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INTRODUCT ION

PURPOSE OF INVESTIGATION

Buried bedrock channels in the glaciated region of northeast Kansas have

been recognized for many years as potential sources of good quality ground

water. Ground-water yields of up to several hundred gallons per minute (gpm)

are possible from the buried channel aquifers, representing some of the

largest yields in the region. Several rural water districts and

municipalities in northeast Kansas are developing the water resources of these

buried channels because of this potential for large ground-water yields. This

investigation examined the hydrogeology and hydrogeochemistry of part of the

buried channel in Marshall County. The purpose of the investigation was to:

1) further define the orientation and cross-sectional profile of the channel;

2) determine the distribution of chert gravels frequently found along the axis

of the channel; 3) evaluate the water quality of hydrogeologic units in the

region; 4) determine the sources and controls for the dissolved constituents

in the ground water; and 5) evaluate possible sources of ground-water recharge

to the buried channel.

The buried channel in southeast Marshall County supplies water to Rural

Water District 3 (RWD3), Marshall County, and Frankfort (Fig. 1). RWD3 pumped

about 50 million gallons of water annually from the buried channel in 1983 and

1984. The maximum pumping rates from these wells are estimated at up to 300

gpm (Schwab-Eaton, 1976) and are clearly the largest capacity wells in the

area. A few smaller domestic wells in southeast Marshall County also produce

water from the buried channel.
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A literature search was conducted for well logs and hydrochemical data for

wells in the investigation area. The orientation and cross-sectional profile

of the buried channel were further defined by geologic reconnaissance and test

hole drilling. The major-ion concentrations of ground-water samples collected

from the various aquifers in the area were measured to determine the sources

and controls for the dissolved constituents in the ground water. Based on the

hydrogeologic and hydrochemical data collected, possible sources of

ground-water recharge to the channel were evaluated.
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AREA OF INVESTIGATION

The investigation area is in southeast Marshall County, Kansas, and

includes seven townships, encompassing 250 square miles (Fig. 2). This area

lies within the Dissected Till Plains section of the Central Physiographic

Province of the Interior Plains region (Schoewe, 1949, p. 272). The ground

surface in most areas is characterized by gently undulating till-mantled hills

of low topographic relief, locally seldom exceeding 100 feet. Topographic

relief can approach several hundred feet in areas underlain by surface

exposures of marine limestones and shale bedrock.

Black Vermillion River and its tributaries are the principal surface water

drainages. Flow in streams is southwestward across till-mantled areas, which

generally occurs throughout the year. Robidoux Creek is the principal

tributary drainage from the north and joins Black Vermillion River one mile

southwest of Frankfort. Irish and Clear Fork creeks are smaller

northward-flowing streams. These creeks flow across bedrock in the southern

one-third of the area.

Marshall County has a continental climate characterized by large daily and

annual variations in temperature. Average daily temperatures are 28°F in

winter and 76°F in summer; annual rainfall is about 31 inches, 76 percent of

which usually falls between April and September, and snowfall averages about

20 inches per year (SCS, 1980). Potential lake evaporation is about 46 inches

per year (Kohler et al., 1959), which is greater than average annual rainfall.



Figure 2 Map of investigation area in southeast Marshall County



The predominant industry in the area is agriculture. The predominant

crops include corn, wheat, alfalfa, oats, and soybeans. Alluvium along

streams such as Black Vermillion River and Robidoux Creek is commonly under

cultivation. Upland areas underlain by bedrock are generally uncultivated,

native grassland.

PREVIOUS INVESTIGATIONS

Previous hydrogeologic investigations of Marshall County are few in

number, although several early regional investigations described the geology

of Marshall County. The focus of many early studies was the stratigraphy of

bedrock and glacial deposits in the state. Notable among these early regional

studies are Moore et al. (1940), Frye and Leonard (1949, 1951, 1952), Moore et

al. (1951), Reed et al. (1965), and Zeller (1968). The massive gypsum

deposits (up to 8 feet thick) in eastern-central Marshall County were

described by Fairchilc! (1947), Kulstad et al. (1956), and Pflug (1963a,

1963b). Frye and Walters ^1950) described the subsurface stratigraphy of

glacial deposits in northeast Kansas and generally were first to delineate the

buried bedrock channel in southeast Marshall County (Frye and Walters, 1950,

plate 1).

The only comprehensive hydrogeologic investigation of Marshall County was

conducted by Walters (1954). The geology and ground-water resources of the

county, including ground-water quality, were described. Geologic logs of 60

test borings and wells indicate the buried channel in Marshall County is a

broad, subtle depression in the bedrock surface. Axis of the channel crosses

under the present courses of Robidoux Creek and the Black Vermillion River a

few miles north of Frankfort (Walters, 1954, p. 58 and plate 2) (Fig. 1).



Maximum topographic relief of bedrock beneath glacial deposits is about 200

feet over a horizontal distance of 6 miles.

Historical water-quality data (Walters, 1954, Table 3, Figs. 6 and 7)

indicate grouno water in the region is moderately mineralized and

predominantly Ca-HC0,-type water; however, other water types exist,

especially in bedrock aquifers wnere highly mineralized Ca-SO -type water is

common. These data also show that ground water in the buried channel in

Marshall County appears to be generally of good quality indicating that

ground-water recharge to the buried channel from subsurface flow out of the

bedrock is minimal or that ground water in the bedrock is not highly

mineralized in some areas.

The geographic distribution of chemically distinct water types generally

coincides with aquifer rock type (Walters, 1954, p. 63 and plate 3), which

suggests the sources and controls for dissolved constituents in the ground

water are, in part, a function of aquifer rock type (Bricker and Garrels,

1967).

Ward (1974) described the geology and ground-water resource of Nemaha

County. The configuration of the bedrock surface beneath glacial drift (Ward,

1974, p. 8, Fig. 3) shows the well-developed preglacial drainage. Flow was

southeastward into the Grand River drainage (Heim and Howe, 1963), which

flowed across much of the mid-continent region. The buried channel in

Marshall County was probably once part of the ancestral Grand River drainage

(Dreeszen and Burchett, 1971, Fig. 1).

Ground-water quality in Nemaha County is similar to that in Marshall

County, although some major differences exist. High concentrations of some

ions in ground water from the buried channel in Nemaha County, especially
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concentrations of sulfate, suggest that in some areas a significant component

of ground-water recharge to the buried channel is underflow from underlying

bedrock (Ward, 1974, p. 19 and Figs. 3, 4, 8, and 9). This subsurface flow

has severely degraded the ground-water quality in some parts of the buried

channel in Nemaha County, in some cases making the water nonpotable.



RELATION OF GEOLOGY TO GROUNDWATER

GENERAL GEOLOGY

Bedrock in the investigation area consists of Upper Pennsylvanian and

Lower Permian marine limestone and shale. The bedrock is unconformably

overlain in some areas by Pleistocene glacial Deposits and Recent alluvium.

Figure 3 shows the stratigraphic sequence in the investigation area.

Bedrock exposures in southeast Marshall County consist mainly of Lower

Permian strata (Fig. 4). Outcrops of Pennsylvanian strata are restricted to a

few widely scattered exposures in the extreme eastern part of the region. A

maximum of about 500 feet of bedrock is exposed. The regional dip of bedrock

is westward at roughly one-sixth degree or 15 feet per mile.

Pleistocene deposits overlying bedrock are unconsolidated and generally

were deposited as a result of continental glaciation during the Kansan Glacial

Stage (Walters, 1954, p. 58). The oldest Pleistocene deposits are Pre-Kansan

chert gravels that are generally considered of preglacial age (Frye and

Walters, 1950, p. 147; Ward, 1974, p. 9). The lack of igneous and metamorphic

rock fragments in the chert gravels, a common component of younger glacial

deposits, indicates they were probably locally derived from erosion of

chert-bearing limestone bedrock.

The chert gravels were deposited directly on the bedrock surface by

east-flowing streams and appear to be restricted to the axis of the buried

channel (Ward, 1974, p. 9). The gravels are overlain by younger Pleistocene

glacial deposits and are not exposed anywhere in the region. Maximum

thickness of the chert gravels is about 22 feet based on driller's logs.
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Proglacial deposits and till comprise the greatest volume of the

Pleistocene deposits. The proglacial deposits consist of clays, silts, sands,

and gravels and overlie bedrock or chert gravels. They are not exposed in the

investigation area. Sediments were derived from meltwaters of the advancing

Kansan ice sheet and were deposited in proglacial streams and lakes (Frye and

Leonard, 1952, p. 71). The proglacial gravels contain a large percentage of

igneous and metamorphic rock fragments and are easily distinguished from

preglacial chert gravels. Maximum thickness of the proglacial deposits is

about 120 feet based on boring logs.

Kansan till or drift is the predominant Pleistocene deposit. The till

generally overlies proglacial deposits or bedrock and consists of a silty clay

matrix containing boulders of various lithologies, especially pink quartzite.

In some areas, the till may overlie preglacial chert gravels. The till is

only slightly younger than the proglacial deposits as evidenced by the lack of

a prominant intervening soil horizon (Frye and Leonard, 1952, p. 71). The

glacial deposits, including chert gravels, proglacial deposits, and till,

attain a maximum thickness of about 335 feet along the axis of the buried

valley near the Marshall-Nemaha county line (Walters, 1954, p. 97).

Late Pleistocene ice sheets did not reach Kansas. The earlier glacial

sediments were subjected to erosion and weathering following retreat of the

Kansan ice sheet (Frye and Walters, 1950, p. 152). Deposition of extensive

loess sheets and development of soils at several horizons occurred during the

Late Pleistocene.
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BEDROCK STRATIGRAPHY AND MINERALOGY

Pennsylvanian System

Rocks of the Wabaunsee Group occur at the surface or at depth beneath

glacial deposits in eastern Marshall County. About 50 feet of Pennsylvanian

age rocks are exposed, including the upper part of Pony Creek Shale and

overlying Brownville Limestone. Rocks older than the Wabaunsee Group do not

crop out in the area. In eastern Marshall County, rocks of the Wabaunsee

Group form the walls of the buried channel where it is deeply incised into the

bedrock and covered by several hundred feet of till.

The Pony Creek Shale is a silty to sandy, highly calcareous shale (Ward,

1974). The clay fraction is composed of predominantly illite (Watkins,

1957). The Brownville Limestone consists of highly fossiliferous limestone

beds. Wells in Marshall County are not known to yield water from

Pennsylvanian bedrock (Walters, 1954). Sandstone aquifers of the Wabaunsee

Group may occur at great depths and could yield water if penetrated by wells.

These sandstones could also supply water to the buried channel by underflow

where they have been deeply eroded.

Permian System

Permian rocks form about 40 percent of surface exposures in the region and

comprise the bedrock surface that underlies much of the Pleistocene deposits

(Fig. 4). Rocks of the Admire, Council Grove, and Chase groups are exposed in

southeast Marshall County. The Council Grove is the only Permian group

exposed in its entirety in the investigation area.

The Admire Group is the oldest group of the Permian System and consists

chiefly of about 130 feet of shale beds and some thin, intervening limestone
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and sandstone beds (Walters, 1954, p. 40). Shale members are variegated,

clayey to sandy, and calcareous. Illite is the predominant clay mineral of

the shales (Asmussen, 1958). Some limestone formations also contain illite

(Twiss, 1955).

The upper 16 feet of the Admire Group crops out southeast of Frankfort

along the south valley wall of the Black Vermillion River and along Irish

Creek. Wells in Marshall County are not known to produce water from shale

beds because of their limited permeability. The intervening limestone beds

are generally too thin to produce water and are isolated from recharge by

shale beds above and below.

The Council Grove Group overlies the Admire Group and underlies the Chase

Group. The group consists of 14 formations of limestone and shale strata,

which crop out south of Frankfort and along Robidoux Creek. The total

thickness is over 240 feet of mainly limestone strata. Limestone beds range

from 1 to 7 feet thick and generally are thicker than those of the Admire

Group (Zeller, 1968, p. 44-45). They are soft to hard and massive, and contain

a variety of fossils. Shale beds are similar to those of the Admire Group,

but are generally thinner.

The predominant clay mineral of the shale beds is illite (Dulekoz, 1966;

Asmussen, 1958; Dowling, 1967). Gypsum in the limestone units was not

observed in outcrop, but is abundant in the subsurface (Walters, 1954; Amoco,

1975; Whittemore et al., 1982). Dolomite and celestite have been reported as

secondary minerals in some formations (Watkins, 1957; Hargadine, 1959). Some

limestone beds, including the Neva Limestone and Cottonwood Limestone, are

cavernous or jointed and fractured and form conspicuous outcrops, especially

south of Frankfort.
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Limestone beds of the Council Grove Group, including selected members of

the Grenola Limestone, Beattie Limestone, and Bader Limestone, form major

bedrock aquifers in many parts of Marshall County (Walters, 1954). Jointing

and dissolution have produced high secondary porosity and permeability,

resulting in greatly increased ground-water yields. A single limestone bed in

each of these formations is commonly responsible for the observed ground-water

yield.

The Grenola Limestone generally has the greatest ground-water yield of any

bedrock aquifer. The formation occurs at the surface south of Frankfort and

in the shallow subsurface northwest of Frankfort. The Neva Limestone Member

is probably the principal water-bearing strata of the Grenola Limestone. Many

perennial springs issue from limestone beds of the Neva Limestone.

The Bader Limestone and Beattie Limestone form major aquifers in the

western part of Marshall County. However, these formations are not major

aquifers in the investigation area because they generally occur above the

water table or are partially or completely eroded. The Cottonwood Limestone

Member of the Beattie Limestone may form an important aquifer in the extreme

southwestern and northwestern parts of the investigation area.

The Chase Group overlies the Council Grove Group and consists of

alternating limestone and shale strata. Outcrops are limited to the extreme

northwestern part of the area where the lower 150 feet of the group are

exposed. The lower part of the Doyle Shale Member is the youngest exposed

bedrock.

Limestone beds are massive and commonly contain chert as bands or

scattered nodules. Gypsum is present in limestone beds in the subsurface

(Amoco, 1975). Many limestone beds are highly fractured in outcrop. Shale
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beds are similar to other underlying Permian shale strata. Formations of this

group are generally above the water table, but locally may yield small

quantities of ground water.

QUATERNARY STRATIGRAPHY AND MINERALOGY

Pleistocene Series

Basal Chert Gravels .—Pre-Kansan chert gravels are the oldest Pleistocene

deposits and are mainly found at the base of the buried channel. The gravels

are generally very coarse and attain a maximum grain size of about 1 inch in

diameter (Beck, pers. comm.). Limestone fragments also occur in the gravels,

although they are far less abundant than the chert. Ground-water yields of up

to several hundred gpm are possible from the chert gravels. These deposits

constitute an important aquifer, regardless of their limited distribution

along the buried channel's axis.

Glacial Deposits .—The Atchison Formation is the oldest of the Kansan

glacial deposits (Reed et al., 1965, p. 195). It is generally confined to the

buried valley where it overlies basal chert gravels or bedrock and underlies

Kansan Till (Ward, 1974, p. 9). The formation is an unconsolidated proglacial

sand, which is comprised of very fine sand and silt consisting of mainly

quartz. Thickness of the Atchison Formation is highly variable. The maximum

thickness is probably 100 feet or slightly more based on well log data.

Ground-water yields are generally small to moderate (Walters, 1954, p. 59).

Kansan Till overlies the Atchison Formation or bedrock and forms the

ground surface in much of southeast Marshall County. Like most of the

Pleistocene deposits, the till is unconsolidated. The till consists of a

fractured clay to silty clay matrix containing abundant rock fragments
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covering an extremely wide range of grain sizes. Glacial erratics consisting

of blocks of quartzite are common in the till and range in size up to tens of

feet in diameter. Deposits of silt, sand, and gravel are randomly

interstratified in the till and probably originated from intratill streams.

The till generally yields only small quantities of ground water because it

has low primary permeability; however, fractures in the till matrix increase

the bulk permeability by 10 to 100 times (Grisak and Cherry, 1975, p. 42).

The highest ground-water yields in the till come from intratill gravel lenses,

but sustained ground-water yields are doubtful because these gravels are

generally isolated from recharge by the clayey till.

The till consists of a diverse assemblage of minerals. The most common

minerals are smectites, feldspars, quartz, calcite, dolomite, and minor gypsum

(Grisak et al., 1976, p. 320). The smectites are probably the most

volumetrically abundant mineral group; however, calcite and dolomite are

ubiquitous in the till. The calcite and dolomite occur as rock fragments of

eroded bedrock and as secondary mineralization along fracture planes (Grisak

et al., 1976 and Hendry et al., 1986). Gypsum also occurs as a secondary

mineral in fractures.

Holocene Series

River valleys of present day streams are underlain by alluvium consisting

of clay, silt, sand, and gravel. Thickness of the alluvium is uncertain in

many areas, but is probably up to about 50 feet thick based on well logs. The

alluvium is generally saturated throughout and its association with

permanently flowing streams makes the alluvium favorable for ground-water

development; however, few wells in the alluvium are known to exist in

southeast Marshall County.
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METHODS OF INVESTIGATION

Field Methods

Field methods used in this investigation included geologic reconnaissance,

test hole drilling, and ground-water sampling. Geologic reconnaissance was

conducted to locate bedrock outcrops within the glacial drift as an aid to

locating the axis of the buried channel. Selected areas were examined in the

field following review of the existing geologic map by Walters (1954) and the

Soil Conservation Service (SCS) map for the county (SCS, 1980). Most of the

geologic reconnaissance was conducted along county roads. Creek channels were

examined for outcrops and eroded fragments of bedrock.

Subsurface geologic information was obtained by test hole drilling through

glacial drift to the bedrock surface at locations determined by Beck (pers.

comm.). Test holes were installed at eight locations using a Failing rotary

drill rig and truck-mounted four-inch-diameter continuous-flight hydraulic

auger. The drilling equipment was provided by the Kansas Geological Survey.

Drill cuttings were logged according to standard geologic classifications.

Ground-water samples were collected from 42 existing private wells

constructed in bedrock, glacial deposits, or buried channel gravels (Fig. 5).

Sixty-two samples were collected from the wells between July 1982 and

September 1983, with up to four samples collected from a few wells. The 62

samples collected include 10 from buried-channel gravels, 34 from glacial

deposits, and 18 from bedrock. Samples were not collected from alluvial

deposits because no wells could be located. Wells were chosen for sampling

based on their geographic location relative to the buried channel, aquifer

penetrated, approximate depth, plumbing configuration, and ease of access.
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Wells and test borings were located according to the Bureau of Land

Management System of land subdivision. Accordingly, the number of a well

describes its location. This numbering system consists of, in the following

order: township, range, and section number followed by up to three lower case

letters designating the quarter section, quarter-quarter section, and

quarter-quarter-quarter section (10-acre tract). The letters are assigned in

a counterclockwise direction, beginning with the letter 'a' in the northeast

corner of each quarter section, quarter-quarter section, and 10-acre tract,

respectively. Two or more wells in the same 10-acre tract are numbered

serially according to order inventoried. Serialization is not used when only

a single well was located in a 10-acre tract.

Ground-water sampling and preservation techniques are those of Skougstad

et al. (1979) and are summarized on Table 1. Wells were pumped for about 20

minutes prior to sampling to remove stagnant water from the well bore and

permit the flow of fresh ground water into the well. Ground-water pH,

specific electrical conductivity (SEC), and temperature were monitored during

well purging to indicate when water representative of the formation was

obtained.

Samples were collected at each location following three subsequent pH

readings within 0.1 pH unit. Two liters of ground water were collected and

filtered in the field using a 0.45 micrometer membrane filter. Sampling

equipment was rinsed several times with a filtered portion of sample water

prior to final sample collection.

One liter of sample was acidified to pH 2-3 using approximately 2-4 ml_ of

8 N nitric acid. The metals determinations were performed on this acidified

sample. A second liter of ground water was collected, but was not acidified.
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Table 1. Preservation Techniques for Ground-Water Samples

Constituent or Parameter

Ca, Mg, Sr, Na, K

Technique

Pressure filter immediately with 0.45
micrometer membrane filter and acidify to pH
2-3 with 2 mL 8N HN03 .

Store on ice for transport to laboratory.

HC03 , CI, SO4, N03 Pressure filter immediately with 0.45
micrometer membrane filter. Store on ice for
transport to laboratory.

pH, Temperature, Specific
Electrical Conductance

Measure at time of sample collection,
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This unacidified sample was used for analysis of the anions. Air bubbles were

carefully removed before sealing sample bottles to minimize loss of dissolved

gases. Samples were stored in ice chests for transport to the laboratory.

Laboratory Methods

Major-ion chemical analyses were performed on ground-water samples.

Analytical techniques used in the chemical analysis of ground-water samples

and approximate analytical uncertainty for each method are shown on Table 2.

Specific laboratory and field techniques and procedures used in the chemical

analyses are shown in Appendix A. A brief description of each analytical

method is provided below.

Metals concentrations were determined by atomic absorption and emission

spectrophotometry on a Perkin-Elmer 305B atomic absorption spectrophotometer.

The metals determinations were performed within one to two weeks of sample

collection. Bicarbonate concentrations were determined by titration with

standardized H_S0, to an end point of pH 4.5. The bicarbonate

measurements were made on a chilled, unacidified sample within 24 hours of

sample collection. Sulfate was determined by turbidimetry using a Coleman

spectrophotometer and barium chloride as a precipitating agent for the

sulfate. Chloride content was measured by Mohr titration to the silver

chromate end point. Nitrate determinations were done by

UV-spectrophotometry. Determinations of sulfate, chloride, and nitrate

concentrations were conducted generally within one to two weeks of sample

collection. All samples were stored in a refrigerator at a temperature of

about 5°C until the analyses were completed and verified by calculating the

cation-anion charge balance.
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Table 2. Analytical Methods Used in Analysis of Ground-Water Samples
and Approximate Percent Precision

Constituent or Property Method*
Precision,

percent

Ca, Mg, Sr Atomic absorption spectrophotometry 3

Na, K Flame emission spectrophotometry 3

HC03 , CI Titrimetry 3

SC7, Turbidimetry 6

N03 UV-Spectrophotometry 5

PH Potentiometry 1

Temperature Thermometry (mercury) 1

Specific Electi ical Conduct imetry 2

Conductance

* Appendix A contains detailed descriptions and references for each analytical
method.
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The computer code WATEQF (Plummer et al., 1976) was used to calculate

geochemical parameters of interest, including cation-anion charge balance,

carbon dioxide partial pressure, ion speciation, and saturation indices.
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RESULTS AND DISCUSSION

HYDROGEOLOGY

Four hydrogeologic units or aquifer types are identified based on gross

physical and chemical hydrogeologic characteristics of the geologic deposits.

The four units identified are bedrock, glacial deposits, buried channel

gravels, and alluvium. These designations are similar to those of Walters

(1954, plate 3) and Whittemore et al. (1982) although the divisions used here

are slightly different.

Bedrock

Bedrock aquifers generally consist of limestone beds, which have high

secondary porosity and permeability from post-depositional fractures and

solution channels. These features have a major impact on ground-water

movement; however, wells in bedrock aquifers are capable of maximum yields of

no more than about 10 gpm (Beck, 1983, pers. comm.). These wells are

generally used for domestic or stock water supplies. Because well

construction details were sometimes not available or indicated a gravel pack

across several limestone units, it was not possible to identify the particular

limestone unit that supplied water to a well. Based on topography and

estimated depths of many wells, it appears that members of the Grenola

Limestone or Beattie Limestone comprise the aquifer units in many bedrock

areas.

Regional ground-water flow directions were not determined in this

investigation because ground-water movement is locally controlled by many

factors, including soil type, topography, stratigraphy, and fracture patterns,

and water levels measured in wells are affected by varying well construction
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techniques. Also, the density of wells in the investigation area was

inadequate to permit such a determination.

Water levels in bedrock aquifers were estimated in a few wells from

driller's logs. The depth to water is commonly 35 to 80 feet below ground

surface. The water table surface in fractured bedrock is probably irregular

and ground water is probably unconfined (Fetter, 1980, p. 224; Lattman and

Parizek, 1964, p. 87). A relationship between water levels and recharge and

discharge could not be established with the limited data available.

Ground-water recharge occurs by infiltration of precipitation, which falls

directly on outcrop areas. Regional underflow from adjacent areas and

percolation through overlying unconsolidated deposits such as glacial deposits

or alluvium, probably also contributes to recharge. The rate of ground-water

recharge is relatively rapid for some bedrock aquifers. Whittemore et al.

(1982) showed that a large proportion of the recharge to Permian limestones

occurred within a period of a few months following the onset of wet spells,

suggesting much of the recharge originates locally as rainfall.

Ground-water discharge occurs as evapotranspiration, flow from springs,

and regional underflow. Flow commonly occurs from bedrock aquifers to

overlying glacial deposits or alluvium (Whittemore et al., 1982, p. 30).

Several springs issue from solution zones in the Neva Limestone along cliffs

on Clear Creek. These springs indicate the underlying shale beds are

generally impermeable, inhibiting direct vertical migration of ground water.

Ground water in permeable limestone aquifers generally moves in the direction

of dip when it encounters impermeable shale beds (Walters, 1954, p. 20).
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Buried Channel

The shape of the bedrock surface beneath glacial deposits was determined

from well logs and the locations of bedrock outcrops as shown in Figure 6.

The depth to bedrock in wells is shown in Table 3. The geologic logs of test

borings installed for this investigation are contained in Appendix B.

The axis of the channel trends from northwest to southeast across the

investigation area (Fig. 7). Cross sections of the channel (Figs. 8 and 9)

show it is asymmetrical and broad near the Marshall-Nemaha County line and

narrow in the northwestern part of the region. The channel appears to pass

under the alluvium of Robidoux Creek and the Black Vermillion River a few

miles north of Frankfort.

The gradient of the bedrock surface along the channel's main axis is to

the southeast at about A to 5 feet per mile. The bedrock surface below the

alluvium of the Black Vermillion River southwest of Frankfort gently slopes to

the north, toward the main axis of the buried channel. A similar feature in

the bedrock surface, but which slopes to the southwest, is present in the

northeastern part of the region. These features probably represent

tributaries to the main channel (Chelikowsky, 1976).

Stratigraphic relationships between the bedrock and glacial deposits are

shown on the cross sections. Because of the sparseness of stratigraphic data,

geologic contacts on the figures are only approximate. The Atchison

Formation, which overlies bedrock in much of the area, is thin to absent (0 to

30 feet thick) to the southeast (Appendix B; Walters, 1954, plate 2; Ward,

1974, p. 9). Glacial till overlies the Atchison Formation at all locations.

The chert gravels along the axis of the channel were encountered in

several wells, as shown on Table 4. Chert gravels were not found in any test
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^ RWD No. 3 wells

Figure 6 Locations of borings and wells encountering bedrock beneath glacial overburden
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Table 3. Bedrock Elevaitions Benej

Name Location Elev

Wullschleger 3-8-3daa 1280
Test hole 3 3-8-9ada 1193
Shellbaumer 3-8-13bab 1165
Vogelsburg 3-8-14bbd 1280

- 3-8-15bc 1158
Test hole 1 3-8-20ccc 1122
Test hole 2 3-8-21aaa 1101

- 3-8-25ba 1092
- 3-8-28ba 1291

D. Fincham 3-8-30aaa 1120
- 3-8-30ab 1281

_ 3-9-19cd 1098
- 3-9-20cc 1064
- 3-9-26aa 1152
- 3-9-28ab 1148

RWD3, Well 1 3-9-32aba 1063
RWD3, Well 9 3-9-32aba 1078
RWD3, Well 3 3-9-32abb 1071
Test Well 3-9-32abb 1076
RWD3, Well 10 3-9-32abb 1077
RWD3, Well 6 3-9-32acb 1078
RWD3, Well 2 3-9-32baa 1077
RWD3, Well 5 3-9-32baa 1095
RWD3, Well 7 3-9-32baa 1071
RWD3, Well 4 3-9-32bab 1102

_ 3-10-20dd 1165
- 3-10-22dd 1123

Van Dorn 3-10-28cbc 1119

- 3-ll-18cc 1186

Maas 4-9-lddd 1052
TH 1 4-9-2ccc 1069
TH 4 4-9-9acc 1080
TH 2 4-9-10dcc 1171
TH 3 4-9-10ddd 1119
TH 5 4-9-llbba 1040
Dunlap 4-9-llbbc 1055
Frankfort Municipal

Golf Course 4-9-16aaa 1057
R. Feldhausen 4-9-17bcd 1081

Source

Driller's log
This study
Driller's log
Driller's log
Walters (1954)
This study
This study
Walters (1954)
Walters (1954)
Driller's log

Walters (1954)

Walters (1954)
Walters (1954)
Walters (1954)
Walters (1954)
Driller's log
Schwab/Eaton
Driller's log
Beck (pers comm)
Schwab/Eaton
Schwab/Eaton
Driller's log
Schwab/Eaton
Schwab/Eaton
Schwab/Eaton

Walters (1954)
Walters (1954)
Driller's log

Walters (1954)

Driller's log
Beck (pers comm)
Beck (pers comm)
Beck (pers comm)
Beck (pers comm)
Beck (pers comm)
Walters (1954)

Beck (pers comm)
Driller's log
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- 4-10-lad 1243
- 4-10-16aa 1041

3. Stiner 4-10-17ab 1038
Test hole 8 4-10-17ccc 1142
Test hole 7 4-10-19ddd 1223

- 4-10-25dd 1024
- 4-10-27cd 1071

Test hole 6 4-10-28ccc 1198
- 4-10-29dc 1183

L. Hunninghake 4-10-33cc 1222
Glasgow 1 4-10-6dad 1040

Test hole 4 5-10-lccc 1143
Test hole 5 5-10-3ccc 1226

M. Bramhall 5-10-14ada 1153

— 5-ll-30bb 1192

Walters (1954)
Walters (1954)
Driller's log
This study

This study
Walters (1954)
Walters (1954)
This study
Walters (1954)
Driller's log

Beck (pers comm)

This study
This study
Driller's log

Walters (1954)
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R.8E. R.9E R.10E.

bedrock surface
above MSL

Contour Interval 50 ft.

• Boring location

Figure 7 Contour map of bedrock surface beneath glacial deposits
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Table 4. Locations of Wells in Which Chert Gravels Were Encountered

Name Location

Thickness
of gravel,

feet Source

A. Maas 4-9-lddd 22 Driller's log

3. Stiner 4-10-17ab 12 Driller's log

Van Dorn 3-10-28cbc 6 Driller's log

Dunlap 4-9-llbbc 22 Walters (1954)

RWD3 wells 3-9-32ab and ba 1-8 Driller's log and Schwab
and Eaton report dated
1/26/77

Glasgow 1 4-10-6dad 15 Beck (pers comm)

Frankfort Golf Course
Well #4 4-9-16aaa 12 Beck (pers comm)

Test Hole #1 4-9-2ccc 34 Beck (pers comm)

Test Hole #3 4-9-10ddd 4 Beck (pers comm)

Test Hole #4 4-9-9acc 8 Beck (pers comm)

Test Hole #5 4-9-llbba >13 Beck (pers comm)

- 4-10-16aa 14 Walters (1954)

- 4-10-25dd 5 Walters (1954)

- 3-9-26aa 7.5 Walters (1954)

- 3-10-22dd 11.5 Walters (1954)

M. Bramhall 5-10-14ada 1 Driller's log
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borings installed for this investigation. As shown on Table 4, maximum

thickness of the gravels in the region is 20 to 30 feet. Ground-water yields

from wells in the gravels are the largest in the area. Aquifer test

information from driller's logs indicates yields up to 300 gpm are possible.

Water levels in wells completed in the chert gravels rise much above the

top of the gravels, indicating that either ground water in the gravels is

confined or there is good hydraulic connection with the overlying sands.

Because the wells are generally constructed with a gravel pack extending to

within 20 feet of ground surface, it is not possible to determine if these

high water levels are due to a confined system. On the basis of geologic logs

and similar water level elevations in several channel-wells (T.4 S., R.10 E.,

sec. 17ccc and T.A S, R.9 E., sec. lddd, and T.3 S., R.9 E., sec. 32) which

are located as much as seven miles apart, it appears that wells completed in

the buried channel may be hydraulically connected. In addition, geologic logs

for RWD3 wells indicate the alluvium of Robidoux Creek is probably

hydraulically connected to the chert gravels, which occur on the bedrock

surface.

Ground-water recharge to the buried channel probably originates in the

alluvium of the Robidoux Creek near where the buried channel crosses under the

river. The ground water then moves to the southeast in the general direction

of the bedrock-surface gradient under the influence of hydraulic head. Other

sources of recharge are probably present; however, it appears that

infiltration of ground water through the alluvium of the Robidoux River

Valley, and perhaps the Black Vermillion River Valley, are the major

components of recharge to the buried channel.
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Glacial Deposits

The occurrence and movement of ground water in glacial deposits is

affected greatly by their heterogeneous stratigraphy. Water levels in wells

in the glacial deposits are commonly in the range of 15 to 60 feet below

ground surface. A review of well logs and interviews with well owners

indicate the deeper water levels are in wells in upland areas.

Ground water generally moves through primary pore spaces of sandy and

gravelly aquifers and through fractures in the fine-grained deposits. The

primary porosity of fine-grained glacial deposits is generally high, but their

low permeability limits ground-water velocities. As a result, ground-water

yields from till are generally on the order of 10 gpm or less. Yields from

the more permeable gravel aquifers can be 50 to 200 gpm (Ward, 1974, p. 11-14).

Ground-water recharge to glacial deposits occurs as infiltration of

rainfall on upland areas or as underflow from bedrock or alluvium (Sharp,

1984). Because of its low permeability, little ground-water recharge occurs

through the till; however, a considerable amount of recharge from rainfall may

occur in areas underlain by glaciofluvial deposits (Ward, 1974, p. 11).

The fractures and joints in glacial till probably increase infiltration

rates and can have a profound effect on ground-water recharge (Grisak and

Cherry, 1975; Grisak et al., 1976; Sharp, 1984). Oxidation of the upper

portion of the till to a depth of 20 to 45 feet (Appendix B) and along

fractures is probatly due to oxygenated recharge water passing through the

till (Williams and Farvolden, 1967, p. 163). Because of its large outcrop

area, the till probably contributes to some extent to ground-water recharge.
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Ground-water discharge from the glacial deposits occurs in several ways,

including evapotranspiration, discharge to streams, and deeper infiltration to

bedrock or buried channel aquifers.

Alluvium

The alluvium along major stream valleys, such as the Black Vermillion and

Robidoux river valleys, is generally saturated throughout its thickness. The

water levels in wells along Robidoux Creek, including those of RWD3, are about

5-10 feet below ground surface based on well logs.

Ground water occupies and moves through the primary pore spaces of the

alluvium. Sands and gravels of the alluvium are generally highly permeable

and can easily transmit ground water. The driller's report for two wells

approximately 50-60 feet deep and completed in the alluvium of the Robidoux

River indicate an estimated yield of 600 gpm.

The direction of ground-water flow, particularly horizontal movement, is

normally from the alluvium toward an adjacent river where it discharges

(Walters, 1954, p. 22). At high stage or during a rise in river stage

following a period of drought, ground water probably flows from the river into

the alluvium. Ground water also moves vertically through the alluvium into

underlying permeable deposits. The locally higher ground-water levels in

bedrock or till aquifers probably results in ground-water movement into the

alluvium (Whittemore et al., 1982, p. 18). The magnitude of this component of

recharge is unknown.



38

HYDROGEOCHEMISTRY

Chemical Character of Hydrogeologic Units

Appendix C contains the results of all chemical analyses for samples

collected from each hydrogeologic unit. Table 5 represents the range and

median of ion concentrations and selected hydrochemical parameters for samples

collected from each hydrogeologic unit. Median ion concentrations are also

shown graphically in Figure 10. Three samples are omitted from these two

statistical summaries because their charge balance error exceeded an

acceptable 5%. The charge balance error for all other samples ranged between

+3.3% and -3.0% with a mean of +0.47%.

The following discussion of specific chemical characteristics for each

hydrogeologic unit is based on hydrochemical data contained in Appendix C,

which includes the results of analyses and calculated hydrochemical

parameters, and other historical hydrochemical data contained in Appendix D.

The data in Appendix D were collected from literature sources and Kansas

Department of Health and Environment (KDHE) and included for comparative

purposes.

Bedrock.—The ground-water samples collected from bedrock show great

geographic variation in total-dissolved-solids concentration (TDS), and are

typical of ground water from carbonate terranes. The ground water from the

bedrock is generally more highly mineralized than ground water from glacial

deposits and the buried channel. The major cation is Ca, whereas the anions

primarily consist of HCO and SO . Thus, Ca-HCO -type water is

predominant and Ca-S0,-type water is also common. As shown in Figure 11,

mixed water-types are also present, but are relatively uncommon.
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Figure 1 1 Trilinear diagram



42

TDS ranges from 350 to 1220 mg/L, although Walters (1954, Table 3)

reported values as high as 2000 mg/L. This wide range is primarily due to

variations in concentrations of Ca and SO . The more highly mineralized

waters are Ca-S0,-type water, which usually contain greater than 250 mg/L

SO, derived from solution of gypsum. Bicarbonate concentrations are also a

major component of TDS, although the range of HCO, concentrations is much

narrower than that for SO.

.

4

The concentrations of Na and K are lower than concentrations of Ca and

Mg. The molal concentration of Na is much less than for Ca, but only slightly

less than for Mg. Potassium concentrations are low as typical in ground

waters, with most values below 1.5 mg/L. Strontium concentrations are highest

in ground water from the bedrock. Concentrations are generally below 2 mg/L

except in a few highly mineralized samples where values range up to 15 mg/L in

a sample with 250 mg/L SO .

The molal concentrations of CI are less than those of Na in nearly all

samples. Nitrate concentrations are highly variable and exceed recommended

drinking water standards of 45 mg/L as NO, (U.S. EPA, 1976) in 4 wells. The

source of NO, to the ground water is probably from surface or near-surface

runoff from barnyards or septic systems (Hem, 1985, p. 125). In many cases,

shallow, old wells lack a surface cement seal, which permits relatively rapid

infiltration of NO -contaminated surface water. The highest NO

concentration in bedrock wells is 83 mg/L in a well located near a livestock

pen. The pH of ground water falls in a narrow range of values between 6.83

and 7.25 and is similar to the range of values in other hydrogeologic units.

Buried channel .—Ground water from the buried channel is less mineralized

than ground water in the bedrock. Concentrations of TDS for the buried
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channel waters range from 310 to 470 mg/L and are within the range of TDS for

the glacial deposits. Samples collected from the buried channel are

Ca-HC0,-type water and contain generally similar ion concentrations. Molal

concentrations of Mg and Na are about equal, but are less than Ca. The

principal anion is HCO , which comprises greater than 80-90% of the molal

content of the anion total, and is the largest single component of TDS.

Nitrate concentrations are generally below 1 mg/L, probably because these

wells are nearly 200 feet deep and were constructed with a sanitary seal

within the last 10 years, minimizing the potential for contamination by

surface waters. The pH of ground water is in the narrow range of 6.98 to 7.10,

Glacial Deposits .—Ground water in the glacial deposits is generally less

mineralized than ground water in the bedrock and, in some cases, is also less

mineralized than ground water in the buried channel. TDS ranges from 210 to

950 mg/L. The major cations are generally Ca and Mg. Molal concentrations of

Na are higher than those of Mg in a number of samples and generally occur when

concentrations of Ca, Mg, and TDS are quite low. Concentrations of Na and K

are generally higher in ground-water samples from the glacial deposits than

the other hydrogeologic units. The high K and Na values are probably the

result of ion-exchange reactions involving the smectite clays, which are

abundant in the glacial deposits, particularly the till. The major anions

commonly consist of HCO, and SO, . Molal concentrations of CI are
3 4

sometimes greater than SO,
,
generally when Na concentrations are elevated.

Most of the ground water is Ca-HC0-.-type water, but Ca-S0,-type water was

encountered in a few areas. Na-HC0--type water is also present, but is

uncommon and could be derived from either surface contamination or natural

processes. Dissolved NO in the Na-HCO -type waters is low, ruling out

typical surface contamination from animal or human wastes. However, CI
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contents tend to be higher for these waters than most other ground waters in

the glacial deposits. Concentration of near surface waters by

evapotranspiration, coupled with ion exchange in clays and associated

carbonate mineral precipitation/solution in the deposits are the possible

natural processes that might produce the Na-HCO,-type waters.

The geographic variation in ion concentrations is generally less than for

the bedrock aquifers, but is greater than in the buried channel deposits.

Concentrations of most ions are within a narrow range with just a few samples

having significantly higher or lower concentrations. The greatest variation

in concentration is for NO , which ranges from less than 1 mg/L to 125

mg/L. As for the bedrock wells, the highest concentrations appear to be in

shallow, old wells located near livestock pens.

Alluvium .—Because operating wells could not be located, ground-water samples

from the alluvium were not collected as part of this investigation.

Historical hydrochemical data contained in Appendix D and those of Walters

(1954, p. 65) indicate that ground water in the alluvium is similar to ground

water in the buried channel. Based on the available historical data, ground

water in the alluvium is Ca-HCO -type water with TDS of about 300 mg/L.

Temporal Variations

Temporal variations in hydrochemistry due to seasonal climatic changes

were evaluated for the different hydrogeologic units. Multiple ground-water

samples were collected periodically from 12 wells between September 1982 and

September 1983. The number of multiple samples collected from each well

varied from 2 to 4. Additionally, historical hydrochemical data shown in

Appendix D includes data from 1981 for two wells in the buried channel and one

well in glacial drift.
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The hydrochemical data contained in Appendixes C and D indicate that wells

in the buried channel or glacial deposits sampled showed no systematic

temporal variations in response to changes in wet or dry climatic conditions.

The ion concentrations generally varied by no more than 5 to 10 percent

between sample dates. Concentrations of Ca, Mg, and HCO were particularly

consistent and may reflect the effects of relatively rapid carbonate

equilibria.

The relatively constant hydrochemistry of the buried channel waters is

probably because the aquifer is deeply buried by several hundred feet of

glacial drift. The time required for recharge waters to reach these deposits

acts to buffer changes in the hydrochemistry. The absence of significant

temporal changes in the hydrochemistry of the drift is related to the low

ground-water velocities and slow recharge rate.

In contrast to ground water from the buried channel and glacial deposits,

the ground-water samples from bedrock aquifers showed significant temporal

variations in ion concentrations that could be related to seasonal effects.

The greatest changes occurred in concentrations of SO , and to a lesser

extent, Ca. The Forst multiple samples showed a decrease in SO,

concentrations from 500 mg/L to less than 45 mg/L. The concentrations of

other ions in these samples also decreased, but not by more than 50 percent.

The SO concentrations in the Alley samples also changed between sampling

dates but by less than about 40 percent.

The change in hydrochemistry of the bedrock aquifers is probably because

highly mineralized ground water is being diluted by recharge waters containing

differing ion ratios. This effect is well documented in gypsum-bearing

Permian limestone aquifers of northeast Kansas (Whittemore et al., 1982). The
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large fractures common in these rocks probably enhance this dilution by

permitting infiltration of relatively dilute recharge water during wet

periods. The time for recharge to substantially dilute ground water pumped by

the bedrock wells is estimated to be on the order of a few to several months

(Whittemore, pers. comm.). Climatic data for the town of Frankfort several

miles north of the bedrock wells with multiple samples show appreciable

positive departures from normal precipitation during the study period (U.S.

Dept. of Commerce, 1981, 1982, and 1983). Frankfort received about 1 inch of

precipitation over the average in 1981 in contrast to an excess of over 13

inches during 1982. This record appears to fit with the dilution hypothesis.

Geochemistry of Waters

A comparison of the hydrochemistry of samples from each hydrogeologic unit

suggests significant similarities in the geochemical processes affecting their

hydrochemical evolution. Most ground waters in the investigation area are of

Ca-HCO -type with subordinate concentrations of Mg, Na, CI, and SO

(Fig. 11); however, a few have distinctly different chemical characteristics.

The most obvious chemical differences are in the high SO, and NO

concentrations for some ground-water samples from bedrock and the variations

in concentrations of Na, K, and NO for waters in the glacial aquifers.

These similarities and dissimilarities in hydrochemistry are generally a

reflection of the bulk mineralogy of each aquifer system, except for NO
,

which is probably derived from a surface source of contamination.

As shown in Figure 11, the trilinear diagram, the fields representing the

range of water composition for each hydrogeologic unit overlap to some

degree. This overlap generally occurs where Ca and HCO represent greater

than 50% of the total cations and anions, respectively. The shapes and
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patterns of the fields on the diagram were evaluated for possible mixing

trends; however, no such trends are apparent in the data. The relationship

between water type and TDS concentration was also evaluated. It appears that

as TDS concentrations increase, there is an increase in the relative

concentration of SO, . Thus, most of the ground water with high TDS

concentrations tend to be Ca-S0,-type water, regardless of the hydrogeologic

unit from which the sample was collected.

As suggested previously, the hydrochemical data collected for this

investigation indicate that the hydrochemical evolution of the ground water is

affected by dissolution or precipitation of carbonate minerals (e.g. calcite

and dolomite), dissolution of sulfate minerals (e.g. gypsum), and ion exchange

reactions involving smectite clays.

The following discussions of selected hydrochemical parameters and

geochemical relationships between dissolved ions present evidence of the major

sources and controls for the dissolved constituents in the ground water in

each aquifer system.

Saturation indices .—The saturation index (SI) is defined for various

solid phases as the log of the quotient of the ion activity product (IAP)

divided by the equilibrium constant (K) (SI=log (IAP/K)). SI represents the

equilibrium condition (undersaturated, saturated, or supersaturated) of a

solution with respect to a given solid-water reaction and generally indicates

whether the solid will tend to precipitate or dissolve in the solution.

Evaluation of SI for selected minerals or other solids can help in

understanding the processes that control the hydrochemical evolution of ground

water, particularly the upper limit of concentration for certain dissolved

ions.
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Saturation indices for ground-water samples were calculated using the

computer program WATEQF (Plummer et al., 1976). To calculate SI the program

determined the chemical activity (a) of each ion in solution, ionic strength

(I) of the solution, and IAP for selected reactions of interest. The

equations for chemical activity and ionic strength are shown below.

Activity of ith ion, a^ -

ai - 7i x mj (1)

where, 7i = activity coefficient

mj - molality of ith ion

Ionic strength of solution, I -

I = 0.5^(C\ x Z.
2

) (2)

where, C^ = molality of ith ion

Z^ = charge on the ith ion

The activity coefficients (70 were calculated from the extended

Debye-Huckel equation (Truesdell and Jones, 1974) shown below.

Activity coefficient of ith ion, 7j -

log7i - ((-AZi 2
A/(I))/(i +Ba i V(T))) +bI (3)

where, A and B are dependent on dielectric constant, density, and temperature
of the water and

Z = charge on the ith ion,

I = ionic strength of solution,
a = size of hydrated ith ion,

b = factor allowing for the effect of a decrease in concentration of

the solvent (Truesdell and Jones, 1974).

The number and type of solid phases for which saturation indices were

calculated is dependent on the analytical data provided to WATEQF. Although

saturation indices were calculated for 20 solid phases, only those for calcite

(SI ), dolomite (SI.), and gypsum (SI ) were found to be relevant in
c d g
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determining the controls on ion concentrations. The calculated SI for other

solid phases indicated significantly undersaturated conditions, thus, they

have virtually no impact on the upper limit of concentration for any dissolved

ions. Because chemical analyses were not performed for selected constituents

(e.g., silica), saturation indices for the commonly occurring clay minerals

could not be calculated.

The equilibrium reactions used to represent precipitation or dissolution

of calcite, dolomite, and gypsum are shown below (brackets indicate

activity). The values of K shown below were obtained from WATEQF and are

representative for waters at 25°C. The equilibrium constant is generally

temperature dependent and appropriate corrections were made by WATEQF to

account for the different ground-water temperatures.

Saturation index of calcite at 25°C, SI C -

CaC0
3
^ Ca

2+
+ CO

2 "
(4)

Kr = 10-8.47

IAP
c

= [Ca
2+

] x [CO
2*]

SI
c = log <"*T>

Saturation index of dolomite at 25 C, SI^ -

CaMg(C0
3

)
2

±=? Ca
2+

+ Mg
2+

+ 2C0
2 "

(5)

K d = 10-17-02

IAP
d

= [Ca
2+

] x [Mg
2+

] x [CO
2 "] 2

IAP

SI
d

= log
(-J-*)

d
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Saturation index of gypsum at 25°C, SI
g

-

CaS0^«2H
2
^ Ca

2+
+ SO

2-
+ 2H (6)

K
g

= HP*

-

76

IAP
g

= [Ca
2+

] x [SO
2-

]

IAP
SI = log (J)

a
g

Uncertainties in the values for concentration and activity coefficient for

each component, thermochemical data, and pH, result in an uncertainty in the

estimate of SI. SI and SI . are particularly sensitive to errors in pH

measurement. An error in pH measurement of 0.1 corresponds to an error of 0.1

for SI or SI ,. The pH used in calculation of SI and SI , was
c d c d

measured in the field at the time of sample collection. It is generally

assumed that the total uncertainty in SI and SI . from all sources is

about 0.1 units for good quality data (Langmuir, 1971, p. 1029). The

uncertainty for SI . may be slightly higher because of disagreement about the

correct equilibrium constant for dolomite dissolution. Ground water with SI

values within 0.1 units of zero are considered to be at saturation with

respect to that solid phase.

The SI , SI ., and SI for ground-water samples collected from each

hydrogeologic unit are shown in Tables 6, 7, and 8. The range and median of

the SI data are shown in Table 9. The median SI for all ground waters is
c

between -0.10 and +0.04 and indicates saturation with respect to calcite. The

median SI . ranges from a low of -0.67 for the buried channel waters to a

high of -0.31 for water from bedrock, indicating undersaturation with respect

to dolomite. The higher SI relative to SI . indicates that ground water
c d
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Table 6. Saturation Indices for Calcite, Dolomite, and Gypsum
for Ground-Water Samples from Bedrock

Name
Sample
Date

7/18/82
1/13/83
6/11/83

SI
c

0.11
0.05
0.07

SI
d

-0.15
-0.25
-0.32

SI
q

B.

B.

B.

Alley
Alley
Alley

-1.25
-1.32
-1.51

E.

E.

E.

E.

Ewing
Ewing
Ewing
Ewing

7/18/82
1/13/83
6/11/83
9/ 9/83

0.15
-0.04
-0.02

0.11

-0.10
-0.51
-0.39
-0.16

-0.60
-0.70

0.61
-0.80

V.

V.

V.

Forst
Forst
Forst

7/18/82
6/11/83
9/ 9/83

0.15
-0.08
-0.09

-0.33
-0.79
-0.83

-0.42
-2.03
-1.63

D. Bonjour 6/23/83 0.19 -0.02 -1.17

H. Haskin 6/25/83 -0.03 -0.59 -1.76

W. Surdez 6/30/83 0.27 0.01 -1.27

R. Koch 6/11/83 -0.06 -0.68 -1.51

J. Wapp 6/11/83 0.09 -0.31 -0.36

D. Fincham* 11 5/83 -0.15 -0.92 -1.29

M. Samuelson 6/30/83 0.22 0.14 -0.88

L. Boeckman 11 5/83 -0.08 -0.41 -1.71

Outside investigation area,
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Table 7. Saturation Indices for Calcite, Dolomite, and Gypsum
for Ground-Water Samples from Glacial Deposits

Name
Sample
Date

9/25/82

SI
c

N/A

SI
d

N/A

SI
P

J. Horigan N/A
3. Horigan 1/13/83 0.08 -0.36 -1.34

3. Horigan 6/ 8/83 0.07 -0.41 -1.45

C. Swick 9/25/82 N/A N/A N/A
C. Swick 1/13/83 N/A N/A N/A

H. Huddleston 9/25/82 0.04 -0.61 -2.06
H. Huddleston 6/ 8/83 0.00 -0.64 -1.99

M. Bramhall 10/3/82 -0.27 -0.95 -2.48

M. Bramhall 6/23/83 -0.08 -0.52 -2.28

G. Feldhausen 2/19/83 -0.34 -1.40 -2.84

G. Feldhausen 6/23/83 -0.31 -1.30 -2.82

3. Sanderson 2/19/83 -0.15 -0.53 -1.54

3. Sanderson 6/ 8/83 -0.29 -0.80 -1.51

L. Baker 6/23/83 0.40 0.34 -0.68

D. Schooler 6/23/83 -0.18 -1.08 -1.93

K. Lindsey 6/23/83 -0.06 -0.92 -1.86

W. Foley 6/23/83 0.04 -0.27 -1.65

B. Bramhall 6/25/83 -0.01 -0.68 -2.19

W. Hanzlik 6/25/83 0.25 -0.01 -1.69

L. Wenzl 6/25/83 0.03 -0.25 -2.01

3. Boyle 6/25/83 0.22 0.08 -1.67

C. Seematter 6/25/83 0.03 -0.45 -1.59

D. Stock 6/30/83 0.16 0.19 -1.42

L. Ladner 6/30/83 0.14 -0.07 -1.35

H. Wullschleger 6/30/83 -0.06 -0.45 -1.61

B. Bliss 6/ 8/83 -0.13 -0.64 -2.27
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Name
Sample
Date

6/ 8/83

SI
c

-0.09

SI
d

-0.48

si
a

D. Fincham -1.47

C. Stiner 6/11/83 0.10 -0.15 -1.86

L. Millenbruch 6/30/83 0.23 0.13 -0.92

J. Vogelsburg 6/30/83 0.04 -0.40 -1.63

E. Foley 11 5/83 -0.13 -0.53 -1.55

G. Norman 11 5/83 -0.17 -0.71 -2.08

L. Ketter 11 5/83 -0.07 -0.64 -1.56

A. Argo 11 5/83 -0.16 -0.82 -0.99
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Table 8. Saturation Indices for Calcite, Dolomite, and Gypsum
for Ground-Water Samples from the Buried Channel

Name
Sample
Date

SI SI SI
_a_

A. Maas
A. Maas
A. Maas
A. Maas

9/25/82
1/13/83
6/ 8/83
9/ 9/83

-0.15

-0.14

-0.10

-0.06

-1.04

-1.05

-0.97

-0.85

-2.51

-2.20

-2.28

-2.23

L. Gerstner
L. Gerstner
L. Gerstner

1/13/83
6/ 8/83
9/ 9/83

-0.02
-0.07

0.10

-0.68
-0.86

-0.52

87
87

88

J. Dunlap 6/ 8/83 -0.01 -0.51 -1.58

3. Stiner
J. Stiner

6/11/83
9/ 9/83

-0.02
-0.01

-0.67

0.65
-2.26

-2.15
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in the investigation area is closer to saturation with respect to calcite than

dolomite.

The SI , SI . for bedrock waters are similar to those of Whittemore and
c d

Switek (1977) for spring waters issuing from bedrock of the Council Grove

Group in Pottawatomie County. The median SI and SI . calculated for this

investigation are +0.04 and -0.31, respectively, compared to -0.02 and -0.25

for the Pottawatomie County investigation. In general, the ranges of SI

and SI . were slightly wider for this investigation than those reported for

the spring waters. These small deviations are within 0.1 and may be the

result of slight differences in the thermodynamic data used to calculate SI

and SI . or small variations in analytical accuracy.

Figure 12 is a scatter plot of SI vs SI . Calcite and dolomite

saturation fields shown on Figure 12 are based on the uncertainty in SI and

SI . of +0.1 unit. The distribution of data points indicates that SI and
d — r

c

SI . generally increase in a similar manner. The data for the buried channel

ground water are generally within the calcite saturation region and are low in

SI . for a given SI . The samples from bedrock and glacial deposits

generally have a wider range of SI and SI . than samples from the buried

channel. The lowest SI and SI . values are for ground water from the

glacial deposits, whereas the highest values are similar in both hydrogeologic

units.

The slope of a least squares line through the data is slightly less than

the slope of the SI =SI . line (Fig. 12). The trend of these data show

that as SI increases there is an even greater relative increase in SI ..

The ground waters with the highest SI (0.2 to 0.3) are almost equally

supersaturated with respect to dolomite. This is probably because Ca has been
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selectively removed from solution by precipitation of calcite resulting in a

gradual relative increase in Mg, which results in the greater relative

increase in SI ..

d

The maximum values for SI and SI . indicate slight supersaturation,

which is not uncommon in some hydrogeologic systems. In regions where gypsum

is abundant, supersaturation with respect to calcite can be maintained because

of the relative rates of gypsum dissolution (faster) and calcite precipitation

(slower). The high SI and SI . for some of the samples is possibly due to

mixing of hydrochemically dissimilar ground waters at the time of sample

collection (Runnells, 1969).

Ground-water samples are significantly undersaturated with respect to

gypsum, as shown on Table 9. The median SI for all samples is between

-2.03 and -1.27. These values indicate about 1 to 5 percent saturation with

respect to gypsum. The samples from bedrock had the highest overall levels of

gypsum saturation, while samples from the buried channel had the lowest. The

maximum SI of -0.36 was in a ground-water sample from bedrock containing

270 mg/L Ca and 630 mg/L SO, . The higher SI values in ground water from

the bedrock are probably due to the relative abundance of gypsum in subsurface

bedrock formations (Walters, 1954; Amoco, 1975).

Partial Pressure of CO .—The partial pressure of CO (P ) in the

soil environment and the ground water exerts a strong influence on

mineral-water reactions (Paces, 1971; Trainer and Heath, 1976; Freeze and

Cherry, 1979, p. 240). The P of ground water in equilibrium with

-3 5
atmospheric C0„ is 10 ' atmospheres (atm); however, the soil environment

commonly contains elevated Ppn levels from aerobic decay of organic matter

and respiration of plant roots (Freeze and Cherry, 1979). Oxidation of
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organic matter in aquifer sediments also can supply CO . These elevated

levels of CCL increase ground-water reactivity by decreasing pH and

increasing carbonic acid concentration. Equations 7 and 8 show the reactions

between CO and water to form carbonic acid (H CO ), which results in

increased reactivity of the ground water.

C02 (g) + H2 ^ H2C0 3 (7)

H
2
C0

3 ^ H+ + HC0
3 (8 )

Ground-water samples collected for this investigation had calculated

-19 -13
P
rf

, levels in the narrow range of 10 ' to 10 atm (Table 5 and

Appendix C). This range is about 100 times greater than atmospheric Prn ,LU
2

which is typical for some shallow ground-water systems (Paces, 1971, p. 237;

Grisak et al., 1976, p. 233; Freeze and Cherry, 1979, p. 241). The P
co

2

values are similar in samples from all hydrogeologic units. Temporal changes

in P
pn

are not apparent in the multiple samples, regardless of any changes

in TDS.

The hydrochemistry of the ground-water samples suggests open or near-open

conditions with respect to replenishment of CO . Waters with varying

degrees of saturation with respect to the carbonate minerals (e.g. calcite)

should theoretically show certain systematic variations in pH and HCO

depending on whether or not the ground-water system is open or closed with

respect to CO- replenishment (Langmuir, 1971). Ground water evolving under

closed-system conditions will generally have a higher pH and lower HCO, at

equilibrium than waters evolving under open-system conditions (Freeze and

Cherry, 1979, p. 255). A final pH of 7 is common for ground water evolving

to saturation with calcite or dolomite under open-system conditions (Freeze

and Cherry, 1979, p. 261). The hydrochemistry of ground waters in southeast
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Marshall County, particularly the elevated P , final pH near 7, and fairly
LU

2

consistent HCCL concentrations, indicate open or near-open conditions.

However, certain of the expected systematic changes may be obscured by the

relatively narrow range of values for pH and HCO .

Ca/Mg molal ratio .—The Ca/Mg molal ratio (Ca/Mg) has been shown to be

related to aquifer mineralogy and can be useful in understanding the

hydrogeochemistry of aquifer systems (Meisler and Bechler, 1967; Hem, 1970).

Aquifers consisting mainly of calcite generally have the highest Ca/Mg for

ground-water in carbonate terrains, whereas the lowest ratios are commonly

found in dolomite aquifers. A Ca/Mg near unity is common in dolomite

aquifers. Geochemical factors that can obscure this relationship include

calcite precipitation (decreases Ca/Mg), different relative rates of

dissolution of calcite and dolomite (variable effects), gypsum dissolution

(increases Ca/Mg), and ion-exchange reactions between clays and the ground

water involving Ca or Mg for Na or K (variable effects). Minor mineralogical

impurities in the aquifers can also have a relatively large impact on the

Ca/Mg, particularly if the minerals, such as gypsum, are highly soluble

(Freeze and Cherry, 1979, p. 256).

The Ca/Mg of ground-water samples collected for this investigation ranges

from about 1.2 to 5.6 (Fig. 13). Ground water from the buried channel aquifer

had the highest Ca/Mg, generally between 4 and 5, and was geographically

invariant. Samples from bedrock or glacial deposits had a much wider range of

values and a larger degree of regional variation than did samples from the

buried channel. Nearly all samples from the bedrock and glacial deposits had

a Ca/Mg between 1.5 and 4. A few samples from the glacial deposits with low

Mg concentrations (less than 10 mg/L) had a Ca/Mg greater than 4. The wide

range of values for ground-water samples from bedrock and glacial deposits is
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probably due to regional variations in aquifer mineralogy or differential

solution or precipitation, whereas these factors do not appear to influence

the Ca/Mg of ground water in the buried channel.

The relationships between Ca/Mg and SO, concentration for the

ground-water samples are shown on Figure 14. The figure clearly shows that

the highest Ca/Mg is found in samples from the buried channel and glacial

deposits with low SO, concentrations. The Ca/Mg tends to decrease with

increasing SO, up to about 200 mg/L SO , then appears to gradually

increase with even higher SO, concentrations, reflecting the greater effect

of gypsum solution.

In samples undersaturated with calcite, the dissolution of gypsum should

increase the Ca/Mg of the ground water. However, these samples are generally

slightly supersaturated with respect to calcite. Thus, the generally lower

Ca/Mg suggests that Ca is being removed by calcite precipitation. Also, the

high Ca concentrations could lead to changes in cation ratios from ion

exchange on clays. The relatively low Ca/Mg of some ground-water samples from

the glacial deposits, which also contain low concentrations of SO , may be

due to the dissolution of dolomite that is commonly present in these rocks

(Grisak et al, 1976, p. 322).

The Ca/Mg remained nearly constant in the multiple samples collected from

selected wells regardless of changes in TDS. The Ca/Mg is probably constant

because decreases in TDS were the result of dilution of the ground water by

recharge water low in TDS, which could have only a minor impact on ion

ratios. Ground water with large increases in SO concentrations should have

a consequent increase in the Ca/Mg due to the large influx of Ca from the

dissolving gypsum; however, this was not observed in multiple samples
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displaying large increases in SO concentration. Thus, increases in SO

are due more to less dilution by recharge than to increased solution of gypsum.

Ca vs HC03 .—The molal concentration of HCO is greater than that of Ca

in essentially all ground-water samples (Fig. 15). The Ca/HCO, molal ratio

(Ca/HCO,) is less than 0.5 in most samples, but increases as the

concentration of SO. increases, reflecting the influence of gypsum

dissolution on Ca/HCO,. The greatest Ca/HCO, is observed in samples with

SO. concentrations exceeding 500 mg/L.

The data for ground-water samples from the buried channel and glacial

deposits generally show good correlation between concentrations of Ca and

HCO,, and appear to follow the trend for the dissolution of calcite, as

shown below.

CaC0
3

+ H
2
C0

3
^ Ca

2+
+ 2HC0~ (9)

The theoretical Ca/HCO for this reaction is 0.5 (Equation 9 and

Figure 15). Ground-water samples from the buried channel and glacial deposits

have Ca/HCO in the range of approximately 0.3 to 0.5. The relationships

between Ca and HCO, and the range of values of Ca/HCO, suggest that the

dissolution of Ca-rich carbonate minerals plays a primary role in the

hydrochemical evolution of these waters. The observed deviation from the

theoretical Ca/HCO of 0.5 is the result of the Mg content of the dissolving

calcite (Equation 10) or, more importantly, by the dissolution of dolomite

(Equation 11). The Mg addition causes an apparent decrease in the Ca/HCO,

from the theoretical, as is generally observed in the samples from the buried

channel and glacial deposits.

(Ca
x

, M
gi _x

)C0
3

+ H
2
C0

3
^Ca

x

+
+ Mg**

x
+ 2HC0~ (10)
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Ca,Mg(C0
3 ) 2

+ 2H
2
C0

3
^Ca2+

+ Mg
2+

+ AHC0
3

(11)

The Ca/HCO, in bedrock waters is generally greater than 0.5 and in some

cases is greater than 1. The data for the bedrock waters have a large degree

of scatter, particularly along the Ca axis. Based on SO concentrations of

greater than 125 mg/L, these ground-water samples appear to be affected

greatly by the dissolution of gypsum, which also increases Ca and, thus,

increases Ca/HC0_ ratios.

Ca vs SD4 .—The concentrations of Ca and SO are positively correlated

(Fig. 16). Concentrations of these ions are greatest in samples from the

bedrock. The lowest SO values are consistently found in the buried channel.

The molal concentrations of Ca exceed those of SO in all samples.

Samples with the lowest SO. concentrations have the greatest Ca/SO. molal

ratio (Ca/SO,). The Ca/SO. generally decreases as concentrations of Ca

and SO, increase, approaching unity in samples with SO. concentrations

greater than about 300 mg/L. As the concentration of Ca increases from the

dissolution of gypsum, Ca is removed from solution by precipitation of

calcite. Ion exchange reactions with the smectite clays in the glacial till

could also remove Ca as the concentrations become greater (Freeze and Cherry,

1979, p. 286). The decreased Ca/SO is the result of this preferential

removal of Ca relative to SO.

.

The relatively high concentrations of SO in ground water from Permian

bedrock aquifers and the relatively low concentrations of SO in ground

water from the buried channel suggest that only minor ground-water recharge to

the buried channel is occurring as underflow from the bedrock. If a large

proportion of this ground-water recharge was being received as underflow from
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bedrock aquifers, the SO concentrations in at least some ground water from

the buried channel would probably have higher SO. concentrations than those

observed. Ward (1974) found SO. concentrations greater than 1500 mg/L in

the buried channel in Nemaha County, suggesting that in certain areas a large

proportion of ground-water recharge to the buried channel originates as

underflow from the Permian bedrock (Ward, 1974, p. 19). Recharge to the

buried channel could be occurring from the bedrock where the ground water has

low SO concentrations, such as the Pennsylvanian bedrock along the eastern

edge of Marshall County. However, insufficient hydrogeochemical data are

available for the Pennsylvanian bedrock in Marshall County.

Sr/Ca Molal Ratio .—The Sr/Ca molal ratio (Sr/Ca) was calculated to

evaluate if any systematic relationships existed between hydrogeologic units

and concentrations of Sr and Ca in the ground water. The chemistry of Sr is

similar to that of Ca, and in Permian limestones of Kansas the Sr/Ca ranges

from 2.5 x 10~ to 5 x 10~ (Chandhuri, pers. comm.). Strougstad and Horr

(1963) reported Sr concentrations of up to 10 mg/L for low-salinity ground

water in the U.S., although most values were less than 2 mg/L. The

concentration of Sr in oil-field brines commonly exceeds 30 mg/L (White et

al., 1963).

The Sr concentrations for ground water in the investigation area range

from about 0.1 to 15 mg/L, although in most samples the concentration was less

than 1.0 mg/L. All samples were undersaturated with respect to strontianite

and celestite. The highest Sr concentrations are associated with high

concentrations of Ca and SO , suggesting the dissolution of small amounts of

celestite in the dissolving gypsum.
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-2 -2
The Sr/Ca is variable and ranges from about 0.05 x 10 to 4.6 x 10

,

_2
although only 5 wells had a value exceeding 1.0 x 10 . The Sr/Ca values

_2
greater than 1.0 x 10 " were in samples collected from the bedrock or

glacial deposits, which contained elevated concentrations of dissolved SO .

However, ground-water samples with elevated SO, concentrations do not always

have high Sr/Ca. Thus, it appears that in some regions, gypsum contains small

amounts of celestite which dissolves causing an increase in Sr/Ca.

Sass and Starinsky (1979) showed that the Sr/Ca can be an indicator of the

chemical reactions occurring between aquifer minerals and solutions. They

found there are six chemical processes which exert a control on Sr/Ca of a

solution, including (1) dolomitization of calcite, (2) dolomitization of

aragonite, (3) solution-reprecipitation of calcite, (4) transformation of

aragonite to calcite, (5) equilibrium with coexisting strontianite-calcite,

and (6) equilibrium with coexisting celestite-calcite. Because the ground

water is significantly undersaturated with respect to strontianite and

celestite, processes 5 and 6 are unlikely as a control on Sr/Ca.

The range of Sr/Ca for ground-water samples which do not appear to be

-2 -2
affected by celestite dissolution is 0.05 x 10 "to 1.0 x 10 . These

values suggest that the ground water is interacting with aquifer minerals

resulting in solution and reprecipitation of calcite (Sass and Starinsky,

1979, p. 892) This is supported by the SI data which show that many of the

samples, especially those from bedrock and glacial deposits, are near

saturation.

Na vs K .—The concentrations of Na and K in ground-water samples from the

tills are probably appreciably influenced by cation-exchange reactions. The

concentrations of Na and K for all samples are generally positively correlated
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but have a great degree of scatter (Fig. 17). The highest concentrations and

widest range of values for K are found in t ill-water samples. The relative

molal concentrations of Na are greater than K by at least an order of

magnitude.

The high values of Na and K in the ground water from the glacial deposits

are probably the result of ion exchange reactions involving smectite clays,

although a minor contribution of these ions is probable from the dissolution

of feldspars or salts in the till (Paces, 1972, p. 222-223; Grisak et al.,

1976, p. 323). The Na and K on the clays are probably being exchanged for Ca

or Mg in the ground water. The relatively higher concentrations of Na over K

in the ground water are probably a reflection of the greater abundance of

exchangeable Na on the clays and the more tightly held K in the clay structure.

The lowest concentrations of K are found in ground-water samples from

bedrock. Concentrations are always below 2 mg/L and are commonly below 1

mg/L. This low and relatively narrow range of K concentrations is likely a

reflection of the low K content of the Ca-rich limestone aquifers. Also, the

abundant illite of the bedrock shales, which contains K as an interlayer

cation, is not likely to release much K. Regardless of the mechanism, it is

apparent that aquifer mineralogy is a major factor controlling Na and K

hydrochemistry.

Na vs CI .—The concentrations of Na and CI are generally positively

correlated in samples from all hydrogeologic units, but with molal

concentrations of Na greater than those of CI (Fig. 18). Till-water samples

have the highest concentrations and the widest range of concentration for both

ions. Samples from the buried channel generally have the lowest

concentrations.
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The origin of much of the Na and CI in the ground water is probably the

dissolution of small amounts of halite contained in evaporite sequences in

bedrock or glacial till (Grisak et al., 1976, p. 323; Whittemore et al. t 1982,

p. 31) and/or traces of Na and CI trapped in the carbonate minerals and

gypsum. The contribution of Na to the ground water from the dissolution of

feldspars is probably much less than 10 mg/L (Grisak et al., 1976, p. 323).

The positive correlation of Na and CI suggests that either halite dissolution

or Na and CI originally present as trapped seawater in the carbonates and

gypsum have the greatest impact on concentrations of these ions in solution.

Concentration of salts in the tills by evapotranspiration could also have

increased Na and CI contents.

The greater molal content of Na over CI indicates some geochemical process

has resulted in a relative increase in Na or a decrease in CI. The CI ion is

a conservative ion and generally is not removed from solution by chemical

processes such as precipitation, ion exchange or oxidation-reduction reactions

(Hem, 1970, p. 170-176). Chloride concentrations are generally only affected

by physical processes such as dilution. The Na ion is also somewhat

conservative, but commonly does enter into ion exchange reactions with clays.

It is unlikely that precipitation is an important factor affecting the Na

concentrations because Na does not enter into precipitation reactions at the

concentration range of these waters. The excess dissolved Na is probably

derived from ion exchange reactions.

The relative large degree of scatter in the Na data, particularly in

samples from the glacial deposits, also implies that Na values have been

altered by ion exchange involving the smectite clays. The effects of this

exchange on concentrations of Ca and Mg are not readily discernible. The

concentrations of Ca and Mg are generally much greater than Na. Thus, because
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the exchange is on a milliequivalent basis, percentage changes in the Ca and

Mg concentration are smaller than for Na.

Hydrochemical System

The hydrochemical evolution of ground water in all hydrogeologic units in

the investigation area appears to be dominated by dissolution-precipitation of

carbonate minerals such as calcite and dolomite (Eqs. A and 5) under

open-system conditions (Eq. 7). The dissolution of carbonate minerals has a

major impact on the hydrochemistry of ground water because they are ubiquitous

in all hydrogeologic units and are relatively soluble. The ground water also

reacts with other minerals by dissolution or ion exchange, but the impact of

these reactions is limited to certain hydrogeologic units.

Ground water from the infiltration of surface water or precipitation

becomes charged with CCL because of elevated P__ in the soil zone. The

2

CCv reacts with the ground water, generating H_C0, and lowering pH. The

ground water dissolves carbonate minerals in the rocks and continues this

process during deep percolation until the ground water becomes saturated with

calcite and in some cases dolomite. The solubilities of calcite and dolomite

act to limit the maximum concentrations of Ca, Mg, and HCCL, and upper limit

of pH of the ground water. The open-system condition with respect to C0_

replenishment is at least partly responsible for moderating ground-water pH.

The dissolution of gypsum has a major impact on the hydrochemistry of

ground water in the bedrock. Ground water never reaches saturation with

gypsum and it does not precipitate from solution. However, the incongruent

dissolution of gypsum increases the concentration of Ca in the ground water,

which results in precipitation of calcite from supersaturated waters. The

relative kinetics of calcite precipitation and gypsum dissolution may be
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responsible for the slight supersaturation with respect to calcite, and

perhaps dolomite, in some waters.

The removal of Ca and HCO, from the ground water affects ion ratios in

solution. The distinctly different Ca/Mg, Ca/HC0
3

, and Ca/SO, in some

waters (Figs. 13, 15, and 16) can be related to the incongruent solution

reactions. The high concentrations of Ca and SO in some of the ground

waters also causes increased concentrations of some other ions because the

higher ionic strength of the water decreases activity coefficients allowing

increased equilibrium concentrations (Eqs. 2 and 3).

Ground water from the glacial deposits may be greatly affected by ion

exchange reactions. The most noticeable effects are increases in the

concentrations of Na and K in the ground water from ion exchange. The Na and

K enter solution as Ca and Mg are adsorbed on the clays. These reactions also

have an impact on ion ratios in the ground water (Figs. 17 and 18).

The consistent hydrochemistry of the buried channel is related to the

relatively simple and homogeneous mineralogy of the aquifer materials and the

nature of the source of ground-water recharge. The chert gravels are composed

of principally chert and limestone fragments. Soluble minerals such as gypsum

and halite were probably not deposited with these sediments. A small amount

of variation may be imparted on these waters by the heterogeneity of the

alluvium through which the ground water must pass before reaching the chert

gravels. However, the alluvial deposits probably contain very little highly

soluble minerals. The relatively large reservoir of water in the saturated

alluvium of Robidoux Creek and Black Vermillion River could act to buffer any

significant changes in hydrochemistry. Large changes in hydrochemistry of the

alluvium would probably only occur during severe, prolonged drought conditions.
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SUMMARY AND CONCLUSIONS

The buried channel in southeast Marshall County is a subtle depression in

the bedrock surface that trends from northwest to southeast across the

investigation area. The channel is asymmetrical in cross section, generally

widening to the southeast. The widest and most subtle part of the channel is

along the eastern edge of the investigation area, along the Marshall-Nemaha

county line. The channel is over 6 miles wide at this location.

The bedrock surface along the main axis of the channel slopes to the

southeast at 4 to 5 feet per mile. Tributaries to the channel are recognized

in some areas. The bedrock surface beneath the alluvium of the Black

Vermillion River southwest of Frankfort is probably the largest such

tributary. This tributary once was part of a preglacial drainage system that

flowed to the southeast across northeast Kansas. Another tributary may exist

to the northeast of the channel's main axis, but drill hole data are sparse in

that area.

The major aquifer of the buried channel is a 20-foot-thick deposit of

chert gravel occurring at the base of the channel. Ground water in the chert

gravels may be locally confined as indicated by water levels as much as 100

feet above the top of the gravels or may reflect the hydraulic connection

between the gravels and overlying sands. Ground water flows to the southeast

parallel to the bedrock-surface gradient. Flow in the Black Vermillion River

tributary is probably to the northeast toward the axis of the channel.

The hydrochemical evolution of ground water in the investigation area is

generally controlled by the aquifer's bulk mineralogy. Variations in the

hydrochemistry can be related to mineralogical differences among hydrogeologic

units. Because all aquifers contain abundant carbonate minerals such as
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calcite and dolomite, the hydrochemical evolution of the ground water is

dominated by dissolution-precipitation reactions involving these minerals.

The elevated Pnn levels in all ground-water samples indicate open-system

conditions with respect to CO- replenishment. Carbonate equilibria is

responsible for the upper limits of Ca, Mg, HCO, concentrations, and buffers

pH in all hydrogeologic units.

The presence of relatively soluble gypsum in the bedrock has a major

impact on the hydrochemistry of those aquifers. A small amount of gypsum may

also be present in the glacial deposits, but does not appear to have as

dramatic an impact on hydrochemistry. Ion exchange reactions involving

smectite clays in the glacial deposits and traces of Na and CI trapped in

carbonate minerals and gypsum result in increased concentrations of Na and K.

Ground water in the buried channel generally has the lowest TDS and shows

the least geographic and temporal variation in hydrochemistry of any of the

hydrogeologic units. Concentrations of the major ions do not appear to

increase significantly over the length of the channel in Marshall County,

although TDS, and particularly SO concentrations, increase dramatically in

the buried channel in Nemaha County.

Ground water recharge to the buried channel is probably occurring where

chert gravels pass under the saturated alluvium of Robidoux Creek and Black

Vermillion River. Geologic logs show that the alluvium is hydraulically

connected to the chert gravels in some areas. Water levels in the gravels are

similar to surface water elevations.

The hydrochemistry of the buried channel indicates that only a small

amount of ground-water recharge originates from Permian bedrock. If a large

proportion of the total recharge were being contributed by underflow from
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Permian bedrock, the water quality of the buried channel would reflect such a

contribution. The most likely indicator of such recharge would be increased

SO concentrations. The ground water in the buried channel is low in SO
,

in contrast with much higher SO contents in Permian bedrock waters.

Underflow from the Pennsylvanian bedrock could be contributing a significant

amount of recharge to the buried channel along the east side of Marshall

County. However, insufficient hydrochemical and hydrogeologic data are

available to determine this component of recharge. The glacial deposits are

probably contributing to recharge to some extent, but the relatively low

permeability of these deposits suggests only a small quantity of recharge is

occurring.
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Appendix A

ANALYTICAL PROCEDURES
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HYDROGEN ION ACTIVITY

Method: Potentiometric measurement

Apparatus: Corning Model 610 portable pH meter with Thomas combination
electrode and pH 4, 7, and 8 buffers.

Procedure: 1.) Check battery condition by turning function knob to
'BATT CK'. Replace batteries if needle falls outside
green band.

2.) Turn function knob to 'pH Normal' and set temperature
knob to temperature of buffers and sample.

3.) Rinse electrode with distilled-deionized (D-D) water
and blot dry. Lower into pH 7 buffer. Adjust
calibrate knob to read pH of buffer.

4.) Rinse and dry electrode. Lower into pH 4 buffer and
adjust temperature knob to obtain correct reading.

5.) Recheck calibration with pH 8 buffer.

6.) Rinse and dry electrode. Lower into sample and read pH.

Note: Turn function knob to 'OFF' position when electrode
is not immersed.

SPECIFIC ELECTRICAL CONDUCTIVITY

Method: Specific Conductivity Electrode and Meter

Apparatus: Lab-Line Lectro Mho-Meter, Model MC-1, Mark IV conductivity
meter, Lab-Line epoxy conductivity cell with cell constant

of 1.032 (Whittemore, pers. comm.), thermometer graduated in

0.1°C.

Procedure: 1.) Set selector switch to 1000 and temperature dial to

25°C.

2.) Measure and record temperature of sample to nearest
0.1°C.

3.) Rinse conductivity cell in sample, then completely
immerse the black porcelain tip of the cell in the

sample. Swirl the cell to remove trapped air bubbles.

4.) Press the READ button and record conductivity in

micromhos/cm.

5.) Correct conductivity reading to 25°C using the

following relationship:

SEC at 25°C = (measured conductivity)(1.032)(l+0.02(25-sample temp.))
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METALS DETERMINATIONS

Method: Spectrophotometric procedures used in analysis of the metals
calcium, magnesium, strontium, sodium, and potassium are

similar and are discussed together. Calcium, magnesium, and
strontium were analyzed by atomic absorption. Sodium and
potassium were analyzed by flame emission.

Apparatus: Perkin-Elmer 305B atomic absorption/flame emission
spectrophotometer, lamps for calcium, magnesium, and

strontium, 1000 mg/L calcium stock, 1000 mg/L magnesium
stock, 100 mg/L strontium stock, 1000 mg/L sodium stock,

100 mg/L potassium stock, and a solution containing 10000
mg/L lanthanum and 2000 mg/L rubidium.

Procedure: 1.) Prepare 1000 mg/L calcium stock by dissolving 2.4971 g
reagent grade CaC03, previously dried at 110°C for

two hours, in 200 mL D-D water. Add 10-20 mL HC1 until
CaC03 completely dissolves. Dilute to one liter with

D-D water.

2.) Prepare 1000 mg/L magnesium stock by dissolving
10.134 g reagent grade MgS0^,*7H2 in 200 mL D-D
water. Dilute to one liter with D-D water.

3.) Prepare 100 mg/L strontium stock by dissolving 0.1686 g
reagent grade SrC03, previously dried at 200°C for

2 hours, in 200 mL D-D water. Add 10-20 mL HC1 until
SrC03 completely dissolves. Dilute to one liter with

D-D water.

4.) Prepare 1000 mg/L sodium stock by dissolving 2.305 g
reagent grade Na2C03, previously dried at 110°C for

two hours, in 200 mL D-D water. Dilute to one liter
with D-D water.

5.) Prepare 100 mg/L potassium stock by dissolving 0.1907 g
reagent grade KC1, previously dried at 110°C for 1

hour, in 200 mL with D-D water. Dilute to one liter
with D-D water.

6.) Prepare lanthanum-rubidium solution by dissolving
25.4 g primary grade LaCl3*6H2 and 2.8269 g

reagent grade RbCl in 500 mL D-D water. Dilute to 1000
mL with D-D water.

7.) Prepare metals standards by adding appropriate volumes
of each stock solution to 500 mL of lanthanum-rubidium
solution followed by dilution to 1000 mL with D-D
water. The range of concentration covered by the
standards for each metal depends on the linear range of

that element for the particular instrument
configuration. For this investigation, instrument
settings were those recommended by Perkin-Elmer. The
following standards were used (in mg/L):
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Ion A B

Ca 5.00 3.00 1.00
Mg 0.50 0.30 0.10
Sr 2.00 1.00 0.50
Na 1.00 0.50 0.10
K 2.00 1.00 0.50

0.50

8.) Samples must be sufficiently diluted to bring the
concentration of each metal into the linear range of
that element for the particular instrument setting.

BICARBONATE DETERMINATION, HC03

Method: Titration (Modified from Skougstad et al., 1979)

Apparatus: Corning Model 12 pH meter, 25 ml_ buret, magnetic stirrer,
and thermometer graduated in 0.1°C.

Procedure: 1.) Prepare approximately 0.009 M Na2C03 by dissolving
0.9531 g Na2C03, previously dried at 150°C for two
hours, in 500 ml_ D-D water. Dilute solution to 1 liter.

2.) Prepare 0.018 N H2SO4 by diluting to one liter with

D-D water, 0.5 mL concentrated H2SO4.

3.) Standardize acid by titrating to the end point of
Na2C03 solution.

4.) Calculate normality of acid according to the formula:

N H2SO4 = 2(mL Na2C03 solution)(M Na2C03 )/(mL H2S0^ titrated)

5.) Pipette 50 mL of sample into plastic beaker containing
a Teflon stirring bar.

6.) Fill 25 mL buret with H2SO4 and record initial
reading on buret.

7.) Calibrate pH meter. Position beaker in center of
stirrer surface. Turn on stirrer to lowest possible
setting. If necessary, reposition beaker for smooth
stirring. Lower electrode into beaker and wait for

meter reading to stabilize. Measure and record
temperature and pH of sample.

8.) Titrate H2SO4 until pH of sample reads 4.5. Three
successive titrations should be reproducible to within
1 percent.

9.) Calculate concentration of HCO3:

mg/L HCO3 = (61.02)(1000)(mL H2S0A titrated)(N H2S0A )/(mL sample)
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Note: Bicarbonate is not stable and caution must be taken
to avoid outgassing of sample. Keep sample chilled at 4°C
at all times prior to HCO3 determination. Bicarbonate
analysis should be conducted within 24 hours of sample
collection.

CHLORIDE DETERMINATION, CI

Method: Mohr titration (Modified from American P 1 blic Health
Association et al., 1975, technique 407A;.

Apparatus: 25 ml_ buret, 100 mL beaker, magnetic stirrer, 1000 mg/L
chloride stock solution, potassium chromate indicator,
silver nitrate stock solution, incandescent lamp with yellow
bulb.

Procedure: 1.) Prepare 1000 mg/L chloride stock solution by dissolving
in D-D water 1.6491 g NaCl, previously dried for one
hour at 110°C. Dilute to one liter with D-D water.

2.) Prepare 100 mg/L and 10 mg/L chloride standard
solutions by diluting to one liter, 100 mL, and 10 mL
of stock solution, respectively.

3.) Prepare silver nitrate standard titrant solution
(approximately 760 mg/L silver) by dissolving in D-D
water 1.1978 g AgN03, previously dried for 40 minutes
at 100°C. Dilute to one liter with D-D water.
Standardize against 100 mg/L chloride standard solution,

4.) Prepare potassium chromate indicator solution by
dissolving 25 g ^CrO^ in D-D water. Dilute to one

liter with D-D water.

5.) Pipette 20 to 50 mL of sample into beaker. Add a few
drops indicator solution. Fill buret with standardized
silver nitrate solution and record initial buret
reading. Begin to slowly add the silver nitrate
solution to the sample. Because the color of the
solution turns red when the end point is reached, the
best titration results were obtained in a darkened room
with only the yellow bulb shining directly on the
sample being analyzed.

6.) Continue titration until the red-colored silver
chromate persists in the sample. Be careful not to

pass end point and to be consistent in the end point
recognition. It is recommended that many practice
titrations be conducted on known chloride standards to
help in end point recognition.

7.) Calculations:

mg/L CI = (mL AgN03 titrated)(N AgN03 )(35,453)/(mL sample)
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SULFATE DETERMINATION, SO4

Method: Turbidimetric (Modified from American Public Health
Association et al., 1975, technique 426C)

Apparatus: Coleman Universal Spectrophotometer, magnetic stirrer,
500 mg/L sulfate stock solution, 30-40 mesh BaCl2
crystals, salt-acid glycerol solution.

Procedure: 1.)

2.)

3.)

4.)

Prepare 500 mg/L SO4 stock solution by dissolving in
D-D water 0.7393 g Na2S0^, dried at 105°C for 2

hours, and diluting to 1 liter of solution. From this
stock solution prepare standards of 5, 10, 15, 20, 25,
and 30 mg/L.

Prepare salt acid glycerol solution by dissolving 75 g
NaCl in about 300 mL distilled deionized water. Add
30 mL concentrated HC1 and 100 mL 95 percent ethyl
alcohol. Mix this solution with 50 mL glycerol.

Pipette 50 mL of standard or sample into a 100 mL
beaker and add 10 mL of salt-acid glycerol solution.
Put in magnetic stirrer and begin slowly stirring. Add
about 0.3 g of 30-40 mesh BaCl2 crystals and continue
stirring for about 1 minute.

Stop stirrer for 3.5 minutes and then stir again for
0.5 minute.

) Pour sample into a 19 x 105 mm Coleman cuvette making
sure cuvette is absolutely clean and is in the same

orientation for all analyses.

6.) Within 5 minutes of final stirring, read the percent
transmittance on the spectrophotometer by comparing
each aliquot against a blank solution containing 50 mL
of sample and 10 mL salt acid-glycerol solution. Do

not add BaCl2 crystals to blank. Analyze samples
according to the Null Method (Coleman instruction
manual).

7.) Calculations: On semi-log paper plot a standard curve
with the sulfate concentration in mg/L on the

arithmetic abscissa and percent transmittance on the
logarithmetric ordinate. Sulfate concentrations in

samples are read in mg/L from the standard curve.
Correct for any sample dilution.

Notes on spectrophotometer use: Allow spectrophotometer to warm up at least
one-half hour before its use. Drifting readings are an indication that the

unit is not sufficiently warmed up. Cuvettes used in the sulfate
determination must be a matched pair. Cuvettes must not be handled with

bare fingers. Use appropriate gloves or Kim Wipes when handling cuvettes.
If cuvettes are touched with fingers, wipe clean immediately with Kim
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Wipes. After each use cuvettes must be thoroughly cleaned with a brush to
prevent the buildup of residue, and then should be placed back in storage
box.

NITRATE DETERMINATION, N03

Method: Spectrophotometry absorption (Modified from American Public
Health Association et al., 1975)

Apparatus: Perkin-Elmer Spectrophotometer for operation at 220 and 275
nm, matched silica cells of 1 cm or longer light path, 200
mg/L nitrate stock solution, HC1.

Procedure: 1.) Prepare a 200.0 mg/L NO3 stock solution by dissolving
0.3261 g KNO3, previously dried at 100°C for one

hour, in 500 ml_ D-D water. Dilute solution to 1 liter.

2.) Prepare standard NO3 solutions of 1, 3, 5, 10, and 15

mg/L NO3 by diluting appropriate volumes of stock
solution to 200 mL. Treat standards in the same manner
as samples. Acidify standards to pH 3 with HC1 prior
to final dilution.

3.) Turn on spectrophotometer and allow to warm up for 15
minutes. Set wavelength at 220 nm. Zero
spectrophotometer according to manufacturer's
instructions.

4.) Construct calibration curve for standards by comparing
absorbance of acidified D-D water blank to absorbance
of each standard. Plot absorbance vs NO3
concentration in mg/L on semi-log paper.

5.) Read absorbance of samples against acidified D-D water
blank.

6.) Set wavelength at 275 nm. Zero spectrophotometer
according to manufacturer's instructions.

7.) Repeat step 5 for all samples at new wavelength. This
step corrects for presence of dissolved organic matter.

8.) Calculations: NO3 absorbance = (absorbance at
220 nm)-(2(Absorbance at 275 nm))

9.) Plot NO3 absorbance on calibration curve and read
corresponding concentration in mg/L. Correct for any
dilutions.
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Appendix B

GEOLOGIC LOGS OF TEST BORINGS
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3-8-9ada

Well log of a test hole approximately 200 feet north of the railroad tracks on
Home City road at the northeast corner of the southeast one-quarter of the
northeast one-quarter of sec. 9, T.3S., R.8E., (3-8-9ada), on the east side of
the road, drilled on June 8, 1982. Surface elevation: 1298 feet above MSL
(Mean Sea Level)

Thickness, Depth,
feet feet

Quaternary - Pleistocene

Silty clay, reddish
Clayey sand, reddish
Silty clay, reddish brown
Clayey silt, brown
Sand, brown, with reddish coarse sand-sized

sandstone fragments and other sand-sized grains
Clay, dark gray
Gravel, chert (?)

12 0- 12
18 12- 30

15 30- 45
1 45- 46
9 46- 55

48 55-103
2 103-105

Permian

Shale, blue-green
Shale, red-brown

7

>1

105-112
112-113

Total depth 113
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3-8-20ccc

Well log of a test hole 600 feet east of extreme southwest corner of sec. 20,
T.3S., R.8E., (3-8-20ccc), on the north side of the road, drilled on June 3,

1982. Surface elevation: 1320 feet above MSL

Quaternary - Pleistocene

Clay, reddish, with minor amounts of coarse sand
Till, reddish, silty
Hard layer, unknown lithology
Sand, fine, loose, with sand-sized chert at

70-foot interval
Sand, coarse, with minor amount of chert
Sand, very coarse to fine gravel, contains blue

chert, quartz and quartzite fragments
Sand, fine
Sand, coarse, cherty
Sand, coarse to very coarse
Clay, white
Clay, hard, with some white and dark gray clay,

with sand-sized chert

Thickness, Depth,
feet feet

26 0-- 26
20 26-- 46
1 46-- 47

58 47--105

13 105--118

4 118--122

18 122--140

30 140--170

21 170--191

5 191--196

2 196--198

Permian

Shale, black >1

Total depth

199

199
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3-8-21aaa

Well log of a test hole 150 feet west of extreme northeast corner of sec. 21,
T.3S., R.8E., (3-8-21aaa), on the south shoulder of the road, drilled on June

7, 1982. Surface elevation: 1275 feet above MSL

Thickness, Depth,
feet feet

Quaternary - Pleistocene

Road fill
Clay, reddish, sandy, with sand-sized chert

between 8 and 9 feet
Clay, reddish to brown, cherty
Silty clay, dark gray
Sand, gray, loose, with minor amounts of

reddish sand

2 0- 2

7 2- 9

20 9- 29
30 29- 59

115 59-174

Permian (?)

Shale, black

Total depth

174

174

4-10-17ccc

Well log of a test hole 25 feet east of southwest corner of sec. 17, T.4S,
R.10E., (4-10-17ccc), on the east side of the road, drilled on March 17,

1982. Surface elevation: 1214 feet above MSL

Thickness,
feet

Depth,
feet

Quaternary - Pleistocene

Clay, black, topsoil
Silty clay, dark gray
Sand, dark olive gray
Sand, slightly coarser than above
Clayey sand, gray

Permian (?)

Shale, red

13 0-13
17 13-30

9 30-39

11 39-50
16 50-71

>5 76

Total depth 76
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4-10-19ddd

Well log of a test hole 100 feet west of southeast corner of sec. 19, T.4S,
R.10E., (4-10-19ddd), in the middle of the road, drilled on March 17, 1982.
Surface elevation: 1256 feet above MSL

Quaternary - Pleistocene

Topsoil, black
Silty clay, reddish to dark brown
Silty clay, light brown, minor amount of fine

pebbles of limestone
Silty clay, light brown, minor amount of fine

pebbles of chert, iron-stained sandstone,
and limestone

Sand, clean, dry, quartz
Sand, with minor clay lenses
Sand

Thickness,
feet

Depth,
feet

0- 6
6-11
11-16

16-21

6 21-27
4 27-31
2 31-33

Permian (?)

Limestone, very hard

Total depth

33

33

4-10-28ccc

Well log of a test hole 50 feet east of southwest corner of sec. 28, T.4S
R.10.E, (4-10-28ccc), on the north side of the road, drilled on March 16,

1982. Surface elevation: 1294 feet above MSL

Thickness,
feet

Depth,
feet

Quaternary - Pleistocene

Topsoil
Silty to sandy clay, light brown
Sandy clay, gray-green, fine pebbles
Sandy clay, dark brown to blue-gray fine pebbles
Sandy clay, dark gray
Clayey sand, gray-green, sand is mostly quartz
Sand, dark gray, mostly quartz

Permian (?)

Shale, light orange and dark gray, hard, dry

1 0- 1

25 1- 26

10 26- 36

5 36- 41

30 41- 71

5 71- 76

30 76-106

>15 121

Total depth 121



5-10-lccc

Well log of a test hole at the extreme southwest corner of sec. 1, T.5S.

R.10E., (5-10-lccc), on the north side of the road, drilled on March 17,

1982. Surface elevation: 1362 feet above MSL

95

Quaternary - Pleistocene

Topsoil
Gravelly clay, yellow
Clay, gray-tan, pebbley
Clayey gravel, hard at 64.5-66.5
Sandy clay, medium dark gray
Gravelly to sandy clay, medium gray
Sand, tan, very fine, some gravel
Clay, gray

Thickness, Depth,
feet feet

3 0-3
15 3-18
29 18 - 47
19.5 47 - 66
10.5 66.5- 77
14 77 - 91

81 91 -172
47 172 -219

Permian (?)

Limestone, hard
Shale, hard
Limestone

221
223

223

Total depth 223

5-10-3ccc

Well log of a test hole 75 feet east of southwest corner of sec. 3, T.5S.,
R.10E., (5-10-3ccc) on the north side of the road, drilled on March 15, 1982,

Surface elevation: 1259 feet above MSL

Thickness,
feet

Depth,
feet

Quaternary - Pleistocene

Topsoil, dark brown
Silty clay, dark gray
Silty clay, brown
Silty clay, blue-gray
Clay, blue, small amounts green clay
Sandy clay, green, minor amount coarse sand

of chert and limestone

2 0- 2

8 2-10

12 10-22

5 22-27
5 27-32

1 32-33

Permian (?)

Shale, light green
Shale, red

14
>13

33-47
47-60

Total depth 60
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Appendix C

RESULTS OF ANALYSES OF GROUND-WATER SAMPLES
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Table CI. Locations of Wells From Which Ground-Water Samples Were Collected

Name
Sample
Location*

A. Maas
L. Gerstner
J. Dunlap
J. Stiner
3. Horigan
C. Swick
H. Huddleston
M. Bramhall
G. Feldhausen
J. Sanderson
L. Baker
D. Schooler
K. Lindsey
W. Foley
B. Bramhall
W. Hanzlik
L. Wenzl
J. Boyle
C. Seematter
D. Stock
L. Ladner
H. Wullschleger
B. Bliss
D. Fincham
C. Stiner
L. Millenbruch
J. Vogelsburg
E. Foley
G. Norman
L. Ketter
A. Argo
B. Alley
E. Ewing
V. Forst
D. Bonjour
H. Haskin
W. Surdez
R. Koch
J. Wapp
D. Fincham
M. Samuelson
L. Boeckman

4-9-ldcd
4-9-lcdc
4-9-llbbc
4-9-17abb
4-9-3ddc
4-10-9baa
4-10-3cc
5-10-lAada
3-9-33dcd
3-8-19dad
5-10-23bcb
4-9-9bda
3-9-33ddd
3-8-29ddd
4-10-10cdd
4-10-23acc
4-10-27aaa
3-10-36bcc
3-8-24bdb
3-8-4dcd
3-9-12ddd
3-8-3daa
5-10-2dcc
3-8-30aaa
4-10-5bba
3-8-15bbc
3-8-14bba
3-8-14ada
3-8-16ccc
3-8-22daa
3-10-20cdc
5-9-19bcd
5-8-36daa
5-9-32add
6-10-4aba
5-9-4bab
5-10-7ada
5-9-14bbb
5-9-21caa
4-8-20d
3-9-4aba
5-10-19cca

Township-Range-Section, 1/4 Section, 1/4-1/4 Section, 1/4-1/4-1/4 Section
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HISTORICAL HYDROCHEMICAL DATA
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The hydrogeology and ground-water geochemistry of a buried preglacial

channel in southeast Marshall County, Kansas, have been investigated.

Quaternary till and Permian limestones and shales comprise the surficial rocks

of the area. Till thickness ranges up to 325 feet. The principal aquifer of

the channel is a basal chert gravel that attains a maximum thickness of about

20 feet. Well yields up to 300 gpm are possible from the gravel.

The axis of the channel trends southeast, passing north of Frankfort and

intersecting the Marshall-Nemaha County line near Vermillion. Available drill

hole data indicate a gradient of about 4-5 feet per mile. The channel is

broad and asymmetrical in cross section and is nearly 3 miles wide at the

eastern county line. The Black Vermillion River southwest of Frankfort was

probably part of this buried channel system during early Quaternary time.

Recharge to the channel occurs where perennial streams intersect the buried

channel. Robidoux Creek and Black Vermillion River a few miles north of

Frankfort are the probable sources of most of the recharge to the buried

channel. Bedrock, till, and channel gravels are defined as aquifers based on

differences in rock type. There are substantial differences in water

chemistry among these three aquifer types. Sixty-two ground-water samples

were collected from 42 water wells in the area. The predominant water type in

all aquifers is Ca-HCO,, but Ca-SO -type waters occur in bedrock

containing gypsum. The carbonate system provides the principal controls on

the chemical evolution of ground waters in the area. Saturation indices and

ratios of Ca/Mg indicate that calcite is a more important control than

dolomite. Calcite saturation indices are lowest in channel ground waters and

highest in bedrock aquifers; total dissolved solids concentrations are also

lowest in channel ground waters.



The range and variation in total dissolved solids in channel waters are

small; multiple samples collected from three of four channel wells varied only

a few percent in dissolved solids during the period of sampling. Ground water

from bedrock and to a lesser extent from till range and vary greatly in

dissolved constituents. Variations appear to be related to changes in

recharge diluting mineralized ground water. Nitrate concentrations are lowest

in channel ground waters and highest in shallow, old wells, possibly

indicating contaminants entered through a poor surface seal around the shallow

wells. Sodium is probably released during solution of carbonates and

evaporates and, along with K, is controlled by ion exchange on clays.




