and diurnal leaf physiology were both highly variable within growing seasons 

and across years. During the day, grasses had the highest photosynthetic rates and lower rates of 

daytime stomatal conductance and transpiration, which is typical of plants that utilize the C4 

photosynthetic pathway (Kalapos et al. 1996; Knapp et al. 1993; Nippert et al. 2007; Turner et al. 

1995). Daytime gas exchange rates and leaf water potential values decreased throughout the 

2014 growing season for all species, which was associated with overall drier conditions 

including a steady decline in soil moisture (Figure 4.1a), few precipitation events throughout the 
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middle of the growing season (Figure 4.1c), and increasing VPD over time (Figure 4.1e). 

Conversely, daytime gas exchange rates increased throughout 2015, which is not surprising 

considering that soil moisture was generally greater throughout the growing season (Figure 

4.1b), there were more frequent precipitation events throughout the entire season (Figure 4.1d), 

and VPD was lower than in 2014 (Figure 4.1f). 

Nocturnal conductance and transpiration were also variable through time, with somewhat 

similar responses to environmental conditions. Previous research has shown that nocturnal 

transpiration rates are positively associated with environmental conditions such as high nocturnal 

VPD and high soil moisture (Alvarado-Barrientos et al. 2015; Benyon 1999; Dawson et al. 2007; 

Fisher et al. 2007; Howard and Donovan 2006). Conversely, we observed lower rates of 

nocturnal water loss when VPD was high (e.g., DOY 212 in 2014) and higher rates of nocturnal 

transpiration when VPD was low (e.g., DOY 152 in 2015), which indicates that atmospheric 

evaporative demand is not necessarily a driver of nocturnal transpiration in this system. We also 

found a weak relationship between nocturnal transpiration and VPD measured at both the leaf 

scale and the landscape scale for all species (Figure 4.3-5), further demonstrating that VPD is not 

a singular driver of nocturnal transpiration in grassland plants. Rather, nocturnal transpiration 

was strongly related to nocturnal stomatal conductance, suggesting that these plants may actively 

regulate water loss across a range of potential VPD. This result gives further support to the idea 

that nocturnal transpiration may have adaptive significance in tallgrass prairie. 

Additionally, nocturnal transpiration appears to be modulated by precipitation and soil 

moisture availability. Nocturnal conductance and transpiration were typically greater early in the 

growing season when soil moisture was greater (Figure 4.1a, 4.3a-d) and also following 

precipitation events (e.g., DOY 211-212 in 2015; Figure 4.1d, 4.3d). Given that grasses exhibit 
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continuous use of surface soil water over time (Nippert and Knapp 2007a,b; O’Keefe and 

Nippert 2016), this pattern may explain why grasses generally had the highest rates of nocturnal 

water loss, especially during periods of high soil moisture. Forbs and shrubs, which exhibit 

plasticity in water source use depending on availability (Nippert and Knapp 2007a,b), have 

constant access to soil water and should therefore be less responsive to pulses in shallow soil 

moisture over time. Overall, these results indicate that both daytime and nighttime gas exchange 

rates are sensitive to changes in soil moisture, although responses vary among species. 

The high rates of nocturnal water loss observed here likely have significant implications 

for this mesic grassland. Rapid reductions in shallow soil moisture associated with nocturnal 

transpiration have the potential to reduce leaf gas exchange and growth rates of species that are 

sensitive to changes in water availability (Knapp 1984, 1985; Nippert et al. 2009), which can 

result in lower rates of evapotranspiration and increased carbon losses at the landscape scale (Niu 

et al. 2008; Petrie and Brunsell 2011; Petrie et al. 2012; Zhang et al. 2011). A drier rhizosphere 

can also cause certain species to shift reliance to deeper soil water (Nippert and Knapp 2007a,b), 

which can alter niche overlap within a community (O’Keefe and Nippert 2016) or even deplete 

deep water stores under long periods of drought (Logan and Brunsell 2015). Finally, nocturnal 

transpiration may also impact hydraulic lift, the passive movement of water through plant roots 

from areas of deep, moist soil to shallow, drier soil (Richards and Caldwell 1987). Hydraulic lift 

does occur in this grassland (O’Keefe and Nippert, unpublished data), and nocturnal transpiration 

may reduce the magnitude of redistributed water by creating a competing sink for water 

movement (Donovan et al. 2003; Howard et al. 2009).  

Overall, this study provides a first assessment of nocturnal transpiration in a tallgrass 

prairie. We show that nocturnal transpiration occurs in herbaceous and woody functional groups 
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and, importantly, that nocturnal water loss can represent a large fraction of total plant water use 

across a range of species. These results suggest that nocturnal transpiration may have significant 

impacts on plant physiology, community interactions, and landscape-scale water fluxes. Future 

measurements of tallgrass prairie evapotranspiration should therefore include nocturnal water 

loss to improve estimates of ecosystem water balance. Finally, these results also highlight the 

importance of studying community level variation in nocturnal transpiration. While most 

nocturnal transpiration research does not consider multiple functional groups, we demonstrate 

that nocturnal water loss has a greater proportional impact on C4 grass water use than any other 

functional group. This results suggests that nocturnal transpiration may have unique functional 

significance as a competitive strategy in this ecosystem, and also that nocturnal water loss may 

contribute more greatly to ecosystem water balance in grasslands that are dominated by these 

species.  
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Figure 4.1 Environmental data measured between day of year 150-250 in 2014 and 2015. 
Shown are daily averages of soil moisture at 10 cm and 30 cm measured in units of water 
fraction by volume, wfv (a-b), cumulative daily precipitation (c-d), and vapor pressure 
deficit (VPD) reported at average daily maximum (15:00 h) and minimum (03:00 h) 
conditions (e-f). Dashed vertical lines indicate sampling days on which gas exchange 
measurements occurred during each growing season. 
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Figure 4.2 Nighttime gas exchange traits measured from day of year 150-250 in 2014 and 
2015. Shown are the mean + 1 SEM nocturnal stomatal conductance of water vapor, gsnight 
(a-b), nocturnal  transpiration rate, Enight (c-d), and the percent nighttime of daytime 
transpiration rates, % Enight (e-f) measured for each species. Plant functional groups are 
distinguished by color (forbs = orange, grasses = green, and woody species = blue), and 
individual species are indicated by marker shape. Forbs include S. canadensis (square) and 
V. baldwinii (circle), grasses include A. gerardii (circle), P. virgatum (triangle), and S. nutans 
(square), and woody plants include A. canescens (square), R. glabra (triangle), and C. 
drummondii (circle). 
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Figure 4.3 Nonlinear regression relationships between nocturnal transpiration and 
nocturnal stomatal conductance (a,d,g), linear relationships between nocturnal 
transpiration and bulk VPD (b,e,h), and linear relationships between nocturnal 
transpiration and leaf VPD (c,f,i) for grasses. Shown are responses for A. gerardii (a-c), P. 
virgatum (d-f), and S. nutans (g-i). 
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Figure 4.4 Nonlinear regression relationships between nocturnal transpiration and 
nocturnal stomatal conductance (a,d), linear relationships between nocturnal transpiration 
and bulk VPD (b,e), and linear relationships between nocturnal transpiration and leaf VPD 
(c,f) for forbs. Shown are responses for S. canadensis (a-c) and V. baldwinii (d-f). 
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Figure 4.5 Nonlinear regression relationships between nocturnal transpiration and 
nocturnal stomatal conductance (a,d,g), linear relationships between nocturnal 
transpiration and bulk VPD (b,e,h), and linear relationships between nocturnal 
transpiration and leaf VPD (c,f,i) for woody species. Shown are responses for A. canescens 
(a-c), R. glabra (d-f), and C. drummondii (g-i). 
  

0.0

0.5

1.0

1.5

2.0 A. canescens

0.0

0.5

1.0

1.5

2.0

0.00 0.05 0.10 0.15 0.20 0.25
gsNight (mol m−2s−1)

C. drummondii
0.0

0.5

1.0

1.5

2.0 R. glabra

E
N

ig
ht

 (m
m

ol
 m

−2
s−

1 )

0.0 0.1 0.2 0.3 0.4 0.5
VPD (kPa)

a b c

d e f

Leaf Conductance Bulk VPD

0.0 0.5 1.0 1.5 2.0 2.5 3.0
VPD (kPa)

g h i

Leaf VPD

R2=0.812

R2=0.891

R2=0.712

R2=0.178

R2=0.003

R2=0.225

R2=0.121

R2=0.002

R2=0.023



130 

 

Figure 4.6 Daytime gas exchange traits measured from day of year 150-250 in 2014 and 
2015. Shown are the mean + 1 SEM steady-state photosynthesis (a-b), daytime stomatal 
conductance of water vapor, gsday (c-d), and daytime transpiration rate, Eday (e-f) measured 
for each species. See Figure 2 for description of plant functional group and species 
indicators. 
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Figure 4.7 Leaf water potential traits measured from day of year 150-250 in 2014 and 2015. 
Shown are the mean + 1 SEM predawn leaf water potential, Ψpd (a-b) and midday leaf 
water potential, Ψmd (c-d) measured for each species. See Figure 2 for description of plant 
functional group and species indicators. 
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Chapter 5 - Stem sap flow in herbaceous and woody grassland 

plants: implications for tallgrass prairie ecohydrology 

 Abstract 

Grasslands contribute significantly to global biogeochemical and hydrological cycling, 

yet we have little information about how water fluxes vary among grassland species at fine 

spatiotemporal scales. Using external heat balance sap flow sensors and a hierarchical Bayesian 

state-space modeling approach, we investigated stem sap flow and canopy transpiration in small-

stemmed herbaceous and woody plants in tallgrass prairie community. We addressed the 

following questions: (1) How do diurnal and nocturnal fluxes differ among common grasses, 

forbs, and woody species in a tallgrass prairie? (2) How do flux rates vary across a growing 

season? (3) How do environmental variables drive patterns of nocturnal water flux? Diurnal sap 

flux and canopy transpiration varied among species and across the growing season. Woody 

species typically had the greatest rates of diurnal sap flux and canopy transpiration, and these 

rates were greatest early in the growing season, during periods of high soil water availability and 

low VPD. Nocturnal sap flux and canopy transpiration were generally consistent among species 

and over time, with somewhat higher rates observed among grasses. Finally, nocturnal water flux 

accounted for a greater proportion of daily water use in grasses than in forbs or woody species, 

and these rates were driven primarily by VPD. Overall, we suggest that interspecific differences 

in water flux may reflect species-specific strategies to tolerate water limitation and that shifts in 

the abundance of these species with future climate changes may impact ecosystem-level water 

balance. 
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 Introduction 

Grasslands constitute a major portion of global vegetation, accounting for approximately 

52.5 million km2 or 40% of the terrestrial biome (White et al. 2000). Due to their widespread 

cover, grasslands exert tremendous influence over local and global carbon and water cycling. For 

instance, grasslands account for an estimated 19-24% of global evapotranspiration (Schlesinger 

and Jasechko 2014), 30-35% of terrestrial net primary productivity (Field et al. 1998), and 30% 

of stored soil carbon (Jackson et al. 1997; Lal 2004). Considering their contribution to ecosystem 

function, as well as their inherent sensitivity to climate perturbations (Knapp et al. 2002; 

Brunsell et al. 2010), grassland responses to a changing climate will likely have significant 

consequences for future global biogeochemical and hydrological cycles.  

Despite the widespread cover of grasslands, current estimates and future predictions of 

grassland water fluxes are limited by our incomplete understanding of ecohydrological processes 

at fine spatiotemporal scales. Growing evidence suggests that local ecohydrological processes in 

grasslands are spatially and temporally variable, which produce large uncertainties when 

modeling fluxes at greater scales (Asbjornsen et al. 2011). Spatial variation in grassland 

ecohydrology can exist as changes in plant growth or functional traits across topographic 

gradients (Nippert et al. 2011; Tucker et al. 2011), variation in water uptake in response to 

management regimes (O’Keefe and Nippert 2016), or even as changes in hydraulic traits within 

individual plants (Ocheltree et al. 2013a,b). Temporal variation exists in the form of seasonal 

plasticity in plant water uptake (Nippert and Knapp 2007a,b), seasonal variation in leaf gas 

exchange and water potential (Knapp 1984, 1985; Nippert et al. 2009), or diel fluctuations in leaf 

transpiration (O’Keefe and Nippert, unpublished data). Understanding ecosystem and global 

water fluxes will therefore require high spatial and temporal resolution information about the 
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driving mechanisms and patterns of water fluxes for individual species within grassland 

communities. 

Grassland water fluxes are typically studied at the landscape or leaf scale, each of which 

have inherent tradeoffs regarding spatial and temporal resolution. For instance, eddy covariance 

measurements provide information about carbon, water, and energy exchanges across large 

spatial scales. While these high frequency data are useful in describing temporal flux dynamics 

across the landscape, eddy flux measurements provide an integrative picture of earth-atmosphere 

exchanges and cannot be used to understand the mechanistic processes driving these fluxes in 

individual species. Additionally, nocturnal evapotranspiration measurements made with eddy 

covariance techniques are generally unreliable due to low turbulence that occurs at night 

(Goulden et al. 1996; Baldocchi 2003), which limits their utility in describing diel patterns of 

water loss. Conversely, leaf-level gas exchange measurements can be made quickly and can 

provide information about the instantaneous physiology of multiple species across a 

heterogeneous landscape. While leaf-level measurements can offer inference about species-level 

variation in carbon and water fluxes, they only provide an instantaneous snapshot of temporally 

dynamic processes. Thus, we have no information about how a wide range of grassland species 

use water at the whole-plant scale, how these patterns vary among species or within functional 

groups, or how plant water use responds to changes in climate. 

Sap flow sensors offer a unique approach to quantify whole-plant water flux among 

coexisting species at fine temporal resolutions. Sap flow technology was first developed in the 

1930’s by Huber and colleagues (Huber 1932; Huber and Schmidt 1936) and has since become a 

standard approach utilized in many studies of plant-water relations (reviewed in Cermak et al. 

2004). Although many sap flow methods now exist, most studies currently use thermodynamic 
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methods to measure the rate and volume of water ascent through plants. These techniques 

typically insert heater and thermocouple probes into sapwood (typically > 10 cm stem diameter), 

and are therefore unsuitable for use on smaller stemmed shrubs or herbaceous plants (Skelton et 

al. 2013). Thus, sap flow sensors have been utilized almost exclusively on trees. The external 

heat balance method was developed by Clearwater et al. (2009) to measure low sap flow rates on 

small stems, but these techniques have been primarily applied to crops such as maize (Gavloski 

et al. 1992), soybean, cotton (Cohen et al. 1990, 1993; Cohen & Li 1996), and wheat 

(Langensiepen et al. 2014). With the exception of several studies conducted during the mid-

1990’s (Senock and Ham 1995; Owensby et al. 1997), no work has investigated sap flux in 

small-stemmed, herbaceous plants in situ.  

We present here an assessment of whole-plant water use in herbaceous and woody 

species common throughout the tallgrass prairies of North America. We used external heat 

balance sap flow microsensors to measure sap flow rates in small-stemmed plants (< 7 mm 

diameter) in a tallgrass prairie and then combined these data with a hierarchical Bayesian state-

space model to calculate species-specific canopy transpiration. Using these data we addressed 

the following questions: (1) How do diurnal and nocturnal fluxes differ among common grasses, 

forbs, and woody species in a tallgrass prairie? (2) How do flux rates vary across a growing 

season? (3) How do environmental variables (e.g., vapor pressure deficit, soil moisture, and air 

temperature) relate to patterns of nocturnal flux rates?  
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 Methods 

 Site Description 

Research was conducted during May – September 2014 at the Konza Prairie Biological 

Station (KPBS), a 3,487-ha area of native tallgrass prairie located in the Flint Hills region of 

northeastern Kansas, USA (39.1°N, 96.9°W). The KPBS is a Long-Term Ecological Research 

(LTER) site that is divided into experimental watersheds, each of which receive varying 

combinations of prescribed fire (burned every 1, 2, 4, or 20 years) and grazing (grazed by Bison 

bison, cattle, or ungrazed) treatments. While these treatments alter vegetation diversity and 

productivity (Collins et al. 1998; Eby et al. 2014; Hartnett et al. 1996; Knapp et al. 1999; Briggs 

and Knapp 1995; Collins and Calabrese 2012; Veen et al. 2008) the landscape is generally 

dominated by a few perennial C4 grass species along with numerous sub-dominant C3 grass, forb, 

and woody species (Smith and Knapp 2003). Long-term weathering at the site has created a 

topographically heterogeneous landscape, including shallow, rocky uplands, steep slopes, and 

deep, loess soiled lowlands.  

The Flint Hills region of Kansas is characterized by a mid-continental climate with cool, 

wet winters and warm, dry summers. Long-term mean annual precipitation (1982-2014) at KPBS 

is 829 mm, of which 79% occurs during the growing season (April – September). Precipitation 

was 706 mm in 2014 and 1002 mm in 2015, with 68% and 75% occurring during each respective 

growing season. The warmest average month of the year (1982-2014) is July, with mean 

maximum and minimum air temperatures of 32.69 °C and 19.78 °C. The coldest average month 

(1982-2014) is January, with mean maximum and minimum air temperatures of 4.87 °C and -

7.14°C. Mean maximum and minimum air temperatures were 31.7°C and 17.06°C during July 
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2014. Mean maximum and minimum air temperatures were 32.02°C and 20.67°C during July 

2015. 

This study was conducted in lowland prairie of a watershed that is burned every four 

years and was last burned in 2013. This location was chosen because a four-year fire interval is 

similar to the historic frequency of fire for the region (Frost 1998) and because watersheds 

burned with this frequency have greater forb and shrub diversity than watersheds that are burned 

annually. We sampled commonly occurring herbaceous and woody species including three 

dominant C4 grasses (Andropogon gerardii, big bluestem; Panicum virgatum, switchgrass; 

Sorghastrum nutans, Indiangrass), two C3 forbs (Solidago canadensis, Canada goldenrod; 

Vernonia baldwinii, Baldwin’s ironweed), one leguminous C3 sub-shrub (Amorpha canascens, 

leadplant), and two C3 shrubs (Rhus glabra, smooth sumac; Cornus drummondii, rough-leaf 

dogwood).  

 

 Sap flow measurements 

Stem sap flow was measured using the external heat balance method with commercially 

available sap flow sensors (SGA3 and SGA5 Dynagage Microsensors; Dynamax Inc., Houston, 

TX USA) connected to a Flow32 sap flow system (Dynamax Inc., Houston, TX, USA). Briefly, 

a thermocouple sensor was attached to the circumference of a plant stem, heat was applied to the 

plant stem, and the flow of sap through the stem was estimated by measuring voltage outputs 

from the flux of heat through the heated stem section (Sakuratani 1981; Smith and Allen 1996). 

Sap flow was calculated as: 

 

Q = Qr + Qv + Qf + S                                                           (1) 
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where Q is the total power, Qr is the radial heat flux, Qv is the axial heat flux, Qf is the residual 

heat flux, and S is the rate of change in stem heat storage (see Senock and Ham 1995 for detailed 

calculations of each heat flux component).  

Sensors were installed on plants that fit within the stem diameter range of each sensor 

size (3-5 mm for SGA3 and 5-7 mm for SGA5). Prior to installation, dirt and debris were 

cleaned from stems and a conducting gel was applied to the stem surface to facilitate heat 

transfer between the stem and the sensor (Dynamax 2009). Each sensor was sealed with putty to 

prevent moisture damage to the sensor and insulated with multiple layers of foam and bubble foil 

to reduce the impact of radiation on sensor measurements. 

Eight sap flow sensors were installed during the growing season (DOY 140-254). In 

order to alleviate potential stress associated with using sensors on small stems for prolonged 

periods of time, the sensors were rotated among all species throughout the growing season. The 

eight sensors were deployed on two individuals of four study species for a period of ten days. 

Following the ten-day sampling period, all sensors were switched to a different set of four 

species. The species chosen for each ten-day period were randomly selected, but all species were 

sampled for approximately an equal amount of time across the growing season.  

Measurements were made every 60 seconds, averaged, and logged every 30 minutes with 

a CR1000x data logger and an AM 16/32 multiplexer (Campbell Scientific, Logan, Utah). The 

data logger and sensors were powered with a 100-W solar panel and sensor heat inputs were 

controlled with an AVRD voltage regulator (v 3.1, Dynamax Inc., Houston, TX, USA) linked to 

the data logger.  
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 Environmental variables 

The microclimate of the study site was evaluated by measuring air temperature (100 K 

thermistor; Betatherm, Hampton, VA, USA), soil moisture at 10 cm (Hydraprobe II; Stevens 

Water Monitoring Systems, Portland, OR, USA), relative humidity (HM1500; Humierl, 

Hampton, VA, USA), and wind speed (3-cup anemometer; Gill Instruments, Lymington, UK). A 

radiation shield (41003; RM Young, Traverse City, MI, USA) was used to protect the relative 

humidity sensor, and air temperature and relative humidity measurements were used to calculate 

vapor pressure deficit at the site. All measurements were logged every 10 s with a CR10X data 

logger (Campbell Scientific, Logan, UT, USA). Missing data due to inclement weather or 

equipment failure were gap-filled using a moving diurnal mean (Falge et al. 2001). 

 

 Model description 

The hierarchical Bayesian State-Space Canopy Conductance (StaCC) model was used to 

gap-fill missing sap flow data and to estimate leaf transpiration, canopy conductance, and canopy 

transpiration for each species (Bell et al. 2015). The StaCC model combines a sap flux data 

model with a canopy conductance model, while applying prior knowledge of the model 

parameters and accounting for random error associated with individual sap flow sensors. The 

data model utilizes sap flow measurements made by a set of sensors to calculate average species 

sap flux across the time series. Sap flux of probe i at time t was modeled as:  

                                                  Jit ~ N(Jt Z(di)ai, S)                                                   (2) 

where Jt is the average sap flux at time t, Z(di) is a sapwood depth model, ai is the random effect 

associated with probe i and S is the Gaussian observation variance. Because sap flux was 

measured on herbaceous and small-stemmed woody plants (< 7 mm diameter), we did not utilize 
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the sapwood depth submodel. Similarly, because these small-stemmed plants do not likely store 

an appreciable amount of stem water (Nobel and Jordan 1983), we also did not utilize the 

additional capacitance submodel described in Bell et al. (2015). 

The canopy conductance process model was used to estimate canopy conductance (Gt), 

transpiration per m2 leaf area (EL), and transpiration per m2 ground area (Et). First, steady-state 

conductance at time t (Gs,t, mmol m-2 s-1) was modeled as a function of vapor pressure deficit 

(Dt), photosynthetically active radiation (Qt), and volumetric soil moisture (Mt) according to 

Jarvis (1976): 

                                                  Gs,t = f(Dt)g(Qt)h(Mt)                                                 (3) 

Within this model, the effect of Dt on Gs,t was calculated as: 

                                                 f(Dt) = Gref – λ ln(Dt)                                                  (4) 

where Gref is the reference conductance (Gs,t when Dt = 1 kPa) and λ is the stomatal sensitivity to 

Dt (Oren et al. 1999) . Second, the effect of Qt on Gs,t was calculated as: 

                                             g(Qt) = 1 – α1 exp(Qt / α2)                                               (5) 

where α1 is nocturnal stomatal conductance and α2 is the sensitivity to Qt. Third, the effect of Mt 

on Gs,t was modeled as: 

                                   h(Mt) = exp (-0.5(Mt – α3)2 / α4
2  if Mt ≤ α3  or                        (6) 

                        h(Mt) = 1 if Mt > α3 

where α3 is the threshold below which Mt reduces Gs,t and α4 describes the sensitivity of the 

decline in Gs,t with declines in Mt below that threshold. Next, Gs,t was used to calculate actual 

canopy conductance (Gt), assuming that Gt is dependent on previous conductance and a time 

interval, dt: (Rayment et al. 2000; Ward et al. 2008): 

                                              Gt = Gt-dt + (Gst – Gt-dt)Vt                                                (7) 
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where dt = 30 min and Vt = 1 – exp(-dt/τ). The Vt term accounts for stomatal lags and τ = 10 min, 

following Bell et al. (2015). Canopy conductance was then used to calculate EL (kg m-2s-1) as: 

                                                       EL,t =  Gt qt                                                           (8)  

where qt is a composite variable that incorporates air temperature and vapor pressure deficit, as 

well as several constant terms (Bell et al. 2015). Finally, EL was scaled to Et with the following 

equation: 

                                                   Et = EL AL(AsRs)-1                                                    (9) 

where AL is the leaf area index, As is the sapwood area index, and Rs is a scaling constant. Leaf 

area index data for grasses, forbs, and small shrubs (A. canescens and R. glabra) were taken from 

previous work at this site (Klodd et al. 2016). Due to its large, clonal growth form, leaf area 

index was measured for C. drummondii with a leaf area index meter in 2015 (LiCor, Inc, 

Lincoln, NE, USA). Due to the small-stemmed and herbaceous nature of our study species, 

sapwood area index values were approximated as m2 stem area per m2 ground area for each 

species at our study location. 

The final hierarchical Bayesian model is a joint distribution of sap flow data 

observations, canopy conductance latent states, and model parameters. When possible, priors for 

the data model and process model were utilized from Bell et al. (2015). Species-specific priors 

are described in Appendix 1 (Table D1). See Bell et al. (2015) for a full description of prior 

distributions and the joint posterior distribution.  

A separate model analysis was implemented for each of the eight species. We ran the 

Gibbs sampler for 20,000 iterations and discarded the first 10,000 iterations as a burn-in. The 

model produced Jt, Gt, EL, and Et values for each 30 min time step and we used this information 

to evaluate differences in water flux among species and across the growing season. First, 



142 

‘diurnal’ and ‘nocturnal’ classifications were assigned to each 30 min time step throughout a day 

based on daily sunrise and sunset times (e.g., ‘diurnal’ = time steps between sunrise and sunset, 

‘nocturnal’ = time steps between sunset and sunrise). We then averaged Jt, Gt, EL, and Et values 

separately across diurnal and nocturnal time steps for each day and for each species. To evaluate 

the significance and drivers of nocturnal water flux we calculated percent nocturnal Jt and 

percent nocturnal Et for each day using the daily diurnal and nocturnal averages. We then 

evaluated the relationship between daily percent nocturnal Et and various environmental 

variables (nocturnal VPD, nocturnal air temperature, soil moisture, diurnal VPD, and diurnal air 

temperature) using linear regression analyses. Separate linear regression analyses were 

conducted for each environmental variable. All analyses were performed using the statistical 

program R V3.1.0 (R Core Team 2012). 

 

 Results 

 Environmental Data 

Soil moisture measured at 10 cm depth declined over the growing season (Figure 5.1a) 

with highest values at DOY 161 and lowest soil moisture values at DOY 242. Air temperature 

was variable throughout the growing season and increased slightly as the growing season 

progressed. Maximum air temperature during the day (15:00) was recorded on DOY 196 and the 

minimum air temperature at night (03:00) was recorded on DOY 236. Vapor pressure deficit was 

also variable over time but was generally higher during the latter part of the growing season 

(Figure 5.1c). Maximum VPD values measured during the day (15:00 h) occurred on DOY 236, 

while minimum VPD values measured at night (03:00) occurred on DOY 219. 
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 Model Performance 

Model performance varied based on plant functional type. Generally, model convergence 

(Figure D1-8) and model predictions (Figure D9-17) were greatest in woody species, 

intermediate in forbs, and lowest in grasses. Squared Pearson correlation coefficients (r2) for 

model predictions of individual sap flow sensors ranged from 0.21 – 0.97 in woody species, 

0.03-0.92 in forbs, and 0.00 – 0.22 in grasses. Average r2 values for the measured versus 

modeled fit of individual sensors within species were: C. drummondii = 0.90, R. glabra = 0.84, 

A. canescens = 0.86, V. baldwinii = 0.71, S. canadensis = 0.48, S. nutans = 0.08, P. virgatum = 

0.08, and A. gerardii = 0.05. 

 

 Model Results 

Diel sap flow patterns varied among species and across the growing season (Figure 5.2). 

During the day, Jt was greatest in woody species, with the highest rates (> 30 g h-1) recorded in 

C. drummondii. Grasses exhibited the lowest diurnal Jt, with the lowest rates observed in A. 

gerardii and P. virgatum (< 5 g h-1). Diurnal Jt declined throughout the growing season, although 

the extent of this pattern was more pronounced in certain species. For instance, the greatest 

seasonal declines occurred in S. nutans and C. drummondii, while the lowest declines occurred in 

A. gerardii and P. virgatum. Conversely, nocturnal Jt was generally consistent among species 

and across the growing season, with rates under 3 g h-1. S. nutans was the exception to this trend, 

as this species had high rates of nocturnal Jt early in the season (> 6 g h-1) that declined sharply 

by DOY 180. 

We observed similar trends in modeled Gt, EL, and Et (Figure D18-20). Diurnal Gt, EL, 

and Et were greatest in woody species and S. nutans, and these values declined for most species 
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throughout the growing season. Patterns of nocturnal EL and Et were also similar to modeled Jt, 

with consistently low values observed among most species. However, nocturnal Gt was nearly 

identical to diurnal Gt in grasses, and exhibited a more pronounced seasonal decline in woody 

species than nocturnal sap flow or transpiration rates (Figure D18).  

 

 Percent Nocturnal Water Flux 

Percent nocturnal Jt was similar among species within functional groups, but varied 

across different functional groups (Figure 5.3). Percent nocturnal Jt was highest in grasses 

(ranging from to 20.9 – 89.3%), lower in forbs (ranging from to 13.2 – 61.4%), and lowest in 

woody species (ranging from 8.3 – 46.7%). Percent nocturnal Jt also varied over time, with a 

steady increase throughout the latter half of the growing season.  

We observed similar trends for percent nocturnal Et. When averaged across species 

within functional groups, diurnal Et was greatest in woody species, intermediate in grasses, and 

lowest in forbs (Figure 5.4a). At night, Et was greatest among grasses, intermediate in woody 

species, and lowest in forbs (Figure 5.4b). These values resulted in highest percent nocturnal Et 

in grasses (26.8 -86.4%), intermediate percent Et in forbs (14.3 – 54.8%), and lowest percent 

nocturnal Et in woody species (8.9 – 40.8%). Like percent nocturnal Jt, percent nocturnal Et 

increased in all functional groups over time (Figure 5.4c).   

Variation in percent nocturnal Et was best explained by nocturnal VPD (Figure 5.5; Table 

5.1). Percent nocturnal Et increased with increasing VPD for all species, although the rate of this 

increase and the strength of this relationship were greatest in the grasses (Figure 5.5a), weaker in 

forbs (Figure 5.5b) and weakest in woody plants (Figure 5.5c). Species showed similar responses 

to VPD within functional groups. Although linear regressions between percent nocturnal Et and 
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other environmental drivers were often significant, the strength of the correlation coefficients for 

these relationships were generally weak (Table 5.1).  

 

 Discussion 

Although sap flow sensors have been used extensively to assess species-specific patterns 

of whole-plant water flux across a range of ecosystems, technical limitations associated with the 

methodology have restricted most sap flow measurements to trees (Barbeta et al. 2012; 

Brinkman et al. 2016; Catovsky et al. 2002; Dawson et al. 2007; Holscher et al. 2005; Martinez-

Vilalta et al. 2003; Zeppel et al. 2008). To date, only a few studies have used sap flow probes in 

large-stemmed monocots such as corn (Cohen et al. 1990, 1993; Cohen and Li 1996) and 

bamboo (Kume et al. 2010). Others have used external heat balance sap flow sensors to measure 

water flux in petioles and fruit pedicels (Clearwater et la. 2009; Roddy and Dawson 2012), wheat 

(Langensiepen et al. 2014), small shrubs (Skelton et al. 2013), and perennial grasses (Senock and 

Ham 1995; Owensby et al. 1997). Despite these advances, we still lack a comprehensive 

understanding of continuous, whole-plant water-use in small stems and herbaceous species, 

which limits our understanding of community and ecosystem responses to environmental change. 

Here, we addressed this limitation by using external heat balance sap flow sensors to assess 

diurnal and nocturnal sap flow patterns within a diverse grassland community. 

Diurnal water flux varied across functional groups and throughout the growing season. 

Woody species had the highest rates of sap flow and transpiration, which is unsurprising 

considering these species have larger stem diameters and should therefore have greater xylem 

conductivity than smaller-stemmed forbs or grasses. Due to their smaller stem diameters, grasses 

had the lowest sap flow and canopy transpiration rates. This pattern differs from the high rates of 
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transpiration measured in C4 grasses at the leaf scale (Kalapos et al. 1996; Knapp et al. 1993; 

Nippert et al. 2007; Turner et al. 1995) and illustrates the importance of measuring whole-plant 

water flux when determining accurate species-specific contributions to ecosystem hydrological 

cycling. Additionally, water flux varied through time. Diurnal sap flow declined across the 

growing season for most species, and this was likely associated with the seasonal decline in soil 

moisture (Figure 5.1a), as well as seasonal increases in temperature (Figure 5.1b) and VPD 

(Figure 5.1c). Many previous studies have reported similar responses of water to environmental 

fluctuations at the stem (Huang et al. 2015; Martinez-Vilalta et al. 2003) and at the leaf level 

(Knapp 1984, 1985; Nippert et al. 2009). 

We also observed interspecific differences in diurnal water flux, which may reflect 

species-specific strategies to persist through drought. For instance, S. nutans and C. drummondii 

both had higher sap flow rates and larger seasonal declines in sap flow than other grasses and 

woody species, respectively. The temporally dynamic response of S. nutans may be explained by 

its enhanced sensitivity of leaf physiology and growth to water limitation compared to A. 

gerardii (Nippert et al. 2009; Silletti and Knapp 2001). Conversely, the relatively constant water 

fluxes of S. canadensis, V. baldwinii, A. canescens, and R. glabra could be explained not by 

tolerance to drought, but by greater plasticity in the source of water used. Specifically, these 

species possess deep roots and shift reliance from shallow to deep water during periods of 

drought (Nippert et al. 2007a,b; O’Keefe and Nippert 2016, Chapter 2), which may aid in the 

maintenance of static flux rates. The seasonal decline observed in C. drummondii is somewhat 

surprising considering that this species relies consistently on deep water (Ratajczak et al. 2011). 

However, C. drummondii might exhibit stomatal responses that are more sensitive to temperature 

or VPD than to water availability. Alternatively, the phenology of this species may promote 
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greater water flux early in the season during periods of clonal and reproductive growth, 

compared to later in the growing season after reproduction has ceased (K. O’Keefe, personal 

observation).  

Conversely, nocturnal water flux was generally constant among species and through time. 

When averaged across functional groups, grasses exhibited somewhat greater nocturnal canopy 

transpiration rates than forbs or woody species. The combination of lower diurnal flux rates and 

higher nocturnal flux rates consequently resulted in greatest percent nocturnal flux in grasses 

(Figure 5.4). These results suggest that nocturnal transpiration may contribute substantially to the 

water budgets of mesic ecosystems that are dominated by C4 grasses. Similarly, leaf gas 

exchange measurements show that nocturnal transpiration accounts for a greater proportion of 

daytime gas exchange rates in grasses than in forbs or shrubs, which may indicate that nocturnal 

water loss has functional significance for the grasses in this ecosystem (Chapter 3). Although 

previous studies have shown that nocturnal sap flow can represent nocturnal storage tissue 

refilling in trees, rather than nocturnal transpiration (Daley and Phillips 2006; Fisher et al. 2007), 

refilling is not likely an important mechanism here because small stems do not store an 

appreciable amount of water (Nobel and Jordan 1983). Additionally, the similarity of these 

results to leaf gas exchange measured at this site suggests that nocturnal sap flow is driven by 

nocturnal transpiration in these species.  

Percent nocturnal Et was best explained by nocturnal VPD (Figure 5.5; Table 5.1). 

Previous studies have also shown that nocturnal water flux is driven primarily by VPD (Dawson 

et al. 2007; Fisher et al. 2007) and is modulated by other environmental variables such as soil 

moisture (Howard and Donovan 2006; Cirelli et al. 2015) or wind speed (Benyon 1995; Karpul 

and West 2016). Interestingly, we did not detect a strong relationship between nocturnal water 
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flux and soil moisture (Table 5.1). This may have occurred because we measured soil moisture at 

a central location within the study area, and variation in soil moisture within the immediate 

rhizosphere may be more important for driving flux patterns among individuals. Of the other 

potential environmental drivers investigated, nocturnal air temperature explained some variation 

in nocturnal water flux; however the effects of temperature are difficult to disentangle from the 

effects of VPD. Diurnal VPD and air temperature measured prior to nocturnal measurements did 

not impact nocturnal water flux, contrary to observations in previous studies (Resco deDios et al. 

2015). Importantly, the relationship between percent nocturnal Et and nocturnal VPD varied 

across plant functional groups, with the strongest relationship and greatest rate of increase 

observed in grasses (Figure 5.5). This result is similar to previous studies showing interspecific 

differences in stomatal sensitivity to VPD (Oren et al. 1999), as well as and similar stomatal 

responses within functional groups (Ocheltree et al. 2013). Given that these functional groups 

have contrasting responses to changes in VPD at the whole-plant scale, differences in stomatal 

sensitivity could result in changes in water flux at the watershed level with future changes in 

climate. 

While we believe our sensor data and model output provides reasonable estimates of stem 

sap flux and canopy transpiration across a range of herbaceous and woody species, there are 

several important caveats to consider. As with any model, we made several simplifying 

assumptions when predicting Jt, Gt, EL, and Et from sensor data (Box 1978). First, we assumed 

that water flux scales linearly with stem cross-sectional area, and that stem capacitance is 

negligible within these small-stemmed species. While previous research has shown that flux 

rates vary radially (Phillips et al. 1996) and with capacitance dynamics (Phillips et al. 2003) in 

tree stems, radial patterns of sap flow and water storage are less likely to occur in small stems 
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and herbaceous plants. Second, we assumed that LAI and SAI were the same across species 

within functional groups. While delineating LAI and SAI across functional groups may result in 

missed nuances among species, these plant traits exhibit fairly low variation within functional 

groups (Klodd et al. 2016). Furthermore, we observed interspecific differences in sap flow within 

functional groups despite this simplification (Figure 5.2), suggesting that the tradeoff of model 

complexity for model parsimony still produced useful and informative comparisons across 

species. 

To conclude, we show that whole-plant and canopy flux rates vary among species, plant 

functional types, and across a growing season within a tallgrass prairie. These results highlight 

the spatial and temporal variability of local ecohydrological processes observed within tallgrass 

prairies, and also indicate that other water-use processes (e.g., stomatal regulation, water source 

use) likely have consequences for water fluxes at larger scales. The interspecific differences 

observed here also suggest that shifts in the abundances of these species with future climate 

changes or ecosystem state changes would not only impact tallgrass prairie diversity and 

productivity (Collins et al. 1998; Knapp et al. 2002; Smith and Knapp 2003), but also ecosystem-

level water fluxes (Scott et al. 2008; Wang et al. 2010; Logan and Brunsell 2015). Finally, our 

results also show that the contribution of nocturnal water fluxes to daily water budgets vary 

among plant functional types, which indicates a need to incorporate nighttime evapotranspiration 

in climate models when providing estimates of grassland water balance. Overall, we show high-

temporal resolution data on whole-plant water flux within diverse plant communities is essential 

for assessing ecosystem responses to a changing climate. 
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Table 5.1 Linear regression statistics for analyses comparing the relationship between 
percent nocturnal transpiration and individual environmental variables (average soil 
moisture, diurnal VPD (15:00 h), nocturnal air temperature (03:00 h), and diurnal air 
temperature (15:00 h). Significance at the α=0.05 level is indicated with bold font. 
Species Statistic Soil Moisture VPD (15:00 h) Air Temp (03:00 h) Air Temp (15:00 h) 

A. gerardii Intercept 60.14 ± 2.45 41.48 ± 2.59 6.19 ± 5.82 29.12 ± 7.29 

 Slope ± 1SE -75.97 ± 17.88 4.83 ± 1.17 2.22 ± 0.28 0.77 ± 0.25 

 R2 0.14 0.13 0.35 0.08 

 p < 0.01 < 0.01 < 0.01 < 0.01 

P. virgatum Intercept 52.03 ± 2.14 33.79 ± 2.21 2.75 ± 5.01 20.31 ± 6.29 

 Slope ± 1SE -69.36 ± 15.63 5.03 ± 1.00 2.03 ± 0.24 0.82 ± 0.22 

 R2 0.15 0.18 0.38 0.11 

 p < 0.01 < 0.01 < 0.01 < 0.01 

S. nutans Intercept 61.92 ± 2.41 45.16 ± 2.58 10.28 ± 5.78 34.91 ± 7.24 

 Slope ± 1SE -72.21 ± 17.63 4.10 ± 1.17 2.13 ± 0.28 0.64 ± 0.25 

 R2 0.13 0.10 0.34 0.06 

 p < 0.01 < 0.01 < 0.01 0.01 

S. canadensis Intercept 32.69 ± 1.57 26.39 ± 1.71 5.00 ± 3.89 25.65 ± 4.70 

 Slope ± 1SE -35.77 ± 11.46 1.01 ± 0.78 1.16 ± 0.19 0.10 ± 0.16 

 R2 0.08 0.01 0.25 0.003 

 p 0.002 0.20 < 0.01 0.56 

V. baldwinii Intercept 32.40 ± 1.60 18.27 ± 1.63 -4.62 ± 3.74 8.12 ± 4.69 

 Slope ± 1SE -52.17 ± 11.69 3.99 ± 0.74 1.52 ± 0.18 0.63 ± 0.16 

 R2 0.15 0.20 0.38 0.12 

 p < 0.01 < 0.01 < 0.01 < 0.01 

A. canescens Intercept 19.21 ± 0.97 13.96 ± 1.05 0.39  ± 2.37 12.01 ± 2.93 

 Slope ± 1SE -25.36 ±7.10 1.11 ± 0.48 0.78 ± 0.12 0.15 ± 0.10 

 R2 0.10 0.05 0.29 0.02 

 p < 0.01 0.02 < 0.01 0.15 

R. glabra Intercept 18.35 ± 1.04 16.64 ± 1.11 3.55 ± 2.63 18.93 ± 3.04 

 Slope ± 1SE -17.12 ± 7.56 -0.18 ± 0.51 0.63 ± 0.13 -0.09 ± 0.11 

 R2 0.04 0.001 0.18 0.01 

 p 0.03 0.72 < 0.01 0.38 

C. drummondii Intercept 21.84 ± 1.21 19.92 ± 1.30 4.66 ± 3.08 22.74 ± 3.55 

 Slope ± 1SE -20.22 ± 8.83 -0.26 ± 0.59 0.73 ± 0.15 -0.12 ± 0.12 

 R2 0.04 0.002 0.17 0.01 

 p 0.02 0.66 < 0.01 0.34 
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Figure 5.1 Environmental data measured between day of year 140-254 in 2014. Shown are 
daily averages of soil moisture at 10 cm measured in units of water fraction by volume, wfv 
(a), air temperature reported at average daily maximum (15:00 h) and minimum (03:00 h) 
conditions (b), and vapor pressure deficit (VPD) reported at average daily maximum 
(15:00 h) and minimum (03:00 h) conditions (c). 
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Figure 5.2 Modeled sap flow rates for each species between DOY 140-254. Shown are daily 
average diurnal (black) and nocturnal rates (blue). 
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Figure 5.3 Percent nocturnal of diurnal sap flux rates for grasses (a), forbs (b), and woody 
plants (c) measured across the growing season. 
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Figure 5.4 Modeled canopy transpiration, averaged across plant functional groups, 
between day of year 140-254. Shown are average daily diurnal rates (a), average daily 
nocturnal rates (b), and average daily percent nocturnal of diurnal rates (c). 
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Figure 5.5 Linear regression relationships between average daily percent nocturnal 
transpiration and vapor pressure deficit (VPD) reported at average daily minimum 
conditions (03:00 h) for grasses (a), forbs (b), and woody plants (c). For all linear regression 
models, p < 0.01. 
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Chapter 6 - Conclusion 

Water availability is a key driver of many plant and ecosystem processes in tallgrass 

prairies (Jones et al. 2016; Knapp et al. 2001; Schuster 2016; Zeglin et al. 2013), yet we have a 

limited understanding of how grassland plants utilize water through space and time. Considering 

that tallgrass prairies experience tremendous heterogeneity in soil resources (Nippert et al. 2011; 

Ransom 1998; Williams and Rice 2007), identifying spatial and temporal variation in plant 

ecohydrology is critical for understanding current drivers of plant responses to water and for 

predicting ecosystem responses to future changes in climate. To address this knowledge gap, I 

evaluated the patterns, drivers, ecological consequences of plant water use, (e.g., water uptake, 

water redistribution, and water loss), in a native tallgrass prairie located in northeastern Kansas, 

USA. 

First, I investigated spatial and temporal variation in water uptake by four common 

grassland plants (Andropogon gerardii, Vernonia balwinii, Amorpha canescens, and Rhus 

glabra). Specifically, in Chapter 2, I evaluated the role of fire and bison grazing on vertical 

source water partitioning within a tallgrass prairie community. Using stable isotope techniques, I 

showed that grazing increases the depth of water uptake in A. gerardii and R. glabra, reducing 

niche overlap with co-occurring species. These results indicate that grassland management 

practices can impact plant water fluxes at small spatial scales, with potential impacts on 

community-level dynamics.  

Next, I investigated whether spatial and temporal variation exists in water redistribution 

in these same grassland species. In Chapter 3, I showed that hydraulic lift can occur in V. 

baldwinii and R. glabra, but is generally uncommon and is likely limited by nocturnal 

transpiration. Furthermore, the few instances of hydraulic lift in V. baldwinii and R. glabra did 
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not facilitate water uptake by neighboring grasses, as has been observed in other systems. I 

suggest that, while hydraulic lift can occur in tallgrass prairies, it is not an important 

ecohydrological process in this ecosystem under current climate conditions.  

Finally, I evaluated daily and season variation in water loss in eight prairie grasses, forbs, 

and shrubs (A. gerardii, Panicum virgatum, Sorghastrum nutans, Solidago canadensis, V, 

baldwinii, A. canescens, R. glabra, and Cornus drummondii). In Chapter 4, I used leaf gas 

exchange measurements to evaluate patterns and drivers of nocturnal transpiration across two 

growing seasons. Nocturnal transpiration commonly occurred among these species and was 

greatest in grasses and early in the growing season. Interestingly, nocturnal transpiration was not 

driven by VPD, as commonly observed in other systems (Dawson et al. 2007; Fisher et al. 2007; 

Howard and Donovan 2006), but was correlated with nocturnal stomatal conductance in most 

species. This result suggests that nocturnal transpiration is regulated by some grassland species 

and may have competitive advantage in diverse plant communities. Chapter 5 builds on these 

results by evaluating diurnal sap flow patterns in the same eight species. Using micro external 

heat balance sensors and a Bayesian modeling technique (Bell et al. 2015) I show that daytime 

sap flow rates were variable among species and functional types, with larger flux rates among 

woody species. However, nighttime sap flow rates were more consistent across species, which 

caused nighttime sap flow and transpiration to account for a larger proportion of daily flux rates 

in grasses than in forbs or shrubs.  

The results of this dissertation show that water uptake, redistribution, and loss are indeed 

spatially and temporally variable in a native tallgrass prairie. Additionally, extensive differences 

in water flux exist among co-occurring species and plant functional groups, which likely reflect 

varying strategies to tolerate water limitation. These results suggest that shifts in the abundance 
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of these species with future climate changes or with ecosystem state changes (e.g., woody 

encroachment; Ratacjzak et al. 2011) will likely impact ecosystem-level water balance (Logan 

and Brunsell 2015). I also showed that water uptake, water redistribution, and water loss are all 

influenced by different biotic and abiotic drivers. For example, grazing alters source water 

uptake but does not impact hydraulic lift. However, these water fluxes were all influenced by key 

environmental factors such as soil moisture, VPD, and air temperature, suggesting that they will 

likely be very responsive to future changes in climate. Finally, I showed that different fluxes 

have varying ecological consequences. While some fluxes can potentially impact community 

interactions (e.g., source water uptake may impact niche partitioning), others do not likely have 

an important contribution to ecosystem function (e.g., hydraulic lift does not likely impact 

facilitation). However, the strength of these consequences may also change under future 

climates. For example, hydraulic lift and facilitation may become increasingly important under 

warmer, drier conditions predicted for this region (Christensen et al. 2007). Overall, these results 

highlight the importance of assessing fine-scale spatiotemporal variation in plant water fluxes to 

better understand ecological processes in a changing climate.  
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Appendix A - Appendix for Chapter 2 

Table A.1 Soil δ18O collected from five depths in all grazing treatments, months, and 
topographic locations, as well as the deep soil δ18O collected from five random lowland 
locations. Shown are mean ± 1SE. 

 Soil Depth (cm) Ungrazed Grazed 

July    

Upland 0-5 -2.717 ± 0.488 -1.839 ± 0.393 

 5-10 -4.827 ± 0.516 -4.322 ± 0.445 

 10-15  -5.158 ± 0.554 

 15-20  -5.288 ± 0.591 

 20-25 -5.100 ± 0.000 -4.550 ± 0.250 

Lowland 0-5 -3.539 ± 0.446 -2.441 ± 0.342 

 5-10 -5.247 ± 0.421 -4.344 ± 0.350 

 10-15 -5.782 ± 0.335 -4.975 ± 0.322 

 15-20 -6.044 ± 0.251 -5.350 ± 0.270 

 20-25 -6.218 ± 0.229 -5.458 ± 0.262 

August    

Upland 0-5 -3.782 ± 0.369 -1.750 ± 0.412 

 5-10 -4.800 ± 0.228 -3.788 ± 0.156 

 10-15 -5.300 ± 0.100 -4.175 ± 0.325 

 15-20  -3.500 ± 0.000 

 20-25   

Lowland 0-5 -3.819 ± 0.230 -2.682 ± 0.195 

 5-10 -4.919 ± 0.275 -4.472 ± 0.315 

 10-15 -5.477 ± 0.295 -5.239 ± 0.396 

 15-20 -5.669 ± 0.315 -4.940 ± 0.406 

 20-25 -5.857 ± 0.312 -5.564 ± 0.392 

Deep Soil    

Lowland 100-200 -8.080 ± 0.213  
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Table A.2 Effects of grazing, month, topography, fire, and their interactions for A. gerardii 
xylem δ18O.  Shown are summary results after model averaging, including the average 
model estimates, standard error (SE), adjusted standard error (Adj SE), Z value, P value, 
95% confidence interval, and number of models in which the factor occurs (N models). 

Parameter Estimate SE Adj SE Z value Confidence Interval N models 

Intercept -5.335 0.390 0.393 13.572 (-6.106, -4.565)  

Grazing -0.721 0.167 0.171 4.223 (-1.056, -0.386) 23 

Month -0.661 0.197 0.171 3.872 (-0.996, -0.327) 23 

Topography 0.209 0.172 0.173 1.206 (-0.112 21 

Fire -0.219 0.211 0.212 1.033 (-0.678, 0.058) 17 

Grazing x Topography 0.551 0.417 0.419 1.313 (0.040, 1.373) 16 

Month x Topography -0.451 0.415 0.417 1.081 (-1.328, 0.004) 13 

Grazing x Fire 0.063 0.196 0.197 0.318 (-0.342, 0.991) 6 

Topography x Fire -0.008 0.104 0.104 0.076 (-0.757, 0.577) 3 

Month x Fire -0.007 0.102 0.103 0.065 (-0.743, 0.591) 4 

Grazing x month -0.007 0.120 0.127 0.059 (-0.724, 0.608) 3 
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Table A.3 Effects of grazing, month, topography, fire, and their interactions for V. 
baldwinii xylem δ18O.  Shown are summary results after model averaging, including the 
average model estimates, standard error (SE), adjusted standard error (Adj SE), Z value, P 
value, 95% confidence interval, and number of models in which the factor occurs (N 
models). 

Parameter Estimate SE Adj SE Z value Confidence Interval N models 

Intercept -11.967 1.018 1.028 11.647 (-13.981, -9.953)  

Grazing -0.763 0.282 0.284 2.683 (-1.310, -0.206) 33 

Month -2.363 0.282 0.284 8.313 (-2.920, -1.806) 33 

Topography 0.062 0.238 0.240 0.256 (-0.466, 0.641) 25 

Fire -0.199 0.295 0.297 0.669 (-8.620, 0.366) 28 

Month x Fire 0.394 0.580 0.582 0.676 (-0.208, 2.008) 15 

Topography x Fire -0.822 0.792 0.794 1.035 (-2.461, -0.247) 20 

Grazing x Topography -0.110 0.332 0.334 0.328 (-1.651, 0.556) 9 

Grazing x month 0.110 0.336 0.338 0.317 (-0.671, 1.554) 11 

Grazing x Fire 0.080 0.294 0.295 0.269 (-0.679, 1.542) 9 

Month x Topography 0.040 0.220 0.222 0.178 (-0.771, 1.432) 6 
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Table A.4 Effects of grazing, month, topography, fire, and their interactions for A. 
canescens xylem δ18O.  Shown are summary results after model averaging, including the 
average model estimates, standard error (SE), adjusted standard error (Adj SE), Z value, P 
value, 95% confidence interval, and number of models in which the factor occurs (N 
models). 
Parameter Estimate SE Adj SE Z value Confidence Interval N models 

Intercept -10.377 0.495 0.499 20.758 (-11.357, -9.397)  

Grazing -0.537 0.299 0.302 1.778 (-1.128, 0.055) 16 

Month -2.502 0.299 0.302 8.291 (-3.093, -1.910) 16 

Topography 0.205 0.379 0.382 0.537 (-0.551, 1.041) 13 

Fire 1.142 0.329 0.333 3.435 (0.491, 1.794) 16 

Grazing x month 1.694 0.598 0.604 2.806 (0.511, 2.887) 16 

Grazing x Topography 1.206 0.797 0.801 1.506 (0.319, 2.674) 12 

Grazing x Fire 0.373 0.552 0.556 0.672 (-0.599, 1.751) 9 

Month x Fire 0.798 0.662 0.666 1.198 (-0.194, 2.167) 12 

Grazing x Month x Fire -1.592 1.659 1.663 0.957 (-5.167, -0.481) 7 

Month x Topography 0.073 0.309 0.311 0.235 (-0.835, 1.504) 5 

Topography x Fire -0.047 0.256 0.258 0.181 (-1.472, 0.863) 3 

Month x Topography x Fire -0.108 0.548 0.549 0.197 (-4.591, 0.005) 1 

Grazing x Month x Topography -0.033 0.279 0.280 0.119 (-3.364, 1.277) 1 
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Table A.5 Effects of grazing, month, topography, fire, and their interactions for R. glabra 
xylem δ18O.  Shown are summary results after model averaging, including the average 
model estimates, standard error (SE), adjusted standard error (Adj SE), Z value, P value, 
95% confidence interval, and number of models in which the factor occurs (N models). 

Parameter Estimate SE Adj SE Z value Confidence Interval N models 

Intercept -8.108 0.310 0.314 25.858 (-8.723, -7.494)  

Grazing -0.613 0.238 0.241 2.547 (-1.084, -0.141) 22 

Month 0.498 0.242 0.244 2.042 (0.047, 0.971) 21 

Topography -0.209 0.240 0.241 0.867 (-0.762, 0.172) 15 

Grazing x month -0.711 0.582 0.585 1.216 (-1.890, -0.011) 15 

Month x Topography -0.352 0.507 0.509 0.691 (-1.742, 0.126) 9 

Grazing x Topography -0.209 0.408 0.410 0.511 (-1.602, 0.288) 7 

Fire -0.030 0.143 0.144 0.210 (-0.639, 0.404) 10 

Grazing x Month x Topography -0.028 0.232 0.234 0.120 (-2.609, 1.134) 1 

Month x Fire -0.018 0.129 0.130 0.140 (-1.381, 0.470) 2 

Grazing x Fire -0.013 0.111 0.111 0.115 (-1.308, 0.557) 2 
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Table A.6 Xylem δ18O collected from each species in all grazing treatments, months, and 
topographic locations. Shown are mean ± 1SE. 

 July August 

 Grazed Ungrazed Grazed Ungrazed 

A. gerardii     

Upland -5.456 ± 0.458 -6.006 ± 0.481 -4.611 ± 0.164 -4.839 ± 0.212 

Lowland -5.111 ± 0.297 -6.100 ± 0.208 -4.781 ± 0.198 -5.856 ± 0.202 

V. baldwinii     

Upland -12.561 ± 0.583 -13.483 ± 0.533 -10.250 ± 0.722 -11.400 ± 0.642 

Lowland -13.194 ± 0.633 -13.356 ± 0.583 -10.339 ± 0.471 -11.156 ± 0.594 

A. canescens     

Upland -11.828 ± 0.616 -11.033 ± 0.592 -8.922 ± 0.406 -9.289 ± 0.356 

Lowland -11.761 ± 0.500 -12.100 ± 0.359 -8.006 ± 0.506 -10.389 ± 0.455 

R. glabra     

Upland -7.253 ± 0.477 -8.861 ± 0.485 -8.161 ± 0.204 -8.422 ± 0.251 

Lowland -7.178 ± 0.455 -7.722 ± 0.370 -8.400 ± 0.293 -8.406 ± 0.183 
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Table A.7 Xylem δ18O collected from each species in all time since fire (TSF) contrasts. 
Shown are mean ± 1SE. 

 TSF  Xylem δ18O 

A. gerardii 0 -4.765 ± 0.205 

 1 -6.150 ± 0.167 

 2 -4.911 ± 0.161 

 3 -6.521 ± 0.200 

   

V. baldwinii 0 -10.731 ± 0.336 

 1 -14.146 ± 0.453 

 2 -10.952 ± 0.364 

 3 -14.292 ± 0.367 

   

A. canescens 0 -10.925 ± 0.458 

 1 -10.975 ± 0.383 

 2 -9.211 ± 0.276 

 3 -11.008 ± 0.277 

   

R. glabra 0 -7.786 ± 0.251 

 1 -8.771 ± 0.275 

 2 -7.681 ± 0.211 

 3 -8.929 ± 0.224 
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Table A.8 SIAR estimates of the proportion of shallow and deep water used by each species 
within each month, topography, and time since fire (TSF) contrast. Shown are mean 
estimates for shallow and deep sources, with the 95% credible interval in parentheses. 

  July August 

A. gerardii TSF  Surface Deep Surface Deep 

Upland 0 0.472 (0.325, 0.613) 0.528 (0.387, 0.675) 0.808 (0.476, 0.683) 0.192 (0.000, 0.297) 

 1 0.689 (0.278, 1.027) 0.311 (0.000, 0.722) 0.809 (0.663, 0.959) 0.191 (0.041, 0.337) 

 2 0.578 (0.390, 0.779) 0.422 (0.221, 0.61) 0.817 (0.689, 0.960) 0.183 (0.040, 0.311) 

 3 0.311 (0.037, 0.548) 0.689 (0.452, 0.963) 0.513 (0.356, 0.679) 0.487 (0.321, 0.644) 

Lowland 0 0.605 (0.480, 0.724) 0.395 (0.276, 0.520) 0.601 (0.347, 0.805) 0.399 (0.196, 0.653) 

 1 0.842 (0.647, 1.009) 0.158 (0.000, 0.353) 0.570 (0.402, 0.755) 0.430 (0.245, 0.598) 

 2 0.559 (0.446, 0.664) 0.441 (0.336, 0.554) 0.744 (0.535, 0.917) 0.256 (0.083, 0.465) 

 3 0.651 (0.389, 0.965) 0.349 (0.035, 0.611) 0.609 (0.213, 0.999) 0.391 (0.000, 0.787) 

V. baldwinii      

Upland 0 0.033 (0.000, 0.099) 0.967 (0.901, 1.005) 0.037 (0.000, 0.107) 0.963 (0.893, 1.005) 

 1 0.466 (0.012, 0.900) 0.534 (0.100, 0.988) 0.292 (0.000, 0.681) 0.708 (0.319, 1.027) 

 2 0.050 (0.000, 0.154) 0.950 (0.846, 1.007) 0.029 (0.000, 0.084) 0.971 (0.916, 1.004) 

 3 0.384 (0.000, 0.804) 0.616 (0.196, 1.016) 0.297 (0.000, 0.688) 0.703 (0.312, 1.026) 

Lowland 0 0.041 (0.000, 0.126) 0.959 (0.874, 1.006) 0.043 (0.000, 0.126) 0.957 (0.874, 1.006) 

 1 0.394 (0.000, 0.818) 0.606 (0.183, 1.013) 0.317 (0.000, 0.720) 0.683 (0.280, 1.026) 

 2 0.040 (0.000, 0.120) 0.960 (0.881, 1.006) 0.035 (0.000, 0.105) 0.965 (0.895, 1.005) 

 3 0.428 (0.000, 0.850) 0.572 (0.150, 1.002) 0.330 (0.000, 0.737) 0.670 (0.263, 1.022) 

A. canescens      

Upland 0 0.069 (0.000, 0.211) 0.931 (0.789, 1.010) 0.060 (0.000, 0.185) 0.940 (0.815, 1.009) 

 1 0.456 (0.009, 0.891) 0.544 (0.109, 0.991) 0.139 (0.000, 0.445) 0.861 (0.555, 1.022) 

 2 0.039 (0.000, 0.118) 0.961 (0.882, 1.006) 0.085 (0.000, 0.199) 0.916 (0.801, 1.006) 

 3 0.345 (0.000, 0.756) 0.655 (0.244, 1.023) 0.174 (0.000, 0.513) 0.826 (0.487, 1.025) 

Lowland 0 0.055 (0.000, 0.166) 0.945 (0.834, 1.008) 0.111 (0.000, 0.326) 0.889 (0.674, 1.016) 

 1 0.350 (0.000, 0.760) 0.650 (0.240, 1.020) 0.217 (0.000, 0.574) 0.783 (0.426, 1.028) 

 2 0.073 (0.000, 0.227) 0.927 (0.773, 1.011) 0.055 (0.000, 0.154) 0.945 (0.426, 1.007) 

 3 0.405 (0.000, 0.825) 0.595 (0.175, 1.010) 0.301 (0.000, 0.693) 0.699 (0.307, 1.026) 

R. glabra      

Upland 0 0.064 (0.000, 0.166) 0.936 (0.834, 1.007) 0.040 (0.000, 0.098) 0.960 (0.902, 1.003) 

 1 0.392 (0.000, 0.817) 0.608 (0.183, 1.015) 0.202 (0.000, 0.502) 0.798 (0.498, 1.018) 

 2 0.158 (0.011, 0.299) 0.842 (0.701, 0.989) 0.029 (0.000, 0.085) 0.971 (0.915, 1.004) 

 3 0.216 (0.000, 0.577) 0.784 (0.423, 1.029) 0.071 (0.000, 0.232) 0.929 (0.768, 1.011) 

Lowland 0 0.201 (0.084, 0.320) 0.799 (0.680, 0.916) 0.032 (0.000, 0.091) 0.968 (0.910, 1.004) 
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 1 0.234 (0.000, 0.620) 0.766 (0.380, 1.030) 0.286 (0.000, 0.711) 0.714 (0.289, 1.032) 

 2 0.122 (0.003, 0.229) 0.878 (0.771, 0.997) 0.043 (0.000, 0.116) 0.957 (0.884, 1.005) 

 3 0.394 (0.000, 0.811) 0.606 (0.190, 1.011) 0.114 (0.000, 0.370) 0.886 (0.631, 1.017) 
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Table A.9 Effects of grazing, month, topography, fire, and their interactions for A. gerardii 
Ψmd. Shown are summary results after model averaging, including the average model 
estimates, standard error (SE), adjusted standard error (Adj SE), Z value, P value, 95% 
confidence interval, the number of models in which the factor occurs (N models), and the 
relative importance (Importance). 

Parameter Estimate SE Adj SE Z value Confidence Interval N models Importance 

Intercept -1.590 0.169 0.171 9.295 (-1.925, -1.254)   

Grazing 0.063 0.076 0.077 0.828 (-0.072, 0.233) 20 0.79 

Month 0.671 0.077 0.078 8.587 (0.518, 0.824) 25 1 

Topography -0.296 0.077 0.078 3.784 (-0.449, -0.143) 25 1 

Fire 0.211 0.085 0.086 2.447 (0.042, 0.380) 25 1 

Grazing x month 0.220 0.199 0.200 1.103 (0.023, 0.632) 16 0.67 

Month x Fire -0.231 0.189 0.189 1.220 (-0.613, -0.0004) 17 0.75 

Grazing x Fire 0.032 0.094 0.094 0.337 (-0.451, 0.159) 7 0.22 

Topography x Fire 0.033 0.096 0.096 0.340 (-0.172, 0.441) 8 0.24 

Grazing x Topography -0.011 0.061 0.061 0.175 (-0.393, 0.215) 4 0.12 

Month x Topography 0.012 0.066 0.066 0.179 (-0.225, 0.386) 5 0.15 

Grazing x Month x Fire 0.001 0.044 0.044 0.012 (-0.581, 0.635) 1 0.02 
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Table A.10 Effects of grazing, month, topography, fire, and their interactions for V. 
baldwinii Ψmd. Shown are summary results after model averaging, including the average 
model estimates, standard error (SE), adjusted standard error (Adj SE), Z value, P value, 
95% confidence interval, the number of models in which the factor occurs (N models), and 
the relative importance (Importance). 

Parameter Estimate SE Adj SE Z value Confidence Interval N models Importance 

Intercept -1.126 0.329 0.332 3.394 (-1.776, -0.476)   

Grazing 0.092 0.052 0.053 1.751 (-0.011, 0.196) 13 1 

Month 0.359 0.052 0.053 6.807 (0.256, 0.462) 13 1 

Topography 0.057 0.054 0.055 1.037 (-0.033, 0.173) 11 0.81 

Grazing x month 0.268 0.105 0.106 2.541 (0.061, 0.475) 13 1 

Month x Topography -0.125 0.128 0.129 0.971 (-0.410, 0.001) 8 0.61 

Fire 0.023 0.046 0.046 0.491 (-0.056, 0.172) 7 0.39 

Grazing x Topography 0.022 0.065 0.065 0.344 (-0.110, 0.302) 4 0.23 

Month x Fire 0.003 0.025 0.025 0.110 (-0.139, 0.272) 1 0.04 

Topography x Fire -0.0004 0.019 0.019 0.019 (-0.217, 0.195) 1 0.03 

Grazing x Fire 0.00003 0.019 0.019 0.001 (-0.205, 0.207) 1 0.03 

Grazing x Month x Fire 0.002 0.040 0.040 0.057 (-0.341, 0.480) 1 0.03 
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Table A.11 Effects of grazing, month, topography, fire, and their interactions for A. 
canescens Ψmd. Shown are summary results after model averaging, including the average 
model estimates, standard error (SE), adjusted standard error (Adj SE), Z value, P value, 
95% confidence interval, the number of models in which the factor occurs (N models), and 
the relative importance (Importance). 

Parameter Estimate SE Adj SE Z value Confidence Interval N models Importance 

Intercept -1.535 0.215 0.217 7.075 (-1.960, -1.109)   

Month 0.715 0.099 0.100 7.180 (0.520, 0.910) 21 1 

Topography -0.023 0.075 0.076 0.301 (-0.236, 0.152) 14 0.54 

Month x Topography -0.154 0.223 0.223 0.689 (-0.761, 0.013) 10 0.41 

Grazing 0.038 0.078 0.078 0.485 (-0.092, 0.298) 10 0.37 

Fire -0.054 0.093 0.095 0.574 (-0.327, 0.102) 13 0.48 

Month x Fire -0.036 0.115 0.115 0.346 (-0.617, 0.162) 5 0.16 

Topography x Fire -0.024 0.095 0.095 0.252 (-0.623, 0.151) 4 0.10 

Grazing x month 0.001 0.033 0.034 0.024 (-0.363, 0.422) 1 0.03 

Grazing x Topography 0.002 0.033 0.033 0.073 (-0.277, 0.497) 1 0.02 
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Table A.12 Effects of grazing, month, topography, fire, and their interactions for R. glabra 
Ψmd. Shown are summary results after model averaging, including the average model 
estimates, standard error (SE), adjusted standard error (Adj SE), Z value, P value, 95% 
confidence interval, the number of models in which the factor occurs (N models), and the 
relative importance (Importance). 

Parameter Estimate SE Adj SE Z value Confidence Interval N models Importance 

Intercept -1.216 0.357 0.361 3.372 (-1.924, -0.509)   

Grazing 0.188 0.057 0.058 3.245 (0.074, 0.301) 28 1 

Month 0.252 0.055 0.056 4.497 (0.142, 0.362) 28 1 

Topography -0.054 0.059 0.059 0.909 (-0.187, 0.038) 22 0.72 

Grazing x month 0.377 0.115 0.116 3.254 (0.150, 0.604) 28 1 

Month x Topography -0.096 0.129 0.129 0.743 (-0.430, 0.018) 13 0.47 

Fire -0.048 0.062 0.062 0.770 (-0.194, 0.057) 23 0.70 

Month x Fire 0.084 0.121 0.121 0.697 (-0.026, 0.412) 14 0.44 

Grazing x Fire -0.035 0.083 0.083 0.422 (-0.360, 0.085) 10 0.25 

Grazing x Topography 0.015 0.058 0.059 0.257 (-0.139, 0.314) 7 0.16 

Topography x Fire -0.004 0.033 0.033 0.113 (-0.276, 0.169) 4 0.07 

Grazing x Month x Fire -0.004 0.044 0.044 0.085 (-0.569, 0.311) 2 0.03 
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Table A.13 Effects of grazing, month, topography, fire, and their interactions for soil 
RWC. Shown are summary results after model averaging, including the average model 
estimates, standard error (SE), adjusted standard error (Adj SE), Z value, P value, 95% 
confidence interval, the number of models in which the factor occurs (N models), and the 
relative importance (Importance). 

Parameter Estimate SE Adj SE Z value Confidence Interval N models Importance 

Intercept 0.156 0.019 0.019 8.383 (0.120, 0.193)   

Grazing -0.011 0.006 0.006 1.706 (-0.023, 0.003) 13 1 

Month 0.072 0.006 0.006 11.242 (0.059, 0.084) 13 1 

Topography -0.067 0.006 0.006 10.503 (-0.079, -0.055) 13 1 

Fire 0.0002 0.007 0.007 0.028 (-0.014, 0.014) 13 1 

Grazing x Topography -0.049 0.013 0.013 3.828 (-0.074, -0.024) 13 1 

Grazing x Fire -0.024 0.015 0.015 1.541 (-0.053, -0.003) 10 0.85 

Month x Topography -0.031 0.013 0.013 2.451 (-0.056, -0.006) 13 1 

Month x Fire 0.042 0.013 0.013 3.314 (0.017, 0.067) 13 1 

Topography x Fire -0.011 0.013 0.013 0.857 (-0.039, 0.011) 10 0.77 

Month x Topography x Fire -0.038 0.033 0.034 1.121 (-0.106, -0.006) 8 0.67 

Grazing x month -0.007 0.011 0.011 0.580 (-0.040, 0.009) 7 0.42 

Grazing x Topography x Fire 0.003 0.013 0.013 0.270 (-0.026, 0.073) 2 0.15 

Grazing x Month x Fire 0.001 0.007 0.007 0.133 (-0.030, 0.068) 1 0.05 

Grazing x Month x Topography -0.0002 0.005 0.005 0.046 (-0.056, 0.043) 1 0.04 
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Table A.14 Soil RWC measure in watersheds of each burn history during July and August. 
Shown are mean ± 1SE. 

Time since fire (years) July August 

0 0.188 ± 0.009 0.146 ± 0.014 

1 0.186 ± 0.025 0.083 ± 0.008 

2 0.205 ± 0.011 0.146 ± 0.014 

3 0.181 ± 0.019 0.056 ± 0.009 
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Figure A.1 Deep soil moisture in units of water fraction by volume (wfv) measured at 30 cm 
and 100 cm depth for (a) 2013, (b) 2014, and (c) 2015. 
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Figure A.2 Posterior density estimates for the proportion of surface and deep water sources 
used by V. baldwinii in ungrazed (a,c,e,g) and grazed (b,d,f,h) watersheds, upland (a,b,e,f) 
and lowland (c,d,g,h) topographic positions, and during July (a-d) and August (e-h). 
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Figure A.3 Posterior density estimates for the proportion of surface and deep water sources 
used by A. canescens in ungrazed (a,c,e,g) and grazed (b,d,f,h) watersheds, upland (a,b,e,f) 
and lowland (c,d,g,h) topographic positions, and during July (a-d) and August (e-h). 
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Appendix B - Appendix for Chapter 3 

Table B.1 Statistical results of soil moisture analyses. Shown are F and P values for relative 
water content (RWC) measured in the top 10 cm soil and for gravimetric water content 
measured at 5 cm increments in 25 cm deep soil cores. Factors within the RWC analysis 
include year (Y), month (M), grazing treatment (G), sampling time of day (T), species (S), 
and their interactions. Factors within the GWC analysis include month (M), grazing 
treatment (G), sampling time of day (T), species (S), depth within soil core (D), and their 
interactions. Significance at the α=0.05 level is indicated with an asterisk. 

 RWC  GWC  

Source F P F P 

Y 3.89 0.05   

M 43.61 <0.01* 18.80 <0.01* 

G 3.34 0.14 0.24 0.64 

T 3.38 0.07 1.72 0.19 

S 1.44 0.24 1.40 0.24 

D   0.94 0.33 

Y x M 2.95 0.09   

Y x G 3.83 0.05   

M x G 2.27 0.13 8.49 <0.01* 

Y x T 0.55 0.46   

M x T 0.21 0.64 0.09 0.77 

G x T 0.26 0.61 0.05 0.82 

Y x S 1.74 0.16   

M x S 0.93 0.43 0.16 0.92 

G x S 0.17 0.92 3.54 0.02* 

T x S 0.83 0.48 0.15 0.93 

M x D   0.01 0.92 

G x D   0.001 0.98 

T x D   0.99 0.32 

S x D   0.38 0.77 

Y x M x G 11.31 <0.01*   

Y x M x T 1.06 0.31   
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Y x G x T 0.06 0.81   

M x G x T 3.09 0.08 4.05 0.05 

Y x M x S 1.18 0.32   

Y x G x S 1.32 0.27   

M x G x S 0.45 0.72 1.62 0.18 

Y x T x S 0.21 0.89   

M x T x S 0.14 0.94 0.72 0.54 

G x T x S 0.27 0.85 0.66 0.58 

M x G x D   0.06 0.81 

M x T x D   0.05 0.82 

G x T x D   0.02 0.90 

M x S x D   0.03 0.99 

G x S x D   1.77 0.15 

T x S x D   0.13 0.94 

Y x M x G x T 0.21 0.65   

Y x M x G x S 3.36 0.02*   

Y x M x T x S 1.38 0.25   

Y x G x T x S 0.88 0.45   

M x G x T x S 0.14 0.93 2.35 0.07 

M x G x T x D   0.68 0.41 

M x G x S x D   0.66 0.58 

M x T x S x D   0.63 0.60 

G x T x S x D   0.98 0.40 

Y x M x G x T 

x S 

1.09 0.36   

M x G x T x S 

x D 

  2.00 0.11 
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Table B.2 Soil relative water content (wfv) measured in the first 10cm soil adjacent to each 
species in all sampling locations and time points. Shown are mean ± 1 SEM. 

  2013 2014 

  July August July August 

Ungrazed      

A. gerardii pre-HL 0.15 ± 0.01 0.15 ± 0.02 0.14 ± 0.004 0.10 ± 0.02 

 post-HL 0.13 ± 0.01 0.13 ± 0.03 0.15 ± 0.002 0.08 ± 0.03 

V. baldwinii pre-HL 0.14 ± 0.02 0.11 ± 0.02 0.14 ± 0.02 0.11 ± 0.05 

 post-HL 0.17 ± 0.02 0.11 ± 0.02 0.12 ± 0.01 0.10 ± 0.02 

A. canescens pre-HL 0.12 ± 0.01 0.13 ± 0.04 0.15 ± 0.02 0.11 ± 0.02 

 post-HL 0.11 ± 0.02 0.12 ± 0.03 0.16 ± 0.01 0.05 ± 0.02 

R. glabra pre-HL 0.14 ± 0.01 0.13 ± 0.03 0.14 ± 0.01 0.08 ± 0.03 

 post-HL 0.15 ± 0.01 0.12 ± 0.03 0.15 ± 0.02 0.09 ± 0.01 

Grazed      

A. gerardii pre-HL 0.16 ± 0.03 0.15 ± 0.01 0.14 ± 0.01 0.15 ± 0.01 

 post-HL 0.15 ± 0.01 0.16 ± 0.01 0.14 ± 0.02 0.12 ± 0.01 

V. baldwinii pre-HL 0.17 ± 0.02 0.15 ± 0.01 0.16 ± 0.01 0.12 ± 0.01 

 post-HL 0.17 ± 0.02 0.13 ± 0.01 0.14 ± 0.02 0.13 ± 0.01 

A. canescens pre-HL 0.17 ± 0.03 0.10 ± 0.02 0.15 ± 0.01 0.14 ± 0.02 

 post-HL 0.14 ± 0.004 0.10 ± 0.01 0.13 ± 0.004 0.13 ± 0.02 

R. glabra pre-HL 0.17 ± 0.02 0.10 ± 0.002 0.17 ± 0.03 0.16 ± 0.01 

 post-HL 0.14 ± 0.02 0.14 ± 0.01 0.17 ± 0.02 0.13 ± 0.01 
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Table B.3 Soil gravimetric water content measured for each soil core depth collected 
adjacent to all species in every sampling location and sampling time point. Shown are mean 
± 1 SEM. 

   July August 

  Depth Ungrazed Grazed Ungrazed Grazed 

A. gerardii pre-HL 5 0.26 ± 0.01 0.22 ± 0.03 0.19 ± 0.01 0.16 ± 0.01 

  10 0.21 ± 0.02 0.19 ± 0.02 0.19 ± 0.02 0.18 ± 0.02 

  15 0.26 ± 0.02 0.20 ± 0.03 0.19 ± 0.01 0.17 ± 0.02 

  20 0.25 ± 0.02 0.22 ± 0.02 0.18 ± 0.01 0.16 ± 0.01 

  25 0.21 ± 0.02 0.21 ± 0.02 0.19 ± 0.02 0.15 ± 0.00 

 post-HL 5 0.22 ± 0.02 0.21 ± 0.04 0.19 ± 0.06 0.16 ± 0.02 

  10 0.23 ± 0.01 0.21 ± 0.03 0.19 ± 0.05 0.19 ± 0.03 

  15 0.24 ± 0.03 0.19 ± 0.02 0.17 ± 0.04 0.17 ± 0.02 

  20 0.26 ± 0.05 0.21 ± 0.01 0.17 ± 0.04 0.17 ± 0.02 

  25 0.23 ± 0.03  0.17 ± 0.04 0.15 ± 0.00 

V. baldwinii pre-HL 5 0.22 ± 0.04 0.19 ± 0.3 0.16 ± 0.01 0.15 ± 0.02 

  10 0.30 ± 0.10 0.20 ± 0.01 0.18 ± 0.01 0.18 ± 0.02 

  15 0.20 ± 0.02 0.21 ± 0.02 0.15 ± 0.01 0.17 ± 0.02 

  20 0.19 ± 0.04 0.23 ± 0.01 0.15 ± 0.01 0.18 ± 0.03 

  25  0.20 ± 0.00 0.14 ± 0.004 0.18 ± 0.00 

 post-HL 5 0.23 ± 0.02 0.17 ± 0.02 0.18 ± 0.01 0.18 ± 0.02 

  10 0.22 ± 0.02 0.17 ± 0.03 0.16 ± 0.01 0.20 ± 0.02 

  15 0.21 ± 0.001 0.17 ± 0.02 0.16 ± 0.01 0.20 ± 0.02 

  20 0.20 ± 0.01 0.20 ± 0.03 0.16 ± 0.01 0.20 ± 0.03 

  25 0.21 ± 0.03 0.19 ± 0.00 0.17 ± 0.003 0.21 ± 0.01 

A. canescens pre-HL 5 0.23 ± 0.02 0.19 ± 0.02 0.19 ± 0.03 0.18 ± 0.03 

  10 0.21 ± 0.02 0.20 ± 0.01 0.19 ± 0.03 0.21 ± 0.01 

  15 0.21 ± 0.02 0.21 ± 0.01 0.18 ± 0.01 0.19 ± 0.003 

  20 0.24 ± 0.04 0.19 ± 0.03 0.18 ± 0.01 0.19 ± 0.001 

  25 0.19 ± 0.02  0.18 ± 0.02 0.19 ± 0.00 

 post-HL 5 0.25 ± 0.01 0.16 ± 0.02 0.15 ± 0.03 0.19 ± 0.01 
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  10 0.25 ± 0.01 0.17 ± 0.03 0.15 ± 0.02 0.20 ± 0.02 

  15 0.24 ± 0.02 0.18 ± 0.03 0.14 ± 0.01 0.18 ± 0.02 

  20 0.23 ± 0.02 0.19 ± 0.01 0.16 ± 0.02 0.19 ± 0.02 

  25 0.22 ± 0.00 0.17 ± 0.00 0.21 ± 0.03 0.16 ± 0.02 

R. glabra pre-HL 5 0.22 ± 0.02 0.26 ± 0.03 0.18 ± 0.04 0.19 ± 0.01 

  10 0.22 ± 0.01 0.22 ± 0.01 0.18 ± 0.03 0.23 ± 0.01 

  15 0.22 ± 0.02 0.21 ± 0.01 0.17 ± 0.02 0.20 ± 0.01 

  20 0.23 ± 0.01 0.20 ± 0.02 0.18 ± 0.02 0.19 ± 0.002 

  25 0.23 ± 0.02 0.19 ± 0.00 0.17 ± 0.02 0.17 ± 0.00 

 post-HL 5 0.23 ± 0.01 0.22 ± 0.02 0.16 ± 0.03 0.21 ± 0.01 

  10 0.23 ± 0.01 0.20 ± 0.02 0.16 ± 0.02 0.21 ± 0.01 

  15 0.22 ± 0.01 0.21 ± 0.01 0.16 ± 0.02 0.21 ± 0.003 

  20 0.22 ± 0.01 0.21 ± 0.01 0.16 ± 0.02 0.19 ± 0.003 

  25 0.22 ± 0.02  0.14 ± 0.01 0.19 ± 0.00 
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Table B.4 Statistical results of soil water δ18O analyses. Shown are F and P values for the 
δ18O signature of soil water measured at 5 cm increments in 25 cm deep soil cores. Factors 
within the analysis include year (Y), month (M), grazing treatment (G), sampling time of 
day (T), species (S), depth within soil core (D), and their interactions. Significance at the 
α=0.05 level is indicated with an asterisk. 

Source F P 

Y 720.95 <0.01* 

M 0.02 0.88 

G 11.40 0.03* 

T 7.21 0.01* 

S 4.45 <0.01* 

D 582.20 <0.01* 

Y x M 482.73 <0.01* 

Y x G 0.01 0.92 

M x G 20.23 <0.01* 

Y x T 0.48 0.49 

M x T 0.54 0.46 

G x T 4.48 0.03* 

Y x S 2.52 0.06 

M x S 0.05 0.98 

G x S 8.17 <0.01* 

T x S 1.24 0.29 

Y x D 10.84 <0.01* 

M x D 1.86 0.14 

G x D 28.63 <0.01* 

T x D 0.22 0.88 

S x D 0.45 0.91 

Y x M x G 1.97 0.16 

Y x M x T 0.03 0.87 

Y x G x T 1.35 0.25 

M x G x T 0.34 0.56 

Y x M x S 2.26 0.08 
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Y x G x S 3.02 0.03* 

M x G x S 0.36 0.78 

Y x T x S 0.28 0.84 

M x T x S 1.15 0.33 

G x T x S 2.08 0.10 

Y x M x D 23.89 <0.01* 

Y x G x D 0.91 0.44 

M x G x D 0.32 0.81 

Y x T x D 0.45 0.72 

M x T x D 0.04 0.99 

G x T x D 0.21 0.89 

Y x S x D 0.62 0.78 

M x S x D 0.47 0.90 

G x S x D 0.66 0.75 

T x S x D 0.29 0.98 

Y x M x G x T 0.30 0.58 

Y x M x G x S 3.64 0.01* 

Y x M x T x S 1.46 0.23 

Y x G x T x S 0.65 0.59 

M x G x T x S 0.94 0.42 

Y x M x G x D 4.31 0.01* 

Y x M x T x D 0.11 0.95 

Y x G x T x D 0.78 0.50 

M x G x T x D 0.32 0.81 

Y x M x S x D 0.33 0.97 

Y x G x S x D 0.30 0.97 

M x G x S x D 0.26 0.98 

Y x T x S x D 0.21 0.99 

M x T x S x D 0.16 0.10 

G x T x S x D 0.48 0.88 

Y x M x G x T x S 3.71 0.01* 
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Y x M x G x T x D 0.56 0.64 

Y x M x G x S x D 0.27 0.98 

Y x M x T x S x D 0.63 0.77 

Y x G x T x S x D 0.92 0.51 

M x G x T x S x D 

Y x M x G x T x S x D 

0.13 

0.99 

0.10 

0.45 
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Table B.5 Change in the proportion of deep water in plant xylem from night to morning 
time points in isolated A. gerardii, as well as A. gerardii (AG) adjacent to V. baldwinii, A. 
canescens, and R. glabra. Samples were collection during July and August in 2013 and 
2014. Negative values indicate a decrease in deep water contribution to xylem water from 
night to morning. 

 2013  2014  

 July August July August 

Ungrazed     

A. gerardii -0.0217 -0.1515 -0.1204 -0.1350 

AG-V. baldwinii -0.1687 -0.1311 -0.1193 -0.1576 

AG-A. canescens -0.1053 -0.1687 -0.0515 -0.1370 

AG-R. glabra -0.2242 -0.2215 -0.0343 -0.2204 

Grazed     

A. gerardii -0.238 -0.2385 -0.1217 -0.2139 

AG-V. baldwinii -0.1406 -0.0956 -0.0779 -0.1034 

AG-A. canescens -0.2197 -0.2202 -0.2373 -0.0683 

AG-R. glabra -0.0737 -0.1787 -0.2086 -0.2383 
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Table B.6 Nocturnal transpiration (mmol H2O m2s-1) measured on A. gerardii (AG) during 
July and August 2014. Shown are mean ± 1 SEM for isolated A. gerardii and A. gerardii 
adjacent to V. baldwinii, A. canescens, and R. glabra in both grazing locations. 

 July 2014  August 2014  

 Ungrazed Grazed Ungrazed Grazed 

A. gerardii 0.63 ± 0.25 0.58 ± 0.22 0.57 ± 0.33 0.45 ± 0.09 

AG-V. baldwinii 0.48 ± 0.23 0.21 ± 0.07 0.84 ± 0.41 0.80 ± 0.49 

AG-A. canescens 0.60 ± 0.09 0.31 ± 0.26 0.56 ± 0.21 0.72 ± 0.35 

AG-R. glabra 0.39 ± 0.15 0.27 ± 0.26 0.50 ± 0.18 0.56 ± 0.27 
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Table B.7 Statistical results of nocturnal transpiration analyses. Shown are F and P values 
for the analysis comparing all species (isolated A. gerardii, V. baldwinii, A. canescens, and 
R. glabra) and for the analysis containing only A. gerardii (isolated A. gerardii and A. 
gerardii adjacent to V. baldwinii, A. canescens, and R. glabra). Factors within the analysis 
include month (M), grazing treatment (G), species (S), and their interactions.  

 All species  A. gerardii only  

Source F P F P 

M 0.24 0.63 2.19 0.15 

G 0.55 0.46 0.42 0.55 

S 2.41 0.08 0.27 0.84 

M x G 

M x S 

G x S 

M x G x S 

0.13 

0.09 

0.16 

0.22 

0.72 

0.97 

0.92 

0.87 

0.43 

0.81 

0.17 

0.04 

0.52 

0.50 

0.92 

0.99 
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Table B.8 Statistical results of predawn (Ψpd) and midday (Ψmd) leaf water potential 
analyses. Shown are F and P values for the analysis comparing all species (isolated A. 
gerardii, V. baldwinii, A. canescens, and R. glabra) and for the analysis containing only A. 
gerardii (isolated A. gerardii and A. gerardii adjacent to V. baldwinii, A. canescens, and R. 
glabra). Factors within the analysis include year (Y), month (M), species (S), grazing 
treatment (G), and their interactions. Significance at the α=0.05 level is indicated with an 
asterisk. 

 All species A. gerardii only 

 Ψpd  Ψmd  Ψpd  Ψmd  

Source F P F P F P F P 

Y 

M 

149.75 

20.90 

<0.01* 

<0.01* 

260.99 

84.09 

<0.01* 

<0.01* 

76.12 

11.09 

<0.01* 

<0.01* 

72.33 

47.71 

<0.01* 

<0.01* 

S 11.86 <0.01* 20.33 <0.01* 1.03 0.39 0.38 0.77 

G 

Y x M 

Y x S 

M x S 

Y x G 

M x G 

S x G 

Y x M x S 

Y x M x G 

Y x S x G 

M x S x G 

Y x M x S x G 

0.025 

0.29 

0.13 

0.42 

0.07 

0.04 

7.69 

0.25 

2.39 

0.98 

0.90 

3.59 

0.88 

0.59 

0.94 

0.74 

0.79 

0.84 

<0.01* 

0.86 

0.13 

0.41 

0.45 

0.02* 

0.02 

2.22 

12.99 

10.98 

0.004 

1.19 

0.40 

7.51 

0.05 

1.16 

0.47 

0.58 

0.90 

0.14 

<0.01* 

<0.01* 

0.95 

0.28 

0.75 

<0.01* 

0.82 

0.33 

0.71 

0.63 

1.06 

0.82 

0.94 

2.15 

3.27 

0.03 

2.31 

0.74 

0.01 

0.88 

0.36 

1.55 

0.36 

0.37 

0.43 

0.10 

0.08 

0.86 

0.09 

0.53 

0.94 

0.46 

0.78 

0.21 

0.07 

0.75 

0.49 

0.95 

0.1 

5.54 

1.07 

2.19 

0.84 

0.06 

1.67 

0.19 

0.80 

0.39 

0.69 

0.43 

0.92 

0.02 

0.37 

0.10 

0.36 

0.98 

0.18 

0.90 
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Table B.9 Predawn leaf water potential (Ψpd, MPa) measured on isolated A. gerardii, V. 
baldwinii, A. canescens, and R. glabra. Shown are mean ± 1 SEM for both grazing 
treatments in all months and years. Significant differences between species within a 
sampling period are indicated with letters. 

 2013  2014  

 July August July August 

Ungrazed     

A. gerardii -0.62 ± 0.31 -1.27 ± 0.21A -1.60 ± 0.05 -1.67 ± 0.06 

V. baldwinii -0.15 ± 0.03 -0.32 ± 0.03B -0.55 ± 0.15 -1.02 ± 0.19 

A. canescens -0.42 ± 0.08 -0.37 ± 0.09B -1.05 ± 0.33 -1.45 ± 0.24 

R. glabra -0.13 ± 0.04 -0.20 ± 0.03B -0.83 ± 0.07 -1.23 ± 0.02 

Grazed     

A. gerardii -0.35 ± 0.10 -0.55 ± 0.13 -0.90 ± 0.20 -1.43 ± 0.07 

V. baldwinii -0.20 ± 0.06 -0.35 ± 0.13 -1.22 ± 0.25 -1.20 ± 0.10 

A. canescens -0.25 ± 0.05 -1.18 ± 0.53 -1.40 ± 0.38 -1.47 ± 0.55 

R. glabra -0.12 ± 0.04 -0.53 ± 0.03 -1.02 ± 0.02 -1.10 ± 0.15 
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Table B.10 Midday leaf water potential (Ψmd, MPa) measured on isolated A. gerardii, V. 
baldwinii, A. canescens, and R. glabra. Shown are mean ± 1 SEM for both grazing 
treatments in all months and years. Significant differences between species within a 
sampling period are indicated with letters. 

 2013  2014  

 July August July August 

Ungrazed     

A. gerardii -0.63 ± 0.09 -1.57 ± 0.04A -1.57 ± 0.12 -1.90 ± 0.23 

V. baldwinii -0.33 ± 0.10 -0.32 ± 0.02B -1.25 ± 0.20 -2.03 ± 0.11 

A. canescens -0.60 ± 0.10 -2.13 ± 0.43A -1.55 ± 0.18 -2.18 ± 0.11 

R. glabra -0.40 ± 0.15 -0.30 ± 0.06B -2.00 ± 0.31 -1.97 ± 0.12 

Grazed     

A. gerardii -0.65 ± 0.28 -1.68 ± 0.09A -1.48 ± 0.06 -1.90 ± 0.15 

V. baldwinii -0.32 ± 0.03 -0.60 ± 0.15B -1.40 ± 0.10 -1.93 ± 0.09 

A. canescens -0.42 ± 0.06 -2.02 ± 0.14A -1.78 ± 0.34 -2.43 ± 0.29 

R. glabra -0.30 ± 0.05 -0.40 ± 0.03B -1.50 ± 0.15 -2.05 ± 0.30 
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Table B.11 Predawn leaf water potential (Ψpd, MPa) measured on isolated A. gerardii and 
A. gerardii (AG) adjacent to V. baldwinii, A. canescens, and R. glabra. Shown are mean ± 1 
SEM for both grazing treatments in all months and years. 

 2013  2014  

 July August July August 

Ungrazed     

A. gerardii -0.62 ± 0.10 -1.27 ± 0.21 -1.60 ± 0.05 -1.67 ± 0.06 

AG-V. baldwinii -0.70 ± 0.14 -1.05 ± 0.28 -1.18 ± 0.19 -1.73 ± 0.15 

AG-A. canescens -0.55 ± 0.09 -1.07 ± 0.27 -1.08 ± 0.04 -1.42 ± 0.18 

AG-R. glabra -0.78 ± 0.35 -0.72 ± 0.27 -1.33 ± 0.06 -1.20 ± 0.20 

Grazed     

A. gerardii -0.35 ± 0.10 -0.55 ± 0.13 -0.90 ± 0.20 -1.43 ± 0.07 

AG-V. baldwinii -0.32 ± 0.14 -0.68 ± 0.18 -1.80 ± 0.40 -1.72 ± 0.39 

AG-A. canescens -0.22 ± 0.09 -1.18 ± 0.56 -1.47 ± 0.12 -1.60 ± 0.08 

AG-R. glabra -0.65 ± 0.35 -0.47 ± 0.18 -1.10 ± 0.08 -1.27 ± 0.36 
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Table B.12 Midday leaf water potential (Ψmd, MPa) measured on isolated A. gerardii and A. 
gerardii (AG) adjacent to V. baldwinii, A. canescens, and R. glabra. Shown are mean ± 1 
SEM for both grazing treatments in all months and years. 

 2013  2014  

 July August July August 

Ungrazed     

A. gerardii -0.63 ± 0.09 -1.57 ± 0.04 -1.57 ± 0.12 -1.90 ± 0.23 

AG-V. baldwinii -0.58 ± 0.31 -1.72 ± 0.387 -1.50 ± 0.10 -2.43 ± 0.21 

AG-A. canescens -1.285 ± 0.15 -1.35 ± 0.08 -1.50 ± 0.13 -2.37 ± 0.11 

AG-R. glabra -0.78 ± 0.34 -1.48 ± 0.10 -1.35 ± 0.09 -2.08 ± 0.34 

Grazed     

A. gerardii -0.65 ± 0.28 -1.68 ± 0.09 -1.48 ± 0.06 -1.90 ± 0.15 

AG-V. baldwinii -0.92 ± 0.28 -1.27 ± 0.19 -1.92 ± 0.11 -1.89 ± 0.20 

AG-A. canescens -1.05 ± 0.32 -1.17 ± 0.19 -1.57 ± 0.09 -1.83 ± 0.07 

AG-R. glabra -1.03 ± 0.42 -1.48 ± 0.44 -1.82 ± 0.17 -2.02 ± 0.27 
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Figure B.1 Daily precipitation (mm) measured throughout the (a) 2013 and (b) 2014 
growing seasons (April – September). Dotted gray lines indicate the day of year (DOY) of 
each sampling campaign. 
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Appendix C - Appendix for Chapter 4 

Table C.1 Statistical results from 3-way ANOVA comparing nocturnal gas exchange traits 
among years, growing season date, species, and their interactions. Shown are F and P 
values for nocturnal stomatal conductance of water vapor (gsnight), nocturnal transpiration 
rate (Enight), and the percent nocturnal of daytime transpiration rates (% Enight ). 
 Gsnight Enight % Enight 

Source F P F P F P 

Year (Y) 10.23 0.002 8.80 0.003 1.16 0.282 

Date (D) 8.56 <0.001 6.83 <0.001 7.68 <0.001 

Species (S) 4.14 <0.001 6.13 <0.001 4.83 <0.001 

Y x D 23.10 <0.001 16.13 <0.001 10.90 <0.001 

Y x S 1.22 0.295 2.16 0.04 3.18 0.003 

S x D 1.72 0.012 3.06 <0.001 2.31 <0.001 

Y x S x D 1.12 0.310 1.35 0.103 1.66 0.018 
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Table C.2 Statistical results from 3-way ANOVA comparing daytime gas exchange traits 
among years, growing season date, species, and their interactions. Shown are F and P 
values for maximum CO2 assimilation at ambient Ca (Amax), daytime stomatal conductance 
of water vapor (gsday), and daytime transpiration rate (Eday). 
 Amax Gsday Eday 

Source F P F P F P 

Year (Y) 139.85 <0.001 318.80 <0.001 49.31 <0.001 

Date (D) 4.58 <0.001 5.43 <0.001 54.75 <0.001 

Species (S) 106.10 <0.001 60.54 <0.001 28.26 <0.001 

Y x D 47.20 <0.001 52.45 <0.001 76.19 <0.001 

Y x S 16.97 <0.001 23.45 <0.001 9.45 <0.001 

S x D 1.91 0.002 1.78 0.005 2.43 <0.001 

Y x S x D 3.53 <0.001 4.19 <0.001 4.82 <0.001 
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Table C.3 Statistical results from 3-way ANOVA comparing leaf water potential traits 
among years, growing season date, species, and their interactions. Shown are F and P 
values for predawn (Ψpd) and midday (Ψmd) leaf water potential. 

 Ψpd Ψpd 

Source F P F P 

Year (Y) 565.11 <0.001 474.99 <0.001 

Date (D) 174.01 <0.001 127.89 <0.001 

Species (S) 25.46 <0.001 20.11 <0.001 

Y x D 161.68 <0.001 49.99 <0.001 

Y x S 9.48 <0.001 6.64 <0.001 

S x D 5.92 <0.001 4.07 <0.001 

Y x S x D 5.85 <0.001 5.57 <0.001 

 
  



214 

Appendix D - Appendix for Chapter 5 

Table D.1 Species specific input data and priors. 
 LAI  SAI Gref Gnight 

A. gerardii 1.50 9.42 30 0.72 

P. virgatum 1.50 9.42 10 0.78 

S. nutans 1.50 9.42 40 0.79 

S. canadensis 0.25 0.53 10 0.87 

V. baldwinii 0.25 0.53 20 0.80 

A. canescens 0.50 2.00 40 0.89 

R. glabra 0.50 2.00 40 0.91 

C. drummondii 4.50 9.04 40 0.80 
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Table D.2 Parameter descriptions. 
Symbol  Description 

λ VPD sensitivity (mmol m-2s-1 ln[kPa]-1) 

Gref Canopy conductance at VPD = 1 (mmol m-2s-1) 

λ/Gref Ratio of λ to Gref 

α1 Nighttime conductance 

α2 Sensitivity to light 

α3 Threshold soil moisture 

α4 Sensitivity to soil moisture 

σ2 Process error variance 

S Observation error variance 

va Random effects variance 
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Table D.3 Mean parameter estimates and 95% credible intervals for woody species. 
Parameter C. drummondii A. canescens R. glabra 

λ 15.445 (13.417, 19.290) 24.370 (20.169, 27.038) 19.076 (16.222, 23.742) 

Gref 34.368 (32.440, 36.312) 42.999 (41.167, 45.114) 40.582 (39.007, 42.13) 

λ/Gref 0.449 (0.402, 0.549) 0.567 (0.480, 0.614) 0.470 (0.404, 0.584) 

α1 0.774 (0.753, 0.795) 0.841 (0.827, 0.854) 0.817 (0.798, 0.835) 

α2 498.017 (493.65, 499.943) 497.748 (492.248, 499.936) 496.582 (487.862, 499.894) 

α3 0.073 (0.071, 0.075) 0.104 (0.097, 0.111) 0.079 (0.069, 0.089) 

α4 0.1997 (0.1989, 0.1999) 0.197 (0.191, 0.199) 0.156 (0.145, 0.168) 

σ2 3.838 (3.577, 3.894) 7.733 (6.480, 8.689) 10.687 (9.618, 11.870) 

S 3.205 (3.114, 3.299) 3.443 (3.344, 3.546) 3.612 (3.502, 3.730) 

va 0.730 (0.436, 1.224) 0.699 (0.407,1.193) 0.704 (0.389, 1.274) 
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Table D.4 Mean parameter estimates and 95% credible intervals for forbs. 
Parameter S. canadensis V. baldwinii 

λ 5.078 (4.095, 6.547) 6.092 (5.242, 6.663) 

Gref 10.183 (10.006, 10.674) 10.025 (10.001, 10.082) 

λ/Gref 0.499 (0.405, 0.643) 0.606 (0.523, 0.664) 

α1 0.673 (0.628, 0.714) 0.751 (0.717, 0.781) 

α2 496.211 (485.986, 499.905) 496.747 (488.851, 499.89) 

α3 0.098 (0.092, 0.104) 0.039 (0.033, 0.048) 

α4 0.1996 (0.1987, 0.1999) 0.102 (0.100, 0.106) 

σ2 3.790 (3.436, 4.165) 3.266 (2.955, 3.610) 

S 2.895 (2.804, 2.986) 3.060 (2.961, 3.163) 

va 0.941 (0.546, 1.602) 0.738 (0.408, 1.306) 
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Table D.5 Mean parameter estimates and 95% credible intervals for grass species. 
Parameter A. gerardii P. virgatum S. nutans 

λ 7.789 (5.939, 10.848) 5.877 (4.397, 6.935) 20.445 (16.226, 24.678) 

Gref 12.953 (10.061, 17.781) 10.292 (10.010, 11.029) 39.995 (38.066, 41.897) 

λ/Gref 0.601 (0.560, 0.616) 0.571 (0.432, 0.664) 0.511 (0.409, 0.610) 

α1 0.349 (0.254, 0.424) 0.466 (0.431, 0.536) 0.282 (0.170, 0.420) 

α2 431.675 (306.676, 496.732) 310.897 (116.607, 489.098) 366.219 (159.814, 493.152) 

α3 0.028 (0.022, 0.035) 0.036 (0.028, 0.051) 0.055 (0.053, 0.058) 

α4 0.103 (0.100, 0.112) 0.105 (0.100, 0.117) 0.198 (0.195, 0.199) 

σ2 3.921 (3.595, 4.281) 4.081 (3.673, 4.539) 3.011 (2.590, 3.593) 

S 3.038 (2.935, 3.147) 2.812 (2.674, 2.959) 3.037 (2.918, 3.161) 

va 0.920 (0.509, 1.645) 1.206 (0.604, 2.349) 0.843 (0.452, 1.580) 
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Figure D.1 Model convergence for A. gerardii parameter estimates. Shown are model 
iterations following the burn-in period (Gibbs sampler iterations 10,000 – 20,000).  
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Figure D.2 Model convergence for P. virgatum parameter estimates. Shown are model 
iterations following the burn-in period (Gibbs sampler iterations 10,000 – 20,000). 
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Figure D.3 Model convergence for S. nutans parameter estimates. Shown are model 
iterations following the burn-in period (Gibbs sampler iterations 10,000 – 20,000). 
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Figure D.4 Model convergence for S. canadensis parameter estimates. Shown are model 
iterations following the burn-in period (Gibbs sampler iterations 10,000 – 20,000). 
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Figure D.5 Model convergence for V. baldwinii parameter estimates. Shown are model 
iterations following the burn-in period (Gibbs sampler iterations 10,000 – 20,000). 
  

10000 14000 18000

10
.0
0

10
.0
4

10
.0
8

10
.1
2

gtrim

G
re
f

10000 14000 18000

5.
0

5.
5

6.
0

6.
5

V. baldwinii

gtrim
λ

10000 14000 18000

0.
70

0.
74

0.
78

gtrim

L
1

10000 14000 18000

48
0
48
5
49
0
49
5
50
0

gtrim

L
2

10000 14000 18000

0.
03
5

0.
04
5

0.
05
5

gtrim

M
1

10000 14000 18000

0.
10
0

0.
10
4

0.
10
8

gtrim
M
2

10000 14000 18000

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

gtrim

σ2

10000 14000 18000

2.
90

3.
00

3.
10

3.
20

gtrim

V
J

10000 14000 18000

0.
5
1.
0
1.
5
2.
0
2.
5
3.
0

gtrim

V
a



224 

 
Figure D.6 Model convergence for A. canescens parameter estimates. Shown are model 
iterations following the burn-in period (Gibbs sampler iterations 10,000 – 20,000). 
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Figure D.7 Model convergence for R. glabra parameter estimates. Shown are model 
iterations following the burn-in period (Gibbs sampler iterations 10,000 – 20,000). 
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Figure D.8 Model convergence for C. drummondii parameter estimates. Shown are model 
iterations following the burn-in period (Gibbs sampler iterations 10,000 – 20,000). 
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Figure D.9 Predicted versus observed sap flow for each sensor used to measure A. gerardii 
sap flow. Also shown are squared Pearson correlation coefficients (r2) for each sensor. 
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Figure D.10 Predicted versus observed sap flow for each sensor used to measure P. 
virgatum sap flow. Also shown are squared Pearson correlation coefficients (r2) for each 
sensor. 
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Figure D.11 Predicted versus observed sap flow for each sensor used to measure S. nutans 
sap flow. Also shown are squared Pearson correlation coefficients (r2) for each sensor. 
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Figure D.12 Predicted versus observed sap flow for each sensor used to measure S. 
canadensis sap flow. Also shown are squared Pearson correlation coefficients (r2) for each 
sensor. 
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Figure D.13 Predicted versus observed sap flow for each sensor used to measure V. 
baldwinii sap flow. Also shown are squared Pearson correlation coefficients (r2) for each 
sensor. 
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Figure D.14 Predicted versus observed sap flow for each sensor used to measure A. 
canescens sap flow. Also shown are squared Pearson correlation coefficients (r2) for each 
sensor. 
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Figure D.15 Predicted versus observed sap flow for each sensor used to measure R. glabra 
sap flow. Also shown are squared Pearson correlation coefficients (r2) for each sensor. 
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Figure D.16 Predicted versus observed sap flow for each sensor used to measure C. 
drummondii sap flow. Also shown are squared Pearson correlation coefficients (r2) for each 
sensor. 
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Figure D.17 Histograms of Pearson correlation coefficients (r2) for the sensor set of each 
species.  
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Figure D.18 Modeled canopy conductance for each species between DOY 140-254. Shown 
are daily average diurnal (black) and nocturnal rates (blue). 
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Figure D.19 Modeled leaf transpiration rates for each species between DOY 140-254. 
Shown are daily average diurnal (black) and nocturnal rates (blue). 

 

  

0.000

0.002

0.004

0.006

0.008

0.010

140 160 180 200 220 240 260

Le
af

 Tr
an

sp
ira

tio
n 

(k
g 

m
 s

−1
)

Day
Night

A. gerardii

2

0.000

0.002

0.004

0.006

0.008

0.010

140 160 180 200 220 240 260

P. virgatum

0.000

0.002

0.004

0.006

0.008

0.010

140 160 180 200 220 240 260

S. nutans

0.000

0.002

0.004

0.006

0.008

0.010

140 160 180 200 220 240 260

S. canadensis

0.000

0.002

0.004

0.006

0.008

0.010

140 160 180 200 220 240 260

V. baldwinii

0.000

0.002

0.004

0.006

0.008

0.010

140 160 180 200 220 240 260

A. canescens

0.000

0.002

0.004

0.006

0.008

0.010

140 160 180 200 220 240 260
Day of Year

R. glabra

0.000

0.002

0.004

0.006

0.008

0.010

140 160 180 200 220 240 260

C. drummondii

a b c

d e

f g h

G
rasses

Forbs

W
oody



238 

 
Figure D.20 Modeled canopy transpiration rates for each species between DOY 140-254. 
Shown are daily average diurnal (black) and nocturnal rates (blue). 
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