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INTRODUCTION

Design of tractor drive axles is still more of an art than a
science. Axle failure has drawn the attention of various tractor
and power transmission manufacturers during the past ten years.
Laboratory tests for the most part have not provided an adequate
idea of stress fluctuations which are possible under actual field
conditions. It is possible that axles could be designed more
scientifically if factors such as vehicle mass, tire spring rates,
tire damping co-efficients, speed range, configuration of field
surfaces, material properties, and geometrical configurations were
considered during design.

Random motion of tractors on highly irregular surfaces, the
addition of dual wheels, and wheel tread adjustment for various
field conditions are factors which have generally not received ad-
equate attention in the design of rear axles. These factors can
cause excessive axle stress and result in immediate failure or
early failure due to fatigue. Axle failure presents a very dan-
gerous situation to the tractor operator since it can cause the
tractor to upset. It also results in a costly repair job for the
OWner.

Consideration of the dynamic condition as well as the static
situation becomes very important when the vehicle oscillates at
large amplitudes from its equilibrium position or when the draw
bar load on the tractor fluctuates. Under these conditions, stresses
can be very high and may cause the axle to fail immediately or

much earlier than its expected 1life. Therefore, transient
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fluctuation of peak stresses should be analyzed before the axle is
built and used for operational purposes.

A mathematical analysis of the stress variation in a tractor
axle becomes quite difficult when transient stress is considered
due to dynamic loading of rear tires. A mathematical solution,
however, provides explicit information about stress fluctuation
for the interval of time during which it is damping out. This so-
lution also indicates the period within which the vibratory motion
of the vehicle reaches a steady state situation as well as the to-
tal time during which the axle was under excessive stresses. Pre-
diction of the number of cycles of a particular stress level to
calculate fatigue life is also possible with the help of this

transient stress analysis.



REVIEW OF LITERATURE

Rear axle deflection and its stresses were of interest in
both road and off-the-road vehicles even before the age of steel
wheels (late in the eighteenth century). Increasing speed, irreg-
ularity in road and field surfaces, and increasing torque in the
axle are a few major factors which cause the axle to fail during

operation.

Considerations of Vibration

The latest analysis of coupled vibration of a road vehicle
axle was made by Ellis (1967). He studied a five-degrees-of-
freedom model of a typical suspension, and demonstrated that a two-
degrees-of-freedom model of pitching and bouncing modes is ade-
quate for the study of axle deflection. He also emphasized that
forcing functions resulting from fluctuating torques on the axle
and road irregularities require that further uncoupled modes of
vibration must be included if the non-linearity due to loss of
contact between the road and the wheel is to be represented.

Pershing (1966) analyzed the transient motion of a tractor
on side slopes. He represented the tractor by a nine-degrees-of-
freedom model, and assumed the tractor was a rigid body with the
exception of the tires. The front axle was considered to have
tramp motion about its hinge point on the chasis. He used a
single bump having a specific configuration of a half-sine period
as the forcing function and plotted the rear axle tire displace-

ment with respect to ground profile from a computer solution of



the differential equations.

An analytical method was developed by Young (1948) for de-
termining natural frequencies of a composite system which consis-
ted of a uniform beam with a concentrated mass, spring, and dash-
pot that could be attached at any point along the length of the
beam. Young showed that the fundamental frequency of a uniform
cantilever beam can be obtained by considering the beam as a mass-
less cantilever spring with a concentrated mass at the end equal
to 24,267 percent of the beam mass. He also studied various
cases of cantilever beams with masses and dashpot included in the
system.

A study of secondary vibration in the rear axle of an auto-
mobile was made by Polhemus (1950). He reported that the axle
can shift linearly with respect to the chassis in three direc-
tions (x, vy, and z), and it can rotate around the three axes to
produce the rotary motions Ox’ Oy, and Oz.

The translating motions are called

X « + « « « + « o Parallel hop
Y + « « 4+« « . . . Fore and aft shift
Z .+ + + » s« +» « » Lateral shift

The rotary motions are

Ox' e+ « « + +» » Yaw
0. ... . .. . Tram
y P
Oz' « + + « « + o+ Windup

The amplitude and resonent frequencies of these secondary
ride motions depend upon axle mass and elastic stiffness between

the mass and the chassis. Parallel axle hop and tramp were the



two motions directly excited by road waves.

It is not possible to accurately calculate the stress due to
vibration from the amplitude of vibration since it requires
double differentiation of the displacement (Hendry, 1964).
Stresses can be determined more accurately by measuring the ac-
celeration.

In the case of a vibrating beam

dzMx Woa
dx? g

Where Mx is the maximum bending moment at the distance x
from the end of the beam, and
a, is the maximum acceleration at x,
Wx is the intensity of loading at x,
g is the gravitational acceleration.
Then the stress at x is:
chx Cx X Wxax

- I
Sy = Ix I o b g dydy * SgM,

Where Cx is extreme fiber distance from the neutral axis of
the cross-section at x, and
Ix is the area moment of intertia of the cross section
at x.

Fatigue Considerations of Axle Failure

Cumulative damage theory was used to analyze tractor final
drives by Graham (1961). He showed that the fatigue life for a
component having cyclic loading can be calculated by the follow-

ing formula:



Ng - S; I7a
E di (§")
Where
Ng = Fatigue life in cycles
N = Cycles to failure at stress level S
Si = Stresses at each level observed
S = Maximum stress expected
E = Modulus of elasticity
1/a = Inverse slope of S-N curve
di = Ratios of the cycles applied at stress level S

to the total cycles applied
The fatigue characteristics of a combined stressed body are
best estimated by the distortion energy theory according to
Grower, Gorden, and Jackson (1960). This theory is expressed in

the following equation for torsion and bending:

S = /S

2 g
c b * 38t

Where

w
]

b Bending stress

72]
]

Shear stress

wn
]

Combined stress

The combined stress calculated by this equation can then be
used with the bending S-N curve to estimate the fatigue 1life,
Graham also concluded that the cumulative damage technique great-
ly depends upon the accuracy of the field load and fatigue data

used.



Car axle fatigue testing was also made by Stott (1958). He
reported that passenger car axles are subject to a combination of
both torsional and bending stresses, but ultimate fatigue life
can best be assessed if each factor of loading is treated sepa-
rately and tested accordingly.

A modified version of a rotating cantilever machine was des-
cribed by Dawtery (1946). The machine was developed to determine
the fatigue life of a truck rear axle. He suggested that a tar-
get life of 108 cycles is desirable.

While discussing the operational stresses in automotive
parts, Robert (1959) mentioned that the axle runs with a continu-
ous stress reversal under static load. Axles are frequently sub-
jected to larger loads due to bumps and lateral forces at the
tire. They must, therefore, withstand occasional large overloads.
When a car encounters a curve during cornering or on rough roads,
lateral forces at the tires produce stress reversals at many
sections; fatigue failure is therefore likely. Robert also re-
ported that when the wheel strikes large bumps, the axle may fail
in fatigue from the frequent application of normal forces or it
may undergo permanent deformation due to excessive accelerating
or decelerating loads. He reported that dynamic stresses are
approximately four times the static load stress. Another criti-
cal stress in the axle is due to the torsional stress at the in-
ner end (either in the splined section or in the circular section
next to splines). 1In view of the stress concentration present in
that location, fatigue is possible even if the stress reversal is

not present.



Holfmeister (1960) emphasized that for random dynamic load-
ing, predicting total cycles to failure using the cumulative fa-
tigue damage theory proposed by Corten and Dolen correlates well
with the experimental evidence obtained by laboratory tests. The
information that is necessary to apply this theory is as follows:

1) Knowledge of endurance 1limit diagram for the part or
machine in question.

2) Knowledge of service load spectrum,.

3) The cumulative fatigue damage relationship.

The equation developed by Corton and Dolen to calculate the

number of cycles to failure is:

N = Nl
g g, a oz a o, a
gy ¥ ap(T=) P gl * e ¥ mpilGs
1 1 i
Where
Ng = Total cycles to failure
Nl = Cycles to failure for continuous stressing at 94

N2 = Cycles to failure for continuous stressing at 7,
o1 = Maximum applied stress

oy = Second largest applied stress

gz = Third largest applied stress

o. = Minimum applied stress for which damage progresses
ay = Ratio of cycles N1 at the total cycles Ng at o,

a, = Ratio of cycles N, to the total cycles Ng at o,

2

Some of the elements which are required to calculate the num-

ber of cycles to failure are given in Figurel.
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Research involving the bending of rotating beams is closely
analogous to research involving axle design. Experiments on ro-
tating beams were made by Tiedemann and Vigness (1955) on sepa-
rate specimens, at different constant rotational speeds and at
different constant rates of transverse bending. Rotating bars
exhibited an obvious yield at much less load than did non-
rotating specimens. This yield occured when the maximum stress
in the rotating specimens was approximately equal to the yield
stress as determined by a tensile test of the material. The load
supported by a rotating specimen increased nearly linearly with
deflection after yield. For small plastic strains, rotating
specimens were less rigid than non-rotating specimens. For large
plastic strains the reverse was true. They also emphasized that
the physical strength properties of materials are sometimes
greatly influenced by strain rate and the duration of load appli-

cation.

Studies Made on Axle Design and Stress Analysis

Tractor axle stress variation was studied by Anderson (1966);
he found that wheel spacing and dual tire attachments affect the
stress variation in the rear axle of a tractor. Combined tor-
sional and bending forces in the rear axle can be 40-50 percent
greater in a tractor equipped with duals set at 60 and 120 inches
respectively, compared to a single set of tires spaced at 80 in-
ches. He also reported that magnitude and frequency of these

forces are affected by terrain, type of soil, and soil conditions.



11

Analysis of a truck axle under dynamic conditionswas made
by Gordan (1955). He reported that static load conditions are
important for preliminary design and evaluation. However, they
do not allow for the combined forces encountered under dynamic
conditions, such as rounding a curve at high speed where weight
transfer and lateral skid forces become very significant.

To improve tractor axle design, Eckert (1951) developed a
non-resonant fatigue machine so that he could determine the ef-
fect of material variation, heat treatment, spline geometry, and
surface treatment on the strength of the axle. The machine was
capable of loading the axle up to 90,000 1b ft twice a second.
Specimens could be run in torsion as well as in bending in the

direction of any mean stress.

Experimental Data on Axle Loading and Its Stresses

Vehicle: Heavy-duty highway tractor trailer combination
Data: Axle ratio = 7.8

Tire size = 11.00/20

Transmission ratio = 7.5

Net engine torque = 300 1b per ft

Net engine h.p. = 150

Gross vehicle weight = 28,000 1b

Gross combination weight = 28.000 1b + 32,000 1b

Axle load = 22,000 1b

Static case

Gordon stated that the axle had a yield stress of 60,000 psi

Maximum allowable static stress = 12,000 psi
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Diameter of axle = 3,668 inches

Maximum static stress in axle = 9,700 psi

Static stress at housing critical section = 14,200 psi
Static B.M. = 36,000 in 1b

Dynamic case

Axle maximum stress = 70,800 psi
Maximum bending moment in housing = 41,400 in 1b

Axle shaft analysis

Vehicle - Crawler tractor with loader attached
Axle stress analysis was made by James A. Graham,
David K. Berns, and Duane R. Olberts.
An oscillograph record showing bending moment and torque
fluctuations on the axle is shown in Figure 2.
The life of the axle was calculated by cumulative damage a-
nalysis based on the load spectrum and the S-N curve given in
Figure 1. This shows the allowable stress for different ranges

of life in terms of N cycles.
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OBJECTIVES

To expand the mathematical model of the conventional agricul-
tural tractor to include the effects of dual tire attachments.
To develop stress equations that provide maximum bending
stress versus time relationships for various methods of
attaching dual tires.

To determine the solution of the stress equations for conven-
tional and dual tire configurations by digital computer simu-

lation.
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THE MATHEMATICAL MODEL

The Problem Defined

Tractor axles are generally designed on a static rather than
a dynamic basis. Little consideration is given to the effects of
dual wheel attachments. Methods of dual wheel attachment, loss
of inside tire contact with the ground surface during operation,
and vehicle speed may greatly influence the stress magnitudes in
the rear axle. The maximum stress is sometimes critical in the
dynamic case and thus should be studied under various dynamic
conditions. Axle material properties, axle size, and methods of
attaching dual wheels may be varied to obtain a design that will
provide a reasonable life.

A rear axle model which describes the relationship between
vehicle variables and represents the actual equivalent system is
needed. This should be done so that methods for improving the
design can be determined without having to build a model and test
it. A fairly complete mathematical model which provides informa-
tion about axle deflection as well as the information concerning
vehicle stability is needed. Irregular contact of dual wheels
with the ground surface effects the stress condition; therefore,
a model that considers the axle as an elastic body must be con-
sidered.

The study here will be confined to expansion of a conven-
tional tractor model to a dual wheel model with an elastic axle.
In order to find axle deflection, the rear axle and dual wheels

configuration will be represented as an equivalent vibratory
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system. The analysis of axle stress variation will be discussed

in light of the results from the computer solution.

Mathematical Models

A 17 degree-of-freedom model was used to include the effect
of a complex coupling present in the tractor. Ten individual
bodies were included in the model: four rear wheels, two front
wheels, the chassis, the front axles, and two rear axles. The
wheels were represented as an equivalent system consisting of
masses with linear springs and constant damping. The rear axle
was modeled as a massless rotating centilever beam.

Schematic diagrams of the various models of rear axles are
shown in Figures 3 through 8. The figures consist of top, rear,
and side views of equivalent vibratory systems of the chassis,
wheels, and axles. All masses, equivalent springs, and dampers
have been represented in terms of m, k, and ¢ with their respec-
tive subscripts. Definitions of all the parameters have been
described in Tables I through III. These models were used to
calculate kinetic, potential, and dissipative energies in the

system and in the development of equations of motion.

Summary of Assumptions and Their Limitations

Assumptions which were made during the analysis are as
follows:

1) The dual wheel tractor was considered as nine bodies: the
four rear wheels, two front wheels, the chassis, front axle, and

rear axle.
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TABLE I

TRACTOR DIMENSIONS

Definitioen

Perpendicular distance from the rear axle to a trans-
verse vertical plane through the center of mass of the
chassis

Perpendicular distance from the longitudinal vertical
plane through the center line of the chassis to the
center of mass

Vertical height of the center of mass of the chassis
above the ground (with the tractor on level surface)

Rolling radius of the front wheels
Rolling radius of the rear wheels

Distance from the center of mass of the chassis to the
wheel (i)

Perpendicular distance from the front axle to a trans-
verse vertical plane through the center of mass of the
chassis (wheel base - Xx)

Vertical distance between the hinge point of the front
axle and the center of mass of the chassis

Height of the front axle hinge (z - b)

Vertical distance between the hinge point of the front
axle and the center of mass of the front axle



X11¢ 15

X12 ¢ 16

X13§17

18
19

22

TABLE II
POSSIBLE DEGREES OF FREEDOM

Definition for Positive Displacement

Forward translation of chassis
Lateral translation of chassis to the right
Downward translation of chassis

Angular motion of chassis according to the right-hand
rule about the longitudinal axis (roll motion)

Angular motion of chassis according to the right-hand
rule about the transverse axis (pitch motion)

Angular motion of chassis according to the right-hand
rule about the vertical axis (yaw motion)

Angular motion of front axle position in the same
direction as X, (tramp motion)

Angular motion of left front wheel, positive in the
direction opposite to positive Xc

Angular motion of right front wheel, positive in the
direction opposite to positive Xc

Vertical and horizontal motion of left rear axle point
where the inner dual wheel is attached (positive X4
direction)

Vertical and horizontal motion of right rear axle point
where the inner dual wheel is attached (positive X4
direction)

Vertical and horizontal motion of left rear axle point
where the outer wheel is attached (positive Xg
direction)

Vertical and horizontal motion of right rear axle point
where the outer dual wheel is attached (positive Xg
direction)

Angular motion of the left rear wheel (positive)

Angular motion of the right rear wheel (positive)
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TABLLE I1I

SPRING AND DAMPING CONSTANTS

Symbeol Definition

and c Spring and damping rate, vertical
direction left and right front
tires, respectively.
and c S 5 Spring and damping rate, vertical
- direction left and right inner
rear wheels (for dual wheel).
and c- 7 Spring and damping rate, vertical
“ ~ .direction left and right outer
rear wheels (for dual wheels).
dnd. £, - Spring and damping rate, lateral
' - direction left and right front
wheels: Tespectively:
and €47 - Spring and damping rate, lateral
. direction left and right inner
rear wheels,; respectively.

Spring and damping rate, lateral
_direction left and right outer
rear wheels, respectively,

and ¢

_and_c g . Spring and damping rate, fore and

-.aft left and right front wheels.
and ¢ Cg o _ - Spring and damping rate, fore and
- aft left and right inner rear
- Wheels.

and Cq1s Cgo ..+ Spring and damping rate, fore and
) T aft left outer rear wheel and
- right outer wheel.



24

2) Small angular oscillations were assumed in order to ne-
glect the effect of nonlinearity due to loss of contact between
the wheel and the ground.

3) The tear axle extending outside the axle housing was as-
sumed as an elastic rotating cantilever beam with neglegible in-
ternal damping and mass.

4) The tires were assumed as linear springs with constant
damping in all directions.

5) Torsional stresses were neglected while calculating the

maximum stresses in the rear axle.

Reduction of Model

The formulated dual-wheel model with the hub method of attach-
ment (see Fig. 6) could be reduced to several other models by
making some changes in the parameters. Possible models which
could be obtained are:

1) Dual wheel tractor model with rim-to-rim attachment (see
Fig. 8).

This can be achieved by developing a model with two ri-
gidly attached masses to represent the individual wheel masses.
The tires are represented by individual springs and dashpots to
represent the tire spring rate and damping coefficients. Mathe-

matically, this model could be obtained as follows:

Kjeq = 0
10 T *12 X14 T X316
X911 = *13 Xig = Xy9

That is, there is no relative motion between the dual
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wheels. This condition could be substituted into the computer
program to obtain the solution of the above mentioned model.
2) Single wheel tractor model with the axle as an elastic

body. This model could be obtained by making the following

changes:
C7p = €72 = Cg1 = Cg2 = Cg1 = Cgp = 0
kgy = kg = kg = kgy = kg = kg, = 0
M, = Mg =0
Kpeq= 00

The model has been shown mathematically in Figure 7.
3) Single wheel tractor model with axle as a rigid body.

The model could be obtained by making the following changes:

X9 - (x5 + X Xg - dgXx,) = 0
Xqq - (xg # X xc +dx,) =0
X9 - (xq # z xg - d x,) =0
X1z - (xl + zZ Xe * d x4] =0

These changes will make potential energy stored in the spring
equivalent of the axle equal to zero and neglects the effect of

the elastic nature of the axle.

Formulation of the Problem

An energy method was used to obtain the equations of motion
for this problem. The energy approach involves Lagrange's equa-
tions which are commonly used in problems of multiple degrees of
freedom. A few of the variations of Lagrange's equations are

mentioned below:
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In the case of a conservative system, the work done is equal

to the negative of potential energy.

W = -u (qls qz: sy q‘l’l)
and
al
m:-z_._._
qu §qk
Therefore, Lagrange's equation for the conservative system
will be
BB
qk qk gk
For the nonconservative system, Lagrange's equation is as
follows:
d L oL
== 3= = ¢
dt qu 3qk k
d T aT W\ _ A
@ G- ¥ ) = Q

gk aqk qu
where L = T - U; L is known as the Lagrangian Constant.

This last form enables one to entend the use of Lagrange's
method to non-conservative systems. Hence, the method of La-
grange is applicable to all dynamic systems including damped vi-
brations.

If the non-conservative forces due to friction are propor-
tional to velocity, a function F may be obtained so that La-

grange's equation becomes

d_ AL, AL 3F _ g
dt Bate Sk 24k
where L = T - v
F = Raleigh's dissipative function



29

Raleigh's dissipative function is defined as

F=1/2 1K q.2
/2 ¢ q 93

friction in direction j

where K.
! j

q; velocity in direction j

The equations of motion in this study were developed by means
of the Lagrange method. Partial derivatives of kinetic energy,
potential energy, and dissipative energy with respect to each co-
ordinate in the system were obtained. These derivatives were

substituted into the following equation:

d 3(K.E.) _ 3(K.E.) , 3(D.E.) , 3(P.E.) _

+
dt R 3 2

3. . ; : Qj
q1 q1 q1 q1

1

where K.E. is kinetic energy in the system

= 5.2
T = 1/2 § M, 4

D.E. is dissipative energy in the system

= q.2
C i/2 ? Ci q;

and P.E. is potential energy in the systen

Uu=1/27¢: 2
i K94

Q. represents the external forces acting on the system.

i
Kinetic Energy:

Total kinetic energy in the system of the dual wheel tractor

with the hub method of tire attachment was formulated as follows:

Ty = 1/2 ml[(il +z - T - (dl-i)x7)(i5 - d1£6)]2

+ (iz - bi4 = (h -7 - (dy-X)%,) i7 + ai6)2

- —l. L2 2
+ (x3 T aXg - XX, - (dl—x)x7) # 172 Illl X5



- 2 - 2
* 12 11,5 Xg2 + 1/2 133 Xg

1/2 my[(xq + (z -1+ (dyp Y) X3) X

(xz - bx4

- (h - T+ (3t ¥) X5) X,

30

PR
- dokg)
g D
+ ax6)

L] _ _ - . 2
(x3 ax yX, * (d +y) x7) ] + 1/2 1211 7

A T
1/2 Ty5%g" + 1/2 T535%g

X

1/2 m 3%X14

2
3%102 * 1/2m

S v 2 5
Xxe) e+ Ig94(x,

5 ;
1/2 m + 1/2m4x + 1/2 m4(x2

4 11 15

5 ww N2 : .. B
xxﬁ) + 1/2 I4ll(x4 + x6) # 102 I

> 2 v 2 & 2
1/2 ms[x1 + X * Xq ]

2

2 9 v 2 v 2
* 1/2[1g19%X,% * TgopXe® + IpaaXe?]

- Ig13%X4%g - Igp3%cXg

1/2 mﬁf(il + (b+e) is - 9&6)2 + (iz

2 »
+ 1/2 ms(x2

e I

(z-R) i4

v 12 v V2
* Xg)% + 1/2 Ig355(-Xg)

(z-R) i4

i 2
422 (%Xs)

5155458

= bx4 + ax

- ex_Y2 O C
ex7) + (XS YX, ax ) 1] + 1/2 1611 7

+ 1/2 1622i52 + 1/2 1633i62

L] 2 L]
172 moX;,% * 1/2 m,Xqg

2 .
+ 1/2 m7(x2

(z-R) k4

-_o 2 . . 2 o 2
Xx) % + Ipq5(Xg * Xg)° + 1/2 145,(-Xg)

” . .2 s . .2 .
T8 1/2m8x13 + 1/2 MgXy o + 1/2 mg[x2

= iiﬁ)z + 1/2 1

(z-R) i4

L ] - -. 2
g11(Xg * Xg¥ * 1/2 Ig,,(-xg)
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Potential and Dissipative Energy:

Energy stored in the equivalent springs of the system and
energy dissipated due to velocity in the equivalent dampers of

the system were formulated as follows:

Total dissipative energy of the system due to the tire damp-

ing coefficients:

F =gc1ﬂx3 T aXg - yX,

(d;-¥) %,12

+ 172 cléis - axg - §i4 + (d2+§) i7]2

°3ﬂxz + ax6 bx

+

1/2

- = 2
4 - hxgl

+ 1/2 °3£i2 + axg - b£4 . hi7]2

L 3 L] —‘ [ ] _ - 2
+ 1/2 csﬂxl + d1x6 + (z-1) Xc rx8]

L] _ . —— L ] _ - 2
¥+ 142 cséxl d2x6 + (z-1) X¢ rxg]

CoqXqn2+ 1/2 ConXyq2 + 1/2 CoyXn2 + 1/2 Coux,y.?
21%10 22%11 71%12 7213
+ 1/2 Csﬂiz - ixﬁ s £i4]2 + 1/2 Csiiz - iiﬁ - £i4]2

. _ - _ - 2 _ - _ - 2
+ 1/2 c4ﬂx2 XX ¢ zx4} + 1/2 c4jx2 XX zx4]

+ 1/2 ¢ 2 % 1/2 ¢

o 2 2 - 2
61%14 Csa%i% 91%16

* 1/2 cgpXy,°
Total potential energy of the system due to the tire equiva-
lent springs:
V= 1/2 ki Ixg - axg - yx, - (dy-¥) x,12
¥ 12 kyglng = axe = ¥xy + (@,47) %412

+ 1/2 k31[x2 + axg - bx4 - hx7]2
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’ - 2
+ 1/2 ksz[x2 + axg bx4 hx7]

+ 1/2 kgqlxq + dyxg + (z-1) Xe - rx8]2

+ 1/2 ke,lxy - dox + (z-1) Xg - TXgl?
2 2 2
*1/2 kX0 * 1/2 kpoxg9% + 172 kgXy,
2 _ L B A
+ 1/2 k72x13 + 1/2 kSl[x2 XX zx4]

+ 1/2 kg,[x, - ixﬁ - £x412
+ 1/2 ky lx, - ixﬁ - ix4]2
+ 1/2 k,,lx, - ix6 - 2x,]?

*1/2 KX 42+ 1/2 Kgoxg? + 172 kgxg6?

+

2
102 k92x17

Potential energy due to axle equivalent spring for the dual
wheel model:
= . - o 2
Vv 1/2 kl[x3 XX d3x4 xlo]
+ 1/2 kilxg + xxc + d x, - xll]2

+ 1/2 ky[xg + XXg - deX, - xlz]2

+ 1/2 kz[x3 *oXxg ¥ d x, - x

131°
*1/2 kylxg * zxg + dgXe - Xq,1]2
+ 1/2 kl[x1 + zx. - d,x, - X
+ 1/2 kolxy + zxg + dsx6 - X16]2

. . 2
+ 1/2 kz[xl * zXg d5x6 X17]
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of Motion

The equations of motion differ considerably from one model

to another. More equations are required for the dual wheel

models since the degrees of freedom are increased compared to the

single wheel model.

equations

for the dual wheel model with the hub method of tire

attachment were formulated first. These are:

Equations due to freedom in X4 direction:

Equations

[(m; + m, + mc + m6)1§1 + [(my + mz)(i & L)

+ (b + e)mglxg + [cgy * cg,0%; + [(egy * c5) (2 - T)1%g

* legydy - egpdp)xg + [-cgqTlxg + [-Cg)Tlxg
¢ kg, + kg, *+ 2ky + 2K, )%,

* [(kgy + kgy)(z - 1) + 2(kg + kz)i]xs
*olkgydy - kgpdplxg *+ [-kgyTlxg + [-kgorlxg + [-kylxg,
* IRy Ixgg * [-kplxge * [-Kplxgq = £1(8)
of motion due to freedom in X, direction:

[(ml + m2 *mg ot M, M+ me + oMy + mB)]x2

¥ {-(ml *m, + m6)b - (m3 *m, +om, 4 mg)(-z = r)];4

+o(mp v my, +mg)a - (mg + omy)x - (m, + ms)i ;6

+

[-(m; + m,))(h - 1) - m6e1£7

+

[Cgq * C3p * €41 * Cyy * Cg1 + Cgylxy

+

[-(c3q + C35)b - (cyq + ¢4y + Cgy * Cgplzlx,

In order to keep the study more general, the
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+ [legy *+ 5502 - (o4 * gy + Cgq * Cgrdx]Xg

*[-(cgy * c3p)hlxy + (kg + kgy + kyq * Ky, + kgy + kg
X, * [-Ckgy + kgpdb = (kyy + kyp + kgq * kgp)zlxy
*lkgy + kgpla - (kg * Ky, + kgy * kgy)xIxg

+ [-(kgy * kghlx, = £,(t)

of motion due to freedom in Xz direction:

[y + my + Mg+ mglxg ¢ [-(my + .y *+ MEYIX,

+ [-(mg + my, + mdalxg + [-m(dy - ¥) *omy(d, + P)Ix,

+llegy * eg)lxg + [-(egy + €)%y

+

[-(cqq * cyp)alkg + [-cy1(d) - 7) + c1,(d, + V)1,

+ [k + k

11 ¥ kyp * 2ky + 2k dxg + [-(kyy * kyo)a + ZkyX

+

2kox]xg + [-ky Xq4 * [-kylxgq + [-kylxg, + [-k,y0xg4

It

£,(t)
of motion due to freedom in X4 direction:
[(m; + m, + m) (b2 + y2) + (my + my + m, + mg](i - R)?

+ I + I + T + T +

311 411 711 ¥ Ig111%4

¥ [y * g = megya - Leqaleg
+ [—(m1 om, + m6)b — (m3 tm, fomg 4 mg)(z - R)]x2
+ [-(ml-ﬁmz-ﬁmﬁ)ba + (m3'+m44-m74-m8)(z - R) -ISIS]XG

+ [ {(h-1)b + (d;-y)¥) + my{(h-1)b = (d,+y)y}+ mﬁeb]ié7
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[-(cgy *+ c3p)b - (c4q * Sy * Cgy * Cgr)2lX,
[-(eyy * eqd¥Ixg + [legy * ¢pp)y2+(egy * c3)b?
(cqq * C4p * Cgy * Cgp)271x,y *+ [(cyy + cpp)yalxg
[-(cgq * c35)ab + (cyq + ¢4y * Cgy *+ Cgr)XZ]Xg
ey (dy - ) - c1p7(dy *+ 7) + (cqp + c5)bhI%,
[-Ckyq *+ kypdydxg + [(kyq * kyp)x? + (kg + kgp)b?

(k + k + k

o2 2 2 2 2
41 ¥ Kgp * kgy ¥ kgo)z® o+ kydg® +kid, S +kodovkyd K,

o= * kg
[(kyq * kypdyalxg + [-(kgy + kgp)ab + (kgy + kyp + kgg
kgpdXzlxg + [ky X(d) - 7) - kyp7(dy + 73 + (kgy
k3p)bhlxgy + [dgk,1x,4 + [-dgk;lx;q + [dgk,)x,

[-dgkylxgg = £,(t)

of motion due to freedom in Xe direction:

[(m1 + mz)(i - 1) + mﬁbe];1 + [-(m1 + mz)a - m6a]>'&3

+

+

+

+

+

+

[(m1 +m, ¥ m6)§a - I512];4 + [(m2 + mz){(i-r)2+ a?}

I + 1

2 2
322 ¥ Tgpp * Loy + mgl(bre)? + a2} + I, +1,,,

Tgpplxg * [myd (Z - 1) - mydy(z - 1) - Ig,.
me¥ (bre) Ixg + [mya(d; - 7) - mya(d, + 7)Ix,
[(egy * c5p) (2 - T)Ixg + [-(epy + cpp)alxg

[485q * Bigiralky * L8y * Gpiat & loy + O5,]

(z - 1)%1xg + [cqya(dy - ¥) - cppald, + y)Ix,

+

[-CSlr(i - r)])'c8 + [-CSZ(E . r)r])'(9
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+ [(kgy + k52)(5 - 1) + 2(k ¢+ kZ)E]xl

*oI-Gkyy

+ ky,)a + 2k1i‘+ 2k2i]x3 + [(k11-+k12)§a]x4
+llkgg * kpp)a? 4 (kgy + ko) (z - 1)2

+ 2(ky ¢ kz)(i2 + 52)]x5 + [kyqa(dy - y) - klza(d2+-§31x7
+ [k r(Z - 1)Ix° + [-ke, (2 - 1ITIxg + [-k X1xp,
volkgxdxgg ¢ [-kpxIxgy ¢ [okpXIxg g+ -k z)xg,

+ [-kliaxls - {-kzi]x16 + [-k2£]x17 = £ lt)

Equations of motion in Xg direction:

(m,d; - mzdz)ic1 + [(mg + my)a - (mg + m4)i - (mgy + ms)i

+

+ méa]x2 + [-(m1 + mz)ab + (m3 +m, m., + mg)(i - R)x

7
- mﬁab - 1513]x4 * [mldl(z -T) - mzdz(z - T) - 1523
+my(b + e)Ixg + [(my *+ m,)(d;2 + a2)

+ (mg +m + mg)x? + m(y2 + a2) + I + I

§ " Wy 111 211

* Iy P Igpp olgzz t I *Iogn t Ig111%6

+ [-(m; * my))(h - T)a - mﬁae]£7 + [cgqdy - cg,dy1%g
* [legy * egpda - (cyy + cpp * gy *+ Cgp)XIxy
[-(egq * c35)ab - (cqq * c4p)2 - (cgy * cgplxzlxy
+ [cSldl(i - 1) - cszdz(ﬁ - r)])'c5

* [(egy * c5p)a? + (cyg * €pp)X% + cgydy? + cg,d)?

+ gy * cgp)X?Ixg + [-(cgy * cgp)ahlx,; + [-cgidiT]Xg
* [cszdzr]ig + [k

51917 - Kgpdplxgy * [(kgq *+ kq,a
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- (kyp + Kyp * kgy * kgodxIxy + [-(kgy * kgp)ab

- (kyy * kypdxz - (kgy * kgodxzlxy + [kgydy(z - 1)
o I 2 w2
cgody(z - 1)Ixg + [lkgy * kgy)a® + (kyy * k,y))x

d,?2 + k

+ k 1

d,? + (k

22 2 2
) + kgz)x + k.,d + kld

51 52 81 173 4

+ k2d52 + kzdéﬂxﬁ + [-(kgq * kgy)ahlx, + [-kg d TIxg
* lkgpdprlxg + [-dgkydxg, + [dykglxgg + [-kydglxge
* [dgkaiXyie = Hgl8)
Equations of motion due to freedom in the X direction:
[-(my + my)(h - 1) - mgelx, + [-my(d; - ¥) +m,(d, + Nkg
+ [m((h-1)b + (d;-¥)7) + my{(h-1)b - (d,+y)} +meeblx,
+ Impaldy - ¥) - myald, + V)1
+ [—(m1 + mz)(h - r)a - méea]ﬁ6
+ [my{(h-1)2+ (d;-y)2} +m,{(h-1)2 + (d,+y) 2} +m e?

*Iyp 1

211 * Tg111%g + [-(czy + c5,)hI%,

+ [-cyp(dy - ¥) * c g,y * ¥)1Xg

¢ Loy F(dy - ) - cy,7(dy * F) + (cgq * c5)bhI%,

+ [cyqa(dy - ¥) - cq,a(d, + ¥)IX

* [-(egy + e3p)ahlxg + leg;(d) - ¥)2 + cp,y(d) + ¥)2
* ey + e5)h20k, + [-(kgy * kyp)hlx,

Pl Xqg(d - Y) kg, * §)Ixg

+ [kyq¥(d] - ¥) - ky,¥(d, + ¥) + (kgy + kg,)bhlx,
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+ [kpqa(dy - y) - ky,a(d, + y)lIxg
* [-(kgy + kgpdahlxg + [kyg(d) - ¥)2 + Ky,p(d, + ¥)2

+ (kg * kgp)hflx, = £, (1)

Equations of motion due to freedom in the Xg direction:
[1;550xg + [~cgyTIXg + [-cgyT(Z - T)1Xg + [-cgyrd 1%
+ [(c51r2]>'c8 + [—k5r1X1 + [-k51r(£ - r)]x5
* [-kgyrd lxg + [kslrz]x8 = £4(1)

Equations of motion due to freedom in the Xgq direction:
[1,521%g + [-Cg,TI%) + [-cg,T(Z - T)1%5 + [cg,rdyl%g
+ [cszri]i9 + [~ke,Tlxg + [-kszr(i -~ 1) )%
+ [kszrdz]x6 + [k52r2]x9 = fg(t)

Equations of motion due to freedom in the x4 direction:

0
miXyg * CprXpg * Ukpp * Kplxgg + [-kplxg ¢ [-kyRIxg
+ [dzkgIx, = flo(t)

Equations of motion due to freedom in the xnidirection:

X

0% 5

* ¥y o lkyy  kyIxgg 4 [-kgIxg ¢ [Fkox]xg

v oldgkgdxg = £y, (0)
Equations of motion due to freedom in the X109 direction:
MyX1g ¥ Eya¥yg ¥ Uegy * Rplgp * [Rhplxg + [-kyxlxg

voldgkylx, = £4,(t)
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Equations of motion due to freedom in the xl3 direction:
MRy * Cyp¥yg * gy * Kglxgg v Ik lxg *+ [=koxlxg

Equations of motion due to freedom in the X14 direction:
MiXyg * Ce1X14 * lkgy * Kqlxgg * [-kylxg + [-kyzlxg
* [-dgkyIxg = £,,(t)

Equation of motion due to freedom in the Xgc direction:
MyXys * Ce2%1s * Lkgy * Kylxgg * [-kgIxy + [-ky2lxg
v IdgkyIxg = £15(1)

Equations of motion due to freedom in the X6 direction:

m.X16 * €91%16 * LK

01 * kplxge * [-kylxy + [-kyzlxg
+ [-dgk,lxg = £, (t)

Equations of motion due to freedom in the X4 direction:
MgXyy * CopXygy + [kgy + kylxps + [-k,Ix; + [-kyZlxg

+ [dck,lx = £.(t)

Forcing of Model

Forcing of model was made by utilizing a half sine period
bump, which is similar to bumps encountered under field condi-
tions (0.416 ft high and 3 ft in length). All models solved in

this study used this prescribed bump.
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The forcing function for each equation was evaluated by the
principle of virtual work: The virtual displacements (6x, § 0 Gq
etc.) are an infintesimal change in the coordinates which may be
conceived irrespective of time, and which must be compatible with
the constraints in the system. The principle of virtual work
states that if a system is in equilibrium, the work done by the
applied forces in a virtual displacement is zero.

To complete the development of equations of motion through

use of Lagrange's method, the work done by the applied forces in

the virtual displacement is written as:

N By
Sw = i £ 0 844 = i £ - kil 3;; Ak
n Ti
Tyl H R Tq_l:)dsqk
n
) kfl U ® qx
where
D_.
U = i fl ) Tii

is called the generalized force associated with the coordinate gk
In the system under study, this function was obtained as
follows:

f. = ku + cu
i

Where k and c are the spring and damping rates of the rear tires.
This force acts in the direction of the coordinates which repre-
sent rear wheel motion. For the dual wheel model where the four

rear wheels have vertical displacements X100 X110 Xq12» and X139



41

respectively, the function is:

2 (x + X * X + Xgo)
dk = Elka 4 o) 10 11a 12 13
i xk

where k = 1,..., n (number of degrees of freedom).

Differentiating the last term of the equation,

B ¢ U . SN . WS B Ny
i X
1
. BEL P R b R, o+ Hy.)
q, = £(ku + cu) 10 113 12 137 _ 0
i X,

results in all functions becoming equal to zero except di9° 997>
qu’ and q13. Therefore,
di9 = ku + cu

ku + cu

ku + cu

q;z = ku + cu
where k and c¢ are the spring and damping rates of the tire which
contacts the bump.
The function of the bump is:

u =h sin wt

where
h = height of the bump
w = “fs
t = time interval

s = speed of the vehicle
L = length of the bump

Therefore,



flO(t) = Qg = klO h sin wt + wclgh cos wt
fll(t) = qqq = kll h sin wt + wcllh cos wt

f 12 h sin wt + clzhw cos wt

12(t) - Y2 T

This is the general form of the forcing functions, but their di-
rection and magnitude will depend upon tire configuration and the
manner in which the bump is contacted. These forcing functions
were evaluated and are included in the section on computor solu-
tions and discussion.

A physical representation of the forcing function is shown

in Figures 9 and 10 for rolling and pitching modes, respectively.

Solution of Model

The system was described by means of 17 second order differ-
ential equations. Constants involved in the equations were vehic-
le parameter such as: mass, moment of inertia, spring and damp-
ing caefficients of tire, and various tractor dimensions. The
parameters used in this study were from an IHC-340 utility
tractor.

The equations were solved through simultaneous integration
on an IBM 360/50 digital computer. A numerical technique of
solving differential equations called the Runge-Kutta method was
used. In this method, the solution is initiated by placing ini-
tial values of all the known variables into the given differen-
tial equations. The principal advantage of this method is that

it is self starting which means that only the functional value
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at a single initial point is required to start the solution. The
detailed process of this method is given in Appendix A.

To utilize the Runge-Kutta method of solutions, the system
of equations must be in the form of

X = A, + F

X
where

X = Column matrix of Xy

X = Column matrix of Xi

A = Square matrix of all the coefficients of Xi

F = Forcing function in form of column matrix
To obtain this form, the following procedure was used:

Since the equations of motion were written in the form of

Mx + Ck + Kx = £, (1) | (1)
where
M = Mass matrix represented by matrix AA in this study
C = Damping matrix represented by matrix BB
K = Spring matrix represented by matrix DD
f = Forcing matrix represented by F matrix

Therefore, the complete system was as follows:

FRNCL 51T s v ARTT, BBY ‘5{17 [BB(1,1).....BB(1,13)"] X, ]
22 22
3 3

iA(lS,l)....AA(ls,ls)J - Bé(ls,l)....Bﬁ(ls,ls_)_ %
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[ob(1,1)..... DD(1,17) |[x; | £,
; X5 fz
. X3 f3
+ : = i
DD(17,1)....DD(17,17) | |x,, £,
AA X + BB x + DD x = F(t) (2)
oY
AA x = -BB x - DD x + F(t) (3)

By premultiplying all the matrices by the inverse of mass matrix

AA
AA™! % AA x ==AA"! % BB x - AA"! & DD x + AA-1 x F(+)
or
x; =+ R X; + Rlx; + Fl,(t) (4))
where
R = -AA"!l & BB
R1 = -AA"! DD
F1(t) = +AA"1 &« F(t)

i = ds 2, e soun; 17
The computer program for matrix inversion and multiplication
is given in Appendix B. The 17 second order differential equa-

tions were transformed into 34 first order differential equations

by letting
SRS
X2 T %19
X3 = Xap
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Therefore
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>
I
5

13 30
X14 = X33
X15 = X32
X16 = X33
X17 = Xz

All these values were substituted into the equation whereby a
complete system of first order differential equations was obtained

Xx: = R x. + Rlx, + F1.(t)
i ] i 1

where

i =

I
—
F=9
=
(%]

-
[
o

-
(&3
~

Jow Ly 2y By Ay By susy 1Y
These first order differential equations were programmed in-
to the function subroutine of the main computer program included
in Appendix B, The RKGs subroutine was used along with the fol-

lowing parameters:

Parameter (1) 0.00 [Initial time interval)

]

Parameter (2) 2.00 [Final time interval]

Parameter (3) .005 [Time increment]

Parameter (4) = .00001 [Accuracy limit]
The complete program was written in FORTRAN IV language for an
IBM 360/50 computer. A sample of the computer solution of the

differential equations, along with axle deflections and transient

stresses has been included in Appendix C.
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Axle Stress Calculations

Dynamic Stress

Axle stresses were calculated by determining axle deflection
in the horizontal and vertical directions with respect to axle
axis (undeflected). Axle deflection in the horizontal and verti-
cal directions was computed from the following equations:

A1 7 %10 " X3 (for a single-wheel

model)

where
Ay = Vertical deflection of axle
Ay = Horizontal deflection of axle
X10°™ Vertical displacement wheel mass
Xq 5= Horizontal displacement wheel mass

Xe = Pitch motion of vehicle

Xy = Roll motion of vehicle

Xg = Yaw motion of vehicle

x; = Fore and aft motion of tractor body
Xg = Bouncing motion of tractor body

These horizontal and vertical deflections were used in calcula-
ting the force, bending moment, and stress developed. The dynam-
ic force acting at the end of the axle was

F, = &

1 * K

1 i ¢

F, = A

2 K

2 ¥ ™1
where K1 is equivalent spring constant of the axle due to its ma-

terial properties and its area moment of inertia, and
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Ky = %E%~for a cantilever beam with force applied at the

1
end

E = Modulus of elasticity = 30 x 106épsi

= i ':1-'*'14
I Moment of inertia &1 d1 in

L1 = Length of stub axle = 15 in.

K. = 3 x 30 x 106 x ™ x 3¢
67 X T5x15x15
3BT

Ky = 15571~ (for parallel springs)
1 2

x 12 Ibyft = 10%® Thj/ft

6 L
- 3x30x 107 xn/64x 3"y 12 1b/€t = .99 x 105 1b/ft
h{R = H + }1V
M, x C
My
S I

where S isequal to stress due to bending.
Using these relationships, maximum bending stress versus time,

relationships were obtained for the various models.
Static Stresses

Static stresses should also be considered in the design of
axles. In the static situation, the stresses due to horizontal
forces become zero and only vertical stresses are taken into con-
sideration. The reaction at the rear wheel was calculated as
follows:

Let Rl be the reaction at the front end

RZ be the reaction at the rear end
By referring to Figure 3 and taking moments about point A

_ Wa
RZ T a +* x
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R = mga

2 a+x
m = mass of chassis + rear wheels + front wheels + axle
= 1L.85 + 1.83 # 1I1.53 % 11.35 + 128 + 5.1%
= 159,42 slugs

_ 159.42 x 32.2 x 3.67 _
R, = R = 3139.88 1bs

R2/2 = 1569.94159 [for the single wheel model]

R
_ 2
M‘-—Z‘—XLI
R
_ g d_ 1 "
S xlpxgzx e xd
. 2159,88 ] 64 _ ;
‘-—"—2_-)( 1540 XTX;T_-X_—ET“ 8884.05 pPs1

In the case of the dual wheel model, the weight of the complete

vehicle increases due to the two additional rear wheels.

Thus,
= 1.83 + 1.83 + 2 x 11.33 + 128 + 5.10 = 182.08 slugs
R, = Mga__mx 32.2 x 3.67 _ 182.08 x 32.2 x 3.67
Z a ¥ X 307 ¥ 2,33 6.00

3586.186 1bs.

MV = RZ/Z % L1 [for cantilever beam]

= §§§g;1§9-x 15 = 26896.395 1b/in
S = My X € 26896.395 x 3 x 64 _ i LG BEOER Tl
v I 7 x71 X 81 ’ : M B

where Sv 1s equal to stress due to static vertical loading in the
case of dual wheels.
These static stresses should be added to respective dynamic

stresses to obtain the maximum total stress.
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Dynamic stress for a hub-attached dual wheel tractor axle

was computed as follows:

81 = Xgp * X Xg - dgx, - xg
By = Xqp * X Xg - dgXy - Xg
b3 = Xyp * X Xg - dgXg - Xy
By = Xpg * X Xg = dgXg - xg

Dynamic vertical bending moment

Mv = klal x L1 + szzL2

Dynamic horizontal bending moment

MH kl b4 ASLl + k2ﬂ4 X LZ

and

= /M2 + M Z
MR vz + MH

The resultant bending stress

s - MR X cC
R I
where L1 = 15.,0"
= "
L2 24.0
k1 = 10 x 108 1p/ft

w
]

2 .89 x 10% 1p/rt

and A vertical deflection of axle at the points

1 2
where the inner and outer dual wheels are
~attached respectively.
L and by = horizontal deflection of axle at the points

_where the inner and outer dual wheels are

~attached respectively.



TABLE 1V

LIST OF STANDARD CONDITIONS

Physical dimensions (ft)

X = 2.33 a =
y = 0.00 b =
z = 2.67 e =
Ly = 1.25 h =
L, = 0.75 r =

Mass (1b - sec?/ft)

m1 = 1,83 m4 =
m2 = 1.83 m5 =
m, =11.33 me =

Inertia tensor components (1b

I, = 0.57 1iy5 =
ooy = ULB0 I222 =
Byqq =LLs33 (I
Iy, =11.33 I,p9
Lxag = o758 52 =
I,, = 200
Lgrg = 2.8 T622 =
I,,, =11.33 I,,s
Tg;, =11.33 -

3.67
1.00
0.00
1.58
1.12

1133
128
aasd

- ft - sec?)

1.14
1.14

=22.66
=22.66

900

2.0

=22.66
=22.66

133
233
333

433

533

633
I733

833

53

]
o
=]
o

= 11.33
= 11.33

0.57
= Ul
=11.33
=14.33

= 1050

=11,33

=11.33
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(all other components = 0)

Damping coefficients (1b - sec/ft) and spring rates (1b/ft)

cyq = 186 ¢y, = 186 ki = 22,600 ki, = 22,600
cpy = 248 c,, = 248 k,, = 20,500 k,, = 20,500
cqp = 25 cg, = 225 kg = 10,700 kg, = 10,700
gy = 32 Cyp = 32 k,, = 11,900 k,, = 11,900
o, = 88 cc, = 88 kg = 16,000 kg, = 16,000
cgy = 134 cs, = 134 ke = 18,000 kg, = 18,000
c,y = 25 Gy = U5 k., = 10,700 k,, = 10,700
gy = 32 cgy = 32 kg; = 11,900 kg, = 11,900
cgy = 134 cg, = 134 kg, = 18,000 kg, = 18,000
Stub axle
ky () = %f%—x 12 = 10% 1b/ft

kz(Eq) = 0.99 x 106 1b/ft

L; = 15 in, L, = 7.5 in, E = 30 x 10% 1b/in

Forward speed = 4.4 ft/sec (3 mph)

Bump size
Height H = 0.416 ft (5in)
Length L = 3.00 ft

For the International Harvester 340 utility tractor.
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TABLE V
CONFIGURATIONS STUDIED

Description of Wheel Configuration

I

11

III

IV

SwW

DWH-I

DWH-II

DWR-I

DWR-II

Single wheel model. Left rear wheel
traverses the standard forcing func-
tion.*

Dual wheel model with individual hub
method of wheel a+tachment. Each of
the left rear wheels traverses the
standard forcing function® simultane-
ously.

Dual wheel model with hub method of
dual wheel attachment. Only the left
outer rear wheel traverses the standard
forcing function* and the corresponding
inner wheel remains out of contact with
the bump until the outer wheel encoun-
ters smooth surface.

Dual wheel model with rim-to-rim rigid
method of wheel attachment. Each of
the left rear wheels traverses the
standard forcing function® simultane-
ously,

Dual wheel model with rim-to-rim rigid
method of wheel attachment. Only out-
er left rear wheel traverses over the
standard forcing function®* and corres-
ponding inner wheel remains out of
contact with the bump until outer wheel
encounters smooth surface.

*The standard forcing function is

U ="h sin wt

W
h
This function

wheel.

mS/L

height of bump
should be multiplied by the corresponding tire
spring and damping rates to obtain the total force acting on each
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RESULTS AND DISCUSSION OF COMPUTER SOLUTION

The tractor mathematical model as defined in earlier chapters
consists of a set of simultaneous differential equations. This
could be considered as a continuous system in which time is the
independent variable and motions in all the coordinates are the
dependent variables. The standard conditions listed in Table IV,
and the standard sinusoidal forcing function previously déscribed
in the section on Forcing of Model, were used to find the solu-
tion for the system of equations.

A digital solution of different models listed under Table V
was obtained for a time interval of 0 to 2.0 seconds, a time in-
crement of 0.005 seconds was used to obtain the réquired accuracy.
A sample of computer output for the generalized case of the dual
wheel model with the hub method of attachment has been given in
Appendix C.

Different cases of rear wheel contact with the bump were
studied in order to determine the conditions which cause the
highest stress level due to bending moment. The solution of the
model described in Case I (SW) was obtained and is illustrated in
Figure 11. The discussion that follows explains how the axle
stress fluctuates if the tractor encounters the bump for Case I
(SW). This concept will be valid for all the models, but results
are different for each case due to changes in values of stiff-
ness, damping, mass, and wheel configuration used in each system.

The tire contacts the bump and deflects in a negative direc-

tion until 0.0625 second. This compression of the tire causes
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axle deflection since axle deflection is a function of tire de-
flection, tractor bounce, and rigid body rotation of chassis a-
bout longitudinal and transverse axis. At 0.0625, the stress
level in the axle was 8,118.00 psi (above static). After this
time, the deflection decreased. The point of zero deflection
(neglecting static deflection) occurred at 0.175 second. The
bending resultant stress in the axle at this time (4386.0 psi)
was due to horizontal forces.

Deflection in a positive direction continued to increase un-
til the wheel reached the top of the bump. At this time, the
horizontal force was negligible since the wheel was at the peak
of the bump. The resultant stress at 0.335 second (when the
wheel was at the top of the bump) was 6,698.00 psi. The tire was
then forced back into the bump and the axle was deflected (toward
the negative direction) again before the tractor reached the
smooth surface. Once again the axle intersected the time of zero
dynamic deflection at 0.5 second, and the axle deflection contin-
ued in the negative direction until the bump ceased. It caused
the axle stress to increase to 4,570 psi at 0.60 second. A sharp
increase in stress occurred at 0.725 second due to the abrupt
change in terrain profile where the bump ends. This model had a
stress value of 6,666.0 psi at 0.725 second. The transient
stress due to axle vibration decayed within a period of 2.00 sec-
onds.

Figure 12 illustrates the rear axle stress variation for
Case II (DWH-I). A very sharp increase in stress (to 13,050.00

psi) occurred soon after the wheel hit the bump (at 0.045 second).
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In this case, forces are applied to the axle at two different
points since the dual wheels were attached individually by means
of rigid hubs. A comparison of computer solutions for Case I and
Case II showed that the frequency of vibration for Case II was
higher, but its amplitude of bounce was lower than Case I (SW) at
all time intervals. The increase in positive deflection resulted
in a stress magnitude of only 2,900 psi at the time when the
tractor's wheels were at the top of the bump (0.335 second).

A peak stress of 15,150.0 psi caused by the abrupt change in
terrain profile as the wheels left the bump occurred at 0.745 sec-
ond. This was higher than the stress level reached immediately
after the wheel hit the bump. Thereafter, the stress level de-
creased rapidly to 4,745.0 psi and damped out to a steady-state
condition after 2.00 seconds of time.

Figure 13 depicting the transient stress variation for Case
IV (DWR-I) could be compared with Case II (DWH-I). The rear axle
was loaded at only one point because of the rigid rim-to-rim
attachment of the dual wheels. 1In Case II (DWH-I) the axle had
two point loading due to the separate hubs. At 0.057 second af-
ter the tractor encountered the bump, the stress level reached a
value of 11,670.00 psi. This was lower by 1,250.00 psi in com-
parison to Case II (DWH-I). This was due to the higher bending
moment resulting from the additional distance between the wheels
of the hub attached duals. The pattern of stress variation was
quite similar, but there was a frequency shift due to the addi-

tion of the extra equivalent spring for the system of Case II
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(DWH-1). The stresses remained very low just as the wheel left
the bump, but increased immediately afterwards to a peak value of
12,650.0 psi (0.10 second later). The stress amplitudes after the
vehicle encountered the smooth surface were higher, but the fre-
quency of the natural damped oscillations was lower than Case II
(DWH-1I).

The resultant bending stresses versus time relationship is
shown in Figure 14 for Case III (DWH-II). A rapid increase of
stress up to 11,200.00 psi at a time of 0.10 second could be com-
pared with a stress level of 9,167.00 psi for Case V (DWR-II).
This difference was mainly because of greater axle bending which
was due to increased acceleration and rigid body rotation about
the longitudinal axis due to additional rotation (roll) for the
extra hub length. This resultant stress level of 11,200.00 psi
was quite high in comparison to Case I (SW) due to higher ampli-
tude of oscillation of the rigid chassis about the longitudinal
axis since the outer dual wheels were spaced at a distance of
4,33 ft’from the C.G. of the chassis which contacts the bump.

The situation was less critical than Case II (DWH-I) which
had a resultant bending stress of 15,000 psi immediately after
the bump had been traversed where as the stress level for Case
IIT (DWH-II) was only 9,345.00 psi (at 0.745 second). The stress
amplitude damped out with higher frequency, but with a lower log-
arithmic decrease in comparison to Case V (DWR-II).

The computer solution of the resultant bending stresses for

the model described in Case V (DWR-II) was plotted versus time in
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Figure 15. The behavior of this solution was very similar to
Case I (SW). The peak stress immediately after it hits the bump
was 9,167.00 psi (at 0.097 second) whereas the level of this
stress in Case I (SW) was 9,160.00 psi. This difference of 1,000
psi was due to the extra wheel mass of the outside dual tire.

The stress level at the time when the tractor's tire was at the
top of the bump was 9,216.0 psi while in Case I (SW) the stress
was 6,698.00 psi. This was due to the fact that the forcing
function which acted on Case V (DWR-II) was at the distance of
4,33 ft from the C.G. of the chassis; but in the case of the sin-
gle wheel, it was 2.83 ft from the C.G. of the chassis. This
produced a larger force for the X4 coordinate (roll) and caused
more axle bending. The peak stress at the time when the bump had
been traversed (0.7125 second) was 7,466.0 psi, which was no
greater than the value obtained just after the tractor hit the
bump (at 0.0975 second). This was due to the sudden increase in
spring rate that the inside tire picked up as soon as it contacted
the smooth surface. The amplitude of stress in this case reduced
more rapidly after the wheel left the bump than in Case I (SW);
however, the frequency of vibration was quite high.

The results obtained and discussed above may be varified
with some of the experimental statistics available on axle stress,
in the literature. Field measurement of axle stress (Anderson,
1966) showed that combined torsional and bending stress in the
rear axle were 40-50 percent greater in a tractor equipped with

dual wheels set at 60 and 120 inches, respectively, compared to a
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single tire spaced at 80 inches. The results in the presented
analysis indicate that maximum bending stresses were 50 percent
greater for a rim-to-rim attached set of dual wheels spaced at
70 and 100 inches, respectively, compared to a single tire spaced
at 70 inches.

A typical oscillograph trace obtained by Graham (1961) for
a tractor rear axle showed that the maximum bending moment (due
to dynamic loading) was 28,800 in.lb., which causes a bending
stress of 11,500 psi; where-as in presented analysis a maximum
bending stress of 9,150 psi was obtained for a single wheel trac-
tor. The difference in these two stress levels was due to dif-
ferent dynamic conditions under which these stress values were
recorded.

An increase in axle length increases the stress due to bend-
ing was reported by Anderson (1966) and similar evidences were
observed in this analysis when the outer duals were attached

with hubs and axle length was extended.
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SUMMARY AND CONCLUSIONS

This analysis was made to develop a set of axle stress equa-
tions to provide dynamic maximum bending stress versus time rela-
tionships for various methods of attaching dual tires on farm
tractors. Solutions were determined for conventional and dual-
tire configurations with the help of a digital computer.

Rear axle models for individual-hub-attached, rim-attached
dual wheels, and single wheels were developed. An energy approach
was used to formulate stress equations for the models. Lineari-
zation of the systems and consideration of the rear axle as a
rotating cantilever beam were two major assumptions that were
made during this analysis. The effect of tractor vibration,
fore and aft motion, and rigid body rotation of the chassis for
yaw, roll, and pitch motion were considered in the formulation to
include the effect of complex coupling present in the system on
the axle deflection.

The set of stress equations thus obtained were solved using
a numerical integration technique and vehicle parameters for an
IHC-340 utility tractor were used for the solutions. A standard
sinusoidal bump (5 in. high and 3 ft. long) was used as the forc-
ing function.

A FORTRAN IV program was made for a generalized dual-wheel
tractor model to run on an IBM 360/50 digital computer. The solu-
tion for all three models mentioned above along with cases where
only the outer dual strikes the bump were obtained. The resul-

tant maximum bending stresses for each model were plotted versus
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time and their behaviorswere discussed. The conclusions which
were made after this analysis are as follows:

1) The maximum axle stress (due to bending) for the case of
the hub-attached dual wheel was twice as high as that of the con-
ventional tractor with single rear tires.

2) The maximum axle stress (due to bending) in the case of
rim-attached dual wheels was 50 percent greater than that of
single wheel tractors.

3) The maximum axle stress (due to bending) for the hub-
attached dual wheels was 2,000 psi higher than that of the rim-
attached dual wheels where the bump was traversed by the outer
wheel.

4) In all cases there were two times when the stress in-
creased to very high magnitudes. The first was immediately after
the tracter hit the bump and the other was just after the bump
had been traversed.

5) The axle stiffness (which depends upon modulus of elas-
ticity of material, area moment of inertia, and length of axle)
variation changes the stress situation significantly for a par-
ticular set of conditions.

6) The axle dynamic stresses also depend upon the tire con-

figurations that a tractor encounters during operation.
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SCOPE OF FURTHER RESEARCH

This analysis on transient stress variation of a tractor
Tear axle was presented with certain assumptions and limitations.
A more accurate and complete model based on the present study
could be obtained if the system were defined by more variables.
The following items are some of the suggestions which might be
incorporated to make this study more realistic and accurate.

1) The stresses due to torsion of the axle could be in-
cluded in order to complete the information required to calculate
the maximum normal stresses. A set of torsional stress equations
could be formulated for single and dual wheel models by treating
the axle and the rear wheel as a separate system cbnsisting of a
rotating cantilever beam with a tipped mass assuming no con-
straint present between the axle angular twist and the angular
motion of the chassis about the transverse axis (pitch motion).
A solution of these models should be obtained introducing a
torque forcing function to represent the torque transmitted from
the final drives to the axle.

2) An experimental setup is needed to verify the theoretical
analysis for bending and torsional stresses. Strain gauge tech-
niques for analyzing the maximum stress could be used on tractor
axles that extend outside the housing.

3) The tire spring and damping rates should be considered
non-linear to include the effect of large oscillations and non-
linearity due to loss of contact between the ground and the

wheel,
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4) The wheels could be excited with more random and complex
functions by generating them by means of simulation methods.

5) Effect of draw-bar pull, soil condition, torque trans-
mitted from final drives to rear axles, and slippage could also

be included in this study to make the model more complete.
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APPENDIX A

THE RUNGE-KUTTA METHOD OF THE SOLUTION
OF ORDINARY DIFFERENTIAL EQUATIONS
The Runge-Kutta method can be used to solve a set of simul-
taneous ordinary differential equations of the initial value type.
This method can be demonstrated by considering a pair of
simultaneous first order differential equations of the form

dx
dt

£,(t, x(t), y(t))

X = £ (t, x(t), y(1))

with the initial conditions

X = Xyp Y = ¥qo at t = tD

using the forth order Runge-Kutta method, the increments in x
and y for the first interval are found by the relations:

A, = 1/6(k1 + 2k, + 2kg + k4)

3
A= 1/6(21 + 222 * 213 + n4)

k; = hE (t , x5, ¥,)

k, = hfl(t0 + h/2, Xy * kl/z, Yo * 21/2}
k, = hfl(t0 * /2, K, # k2/2, Yo ¥ 12/2]
ky = hf (ty + h, X+ kg, ¥ * £5)

by ® hfz(to’ X5 yo)
2, = hfz(t0 + h/2, X, * kl/z, Yo * 21/2]
27 = hf,(t  + hi/ 2., X, * k2/2, P * 12/2)

by = hfy(ty * h, X + kg, ¥ *+ 25)

The increment for the succeeding intervals are computed in exact-

ly the same way except that tos X4 and Y, are replaced by ty,
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X1s ¥y €tc. Thus,

1l

X .

41 x; + 1/6[k1 i 2k2 ¥ Zk3 + k4)

y; * 1/6(n, + 20, * 2¢

1

Yi+1 2 3 ty)

The solution is initated by substituting the known initial values
of x and y into the differential equations. This step provides
initial values of the functions f1 and f2‘ Values of kl and %4
are obtained next by multiplying the initial values of f1 and f2
by h. With values of kl and 24 known, k2 and %, are next calcu-

lated followed by L and g and finally k4 and L4 Then, from

33

the recurrence equation, values of X541 and y.

i+1 are found at

t=t These new values of x and y are used as the beginning

i+h*

values for the next step to obtain values of X, and Y;is+p 2t

+2
t = t;,,, and so on until the desired integration interval has
been run through.

The above method which was demonstrated for two equations
can be generalized to any number of equations by merely using a

set of equations for each dependent variable appearing in the

system of simultaneous equations.

Error and Step Size Control

The local truncation error, e for Taylor's expansion of

t!
the solution function, y(t), of the forth order Runge-Kutta meth-
od is of the form

e, = kh5 + 4(h6) (3)

where k depends upon f(t,y) and its higher order partial deriva-

tives, If h is sufficiently small so that the error is dominated
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by the first term, then it is possible to find bounds for k. In
general, such bounds depend upon bounds for f(t,y) and its vari-
ous partial derivatives and upon the order of Runge-Kutta method
used.

Selection of step size depends upon the accuracy that is de-
sired. The step size should be small enough to achieve required
accuracy, yet it should be as large as possible in order to keep
rounding errors under control and to avoid excessive numbers of
derivative evaluations to save computer time. This consideration
is very important since, in a system like the one under study, it
is quite complicated and consumes a lot of computer time to solve

each step.

Simultaneous Solution of Ordinary Differential Equations

The system was defined by n simultaneous first order ordin-

ary differential equations in the dependent variables Y1s Yy
cees Yo OT

dxl

= fl(xs Yl’ Yz: veey yn)s

o

k

fZ(X’ Yl! YZ, Rk A 9 yn)’

d
yn
ax_ = fn(xs )'1.- YZ! Y3: veay Yn):

with initial conditions given at a common point Xy that is
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Y1 (xg) = ¥y1,0
Yo (xg) =¥, 9

Y, (%)
The solution of such systems is similar, in principle, to a sin-
gle first order equation. The algorithm selected is applied to
each of the n equations in parallel to each step.

The complete computer programming for forth order integra-
tion processes has been included in Appendix B. Since the forc-
ing function is of the form

F = F1 sin wt + Fz cos wt,
the angle wt varies from 0 to n/2 for a half sine period bump.
The force is maximum when 3F/3t = 0, or

Flw cos wWt - sz sin wt = 0
tan wt = Fl/F2

wt = tan-1 FI/FZ

t = 1/w tan-1 Fl/F2

F = F, sin (1/w tan-1 Fl/FZ) + F, cos (1/w tan-1 Fl/FZ)

1 2
This is a maximum force applied to the vehicle system in the di-

rection of pitch, bounce, and roll motion.



APPENDIX B

COMPUTER PROGRAM TO SOLVE STRESS EQUATIONS
FOR GENERALIZED DUAL WHEEL MODEL

77



.0C
.01
02
.03
D4
05
06
07
08
.09
13
12
13
14
o &
16
17
18
19
21
22

APPENDIX B 78
9280 S9OSR IBEOIHOED PRSI IDODITE DD ENBOA IO ARSI COIEDIDOE ST O IDDDPOC NS S
880008 024200086990 s 0SSN SR 80CDOB0FTASDDEPDSIOeIPSIIIAaIIIBAN IS B IPAOIETDD R B
A9 200 E0ST DDV V200G EE00 0SSO0 RIADITSISDH I DIACAPOERBRRITHLIFTOBSDIPODOOPOIRI S A
2000990080202 DSCIPBeIL VSTV AYDITOIDIBTO AN IOV IADSODEODRSHBDICODTIDE D

SR B PREOGPE OGRS BOP OO OO0 RD OO0 IO AS OGS BICENDDOOD DD VIR ORI DD BE N R

ANALYSIS OF TRACTNR AXLE STRESS VARIATION BY SIMULATION METHOD
FOR
GENERALIZED CASE OF CUAL WHEEL TRACTOR MODEL DISCRIZED IN-
CHAPTER II1
PROGRAMMED IN FORTRAN 1V
BY
Ne Pe MATHUR
LA A E R A E SRR R R RE R AR R R R EREREEEEREERNERERESEN RS NS FNFEENESEEEIRHJEH:SEMNEJMRIEEHJNHMIESENTI-NIBNNREN.
I AR E R R B EEENEEEBRESEERERE SR EEERENRESEREYEEEREEE N R R R R R RERENE R R R NN NE-FR-FEREFEFENERENERRERE
REAL MyK,IAyL 4MI4KLsKZ2,L1,L2
EXTERMAL FCT,CUTP
DOURLE PRECISICN DERY,Y,AUX, X PRMT,DSIN,BCCS
DOUBLE PRECISICN DABS
COMMCN R(17+17),R1{17417)4F1I1742)4Wy BBI17,17),CC{17,17)
1,CD(17,17)yXBAR,ZBARLK(9,32),C19,2) s VALUE(6,2C01),0(6),AN,TNDEX
DIMENSION AA{17434)+M(B) TAL9,3,3)1,AINVI1T,17),Y(34),0ERY (34}
1sF(1742)yPRMTI(5)AUX(8434),C1(9,2)
FCRMAT (8F10.5)
FORMAT(9FT7.2)
FORMAT (B8F12.0)
FORMAT(1H ,13E1C.3)
FORMAT (1I5)
FORMAT (2El4.5)
FORMAT (///10X,y *THE MASS MATRIX AA'/)
FORMAT (///10X, *'THE DAMPING MATRIX BB'/)
FORMAT (///10%X, *THE SPRING MATRIX DC'/)
FORMAT (//7710X, 'THE FORCING MATRIX F*'/)
FORMAT (///1CX, ?'THE MATRIX AINV'/)
FORMAT (///10X, 'THE MATRIX R*'/}
FORMAT (///710X, *'THE MATRIX R1'/)
FORMAT {///10X, 'THE MATRIX F1'/)
FORMAT (3F10.5)
FORMAT(1H ,11Elle4)
FORMAT(1H 4D1Ce32510X,D011e4,10X,D11a4%)
FORMAT(1H 4D01043,10X,D1l1l44)
FORMAT(///10X, 'THE AXLE DEFLECTION'/)
FORMAT (///10X, *THE RESULTANT AXLE STRESS VARIATION'/)
FGRMAT (///10X, 'THE AXLE STRESS VARIATION?®'/)
80200080000 RCSRPOODBBISDLICOEOIIDRRVO00BIDIIVDLDIDLIBOTIIOIIDICIOCODRBTAS
READ THE DATA
DATA IS TAKEN FROM STAMDARD CONDITION LISTED UNCER TABLEC NO. IV
AND THEIR DEFNITION IS GIVEN IN TABLE NO. I THROUGH TIII
200060000290 00400389000000000P0ECVO0IPDHIOVRAOODODVANOOBDROOTIOSOO0IDIVANS AL
READ [1,104)N
READ (1,100)(M(I),I=1,R)
READ (1,100} ((C(I,d),I=1,9),d=1,2)
READ (14102} ((KI(T4J),41=1,9),J=1,2)
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READ (1,100)((IA(T1,12412),12=143)4T1=1,8)

READ (14100) TA{Ss1+43)4TA(5+3,1) ¢4 XPARYBARJIDARyA,G,y 2

READ (1,100) HaRSMALL,RBIG,(D!II),I=1,6)

READ (1,115) Hl,S.L

WRITE THE DATA

WRITE(3,100)(NM(T},yI=1,P)

WRITE(3,100}((C{I+J)41=1,9)sJd=1,2)
WRITE(3,102)((K(IsJ)yI=1,9),J0=1,2)
WRITE(3,100)((1A(T11,12,12),12=1,3),11=1,8)

WRITE(3,100) T1A(541+3),1A(5,3,1),XBAR,YRBAR,ZBAR,A,B,E
WRITE(3,100) HyRSMALL,RBIG,(D(I),I=1,6)

WRITE(3,115) H1,S,L

D1=3,0

L2=q.0

L1=15.,0

MI={3414159/644C)%D1*%4

E1=3CLL0000.00

K1=1CCCO000.9D

K2=69CCC0.0

DO 110 I=1,17

DO 110 J=1,17

AA(l,J)=0.00

BB(I,J)=0.00

DD(I'J,=OQGO

110 CONTINUE

TA(5,1,2)=0.0

IA{S’2'3’=O.C

0000900000000 00080030080 2000050000022 0000903 0900388880020 00008QCO00DS20S3 B :
CALCULATION FCR COEFICIENTS OF MASS MATRIXe THE FIRST SUBSCRIPT
DENOTES THE NUMBER OF EQUATION AND SECOND SUESCRIPT CENOTES THE
NUMBER 0OF VARTABLE Q0OF THF SYSTEM

0000 0000000000080 00080 9000000200 2060030000 0208320000000 0060000 0C80 90000 0CO%D20008
AA(L1,1)=M(L)+M(2)+M{S)+M(6)
AA(LyS)=(M{L)+M(2) )= (ZBAR~-RSMALL)+M[H6)*(B+E)
AA(146)=M(L)*C(L)-M(2)*D(2)+M(6)*YBAR
AAL242)=M(1)+M[2)+M{3)+M (L) +M(5)+M{B)}+M({T)I+NM(B)
AA(244)==(M{L)+M(2)+M{6) ) *B—-(M(3)+M{4)+M(T)+M(8) )X (ZRAR-RBIG)
AA(2,6)=IM[L)+NM(2)+M(6)) FA-(M(3)+4M{4&) ) ERXBAR ~{M(T7)+M(2))%XEAR
AA(2,7)=—(M(1)+M(2) ) *(H-RSMALL)-M(6]}*E

AA(3,3)=M(1)+M(2) +MI5)+M{6)
AA{3,4)=—(M(1)+M(2)+M(6))*YBAR

AA{3,5)==(M{1)+NM{2}+M(6))*A

AAL3, 7T)=—MIL1)*{C(L)-YRAR)+M(2)*=(D(2)+YDAR)
AA{LG,2)==(M{1)+M(2)+M(6) ) EB-(M(3)+M(4))*(ZBAR-RBIG)
1-(M(7)+M(8))*(ZBAR-RBIG)

AA(4,3)=—(MIL)I+NM(2)+M(6) IRYBAR
AA(&4,4)=(M{L)+M{2)+M{B) ) *(BEX2+YRAR¥¥2)4+M (3 )X ({ZBAR-RBIG) *%x2)
1 +M{4)*((ZBAR-RBIG) *%2 ) +[A{4,1,1)+1A(S5,14104TA(03,1,1)
1+M{7)*(({ZBAR-RBIG)**2)+M(8)*((ZRAR-RBIG) %%*2 )+
1TA(7,1,1)+1A(8B,1,1)

AA(4,5)=(M{L)+M(2)+M(&))2YBARFA-TA(S5,1,2)

AACG 6 =—(M(L)+M(2)+M(6) ) =BEA+ (M(3)+M{4) )X (ZRAR=RPIGI*XEAR
1-TA(S5, 13 4(M(T7)+M(8) }*=XEAR*(ZBEAR-RBIG)
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AA(4TH=M{L} X { (B-RSMALLY*R+(D{1)-YBAR)IERYDAR) +M(2) F((H=-KSAALL Y *k-
1(D(2)+YRAR)*FYRAR)+M (6 ) *E*R
AA(S,1)=tH(L)+M(2) %5 (Z2DBAR=RSFALL)+M(6)%(B+E)
AA{S43)=—(M(L1)+M(2) ) =A=-M{b6)*A

BA(S4)=(M(1)+M(2)+M(6)) *YRAT"A-TA(5,1,2)

AA{S S =(M{1)+M(2) VX ((ZRAR-RSHALL)®%2+A%%2 )+

1 TA(3:42:2)41A(442:2)Y+TA16,2,2)4M(6)%X(B+E)FZ2+M (06
L)*A%%2+TA(5,2,42)
14JA{(T424,2)+1A(8+242)

AA(S5,6)=M(1)=*C(1)*({ZBAR-RSMALL)-M(2):C(2)* (ZBAR-RSMALL)
1-TA(542,3)+M(E)*YRARR(B+Z)
AA(S,TI=M{1)*A*(D(1)=-YRAR)=M{2)*A%(C(2)+YBAR)
BA(G,1)=MIL1)%RC(1L)-M{2)%D{2)+M(6)%=YBAR
AA(642)=(M{L}+M(2)} ) =A=(M{3)+M(4) )R XBAR+M([E)*A
1-(M{7)+M({8) )%=XBAR

AA(6 4 ) =—(M{1}+NMI[2) ) ZAEBH(M(3)+M{4) ) (7PRAR-RRIG}=YBRAP-M[- ) kAT
1-TA(5,1:3)+({M(T7)+M{B))*=XBAR*{ZBAR-RBIG)
AA(6,45)=M(1)*C(L)=*={ZRAR-RSMALL)-M{2)%C(2)* (ZBAR-RSMALL)
1-TA(542,31+M(6)*YRAR*(B+E)
AA(G6)=M[L1)X(D(1)*%2+A%F2 ) 4M{2IF(DI2)FR2+AFH2)+M(3)* | XB
TARX%2)+M(4) *( XBAR=%Z2)+M{OE)F(YBARF®:2+A%%2)4+TA(1,1.+,1)+IA(
12,11} +TA03,1,41)+TA{4,1,1)+]JA(5,3,3)+[A(6,+3,3)+
LIM(B8)+M{T) )xXBAR**2+4[A(8,1,
11)+41A(751,1)

AA(6,T)==-(M{1)+M(2))=(H-RSMALL)I*A-M{6)}*AXE

AA{T 2 =—(MI1)+M(2) ) *(H-RSMALL)-M(6])*E
AA(T7:3)=—M{1)*(C({L1)-YBAR)+M(2)*{D(2)+YBAR)

AA(T 4 )=M(L1)*[{F-RSMALL)Y*B+({D(1)-YBAR)I*XYBAR)+M(2)=( (k- ?SMALL)*Q—
1{D(2)+YBAR)*YBAR)+M(6)*E*B
AA(T5)=M{1)*A*(D{1)-YRAR)-M([2)*A*(D{2)+YBAR) -
AA(T46)==(M({1}+M(2) ) *(H-RSMALL )*A-M({6)*E*A

AAT T =MIL)=((H=-RSMALL)Y*X2+(D(1)-YBAR) =2 )+M(2)*{ {H-RSMALL)%**2+(
ID(2)+YBAR ) %2 }+M{OIFEXX2+TA(13151)+TA(2y141)+1A(6,1,41)
AA(B8,8)=1A(1,2,2])

AA{9,9)=1A(2,2,2)

AA(10,101=M(3)

AA{l4,14)=M(2)

AA(1l,110)=M(4)

AA(15,15)=M(4)

AA(L12,12)V=M(T)

AALL16,16)=M(T)

AA(13,13)=M(R)

AA(17,171=M(8)

PSP OO0 3OO0 PO COOSOSE OO SDOS DO ODSSD OO SO B TDEDE OSSO PIPOO IR PSRSYRO B
CALCULATION FOR CREFICIENTS OF DAMPIMG MATRIXe THE FIST SUBSCUIPT
DENOTES THE NUMRER OF EQUATION AND THE SECOND SUBSCRIPT DENOTZES
THE NUMBER OF VARIABL= OF THE SYSTEM

(I E RN EEE BEENEEEEEEBEENEREENREE R ENE NN RENNENENENENENNERENNEEFERENNNERRERMNMNNN I N BB 3N B R

125 BB(1,1)=CI(5,1)+C{5,2)

BB{1+5)=(C{5,1)4C(5,2) )% (ZBAR-RSEMALL)}
BB{1,6)=C(5,1}*C(1)1-C(5,2)%D(2)

BB(1,8)=-C(5,1)*%RSMALL

BB(1,+,9)=-C(5,2)*RSMALL
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BBI2,2)=C(3,11+4C{3,2)+ClA,1)+C(%,2)4C(8,1)+C1T,2)
BR(244)=={CU3,1)+C(342))*%R-(C(4,1)+CL4,2) )*IBAR-(C{8,1)#l(8,2))%7L
1AR

BB(2,61=(C(3,1)+C(3,2))%A-(C(4,1)+C(4,2) )*XBAR=(C(8,1)4C(2,2})*XB
1AR

BB(2,7)=—-(C(3,1)+C(3,2))*H

BB(3,3)=C(1,1)+C(1,2)

BB(3,4)==(C(1,1)4C(1,2))*YBAR

BB(345)==(C(141)+C(1,2)) %A
BB{3,7)=-C{l,1)})*(D{(1)-YBAR)+C(1,2)*(LC(2)+YBAR)
BBl442)=-(C(3,1)+C(3,2))%B-(Cl4,1)+C(4,2))%IBAR-(C(8,41)+C{8,2))*7
1BAR

BB(4,3)=={C(1,1)+4C(1,2))*YBAR

BB(4,4)= (C(1,1)+C(1,2))*YBAR**2 +(C{(3,1)+L(3,2))%B**7

1 #+(C(4,4)1)+C(442))%ZBAR*R2+[C(8B,1}1+C(84+2))*ZBARN®N2
BB(5,4)=(C(1,1}+4C(1,2))%YBAR*A

BB(4,5)=(C{1,1}+C(1,2))*YBARYA
BB(446)=—(C(3,1)14C{342))*A%B+{Cl4,1)+C(4,2))%XBARXZBAR
1+4(C{8,1)1+C(842))*XBAR*ZBRAR
BB{4,7)=C(1,1)*YBAR*¥(D(1)-YBAR}-C(1,2)*YBAR®{D(2)+YBAR)+(C(3,1)+C
1(3,2))*B*H

BB{5,1)={C(541)+C{5,42))%(2ZBAR-RSMALL)

BB{54+3)=—(C(1,1)+C(1,2))*A
BB(545)=(C(1y1)+C{1,2) )% A*%2+(C(5,1)+4C(5,2))*{ZBAR-RSMALL ) **2
BBUS5,7)=C{1,1)*A%(D(1)}-YBAR}-C{1,2)*A*(D(2)+YBAR)
BB(5,8)=-C(5,1)*RSMALL*{ZBAR-RSMALL)
BB{549)=-C(5,2)%RSMALL*{ZBAR-RSMALL)
BB{6+1)=C{5,1)=C(1)-C(5,2)V*D(2) .
BBl642)={C(3,1)4C(3,2))}*%A-{C(4,41)+C(4,2)+C(B,1)}+C(8,2))*XBAR
BBl6,s4)==({C({3,1)+C(3,2))*A%B+(C{4%4,1)+C(4,2))%XBA2%XIBAR
1+(C{8,114C(8,2))*XBAR*ZBAR
BB(5,6)=C(5,1)*C(1)*(7BAR-RSMALL)-C(5,2)%D[2)*(7BAR-RSMALL)
BBI6+s5)=C(5,1)*C(1)*(ZBAR-RSMALL)-CI(5,2)*0(2)%(ZBAR-FSMALL)
BB(6+6)=(C(3,1)+4CU13,2))1%A*%2+(C(4y1)14Cl4,2) )*XBAR**24C{5,1)=D(]1)*
1%2+C(542)%D(2) *%2+

1 (C{8y1)+C(8,2) )*XBARK*2

BB(6,7)=-{C(3,1)+C(3,2))*A%*H

BB(6+81=-C(5,1)%D(1)*RSEMALL

BBl6,9)=C{5,2)%C{2}* RSMALL

BB{7,2)=—(C(3,1)+C(3,2))*H
BB(7,3)=-C(1,1)*(D(1)1-YPAR)I+C(1,2)*(D(2)+YBAR)
BBI7+4)=C(1ls1)*YBAR®({D(1)-YBAR)=C(1,2)*YBAR®(D(2)+YEAR)+C(3,1)=L%
1H+C{3,2)*B*H

BB(T7,5)=C{1l,1)*A%{D(1)-YBAR}-C(1,2)%A%(D(2)+YBAR)
BB({T7,6)==(C(3,1)+C(3,2))%A%H
BRIT,7)=C{Lly1}*(D(1)-YRBAR)**2+C(142}*(D{2)+YBAR)**24(C (3,1 ) *H**24C
1(3,2)%H*%2

BB(8,1)=-C(5,1)*RSMALL

BB(8y5)=-C(5,1)*RSMALL*{ZRAR-RSMALL)

BB(8,6)==C(541)*RSMALL*D(1)

BB(8,8)=C{5,1)*RSMALL*%*2

BR(9,1)=-C{5,2)*RSMALL

BR(9,5)==-C(5,2)*RSMALL*(ZBAR-RSMALL)

BB(9,6)=C{5,2)%RSMALL%D(2)

BB(9,9)=C(5,2}*RSMALL#*%2

BB{10,10)=C(2,1}

BB(11,11)=C(2,2)
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BB112,12)1=C(7,1)

BB{13,13)=C(7,2)

BBl1l4,14)=Cl6,1)

BR(15,15)=C{6,2)

BB(16,16)=C(9,1)

BRI17417)=C(9,2)

WRITE (3,105) BB(5+6),RR(6,45)

WRITE (3,105) BB(544),8B(4,5)

IFIC(Lly1)eERaK{1,1)) GO TO 129

oo 123 I=1,17

DO 123 J=1,17

CCUI+J)=BB(I,J)

0SSO0 P OR PO ODODD OO RY TSV OOD G RISV TSP DIDIBDOOTIDENEQODED BRI OAD
THIS EQUALIZES THE VALUE OF 'C* WITH VALUE OF 'K' AND GOES BACK-
TC STATEMENT NUMBER 125 TO COMPUTES THE COEFFICIENTS FOR SPRING-
MATRIX DUE TO ECUIVALENT TIRE SPRING RATES,

L EE A RN ENE NN NN EENNNNERENERNSNEIEJRH:ESRJJ;NREEH;NSESJEJEJNENNRERSN®ENHNENE®E;NNES®EBENJ-BE-3 KN N
D0 124 1=1,9

DO 124 J=1,2

CltI,J)=C(I,J)

ClI,J)=K(1,J)

CONTINUE

GO TO 125

DO 126 I=1,17

DO 126 J=1,17

CD{I,J)=BBI(I,J)

[ B B S IR NN B N NN NN R NN NN N R R NN N R NN E NN RN N - N NN I I A
THIS CALCULATES THE VALUES GF SPRING MATRIX DUE TO EQUIVALENT-
AXLE SPRING RATES AND ADDS IT TO RESPECTIVE TERM CF SPRING MATRIX-
DEVELOPED DUE TC TIRE SPRING CONSTANTS,

(BN N NN BEENFEEREE RSN E NN ES N NN ERNENEMNBHRMNMNIREHNR-R-I & BERE-BNEERIENMNNIRIMSE NN E SRS NN
CD(545)=DD(5,5)+42%(K1+K2 ) *(XBAR**Z2+BAR**2)

CD(10,10)= K1 +DD(19,10)
CLl4+4)=DD(4,4)+K1%D(3)1*%2+K1%D(4)*%2+K2*D(5)**2+K2*D (5 ) **
DD(11,11)=CDI(11,11)+ K1

CCL6+6)=DD(646)+K1*D(3)*%24K2 =D(5)**2+K1*xD(4)¥%2 +K2%=D(H) **
CD(5,1)=DD{(5,41)42*(+K1+K2}*ZBAR

DC(1,5)=DD(1,5)+2%(+K1+4K2)*ZBAR

CC(1,y1)=2%K142%K2+4DD(1,1)

DD(3,43)=2%xK1+2%K2+DD(3,3)

CO(5,3)=+2%K1*XBAR+2*K2%XBAR+DLC(5,3)
DC(3,45)=4#2%K1*XRPAR+2*K2%XBAR+CD(3,5)

CD(5+,10)=DD(5,10)-K1*XBAR

DDU1645)=DD(1645)-K2*ZBAR

CD(17+5)=DD(17,5)1-K2*7BAR

CD(12,12)=DD(12,12)#K?2

CPI13,13)=CD(13,13)+K2

CO(14,14)=DD{14,14)+K1

CO(15415)=DD(15,15) +K1l

CO(16416)=DD(164+16)+K2

CO(L17,417)=DD(17,17)+K2

CO(1,14)=DD(1,14)-K1
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CD{14,1)=DD(14,1)-K1
DD(1+,17)=DC(1417)-K2
CC(17,1)=00(17,1)-%2
CC{1,15)=0C(1,15}~-K1
CC(15,1)=DD(15,1)-K1
CO(1,16)=DD(1,1&)-K2
DDt16,1)=DD(16&6,1)=K2
CC(10,3)=0D({10,2)-K1
CD(11,3)=DD(11,2)-K1
CD(3,11}=DC(2,11)-K1
DD(3,10)=DC(3,1C)-K1
CD(12,3)=DD(12,3)-K2
CO{13,31=D0D(13,2)-K2
C0(3,13)=00(3,13)-K2
DC(3,12)=DD{3,12)=-K2
CD(44111=-C{4a) %Kl
CC(11,4)=—-D{4) %K1l
DD(4,12)=D{5)}*K2
CD(12,4)=D{(5)*K2
CDl4,13)==-D(6)*K2
CD(13,4)==C{6)*K2
CD{6,14)=-C(3)*K1
DO(14,6)=-D(3)*K1
CD{&6,15)=D(4) %K1
CD{15,6)=D{4)*K1l
DDl6,16)==-D(5)*K2
CCU1646)==-Cl5)*%K2
DDl6,17)=D(6)%K2
CO(17,6)=D{6)=*K2
CD(5,11)=DD(5,11)-K1*XBAR
ODl10,5)=DD(1C,5)-K1*XBAR
CC(11,5)1=DD(11,5)=-K1%XBAR
DD(12,5)1=DD(12,5)-K2%*XBAR
CO(13,5)=D0(12,5)1-K2%XBAR
DD(5,12)=DD(5,12)-K2*XRBAR
DD(5,13)=DD(5,12)-K2=XBAR
CC{5,14)=DD(5,14)=K1*7BAR
DC{5,15)1=0D(5,15)=-K1*ZBAR
CC{14,5)=DD(14,5)-K1*78AR
CD{15,5)=DD(15,5)-K1*7RAR
CO{5,17)}=DD{5,17)-K2%7BAR
CR(5,16)=D0(5,16)-K2%*7RBAR
DD(4,10}=D(3)*K1+DD(4,10)
CCl10,4)=D(3)}*K1+DD{104+%}
......-............I.'....‘.O'.'...........'.‘..9“0“'...QGG...GQOQQ.’
THIS TRANSFER THE SPRING AND DAMPING MATRIX 7O RIGHT HAND SIDE UF
THE EQUATION.
6208900000000 00900000000 0300000000000 083 0000080008000 00000dQ0@300UYIIDDBAES
DO 200 [=1,+17

DC 200 J=1,17
CCUI4J)==CCtI,J)}

DO 300 I=1,17
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DO 300 J=1,17

CD(1,J)=-DDI(1,J)

PI=3,14159

W=PI*S/L

([ E N B EEREENEENEERENENNENNEERENE-REERNNENNESNRINRENNENJNIEJNENIRZSNNREIR-ERMNIENIRERE-IT 3 I KX -3 N3 NI NFEA-I-N-0 I
THIS INITIALIZES THE VALUES OF FORCING FUNCTION FCKR DIFFERZNT
COORDINATES.

0000000000920 00000000000000000000809003000000900300009200300000093903080.
DO 12C I=1.,17

oo 120 J=1,2

F[I,J’=0.0

F(10,1)=-8528,0

Fll0:2)==4T75,363266

F{12,1)=-8528.0

F{12,2)=-4T75636366

WRITE (3,106)

WRITE(3,103){(AA(I4J)yJ=1,13},1I=1,13)

WRITE (3,107)

WRITE(3,103)((CC(T4J)yJ=1,13),1=1,13)

WRITE (3,108)

WRITE(3,103)((0C(T4Jd)sJd=1,413)y1I=1,13)

WRITE (3,109)

WRITE(34105){(F(leJd)yJd=142)41=1,13)

000 0890000000 T 0SSO EORPD0GO0 900DV CSOSOODTIODIOOD00390C9000COSRSIIBSOIFOCGDBIDIRES

20000000000 C0CPCCTOORADOIPROPNO000020000390800220020¢32032000090300%2000393

CALLING OF SUBPROGRAMME MATRIX INVERSION TO INVERT MASS MARRIX.-

THE RESULTANT MATRIX IS TAINV?',

S0 800000909009 00C800CO00DTTTOCDOTVOINVDOGNORDODIGPIOADBVDOOD0I828833020330208
CALL MATINV(AA,AINV,NyN2)

WRITE (3,111)

WRITE (3,103} ((AINVI(IsJd),J=1,13),1=1,13)

200000000000 000EYR092007P00PRODDOPRCORBOINSEPIDIDORIOPROEORIOS NSNS ORNE DD
CALLING OF SUBPROGRAMME MATRIX MULTIPLICATICN TO MULTIPLY THE

INVERSED MASS MATRIX WITH DAMPING MATRIXs THE RESULTANT MATRIX

IS YR

00O POV OITODTEDPTOOODOOR P09 SOOI NI NDAIIIERPOCRENIDOB PRSI POROITPINITYIODRS
CALL MATMUL (AINV,CCsR yNyNs17)

WRITE (3,112)

WRITE (3,103)((R(T14J)yJ=1,13),1=1,13)

E X R E R E EEEE R EEERFE R R NN RN R RNRE RN E R R R RN N N E RN ENNENIENENRNKNEENREJENENRNEINIERIRE ;RSB
CALLING OF SUBPROGRAMME MATRIX MULTIPLICATION TO MULTIPLY THZ=

INVERSED MASS MATRIX WITH SPRING MATRIX. THE RESULTANT MATRIX

IS 'R’

[ FEETEENNENSRNRENNENNEENNENENS NN NN ENE NI NEREN N NENERN NN IENE NI N NN ENIERE NI NN
CALL MATMUL (AINV,DDyR1IsN¢N,y17)

WRITE (3,113)

WRITE(3,103)((R1(T4J)4J=1,13),1I=1,13)

(AR EE PR NN NN NN NN ENNENNENRNJEN BNKNNEN NN SN NN NN NENR-BNERERRE RN NN IR
CALLING OF SUBPROGRAMME MATRIX MULTIPLICATION TO MULTIPLY TH:c

INVERSED MASS MATRIX WITH FORCING MATRIX, THE RESULTANT MATRIX

IS 'F1°
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20090200009 PTAOBOPDIIIND 00T VEIVPTDINBDEND0060P2P2IVIBOCORIBERODIIIVI0IAL,

CALL MATMUL (AINV,FyFl,17,17,2)

WRITE (3,114)

WRITE(3,105)((Fl{I,J)sd=1,2),1=1,13)

000000000000 000000030 00C80C0L0QO00C0000O0OCCBC0O00200O8TPIFO9ICRPRERISIAIOOOARIOEPOCTARIIBTIBOETDPIDRRYX8O0048
PREPERATION FCR CALLING SUBPROGRAMME RKGS FCR NUMARICAL INTCEGRATI-
ON OF DIFFERENTIAL EQUATINNS OF THE SYSTCM. THE DEFNITICN OF ALL
THE ARGUMENTS USED 1S GIVEN IN SUBRQOUTIMNz RKGS

208000000039 0000000 0983000030002 0038003030 300038000000 00033008800022098304815
PRMT(11=0.0

PRMT(2)=2.0

PRMT(3)=0C.005

PRMT{4])=,0001

DO 150 [=1,34

Y{I1=0,0

DO 160 1=1,34

DERY(I)=1e/34.

NDIM=34

AN=0,0

INDEX=0

CALL DRKGS (PRMT,Y DERY{NDIM,IHLFFCT,0UTP,AUX)

WRITE (3,119)

WRITE(3,117}((VALUE(TI,J),I=1,3),J=1,4011}

WRITE (32,122)

WRITE(3,118)} (VALUE(1,J)},VALUE(4,J),4J=1,2C01)

STOP

END

0000 0000000000000 0000C0800009AD00C000C0090000P3DA00033002063080P00203003a308
SCBROUTINE FOR MATRIX INVERSION

2000000080000 0000008000080 00000000000C0C00008 3 P03 000082098009 0P38P280309%990809
SUBROUTINE MATINV{AA,AINV,N,N2)

DIMENSION AA(17,34),AINV(17,17)

N1=N+1

N2=2%*N

DO300I=1,N

D0301J=N1,N2

AA(I,4J)=0.0

M=N+1

AA{TMY=1,0

D0290J=1,N

DIV=AA(),J])

S=1.0/01V

DO201K=J,N2

AALT o KI=AA(JK}%S

DO2021=1,N

IF{I-4)203,202,203

AATJ=<AALT,J)

D0204K=J,N2

AACL ,KI=AA(T ,KY+AATI*AALD,K)

CONTINUE

CONTINUE

DO400I=1,N
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0C400J=1,N

M=N+J

AINVITJ)=AA(TI,N)

RETURN

END

S0 8000 00OTNOBOOONL 00000000030 P0A0000V00IDOODDICRORIBIRDIOOIEIIEI SV I N
SUBROUTINE FOR MATRIX MULTIPLICATIOCN

SUBROULTINE MATMULL(A.B,CyMsN,L)

DIMENSION A(MyN),B{NyL)oC{M,L)

00 102 I=1,M

DO 101 J=1,L

SUM=0,0

DO 100 K=1,N

SUM=SUM+A(I,K)¥B(K,.J)

CtI,J)=SUM

CONTINUE

RETURN

END

P00 0T OOV NNOVDOCDOODORION 1000000V CEN0R0EIINIIITAIODLOINOTIDEICIAOORIDNINOED
OUTPLUT SUBROUTINE '

[(ER EE N N E N NN NNMNIMNNNENEMNMNNNRE-RJENNEMNNRIMNRENNNNNNENENMNIESRNJEIN I I NI N RS RS S I NIRRT RN
SUBROUTINE OUTP (X,Y,DERY,IHLF4NDIM,PRMT)

DOUBLE PRECISICN DABS

DOUBLE PRECISICN DERY,Y,AUX Xy PRMT

REAL MH,MV,MI,MR,L1

COMMON R{L7+17)4RL{L7417),FL(1T7y2)4Wy BBILT7,17),CC(17,17)
14DD{17,17) s XBARyZBAR,K(9,42),C(9,2),VALUE(6,2C01),C16) AN, INDEX

DIMENSION Y(34),DRRY(34),PRMT(5)

FORMAT(1H 4F6e3,2(10X,ELl1e%))

FORMAT (1H ,01063411(1XsD10.3))

VI=ICCCOQ0O0.0

V2=99C000.0

T=0e67

L1=15.

LZ2=24.0

D1=3.0

Cl=D1/2,

PI=3.,14159

MI=(PI/64.,0)%81l.0

PP O CIC0INCCOPOO0TORDBERDDO00DO0DI0BEDB0I0EDAVBOIOBIIIBIGSILESNAEDOIBIDE
THIS EQUATES THE FORCING FUNCTION FOR ALL THE CCCRDINATZS T3 7=2RQ

SCON AFTER THE BUMP DISCONTINUES

S P0SP0VON 0D EOOR00 00D 0000D00003C¢SPODSE0NAODPDEORSODRABOSSOBIIDIDEIITGSCT
IF (XeLEST) GG TO 110

DO 170 I= 1,17

DO 166 J=1,2

FI(I,+J)=0.0

CONTINUE

P00 S0 PPSB LT OOPB00IORPDOOOPN0EatBOIEOROBOO0ROIORDOOBCERDIBODIDTIOGTIISBIINED

CALCULATIAON QOF VERTICAL AND HORIZANTAL DcFLECTION.

PO B0 EOPICSDOOOOCPORPOOOOe BB POOEEOIRR PP BTSN TOOE S0 EYIINOEIERIPOGSTE N S a
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11C DELTAl=Y(3)+XRPAR*Y(5)-D(3)*Y(4)-Y{10)

DELTAZ2=Y([1)+ZBAR*Y(S)+D{3)*Y(6)-Y(14)

DELTA3=Y(3)+XBARXY(5)-DI(5)*Y(4)-Y(12)

DELTA4=Y(1)+ZBAR®Y[5)+D{(5)*Y(6)-Y{1l6)

MV=V1*DCLTAL*L1+4V2*DELTA3*L2

MH=V1*DELTA2*L1+V2*DELTA4*L?2

8000 P20030080 0030002000000 00C00000038 0030030303900 800000308002 00032060308

CALCULATION OF RESULTANT STRESS IN THE AXLE

8000000000000 200090000093 009093300800009000905083 2900920000983 330083360201323 3009323

A=M{*%x%2

B=MH%*%2

P=A+B

MR=SQRT(P)

SR=MR*{C1/MI)

SH=MH*(C1/MI)

SV=MV*(C1/MI)

IFIXeEQaDs0O) INCEX=0

INDEX=INDEX+1

VALUE(1, INDEX)=X

VALUE(2, INDEX)=CELTAL

VALUE(3, INDEX)=CELTAZ2

VALUE (4, INDEX)=SR

VALUE(5, INDEX)}=SH

VALUE( 6, INDEX)=SV

WRITE(3,104)X,(Y(I),1I=1,11)
00C RETURN

END

P2 0000808000000 00000C00200 0800080003009 900000P 4080800393003 00003 3402082230908

THIS FUNCTION SUBROUTINE DEFINES FIRST ORDZK UIFFERENTIAL =ZQUATION

OF THE SYSTEM

020000200000 00000 00000000008 030 0000082003092 3 0000300909300 00333080830323398

SUBROUTINE FCT{X,Y,DERY)

DCUBLE PRECISICAN DABS

DOURLE PRECISICN DERY,.Y,AUX4X,PRMT,DSIN,DCOS

COMMON RUL7,17}4,RYICLT417),FLUL1T742) Wy BBILT7417),CCLLT,17)

140D(17,17) yXBAR,ZRAR3K(9,2),C19,2) VALUZ(6,2C01)yC(6) AN, INDZX

DIMENSION DERY({324),Y(34)

DO 120 I=1,17
12C DERY(I)=Y([I+17)

DC 125 J=1,17

SUHJ=0¢0

DO 124 N=1,17
124 SUMJ=SUMJI+R(JSNIXY(N+ITI+RI(J,N)EY(N)
125 DERY(J+1T7)=SUMJI+FL(Jy L)*DSIN(WEXI+FL(J,2)%DCCS{WEX)

RETURN
END
D~R3
o.thooosncoitc.oooooo-c..o.n001|o-'ooo¢'lcoI-ocoa---so--..;oonsoaD{KG
GIRKS
SUBRQOUTINE CRKAGS KR
L2eG

PURPDSE IR S
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TO SOLVE A SYSTEM OF FIRST ORDER ORCINARY DIFFZRENTIAL
EQUATICNS WITH GIVEN INITIAL VALUES.

USAGE

CALL DRKGS (PRMT,.Y,DERY,NDIM, IHLF,FCT,CUTP,AUX)
PARAMETERS FCT AND QUTP REQUIRE AN EXTERNAL STATEMZINT,

DESCRIPTICN CF PARAMETERS

PRMT

PRMT (1) -
PRMT (2)-
PRMT (3) -

PRMT{4) -

PRMT(5)-

NDIM

THLF

COUBLE PRECISION INPUT AND CUTPUT VECTOR WITH
CIMEMSION GREATE® THAN OR EQUAL T2 5, WHICH
SPECIFIES THE PARAMETcRS OF THEZ INTERVAL AND OF

NAKG
DRKG
CRKG
DRKG
DRKG
DRKG
DRKG
DRKG
CRKG
IR
DRKG

ACCURACY AND WHICH SERVES FOR COMMUNICATION BZTWZZNDRKE

CUTPUT SUBROUTINE (FURNISHED BY THE USER) AND
SUBROUTINE DRKGSe EXCEPT PRMT (5} THE COMPONENTS
ARE NOT DESTROYED BY SUBROUTINT DRKGS AND THIY ARE
LOWER BOUND OF THE INTERVAL (INPUT),

UPPER BOUND OF THE INTERVAL (INPUT),

INITIAL INCREMENT OF THE INDEPENDENT VARIABLE
{INPUT),

UPPER ERROR BOUND (INPUT)s IF ABSOLUTE ERROR IS
GREATER THAN PRMT(4), INCREMENT GETS HALVEC,

IF INCREMENT IS LESS THAN PRMT(3) ANLC ABSOLUTE
ERROR LESS THAN PRMT(4)/50, INCREMENT GETS DOUBLZIOU,.
THE USER MAY CHANGE PRMT(4) BY MEANS CF HIS
CUTPUT SUBROUTINE,

NO INPUT PARAMETER, SUBROUTINZ= DRKGS INITIALIZES
PRMT(5)=0s IF THE USER WANTS TO TERMINATE
SUBROUTINE DRKGS AT ANY QUTPUT PCINT, Hc HAS TO
CHANGE PRMT(5) TO NON-ZERO BY MEANS CF SUBROUTIANZ
CUTP. FURTHER COMPONENTS OF VECTOR PRMT ARE
FEASIBLE IF ITS DIMENSION IS DZFINED GREATER

THAN 5, HOWEVER SUBROUTINE DRKGS DOES NUT RZQUIRE
AND CHANGE THEM. NEVERTHELESS THEY MAY BE USEFUL
FOR HANDING RESULT VALUES TO THE “AIN PROGRAM
(CALLING DRKGS) WHICH ARE OBTAINED BY SPzCIAL
FANTPULATICNS WITH OUTPUT LCATA IN SU3ROUTINI CUTP,
COUBLE PRECISION INPUT VECTUR OF INITIAL VALUZS
(DESTROYED)e LATERON Y IS THEZ RESULTING VECTULR COF
DEPENDENT VARIABLES COMPUTED AT IMTZRMEDIATZ
POINTS X,

COUBLE PRECISION INPUT VECTOR OF ERRCK WSZIGHTS
(DESTROYED)s THE SUM OF ITS CCMPONENTS MULST OF
EQUAL TO 1. LATERON DERY IS THE VECTOR OF
CERIVATIVES, WHICH BELCNG TO FUNCTIUN VALUFS Y AT
INTERMEDIATE POINTS X,

AN TMNPUT VALUE, WHICH SPECIFIES THE NUMBZR CF
EQUATINNS IN THE SYSTEM.

AN OUTPUT VALUE, WHICH SPECIFIES THEZ NUMZ3zZR OF
BISECTIONS OF THE INITTIAL INCREMENT, IF IHLF GTTy
GREATER THAN 10, SUBRUUTINE DRKGS RETURNS WITH
ERROR MESSAGE THLF=11 INTO MAIN PROGRAM, cRAUR
MESSAGE THLF=12 OR IHLF=13 APPFARS IN CASE

DEKG
DRKG
DRKS
CRKG
CRKS
DRK N
DRKG
DRXG
CRKG
BRKG
DRKG
DRKG
DRKG
DRKG |
DRKS |
DRKS |
DIKG,
LEKG
LRKG
GRKS
CRXG
DRKS,
CRKG

CrKG
C2KG
DRKG
DK
CRKG
CRKE
DAKSG
DRK
DeRE
DRKSG
DREZ
RIS
DK C
DRKA
CuKC
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PRMT(3)=0 OR IN CASE SIGMN{PRMT(3))NEJSIGN(PR¥T(2)-CRKG
PRMT(1)) RESPECTIVELY. CTKG
FCT - THE NAME OF AN EXT=ZRMAL SUBRUUTINE USED. THIS DRKG
SUBROUTINE COMPUTES THE RIGHT HAND SIDEZES DERY OF CRKG
THE SYSTEM TO GIVEN VALUES X AMD Y, ITS PARAMZTIR [DRKG

LIST MUST BE X,Y,DERY. SUBRGUTINE FCT SHOULD d 3
NOT DESTROY X AND Y, DKS
OUTP - THE NAME OF AN EXTERNAL QUTPUT SUBROUTINE USED, C3KG
ITS PARAMETER LIST MUST BE XyYsDERYIHLF,NDIl,PRMT,02K5
NONE OF THESZ PARAMETERS (EXCSPT, IF NZCcSSARY, DAKG
PRMT(4)4PRMT(5) 300s) SHOULD BE CHANGEL BY TanG
SUBROUTINE OUTP. IF PRMT{5) IS CHANGEC TO NON-Z3ZR0,D3KG -
SUBROUTINE DRKGS IS TERMINATED, DRKG
AUX - COUBLE PRECISION AUXILIARY STORAGZ ARRAY WITH 8 CRKG
ROWS AMD NDIM COLUMNS, DRKG
C=<¥G
REMARKS DRK G
THE PROCECURE TERMINATES AND RETURNS TO CALLING PROGRAM, IF DRKG
(1) MORE THAN 10 BISECTIONS OF THE INITIAL INCRZMENT ARS DK 5
NECESSARY TO GET SATISFACTORY ACCURACY (ERROR MESSAGE  CR¥%
IHLF=11), DRKG
(2) INITIAL INCREMENT IS EQUAL TO O OR HAS WRONG SIGN DRK 5
(ERROR MESSAGES IHLF=12 OR IHLF=131, DRKG
(3) THE WHOLE INTEGRATION INTERVAL IS WORKED THROUGH, DRK G
(4) SUBROULTINE OUTP HAS CHANGED PRMT(5) TC NON-ZERO,. CRKG
DRKG
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DRKG |
THE EXTERNAL SUBROUTINES FCT(X,Y,DERY) AND DRRG
OUTP(X,Y4DERY, IHLF,NDIM,PRMT) MUST BE FURNISHED BY THS USZ,[9K5
DRKS
METHOD D?hG!
EVALUATICN IS DONE BY MEANS OF FOURTH ORDER RUNGE-KLTTA GSKG |
- FORMULAE IN THE MODIFICATIGN DUE TO GILLe ACCURACY IS DRKG |
TESTED CCMPARING THE RESULTS OF THE PRCCEDURE WITH SIYGLZ DRKG |
AND DDUBLE INCREMENT, OPKG

SUBROQUTINE DRKGS AUTOMATICALLY ADJUSTS THE INCRZMENT DURING DRK3G
THE WHOLE COMPUTATION BY HALVING OR DOULLINGe IF MORZ THAN CxKG

10 BISECTIONS OF THE INCREMENT ARE NECESSARY TC GET LG
SATISFACTCRY ACCURACY, THE SUBROUTINE REZTURNMS WITH e

ERROR MESSAGE IHLF=11 INTO MAIN PROGRANM. hELEe

TO GET FULL FLEXIBRILITY IN OQUTPUT, AN CUTPUT SUBRQUTIIE DRAKG

MUST BE FURNISHED BY THE USER, LK G

FOR REFERENCE, SEE DK E]
RALSTON/WILF, MATHEMATICAL METHCDS FOR DIGITAL CUMPUTERS, COIRG
WILEY, NEW YORK/LINDOM, 1960, PPe110-120. UHKG

LaK5
..'..................'..."....................‘.....I......'..'..C*KG
D7PKG

SUBROLTINE DRKGS(PRMT,YsDERYyNDIM, IHLF.FCT,0UTP,AUX) DAKG
DrKSG

LInG
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DIMENSION Y(1),CERY{1),AUX{By1)sA(4),B(4),C(4),PRMT(1)
DOUBLE PRECISICN PRMT,Y,DERY AUX,A»ByCo X XENDyH;AJyBJIyCJIyR14R2,

1DELT .

DCUBLE PRECISION DARS

DO 1 I=1,NDIM
AUX(8,11=206666€66666666666TDGXDERY (1)
X=PRMTI{1)

XEND=PRMT( 2}

H=PRMT(3)

PRMT(5)=0,D0

CALL FCT(X,Y,CERY)

ERROR TEST
IF(H*{XEND-X))328,37,2

PREPARATIONS FCR RUNGE-KUTTA METHOD
A{l)=.5D0
Al2)=4292893218€1345248D0
A{3)=1,T7T071067811865475D0
Al4)=e 1666666EEEEHH6666TDO
Bl{l)=2.D0

B{(2)=1.D0

B(3)=1.,D0

B{4)=2,D0

C(l)=.5D0
Cl2)=429289321£681345248D0
C(3)=1.7071067211865475D0
Cla)=45D0

PREPARATIONS OF FIRST RUNGE-KUTTA STEP
0O 3 I=1,NDIM
AUX(L1l.I)=Y(])
AUX(2,1)=DERYI(I)
AUX(3,1)=0.DC
AUX‘611,=0.DO
TREC=0

H=H+H

IHLF=-1

ISTEP=0

IEND=0

START OF A RUNGE-KUTTA STEP
IF((X+H-XEND)*H)7,6,5
H=XEND-X

TEND=1

RECORDING OF INITIAL VALUSS OF THIS STEP

CALL OUTP(X,Y+LCERY, IREC,NDIM,PRMT)
IF{PRMT(5))40,8,40

ITEST=0

ISTEP=ISTEP+1
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DRKG]
DRKG!
DRKG]

LRKG]
DRKG]
DRKG]
DRKG]
DRKG)
DRKG]
ORKG
CAKG]
DRKG]
ERKG]
DIIKG]
DRKG]
DRKG]
DRKG]
DRKG]1
CRXG]
DRKG]
DRKG]
DRKG]
DRKG]
DRKGI
DRKG]
DRKGY
DRKG
DRKG
CRKG]
DRKGI
DRKG]
DRKG’
DRKG!
DRKG!
DRKG’
DRKG!
DRKG’
DRKG !
DRKG'
DQhGi
DRKG
DRKG
NRKG
DRRG
DRKC
CRKG
DRKG
DRKG
DRKRG
CREG|
DRKGC



1c

11
12

13
14

15

1%
17

18

19

20
21

22

24

START OF INNERMCST RUNGE-KUTTA LOOP
J=1

Ad=A(J}

BJ=BI(J)

Cd=C(I

DO 11 I=1,NDIM

R1=H*DERY(I)
R2=AJ*{R1~BJ*AUX(6,41))
Y{I)=Y(I)+R2

R2=R2+R2+R2
AUX{6,T)=AUX(£&,T1)+R2-CJI*R1
IF(J-4112,15,15

J=J+1

IF(J-3)13,14,13

X=X++5D0%H

CALL FCT(X,Y4sDERY)

GOTO 10

END OF INNERMOST RUNGE-KUTTA LCCP

TEST OF ACCURACY
IF{ITEST)I16,16,20

IN CASE ITEST=0 THERE IS NO POSSIBILITY FOR TESTING CF ACCURACY

DO 17 I=1,NDIM
AUX{4.10=Y(I)
ITEST=1
ISTEP=ISTEP+]ISTEP-2
IHLF=IHLF+1

X=X-H

H=,5D0%H

D0 19 I=1,NDIM
YUII)=AUX(1,1)
DERY(I)=AUX(2,1)
AUX(6s T}=AUX({3,1)
GOTO 9

IN CASE ITEST=1 TESTING OF ACCURACY IS POSSIBLE

IMOD=1ISTEP/2
IFLISTEP-IMOD-1IM0ODI21,23,21
CALL FCT(X,Y,DERY])

DO 22 [=14NDIM
AUXESyT)=YI1])
AUX{T+1)=DERY(I)

GOT0 9

COMPUTATION OF TEST VALUE DELT
DELT=0.00
DO 24 [=1,NDIW

DELT=CELT+AUX(8,1)*CABS{AUX{&4,IV=-Y{1))
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DPRKG] ¢
DRKG1:
DR¥G1!
DK G
DEKG1:
DRKCG1:
DRKGL!
DAKGY
DRKG1¢
DRKSL
DK
DRKGL"
DRKGL"
DAKGL®
DRKGL
DRKGL”
DRKGL
PRKGLT
DRKGL"
DRKGL!
DRKG1!
DRKGL!
DRKGY?
DRKG1?
DRKG1!
DRKG1:
ORKGL:
DRKGL!
DRKGL
DRKGL!
DRKGL:
DRKGL!
DRKGLY
DRKGL!
DRKG1!
DRKGL®
DRKGYA
DRKGL®
DRKEL
DREKGZ
DK G2
DRKG2!
CRKGZ
DRKG2
DREKGZ
DRKGF
LRKGZ
DRKG?Z
DRKCE
DRRGZ2
DRKGZ
LDRKG2




OO0

£5
2¢
21

28

26

3C

31

32

34
35

E1

37

38
39
4C

IF(DELT-PRMT(4))28,28,425

ERROR IS TOD GREAT
IF{IHLF-10)264,36436
DO 27 I=14NDIM
AUX{4s I)1=AUX(5,1)
ISTEP=ISTEP+ISTEP-4
X=X-H

1END=0

GOTO 18

RESULT VALUES ARE GCOD
CALL FCTU{X,Y,CERY)

DO 29 [=1,NDIM
AUX(Ll,1)=Y{T}
AUX(2,I1)=DERY(I)
AUX[3'I)=AUX(6|I)
YIT)=AUX{5,1}
DERY(I)I=AUX{7,1)

CALL OQUTP(X-H,Y,DERY, IHLF,NDIM,PRMT)
IFIPRMT(5))40,304+40

DO 31 I=1,NDIM
Y(I)=AUX{1l,1I)
DERY(I)=AUX{2,1)
IREC=THLF
IF(IEND)32,32,39

INCREMENT GETS COUBLED
IHLF=IHLF-1

ISTEP=ISTEP/2

H=H+H

IF(IHLF)4,33, 33
IMOD=1STEP/2
IF{ISTEP-IMOD~IMOD) 4434, 4
IF(DELT-o02D0%PRMT(4))35,35,4
THLF=THLF-1

ISTEP=ISTEP/2

H=H+H

GOTO 4

RETURNS TO CALLING PROGRAM

IHLF=11

CALL FCT{X,Y,CERY)

GOTO 39

IHLF=12

GOTO 39

IHLF=13

CALL CUTP(XsYDERY,yIHLFyNDIM,PRMT}
RETURN '

END
kR — Rk
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CRKCZ1
DR¥GZL-
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CaKkzzz
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DRKG22
DRKG22:
DRKG22
CRKGZ22:
DRKGZZ!
DRKG22:
DRKGZ23
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DRKG22
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DRKG2 3
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DRKGZ4:
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DRKG24
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DRKGZA.
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LRKGZ6
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APPENDIX C

A SAMPLE OF COMPUTOR OUTPUT

A sample of the computor output for a generalized case of

hub-attached dual wheel farm tractors follows:

Time Resultant Bending Stress
(sec.) (psi)
0.00 0.00
0.025 9,874.00
0.050 12,490.00
0.075 11,240.00
0.100 3051000
0125 7,590.00
0.150 6,445.00
0.175 7,945.00
0.200 8,352.00
0.225 7,288.00
0.250 6,508.00
0.275 5,677.00
0.300 4,203.00
0.325 3,198.00
0.350 3,284.00
0375 5,162.00
0.400 6,413.00
0.425 7,209.00
0.450 7,224.00
0.475 6,307.00
0.500 4,892.,00
f1.525 3,484.00
0.550 3,052.00
0.575 3,681.00
0.600 4,246.00
0.625 4,129.00
0.650 3,270.00
0.675 2,018.00
0.700 8,002.00
0.725 13,560.00
0.750 14,510.00
0.775 11,650.00

0.800 9,646.00



Time Resultant Bending Stress

0.825 5,512.00
0.850 5,239.00
0.875 6,051,00
0.900 7,556.00
0.925 7,312.00
0.950 6,948.00
0.975 6,535.00
1.000 4,780.00
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APPENDIX D

METHODS OF EVALUATING VARIOUS VEHICLE CONSTANTS

Determination of Dynamic Characteristics of Tires

It is known from the experiments that tire spring rate is
non-linear. Similarly, the damping coefficients of tires are not
entirely a linear function of velocity. However, consideration
of tires as a mass connected to the surface traversed by a system
of linear springs and viscous dampers gives quite accurate re-
sults. Thus, the tire measurements to determine the parameters
are needéd. Tractor tires have spring rates and damping coeffi-
cients in three directions:

1) Vertical direction

2) Lateral direction

3) Fore and aft direction
Stiffness and viscous damping constants vary significantly in the
three directions. Therefore, it is necessary to determine these
parameters separately for all three directions. Methods for
measuring these parameters in the vertical direction are des-
cribed below. The same methods could be used to determine the

parameters in the other directions.
Equipment

To determine the tire spring rates and damping constants,
Pershing mounted the tractor wheels rigidly on a long arm which
pivoted from a fixed vertical member. The wheel was loaded for

dynamic measurement by clamping weights to the wheel mounting



structure. The supported weight was then varied from zero to
3000 1b of 1load. Static deflection was recorded by means of
potentiometer displacement transducers. Dynamic transient re-
cording was made with a carrier-amplifier and galvanometer re-

corder.
Calculation of Dynamic Characteristics of Tires

To determine the tire constants, it is necessary to make the
following assumptions:

1) The system can be treated as a single degree of freedom
model with a concentrated mass, stiffness coefficient, and damp-
ing coefficient.

2) The non-linear stiffness of the tire may be approximated
by an equivalent linear value.

3) Damping is small and purely a function of velocity.

4) Tire oscillation is small and is always in contact with
the ground.

The equation of motion of a free vibrating body having mass,
spring, and damping is represented by:

Mx + CX + Kx = 0 (1)
R~ 0.1 (1 - R2) =p
Thus, the stiffness coefficient K can be obtained from
K = (2 FR)ZM
The damping ratio R is small to allow transient motion.

C < 2/
m

o
&2
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Therefore, the solution of the above equation of motion will be

x = B gl-c/2m)

tcos (wt + ¢)
Where B and ¢ are constant, the solution can be found by utiliz-
ing the initial conditions:
w = angular frequency
With this the peak displacement at An, An+1 is given by
% = B e-c/thn

= ¥ e-c/thn+1

Since

[cos( to+ ¢) = cos/( tn+1 + ¢) = 1 at peaks]

the ratio of two consecutive amplitudes is:

-c/2Mt
*n _° T et/
n+l e_C/ZMtn+1
2M X
o= e YO L
T e Xn+1

where
x = displacement
C = damping coefficient of the tire

K = tire stiffness

]

M mass supported by tire
T = period of one cycle of oscillation
The transient vibration frequency F(r) is

-1 KO - RZ)
R~ 2 M

F =

R

damping ratio = C/2vKM
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Moment of Inertia Determinations

Moment of inertia of the tractor about the three different
axes (pitch, roll, and yaw) through the center of gravity of the
vehicle can be obtained by several techniques. Several of these

methods are described below:
Pitch moment of inertia

This constant can be determined from the period of swing of
the tractor when it is mounted on a suspended platform. The ra-
dius of gyration of the platform itself would have to be deter-
mined separately so that it could be deducted.

The period of swing is obtained by means of an electronic

timing apparatus.
Calculation for moment of inertia

The period of swing (T) of a rigid compound pendulum system

is given by

- B2+ K7
T—Zﬂ'—hé'—"

where

h = distance from the pivot to center of gravity (C.G.) of
the complete system

k = radius of gyration of the system

Length (L) of equivalent single pendulum is given by

T=21T/-I:
g

'L-—-h2+k2
& __F._.

or
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h =2 + Vo - 4k?
B 2
or
h _9,+t‘£2'4k2
1 2
hoo- & - AT - K7
2 2
and
_ _ o
h1 p: h2 k
A graph plotting of h vs. T will give values of h1 and h2 for

any period T.

Let k be the radius of gyration of the tractor and the plat-
form over which it has been mounted, and

J = pitch moment of inertia of the tractor about its cen-
ter of gravity

k1= radius of gyration of the platform

wy= weight of the platform

W,= weight of the tractor

d,= distance from the pivot to C.G. of the platform (Cl)
d2= distance from the pivot to C.G. of the tractor (CZ]
C = position of the combined C.G. of tractor and platform
then
(wy + wz)k2 =J + w1k12 + w, (distance CCl)2
*+ w; (distance C2C)2
therefore

2 - 2 2 _ 2
WoWy (d1 dZ) . W Wy (d1 d2)
(w1+w232 (wl+w2)Z

; 2 2
(hl + wz)k J o+ wlk1 +
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from this

w.k,2(w,+w + wow,(d,-d,)2
3= Qugu)ke - oL S i L e

W, tW

1 72
Pitch moment of inertia of vehicles can also be calculated using

the natural frequencies of vibration. This method is as follows.

Moment of Inertia by Vibration Method

Let
m = mass of complete vehicle

I = mass moment of inertia about a traverse axis through

)
€: G

y = vertical displacement of the C.G.
6 = pitch about the C.G.

¢ = roll around the C.G.
k1= spring rate of left front tires
k2= spring rate of right front tires
k3= spring rate of left rear wheel
k4= spring rate of right rear wheel
C1= damping coefficient of left front wheel
C,= damping coefficient of right front wheel
C3= damping coefficient of left rear wheel
Cy= damping coefficient of right rear wheel

a = distance from C.G. to front axle

b = distance from C.G. to rear axle

c = distance from C.G. to center of left rear tire
d = distance from C.G. to center of right rear tire

w_= natural angular frequency associated with the y
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coordinate
w,.= natural angular frequency associated with the o
coordinate
w,= natural angular frequency associated with the ¢
coordinate
By referring to Figure 18, the equations of motion (neglect-
ing damping for practical purposes) are as follows:
mx + (k1 + kz)x - (kla - kzb)e =0
8 2 2 " . 5
Iee + (kla + kzb )e (le1 kzLZ)x 0

by letting

x A sin wt

n

] B sin wt

-mw?A sin wt + $1 + kZ)A sin wt - (kla - kzb)B sin wt=10

- Dt 2 2 : - -
IBw4sin wt + (kla + kzb )B sin wt (klal kzb )+

A sin wt =0

- 2 " - =
[-mw< + kl + k2]A (kla kzb)B 0
[-19w2 + kla-’- + k2b2]B - (kya - k,b)A = 0

- 2 o s o
K, +k, - mw (k;a - -k,b) A

2 4

- (k k,b

12 -k, )] k182 + kzb2 = Iaw2 B

For non-trivial solution

- 2 -
K, + k, - mw kb - k@
= 0
. 2 2 . 2
k,b - k;a ka2 + k,b I w
(ky + k, - mw2) (ka2 + k,b2 - T w2) - (k,b - kya)2 = 0
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I 2 2 2 . 2y . - 2 =
(k; + k, - mu2) (ka2 + k,b Igw?2) - (kb - kja)? = 0

2
This is a frequency equation for the resulting two degrees
of freedom problem. Either of the two natural frequenciescan be
used to find the Ie in this equation. Since the damping is small
in the system, the damped and undamped natural frequencies can be
assumed equal for practical purposes.
By referring to Figure , the equation of motion is:

I¢¢ + (kg o+ kz)a2¢ =0

Since there is no coupling, the equation of motion due to free-

dom in the y direction can be neglected.

Let
¢ = A sin wt
Therefore
-I¢Aw2 sin wt + (k; + kz)a2 A sin wt = 0
or

(k; + kp)a? - I,w? =0

So, by using natural frequency due to roll, I¢ can be de-

termined.
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ABSTRACT

This analysis presents the method of formulating stress equa-
tions for rear axles of conventional single and dual wheel farm
tractors in order to investigate the transient variation of bend-
ing stresses. The mathematical models for single wheel, individu-
al-hub-attached, and rim-to-rim attached dual wheel rear axles
were derived and equations were developed with the help of the
energy method. The derivation included the effect of tractor vi-
bration for bounce, pitch, roll, and yaw coordinates about which
the tractor may possibly vibrate while it traverses a particular
sinusoidal bump. The cases in which the left outer wheels hit
the bump were also included in this study to find the effect on
axle stress.

The stress response curves for all the different models using
a standard set of conditions for an IHC-340 utility tractor were
computed. The Runge-Kutta method of numerical integration was
used to solve the sets of simultaneous differential equations of
the system.

The analysis showed that the maximum bending stress in the
rear axle of an individual-hub-attached dual wheel was twice as
high as that of the single wheel tractor. However, the stress in
rim-to-rim attached dual wheels on the rear axle was only 50 per-
cent grecater than that of single wheels. The solution indicated
that the stresses were significantly higher at two different points
in the time domain during which the tractor traverses over the

bump and returns to a steady-state condition. The stress level



in the rear axle of individual-hub-attached dual wheels was quite
high in comparison to rim-to-rim attached dual wheels when the
tractor hit the bump with only-the outer dual wheels. It was also
observed that the axle material properties and area moment of in-
erﬁia greatly influence the stress variation.

A comparison of all the solutions showed that wheel configur-
ation and the manner in which the wheel hits the bump change the

stress situation significantly.



