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Abstract 

This dissertation is the result of studying different methods of increasing guide sign 

visibility and legibility to drivers during nighttime, to increase safety on roadways. It also studies 

intersection lighting to indicate the lighting benefits on nighttime crash frequency reduction.  

From a survey conducted, practices related to overhead guide sign illumination and 

retroreflectivity in United States were summarized. A laboratory experiment was conducted to 

compare light distribution of five light sources: Metal Halide, Mercury Vapor, High Pressure 

Sodium, induction lighting, and Light Emitting Diode (LED). Cost analysis of the five light 

sources was performed. Combining results of the laboratory experiment and the cost analysis, 

induction lighting was recommended for states that want to continue external sign illumination. 

A retroreflectivity experiment was conducted to compare three types of retroreflective sheeting: 

Engineering Grade (type I), Diamond Grade (type XI), and High Intensity (type IV), to 

determine the sheeting that best increases visibility and legibility. Diamond Grade (type XI) was 

found to be the optimal sheeting that increases visibility and legibility to drivers during 

nighttime. A glare experiment was conducted to expand the retroreflectivity experiment results. 

Four sheeting-font combinations of High Intensity (type IV) and Diamond Grade (type XI) 

materials and Series E (Modified) and Clearview fonts were compared. Results revealed an 

optimal sheeting-font combination of Diamond Grade (type XI) sheeting and Clearview font 

which increases the visibility and legibility of guide signs to drivers under presence of oncoming 

glare source. The Highway Safety Information System (HSIS) database was used to study the 

effect of intersection lighting on the expected crash frequency. Illuminated intersections showed 

3.61% and 6.54% decrease in the expected nighttime crash frequency as compared to dark 

intersections in Minnesota and California, respectively. In addition, partial lighting at 

intersections decreases the expected nighttime crash frequency by 4.72% compared to 

continuous lighting in Minnesota.  

The recommended sheeting-font combination for Departments of Transportation was 

Diamond Grade (type XI) and Clearview. This combination will increase signs’ visibility and 

legibility to drivers, and consequently increase safety on roadways. Adding partial lighting at 

intersections will reduce the expected nighttime crash frequency, and increase safety on 

roadways. 
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Abstract 

This dissertation is the result of studying different methods of increasing guide sign 

visibility and legibility to drivers during nighttime, to increase safety on roadways. It also studies 

intersection lighting to indicate the lighting benefits on nighttime crash frequency reduction.  

From a survey conducted, practices related to overhead guide sign illumination and 

retroreflectivity in United States were summarized. A laboratory experiment was conducted to 

compare light distribution of five light sources: Metal Halide, Mercury Vapor, High Pressure 

Sodium, induction lighting, and Light Emitting Diode (LED). Cost analysis of the five light 

sources was performed. Combining results of the laboratory experiment and the cost analysis, 

induction lighting was recommended for states that want to continue external sign illumination. 

A retroreflectivity experiment was conducted to compare three types of retroreflective sheeting: 

Engineering Grade (type I), Diamond Grade (type XI), and High Intensity (type IV), to 

determine the sheeting that best increases visibility and legibility. Diamond Grade (type XI) was 

found to be the optimal sheeting that increases visibility and legibility to drivers during 

nighttime. A glare experiment was conducted to expand the retroreflectivity experiment results. 

Four sheeting-font combinations of High Intensity (type IV) and Diamond Grade (type XI) 

materials and Series E (Modified) and Clearview fonts were compared. Results revealed an 

optimal sheeting-font combination of Diamond Grade (type XI) sheeting and Clearview font 

which increases the visibility and legibility of guide signs to drivers under presence of oncoming 

glare source. The Highway Safety Information System (HSIS) database was used to study the 

effect of intersection lighting on the expected crash frequency. Illuminated intersections showed 

3.61% and 6.54% decrease in the expected nighttime crash frequency as compared to dark 

intersections in Minnesota and California, respectively. In addition, partial lighting at 

intersections decreases the expected nighttime crash frequency by 4.72% compared to 

continuous lighting in Minnesota.  

The recommended sheeting-font combination for Departments of Transportation was 

Diamond Grade (type XI) and Clearview. This combination will increase signs’ visibility and 

legibility to drivers, and consequently increase safety on roadways. Adding partial lighting at 

intersections will reduce the expected nighttime crash frequency, and increase safety on 

roadways. 
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Chapter 1 - General Issues Related to Elderly Drivers 

Introduction 

Currently, the elderly population in the United States (U.S.) has increased dramatically. 

Population projections report that seniors, ages 65 and older, is expected to more than double 

between 2012 and 2060, from 43.1 million to 92 million (U.S. Census Bureau, 2012). In 2060, 

the older population would represent just over one in five U.S. residents as compared to one in 

seven in 2012 (U.S. Census Bureau, 2012). In addition, the increase in the “oldest old” number 

would be even more dramatic, those 85 and older are projected to more than triple, from 5.9 

million to 18.2 million, reaching 4.3% of the total population in the same time interval (U.S. 

Census Bureau, 2012).  

Worldwide, cars represent important modes of transportation for drivers of all ages. In 

order to operate a car safely, drivers must simultaneously utilize various skills and perform 

multiple tasks while accounting for factors such as other roadway users, traffic signals, signs, 

and environment (Dukic & Broberg, 2012). Among the most important driving skills are the 

acquisition and processing of information and the ability to make appropriate decisions at the 

needed time according to road statistics (Dewar & Olson, 2007). 

As people age, physical changes affecting vision, hearing, reaction time, and cognitive 

and motor ability may make driving or walking difficult (Houser, 2005). Increasing age may 

cause visual, physical, and cognitive abilities to deteriorate, thus causing safe driving to be a 

challenge.  

In addition, senior drivers are more likely to die or suffer injuries in motor vehicle 

accidents as compared to young drivers because of greater frailty resulting from age (Kohl & 

Smith, 2007). According to the Federal Highway Administration’s (FHWA) publication, 

Highway Design Handbook for Older Drivers and Pedestrians (Staplin, et al., 2001), seniors are 

more likely to be involved in motor vehicle crashes at intersections, when making left turns, and 

on limited-access highways when exiting, merging, or changing lanes than other drivers. 

Senior drivers’ safety issues will become more significant in the future because older 

adults are the fastest growing segment of the U.S. population; by the year 2030, the number of 

licensed drivers over age 65 is expected to be approximately 57 million (Kohl & Smith, 2007). 

As a result, helping seniors continue to drive safely and maintain mobility, health, and 
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independence is extremely important. Assistance includes building safer roads and developing 

more efficient ways of assessing drivers’ fitness in order to improve overall driver safety.  

To improve the safety of older drivers, the FHWA has recommended several safe driving 

practices, such as placing street name signs in advance before intersections, using larger road 

signs and letters on signs, and improving intersection layouts for the purpose of making 

roadways safer. FHWA also provides funding available for states to complete projects that 

enhance senior driver safety.  

The Importance of Driving for Older Populations 

For an independent and active elderly person, maintaining mobility outside the home is 

essential (Born, et al., 2010). However, for seniors in the U.S., travel options other than driving 

are extremely limited, as driving is the primary means of transportation among elderly people 

(Foley, et al., 2002). This trend is becoming increasingly popular in Europe, as well (Talbot, et 

al., 2005). Driving is the most convenient and reliable form of transportation, especially in areas 

with few or no public transportation (Born, et al., 2010). Driving can help maintain the physical 

and social benefits of personal transportation and mobility for seniors. Conversely, loss of 

personal mobility, especially for seniors, may lead to negative effects such as depression, 

resulting in physical and mental illnesses (Phillips, et al., 2006). Driving cessation can lead to 

negative economic and psychosocial consequences (Born, et al., 2010). For example, loosing 

driving privilege will make it difficult to former drivers to obtain the required services and 

goods, i.e., hospitals appointments and groceries; their frequency of contact with friends and 

relatives as a social opportunity will be reduced (Born, et al., 2010).   

People over 65 years of age utilize private vehicles, either as drivers or passengers, for 

approximately 90% of their daily errands (Houser, 2005). Forty-four percent of these errands are 

for shopping; 27% are for meals, social activities, and recreation; 13% are for school, religious 

issues, and family; 5% are for medical issues; 4% are related to work; and 7% are as passengers 

(Houser, 2005). A private vehicle connects seniors to services, goods, and other activities for 

which they need to have a high level of independence.  

To enhance the mobility of seniors, individual state Departments of Transportation 

(DOTs) must account for special needs of elderly residents when making decisions regarding the 

U.S. transportation system and devices. Physical changes experienced by the older population 
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challenge transportation agencies with finding and implementing solutions to help seniors 

maintain safe mobility in their communities. The U.S. Department of Transportation (USDOT) 

and state DOTs realize the importance of preserving seniors’ mobility, as several DOTs have 

already begun to improve roadway traffic devices by enhancing visual information, thus 

increasing safety for roadway users, especially senior drivers. Other states have broadened and 

brightened pavement markings to better distinguish traffic lanes and road edges (Amparano & 

Morena, 2006). Several other states have increased the conspicuousness of traffic signs using 

larger signs (Amparano & Morena, 2006).   

Working and Retiring Behavior in the U.S. 

During most of the last half of the twentieth century, a growing percentage of older 

working Americans left their jobs in order to spend their later years in leisure and relaxation 

(Shattuck, 2010). In addition to Medicare health insurance, motivations for leaving the labor 

force were fueled by the three-part retirement income system in the U.S., consisting of Social 

Security, private pensions, and personal savings (Shattuck, 2010). In 1990, however, Social 

Security rules changed in such a way that encouraged older Americans to spend more years in 

the labor force, thus reversing the trend toward earlier retirement (Shattuck, 2010).  

From 1995-2009, men and women worked for longer number of years in both rural and 

urban areas (Shattuck, 2010). In 2009, more than 25% of woman and more than 33% of men 

between ages 65-69 were active participants in the U.S. labor force; for ages 70-74, the 

proportion of women in the workforce was 14% and men 24% (Shattuck, 2010). 

Research revealed a correlation between education level and the length of working period 

before retirement. When education level increases, a person tends to work farther into advanced 

age. This finding holds true for both rural and urban areas in the U.S. (Shattuck, 2010). College 

graduates have the highest participation rate among workers ages 65 or older, with greater 

participation among men, but both men and women demonstrate a dramatic increase in 

employment age related to higher levels of education as compared to those who have not 

graduated from college (Shattuck, 2010). Several factors may explain why people with more 

education continue longer in the labor force, including increased financial position, greater 

overall health, opportunities for higher earnings, less likelihood of involvement in physically 

demanding jobs that are difficult to perform in old age, and greater job satisfaction with a 
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preference to continue (Shattuck, 2010). On the other hand, minimally educated workers are 

commonly associated with less overall health, resulting in the termination of their career at an 

early age (Shattuck, 2010). In addition, Social Security replaces a greater portion of 

preretirement earnings for low wage workers compared to high wage workers, thus making the 

retirement option for less educated people more competitive (Shattuck, 2010). 

Divorce is another factor which forces many women to continue working even as they 

advance in age. Divorced women, especially those raising children outside of marriage, on 

average have less income and are less financially secure in later life as compared to married 

women or men, consequently requiring divorced women to participate longer in the labor force 

(Shattuck, 2010). 

In summary, people in U.S. may be working beyond retirement age because of many 

reasons: 1) high cost of health insurance and obvious decline of crucial retiree health benefits, 

especially health insurance; 2) increased life expectancy, resulting in more years spent at home 

or in retirement; 3) lower rates of the traditionally-defined benefit pension coverage; 4) desire to 

accumulate more Social Security or other personal retirement savings wealth; 5) improve 

emotional wellbeing and physical health by remaining active in daily life; and 6) enjoying the 

social integration and social support that work promotes (Holder & Clark, 2008). 

Older Population Statistics 

Seniors are the fastest growing population segment in the U.S. According to the National 

Highway Traffic Safety Administration (NHTSA), from 1993 to 2003, growth of the senior 

population among the total U.S. population was 15% (NHTSA, 2005). More than 40 million 

older adults will be licensed drivers in 2020 as the baby boomer generation becomes 65 years or 

older (Bayam, et al., 2005), and (Dellinger, et al., 2002). 

The proportion of drivers is growing as the population grows. In the U.S., the percentage 

of licensed drivers ages 65 or older has increased from 61% in 1980 to 72% in 1990 and 80% in 

2003 (Houser, 2005). In 2003, one out of seven licensed drivers was age 65 or older (Houser, 

2005). By 2029, one out of four licensed drivers will be 65 years or older (Houser, 2005). 

Based on driver records, senior drivers have the lowest crash rate per licensed driver 

(Keall & Frith, 2004), and (Braver & Trempel, 2004). The main reason for this statistic is that 

senior drivers tend to drive shorter distances, take fewer trips, and drive in more familiar areas 
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compared to younger drivers (Collia, et al., 2003). In a study by Hing et al., a driver’s age and 

gender were shown to have an important impact on crash causes. They found that senior drivers 

ages 75 and older were more likely to cause a vehicle crash than drivers between 65 and 74 years 

old (Hing, et al., 2003). 

The NHTSA fact sheet published in 2011 reported that “in 2009, 13% of the total U.S. 

resident population (40 million) was people age 65 and older” (NHTSA, 2011). Among that age 

category, 5,288 people were killed in traffic crashes and 187,000 were injured, Fatalities of older 

individuals comprised 16% of all traffic fatalities and 8% of all people injured in traffic crashes 

during 2009 (NHTSA, 2011). In comparison to 2008, senior fatalities comprised 21% of all 

traffic fatalities and 6% of all people injured in traffic crashes during 2008 (NHTSA, 2011). 

The most common crashes for senior drivers occur during lane changes and left-hand 

turns primarily because of physical limitations related to the upper body motion made when 

looking behind before backing up or checking blind spots before changing lanes (Bayam, et al., 

2005). 

In general, four main factors contribute most to vehicle collisions: 1) equipment failure; 

2) roadway design; 3) poor roadway maintenance; and 4) driver’s behavior (SmartMotorists, 

2008). According to USDOT, senior drivers are 17 times more likely to die in traffic accidents as 

people aged 25-65. Based on the NHTSA, in 2010, 32,885 fatalities occurred as a result of 

30,196 fatal crashes. In the U.S., urban areas accounted for 45% (13,608) of fatal crashes and 

44% (14,546) of fatalities, as compared to rural areas which accounted for 54% (16,292) of fatal 

crashes and 55% (18,026) of fatalities (NHTSA, 2012a) . 

In fatal crashes involving two vehicles driven by a senior and a younger driver, the 

vehicle driven by the older person was 58% more likely to be the one struck compared to 34% of 

the vehicle driven by the younger driver (NHTSA, 2011). Among these crashes, 46% occurred 

while both vehicles were proceeding straight at the time of the collision, and, in 24% of the 

incidences, when the older driver was turning left (NHTSA, 2011). 

Age-Driving Related Issues 

As a person ages, physical changes occur which can affect daily life, including functions 

which may cause driving skills to decline. While many drivers age 65 and older are able to 
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compensate for declined functions with experience and safe driving habits, aging uniquely 

affects each individual (Houser, 2005).  

Houser’s research also identified another risk factor specific to older drivers which is 

environment; roadways environment is important to the safety of older drivers (Houser, 2005). 

At night, signs and roadway markings are difficult to see and small lettering on road signs may 

be difficult to read even during the day. Large roadway intersections with multiple lanes and 

access roads can be complicated and confusing for any driver, but especially for older drivers 

(Houser, 2005). In addition, seniors typically prefer to drive older vehicles, most of which lack 

advanced safety features which can be found in modern vehicles. As a result, driver safety is 

reduced (Houser, 2005). 

Studies related to senior drivers have shown that crash rates associated with increasing 

age are most likely related to declining driving abilities and medical conditions that can affect 

and impair driving (Bayam, et al., 2005). According to Zhang et al. (2000), although physical 

health and medical conditions did not predict fatality risk for drivers aged 65 to 74, medical 

conditions, such as diabetes mellitus, epilepsy, and chronic heart disease, were found to 

significantly increase fatality risks for drivers over the age of 75. 

Visual Acuity 

Declining vision is a significant issue affecting seniors’ driving, causing difficulty in 

seeing roadway signs, traffic signals, pavement markings, and pedestrians or passing animals. 

Nighttime driving is especially challenging because of low-level lighting and glare from other 

vehicle headlights interfering with a driver’s vision (FHWA, 2003). 

Visual changes for older drivers often affect the distance at which they can see traffic 

signs and recognize sign lettering. These vision changes may also affect the ability to see and 

detect pavement markings (Amparano & Morena, 2006). Because of these visual deficiencies, 

senior drivers can be hesitant in making decisions regarding lane changes or exiting, thus 

affecting their safety and the safety of other roadway users. 

Visual declines are believed to be a prominent cause of driving problems for seniors. 

Often, senior drivers experience a decline in their ability to clearly distinguish stimuli under 

various driving conditions, and many seniors experience visual field narrowing (Bayam, et al., 

2005). Senior drivers commonly fail to notice objects in motion (Bayam, et al., 2005). In 
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addition, eye changes related to aging also make nighttime visibility even more difficult. 

Contrast sensitivity is defined as “the ability to discern brightness differences between adjacent 

areas” (Phillips, et al., 2006). Declining contrast sensitivity makes it harder for older drivers to 

notice faded pavement markings during nighttime driving. 

Based on Phillips et al. (2008), the function of a lens in the human eye is to focus light 

onto the retina. Two key changes occur to an eye lens with age: 1) the lens becomes less flexible; 

and 2) yellowing of the lens. Flexibility reduction makes it harder to shift focus from near 

objects to objects farther away. In fact, Presbyopia, or nearsightedness, is a vision condition in 

which the eye’s crystalline lens loses its flexibility, resulting in making it difficult for the person 

to focus on close objects (American Optometric Association, 2006). Eye lens yellowing causes 

older adults to require more light in order to see objects clearly. Although seniors’ eyes benefit 

from additional light, they are sensitive to glare. Another important change that occurs as a result 

of increasing age is declining peripheral vision (Phillips, et al., 2006). As a result of these vision 

changes, older adults are often slow to react to objects outside their central focus.  

Visual acuity is defined as “the ability to resolve detail” (Owsley & McGwin, 2010). The 

World Health Organization lists several categories of visual disability such as low vision and 

blindness. Low vision is defined as “visual acuity between 20/60 and 20/200 or corresponding 

visual field loss to less than 20 degrees in better eye with best possible correction” (Steinkuller, 

2010). Blindness is defined as “visual acuity of less than 20/400 or corresponding visual field 

loss to less than 10 degrees in the better eye with the best possible correction” (Steinkuller, 

2010). According to Steinkuller, generally accepted testing parameters for vision disabilities in 

the U.S. are: 1) best corrected visual acuity in each eye, 2) the uncorrected visual acuity in each 

eye, and 3) binocular or monocular horizontal visual fields (Steinkuller, 2010). Some states also 

differentiate between additional vision disabilities such as diplopia, impaired night vision, 

monocularity, and retinitis pigmentosa (Steinkuller, 2010). 

Visual acuity screenings that are performed for first-time driver’s license applicants and 

drivers periodically seeking re-licensure is reasonable. In the U.S., the design of roadway signs is 

based on sight distances that assume binocular visual acuity for drivers to be 20/30, minimally 

(FHWA, 2009). Drivers with less visual acuity experience difficulty in reading directional road 

signs at safe distances in order to make common driving decisions such as changing lanes or 

exiting (Owsley & McGwin, 2010).  
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In a study examining the impact of age, vehicle speed, and duration of monotonous 

driving on a driver’s visual field, results showed that increased driver age, driving distance, and 

vehicle speed resulted in deteriorating a driver’s visual field (Rogé, et al., 2004). For example, if 

a senior drives at a speed of 70 miles per hour (mph), he/she perceives less road signs than when 

driving at a speed of 50 mph (Rogé, et al., 2004).   

Visual field is the space within which objects are visible to the immobile eyes at a 

specific time. Visual field testing is individually performed by states and specific visual field 

requirements are highly variable. For example, in Arizona, the visual field must be 60 degrees 

plus 35 degrees on the opposite side of the nose in at least one eye (Owsley & McGwin, 2010). 

In Texas, the visual field standard is recognition of the visual field test object within an 

uninterrupted arc of 140 degrees, with both eyes open during the test. In Kansas, the visual field 

must be greater than 55 degrees in one eye, or 110 degrees for both eyes; and in Florida, the 

minimum acceptable visual field is 130 degrees (TransAnalytics, 2003). As a person’s age 

increases, the visual field and the area of visual attention become narrow.  

In the U.S., a driver’s license can either be restricted or unrestricted. An unrestricted 

license gives its owner permission to drive without the requirement of corrective lenses in all 

lighting conditions during day or night, in any location or road at any time for any distance, at 

any legal roadway speed, and in any legal and normally-equipped vehicle without extra or 

special mirrors (Steinkuller, 2010). Restrictions based on vision testing for driver’s licenses vary 

from state to state. A restricted license requires the use of mandated corrective lenses, prohibits 

freeway driving, limits driving time between sunrise and sunset, restricts the area in which 

driving is allowed, and requires additional mirrors such as left and right outside, wide-angle, 

panoramic, and fender-mounted mirrors (Steinkuller, 2010). 

The testing parameter that varies the least from state to state is the visual acuity test. For 

unrestricted licensed drivers, all states have similar visual acuity requirements for licensure 

(either first time or re-license), and most states, including Kansas, have set the minimum best-

corrected visual acuity (BCVA) requirement at 20/40.  

Visual acuity requirements for driver’s licenses in Europe are affected by the minimum 

standard established by the European Union (Born, et al., 2010). Drivers of cars and motorcycles 

are required to have a binocular visual acuity of at least 20/40 with or without correction, and 

binocular visual field standards are limited to no less than 120o (Born, et al., 2010). For example, 
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in the United Kingdom, visual acuity should be between 6/10 and 6/15 meter and the visual field 

should be at least 120o horizontally; in France, visual acuity should not be lower than 20/40 and 

the visual field should be horizontal with 60o right and left, and vertically it should be 30o above 

and below; in Germany, visual acuity should meet the minimum of number plate test between 

6/10 and 6/15, and the visual field should be at least 120o horizontally and perfect within 30o.    

Increasing Reaction Time 

Another problem faced by senior drivers is a decline in reaction time, defined by the 

response speed of a person to an event (Green, 2000). Reaction time is a measure of the 

processing speed of the central nervous system of the body (Der & Deary, 2006), and (Madden, 

2001). According to Der and Deary (2006), reaction time is strongly associated with age; as age 

increases, reaction time decreases. Older drivers typically respond more slowly to traffic control 

devices and changes in traffic or roadway conditions, such as a motor vehicle accident or a 

detour.  

Reaction time is divided into several components according to occurrence sequence. The 

first component is mental processing time, defined as “the time it takes for the responder to 

perceive that a signal has occurred and to decide on a response” (Green, 2000). For example, 

mental processing time is the time required for a driver to detect that the traffic signal directly 

ahead has become yellow and decide that the brake should be applied. This segment of time is 

referred to as perception reaction time (Warshawsky-Livne & Shinar, 2002). The second 

component of reaction time is movement time: This requires the performance of certain muscle 

movements after determining an appropriate response (Green, 2000). For example, movement 

time includes the time required to lift the foot off the accelerator pedal, move it to the brake 

pedal, and then depress the brake pedal. In general, movement time increases with more complex 

movements (Green, 2000). The third component of reaction time is device response time. After 

the responder acts, the mechanical devices require certain time to engage (Green, 2000). For 

example, when the driver depresses the brake pedal, the car does not stop immediately because 

the stopping is controlled by gravity and friction (Green, 2000). Time is required for the devices 

within the car to overcome those forces and stop the vehicle.  
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Physical Limitations 

Physical changes to senior drivers often contribute to difficulty in head movements in 

order to scan right and left sides at intersections or interchanges or look over their shoulders for 

lane changes (FHWA 2003). McKnight stated that senior drivers often experience difficulty 

when backing up because elderly drivers encounter physical limitations in head and upper body 

motion related to backward driving (McKnight, 2003).  

One of the primary reasons why senior drivers crash during lane changes and left turns is 

because some senior drivers’ physical limitations in head and upper body motion, such as neck 

and back pain, often make looking behind before reversing more difficult, or they may fail to 

carefully check vehicle blind spots before changing lanes (Bayam, et al., 2005).  

A decline in hearing is another physical limitation due to increased age. Hearing is 

essential for safe driving because it allows drivers to react properly to emergency vehicles such 

as ambulances or police sirens. Hearing also allows drivers to respond to honking horns of other 

drivers when warning of dangers or mistakes. As a result, seniors’ hearing decline reduces driver 

safety.  

Cognitive Functions 

Cognitive ability is “the ability to acquire, store, and apply knowledge, including short-

term and long-term memory as well as performing mental operations” (Bayam, et al., 2005). 

Older drivers often have difficulty cognitively sorting the huge amount of roadway information 

incurred while driving. This difficulty is especially dangerous when encountering critical zones 

on roadways, such as navigating a temporary traffic control zone because of a detour (FHWA 

2003). Cognitive ability declines as age increases (Bayam, et al., 2005), and cognitive functions 

and visual attention measures have been shown to be accurate accident frequency predictors for 

senior drivers (Daigneault, et al., 2002). 

The ability of senior drivers to share attention while driving also declines with age. 

Certain driving situations can be especially challenging, such as making left turns at intersections 

in which drivers must divide their attention between oncoming traffic and pedestrian traffic on 

either side of the vehicle (Bayam, et al., 2005). Other situations requiring shared attention 

involve interaction with traffic control devices such as red light traffic signals or stop signs 

(Bayam, et al., 2005).  
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In addition to senior drivers’ deficiency in attention-sharing, impaired judgment 

regarding traffic gaps may lead to indecisive crossing or entering traffic at intersections (Bayam, 

et al., 2005). Senior drivers often have difficulty judging the position of approaching traffic in 

relation to their ability to accelerate into gaps (McKnight, 2003). Senior drivers often resolve the 

conflict created by their inability to handle the situation they faced while driving by slowing 

down or stopping, which can cause additional dangers (Bayam, et al., 2005).  

Cognitive ability is “the ability to acquire, store, and apply knowledge, including short-

term and long-term memory as well as performing mental operations” (Bayam, et al., 2005). 

Older drivers often have difficulty cognitively sorting the huge amount of roadway information 

incurred while driving. This difficulty is especially dangerous when encountering critical zones 

on roadways, such as navigating a temporary traffic control zone because of a detour (FHWA 

2003). Cognitive ability declines as age increases (Bayam, et al., 2005), and cognitive functions 

and visual attention measures have been shown to be accurate accident frequency predictors for 

senior drivers (Daigneault, et al., 2002). 

The ability of senior drivers to share attention while driving also declines with age. 

Certain driving situations can be especially challenging, such as making left turns at intersections 

in which drivers must divide their attention between oncoming traffic and pedestrian traffic on 

either side of the vehicle (Bayam, et al., 2005). Other situations requiring shared attention 

involve interaction with traffic control devices such as red light traffic signals or stop signs 

(Bayam, et al., 2005).  

In addition to senior drivers’ deficiency in attention-sharing, impaired judgment 

regarding traffic gaps may lead to indecisive crossing or entering traffic at intersections (Bayam, 

et al., 2005). Senior drivers often have difficulty judging the position of approaching traffic in 

relation to their ability to accelerate into gaps (McKnight, 2003). Senior drivers often resolve the 

conflict created by their inability to handle the situation they faced while driving by slowing 

down or stopping, which can cause additional dangers (Bayam, et al., 2005). Most traffic crashes 

occur when senior drivers operate their vehicles at a slower speed than the flow of traffic 

(Bayam, et al., 2005).  
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 Possible Solutions for Improving Roadways to Enhance Population Safety 

Navigating U.S. roadways can be confusing and challenging for all drivers if driving 

routes are not easily understood or clearly marked, especially when the driver is unfamiliar with 

the driving location (Amparano & Morena, 2006). This problem can be enormous for older 

drivers, especially those who have cognitive or physical disabilities (Amparano & Morena, 

2006). However, engineering opportunities such as sign placement, legibility of sign lettering, 

retroreflectivity, and sign size can enhance a driver’s ability to detect signs and comprehend sign 

messages. Solutions for improving roadway navigation and increasing safety are discussed in the 

following sections. 

Reducing the Impact of Vision Decline 

Based on research conducted by Phillips et al., a number of infrastructure measures can 

be used to reduce vision declining impacts for senior drivers (Phillips, et al., 2006). One direct 

step is to increase the size of roadway signs and lettering. If drivers are able to read sign 

information from a greater distance, they have more time to make navigation decisions, thus 

enabling increased focus on safe maneuvers. The Manual on Uniform Traffic Control Devices 

for Streets and Highways (MUTCD) of 2009 recommends minimum sign and font sizes for 

various types of signs. In the MUTCD of 2009, minimum upper case letter size is 8 in (200 mm) 

and lower case letter size is 6 in (or 150 mm). These sizes are used for multi-lane streets with 

speed limits greater than 40 mph (or 65 km/hr) (FHWA, 2009). To enhance guide sign visibility 

for nighttime driving, a light source may be installed or, in other cases, guide sign sheet metal 

material can be replaced by a brighter retroreflective material which has the effect of enhancing 

sign visibility at night. 

Roadway curves present another major visual challenge. Older drivers have difficulty 

detecting sharp curves, especially during nighttime driving. One effective technique to improve 

curve detection during nighttime driving is to install retroreflective pavement markings (Phillips, 

et al., 2006). 

 Improving Intersections to Overcome Physical Changes 

As previously mentioned, personal mobility often becomes more limited as people age. 

Some seniors experience loss of limb strength, flexibility, and sensitivity; limited range of 

motion; or reduced ability to rotate their head and neck (Phillips, et al., 2006). Chronic illnesses 
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such as coronary artery disease and heart failure also can greatly restrict physical mobility and, 

therefore, limit involvement in certain activities. For drivers of all ages, general body flexibility 

and head movements are required when driving a vehicle, especially when merging into traffic, 

changing lane positions, parking a vehicle, and encountering intersections (Phillips, et al., 2006). 

Reduction in body flexibility can affect various driving tasks, specifically when drivers 

must visually scan a portion of the roadway to ensure safe driving. Some types of visual 

scanning are essential, such as watching for approaching vehicles, registering traffic signals, and 

yielding the right-of-way to pedestrians and others (Phillips, et al., 2006). 

The design nature of skewed intersection (with a 60o angle as an example) requires more 

head movement and scanning as compared to a right angle intersection (Phillips, et al., 2006).  

Skewed intersection’s designs should be avoided in the new highway projects as much as 

possible; in the case when a skewed intersection cannot be avoided, right turn on red should be 

prohibited because it will be harder for some older drivers to detect safe gaps in the traffic at that 

location, and prohibiting the right turn on red will enable older drivers to have some time to 

focus on a safe turn (Phillips, et al., 2006). 

 Making Roadway Navigation Easier 

The use of redundant street name signs can improve the chances of a driver remembering 

critical navigation information (Phillips, et al., 2006). Often, when drivers see a road sign, they 

are quickly distracted and forget the required intersection. This distraction initially deletes 

necessary navigation information from working memory (Phillips, et al., 2006). Because 

working memory capacity declines with age, these memory lapses are more common for older 

drivers. Providing roadway navigation information several times to a driver (using redundant 

street name signs) helps limit this issue.  

Seniors commonly prefer driving on familiar roadways (Phillips, et al., 2006). 

Unfortunately, even familiar areas often change, as in work zones or required detours. 

Changeable message signs are an important method for transportation agencies to alert drivers to 

new road situations. However, appropriate design of these signs is crucial so that drivers of all 

ages can easily navigate roadways.  

One smart-modern solution to improve safety for older people on roadways is to 

implement autonomous vehicles’ “self-driving cars” service. Google has begun building a fleet 
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of electric power vehicles to be used for experimentation in California (Markoff, 2014). These 

vehicles are based on a principle of completely removing driver responsibility from the vehicle; 

no steering wheel, gas pedal, brake pedal, or gear shift is necessary (Markoff, 2014). The only 

element available in the vehicle is a red “e-stop” button that can be used by the passenger in 

emergency stops and a separate start button (Markoff, 2014). These vehicles are requested via a 

smart phone application. The speed limit of these vehicles is limited to 25 mph, however, and 

these vehicles are designed for urban and suburban areas, not on highways. One potential use for 

these vehicles is driverless taxi cabs (Markoff, 2014).  

Based on Markoff (2014), Google’s autonomous vehicle will have sensors that can detect 

approximately 600 ft in all directions. This vehicle will also have a rear view mirror according to 

California code. A foam-like material will be used in the construction of the front of the vehicle 

in case the vehicle’s computer fails and the vehicle hits a pedestrian. Google’s vehicle differs 

from vehicles introduced by Mercedes, BMW, and Volvo because those vehicles are able to 

travel within limited circumstances without a driver but they do not completely eliminate the 

driver as in Google’s vehicle. Laws permit autonomous vehicles in California, Nevada, and 

Florida. In California, the regulations of autonomous vehicle testing were adopted on May 19, 

2014, and these regulations became effective on September 16, 2014. 

Comparing to the other modes of transportation, autonomous vehicles are better in terms 

of time, safety, convenience, and peace of mind (Burns, et al., 2013). Based on Burns, initial 

estimates of the new autonomous vehicles are $4 per customer per day, or $2 per customer per 

trip. The fleet system of autonomous vehicles can be an alternative transportation mode, 

competing with taxicabs and public transportation. Yellow taxicab fare in Manhattan, N.Y. is 

approximately $5 per mile, while initial estimates of the fleet fare of a shared, driverless vehicle 

are approximately $0.50 per mile (Burns, et al., 2013). In addition, the autonomous shared, 

driverless vehicle service is more convenient and less expensive than the bus or subway, 

resulting in the reduction of empty miles and labor costs and increased energy efficiency.   
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Chapter 2 - Overhead Guide Signs and Senior Drivers 

Introduction 

One primary mission of the Federal Highway Administration is to improve roadway 

safety in the United States. According to NHTSA’s  2011 Fatality Analysis Reporting System, in 

2011, 32,367 people were killed in motor vehicle traffic crash in the U.S., and this number was 

32,999 in 2010 (NHTSA, 2012b). Statistics show that 25% of all motor vehicle travel occurs at 

night, but approximately 50% of all traffic fatalities occur during nighttime hours (FHWA, 

2008).  

Drivers of all ages often experience more difficulty driving at night as compared to 

daytime driving. Different issues related to the driver which may control visibility of the road 

such as: driver’s visual acuity, contrast sensitivity, distance judgment, and color discrimination 

(Lagergren, 1987). Guide signs are typically green signs located along a highway to notify 

drivers of destinations and exit information. Overhead highway signs are important for 

improving driver guidance. The objective of these signs is to provide drivers with information 

regarding destinations and necessary instructions for reaching specific destinations. In fact, 

“overhead highway signs must be highly visible and legible so that drivers can detect, read and 

interpret the information contained on the signs in time to respond appropriately” (Bullough, et 

al., 2008).   

Many DOTs in the U.S. are considering whether to add light sources to current highway 

overhead guide signs or replace these signs with modern retroreflective sheeting to improve 

visibility for drivers, especially older drivers, during nighttime and possibly reduce potential 

accidents due to driver confusion and resulting improper maneuvers. As a requirement in the 

MUTCD, overhead guide signs must either be illuminated or retroreflective (FHWA, 2009). The 

objective of the new minimum retroreflectivity requirement is to improve safety on U.S. 

roadways, especially highways, and to ensure that roadway users, especially the elderly, are able 

to detect and react completely to traffic signs in order to facilitate safe, uniform, and efficient 

travel (Jonathan & Carlson, 2012).  

Overhead guide signs can be illuminated from the back, known as back-illuminated, and 

utilizing external light sources to illuminate the sign face (Bullough, et al., 2008). Another way 

of illuminating guide signs is by using luminous sources or elements such as Light Emitting 
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Diode (LED) to produce required characters of the signs (Bullough, et al., 2008). Retroreflective 

sheeting materials also can be used to enhance highway overhead guide sign visibility for 

drivers. Retroreflective signs either include individual “button” elements, which produce 

characters on a sign, or retroreflective sheeting material that provides retroreflection capability 

over the entire surface of the sign (Bullough, et al., 2008).  

Signs manufactured from retroreflective sheeting materials are commonly used on U.S. 

highways (Bullough, et al., 2008). One important advantage of using retroreflective sheeting 

materials is that they do not require electrical power because they rely on efficient passive 

retroreflection of oncoming vehicle headlamps (illuminance) which are reflected back toward the 

vehicle (luminance). Based on Bullough et al. (2008), the observation angle between light rays 

from the driver’s vehicle headlights and sight line to a roadway sign is relatively small, 

especially for far-viewing distances.  

The Observation Angle 

Observation angle is defined as the angle between a retroreflected beam toward an 

observer’s eye and the line formed by the light beam striking a surface, as shown in Figure 2.1. 

The observation angle will be larger for the driver of a truck or bus than that of a driver of a 

standard passenger vehicle (ORAFOL, 2012). If a driver in a vehicle is close to a retroreflective 

sign or device, the observation angle will be larger (ORAFOL, 2012).  

Understanding observation angles is helpful when installing signs with retroreflective 

materials so that light is accurately reflected from headlamps back toward a driver’s eyes, thus 

enhancing visibility and sign luminance. An inverse relationship exists between the observation 

angle and the luminance amount of retroreflective material. In other words, as the angle 

increases, the luminance of the retroreflective sign decreases. The entrance angle is the angle 

between a headlamp ray to the sign and a line perpendicular to the sign face, as shown in Figure 

2.2. Large differences in the entrance angle are a function of sign location and orientation. 
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Figure 2.1 Observation Angle and Variation with Vehicle Size (MyParkingSign.com, 2012) 

 

Retroreflective Traffic Sign Sheeting Materials 

The American Society for Testing and Materials (ASTM) details components of sheeting 

materials that can be used in constructing retroreflective guide signs. ASTM D4956 describes 

types of retroreflective sheeting materials that can be used on traffic signs (ASTM, 2011). 

“Retroreflective sheeting shall consist of white or colored sheeting having a smooth outer surface 

and that essentially has the property of a retro-reflector over its entire surface”  (ASTM, 2011). 

According to ASTM, eleven types of retroreflective sheeting exist and they have various 

applications as follows:  

  “Type I: a retroreflective sheeting referred to as “engineering grade”, that is 

typically enclosed lens glass-bead sheeting. Applications for this material include 

permanent highway signing, construction zone devices, and delineators. 

 Type II: a retroreflective sheeting referred to as “super engineer grade”, that is 

typically an enclosed lens glass-bead sheeting. Applications for this material include 

permanent highway signing, construction zone devices, and delineators.  
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Figure 2.2 Interrelationship of Application System Angles, Where: Observation Angle Is 

(α), Entrance Angle Is (β), Rotation Angle Is (ε), and Orientation Angle Is (ωs) (Brich, 

2002) 

 

 Type III: a retroreflective sheeting referred to as “high-intensity,” that is typically 

manufactured as an encapsulated glass-bead retroreflective material or an 

unmetalized, microprismatic retroreflective element material. Applications for this 

material include permanent highway signing, construction zone devices, and 

delineators. 

 Type IV: a retroreflective sheeting referred to as “high-intensity,” that is typically an 

unmetalized microprismatic retroreflective element material. Applications for this 

material include permanent highway signing, construction zone devices, and 

delineators.  

 Type V: a retroreflective sheeting referred to as “super high-intensity,” that is 

typically a metalized microprismatic retroreflective element material. This sheeting 

is typically used for delineators.  

 Type VI: an elastomeric retroreflective sheeting without adhesive. This sheeting is 

typically a vinyl microprismatic retroreflective material. Applications include orange 

temporary roll-up warning signs, traffic cone collars, and post bands. 

 Type VII: retroreflective sheeting materials previously classified as Type VII have 

been reclassified as Type VIII. The use of a designation as Type VII has been 

discontinued. 
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 Type VIII: a retroreflective sheeting typically manufactured as an unmetalized cube 

corner microprismatic retroreflective element material. Applications for this material 

include permanent highway signing, construction zone devices, and delineators. 

 Type IX: a retroreflective sheeting typically manufactured as an unmetalized cube 

corner microprismatic retroreflective element material. Applications for this material 

include permanent highway signing, construction zone devices, and delineators.  

 Type X:  retroreflective sheeting materials previously classified as Type X have been 

reclassified as Type VIII. The use of a designation as Type X has been discontinued. 

 Type XI: retroreflective sheeting typically manufactured as an unmetalized cube 

corner microprismatic, retroreflective element material. Applications for this 

material include permanent highway signing, construction zone devices, and 

delineators.” (ASTM, 2011) 

The 2009 MUTCD minimum retroreflectivity requirements refer to sheeting types as 

defined in ASTM D4956. A common problem associated with retroreflective sheeting, however, 

is that even though a particular type of sheeting may initially meet minimum retroreflectivity 

levels, it may quickly degrade below minimum retroreflectivity levels because of weather or 

other environmental causes. The MUTCD of 2009 has no instructions about the longevity of 

sheeting materials used for overhead guide signs. Agencies may overcome this problem by using 

higher performance sheeting which may have a higher initial cost but remain above the minimum 

retroreflective requirement longer and provide a more efficient life-cycle cost. 

Guide Signs   

“Guide signs are essential elements to direct road users along streets and highways, to 

inform them of intersecting routes, to direct them to cities, towns, villages, or other important 

destinations, to identify nearby rivers and streams, parks, forests, and historical sites, and 

generally to give such information as will help them along their way in the most simple, direct 

manner possible” (FHWA, 2009).   

MUTCD 2009 Standards Regarding Guide Signs 

Guide signs must be visible and clear for intended drivers in order to allow for proper 

driving response time. Desirable attributes for guide signs include high visibility during day and 

night and high legibility. Legibility is defined as adequately-sized letters, symbols, or arrows, 

and a short legend for quick comprehension by a road user approaching a sign (Gowda, 2010). 

Many standard requirements are set in the MUTCD of 2009 regarding guide signs, including the 
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following essential sections: section 2A.07, section 2A.08, section 2A.10, section 2D.01- 2D.55, 

and section 2E.01- 2E.54 (FHWA, 2009).  

 Standardization of Guide Sign Location 

According to the MUTCD of 2009, signs should be located on the right-hand side of the 

roadway where they are easily recognized and understood by road users. Signs in other locations 

should be considered only as supplementary to signs in normal locations, except as otherwise 

detailed in the 2009 MUTCD. Signs should also be individually installed on separate posts or 

mountings except where one sign supplements another, or route or directional signs are grouped 

to clarify information to motorists. Examples of heights and lateral locations of signs for typical 

installations are shown in Figure 2.3. 

One standard in the MUTCD is: “signs requiring separate decisions by the road user shall 

be spaced sufficiently far apart for the appropriate decisions to be made. One of the factors 

considered when determining the appropriate spacing shall be the posted or 85th percentile 

speed” (FHWA, 2009). 

Lettering Style and Size on Conventional Road Guide Signs 

According to the 2009 MUTCD, design of upper-case letters, lower-case letters, 

numerals, route shields, and spacing should meet the criteria provided in the “Standard Highway 

Signs and Markings” book (FHWA, 2009). Names of places, streets, and highway lettering on 

conventional road guide signs should be a combination of lower-case letters with initial upper-

case letters (FHWA, 2009). The nominal loop height of lower-case letters should be ¾ the height 

of the initial upper-case letter (FHWA, 2009). This proportion must be used to determine the 

height of lower-case letters when a mixed-case legend letter height is specified, referring only to 

the initial upper-case letter. When the height of a lower-case letter is referenced, the reference is 

made to the nominal loop height and height of the initial upper-case letter should be determined 

by this proportion. All other word legends should be in upper-case letters on conventional road 

guide signs. For each of the Standard Alphabet series, unique letter forms should not be 

stretched, compressed, warped, or otherwise manipulated (FHWA, 2009). 
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Figure 2.3 Examples of Heights and Lateral Locations of Signs for Typical Installations 

(FHWA, 2009) 

 

Sign legibility is a function of letter size and spacing (FHWA, 2009). Legibility distance 

must be sufficient to give drivers or road users enough time to read and comprehend information 

provided by a sign. Under optimal conditions, a guide sign should be read and understood in a 
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brief glance. Many factors affect legibility distance, such as inattention, blocked view by other 

vehicles, inclement weather, driver’s inferior eyesight, and various other causes that may delay 

or slow reading (Gowda, 2010). Repetition of guide information on successive signs gives road 

users’ more than one opportunity to obtain the information needed (FHWA, 2009).  

Lettering Style and Size on Freeway and Expressway Guide Sign Standards  

For all freeway and expressway signs that do not have a standardized design, message 

dimensions should be determined first and then followed by determining the outside dimensions 

(FHWA, 2009). Word messages in the legend of expressway guide signs must be at least 8 

inches high (FHWA, 2009). Guide signs at or in advance of interchanges should contain larger 

lettering (FHWA, 2009). All names of places, streets, and highways on freeway and expressway 

guide signs should be composed of lower-case letters with initial upper-case letters (FHWA, 

2009). The nominal loop height of the lower-case letters should be ¾ of the height of the initial 

upper-case letter (FHWA, 2009). Lettering size on freeway and expressway signs should be 

identical for both rural and urban conditions.  

Figure 2.4 shows minimum letter and numeral sizes for guide signs according to MUTCD 

2009 guidelines, while Figure 2.5 shows freeway or expressway guide signs and plaque sizes 

according to MUTCD 2009 guidelines.  

ClearviewHwyTM Font 

The ClearviewHwyTM (hereafter referred to as Clearview) font is a relatively new font 

developed to increase traffic sign legibility and improve the ease with which traffic legends can 

be recognized. ClearviewHwyTM font was developed by Donald Meeker and Christopher O’hara 

of Meeker and Associates, Inc.; Martin Pietrucha, Ph.D., and Philip Garvey of the Pennsylvania 

Transportation Institute; and James Montalbano of Terminal Design, Inc., along with research 

supported by Paul Carlson, Ph.D., and Gene Hawkins, Ph.D., and research design advice by 

Susan Chrysler, Ph.D., of the Texas Transportation Institute (Holick, et al., 2006).   

Irradiation or halation is “a phenomenon where in the stroke is so bright that it bleeds into 

the character’s open spaces, creating a blobbing effect that reduces character legibility” (Gowda, 

2010). Irradiation phenomenon observed in different font styles can be shown in Figure 2.6. The 

open spaces of Clearview font allow irradiation without decreasing the distance at which 

alphabets are legible (Gowda, 2010).  
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Figure 2.4 Minimum Letter and Numeral Sizes for Expressway Guide Signs According to 

Sign Type (FHWA, 2009) 
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Figure 2.5 Minimum Letter and Numeral Sizes for Freeway Guide Signs According to 

Interchange Classification (FHWA, 2009) 
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Figure 2.6 Irradiation or Halation Phenomenon for Three Font Styles (Terminal Design, 

2004c) 

 

Clearview Font Development 

The ClearviewHwy font software is used to produce Clearview font. ClearviewHwy font 

software contains kerning data (kerning refers to data included in a font that specifies how to 

adjust spacing) in addition to approved letter spacing in default mode, and this software is 

compatible with all standard computer operating systems and sign manufacturing software tools. 

After 10 years of research and development, ClearviewHwy evolved into a type system of six 

distinct weights with each weight having a version for positive and negative contrast applications 

(Termina Design, 2004a). Contrast application may be positive or negative. The positive contrast 

application showcases lighter tone letters on a dark background, while the negative contrast 

version displays darker tone letters on a light background (Gowda, 2010). Clearview font is 

available in both positive and negative contrast. The positive contrast shows white letters on a 

dark green background, while the negative contrast displays black letters on a fluorescent yellow, 

fluorescent orange or white background. Figure 2.7 shows the Clearview distinct weights and 

two contrast types. 
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Figure 2.7 The Clearview Font Distinct Weights. Right Side Is Negative Contrast and Left 

Side Is Positive Contrast (Terminal Design, 2004b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Guide Sign Enhancements 

Various engineering opportunities such as sign placement, legibility of sign lettering, 

retroreflectivity, and sign size can enhance a driver’s ability to detect signs and comprehend sign 

messages.  

Guide Sign Placement 

According to the MUTCD of 2009, one common guide sign placement strategy is to 

double the use of signs by placing redundant signs on the left side of the roadway opposite the 

primary sign on the right side. Signs must be placed at locations that have unobstructed visibility 

and minimum background clutter. Based on the 2009 MUTCD, at intersection and interchange 

locations, preferred placement is overhead, creating optimum sign visibility. In addition, signs 

http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=81
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=81
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=87
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=87
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=79
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=79
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=86
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=86
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=78
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=78
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=85
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=85
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=77
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=77
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=84
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=84
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=76
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=76
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=83
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=83
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=75
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=75
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=82
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=82
http://clearviewhwy.com/TypefaceDisplay/fam_sign.php?product_id=80
http://clearviewhwy.com/TypefaceDisplay/fam_charset.php?product_id=80
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can be placed in a driver’s direct line of sight. For example, at T-intersections, the2009 MUTCD 

recommends a one-way sign be placed directly opposite the center of the approaching lane of 

traffic.  

Sign Legibility 

Legibility is defined as “the readability of a particular writing style, or font” (Amparano 

& Morena, 2006). The FHWA defines standard typefaces used for highway signs on U.S. 

roadways by the Standard Alphabets section in the MUTCD of 2009. The seven typefaces 

currently used for roadway signs are series A (the narrowest and discontinued), series B, series 

C, series D, series E, series E (modified), and series F (the widest). Research conducted in 1990 

resulted in a new font: the Clearview. Clearview font provides faster recognition at greater 

distances by optimizing the legibility of letters and reducing halos around text messages 

(Amparano & Morena, 2006). Recent studies show that Clearview’s alphabet legibility 

represents a 16% improvement in distance recognition by older drivers and a 12% increase in 

legibility for all drivers when compared to the existing standard (series E (modified)) for guide 

signs (Amparano & Morena, 2006). These results imply that the Clearview font results in faster 

reading, recognition, comprehension, and reaction times for drivers, especially senior drivers. 

States such as Arizona, Iowa, Kentucky, Maryland, Michigan, Pennsylvania, Texas, and Virginia 

have adopted Clearview font for use on guide signs throughout all or part of their transportation 

systems. 

Another approach states have considered to increase legibility is to expand letter heights 

on guide and street name signs. The minimum requirement for letter size is set in the MUTCD of 

2009 in order to meet the driver’s requirements, especially elderly drivers. The use of uppercase 

and lowercase letters also adds to enhanced legibility on guide signs. In the 2009 MUTCD, the 

minimum size for upper case letters is 8 in (200 mm) and 6 in (or 150 mm) for lower case letters. 

These sizes are used on multi-lanes streets with speed limits greater than 40 mph (or 65 km/hr) 

(FHWA, 2009).  

Sign Retroreflectivity 

The use of retroreflective sheeting materials for signs is beneficial in making them more 

conspicuous, especially in high visual “noise” locations (Amparano & Morena, 2006). Research 

performed at the University of South Dakota shows that the time required by senior drivers to 



  

28 
 

detect signs in complex backgrounds can be reduced significantly by using super-high-intensity 

sheeting materials (Amparano & Morena, 2006). Also, detection distance for fluorescent signs is 

significantly greater than non-fluorescent signs for both younger and older drivers, though older 

drivers benefited the most. The Kansas Department of Transportation (KDOT) currently uses 

High Intensity (type IV) sheeting material for guide signs in various locations throughout the 

state.  

Increasing sign size can improve sign visibility, resulting in improved roadway safety for 

drivers and users. The MUTCD recommends the minimum sizes of different sign types as 

mentioned previously (FHWA, 2009). 

Illuminating Guide Signs  

Light Sources 

A light source is a device that actually converts electrical energy to visible light in a 

specific manner based on source type. Light sources associated with little short-wavelength light 

are less effective for vision than light sources that produce greater short-wavelength (blue), even 

if the measured light level is similar, because of the human eye’s shifted response to light at 

some nighttime light levels (Bullough, 2012a). Light sources used for roadway illuminating 

devices can be categorized into conventional light sources which include incandescent lamps, 

electric discharge lamps, and new light sources generation which include LED, induction 

lighting, and Light Emitting Plasma (LEP).  

It is important to distinguish between two important terms: “efficiency” and “efficacy.” 

“Efficiency” is used when both input and output units are equal, meaning that “efficiency” is 

without unit, while the term “efficacy” is used when both input and output have two different 

units, in the luminous efficacy, the input unit is in “watt” and the output is in “lumen” (USDOE, 

2009b). 

Incandescent Lamps 

According to Lopez, two prominent types of incandescent lamps exist: the common 

incandescent and the Tungsten Halogen (Lopez, 2003). The common incandescent has relatively 

low initial and operating costs but has a low efficacy (lumens per watt) and a short lifespan 
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ranging between 1000-2000 hours (BITS, 2012). The Tungsten Halogen (quartz iodide) is not 

used for highway lighting (Lopez, 2003). 

Electric Discharge Lamps 

There are several types of electric discharge light sources according to Lopez (Lopez, 

2003):  

 Conventional fluorescent: it has a relatively medium initial cost, long life, and high 

efficacy (30-70 lm/watt). The main disadvantage of this type is that light varies with 

ambient temperature. 

 Induction fluorescent: some types have a high efficacy up to (75 lm/watt) with 

extremely long life (100,000 hours). Induction fluorescent is suitable for low 

mounting heights and other special applications (Lopez, 2003).  

 Mercury Vapor (MV): two types of MV light sources are available in the market, 

clear light and phosphor-coated light. MV light sources include a phosphor-coated 

light source primarily used for sign lighting. The disadvantage of an MV light source 

is the extremely high initial cost. Some advantages of MV light include relatively 

long life and high efficacy (30-65 lm/watt). MV produces a smaller light than 

fluorescent. 

 High Pressure Sodium (HPS): light is produced by an arc in a ceramic tube 

containing sodium and other elements. It provides light primarily in the yellow 

spectrum but other elements inside the bulb provide light in blue, green, orange and 

red to improve color rendition. This type of light source requires a starting aid to 

provide a pulse to begin the arc stream. HPS light has advantages such as relatively 

low initial cost, long useful life, high efficacy (45-150 lm/watt), and the ability to 

maintain relatively high light output throughout the lifespan (lumen maintenance) 

(Bullough, 2012b). Eighty percent of street and highway lighting in New York are 

HPS (Bullough, 2012a).  

 Low Pressure Sodium (LPS): light is produced by an arc in long tubular glass 

envelope (bulb) containing sodium only. Light is monochromatic yellow with poor 

color rendering. The main disadvantage is the relatively high initial cost. Some of the 

advantages are moderately long life and high efficacy (145-185 lm/watt). 

 Metal Halide (MH): the MH principle is similar to that of the mercury light sources, 

but it contains various metal halides in addition to mercury which provide excellent 

color rendering and result in a white light. MH light sources have been available for 

several decades, but primary problems associated with it in the past were low 

efficacy, low useful life, and poor lumen maintenance (Bullough, 2012b). This 

information regarding disadvantages of MH’s light source is outdated because recent 

technology has resulted in increasing the efficacy of MH light sources, increasing the 

useful life, and improving lumen maintenance (Bullough, 2012b). New MH light 

sources with ceramic arc tubes and new methods of starting the source have 

increased efficiency, lifespan, and lumen maintenance. KDOT currently uses 250W 

of MH light sources at various locations as an external source of illumination for 

guide signs. According to Bullough’s survey in New York, the only two types of 
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light sources used on streets and highways in New York are HPS and MH (Bullough, 

2012a).  

LED 

Recent technologies and advances in solid-state lighting have resulted in an LED light 

source that produces white light by using short wavelength LED that produces blue light in 

combination with phosphor, thus converting blue light into yellow and resulting in a white 

mixture (Bullough, 2012b). LED-based roadway lighting products offer a number of key 

advantages over traditional lighting technologies. In terms of luminous efficacy, product life 

cycle, field or lumen maintenance requirements, color, and environmental considerations, 

technology employed in LED lighting is vastly superior to other light source technology. Solid 

state LED-based products are designed to provide long life through light source design, power 

supply, optics, and mechanical housing. LED light sources are also free of lead and mercury and 

are compliant for Restriction of Hazardous Substances (RoHS) (Tri-State, 2012). 

A study was conducted along the main street of Woodridge, NY found that twelve 40W 

LED light sources replaced eight 150W HPS light sources, and the residents of that village 

judged LED light installation as having more visual effectiveness and brighter appearance than 

HPS (Born, 2009). Cook et al. concluded that LED roadway lighting can provide equivalent 

overall performance to HPS roadway lighting at lower energy levels (Cook, et al., 2008). LED or 

induction light sources with 65W power can replace 100W HPS light source in order to achieve 

the same average unified light source (Bullough, 2012a).  

LED light source for roadway lighting is able to meet American Association of State 

Highway and Transportation Officials (AASHTO) requirements published in 2005 with 

approximately 7% reduction in energy. An energy savings of 30% to 50% can be achieved by 

replacing HPS with LED or induction lighting in residential areas, and 35% to 40% by replacing 

HPS with LED or induction lighting at rural intersections where peripheral visibility is essential 

(Bullough, 2012a). 

Induction Lighting 

Induction lighting is modern fluorescent lamps use radio frequencies to stimulate lamp 

material to produce light, unlike conventional fluorescent lamps that use electrodes at either end 

of the lamp tube (Bullough, 2012b). Induction lighting, however, use radio frequency or 

microwaves to create induced electrical fields which, in turn, excite gases to produce light. 
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Induction lighting have the same color as conventional fluorescents and share their diffuse 

appearance, but they do not require the longer tubular shape of most fluorescent sources. A 

crucial disadvantage of induction fluorescent lamps is the lamp large size needed to provide 

uniform distribution of light on roadways as compared to HPS and MH (Bullough, 2012b). 

Induction lights have a rapid start-up and work at peak efficiency with minimal warm-up 

time, much like LED technology. Disadvantages of induction lighting include limited 

directionality when compared to LEDs, and the presence of lead. Rapidly evolving LED 

technology has led to limited adoption of induction-based roadway lighting systems (Deco 

Lighting, 2010) 

 Light Emitting Plasma (LEP) 

Plasma is a solid state, high-intensity, lighting technology that utilizes a single, very 

small electrode-less lamp and an electronic power driver (Thomasnet, 2012). The driver 

generates high radio frequency energy to create a plasma light source with 23,000 lumens of 

brilliant white light. This powerful output far exceeds LED fixtures that require many LEDs in a 

single housing. Due to the miniature lamp size, plasma light sources are much smaller in size 

with more efficient optical designs than any High Intensity Discharge (HID), floodlight, or 

architectural area fixture. Advantages of LEP include powerful clean white light, energy savings 

of 50% or more than HID lighting, efficacy as high as 115 lm/watt at the source, 50,000 hour 

life, excellent color, and dimming capability (controlling light intensity) up to 20% (Thomasnet, 

2012). 

Guide Sign Retroreflectivity Studies  

In 1987, Lagergren performed a study to measure retroreflectivity of traffic signs (limited 

to stop and warning signs) using trained observers (Lagergren, 1987). In this study, a sign rating 

scale from 0 to 4 was used to train selected observers. This scale was explained as 0 refers to 

worst sign visibility and 4 to best visibility throughout the experiment. Observers were trained to 

rate traffic signs in a dark laboratory and on a straight level section of road using a stationary car. 

Signs were located ranging from 100 to 300 ft. After observers became well-trained, the 

experiment was performed on a highway at night where observers rated 130 signs, including 

some signs with retroreflective sheeting. The retroreflectivity of those signs was measured using 

a retroreflectometer. Ratings were then obtained by observers for the selected signs and were 
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compared to ratings obtained by the retroreflectometer. Results showed that a high percentage of 

signs were rated correctly by the observers. Recommendations of this study include: 

 The participating observers should take an evaluation procedure before the start of 

participation in the research. 

 Sign criticality should be considered while replacing signs because states use 

different levels of retroreflectivity for different highway classifications. 

 Agencies should develop a training program for personnel who perform sign 

replacement decisions. 

Paniati and Mace performed a study in 1993 aimed at identifying minimum nighttime 

visibility required for traffic signs (Paniati & Mace, 1993). The researchers created a number of 

measuring devices and a computer management system to implement these minimum 

requirements in an efficient manner. They developed a Computerized Analysis of 

Retroreflectorized Traffic Signals (CARTS) which considered time and distance required to 

identify and respond to a traffic sign, the amount of luminance required for sign detection and 

recognition, and retroreflectivity levels required to ensure the necessary performance level.  

In a study performed by McGee and Paniati in 1998, they created an implementation 

guide for determining minimum retroreflectivity requirements for traffic signs, to assist 

governmental and private agencies in the establishment of a cost-effective program for the 

replacement of ineffective traffic signs (McGee & Paniati, 1998). This research provided an 

explanation of retroreflectivity which includes concepts of retroreflection, luminance, the 

entrance angle, the observation angle, and coefficient of retroreflection (Ra). The researchers 

provided a description of different types of retroreflective sheeting materials and the difference 

among them according to the coefficient of retroreflection at different entrance and observation 

angles. The researchers also quoted minimum retroreflectivity values for four groups of signs 

based on earlier research. In addition, the report presented the concept of Sign Management 

System that was defined by a coordinated program of policies and procedures, ensuring that 

highway agencies provide a sign system that meets drivers’ needs according to budget 

constraints (McGee & Paniati, 1998). The researchers explained the concept of sign inventory 

and its purpose of assisting in targeting sign replacement, problem identification, minimizing tort 

liability, planning and budgeting for sign replacement, and maximizing productivity. In their 

research , McGee and Paniati suggest planning and developing an effective sign inventory 

process, including the involvement of key personnel, selecting a location as a reference system, 
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selecting data elements, selecting inventory software, preparing for data collection, starting 

initial data collection, and maintaining inventory.  

In 1999, an additional study performed by Russell et al. to determine the minimum value 

for overhead highway sign illumination, discover whether vehicular headlamp luminance on the 

highway is sufficient to provide minimum required luminance for nighttime drivers (Russell, et 

al., 1999). Researchers began the first phase of the study by conducting an experiment in the 

Photometric and Visibility Building at Turner-Fairbank Highway Research Center in McLean, 

Virginia, in which observers drove toward signs with unknown words, at a speed of 4.97 mph (8 

km/hr). Observers were asked to push a button to turn off the lighted sign when the sign became 

legible. After each experiment, the observer reported what words were written on this sign to 

ensure the sign was legible to them. If they recognized the word(s) correctly, the distance 

travelled by the observers was recorded and their distance to the sign was determined. Russell et 

al. also performed two field tests in this study. They performed the experiment in straight flat 

level sections on two highways, Interstate 70 (I-70) and Interstate 435 (I-435) in Kansas, using 

seven photometers “5 Minolta T-1 illuminance meters and 2 international light IL-1700 

luminance meters” which were sensitive to very low values. Researchers collected illuminance 

values measured at the photometers which were placed at various heights above the roadway and 

corresponded to typical shoulder and overhead sign heights. These illuminance values were 

collected from a sample of approximately 2,500 vehicles approaching in the right lane and using 

low beam headlamps. Marker plate numbers were read and motor vehicle records provided so 

manufacturer and model of vehicle could be determined. Analysis of variance (ANOVA) was 

conducted to find differences in illuminance levels between various vehicle types. The research 

team initially found that illuminance values detected were higher than those forecasted because 

of a substantial amount of light reflected from the pavement, and this was included in the 

luminance readings. Thus, it was decided to obtain additional data with the reflected light 

removed (Russell, et al., 1999). 

Russell et al. performed a second field test in which pavement reflection was eliminated 

from luminance readings by using optical occluders (Russell, et al., 1999). The sample in this 

study was divided between 50 known vehicles along with 1,500 unknown vehicles which passed 

through the data collection location. Statistical analysis was performed on the sample in two 

parts: one for the 50 known vehicles, and the other part for the unknown 1,500 vehicles. Results 
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of this study showed that sufficient light was available for ground mounted signs on the left and 

the right of highway shoulders, but insufficient light was available for overhead guide signs. 

Researchers concluded that the values of minimum luminance for overhead guide signs were 

0.316 cd/ft2 at 275.59 ft in distance (3.4 cd/m2 at 84 meter), 0.334 cd/ft2 at 374.015 ft in distance 

(or 3.6 cd/m2 at 114 meter), and 0.344 cd/ft2 at 498.687 ft in distance (3.7 cd/m2 at 152 meter). 

In a study performed by Carlson and Hawkins in 2003 to find minimum retroreflectivity 

levels for overhead guide signs and street name signs, researchers developed a computational 

model based on the relationship between headlights and sign, and the geometric relationship 

between headlights, sign, and driver (Carlson & Hawkins, 2003). They developed Equation 2.1 

for determining minimum retroreflectivity: 

                            𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑅𝐴 = 𝑁𝑒𝑤 𝑅𝐴,𝑆𝐺 × (
𝐷𝑒𝑚𝑎𝑛𝑑 𝑅𝐴,𝑁𝑆𝐺

𝑆𝑢𝑝𝑝𝑙𝑦 𝑅𝐴,𝑁𝑆𝐺
)                                                  2. 1 

Where; Minimum RA = minimum retroreflectivity at standard measurement 
geometry (observation angle = 0.2 degree and entrance angle of -4.0 degree) 

New RA, SG = averaged retroreflectivity of new sheeting at standard geometry 
(cd/lx/m2) 

Demand RA, NSG = retroreflectivity needed to produce minimum luminance at the 
nonstandard geometry (cd/lx/m2) 

Supply RA, NSG = retroreflectivity of new sheeting at the nonstandard geometry 
(cd/lx/m2)    

Carlson and Hawkins also conducted a field study on a sample of 30 subjects ages 55 or 

older, and they used 32 different headlight illumination levels (Carlson & Hawkins, 2003). The 

field study was performed during real world driving conditions on a closed course. Selected 

subjects were asked to read different types of retroreflective signs. This study analyzed various 

factors impacting minimum retroreflectivity levels for overhead guide signs, including distance, 

location of the sign, retroreflective sheeting material, headlamp illumination, accommodation 

level, vehicle speed, and vehicle type. In this study, three factors determined the model 

applicability in real life situations: 1) sign position relative to position of the vehicle; 2) 

accommodation level of drivers ages 55 or older; and 3) rounding the minimum retroreflectivity 

level for overhead and street name signs to the nearest integer that is dividable by five. Carlson 

and Hawkins (2003) performed follow up research that included updated factors such as the 

effect of changing accommodations of nighttime drivers, updated vehicle headlamp profiles, 

larger observation angles representing typical headlamps of many vehicles (truck, SUV, sedan, 

and minivan) used in developing minimum retroreflectivity levels for overhead guide signs were 
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based on minimum luminance values of 2.3 and 3.2 cd/m2 for drivers 55 and 65 years of age, 

respectively.  

In 2003, Zwahlen et al. performed nighttime field evaluations of four different 

retroreflective overhead sign sheeting combinations (Zwahlen, et al., 2003). When externally 

lighted and unlighted (by low-beam headlight only), the sheeting materials were compared for 

appearance, legibility, and conspicuity. These sign sheeting material combinations were tested 

photometrically under low-beam illumination at distances ranging from 200 to 1,000 ft. The 

sheeting material combinations used in this study were as follows: 

 Group A: Beaded Type III legend on beaded Type III background 

 Group B: Type IX legend on beaded Type III background 

 Group C: Type IX legend on Type IX background, and 

 Group D: Type VII legend on beaded Type III background 

Zwahlen et al. research was performed in two separate phases: 1) expert panel field 

evaluation, and 2) photometric evaluation. From these two phases, researchers concluded that the 

practice of external lighting of overhead signs can be discontinued if either white types VII or IX 

legend are used on green beaded type III backgrounds. Researchers recommended that this 

change from lighted to unlighted overhead signs with white micro prismatic legends on green 

type III backgrounds will provide many benefits, including eliminating the need for luminary 

installation, lower maintenance cost, and lower electricity cost. 

In a study performed by Bullough et al. in 2005, a three-phase project was conducted to 

measure luminance and luminance contrast values of signs installed along a specific highway 

(Bullough, et al., 2008). The function of this study was to measure the appearance of signs under 

different luminance contrast values and to estimate the signs’ visual performance for 

approaching drivers compared to externally lighted signs that meet AASHTO recommendations 

for exterior sign lighting (AASHTO, 2005). A specific location was selected in order to perform 

photometric measurements of the sign luminance. This location was visited two times in 2006. 

Nighttime measurements were made during the visits, and the daytime measurement was 

performed in the later visit only. Measurements were made using a spectroradiometer equipped 

with a telephoto lens. The spectroradiometer was mounted onto a tripod in a Dodge Caravan 

vehicle, driven along the highway, and stopped approximately 328.08 ft (or 100 meter) and 

maximum 354.33 ft (or 108 meter) from the sign. The lens of the spectrometer was kept as close 
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as possible to the driver’s eye level. Nine signs were installed in the location using the following 

types of retroreflective sheeting materials to make the signs in the study: 

 Two from VIIIa: meet ASTM (2007) type VIII specifications. 

 Two from VIIIb: meet ASTM (2007) type VIII specifications. 

 Four from IX: meet ASTM (2007) type IX specifications. 

 One from the proposed XI: meet proposed type XI and existing ASTM (2007) type 

IX specifications. 

Luminance measurements were made by positioning the measurement spot of the 

spectroradiometer onto three background and three character locations of the signs. Luminance 

contrasts were calculated using Equation 2.2: 

                                       𝐶 =
|𝐿𝑐 − 𝐿𝑏|

𝑚𝑎𝑥(𝐿𝑐, 𝐿𝑏)
                                                                                            2. 2 

Where; C is the luminance contrast, 𝐿𝑐 is the luminance of the character in cd/m2, 
and 𝐿𝑏 is the luminance of the background in cd/m2 

Luminance measures obtained for the new signs were compared to those obtained for 

regular signs along the same location of the study. This model provides some basis for 

calculating accuracy and speed at which visual information can be processed given the following 

input parameters: a) size of the visual target; b) background luminance around the visual target; 

c) luminance contrast between the visual target and its background; and d) age of the observer. 

The third phase was about subjective evaluations. The apparatus used in the evaluation consisted 

of two main systems: a tower with a dynamic presentation system and a computer-controlled 

system. Side-by-side observations were conducted during nighttime sessions. Observers sat in a 

vehicle parked behind a properly aimed Halogen headlamp set located at a distance of 328.083 ft 

(or 100 meter) from the apparatus. During the first session, some observers noticed that the letter 

“E” on the sign panel was difficult to read. Another session was performed at a 196.85 ft (or 60 

meter) distance and the rating data obtained from both sessions were combined. Ratings were 

provided and three repetitions at each luminance contrast were conducted. ANOVA was 

conducted to analyze the differences. Sequential viewing observations in this phase were 

conducted as side-by-side observations during nighttime. The same headlamp set was used, but 

both sessions used a viewing distance of 196.85 ft (or 60 meter) from the sign panel. Three 

repetitions at each luminance contrast were observed as in side-by-side viewing, ratings were 

recorded, and ANOVA was used in the analysis. 
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In the study by Bullough et al. in 2008, researchers concluded that measured luminance 

values, resulting calculated luminance contrasts, and visual response values all indicated that, in 

terms of visual performance, unlighted highway signs and new signs constructed from four types 

of retroreflective materials are similar to externally lighted signs when compared to externally 

lighted signs meeting AASHTO (2005) recommendations for guide sign illumination from a 

328.083 ft (or 100 meter) viewing distance (Bullough, et al., 2008). Important related factors 

included location of the signs relative to vehicles, headlight condition, ambient illumination, and 

other factors affecting actual luminance of sign background and characters. 

In 2012, Jonathan and Carlson performed a research study in which four states (New 

York, Minnesota, Arizona, and Missouri) were selected to provide examples of effective and 

beneficial practices demonstrating how various agencies meet the MUTCD of 2009 roadway 

sign retroreflectivity requirements (Jonathan & Carlson, 2012). Researchers used three sources to 

gather information: 1) existing published research; 2) existing guidance and policies; and 3) a 

telephone survey. The survey included 14 questions, and 48 public agencies participated. Survey 

findings identified several strategies and techniques that were considered effective practices 

among the states. Among participating states and local agencies, the decision to replace a sign 

was made based on four methods: 1) The expected sign life method was the most selected 

method for replacing signs (approximately 37.5%); 2) The most popular practice among 

participating states was nighttime visual inspection, involving training programs to ensure 

inspector proficiency (32.5%); 3) Twenty percent of agencies performed the blanket replacement 

method ; 4) Five percent of agencies used the process of measuring retroreflectivity. However, 

the process of measuring retroreflectivity and control sign methods is associated with high cost 

due to the retroreflectometer used and time spent taking measurements. Cost and time are crucial 

deciding factors in whether to use these methods or not. Purchasing a retroreflectometer can be 

expensive; however, resulting measurements could be valuable enough to justify the extension of 

sign replacement periods. Replacing signs based on retroreflectivity measurements can be time-

consuming, though.  
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Chapter 3 -  Survey and Survey Analysis  

Introduction 

A guide sign illumination survey was distributed to the 50 state Departments of 

Transportation via e-mail during the period between August 9 and September 15, 2012. The 

survey consisted of six questions focused on the following: 

 Current usage of overhead guide sign lighting,  

 Light source types and optical package used in illuminating overhead guide signs, 

 Policy and/or procedures used in designing and installing overhead guide signs, and  

 Any new types of guide sign illumination used or planned to be used in the future.  

Results and Discussion 

During the survey period, responses were received from 31 of the DOTs (62%). In 

addition to the USDOT survey, another survey by Gund, administered between February and 

March 2011, was studied to enhance responses received to the USDOT survey (Gund, 2011). In 

addition, some related material that enhanced the USDOT survey was reported by the AASHTO 

joint technical committee in December 2010 (AASHTO, 2011). Responses to the USDOT survey 

questions are shown, followed by related material found in either Gund or AASHTO references: 

Question 1: Does your state currently use lighting for some overhead guide signs? 

As shown in Table 3.1, among the 31 states that responded, responses to this question 

were divided into two scenarios for analysis: 

A. Twelve states (38.71%) responded “Yes,” fourteen states (45.16%) responded 

“No,” and five states (16.13%) responded that they had used sign lighting in the past 

but were currently phasing it out. 

B. Considering the states that are currently lighting their guide signs but phasing it out 

to be as those who are illuminating their overhead guide signs, seventeen (54.84%) 

of these states responded “Yes,” and fourteen (45.16%) of these states responded 

“No.” 

Table 3.1 Current Usage of Overhead Guide Sign Lighting in the U.S.: Verbatim 

Responses from USDOT Survey 

 State Response Usage 

1 Alabama Some older overhead guide signs are 

illuminated; however, several years ago we 

stopped including lighting when installing new 

overhead guide signs. 

Yes, phasing 

out 

2 Alaska No dedicated sign illumination. The limited 

number of overhead signs is illuminated by 

adjacent roadway illumination. 

Yes, phasing 

out 
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 State Response Usage 

3 Arkansas We do not use lighting for any overhead guide 

signs. We did at one time but they became a 

maintenance issue.  

No 

4 Connecticut The Connecticut Department of Transportation 

(ConnDOT) no longer utilizes sign lighting. 

No  

5 Delaware No, we use all Type IX sheeting or above. No  

6 Florida Yes Yes  

7 Hawaii No No  

8 Idaho Yes Yes  

9 Illinois Yes, but current policy is no sign lighting. Yes  

10 Indiana Currently INDOT does not light overhead guide 

signs. 

No  

11 Iowa Existing lighting is maintained, but no new 

lighting is being installed with overhead guide 

signs. 

Yes, phasing 

out 

12 Kentucky Kentucky does not light our overhead guide 

signs. 

No  

13 Louisiana No, Louisiana does not light overhead signs. No  

14 Mississippi Does not light any overhead guide signs. No  

15 Michigan The Michigan Department of Transportation 

does not light overhead signs. 

No  

16 Nebraska Yes Yes  

17 New Mexico We don’t use any lighting for our overhead 

signs. There are a few left from the past that we 

are phasing out! We are also a dark sky state1. 

The fixtures must be full cutoff with flat glass. 

HID or any other lighting over 70 watts cannot 

be used 90 degrees above nadir. 

Yes, phasing 

out 

18 North Carolina Yes Yes  

19 Ohio No No  

20 Oklahoma No No 

21 Oregon Yes Yes 

22 Rhode Island No No 

23 South Carolina Yes. We use sign lighting in areas that have large 

amounts of ambient light from other sources. 

Yes 

24 South Dakota South Dakota DOT just this summer added 

lighting to 4 overhead signs. 

Yes 

                                                           
 

1 An e-mail follow-up to the contacted person for the New Mexico response, asking about the 

meaning of dark sky state, answered: “We have night sky protection act that passed through our 

legislature in the year 2000. This limits the amount of light above horizontal. The intension is to 

limit light pollution” (Jian, 2012). 
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 State Response Usage 

25 Tennessee We do not use overhead guide sign lighting in 

the State of Tennessee. 

No  

26 Texas We still have some sign lighting, but have been 

phasing it out over the last several years in favor 

of reflective sheeting. 

Yes, Phasing 

out 

27 Utah Yes Yes  

28 Vermont For overhead signs, we require signs to be 

sheeted with a minimum of AASHTO Type IX 

sheeting for both the background and the legend. 

No  

29 Virginia Yes, at one time VDOT lit most overhead signs. 

During that period, we used an ASTM Type III 

sheeting. Many of these signs/sign lighting 

installations remain in place today. Beginning in 

2005, we moved to using Clearview fonts on 

guide signs and required that the lettering and 

borders be an ASTM Type VIII or IX. With the 

use of these “premium” prismatic letters and 

borders, we advised our designers and 

maintenance staffs that the need for overhead 

sign lighting had diminished and that the use of 

sign lighting should be an engineering decision 

based in several factors (see response to question 

6). 

Yes 

30 West Virginia Yes Yes 

31 Wyoming Yes  Yes  

In the survey performed by Gund (2011), regarding guide sign retroreflectivity, two 

questions were related to the USDOT survey: questions 17 and 18. Answers to these two 

questions resulted in including three additional states to the USDOT survey (Missouri, Kansas, 

and Wisconsin). Their answers are shown in Table 3.2.   

 “17) Does your agency use external illumination for overhead guide signs? (Yes or No) 

18) If your answer to the above question is ‘Yes,’ what source does your agency use for 

external illumination of the overhead guide signs?” (Gund, 2011) 

Table 3.2 Related Results from Gund Survey (Gund, 2011) 

 State Response Usage 

1 Missouri Our lighting structures are lit using Metal Halide 

lamps for color clarity and we have a couple of test 

LED fixtures that are under evaluation. 

Yes  

2 Kansas Electricity, Hooked into Westar energy. Yes  

3 Wisconsin Wisconsin DOT still illuminates some overhead signs 

in the Milwaukee metropolitan area. These are signs 

with the encapsulated bead high intensity legend and 

Yes, phasing out 



  

41 
 

 State Response Usage 

background (ASTM D4956-09 Type II sheeting). As 

these signs are replaced to our new sheeting standard 

of Type IX or better, the lights are being turned off.  

Effectively, WisDOT is phasing out the usage of 

overhead sign lighting. No new overhead sign lighting 

is being installed. WisDOT uses 250 Watt Mercury 

Vapor sign lighting luminaires at various voltages. 

The lamp that is used is a deluxe mercury vapor. 

In another survey conducted by AASHTO Joint Technical Committee in December 2010, 

(AASHTO Survey) data was found for one additional state, Massachusetts, and this state does 

not illuminate highway signs (AASHTO, 2011). 

In combining the three surveys, USDOT, Gund, and ASSHTO, a total of thirty-five states 

responded (thirty-one to the USDOT survey, three to the Gund survey, and one to the ASSHTO 

survey). The following scenarios, with modified statistics on overhead guide sign lighting, are: 

A. In regard to whether states were using overhead guide sign lighting, fourteen states 

(40%) responded “Yes,” fifteen states (42.86%) responded “No,” and six states 

(17.14%) responded that they had used overhead guide sign lighting in the past but 

were currently phasing it out. 

B. Considering only those who had responded that they are phasing out overhead 

guide sign lighting, twenty states (57.15%) responded “Yes” and 15 states (42.85%) 

responded “No.”  

Question 2: What lamp type is currently used in the illumination of overhead guide signs 

in your state? (E.g. Standard Metal Halide, Ceramic Metal Halide, induction lighting, LED, or 

others)? 

For the seventeen states (54.84%) that responded to the survey and answered that they 

light overhead guide signs, the lamp types used for illumination were Standard MH, HPS, 

induction, MV and the LED. Table 3.3 shows responses from the states. Results shown in Table 

3.2 were added to the calculations, as well. 

Table 3.3 Lamp Types Reported in USDOT Survey as Used for Overhead Guide Sign 

Illumination: Verbatim Responses 

 State  Response Usage  

1 Alabama We use standard Metal Halide lamps. Yes, phasing out 

2 Alaska Typically overhead sign illumination is from 

adjacent roadway illumination, including 

some high mast lighting systems rather than 

illumination positioned beneath the overhead 

sign. As a result HPS is typical. 

Yes, phasing out 
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 State  Response Usage  

3 Arkansas ---2 No 

4 Connecticut Prior to the installation of more highly 

reflective signs, ConnDOT specified the use 

of 250 and 400 watt metal halide with 

prismatic glass lens, Holophane Panel-Vue 

sign lights. 

No  

5 Delaware --- No  

6 Florida Induction Yes  

7 Hawaii --- No  

8 Idaho Our currently approved sign lighting fixtures 

use 150 Watt HPS lamps. 

Yes  

9 Illinois High Pressure Sodium (usually 150W). Yes  

10 Indiana If required, 250W MV/HPS currently.  No  

11 Iowa HPS Yes, phasing out 

12 Kentucky --- No  

13 Louisiana  N/A No  

14 Mississippi --- No  

15 Michigan --- No  

16 Nebraska High Pressure Sodium. Yes  

17 New Mexico --- Yes, phasing out 

18 North Carolina Others - High Pressure Sodium and Mercury 

Vapor. 

Yes  

19 Ohio N/A No  

20 Oklahoma We did use 150 watt HPS.  No 

21 Oregon Metal Halide. Yes 

22 Rhode Island N/A No 

23 South Carolina We used mercury vapor until recently. We 

now use Metal Halide. 

Yes 

24 South Dakota LED Yes 

25 Tennessee --- No  

26 Texas All the remaining sign lighting is still 

Mercury Vapor. 

Yes, phasing out 

27 Utah Mostly HPS (typically 250W), and some 

induction (70W - 165W). 

Yes  

28 Vermont --- No  

29 Virginia HPS Yes 

30 West Virginia Mostly Metal Halide, but we are currently 

looking at LED. 

Yes 

31 Wyoming Metal Halide. Yes  

                                                           
 

2 --- Means the state did not respond to this question. 
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Among the 20 states that use lighting for overhead guide signs, including states in Gund’s 

survey, five states (25%) (Alabama, Missouri, Oregon, West Virginia, and Wyoming) use MH 

lighting only. Six states (30%) (Alaska, Idaho, Illinois, Iowa, Nebraska, and Virginia) use HPS 

and two states (10%) (Wisconsin and Texas) use MV. One state (5%), Florida, uses induction 

lighting, and South Dakota (5%) uses LED lighting. When combined (25%), the remaining states 

use two types of lighting. For example, Kansas and North Carolina use MV and HPS, South 

Carolina uses MV for greater light clarity, and Utah uses HPS and some Induction lighting. One 

state, New Mexico, did not disclose what type of lighting they use. Three states (Connecticut, 

Indiana, and Oklahoma) answered “No” to whether they used overhead guide sign lighting, but 

in their response to question 2 (type of lamp used), they mentioned the type of lighting they used 

for illuminating overhead guide signs. This could mean they are using guide sign lighting but are 

phasing it out. 

Question 3: Which optical package is typically used for the lighting in your state? (e.g. 

reflector/clear flat glass, refractor, stippled flat glass, or others) 

Among states that responded that they light overhead guide signs, seventeen states out of 

thirty-one respondents stated that several types of optical packages such as reflector with clear 

flat glass, full cut-off road side luminaire, high mast heads, refractor, and prismatic glass lens 

(glass diffuser) are used for guide sign lighting. Detailed responses are shown in Table 3.4. 

These answers included some optical package types related to street lighting, but only two types 

of glass that were related to overhead guide sign lighting, clear glass and prismatic glass, were 

considered.   

Table 3.4 Optical Packages Used for Overhead Guide Sign Lighting: Verbatim Responses 

 State Response Usage  

1 Alabama We use reflector/clear flat glass. Yes, phasing out 

2 Alaska Clear flat - full cut-off road side luminaire, and 

high mast heads. 

Yes, phasing out 

3 Arkansas --- No 

4 Connecticut Prismatic glass lens. No  

5 Delaware --- No  

6 Florida Reflector/clear flat glass, refractor. Yes  

7 Hawaii --- No  

8 Idaho We have a combination of reflector/clear flat glass 

and refractor. 

Yes  

9 Illinois Refractor Yes  

10 Indiana Refractor No  



  

44 
 

 State Response Usage  

11 Iowa --- Yes, phasing out 

12 Kentucky --- No  

13 Louisiana  N/A No  

14 Mississippi --- No  

15 Michigan --- No  

16 Nebraska Reflector/clear flat glass. Yes  

17 New Mexico --- Yes, phasing out 

18 North Carolina Glass diffuser. Yes  

19 Ohio N/A No  

20 Oklahoma Reflector/clear glass. No 

21 Oregon Reflector and refractor. Yes 

22 Rhode Island N/A No 

23 South Carolina We typically use Holophane sign lights with 

refractors. 

Yes 

24 South Dakota LEDs Yes 

25 Tennessee --- No  

26 Texas Reflector with clear flat glass. Yes, phasing out 

27 Utah Most of the old HPS's have a refractor lens.  The 

inductions have a reflector with clear flat glass. 

Yes  

28 Vermont --- No  

29 Virginia Reflector with flat glass is typical. Yes 

30 West Virginia Flat Glass. Yes 

31 Wyoming Reflector/clear flat glass. Yes  

Question 4: Are AASHTO or Illuminating Engineering Society (IES) sign lighting levels 

used in the design of your overhead guide sign lighting or are installations based on historical 

practice and/or experience? 

Among the seventeen states that responded that they light their overhead guide signs, 

three states (17.65%) (Idaho, South Carolina, and South Dakota) follow AASHTO standards, 

four states (23.53%) (Alabama, Illinois, West Virginia, and Wyoming) use IES standards, three 

states (17.65%) (Florida, North Carolina, and Utah) use both AASHTO and IES standards, three 

states (17.65%) (Alaska, Oregon, and Texas) follow historical practice and experience, one state 

(5.87%), Virginia, has its own standards and policies, and three states (17.65%) (Iowa, Nebraska, 

and New Mexico) have or use no standards or specifications. Detailed responses are shown in 

Table 3.5.  

Indiana and Oklahoma responded that they use historical data, meaning, as in question 3, 

their response seemingly contradicts their “No” answer to question 1. A possible explanation 

may be those two states are phasing out the lighting. 
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Table 3.5 States’ Standards for Designing Overhead Guide Sign Illumination: Verbatim 

Responses  

 State Response Usage  

1 Alabama In the past, our designers used IES sign lighting 

levels. 

Yes, phasing out 

2 Alaska  I'd say historical practice/experience. Yes, phasing out 

3 Arkansas  --- No 

4 Connecticut  N/A - ConnDOT no longer specifies the 

illumination of overhead signs. 

No  

5 Delaware --- No  

6 Florida Yes Yes  

7 Hawaii  --- No  

8 Idaho  Yes, when possible AASHTO recommendations 

are met for average Fc levels and Max/Min 

uniformity. 

Yes  

9 Illinois  IES RP-19 Yes  

10 Indiana  Historical practice based on the size of the sign. No  

11 Iowa  N/A Yes, phasing out 

12 Kentucky --- No  

13 Louisiana    N/A No  

14 Mississippi  --- No  

15 Michigan --- No  

16 Nebraska  --- Yes  

17 New Mexico --- Yes, phasing out 

18 North Carolina Yes, AASHTO & IES lighting levels are used. Yes  

19 Ohio  N/A No  

20 Oklahoma  Installations were based on historical practice. No 

21 Oregon  Historical practice, currently no new sign 

lighting designed. 

Yes 

22 Rhode Island N/A No 

23 South Carolina Our lighting systems are designed using 

AASHTO’s roadway lighting guide. 

Yes 

24 South Dakota AASHTO standards. Yes 

25 Tennessee  --- No  

26 Texas  Historical practice/experience. Yes, phasing out 

27 Utah I would suspect a combination of both, but more 

recent installations have been AASHTO-based. 

Yes  

28 Vermont --- No  

29 Virginia  VDOT Specification for sign luminaires is based 

in a simple approach. It reads: Sign Luminaires: 

Luminaires shall be shielded to eliminate glare 

or extraneous light on the roadway and shall 

provide a maximum-to-minimum uniformity 

ratio of 1:1 to 6:1 when installed. When tested at 

the center of a 10-foot-square test panel, the 

Yes 
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luminaire shall provide at least 30 average initial 

foot candles and a gradient (ratio of illumination 

on any two adjacent square feet of sign surface) 

of 2:1 or less. Designers are required to design in 

compliance with IES Standards. 
 

30 West Virginia IES Yes 

31 Wyoming IES Yes  

Question 5: Are you looking at other emerging sources for your overhead guide signs 

lighting? (e.g. Ceramic Metal Halide, induction lighting, LED, Plasma, or other) 

Among the seventeen states which answered “Yes” to question 1 in the USDOT survey, 

eleven states (64.7%) answered “Yes,” and six states (35.3%) answered “No.” The states that 

answered “Yes” were divided into four groups according to their reported future plans. The first 

group of six states (54.55%) (Florida, Idaho, South Dakota, South Carolina, Virginia, and West 

Virginia) includes those looking to switch to LED lighting. The second group included two states 

(18.18%) (Oregon, and Wyoming), that are transitioning to induction lighting. The third group, 

comprised of two states (18.18%) (North Carolina and Utah) included those hoping to use or 

upgrade retroreflective sheeting on overhead guide signs. The last group was comprised of one 

state (9.09%) (Illinois) which is trying to eliminate overhead guide sign lighting. (For more 

details, reader may refer to Illinois’ answer to question 6). States that answered “No,” such as 

Alabama, Alaska, Iowa, Nebraska, Texas, and North Carolina are attempting to eliminate guide 

sign lighting by using retroreflective sheeting guide signs. (For more information, reader may 

refer to the answer for question 6 by these states). Detailed responses to this question are shown 

below in Table 3.6. 

Table 3.6 States’ Emerging Sources for Overhead Guide Sign Illumination: Verbatim 

Responses  

 State Response Usage  

1 Alabama No. (See response to question 1.) 
 

Yes, phasing out 

2 Alaska No Yes, phasing out 

3 Arkansas --- No 

4 Connecticut Not at this time. No  

5 Delaware ---- No  

6 Florida LED Yes  

7 Hawaii --- No  

8 Idaho Yes. We are currently experimenting with LED. We 

have 4 signs lit using LED fixtures with good 

Yes  
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results and an approx. 80 percent reduction in 

power. 

9 Illinois Yes, but not officially since current policy is no sign 

lighting for new installations. 

Yes  

10 Indiana N/A No  

11 Iowa No Yes, phasing out 

12 Kentucky --- No  

13 Louisiana  N/A No  

14 Mississippi --- No  

15 Michigan --- No  

16 Nebraska No Yes  

17 New Mexico We are not Yes, phasing out 

18 North Carolina No - we are moving towards using higher 

retroreflective sign sheeting. 

Yes  

19 Ohio No No  

20 Oklahoma We are discontinuing using overhead sign lighting 

due to the numerous hits on the structures that have 

overhead sign lighting.  

No 

21 Oregon Induction lighting. Yes 

22 Rhode Island N/A No 

23 South Carolina We are looking at LED technology and have 

retrofitted one system with LED fixtures to examine 

how they compare with traditional fixtures. 

Yes 

24 South Dakota LED Yes 

25 Tennessee --- No  

26 Texas No, we are phasing out sign lighting. Yes, phasing out 

27 Utah We have opted to eliminate sign lighting 

altogether. Our new standard is a type XI sheeting 

requirement with no sign lighting. We will remove 

sign lighting as old signs are replaced with 

upgrades. 

Yes  

28 Vermont --- No  

29 Virginia At this time we are considering pursuing an 

evaluation of LEDs, including a comparison of the 

total cost of ownership of other technologies, and 

we are evaluating news and information as it is 

released. We have recently had the developer of a 

“Public/Private Partnership” roadway propose to 

use LED for sign lighting. 

Yes 

30 West Virginia Yes, LED Yes 

31 Wyoming Yes induction Yes  
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Question 6: What does the future look like for overhead guide signs lighting in your 

state? (Continue its use, modify where/when it is used, or eliminate with use of different sign 

materials) 

Responses to this question are shown in Table 3.7. In summary, some states are moving 

towards discontinuation of overhead guide sign illumination and transitioning to brighter 

retroreflective sheeting materials. Other states are modifying the lighting and moving toward 

new energy efficient light source types such as LEDs and induction lighting; they will maintain 

the procedure of illuminating guide signs. Others have already eliminated overhead guide sign 

lighting and will not illuminate guide signs. Others are transitioning to new lighting methods or 

retroreflective sheeting, and some states leave the decision of maintaining overhead guide sign 

illumination or using brighter retroreflective sign sheeting to their engineers who decide 

according to the situation.  

Table 3.7 Future Plans for Overhead Guide Signs in States: Verbatim Responses  

 State Response Usage  

1 Alabama We are moving towards eliminating lighting for overhead 

guide signs. We believe that the new Federal 

retroreflectivity requirements will make that type of 

lighting unnecessary. 

Yes, 

phasing out 

2 Alaska No change from today. Yes, 

phasing out 

3 Arkansas --- No 

4 Connecticut Maintain policy of no longer illuminating highly reflective 

signs. 

No  

5 Delaware --- No  

6 Florida Modify where/when it is used. Yes  

7 Hawaii We have started to use Type XI reflective sheet for 

overhead signs and removing the sign lighting. This 

approach seems to be working well. 

No  

8 Idaho We are considering two options: 1) upgraded sheeting and 

no sign lighters, and 2) upgraded sheeting with LED sign 

lighters (either new or upgraded existing). 

Yes  

9 Illinois Highly retroreflective sheeting material has eliminated the 

need for most sign lighting. 

Yes  

10 Indiana INDOT already eliminated lighting the overhead guide 

signs. 

No  

11 Iowa Do not plan to light overhead guide signs because of the 

new sign sheeting. 

Yes, 

phasing out 

12 Kentucky Do not plan to pursue sign lighting.  No  
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13 Louisiana We stopped using sign lighting in 1986 when we started 

using High Intensity Beaded Sheeting (type III). We are 

now using High Intensity Prismatic Sheeting. 

No  

14 Mississippi --- No  

15 Michigan --- No  

16 Nebraska Replacing with sign material as signs are replaced. Yes  

17 New Mexico --- Yes, 

phasing out 

18 North Carolina Elimination. Yes  

19 Ohio Continue not using. No  

20 Oklahoma As mentioned in previous question and answer, we are 

discontinuing overhead sign lighting. We are using type III 

sheeting for a background and type IX sheeting for legends 

and borders. That combination is working out well for 

Oklahoma. 

No 

21 Oregon Not much of new installation. Remove existing sign 

lighting when we upgrade signs.  

Yes 

22 Rhode Island We have no plans to change our overhead sign lighting 

policy. We have no plans to install lighting on overhead 

signs. 

No 

23 South Carolina We will continue to use sign lighting in areas around larger 

metropolitan areas where extraneous light is most intense. 

Yes 

24 South Dakota SDDOT is currently in the process of reviewing its practice 

of lighting overhead signs. 

Yes 

25 Tennessee --- No  

26 Texas Eliminate with use of different sign materials. Yes, 

Phasing out 

27 Utah See Question 5. Yes  

28 Vermont --- No  

29 Virginia In 2008 Virginia was going through a transformation 

regarding lighting of overhead signs. Central Office Traffic 

Engineering instituted a policy about seven years ago that 

all new positive contrast overhead signs should use 

Clearview font and premium grade prismatic sheeting for 

the lettering and border. Basically, that equates to all new 

guide signs being fabricated with a Grade VIII or IX 

lettering on a Type III background. At nearly the same 

time, VDOT launched a statewide maintenance project 

that, in part, resulted in the removal of all OH sign 

maintenance "cat walks" as they lacked all the safety 

features that would be desirable. In doing that, we removed 

a large number of the existing lighting fixtures. Ultimately, 

we tested the remaining signs for adequate visibility. If it 

failed to provide the perceived human need, the sheeting 

was replaced with the premium prismatic sheeting and the 

Yes 
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 State Response Usage  

lights were left off. Beginning with projects advertised in 

February of 2011, VDOT moved to requiring all signs be 

fabricated using ASTM Type IX sheeting, thus that a very 

high level of light return (headlamp) would be achieved. 

That specification may be viewed at: 

http://www.virginiadot.org/business/resources/const/07Rev

Div_II.pdf Use word search: SS24701 to access the Special 

Provision Copied Note that goes with all projects. Today 

VDOT takes a position that the choice to use or not to use 

lighting on overhead signs is an engineering decision. We 

recommend it should remain as such. We presume that sign 

lighting is not necessary unless present and projected 

volumes, design speed, degree of horizontal curvature 

right, degree of horizontal curvature left, percent of 

positive grade change, percent of negative grade change, 

amount of ambient light present, amount of potential future 

ambient light, number of signs or length of messages being 

presented at one location, etc. Our designers maintain the 

concept that all new overhead signs structures are 

engineered to accommodate the future installation of sign 

lighting and a light retrieval system. It is our thought that 

while this may add a very small initial cost to the 

structures, it will, more importantly, allow for the addition 

of lighting in the future should unexpected volume 

increases occur, should the speed change, or should an 

unexpected increase of ambient lighting take place, but 

more than that, it would allow for adding lighting at 

locations that prove themselves to need it in spite of the 

best engineering decision that indicated it would not be 

needed. We made no public announcement about this 

change in stance and thus far public comments have not 

materialized, positive or negative. 

30 West Virginia Modify where/when it is used. Yes 

31 Wyoming Eliminated 95% to date. The remaining 5% is needed. Yes  

Summary 

Based on the USDOT survey analysis, including analysis of two other surveys (Gund and 

AASHTO), states have two procedures or future plans for improving overhead guide sign 

visibility during nighttime: either illuminating signs, usually with newer, more efficient light 

sources, or by using newer, brighter retroreflective sheeting materials. The main objective was to 

provide adequate sign visibility while saving energy and reducing cost. The most common light 
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sources currently used in illuminating overhead guide signs, according to states that responded to 

the surveys and illuminate signs, were MH, MV, HPS, induction, and LED.  

In designing overhead guide sign lighting, states may refer to AASHTO standards, IES 

standards, both AASHTO and IES standards, historical practices and experiences, or to the 

state’s own standards.  

Future plans for states were distributed between modifying existing overhead guide sign 

lighting into new, more efficient methods of illumination which save energy and cost, or toward 

the use of new, brighter retroreflective sheeting on overhead guide signs. 

From the USDOT survey, some states reported that they will continue using guide sign 

illumination, but they are seeking the best type of light source from two points of view: lighting 

efficiency and energy saving. Some states responded that they are transitioning from one type of 

light source to another, specifically to new lighting technologies: LED and induction. South 

Dakota started using LED lighting in the summer of 2012 for four overhead guide signs (as 

demonstrated by responses in question 1). In an email follow-up to the contacted person for 

South Dakota, the answer was, “the reason for the selection had more to do with maintenance of 

the lights, i.e., South Dakota DOT wanted the longest life possible due to the location of the 

signs” (Martell, 2012). In addition, in testing for LED efficiency, Idaho and South Carolina are 

using LED lighting to illuminate some overhead guide signs. (Refer to question 5). Two states 

are currently using induction lighting (Florida and Utah), and two states are looking into the use 

of induction lighting for overhead guide signs (Oregon, and Wyoming). 
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Chapter 4 - Light Emitting Diodes 

Introduction 

Personal security, traffic flow operations, and safety can be improved by efficient 

roadway lighting (Medina, et al., 2013). Roadway lighting is a basic public requirement that 

leads to a safer environment for both drivers and pedestrians. Drivers can easily recognize street 

conditions and geometry of the roadway with availability of proper roadway lighting. Proper 

roadway lighting also contributes to highway safety by increasing drivers’ visual comfort and 

reducing drivers’ fatigue (IDOT, 2002).  

Energy conservation is essential in the midst of a worldwide energy crisis. As of 2007, in 

the U.S., total street and area light number was 131.356 million with a total annual consumption 

of 178.3 billion kWh (Navigant Consulting Inc., 2008). Table 4.1 shows street and area lights 

installed in 2007 based on Navigant Consulting Inc. In addition, U.S. road lighting consumes 14 

billion kWh of the annual energy, which represents approximately 3% of total electricity 

consumption in the U.S. (Li, et al., 2009). Similarly, the public lighting system in China 

represents 6% consumption out of the annual electricity demand, making energy consumption 

essential in China (Li, et al., 2009). In addition, 24% of the energy consumed by municipalities 

in South Africa is contributed to street lighting (Avrenli, et al., 2012). All previous examples 

resulted in making energy conservation an essential priority in the midst of a spreading energy 

crisis due to decreasing oil and gas reserve levels and increasing demand. 

Table 4.1 Street and Area Lights Installed in the U.S. as of 2007 (Navigant Consulting Inc., 

2008) 

Light Source Percentage Number of Lights (Million) 

Incandescent 2.4 3.159 

Halogen Quartz 7.5 9.917 

Fluorescent 5.7 7.530 

Mercury Vapor 13.5 17.675 

Metal Halide 29.2 38.330 

High Pressure Sodium 41.7 54.745 

Total 100 131.356 

LEDs are fourth generation light sources. LEDs have recently proven that they are an 

energy efficient solution to street lighting. When an electrical current runs through an LED, 

which is a semiconductor, light is emitted (Avrenli, et al., 2012).   
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Until a few years ago, LED lighting technology was limited for use as architecture or a 

niche-type white color lighting application because of LED characteristics being too dim and 

very expensive (Neary & Quijano, 2009). Recently, new LED technology has created an 

evolution in the overall technology of lighting as it shows enormous improvement in high LED 

brightness, which has resulted in increasing and expanding usage of LEDs in street lighting, 

parking garage lighting, and commercial and residential area lighting (Neary & Quijano, 2009). 

The value of using LEDs includes very long life, energy efficiency, and low operating cost as 

compared to conventional lighting (Neary & Quijano, 2009). In addition, LED is a robust 

lighting source that does not use any glass or filaments which support their usage in high 

vibration areas such as mining or power generation (Neary & Quijano, 2009). Moreover, LEDs 

cause no concern with the environment and they are free of mercury and heavy metals such as 

lead (Neary & Quijano, 2009).  

Despite all LED benefits, transitioning to LEDs is challenging because the development 

of conventional lighting was around standard lamp style technologies and retrofitting existing 

fixtures can be achieved after careful engineering design and, in many cases, it does not fully 

optimize technology performance (Neary & Quijano, 2009). LEDs have drawbacks and 

limitations, however. The following sections provide a detailed discussion of LEDs. 

LED Illumination System 

LED street lamps consist of the following: LED chip (package), LED module, driver or 

power supply, control circuit, optics, and heat sink for thermal management (Neary & Quijano, 

2009). The following subsections explain these components in detail. 

LED Chip (Package) 

As shown in Figure 4.1, the LED chip consists of a thin layer of semiconductors that emit 

light when a voltage runs through. In order for an LED chip to be a source of functional light, it 

must be encased in a highly transmissive material such as epoxy with metallic leads like gold, a 

heat sink, and light reflector. All together these are referred to as “the LED chip or package” 

(Ton, et al., 2003). The used operating current ranges from 350 milliamperes (mAmps) to 1 

ampere, while the range of luminous flux is between 20-150 lumens (Neary & Quijano, 2009). 
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Figure 4.1 Common LED Chip (Neary & Quijano, 2009) 

 

LED Module 

The building block of the larger system of the LED module is constructed from a circuit 

board with several LEDs and many other electronic components that may be used as a driver 

circuit or a current-regulating circuit (Neary & Quijano, 2009). In addition, the LED module may 

also have secondary optics to better focus, intensify, or direct optical energy for the desired 

application  (Neary & Quijano, 2009), and (Ton, et al., 2003). Generally, the light distribution of 

most LEDs is in the range of 80º to 120º depending on the manufacturer and the LED package 

(Neary & Quijano, 2009).  

Driver or Power Supply 

LEDs will fail if they are subjected to reverse voltage. Similarly, the life of LEDs may be 

shortened if they are subjected to high peak electrical currents. Therefore, LEDs must be 

protected from reverse voltage and should be surged for output current regulations (Nuttall, et 

al., 2008). For that reason, LED systems require a driver or power circuit to convert the 

alternative current (AC) line voltage to appropriate direct current (DC) and voltage because 

LEDs are best operated with a constant current power supply (Neary & Quijano, 2009). The 

converted direct current usually ranges from 2-4 volts and 20-1,000 mAmps to obtain a high 

LED brightness (USDOE, 2009a). The standard high brightness LED is characterized by the 

minimum operating current of 350 mAmps and with higher levels of luminous flux that can be 

obtained using higher operating currents but will present additional challenges of thermal 

management (Neary & Quijano, 2009). 
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Control Circuit 

The control circuit of LEDs is the unit that regulates the current flow (Avrenli, et al., 

2012). 

Optics 

Optical components of LEDs can either be lenses or reflectors, and the main function of 

the optical component is to shape the pattern of radiation (Avrenli, et al., 2012). Success of LED 

light fixtures relies heavily on used optical components. The use of lenses is recommended for 

small LED light sources that have 1 to 4 dies. Since the lens has at least three surfaces, the light 

beam will be controlled efficiently (Avrenli, et al., 2012). In contrast, the cost of lens will be 

high if the light source consists of an array of dies beneath a common layer of phosphor. In this 

case, the lens will be large (Avrenli, et al., 2012). In some cases, mixing more than one lens will 

be required to obtain a required specific radiation pattern of light, especially in street lighting 

(Kuntze, 2009). 

Heat Sink for Thermal Management 

The main function of the heat sink is to provide heat removal from the LED to the 

immediate surroundings. Heat sink size depends on thermal properties of the material produced 

from the heat sink, and heat amount that has to be dissipated by (USDOE, 2007): 

 “Conduction, which is defined as heat transfer from one solid to another.  

 Convection, which is defined as heat transfer from a solid to a moving fluid.  

 Radiation, in which heat transfer from two bodies of different surface temperatures 

occurs via electromagnetic waves.”  

Approximately 90% of LED heat removal dissipated via conduction (Avrenli, et al., 

2012).  

LED Advantages 

Major advantages of LEDs include energy efficiency, longer life, improved performance 

in mesopic vision conditions, high quality color, instant lighting, directional light, compact size, 

environment friendly characteristics, reduced light pollution, vibration and breakage resistance, 

and dimming capabilities (USDOE, 2009a). The following subsections provide a detailed 

discussion about LED advantages. 
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Energy Efficiency 

The most important advantage of LEDs is their low energy consumption. LEDs can 

reduce energy consumption by approximately 80% compared to other conventional light sources 

(Avrenli, et al., 2012). Table 4.2 provides a summary of LED replacement power wattage as 

compared to different conventional light sources as of 2007. These power amounts were 

computed based on identical amounts of lumens delivered by the mentioned conventional light 

sources. LED replacement wattages shown in Table 4.2 also factor in 30-50% depreciation in 

light output from HID and fluorescent over their lifespans (Avrenli, et al., 2012). Results clearly 

show that LEDs are more efficient than all other conventional light sources.  

Table 4.2 Conventional Light Sources Wattage and the Equivalent LED Replacement 

Wattage (Navigant Consulting Inc., 2008) 

Light Source Conventional Source 

Wattage 

LED Replacement 

Wattage as of 2007 

LED Saving Power 

Incandescent 150 26 82.7% 

Halogen Quartz 150 31 79.3% 

Fluorescent 159 151 5% 

Mercury Vapor 254 108 57.5% 

Metal Halide 458 327 28.6% 

High Pressure Sodium 283 276 2.5% 

In the U.S., it was estimated that if the market used LEDs with an average lumen efficacy 

of 57.5 lumens per watt with a 100% complete penetration, an annual savings of 44.7 billion 

kWh in energy could be achieved. According to statistics from 2007, this savings constitutes 

25% of electrical energy used for street lighting in the U.S. (Navigant Consulting Inc., 2008). 

The 44.7 billion kWh is equal to 482 trillion British thermal units (TBtu) per year, which is 

equivalent to the annual electricity consumption of seven large (100 MW) electrical power plants 

or the consumption of 3.7 million residential households (Navigant Consulting Inc., 2008). 

Moreover, it was estimated that if LEDs dominated the Chinese lighting market in 2010, one 

third of power consumption in China will be saved (Luo, et al., 2009), and (Luo, et al., 2007).   

The Longer Life of LED 

Lamp life can be defined as “the period in which a particular percentage of the tested 

lamps fail” (Avrenli, et al., 2012). This percentage is 40% for MH and 50% for MV and the HPS 

lamps (Avrenli, et al., 2012). The biggest advantage of LEDs is that they are not failing 

catastrophically, thus making their life defined differently as the point at which LED light output 
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falls below a certain threshold of lumen output at installation, typically 70% (Neary & Quijano, 

2009). The average life of conventional street light sources is approximately 50,000 hours 

(Timinger & Ries, 2008). Manufacturers claim that LEDs lifespan may last up to 100,000 hours 

with less than 40% of lumen depreciation (Tetra Tech EM-Inc., 2003). In contrast, the expected 

lifespan of some conventional street lamps such as HPS, MH, and MV is approximately 24,000 

hours, 20,000 hours, and 10,000 hours, respectively (Timinger & Ries, 2008), and (USDOE, 

2009b). 

Although LEDs have a longer life than conventional light sources, their replacement can 

be difficult. Due to the high cost of labor needed to fix the failed LED, it might be more cost-

effective to install a new LED luminaire rather than replace failed LEDs (Avrenli, et al., 2012). 

In comparison, HID light sources are designed to be utilized for a minimum of 30 years, and the 

only thing requiring replacement when it fails includes the lamp and ballast. Replacement is very 

simple (Avrenli, et al., 2012). Since LED street lights can last more than 10 years, it is 

recommended to be used in locations where it is difficult or costly to replace the light source, 

such as tunnels, and bridges (USDOE, 2009b). LEDs can be considered relatively maintenance-

free, allowing them to be used in isolated lands and high mountainous regions (Aoyama & 

Yachi, 2008). 

Improved Performance in Mesopic Vision Conditions 

In the human retina, there are two types of photoreceptors: rods and cones. Both are 

responsible for sending visual signals to the brain. Cones are the principle photoreceptor of high 

light levels in photopic vision conditions; whereas rods are the main photoreceptors at low light 

levels in scotopic vision conditions (Costa, et al., 2009). Mesopic vision can be defined as the 

light levels at which cones and rods contribute to human vision (Avrenli, et al., 2012). In general, 

scotopic vision conditions can prevail below 0.001 cd/m2, while photopic conditions prevail 

above 3 cd/m2 (Avrenli, et al., 2012). 

Currently, researchers are trying to combine the effect of Mesopic light sensitivities, 

color rendering, and color temperature on the human perception of brightness. White light 

emitted by LEDs can be perceived as brighter and more intense than conventional light sources 

when the lumen output is the same (Avrenli, et al., 2012). The spectrum of LED light has 

considerable blue content because most white LEDs consist of a yellow emitting phosphor 
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material and a blue emitting chip. Under mesopic vision conditions, more light can be detected 

by the human eye if the light spectrum has significant blue content (Whitaker, 2007). As a result, 

LED light spectrum with higher bluish content can render LEDs brighter than other conventional 

light sources when lumen output is the same (Avrenli, et al., 2012). 

High Quality Color 

One of the most aspects of light source quality is color rendering and appearance. The 

correlated color temperature (CCT) describes the relative color appearance of the light source, 

and CCT indicates whether a source of light appears to be more bluish or more yellowish 

(Avrenli, et al., 2012). The CCT indicates the appearance of a black body when it is heated to 

high temperatures. When the black body is heated increasingly, its color turns to red, orange, 

yellow, white, and blue, respectively, based on temperature level. The unit of CCT is degrees 

Kelvin, and “CCT of a light source gives the temperature in degrees Kelvin at which the color of 

the heated black body matches the color of the light source in the question” (Avrenli, et al., 

2012). 

The color rendering index (CRI) shows how the colors of an object are rendered by a 

source of light (Avrenli, et al., 2012). The CRI has a scale from 0 to 100 with a comparison to a 

reference light source with a similar color index value. Increasing the CRI value means achieve a 

better source of light to render an object colors (USDOE, 2008). Color rendering is a major 

advantage of LEDs. Most LEDs used to have the CCT value of 5,000 Kelvin and a cool bluish-

white appearance, but recently, natural and warm white LEDs are available (USDOE, 2009a). 

LEDs designed for street lighting and parking lots have a range of CRI between 85-90 (Avrenli, 

et al., 2012). The higher color rendering index of LEDs is helpful for improving traffic safety 

because the available lights allow pedestrians and drivers to easily see street signs and other 

objects illuminated by the lighting fixtures, thus resulting in a reduction of drivers’ reaction 

times (Hamburger, 2008), and (Nuttall, et al., 2008). 

Instant Lighting 

Conventional light sources such as MH, MV, and HPS require re-strike time, or several 

minutes at startup until the light source reaches its full brightness (Avrenli, et al., 2012). In 

contrast, LEDs do not need a re-strike time to warm up, and they can instantly turn on to full 

brightness, allowing manufacturers to design LED street lights that contain an intelligent control 



  

59 
 

coupled with instant sensors (Avrenli, et al., 2012). These sensors can be programmed and 

adjusted according to environmental conditions, which leads to more energy savings (Wang & 

Liu, 2007). 

Directional Light 

According to street lighting regulations, an observer should either obtain certain lumens 

level or certain average levels of illuminance, either of these should be maintained within a target 

area (Timinger & Ries, 2008). LEDs can be designed to emit light in a specific direction since 

they enable more optical control. This design reduces the number of reflectors and diffusers 

required (Avrenli, et al., 2012). Approximately 30-50% of conventional light sources light output 

may be lost inside the fixtures (USDOE, 2009b).  

Compact Size 

Compared to conventional light sources, one advantage of LEDs is their small size which 

allows a wide flexibility in design and forms, allowing manufacturers to produce many patterns 

of LED luminaires. Because of the compact size of LEDs, they allow for the development of 

unique fixtures with new light patterns and different colors can be mixed to fulfill required 

conditions (Neary & Quijano, 2009). In addition, the small size of LEDs allows more optical 

control (Tetra Tech EM Inc., 2003). One drawback of the LED small size is that a large number 

of LEDs is required in roadway light sources to produce appropriate lumen output. 

Environment Friendly Characteristics 

New laws restricting the disposal of mercury-based light sources have raised concerns 

over environmental waste and disposal (Neary & Quijano, 2009). Compared to other 

conventional light sources, LED light source is free of toxic materials such as mercury, which 

make it safe for landfills and also compliant with the RoHS directive of the European Union 

(Hamburger, 2008). In addition, the process of manufacturing and assembling LEDs is free of 

the use of heavy metals like lead (Neary & Quijano, 2009). Moreover, while LEDs are running, 

they do not produce infrared or ultraviolet lights, which make them more environmentally 

friendly as compared to conventional lights (City of Ann Arbor, 2008). 

One important factor that also causes LEDs to be environmentally friendly is that they 

may contribute to considerable reductions of greenhouse gas emissions (Avrenli, et al., 2012). In 
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Toronto, it was estimated that if 160,000 street lights were converted into LEDs, greenhouse gas 

emissions could be reduced annually by 18,000 tons, equivalent to removing 3,600 cars from 

roadways (Whitaker, 2007). In Japan, if an LED street light system is adopted, approximately 6 

to 9 million tons of CO2 could be reduced (Aoyama & Yachi, 2008). 

Reduced Light Pollution 

Five kinds of light pollution are most common: light trespass, overillumination, glare, sky 

glow, and clutter. Unwanted light that enters one’s property is called light trespass (Avrenli, et 

al., 2012). An example of light trespass is light that enters one’s house through a window during 

night, possibly resulting in sleep deprivation. Overillumination is defined by excess use of light 

(Lay-Ekuakille, et al., 2007). Over illumination accounts for approximately 2 million oil barrels 

wasted every day in the U.S. (Lay-Ekuakille, et al., 2007). Glare can be defined as “stems from 

excessive contrast between bright and dark areas in the field of view” (Avrenli, et al., 2012). 

Glare is a serious concern in road safety because it complicates needed adjustments to 

differences in brightness during nighttime driving. Clutter can be defined as “the excessive 

grouping of lights, such as badly designed streetlights or brightly lit advertising boards 

surrounding roadways” (Avrenli, et al., 2012). Clutter may reduce traffic safety because it can 

confuse drivers and pedestrians and cause a distraction. Sky glow is the light effect that can be 

seen over populated areas caused by reflected light and due to badly directed light (Avrenli, et 

al., 2012). Careful consideration of street light design must be achieved so that a certain contrast 

level within the targeted area must not be exceeded in order to overcome the five types of light 

pollution.   

Vibration and Breakage Resistance 

Conventional light sources contain filament, arc tube, or fragile glass components that are 

affected by vibration. In comparison, LEDs do not contain any of these components. LEDs offer 

a more robust light with more resistance to breakage and vibration. As a result, using LEDs in 

areas of high vibration, such as mining operations or on bridges, is more suitable and efficient 

(Neary & Quijano, 2009). 
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Dimming Capabilities  

Intelligent control and dimming is a method that can be employed for the purpose of 

saving energy (Avrenli, et al., 2012). Traffic always decreases at night and early mornings and, 

during these times, energy consumption may be reduced by limiting illumination levels offered 

by light sources. The amount of energy saving due to dimming may reach 30%. MH and MV 

lights have poor dimming capabilities (Timinger & Ries, 2008). For HPS, dimming can be 

achieved by changing illuminance steps by using ballasts of multi-levels (Li, et al., 2009). On the 

other hand, LED light intensity can be modified by adjusting the relative pulse and time between 

these pulses, called modulation of pulse width (Long, et al., 2009). LEDs can be dimmed as low 

as 10% of their maximum output and, with the use of pulse width modulation; they can be 

dimmed as low as 0.05% of their maximum output (Avrenli, et al., 2012).  

Disadvantages of LEDs 

Though LEDs have many advantages and benefits, there are many disadvantages related 

to their luminous efficacy, heat conversion rate, cost of installation, issues in obtaining white 

color, and the use of LEDs module arrays. The following subsections describe these problems in 

detail. 

Luminous Efficacy 

Luminous efficacy can be calculated by dividing the total luminous flux of that source by 

lamp power in wattage with the unit of lumen per watt. As with the luminaire, efficacy is 

calculated by dividing the total luminous flux by luminaire power.  

The main challenge to LED outdoor lighting technology is luminous efficacy. LED street 

lights are not significantly superior to conventional light sources. Measured lumen output of the 

conventional light sources of MH, MV, and HPS are in the ranges of 60-110, 30-60, and 40-120 

lumens per watt, respectively (Timinger & Ries, 2008), and (Tetra Tech EM Inc., 2003). In 

comparison, luminous efficacy of available commercial LEDs has recently approached 100 

lumens per watt (Li, et al., 2009). 

Heat Conversion Rate  

While LEDs operate, they produce cold light, usually below 60oC (or 140oF), while HPS 

light sources operate based on molten metal inside an arc tube at a temperature greater than 
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300oC (572oF) (Avrenli, et al., 2012). LED has a higher rate of power to heat conversion as 

compared to other conventional street light sources (Avrenli, et al., 2012). The high power chips 

of LED generally transform approximately 80% of input power into heat, meaning that the 

remaining 20% of the input power is converted into light. In comparison to conventional street 

light sources, which have a heat removal mechanism based primarily on infrared radiation, LED 

heat removal mechanism is based mostly on conduction, resulting in the addition of thermal 

management challenges. Table 4.3 shows a comparison of heat removal mechanisms of different 

light sources. Table 4.3 clearly shows that, for the HID light sources, more than 90% of heat 

removal is lost by radiation, while in the case of LED, more than 90% of heat removal is lost by 

conduction and less than 5% is lost by radiation. 

Table 4.3 Comparison of Heat Removal Mechanism of Light Sources (Arik, et al., 2007) 

Light Source % of Heat Lost by 

Radiation 

% of Heat Lost by 

Convection 

% of Heat Lost by 

Conduction 

Incandescent >90 <5 <5 

Fluorescent 40 40 20 

HID >90 <5 <5 

LED <5 <5 >90 

Issues in Obtaining White Light with LEDs 

Light emitted by a single LED source falls within a very narrow wavelengths band in the 

visible spectrum, which means that LED emit virtually monochromatic light (Avrenli, et al., 

2012). The emission of monochromatic light classifies LED sources as very efficient in the use 

of colored lights applications such as traffic signal lights. Three methods enable white light 

extraction from LED light sources  (USDOE, 2008), (IESNA Light Sources Committee, 2005), 

and (Avrenli, et al., 2012): RGB (Red, Green, and Blue) systems, Binary Complementary 

Wavelength Conversion, Ultraviolet Wavelength Conversion. Currently, most white LED chips 

are obtained by using phosphor conversion (Avrenli, et al., 2012). 

Use of LED Module Arrays 

Illumination generated by a single LED package is significantly weaker as compared to 

other conventional street light sources such as HPS and MH. The power used to generate 

illumination using HPS light source is commonly sized at 100W, 250W, 400W, and higher, 

while for a single LED chip or package, the power used in lighting ranges from 1W to 10W (Sá 

Jr., et al., 2007). LEDs can be used to illuminate roadways only if numerous LED chips are 
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incorporated together into a module of LED, and then several LED modules are incorporated 

into an LED module array (Avrenli, et al., 2012).  

The use of LED module arrays provides redundancy in lighting, thus enabling the entire 

fixture to stay illuminated even if one or more of the chips fail (Neary & Quijano, 2009). The 

LED module arrays have some disadvantages, such as increasing the chance of component 

failure when the number of LED chips used is increased. If this type of breakdown occurs, a 

significant amount of time and energy is required to repair the LED module array. The reliability 

of an LED module array increases with decreasing the number of series connections and 

increasing the number of parallel connections (Aoyama & Yachi, 2008). 

An additional disadvantage of the LED module array is that it may result in having 

distinct multiple shadows which could cause drivers and pedestrians visibility to be 

uncomfortable. Multiple shadows become more distinguishable as the light distribution of each 

LED module is narrowed, or as the spacing between the LED modules increases (Avrenli, et al., 

2012).  

The last disadvantage of the LED module arrays is over power supplying (overdriving) of 

individual LEDs in the array when some LEDs start to fail. LEDs in the array need a better 

power supplier (driver), instead each failed LED will cause the remaining LEDs to be hardly 

supplied with power, resulting in increasing temperature and reducing system’s life (Avrenli, et 

al., 2012). 
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Chapter 5 - Light Distribution Evaluation of Different Light Sources 

Introduction 

Based on results presented in Chapter 3, the most common light sources used by various 

states for illuminating overhead guide signs are MH, MV, HPS, induction lighting, and LED. 

KDOT provided the Kansas State University (KSU) Research team with two light source types: 

250W MH and 250W MV. Lumi Trak, Inc. supported the KSU research team with three 

additional light sources: 62W LED, 250W HPS, and 85W induction lighting. Lights studied by 

the KSU research team were classified into conventional light sources and light sources of the 

new generation. Conventional light sources included the MH, MV, and HPS, while light sources 

of the new generation included the LED and induction lighting.  

The following sections present details regarding the five light source received, the 

experimental setup, and procedure used for testing. For each light source being studied, the 

optimal light distribution was determined in the experiment. Eventually, a comparison between 

the five light sources was performed based on the light distribution results, to be able of 

recommending the optimal light source to DOTs. 

Light Sources 

The first light source was the 250W, MH. The fixture of this light source is shown in 

Figure 5.1. According to the manufacturer, “the optical system consists of vandal resistant, non-

yellowing prismatic borosilicate glass refractor unaffected by environmental contaminants or 

ultra-violet radiation and a formed, anodized aluminum inner reflector to direct light onto the 

sign face with maximum uniformity” (Holophane, 2010). The input voltage was 480 volts. The 

second light source was the 250W, MV, shown in Figure 5.2. This light source has a clear, flat 

glass and input voltage of 480 volts. The third light source was the 62W, LED, shown in Figure 

5.3. The input voltage was 120 volts. This light source includes independent and adjustable LED 

arrays with glass diffuser. The fourth light source was the 250W, HPS, shown in Figure 5.4. The 

input voltage of this light was 120 volts. The last light source was the 85W, induction lighting, 

shown in Figure 5.5. The 85W induction lighting distributes light through the borosilicate glass 

refractor. The input voltage of this light was 120 volts.  
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Figure 5.1 MH Light Unit 

 

Figure 5.2 MV Light Unit 

 

Figure 5.3 LED Light Unit 
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Figure 5.4 HPS Light Unit 

 

 

Figure 5.5 Induction Lighting Unit 

 

Overhead Guide Sign Lighting Recommendations  

According to the AASHTO, overhead guide sign light sources may be placed on the 

bottom of the sign, top of the sign, or remotely on an adjacent support (AASHTO, 2005). 

Positioning the lighting unit on the bottom of the sign is preferred because: 

1. “The reflected light is less likely to reduce the visual performance of the sign 

message or produce reflected glare into the eyes of motorists. 

2. The lighting units do not produce daytime shadows and reflections from the sun on 

the face of the sign. 

3. The lighting units are easier to access for maintenance. 

4. The lighting unit may collect snow or dirt, but may also be cleaned by rain. 

5. The face of the sign may only partially shield the light that spills onto traffic 

approaching from the rear of the sign. However, a separate shielding mechanism can 

be provided on the lighting units that will minimize this effect. 

6. Express sky-glow or light pollution may be inherent. However, a separate shielding 

mechanism can be provided on the lighting units or optical control equipment can be 

utilized in order to minimize these effects. 
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7. The lighting units may obstruct the view of the sign message at some viewing 

angles. However, proper placement and installation of the lighting units can 

minimize this problem.” (AASHTO, 2005). 

In the current experiment, AASHTO recommendations were followed by positioning the 

light source fixture at the bottom of the sign.  

Experimental Setup 

The purpose of the experiment was to determine optimal light distribution for each of the 

five light sources: MH, MV, LED, HPS, and induction lighting, and identify which light source 

provides the most efficient illuminance on the sign. According to KDOT, no specific size of 

overhead guide sign exists because the size of the overhead guide sign depends upon length of 

the destination name (Gund, 2011). The general size of an overhead guide sign for one line of 

legend is 15 ft in width and 9 ft in height (4.572 meters by 2.743 meters). For two lines of 

legend, general size is 15 ft by 12 ft (4.572 meters by 3.658 meters) (Gund, 2011). In a meeting 

with KDOT in May 2012, the state signing engineer and the permanent signing specialist stated 

that KDOT is considering the installation of large overhead guide signs on some highways, 48 ft 

wide by 18 ft in height (14.630 meters by 5.486 meters) (Nichol & Gwaltney, 2012). 

The current experiment was conducted in the casting workshop in the Industrial and 

Manufacturing Systems Engineering (IMSE) Department at KSU. Black cardboard was used to 

cover all windows, and the emergency light in the room was turned off to ensure the room was 

completely dark. A white sheet of paper 15 ft in width and 9 ft in height was hung on the wall, 

representing an overhead guide sign of similar size. A grid of 1 ft increments was drawn on the 

paper as shown in Figure 5.6. At a height of 8 ft from the floor, the line on the paper was named 

row “A” and the line at 1 ft height was row “H.” Similarly, the vertical line at the left side of the 

paper was named column “1” and the vertical line on the right side was column “14”. 
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Figure 5.6 Grid Naming Mechanism of the White Paper  
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KDOT has a standard for distance between the light source unit and the sign. Based on a 

drawing provided to the KSU research team from KDOT, shown in Appendix A, the horizontal 

distance between the light source unit and the sign is between 5 ft and 6.5 ft. In this experiment, 

the light source unit was centered in front of the sign on the floor at a distance of 5 ft. This 

distance was measured horizontally from the white sheet on the wall to the nearest edge of the 

light source.  

The Minolta Illuminance meter was used to measure illuminance (in lux) at each grid 

intersection (row-column intersection) starting from the top row (row A), left side of the white 

sheet of paper (column 1), to the bottom right side. Three measurement readings were taken at 

each intersection and the average was calculated at each intersection point. Illuminance in 

general can be measured in lux, which is lumen/m2. Illuminance can also be measured by foot-

candle, which is lumen/ft2. When running the experiment, each light source was given a suitable 

warming period (re-strike time) by being turned on at least 45 minutes before starting 

illuminance readings to ensure the light source would run at its maximum brightness. In addition, 

the Minolta Illuminance meter was calibrated before beginning each experimental run.  

Results and Discussion 

Data obtained in this experiment were studied to eliminate any outliers or errors. At each 

row-column intersection on the white sheet of paper, the average of the filtered readings was 

calculated and used for further analysis. Illuminance readings for each light source for all angles 

used were summarized, and best light distribution for each light source was determined for each 

light source. 
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The MH Light Source 

For the 250W MH light source, the light source unit was set in front of the white sheet of 

paper at four different angles. Angles were measured between the bottom of the light source unit 

and the floor. These angles were 0o, 5o down, 10o down, and 15o down. At each angle, 

illuminance readings were taken using the Minolta Illuminance meter.  

Table 5.1 shows illuminance readings average at each intersection point at the specified 

angle for the 250W MH light source. The MUTCD of 2009 specifies minimum retroreflectivity 

values for signs, but it does not specify maximum retroreflectivity values. This information will 

be used in illuminance analysis sections, meaning that when illuminance readings on the white 

sheet of paper increase by changing the angles from 0o to 5o down, from 5o to 10o down, and 

from 10o to 15 o down, as shown in Table 5.1, sign visibility for drivers will be much better. 

Therefore, the best light distribution of the 250W MH light source was found when the angle 

was 15o down. To confirm that the 15o angle was the optimal angle, the light distribution of the 

MH was studied at 20o down angle, unfortunately, the light distribution at 20o angle was not 

uniform; high illuminance values were obtained at the bottom of the sign and low illuminance 

values were obtained at the top of the sign, this concluded that the 15o angle down was the 

optimal angle for the MH.  

Figure 5.7 shows the optimal light distribution of the 250W MH light source, which 

obtained at 15o angle down. The distribution appears to be more uniform, and illuminance values 

range between 200-700 lux, approximately. This light distribution could enable motorists to read 

the legend on the overhead guide signs wherever it is located on the sign, while meeting 

MUTCD requirements when the sign is illuminated with a 250W MH light source installed at a 

15o angle down with the horizontal.  

MV Light Source 

For the 250W MV light source, the light source unit was set in front of the white sheet of 

paper at four different angles. These angles were 0o, 5o up, 5o down, and 10o down. At each 

angle, illuminance readings were taken using the Minolta Illuminance meter. 

Table 5.2 shows illuminance readings average at each intersection point at the specified 

angle for the 250W MV light source. Table 5.2 indicates that when the angle was changed from 

0o to 5o up, the illuminance reading for all the rows decreases, meaning that movement in this 
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direction (up) is not correct. Therefore, the KSU research team selected the opposite rotation 

direction. When illuminance readings for 0o and 5o down angles were compared, illuminance 

readings increased, indicating that this movement was in the correct direction of rotation. 

Maximum illuminance readings were observed when the angle was 10o down, meaning that the 

best light distribution of the 250W MV was obtained when the angle was 10o down. To confirm 

that the 10o angle down was the optimal angle, the light distribution of the MV was studied at 15o 

down angle, unfortunately, the light distribution at 15o angle was not uniform; high illuminance 

values were obtained at the bottom of the sign and low illuminance were values obtained at the 

top of the sign, this concluded that the 10o angle down was the optimal angle for the MV.  

Figure 5.7 Optimal Light Distribution of MH (Angle 15o down) 

 

Figure 5.8 shows the optimal light distribution of the 250W MV light source at 10o down. 

This distribution appeared to be more uniform, with a maximum illuminance of 160 lux. For row 

“H,” the average illuminance level is approximately 110 lux. This light distribution ensure that 

motorists could read the legend on signs wherever it is located on the sign when illuminated 

using a 250W MV light source that installed with a 10o angle down with the horizontal. 
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Figure 5.8 Optimal Light Distribution of MV (Angle 10o down) 

 

Induction Lighting Source 

For the 85W induction light source, the light source unit was set in front of the white 

sheet of paper at four different angles. These angles were 0o, 5o down, 10o down, and 15o down. 

At each angle, illuminance readings were taken using the Minolta Illuminance meter. 

Table 5.3 shows the illuminance reading average at each intersection point at the 

specified angle for the 85W induction light source. When comparing illuminance readings for the 

0o and 5o down angles, an increase was occurred at 5o angle, meaning this movement was in the 

correct direction of rotation. When illuminance readings between 0o, 5o down, and 10 o down 

were compared, the illuminance readings were increasing. Between rows A to H, the maximum 

illuminance readings were shown when the angle was 15o down with one exception for row A. 

When moving from 10o to 15o, illuminance values at 10o angle were a little bit higher. In general, 

for the 85W induction light source, the best light distribution was produced when the angle was 

15o.  To confirm that the 15o angle down was the optimal angle for the induction lighting source, 

the light distribution of the induction was studied at 20o down angle, unfortunately, the light 

distribution at 20o angle was not uniform; high illuminance values were obtained at the bottom of 
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the sign and low illuminance values were obtained at the top of the sign, this concluded that the 

15o angle down was the optimal angle for the induction lighting source.  

Figure 5.9 shows optimal light distribution of the 85W induction light source at 15o 

down. This distribution appeared to be more uniform with a maximum illuminance of 300 lux. 

This light distribution ensure that motorists could read the legend on overhead guide signs 

wherever it is located on the sign when illuminated using an 85W induction light source installed 

with a 15o angle down with the horizontal. 

Figure 5.9 Optimal Light Distribution of Induction Lighting (Angle 15o down) 

 

HPS Light Source 

For the 250W HPS light source, the light source was set in front of the white sheet of 

paper at 0o angle only, because the output illuminance was very high. Illuminance readings were 

taken using the Minolta Illuminance meter. 

Table 5.4 shows the illuminance reading average at each intersection point at the 

specified angle for the 250W HPS light source. Light distribution for the HPS at 0o angle was 

considered the best because the measured illuminance values were very high, consequently 

allowing motorists to read the sign because of increased illuminance on the sign, as shown in 
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Table 5.4. Figure 5.10 shows the best light distribution of the 250W HPS light source at 0o. The 

light distribution appeared to be uniform with a maximum illuminance of 800 lux. This light 

distribution ensure that motorists could read the legend on overhead guide signs wherever it is 

located on the sign when illuminated using a 250W HPS light source fixed with a 0o angle with 

the horizontal. 

Figure 5.10 Optimal Light Distribution of HPS Light Source 

 

LED Light Source 

For the 62W LED light source, the light source unit was set in front of the white sheet of 

paper at 0o angle only, because the design of this LED included independent and adjustable LED 

arrays. By rotating these arrays, the LED light can be focused to any place on the sign. Manager 

of the manufacturing company of this LED informed the KSU research team that this LED unit 

is ready to be installed, since the angles of LED arrays were already fixed to the appropriate 

position to focus light along a sign of similar size to the sheet of paper. Illuminance readings 

were taken using the Minolta Illuminance meter. 

Table 5.5 shows the illuminance reading average at each intersection point at the 
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the light. Figure 5.11 shows the best light distribution of the 62W LED light source at 0o. This 

distribution appears to be uniform with a maximum illuminance of 165 lux. 

Figure 5.11 Optimal Light Distribution of LED Light Source 

 

Comparison of Optimum Light Distributions of Five Light Sources 

To determine the optimal light source for illuminating overhead guide signs, the optimum 

light distribution at each row of the white sheet of paper was compared for the five light sources. 

Figure 5.12 shows light distribution at each row on the sheet of paper (A to H) for the sources. In 

addition, Table 5.6 includes illuminance reading at the best light distribution of the five light 

sources studied. Comparing the five light sources based on Table 5.6 and Figure 5.12, for all 

rows (A to H), the HPS light source had the highest illuminance readings, meaning that it was 

the optimal light source. The MH is the next, followed by induction lighting, MV, and LED. 
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Figure 5.12 Optimal Light Distribution Comparison at Each Row on the White Paper 

 

Summary  

The 250W HPS light source provided highest illuminance values on the sign, meaning 

that the 250W HPS contributes to better visibility to drivers. The 250W MH light source 
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provided the next highest illuminance values, followed by the 85W induction lighting, the 250W 

MV, and the 62W LED. In summary, the HPS light source was the best among conventional 

light sources, followed by MH and MV. Among light sources of the new generation, induction 

lighting was the optimal light source, followed by LED.  
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Table 5.1 Illuminance Readings of the MH Light Source at Different Angles 

Row Angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

A 

0o  125.0 140.0 171.3 176.0 213.3 201.7 194.3 196.0 188.3 174.3 159.3 147.0 116.3 83.7 

5o 147.3 181 213.5 277.3 308 320.5 297.7 311.3 310.7 295.7 277.7 191.7 151 109.7 

10o 168 210.3 274 359 389.3 387 404.5 422 480.3 411.3 301.7 242 157 114 

15o 168.7 207.3 246 343.3 398.5 395.3 395.3 415.5 435 325 234.5 175 141.3 106.7 

B 

0o 119.7 144.7 155 188.3 204.3 217.3 200.3 214.3 217.3 199.7 187 117.7 115.3 92.4 

5o 147.3 165 197.3 252.3 299.7 290.3 269 288.7 283.7 257.3 252.3 183.3 134 106 

10o 169.7 204.7 261 348.3 383.3 412.3 395 417.3 441 408 379.5 220 154.7 114 

15o 185.3 224.7 320.3 453 508 522.7 527.5 539.3 573 466 306 224.3 157 111.3 

C 

0o 116 141.3 170.3 200.7 197 221 213.7 206.7 206 204.3 173 127.3 93.4 83.8 

5o 134.7 156.7 184 235.3 250.5 278.5 281 293.5 282.5 257.7 223.7 162.7 126.3 98 

10o 161 199.5 239.7 294.3 371 383.3 359.7 379 410.3 366.3 297.3 190 149 113 

15o 200.7 229 336.7 466.7 569.5 573 588 608.3 715.7 559 377 255.5 176.7 127 

D 

0o 122.3 154 187 206.3 216 204 220.7 203.3 194.7 208 196.7 151.7 113.7 79.8 

5o 128.3 151.7 207.7 233 255.7 272.7 281.5 300 260 255 201 161 128 92.5 

10o 139.7 174.7 212 268 297.5 339 346 356 347.3 315 247.5 171.7 135.3 105 

15o 183.3 225 298.5 397 495 527.5 518.3 547.3 627 519.3 354.5 212.3 174 131 

E 

0o 136.7 151.3 205.3 220.3 189.5 177.7 178 190 179 199 233 146.7 109 74.1 

5o 154 176 223.5 271.5 240.3 244 265.3 249.7 239 262 232.5 172.5 133.7 88.5 

10o 130.5 181 224.5 265 304 323 347 317 310 310.3 241.5 167 124.7 89.8 

15o 148 211.3 256.3 348.3 391.3 462.7 461.7 477.3 445.7 386.3 278.7 201.7 157.5 119.3 

F 

0o 100.3 115.3 158.7 147.3 143.7 152.7 120.0 144.0 148.0 134.7 160.0 118.3 80.9 57.0 

5o 167 180 239.3 277.3 202.7 200.7 197 213.7 207.3 220.7 261 166 113 78.4 

10o 175.3 198 248 313.3 288.5 275 273.3 272 302.5 348 275.5 175 111.7 66.8 

15o 186.7 215 277.3 326.7 413 414 438 385 418 361.7 291 199 127 87.6 

G 

0o 91.6 84.7 81.5 78.5 91.1 102 92.7 93.5 96.5 70.9 80.7 73.6 52.2 37.2 

5o 106 122.3 135.7 147 142 154.7 115 136 137 133.3 124.5 99.2 74.6 51.1 

10o 135.3 151.7 205.5 223 199 194.3 155.3 213 203.7 213.3 224 133 92.6 57.7 

15o 177.7 203.3 267 365 304 279.7 282 300.7 330 410 292 167.3 102.3 63.7 
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Row Angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

H 

0o 54.2 53.9 47.4 40.3 53.9 72.7 65.5 61.5 58.4 39.3 39.1 45 35.5 30.9 

5o 93.2 83.4 66.3 66.8 79 98.5 88.3 86.7 86.6 64.6 55.8 62.6 44.4 36.1 

10o 98.9 90 94.5 99.7 109.3 127.3 109.3 116.3 113.3 94.5 92.3 79 55.2 43.3 

15o 141.0 152.7 194.3 190.3 187.0 196.7 146.7 197.3 188.3 190.7 181.7 113.3 73.7 48.9 

Table 5.2 Illuminance Readings of the MV Light Source at Different Angles 

Row Angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

A 

0o 55.6 59.1 60.6 62.9 67.1 73.1 84.8 84.7 79.2 71.7 68.2 61.7 61.8 53.6 

5o up 46.9 45.8 49.6 56 58.7 61.1 70.3 61 65.7 67 61.2 50.5 49.9 47.2 

5o down 70.1 70.7 74.4 81.2 92.1 117.7 114 111 104.7 98.5 96.8 75.5 74 73.4 

10o 88.9 89.4 90.1 108.3 123 137.7 126.3 126.7 137.7 130 125.3 95 100.3 104 

B 

0o 58.8 60.7 62.5 69.1 75.1 83.3 85.5 86 79.5 74.6 74.4 64.6 59.8 53.3 

5o up 44.6 47.7 47 53.1 49 65.7 71.8 70.2 67.8 64.5 65.7 61.9 53.4 48.7 

5o down 74.5 74.1 73.8 85.3 88.7 110 111.7 122.5 105 95.7 95.1 83.3 77.3 71.1 

10o 102 101 95.6 113.3 128 154.3 149 149.3 155.3 146 119 116.3 112 110 

C 

0o 54.3 60.7 64.7 69.8 78.8 89.7 97.2 98.9 92.5 78.8 74.7 64.6 61.5 54.1 

5o up 43.5 46.6 50.3 50.3 55.8 64.4 75.5 75.7 76.7 82.4 71 64.7 57 50.3 

5o down 72.4 72.7 73.9 87.2 96.2 112.3 120.5 122 119.3 97.5 97.8 85.2 76.6 69.4 

10o 92.1 98.5 100.7 110.7 131.3 152 156.7 157 162.3 133.7 126 123 111 103.3 

D 

0o 58.6 60 65.2 71.8 82.1 93.4 99.7 97.4 87.8 86.9 79.7 66.7 64.7 54.1 

5o up 40.6 47.1 50.5 57.6 65.9 76.5 82.1 82.2 82.4 74.8 76 58 57.3 50.2 

5o down 69.5 78.8 79.6 85.6 100.5 109.3 124 128 117.3 101.7 99 78.2 77.3 68.6 

10o 84 91 92.6 106.3 116 145 165 162 140 133 123 101 106 93 

E 

0o 54.3 56.6 63.4 73.3 81.5 94.8 98.1 98.1 99.6 99.3 92.9 88.1 71.4 52.6 

5o up 43.7 45 46.7 49.4 58.1 66 77.4 81.5 85.5 84.6 77.7 58.7 56.4 48.9 

5o down 69.9 70.2 80.6 86.2 100.1 118.3 123.7 124.7 116.7 101.2 102.3 85.5 79.9 65.4 

10o 82.4 87 96.4 107.3 120.3 146 161.7 160 146 136.3 129.3 110.3 97.3 86.3 

F 

0o 46.3 47.3 65.1 74.5 84.0 98.7 97.1 98.0 99.3 91.3 88.1 65.5 59.0 49.6 

5o up 40.4 44.4 48.6 59.8 60.1 70.9 72.4 81.3 87.3 83.7 78.9 64.1 53.6 44.6 

5o down 72.6 67.6 73.6 85.7 90.8 117.7 126 125 125.7 112 104 85.3 75.1 63.4 
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Row Angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

10o 77.1 78.1 89.5 101.7 125 147.7 155.7 155 158.7 131.3 120.7 97.8 86.5 80.4 

G 

0o 42.6 51.9 62.2 64.0 68.8 84.2 83.3 87.1 90.0 91.7 83.3 64.3 55.6 44.4 

5o up 25.6 29.9 36.4 41.1 48.2 50.2 35.1 45.6 61.9 67.9 63.8 44.4 34.8 14.3 

5o down 66.6 60.9 68.7 76.8 86.1 107.3 112 114.7 116.3 102 104.3 73 64.6 55.8 

10o 55.8 73.9 78.3 94.5 116.0 130.0 142.0 144.7 138.0 127.7 119.0 86.5 77.9 70.9 

H 

0o 38.1 42.6 45 56.1 61.4 68.5 58.9 64.6 76.8 78.1 71.4 52.2 46.6 33.7 

5o up  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/A 

5o down 48.1 54.1 61.9 65.4 74.1 91.1 88.4 94.5 96.3 90.9 79.1 68.9 57 45.2 

10o 57.6 67.0 73.4 80.3 96.2 110.7 116.7 122.0 121.0 115.3 100.0 82.7 67.3 54.5 

Table 5.3 Illuminance Readings of the Induction Lighting Source at Different Angles 

Row Angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

A 

0o 97.4 110.7 116.7 111.0 111.0 111.0 115.0 119.0 117.3 113.7 114.3 120.7 109.7 90.7 

5o 102.7 119.7 117.7 115 123.3 124.3 124.3 127.3 123 118 116.3 107.3 108 99.3 

10o 121.3 132 141.7 130.7 134.3 132.7 127.3 129 135.3 137.3 134.7 122.3 115.7 101 

15o 110.7 116.3 126.7 122 123.3 126.3 120 120.3 121 126 117.3 106 103.3 89.6 

B 

0o 105.7 117.3 120.3 127.7 129 132 125 124 126.3 124.3 125.3 123 101.7 86.7 

5o 122.3 135 143.3 142 143.3 148 137.3 135 134.7 131.7 131.7 129.7 113.3 94.4 

10o 124.7 148.3 156 150.7 154.3 164.7 153 152.7 150.3 145.3 142 135.7 119.7 101.7 

15o 126 149.3 155.3 154.7 158.7 159.3 150 149 151 145.3 138.7 133 116.3 99 

C 

0o 103.3 112.7 117.3 127.3 129.3 139.3 134 135 144.7 130 130 127.7 104 89.4 

5o 115.3 131 154 159 158 168 155 154.3 172 157 159 147 118 97.9 

10o 132.7 158 179.3 182.7 184.7 192.3 184.7 183.3 197 176.7 175.7 175.3 138 110 

15o 140.3 152.3 184.3 194.7 197.7 203 195 194.7 219 190.7 185.3 184.3 141.3 115.3 

D 

0o 94.1 98.8 104.3 125 126.7 124.7 128.3 129.3 131.7 129 129.3 117.3 105 89.7 

5o 110 129 140.7 160 164.3 164.3 169 171 165.7 163.3 157.3 138.7 117 97.1 

10o 130.3 144.7 177 201 215.3 203.3 205 205.3 207.7 208 206 175 140.7 112 

15o 138 177.3 209.7 235 247.7 247.7 251.3 253 243.3 240 229.3 199.3 157.7 123 

E 
0o 90.2 97.5 102.3 113.3 134 121 120 121 125 133.7 130.7 117.7 103 87.4 

5o 101.3 112.7 122 159.7 170.7 163 155 156.3 154.7 159.3 153.3 135.3 117 95.6 
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Row Angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

10o 121.7 146 170.3 210.3 215.3 216.3 222 223 221.7 215 202.3 170.3 139.3 111.3 

15o 130 172 207.7 270.7 288 280.3 281 280 285 284.7 271 214.7 164 126.7 

F 

0o 81.8 88.9 104.7 127.3 145.0 128.0 117.7 116.0 123.0 132.0 125.0 110.3 96.6 84.1 

5o 90.3 105.7 129 151 170.3 145.7 138 136 143.3 155 144 127.7 107 90.7 

10o 104.7 129.7 156.3 202 211.7 190.7 190 191.7 189.7 197.7 181.3 155.7 131 104 

15o 124 153.3 191.7 266.3 303.3 285.7 291 294 282.3 275.7 245.3 209 153.7 119 

G 

0o 74.3 83.4 95.5 108.7 125.3 131 135.7 134 125 125 115.7 99 89.2 75.5 

5o 85.7 97.5 119.7 136 152 139 137 133.7 134 139 128 108 97.7 84.3 

10o 75.2 114.7 125.7 149.3 181.3 167.7 153.3 152 160 173.3 157.3 133 115 96.7 

15o 107.3 138 169.7 209.7 238.3 224 223.7 225 219 232.7 206.3 174 141 112.3 

H 

0o 61.6 69.2 76.3 92.8 117 137 144.3 142 132.3 116 102 93.8 79.3 64.7 

5o 76.4 79.7 94 113.7 124.3 145.3 151.7 150.3 137.3 128 117.3 103.3 85.6 73 

10o 81.7 90.3 105.3 122.7 150.3 161.7 167.7 163.7 155.3 138 117 100.7 82.7 71.3 

15o 106.0 111.0 133.7 168.0 194.7 191.3 180.0 175.0 185.7 193.3 170.0 142.3 121.7 101.3 

Table 5.4 Illuminance Readings of the HPS Light Source at 0o Angle 

Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

A 527.7 521.0 530.3 520.3 641.0 644.0 713.3 666.3 668.0 589.0 547.7 504.0 473.7 430.7 

B 558.7 580.3 552.7 569.0 617.0 712.7 706.3 664.0 632.3 576.3 591.3 509.0 476.0 421.3 

C 528.0 536.3 521.0 565.3 598.7 686.0 697.3 658.3 689.7 569.0 544.3 511.0 569.0 409.3 

D 465.0 465.3 481.3 512.7 608.3 662.3 711.0 689.0 642.0 584.0 537.3 512.3 459.0 405.0 

E 394.0 400.0 461.3 539.0 649.3 700.7 751.3 747.0 690.3 632.7 558.0 506.3 447.3 458.0 

F 429.7 447.7 457.3 541.7 701.0 748.0 805.7 789.0 750.0 650.7 548.3 503.7 465.0 443.7 

G 346.0 393.3 434.7 571.3 668.3 680.7 652.7 645.3 662.7 606.7 533.7 482.0 422.0 347.7 

H 436.0 333.0 401.3 529.0 575.3 682.0 582.3 573.7 660.0 585.0 487.7 383.0 454.3 336.3 

Table 5.5 Illuminance Readings of the LED Light Source at 0o Angle 

Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

A 67.8 82.7 99.3 104.3 127.0 142.3 156.3 171.3 155.0 143.3 118.3 100.3 81.8 60.9 

B 77.6 88.9 94.1 111.7 124.7 148.0 154.7 154.0 147.3 126.7 111.0 97.5 75.8 60.4 

C 72.7 82.4 87.0 108.3 118.7 142.3 143.3 145.3 149.3 125.0 112.0 98.4 76.7 61.4 
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Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

D 63.9 70.7 75.6 94.7 111.0 114.7 121.3 122.7 115.7 115.0 105.0 89.2 74.1 59.4 

E 54.3 58.2 72.4 77.4 98.0 88.8 87.5 87.4 93.9 95.8 90.8 80.1 67.2 54.4 

F 44.4 50.4 55.7 62.3 69.3 59.5 55.1 55.2 61.5 62.7 62.7 62.4 53.0 43.8 

G 30.6 33.0 40.0 41.5 49.0 51.3 51.8 51.1 50.9 47.1 42.9 40.4 36.7 31.6 

H 15.5 18.5 20.2 26.9 30.0 34.4 37.0 37.0 36.2 31.1 24.6 20.0 17.5 16.1 

Table 5.6 Comparison of the best Light Distribution of the Five Light Sources 

Row Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

A 

MH 168.7 207.3 246 343.3 398.5 395.3 395.3 415.5 435 325 234.5 175 141.3 106.7 

MV 88.9 89.4 90.1 108.3 123 137.7 126.3 126.7 137.7 130 125.3 95 100.3 104 

HPS 527.7 521.0 530.3 520.3 641.0 644.0 713.3 666.3 668.0 589.0 547.7 504.0 473.7 430.7 

Induction 110.7 116.3 126.7 122 123.3 126.3 120 120.3 121 126 117.3 106 103.3 89.6 

LED 67.8 82.7 99.3 104.3 127.0 142.3 156.3 171.3 155.0 143.3 118.3 100.3 81.8 60.9 

B 

MH 185.3 224.7 320.3 453 508 522.7 527.5 539.3 573 466 306 224.3 157 111.3 

MV 102 101 95.6 113.3 128 154.3 149 149.3 155.3 146 119 116.3 112 110 

HPS 558.7 580.3 552.7 569.0 617.0 712.7 706.3 664.0 632.3 576.3 591.3 509.0 476.0 421.3 

Induction 126 149.3 155.3 154.7 158.7 159.3 150 149 151 145.3 138.7 133 116.3 99 

LED 77.6 88.9 94.1 111.7 124.7 148.0 154.7 154.0 147.3 126.7 111.0 97.5 75.8 60.4 

C 

MH 183.3 225 298.5 397 495 527.5 518.3 547.3 627 519.3 354.5 212.3 174 131 

MV 92.1 98.5 100.7 110.7 131.3 152 156.7 157 162.3 133.7 126 123 111 103.3 

HPS 528.0 536.3 521.0 565.3 598.7 686.0 697.3 658.3 689.7 569.0 544.3 511.0 569.0 409.3 

Induction 140.3 152.3 184.3 194.7 197.7 203 195 194.7 219 190.7 185.3 184.3 141.3 115.3 

LED 72.7 82.4 87.0 108.3 118.7 142.3 143.3 145.3 149.3 125.0 112.0 98.4 76.7 61.4 

D 

MH 183.3 225 298.5 397 495 527.5 518.3 547.3 627 519.3 354.5 212.3 174 131 

MV 84 91 92.6 106.3 116 145 165 162 140 133 123 101 106 93 

HPS 465.0 465.3 481.3 512.7 608.3 662.3 711.0 689.0 642.0 584.0 537.3 512.3 459.0 405.0 

Induction 138 177.3 209.7 235 247.7 247.7 251.3 253 243.3 240 229.3 199.3 157.7 123 

LED 63.9 70.7 75.6 94.7 111.0 114.7 121.3 122.7 115.7 115.0 105.0 89.2 74.1 59.4 

E 
MH 148 211.3 256.3 348.3 391.3 462.7 461.7 477.3 445.7 386.3 278.7 201.7 157.5 119.3 

MV 82.4 87 96.4 107.3 120.3 146 161.7 160 146 136.3 129.3 110.3 97.3 86.3 
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Row Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

HPS 394.0 400.0 461.3 539.0 649.3 700.7 751.3 747.0 690.3 632.7 558.0 506.3 447.3 458.0 

Induction 130 172 207.7 270.7 288 280.3 281 280 285 284.7 271 214.7 164 126.7 

LED 54.3 58.2 72.4 77.4 98.0 88.8 87.5 87.4 93.9 95.8 90.8 80.1 67.2 54.4 

F 

MH 186.7 215 277.3 326.7 413 414 438 385 418 361.7 291 199 127 87.6 

MV 77.1 78.1 89.5 101.7 125 147.7 155.7 155 158.7 131.3 120.7 97.8 86.5 80.4 

HPS 429.7 447.7 457.3 541.7 701.0 748.0 805.7 789.0 750.0 650.7 548.3 503.7 465.0 443.7 

Induction 124 153.3 191.7 266.3 303.3 285.7 291 294 282.3 275.7 245.3 209 153.7 119 

LED 44.4 50.4 55.7 62.3 69.3 59.5 55.1 55.2 61.5 62.7 62.7 62.4 53.0 43.8 

G 

MH 177.7 203.3 267 365 304 279.7 282 300.7 330 410 292 167.3 102.3 63.7 

MV 55.8 73.9 78.3 94.5 116 130 142 144.7 138 127.7 119 86.5 77.9 70.9 

HPS 346.0 393.3 434.7 571.3 668.3 680.7 652.7 645.3 662.7 606.7 533.7 482.0 422.0 347.7 

Induction 107.3 138 169.7 209.7 238.3 224 223.7 225 219 232.7 206.3 174 141 112.3 

LED 30.6 33.0 40.0 41.5 49.0 51.3 51.8 51.1 50.9 47.1 42.9 40.4 36.7 31.6 

H 

MH 141 152.7 194.3 190.3 187 196.7 146.7 197.3 188.3 190.7 181.7 113.3 73.7 48.9 

MV 57.6 67 73.4 80.3 96.2 110.7 116.7 122 121 115.3 100 82.7 67.3 54.5 

HPS 436.0 333.0 401.3 529.0 575.3 682.0 582.3 573.7 660.0 585.0 487.7 383.0 454.3 336.3 

Induction 106 111 133.7 168 194.7 191.3 180 175 185.7 193.3 170 142.3 121.7 101.3 

LED 15.5 18.5 20.2 26.9 30.0 34.4 37.0 37.0 36.2 31.1 24.6 20.0 17.5 16.1 
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Chapter 6 -  Sign Retroreflectivity Evaluation Based on Statistical 

Analysis of Field Experiment Data 

Introduction 

Sign visibility can be improved with the usage of brighter retroreflective sheeting on the 

signs. KDOT provided the KSU research team with signs with various retroreflective sheeting to 

be used on overhead guide signs. These sheeting types are were categorized into the following 

categories: Engineering Grade (type I), Diamond Grade (type XI), and High Intensity (type IV). 

A field experiment was performed using human participants of different age categories in order 

to determine which retroreflective sheeting provides the highest visibility and legibility to drivers 

from a specific distance during nighttime. This experiment was approved by the Committee on 

Research Involving Human participants at KSU, and the approval letter is shown in Appendix B.  

In this experiment (hereafter refer to as retroreflectivity experiment), the low beam 

headlight of a vehicle was divided into 16 brightness levels using an illumination controlling 

device. For each brightness level, the illuminance on one sign at the specified distance was 

measured using a Minolta Illuminance meter. A statistical analysis was run to determine 

significant variables that contribute to sign visibility and to conclude which sign was judged 

based on visibility and legibility during nighttime. The statistical analysis of this research was 

generated using Statistical Analysis System (SAS®) Software, version [9.4] of the SAS System 

for [MS-Windows], Copyright © [2013] SAS Institute Inc. The following sections provide the 

experiment details. 

Retroreflective Sheeting Details 

Three signs were used in the retroreflectivity experiment. Sign letters were a combination 

of an upper-case letter for the initial word and lower-case letters for the other letters. Upper-case 

letters were 6 inches (2.362 cm) in height, and lower case letters were 4.5 inches (1.772 cm), as 

required in the MUTCD. The legend font on all used signs was Series E (Modified). Signs were 

5 ft (152.4 cm) wide and 1.5 ft (45.72 cm) in height. Figures 6.1, 6.2, and 6.3 show Engineering 

Grade (type I), Diamond Grade (type XI), and High Intensity (type IV) signs used in the 

experiment, respectively.  
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Retroreflectivity of each sign background and legend was measured using a 920 SEL 

retroreflectometer in the Human Factors Laboratory in the IMSE Department at KSU. 

Retroreflectivity of the background was measured by dividing each sign into 10 columns and 

four rows. At each row-column intersection, the 920 SEL retroreflectometer measured 

retroreflectivity at the green background of the sign and then the sign’s background 

retroreflectivity values were averaged to find the overall background retroreflectivity. For the 

sign legend, the 920 SEL retroreflectometer measured retroreflectivity of the first letter of each 

word on signs ‘M’ three times, and the average of these readings was calculated to obtain the 

overall legend retroreflectivity value for each sign. This procedure was repeated for the sheeting 

of all three signs. Retroreflectivity values are shown in Table 6.1. According to Table 6.1, the 

three signs had the minimum retroreflectivity values for both legend and background as required 

in the MUTCD of 2009. 

Table 6.1 Retroreflectivity Values of the Retroreflective Sheeting 

Sign Sheeting Background Retroreflectivity 

(cd.m-2.lux-1) 

Legend Retroreflectivity 

(cd.m-2.lux-1) 

Engineering Grade (type I) 32.9 64.9 

Diamond Grade (type XI) 140.9 716.3 

High Intensity (type IV) 97.3 553.3 
 

Figure 6.1 Engineering Grade (Type I) Sheeting Sign 

 

Figure 6.2 Diamond Grade (Type XI) Sheeting Sign 
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Figure 6.3 High Intensity (Type IV) Sheeting Sign 

 

Building an Illumination Controlling Device 

An illumination controlling device (also called PWM headlight dimmer module) for 

vehicle headlamps was built in the electrical engineering laboratory at KSU. In this device, the 

Pulse-Width-Modulation (PWM) headlight dimmer uses a pulse-width modulation to allow the 

user to dim vehicle headlights to one of 16 brightness levels recorded in even increments 

between 0 and 15. The PWM dimmer is composed of an ATMEL AT91SAM7s-EK 

microprocessor development board and a custom analog breadboard with four headlight driver 

circuits. 

On startup, the PWM peripheral microprocessor is configured to produce a 12.5 kHz 

square wave with a variable duty cycle, and the Periodic Interrupt Timer (PIT) of the 

microprocessor generates a software interrupt every millisecond. When the PIT interrupts, the 

microprocessor reads the value of the duty cycle selector knob, which is a 16-position binary 

encoder. When the value of the duty cycle is changed since the last time it was read, the 

microprocessor retrieves a new configuration value for the PWM peripheral from the duty cycle 

lookup table. Then, the microprocessor reconfigures and enables the PWM module to produce a 

waveform with the desired duty cycle. The custom analog breadboard contains four headlight 

driver circuits controlled by the PWM signal from the microprocessor. Large P-channel power 

Metal Oxide Semiconductor Field Effect Transistors (MOSFET) act as a voltage-controlled 

current switch connected in series with the vehicle’s headlight. The P-channel model number is 

IRF9540. Changing the duty cycle of the generated PWM waveform changes how long the 

current is allowed to flow through the headlights, increasing or decreasing their brightness. 

Power transistors are mounted on external heat sinks, allowing the dissipation of heat generated 

by large headlight currents. Because the microprocessor is unable to directly drive the gates of 

the large power Field Effect Transistor (FET), the PWM signal to each headlight driver circuit is 

buffered by a 74HC04 hex inverter and a smaller 2N7000 n-channel MOSFET. 
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The PWM headlight dimmer module is connected to the vehicle’s electrical system by 

custom fuse-connector cables. To connect the dimmer to the vehicle, the vehicle headlight fuses 

must be removed and the dimmer’s cable must be plugged into the empty sockets. When the 

dimmer is switched on, the current that is normally flow to the headlights is routed through the 

dimmer’s power MOSFETs, thus replacing vehicle headlight fuses with voltage-controlled 

switches. The PWM headlight dimmer is compatible with all vehicles that utilize Auto or Mini-

style blades fuses. The dimmer can be powered if headlight fuses are located in the fuse boxes in 

the driver’s cabin or the dimmer module can be plugged into the car cigarette lighter. If the 

headlight fuses are located in the fuse box under the vehicle’s hood, dimmer power can be 

obtained by connecting dimmer to the vehicle’s battery terminals.   

After connecting the PWM headlight dimmer to the vehicle, the user starts the vehicle 

and turns on the headlights. Then, the user turns the PWM dimmer’s power switch on and 

powers the headlights by turning the duty cycle select knob located on top of the dimmer. Figure 

6.4 shows the headlight dimmer with its knob, the power FETs, and the printed-circuit boards of 

the microcontroller and custom analog breadboard. 

Figure 6.4 PWM Headlight Dimmer, Printed Circuit Board, and Custom Analog 

Breadboard 

 

Experimental Setup 

The field experiment was performed on the Saint Thomas More Church rear parking lot 

at night after 8:30 pm to ensure a complete darkness. All lights in the church building and 

parking lot were turned off by church management to ensure darkness. No moon was present, 

guaranteeing that the only source of present light was the vehicle’s headlight. The vehicle used 
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was a 2011 Chevrolet Impala from the KSU Motor Pool. A total of 43 human subjects of various 

age groups were selected to find the effect of driver’s age on nighttime visibility. 

A post was designed in the IMSE workshop to mount the signs while conducting the 

experiment, as shown in Figure 6.5. The post height was 8 ft (243.84 cm), measured from the 

bottom of the sign to the road surface. This height is in compliance with MUTCD of 2009 

requirements. The lateral offset for the post was 6 ft (182.88 cm) from the edge of the driving 

lane to the nearest edge of the sign. The lateral offset is also in compliance with MUTCD of 

2009 requirements. 

Based on section 2.18 (Mounting Height) in the MUTCD of 2009, the standard is: 

“Directional signs on freeways and expressways shall be installed with a minimum height of 7 

feet, measured vertically from the bottom of the sign to the elevation of the near edge of the 

pavement. All route signs, warning signs, and regulatory signs on freeways and expressways 

shall be installed with a minimum height of 7 feet, measured vertically from the bottom of the 

sign to the elevation of the near edge of the pavement. If a secondary sign is mounted below 

another sign on a freeway or expressway, the major sign shall be installed with a minimum 

height of 8 feet and the secondary sign shall be installed with a minimum height of 5 feet, 

measured vertically from the bottom of the sign to the elevation of the near edge of the 

pavement. 

 

Where large signs having an area exceeding 50 square feet are installed on multiple breakaway 

posts, the clearance from the ground to the bottom of the sign shall be at least 7 ft.” 

Based on section 2.19 (lateral offset) in the MUTCD of 2009, the standard is: 

“For overhead sign supports, the minimum lateral offset from the edge of the shoulder (or if no 

shoulder exists, from the edge of the pavement) to the near edge of overhead sign supports 

(cantilever or sign bridges) shall be 6 ft. Overhead sign supports shall have a barrier or crash 

cushion to shield them if they are within the clear zone. 

 

Post-mounted sign and object marker supports shall be crashworthy (breakaway, yielding, or 

shielded with a longitudinal barrier or crash cushion) if within the clear zone.” 

While running the experiment, the vehicle was stationary at two distances from the sign 

on the parking lot driving lane - 240 ft, and 180 ft. 
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Figure 6.5 Post Used in the Experiment with One Mounted Sign 

 

Procedure 

The field experiment was carried out at night, and the illumination control device (PWM 

headlight dimmer) which controls vehicle headlight brightness at 16 levels was connected to the 

vehicle fuse box located under the vehicle hood. Fuses of the vehicle front safety lights were 

removed to ensure only light from the headlights was the main source of illuminating while 

performing the experiment. The sign post was placed on its specified position according to the 

MUTCD of 2009 requirements. The field experiment was conducted in 30 minutes sessions; only 

one human subject was present at the experiment location for each session. At the beginning of 

each session, the subject was asked to complete a consent form shown in Appendix C. The age 

of each subject was also recorded.  

Before beginning the experiment, instructions were given to each participant: 

 You will be seated in the driver’s seat of a sedan vehicle and one of the 

experimenters will be seated in the passenger seat. 

 Initially, the vehicle headlights will be turned off and then turned on to level 0 of the 

illumination. 

 You will be asked to read the legend on the sign without stressing your eyes. If you 

cannot read the word on the sign without stressing your eyes, ask the experimenter to 

go to the next level of illumination. 

 When you are able to see the word on the sign, read it aloud so the experimenter 

knows that you have read the word and he can record the reading. 
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 This procedure is repeated for two more signs. 

 After the first stage, you will be taken to the other location and the same procedure 

will be repeated for a total of three signs. 

Results 

For each subject, the subject number, age, and knob position of illuminance controlling 

device at which the subject read the legend on each sign at the specified distance was recorded.  

The Minolta Illuminance meter was used to measure the illuminance level for each of the 

16 brightness levels. When measuring illuminance for each brightness level, three positions on 

the sign legend were selected: the right side, the center, and the left side. For each position, three 

illuminance readings were taken and then the readings average was calculated. The average of 

illuminance readings at each headlights brightness level was calculated as shown in Table 6.2.  

Table 6.2 Illuminance Readings for Each Brightness Level at Two Distances from Sign 

  

Knob 

Position 

240 ft Distance 180 ft Distance 

Left Center Right Average Left Center Right Average 

0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

1 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

3 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03 

4 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 

5 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.06 

6 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07 

7 0.08 0.07 0.07 0.07 0.10 0.09 0.09 0.09 

8 0.09 0.09 0.08 0.09 0.12 0.11 0.11 0.11 

9 0.11 0.11 0.11 0.11 0.14 0.14 0.13 0.14 

10 0.14 0.13 0.12 0.13 0.17 0.16 0.16 0.16 

11 0.15 0.15 0.14 0.15 0.20 0.19 0.18 0.19 

12 0.18 0.17 0.17 0.17 0.22 0.22 0.21 0.22 

13 0.20 0.20 0.19 0.20 0.25 0.25 0.24 0.25 

14 0.23 0.22 0.21 0.22 0.29 0.28 0.27 0.28 

15 0.26 0.25 0.23 0.25 0.32 0.31 0.30 0.31 

Refining and Analyzing Data 

Refining the collected data resulted in 41 subjects, 12 females and 29 males, used for 

statistical analysis using SAS Software. Data collected from two subjects were dropped because 

they had vision problems. Subject ages were between 20 and 81 years old. The subjects were 

divided into three groups according to age: 20-29, 30-49, and above 50 years old. For each sign, 
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the frequency of subjects when reading the sign legend at each brightness level (knob position) 

was calculated and presented in Table 6.3.  

Table 6.3 Frequency of Human Subjects at Each Knob Position when Reading Signs 

Knob 

Position 

180 ft Distance 240 ft Distance 

Type I Type XI Type IV Type I Type XI Type IV 

0 0 0 0 0 0 0 

1 0 1 0 0 0 0 

2 0 5 0 0 3 0 

3 0 17 7 0 11 3 

4 5 10 11 0 12 9 

5 7 5 9 2 6 8 

6 6 3 5 3 2 7 

7 7 0 3 6 2 3 

8 2 0 0 2 3 1 

9 4 0 3 4 0 0 

10 2 0 1 3 1 2 

11 2 0 0 0 0 3 

12 0 0 1 2 0 0 

13 1 0 1 2 0 0 

14 2 0 0 2 1 1 

15 2 0 0 4 0 0 

Can't read 1 0 0 11 0 4 

 

For the Engineering Grade (type I) sign at 180 ft, the highest frequencies of subjects read 

the sign’s legend were at knob positions 5, 7, 6, 4, and 9 in sequence, with a total of 29 subjects 

out of 40 after removing the disqualifying subject, who could not read the sign. Corresponding 

illuminance values were 0.06 lux, 0.09 lux, 0.07 lux, 0.04 lux, and 0.14 lux, respectively, with an 

average of 0.08 lux. At 240 ft for Engineering Grade (type I) sign, 11 subjects did not read the 

legend. The highest frequencies of subjects who read the legend were at knob positions 7, 15, 9, 

and 10 in sequence, with a total of 17 subjects out of 30 after removing the 11 disqualifying 

subjects who did not read the sign. Corresponding illuminance values were 0.07 lux, 0.25 lux, 

0.11 lux, and 0.13 lux, respectively, with an average of 0.14 lux. For the Diamond Grade (type 

XI) sign at 180 ft, the highest frequencies of subjects read the sign’s legend were at knob 3 and 4 

in sequence, with a total of 27 subjects out of 41. Corresponding illuminance values were 0.03 

lux, and 0.04 lux, respectively, with an average of 0.035 lux. At 240 ft for Diamond Grade (type 

XI) sign, the highest frequencies of subjects who read the sign’s legend were at knob positions 4, 

3, and 5 in sequence, with a total of 29 subjects out of 41. Corresponding illuminance values 
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were 0.04 lux, 0.02 lux, and 0.05, respectively, with an average of 0.037 lux. Finally, for the 

High Intensity (type IV) sign at 180 ft, the highest frequencies of subjects who read the sign’s 

legend were at knob positions 4, 5, 3, and 6 in sequence, with a total of 32 subjects out of 41. 

Corresponding illuminance values were 0.04 lux, 0.06 lux, 0.03 lux, and 0.07 lux, respectively, 

with an average of 0.05 lux. At 240 ft for the High Intensity (type IV) sign, four subjects could 

not read the sign’s legend. The highest frequencies of subjects who read the sign’s legend were 

at knob positions 4, 5, and 6 in sequence, with a total of 24 subjects out of 37 after removing the 

four disqualifying subjects who did not read the sign. Corresponding illuminance values were 

0.04 lux, 0.05 lux, and 0.06 lux, respectively, with an average of 0.05 lux. 

Statistical Analysis 

Repeated Measures Experimental Design was used to analyze collected data. This design 

analyzes statistical data in which identical measures are collected multiple times for the same 

subject but under varying conditions. The term “repeated” means that any factor for which each 

subject is measured, is repeated at every level for that factor (Neter, et al., 1996). This design 

involves a repeated measurement on the unit of analysis in one or more independent variables 

(Neter, et al., 1996). These designs are often called mixed designs or designs with within-

subjects factors.   

SAS Software was used to analyze the refined data. SAS Software input variables were 

divided between three independent variables, subject, distance, and sign type number, and one 

dependent variable, illuminance level. The blocking factor was the subject in this design and 

units for the selected variables were lux for illuminance, and feet for distance. 

The selected SAS Software procedure was “PROC MIXED,” which is a generalization of 

the General Linear Model (GLM) procedure because “PROC GLM” fits standard linear models 

and “PROC MIXED” fits the wider class of mixed linear models (Wolfinger & Chang, 1995). 

Both procedures have similar Class, Model, Contrast, Estimate, and LSMEANS statements, but 

their RANDOM and REPEATED statements differ. 

In order for SAS Software to read and analyze the data, a number coding was assigned 

for the used signs: number 1 for Engineering Grade ‘type I’ sign sheeting, number 2 for 

Diamond Grade ‘type XI’ sign sheeting, and number 3 for High Intensity ‘type IV’ sign sheeting. 
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The data were arranged so that SAS Software could analyze the data with the repeated measure 

design format. SAS Software codes used in the analysis are shown in Appendix D. 

Discussion 

Based on SAS Software output, 230 observations were used in the analysis instead of 

246. The missing 16 observations were cancelled by SAS Software because some subjects could 

not read the sign legend for all 16 levels of the illumination controlling device. For the missing 

values, an illuminance level could not be fitted as a dependent value using the Minolta 

Illuminance meter because the maximum headlight brightness level was obtained at the last knob 

position.  

The backward elimination procedure was considered to select the significant variables 

and to fit the final model. This means the first statistical model was found first, and then the least 

significant variable or variable interaction was removed from the model. Table 6.4 is the SAS 

Software output for type 3 tests of the fixed effects of the first model. Based on p-value and 

considering a significance level of 0.05, the significant variables were the distance, the sign, and 

the distance-sign interaction. Age group variable was insignificant. Based on Table 6.4, it is 

clearly shown that all two and three-way variable interactions are not significant according to 

their p-value.  

Table 6.4 Type 3 Tests of Fixed Effects for the First Model 

Effect No. DF Den DF F Value Pr > F 

Distance 1 175 8.39 0.0043 

Sign 2 174 93.17 <.0001 

Distance*Sign 2 174 3.31 0.0387 

Age group 2 37.3 0.76 0.4743 

Distance*Age group 2 175 1.13 0.3249 

Sign*Age group 4 174 0.29 0.8839 

Distance*Sign*Age group 4 174 0.95 0.4388 

Table 6.5 shows the SAS Software output for type 3 tests of the fixed effects for the 

reduced model in which all the variables are significant. 

Table 6.5 Type 3 Tests of Fixed Effects for the Final Model 

Effect No. DF Den DF F Value Pr > F 

Distance 1 186 5.75 0.0175 

Sign 2 186 100.95 <.0001 

The SAS Software output of the least square means of the three significant variables 

(distance, sign) is shown in Table 6.6. Based on the p-value for all levels of distance (180 ft, and 
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240 ft), and sign levels (sign 1, sign 2, and sign 3), all are significant. Since the objective of this 

study was to find the minimum amount of illuminance that enables the driver to read the sign, the 

estimates of each variable’s level can be used for driver’s visibility and legibility of each sign. 

For the distance variable, the estimate of the 180 ft distance is 0.07456 which is smaller than the 

estimate of the 240 ft distance (0.08632). This means shorter distance between the vehicle and 

the sign influences the driver with higher visibility of the sign. For sign variables, the estimate of 

sign 2 (Diamond Grade ‘type XI’) is 0.04280, which is the smallest among the other sign levels: 

sign 3 (High Intensity ‘type IV’) is 0.07085 and for sign 1 (Engineering Grade ‘type I’) is 

0.1277. This means sign 2 (Diamond Grade ‘type XI’) required less illuminance and had the 

highest visibility, followed by sign 3 (High Intensity ‘type IV’).  

Table 6.6 Least Square Means of the Significant Variables 

Effect Distance Sign Estimate Standard Error DF t Value Pr > |t| 

Distance 180  0.07456 0.006822 49.2 10.93 <.0001 

Distance 240  0.08632 0.006963 53.1 12.40 <.0001 

Sign  1 0.1277 0.007446 68.3 17.15 <.0001 

Sign  2 0.04280 0.007206 60.8 5.94 <.0001 

Sign  3 0.07085 0.007277 62.9 9.74 <.0001 

Table 6.7 shows SAS Software output for the difference of least square means for the 

variables distance, and sign. This SAS Software output shows pairwise comparison for the 

different variable levels. The difference of least square means output can be used to find 

significant variables based on the p-value.   

Based on Table 6.7, when comparing the three signs sheeting in pairs, a statistical 

difference existed between the following combinations of signs: sign 1 (Engineering Grade ‘type 

I’) and sign 2 (Diamond Grade ‘type XI’), sign 1 (Engineering Grade ‘type I’) and sign 3 (High 

Intensity ‘type IV’), and sign 2 (Diamond Grade ‘type XI’) and sign 3 (High Intensity ‘type IV’). 

The difference occurs because the p-value of each combination is smaller than 0.05. Similarly, 

comparing the two distances resulted in a statistical difference between them based on the p-

value.  

Based on the subjects’ frequency data at each brightness level of vehicle headlights 

shown in Table 6.3, results showed that the legend of the Diamond Grade (type XI) 

retroreflective sheeting was read by all subjects at 180 ft and 240 ft, while 11 subjects could not 

read the legend of the Engineering Grade (type I) retroreflective sheeting at 240 ft, four subjects 

could not read the legend of the High Intensity (type IV) retroreflective sheeting at 240 ft, and 
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one subject could not read the Engineering Grade (type I) retroreflective at 180 ft, meaning that 

visibility of the Diamond Grade retroreflective sheeting was the highest. In addition, the highest 

frequency of human subjects when reading the legend of the Diamond Grade (type XI) was at 

knob positions 3 and 4, totaling 27 subjects with an average illuminance of 0.035 lux at 180 ft, 

and at knob positions 4, 3, and 5 in sequence, for a total of 29 subjects with an average 

illuminance of 0.037 lux at 240 ft. Because four subjects who could not read the High Intensity 

(type IV) sign legend at 240 ft was less than the 11 subjects who could not read the legend on the 

Engineering Grade (type I) sign at 240 ft, High Intensity (type IV) sheeting visibility was better 

than the Engineering Grade (type I) sheeting. Comparing of the average illuminance values that 

enabled the subject to read the signs revealed that the minimum illuminance values were for 

Diamond Grade (type XI) sign’s legend at the both distances, followed by the High Intensity 

(type IV) sign.  

Summary 

According to statistical analysis results using SAS Software, distance and sign sheeting 

material type were the significant variables based on 5% significance level. The age group 

variable was not significant, meaning that sign visibility was not affected by the age of the 

subject. A possible explanation of this is that any subject, regardless of age, with a vision 

problem was using corrective lenses or glasses at the time of the experiment.  

Based on the frequency of human subjects at each headlights brightness level, the 

Diamond Grade (type XI) sign was read by a majority of subjects at lower illuminance averages: 

0.035 lux and 0.037 lux at 180 ft and 240 ft, respectively. In addition, all participating subjects 

read the legend on the Diamond Grade (type XI) sign, but not the High Intensity (type IV) and 

Engineering Grade (type I) sheeting. Therefore, the Diamond Grade (type XI) ranked first based 

on nighttime visibility and legibility. Consequently, using Diamond Grade (type XI) 

retroreflective sheeting will increase safety on roadways during nighttime. High Intensity (type 

IV) ranked second based on the visibility.
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Table 6.7 Differences of Least Square Means  

Effect Distance Sign Distance Sign Estimate Standard Error DF t Value Pr > |t| Adjustment Adj P 

Distance 180  240  -0.01176 0.004906 186 -2.40 0.0175 Tukey-Kramer 0.0175 

Sign  1  2 0.08487 0.006039 186 14.05 <.0001 Tukey-Kramer <.0001 

Sign  1  3 0.05683 0.006090 186 9.33 <.0001 Tukey-Kramer <.0001 

Sign  2  3 -0.02804 0.005829 186 -4.81 <.0001 Tukey-Kramer <.0001 
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Chapter 7 - Cost Analysis of Overhead Guide Signs Light Sources 

and Retroreflective Sheeting Materials 

Introduction 

Sign visibility for drivers during nighttime can be increased by adding external 

illumination sources or by using retroreflective sheeting on signs. The cost of various sign 

illuminating sources studied in Chapter 5 is evaluated in this chapter to ascertain the cost-

effective source. A cost analysis was performed for the five light sources studied in Chapter 5: 

the 250W HPS, the 250W MH, the 250W MV, the 85W induction, and the 62W LED, to find the 

cost-effective light source. Similarly, a cost analysis of the retroreflective sheeting studied in 

Chapter 6 was performed to find the cost-effective sheeting, these sheeting were: Engineering 

Grade (type I), Diamond Grade (type XI), and High Intensity (type IV).  

Several companies were contacted regarding the cost of light sources and retroreflective 

sheeting materials used with overhead guide signs. Three companies returned valuable 

information regarding the cost, maintenance, and lifespan of the studied light sources.  

Similarly, several companies were contacted regarding the cost of retroreflective sign 

sheeting and their lifespan. Cost information and expected lifespan for the three retroreflective 

sheeting being studied in the retroreflectivity experiment were obtained from three companies. 

The conclusion of this chapter provides a summary of the cost effective option for each 

visibility increasing method for overhead guide signs (illuminating or retroreflectivity), and the 

overall cost-effective option for sign improvements will be determined. Finally, decision criteria 

that have been studied in previous chapters in this report for each method will be combined, to 

find the overall best method of increasing overhead guide sign visibility. 

Energy Independence and Security Act of 2007  

The Energy Independence and Security Act (EISA) of 2007 issued a new energy standard 

to make efficient use of U.S. energy resources and to increase U.S. energy independence. This 

energy standard is commonly known as the “light bulb” law because screw-based light bulbs use 

fewer watts for similar lumen output (EISA, 2007). This standard means that any type of bulbs 

can be sold in the U.S. as long as they meet the corresponding efficiency requirement. The first 
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phase of this law went into effect January 2012. Table 7.1 shows the law requirement and 

effective date. 

Table 7.1 EISA Light-Bulb Law of 2007 Requirement and Effective Date (EISA, 2007) 

Today’s Bulbs (2007) After the Standard Standard Effective Date 

100 watt ≤72 watt January 1, 2012 

75 watt ≤ 53 watt January 1, 2013 

60 watt ≤ 43 watt January 1, 2014 

40 watt ≤ 29 watt January 1, 2014 

A lumen identifies how bright the light is, and watt describes how much energy the light 

bulb uses or consumes. Light bulbs can be compared in the following manner. Standard 60W 

incandescent light bulb provides 13-14 lumens per watt (EISA, 2007), the compact fluorescent 

bulbs (CFBs) provide the equivalent of 55-70 lumens per watt, and the LED equivalent provides 

60-100 lumens per watt (EISA, 2007). The second phase of the light bulb law requires that a 

majority of light bulbs be 60-70% more efficient than standards require for the incandescent bulb 

in 2007.  

Light Source Cost Analysis 

In this section, a detailed cost comparison is presented for the 62W LED, the 85W 

induction, the 250W MH, the 250W HPS, and the 250W MV light sources. Calculations in the 

following sections were based on light source usage for an average of 11-hour per night with a 

cost of $0.08 per kWh for electricity consumed. Costs related to labor were not included.  

The 62W LED  

The average lifespan of an LED is 50,000 hours and the initial cost is $600. Electrical 

consumption for this LED is 62 watt per hour, or 0.682 kW per night. The daily operating cost is 

$0.05456 (0.682 kW × $0.08), and the annual operating cost is $19.91 ($0.05456 × 365 day). 

Based on an 11-hour night, the 62W LED will operate for 12.45 years (approximately 12.5 

years). No maintenance cost is required after or during the lifespan of this LED because the 

entire light source unit must be replaced after 12.5 years. The 62W LED consumes 248.9 kW per 

year and 3,100 kW during its lifespan, with a total operating cost of $248 per lifespan. According 

to the manufacturer, no defrost option is required. 
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The 85W Induction  

Based on information obtained from the manufacturer of the 85W induction lighting 

source, the average lifespan of this light source is 100,000 hours, and the initial cost is $678.3. 

The 85W induction lighting source consumes 85 watt per hour, or 0.935 kW per night. The daily 

operating cost is $0.0748 (0.935 kW × $0.08), and the annual operating cost is $27.3 ($0.0748 × 

365 day). Based on an 11-hour night, the 85W induction lighting source will operate 24.91 years 

(approximately 25 years). The lamp requires replacement after 25 years, at a cost of $75, not 

including installation. The 85W induction lighting source consumes 341.3 kW per year and 

8,500 kW during its lifespan, with a total operating cost of $680 per lifespan. 

The 250W MH  

The average lifespan of the 250W MH light source is 30,000 hours, and the initial cost is 

$678.30. This light source consumes 250 watt per hour, or 2.75 kW per night. The daily 

operating cost is $0.22 (2.75 kW × $0.08), and the annual operating cost is $80.30 ($0.22 × 365 

day). Based on an 11-hour night, the 250W MH light source will operate 7.472 years 

(approximately 7.5 years). According to companies’ information, lamp replacement cost is $30, 

excluding labor cost. The 250W MH light source consumes 1,003.75 kW per year and 7,500 kW 

during its lifespan, with a total operating cost of $600 per lifespan.  

The 250W HPS  

According to information from several manufacturers, the average lifespan of the 250W 

HPS light source is 30,000 hours, and the initial cost is $678.30. This light source consumes 250 

watt per hour, or 2.75 kW per night. The daily operating cost is $0.22 (2.75 kW × $0.08), and 

the annual operating cost is $80.30 ($0.22 × 365 day). Based on an 11-hour operation day, the 

250W HPS light source will operate 7.472 years (approximately 7.5 years). Companies’ 

information indicates that the lamp replacement cost is $16, excluding labor cost. The 250W 

HPS light source consumes 1,003.75 kW per year and 7,500 kW during its lifespan, with a total 

operating cost of $600 per lifespan.  

The 250W MV  

According to information from several manufacturers, the average lifespan of the 250W 

MV light source is 30,000 hours, and the initial cost is $678.30. This light source consumes 250 
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watt per hour, or 2.75 kW per night. The daily operating cost is $0.22 (2.75 kW × $0.08), and 

the annual operating cost is $80.30 ($0.22 × 365 day). Based on an 11-hour night, the 250W MV 

light source will operate 7.472 years (approximately 7.5 years). Based on company information, 

the lamp replacement cost is $25, excluding labor cost. The 250W MV light source consumes 

1,003.75 kW per year and 7,500 kW during its lifespan, with a total operating cost of $600 per 

lifespan.  

Overhead Guide Sign Lighting Sources Cost Comparison 

In this section, a detailed comparison of the five light sources is presented. A 50-year 

cycle is considered to determine the maintenance contribution for light sources over the time. 

Table 7.2 compares the light sources in detail, and the provided cost analysis includes initial, 

operating, and maintenance cost components for each light source. Based on cost analysis results 

shown in Table 7.2, the 85W induction lighting source is the cost-effective light source, followed 

by the 62W LED, 250W HPS, 250 MV, and 250W MH. 

Some light source manufacturers doubt the 100,000 hour lifespan of induction lighting 

since no real experimental testing has been performed. Therefore, another cost comparison of the 

five light sources was performed using a 50,000-hour lifespan for the 85W induction lighting. 

Updated cost results are shown in Table 7.3. The lifespan change of the 85W induction lighting 

has no effect on previous results of the cost-effective light source based on cost, i.e., the cost-

effective light source continued to be the 85W induction lighting. 

Table 7.2 Cost Comparison of the Five Light Sources 

  

Details 

62W 

LED 

85W 

induction 

250W 

MH 

250W HPS 250W MV 

1 Initial cost ($) 600 678.3 678.3 678.3 678.3 

2 Life (hours) 50,000 100,000 30,000 30,000 30,000 

3 Life (years) ≅ 12.5 ≅ 25 ≅ 7.5 ≅ 7.5 ≅ 7.5 

4 Daily power consumption 

(kW)  

0.682 0.935 2.75 2.75 2.75 

5 Annual power consumption 

(kW/year) 

248.93 341.3 1,003.75 1,003.75 1,003.75 

6 Life power consumption (kW) 3,100 8,500 7,500 7,500 7,500 

7 Number of maintenance in 50 

years 

3 1 5.66 5.66 5.66 

8 Total power consumption  

(kW/50 years) 

12,446.5 17,065 50,187.5 50,187.5 50,187.5 
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Details 

62W 

LED 

85W 

induction 

250W 

MH 

250W HPS 250W MV 

9 Maintenance required A1 C2 C C C 

10 Daily operating cost ($) 0.05456 0.0748 0.22 0.22 0.22 

11 Annual operating cost ($) 19.91 27.30 80.30 80.30 80.30 

12 Life operating cost ($) 248 680 600 600 600 

13 Maintenance cost ($/each time 

required) 

600 75 30 16 25 

14 Total maintenance cost ($/50 

years) 

1,800 75.00 170 90.67 141.67 

15 Total operating cost ($/50 

years) 

995.6 1,365 4,015 4,015 4,015 

16 Total cost ($/50 years) 3,395.6 2,118.30 4,863.3 4783.97 4834.97 

17 Average annual cost ($) 67.91 42.37 97.27 95.68 96.70 

Table 7.3 Cost Comparison of Light Sources after Changing the 85W Induction Lifespan 

  

Details 

62W 

LED 

85W 

induction 

250W 

MH 

250W HPS 250W MV 

1 Initial cost ($) 600 678.3 678.3 678.3 678.3 

2 Life (hours) 50,000 50,000 30,000 30,000 30,000 

3 Life (years) ≅ 12.5 ≅ 12.5 ≅ 7.5 ≅ 7.5 ≅ 7.5 

4 Daily power consumption 

(kW) 

0.682 0.935 2.75 2.75 2.75 

5 Annual power consumption 

(kW/year) 

248.93 341.3 1,003.75 1,003.75 1,003.75 

6 Life power consumption 

(kW) 

3,100 4,250 7,500 7,500 7,500 

7 Number of maintenance in 

50 years 

3 3 5.66 5.66 5.66 

8 Total power consumption  

(kW/50 years) 

12,446.5 17,065 50,187.5 50,187.5 50,187.5 

9 Maintenance required A C C C C 

10 Daily operating cost ($) 0.05456 0.0748 0.22 0.22 0.22 

11 Annual operating cost ($) 19.91 27.30 80.30 80.30 80.30 

12 Life operating cost ($) 248 340 600 600 600 

13 Maintenance cost ($/each 

time required) 

600 75 30 16 25 

14 Total maintenance cost ($/50 

years) 

1,800 225 170 90.67 141.67 

15 Total operating cost ($/50 

years) 

995.6 1,365 4,015 4,015 4,015 

                                                           
 

1 Replacing the whole light fixture. 
2 Replace the lamp only. 
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Details 

62W 

LED 

85W 

induction 

250W 

MH 

250W HPS 250W MV 

16 Total cost ($/50 years) 3,395.6 2,268.3 4,863.3 4783.97 4834.97 

17 Average annual cost ($) 67.91 45.37 97.27 95.68 96.70 

Retroreflective Sign Sheeting Cost Analysis 

In this section, a detailed cost analysis is presented for the following retroreflective 

sheeting materials: Engineering Grade (type I), Diamond Grade (type XI), and High Intensity 

(type IV). The following sections provide cost details for the three types of sheeting materials. 

Labor and equipment costs for installing or reinstalling the sign sheeting were similar for all the 

three retroreflective sheeting, and this cost was estimated to be $200 for initial sign installment, 

or replacement. 

Retroreflective Sheeting Cost Comparison  

In this section, a detailed comparison between the three retroreflective sheeting materials 

is presented. Labor costs and equipment are identical for the three types of retroreflective 

sheeting material. A 50-year life cycle is considered to obtain the replacement contribution for 

the three retroreflective sheeting based on lifespan. Table 7.4 compares the retroreflective 

sheeting costs in detail, and the provided cost analysis included initial, and maintenance or 

replacement cost components of each retroreflective sheeting for a 15 ft × by 9 ft sign size during 

lifespan of each sheeting type. Based on cost analysis results shown in Table 7.4, The High 

Intensity (type IV) is the cheapest sign sheeting, followed by Engineering Grade (type I), and 

then by the Diamond Grade (type XI).  

Table 7.4 Cost Comparison for the Retroreflective Sheeting 

  

Details 

Engineering Grade 

(type I) 

Diamond Grade 

(type XI) 

High Intensity 

(type IV) 

1 Initial cost ($/ft2) 0.80 3.93 1.45 

2 Life (years) 7 12 10 

3 Cost of (15 ft × 9 ft) sign 

sheeting ($) 

108 530.55 195.75 

4 Labor cost per each installment 

or replacement ($) 

200 200 200 

5 Number of sign replacements in 

50 years 

7.14 4.17 5 

6 Required sign sheeting cost ($/ 

50 years) 

771.12 2,212.40 957.5 
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Details 

Engineering Grade 

(type I) 

Diamond Grade 

(type XI) 

High Intensity 

(type IV) 

7 Required labor cost ($/ 50 

years) 

1,428 834 1000 

8 Total cost ($/ 50 years) 2,199.12 3,046.4 1,957.5 

9 Average annual cost ($) 43.98 60.93 39.15 

Combining Decision Criteria to Find the Best Sign External Light Source 

Based on light distribution of light sources, HPS ranked first providing the highest 

illuminance on the sign, followed by MH, induction lighting, MV, and LED. In summary, the 

HPS light source was the best conventional light source, followed by MH and MV. Among the 

new generation light sources, induction lighting is recommended to be used by DOTs. Among 

those light sources that can be used in the U.S., based on light distribution, the 85W induction 

lighting is the best, followed by the 62W LED. Based on cost analysis of the five light sources, 

excluding labor costs, the 85W induction lighting source is the most cost-effective light source, 

followed by the 62W LED, 250W HPS, 250 MV, and 250W MH. 

The combination of decision criteria, light distribution, and light source cost revealed that 

the 85W induction lighting was the optimal light source being tested, followed by the 62W LED. 

Combining Decision Criteria to find the Best Sign Retroreflective Sheeting 

Based on statistical analysis results of the retroreflectivity experiment in Chapter 6, 

Diamond Grade (type XI) sheeting was the optimal sheeting based on nighttime visibility, 

followed by High Intensity (type IV) sheeting and then Engineering Grade (type I). The cost 

analysis of retroreflective sheeting showed that High Intensity (type IV) retroreflective sheeting 

material was the cheapest retroreflective sheeting, followed by Engineering Grade (type I), and 

then by Diamond Grade (type XI).  

DOTs with limited budget could use High Intensity (type IV) as an alternative solution 

for increasing the visibility and legibility of overhead guide signs. 

Summary 

When combining the decision criteria (cost, light distribution, and usability in U.S. based 

on EISA), the cost effective light source for overhead guide sign illumination was the 85W 

induction, followed by the 62W LED. For retroreflective sheeting, Diamond Grade (type XI) was 

the optimal sheeting for guide signs, however, combining the decision criteria (cost and 
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visibility), High Intensity (type IV) retroreflective sheeting could be an alternative choice for 

DOTs with limited budgets. 

The average annual cost for the 85W induction lighting was $45.37, and $67.91 for the 

62W LED, not including labor cost. The yearly cost when using High Intensity (type IV) 

retroreflective sheeting was $39.15 including labor cost, meaning High Intensity (type IV) 

retroreflective sheeting is more cost-effective than illuminating overhead guide sign for DOTs 

with limited budgets.  
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Chapter 8 - Determining the Optimal Sheeting-Font Combination to 

Increase Shoulder-Mounted Guide Signs’ Visibility under the 

Presence of Glare 

Introduction 

Glare is defined as a steady, dazzling, bright light or as brilliant reflection that is present 

when luminous or luminance intensity within the visual field is larger than the target to which 

eyes are accustomed (Mace, et al., 2001). Glare is caused by a significant ratio of luminance 

between the target and the glare source. Several factors significantly impact glare production, 

including the angle between the task and glare source, and the eyes adaptation to light. Glare 

creates visual difficulty in the presence of bright light, such as direct or reflected sunlight during 

the day, or artificial light, such as vehicle headlights, at night. Therefore, glare represents a 

critical deterrent for nighttime road safety because it hinders visual adjustments a driver must 

make in order to account for brightness differences.  

Guide sign legibility is commonly thought to increase with increased luminance; 

however, beyond a certain point, a sign’s overglow and irradiation begin to blur letter edges, 

consequently degrading sign legibility (Carlson, et al., 2014). According to Carlson et al. (2014), 

legibility loss is difficult to determine, and previous research has not identified the exact point at 

which legibility decreases. Signs negatively impact visibility by becoming glare sources when 

they are very bright and located in areas with low or no visual complexity (Carlson et al., 2014). 

The addition of light sources or use of retroreflective sheeting material can increase guide 

sign visibility. Types of retroreflective sheeting include Engineering Grade, Diamond Grade, and 

High Intensity. Several font types including Series A (discontinued), Series B, Series C, Series 

D, Series E, Series E (Modified), Series F, and ClearviewHwyTM font can be used on signs.  

According to surveys in Chapter 3, the most commonly used retroreflective sheeting 

material in the U.S. for overhead guide sign legends is Diamond Grade (type IX, followed by 

type XI), and High Intensity (types III and IV) is the most common retroreflective sheeting used 

for backgrounds. In addition, a majority of states use Series E (Modified) font, followed by 

Clearview 5W and 5WR for guide signs. 
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The focus of this Chapter was on increasing visibility of shoulder-mounted guide signs 

and reducing the effect of glare from an oncoming vehicle’s low beam headlights, by selecting 

the best combination of retroreflective sheeting and font type to be used on shoulder-mounted 

guide signs. A field experiment under the presence of a glare source from an oncoming vehicle’s 

low beam headlights was conducted to compare four guide signs produced by combining 

Diamond Grade (type XI) and High Intensity (type IV) sheeting materials, with Series E 

(Modified) and Clearview fonts. This experiment was approved by the Committee on Research 

Involving Human participants at KSU University, and the approval letter is shown in Appendix 

E.  

 Statistical analysis was conducted using SAS Software to determine the sheeting-font 

combination that most effectively increases visibility under the presence of glare. The cost 

analysis conducted in Chapter 7 for the tested retroreflective sheeting materials was considered 

to find the efficient retroreflective sheeting. Results of this research were combined to determine 

the optimal sheeting-font combination that increases legibility distance and visibility of shoulder-

mounted guide signs to drivers under the presence of glare, and consequently boosts roadway 

safety. 

Literature Review  

One primary mission of the Federal Highway Administration (FHWA) is to increase 

roadway safety in the U.S. Statistics show that 25% of all motor vehicle travel occurs at night, 

but approximately 50% of all traffic fatalities occur during nighttime hours (Hasson & 

Lutkevich, 2002), and (FHWA, 2008). According NHTSA Fatality Analysis Reporting System, 

fatal crashes in the years 2009, 2010, 2011, and 2012 numbered 23,447, 22,187, 21,316, and 

21,667, respectively; totals of nighttime crashes for those years were 11,630 (49.6%), 10,647 

(48.0%), 10,183 (47.8%), and 10,480 (48.3%), respectively (NHTSA, 2012b) and (NHTSA, 

2013).  

Based on Schreuder (1998), there are three aspects of glare including the physiological 

glare, psychological glare, and absolute glare (Schreuder, 1998). Physiological glare is also 

known as disability glare (Schreuder, 1998). Disability glare, identified by Holladay (Holladay, 

1926), is typically caused by light interreflection within a driver’s eyeball, thereby reducing the 

contrast between the target and glare source to a point in which the target cannot be distinguished 
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(Carlson et al., 2014). Psychological glare is also known as discomfort glare (Schreuder, 1998). 

Discomfort glare hinders a driver from seeing a target or creates a desire to look away from a 

bright light source. Discomfort glare produces visual discomfort and annoyance, sometimes 

resulting in visual fatigue and pain (Schreuder, 1998)  and (Mace et al., 2001). Absolute glare is 

also known as dazzle which occurs when glare intensity completely impairs vision (Schreuder, 

1998). Dazzle often experienced while driving, one example of dazzle is when leaving a tunnel 

during daylight (Schreuder, 1998). 

Based on the direction, glare is also categorized as direct and reflected. Direct glare is 

produced by light sources, such as headlights, taillights, and street lighting, in the field of view 

(Mace et al., 2001). Specular reflections from glossy or polished surfaces can cause reflected 

glare; examples of glossy surfaces susceptible to reflected glare include vehicle rearview mirrors, 

bright matte surfaces inside the vehicle (e.g., dashboards), and steel or aluminum doors on 

nearby trailers (Mace et al., 2001). 

Discomfort glare and disability glare can be faced during nighttime driving. The 

automotive head-lighting industry thought that discomfort glare was of greater consequence than 

disability glare because drivers consistently complain about discomfort glare (Mace et al., 2001). 

However, disability glare is equally significant and more likely to affect driver safety on 

roadways (Hankey, et al., 2005). Certain people, especially the elderly, those suffering from 

cataracts, and people with light-colored eyes, are most sensitive to disability glare (Mace et al., 

2001) and (Bullough, et al., 2003). Glare affects daytime and nighttime driving, but nighttime 

glare can be mitigated by careful improvements in the design of vehicle lighting systems, 

roadways, and automobiles (Mace et al., 2001). 

According to research by Hemion, objects’ detection distance decreases in the presence 

of glare from oncoming high beam headlights (Hemion, 1969). However, Hemion (1969) found 

that detection distance is greater when both vehicles used high beam headlights compared to low 

beam headlights, even though both glare types (discomfort and disability) increased. Additional 

illumination from high beam headlights increased the target contrast, thereby negating contrast 

loss that caused disability glare, leading to the conclusion that visibility increases with the use of 

high beam headlights (Hemion, 1969).  

According to Mace et al. (2001), discomfort and disability glare have differing 

physiological origins, thereby complicating glare comparison. The sensation of discomfort glare 
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is related to neuronal interactions similar to physiological functions such as pupillary light 

response or skin resistance (Fry & King, 1975). However, disability glare results from light 

scattering in the ocular media. Both glare types also are uniquely affected by environmental 

parameters (Fry & King, 1975). For example, apparent luminance and size of the source are 

essential parameters for discomfort glare (Mace et al., 2001). On the other hand, disability glare 

is not affected by the size of glare source or luminance, but it is affected by the angular offset 

from the sight line and luminous flux (Mace et al., 2001). 

Theeuwes, Alferdinck, and Perel (2002) performed an experiment to determine the 

correlation between glare and driving performance (Theeuwes et al., 2002). Participants of 

various ages were exposed to a simulated low beam headlights fixed to an instrumented vehicle 

hood. The simulated low beam headlights represented a relatively low glare source. A driving 

route of 23.555 km in length was divided into nine sections; each section represented a specific 

road type with distinct characteristics. Participants drove the instrumented vehicle at night in 

actual traffic. Results showed that the relatively low source of glare resulted in significantly 

decreased detection of simulated pedestrians along the roadside and caused participants to 

decrease vehicle speed on dark and winding roads in order to compensate for negative effects of 

the glare.  

Carlson et al. (2014) performed an experiment to determine if rural highway signs 

overbrightness causes legibility reduction and glare and consequential safety concerns (Carlson 

et al., 2014). They selected white and yellow shoulder-mounted signs located on rural two-lane 

highways in which drivers use high beam headlights during nighttime driving. They conducted 

this experiment during night using high beam headlights. Detection distances of three variously 

sized objects located at three positions relative to highway signs for the experiment were 

measured. These targets were located 200 ft in front the sign, adjacent to the sign, and 200 ft 

behind the sign. In addition to the three objects, Carlson et al. used several speed limit signs with 

two types of retroreflective sheeting materials (type III and type XI). Participants drove a vehicle 

at a speed of 35 mile per hour (mph), and detection distances for the signs and objects were 

recorded by the experimenters. Driver’s age, object location, sign type, and object type were 

considered as variables. Analysis of variance showed that sign sheeting type and driver’s age 

were significant variables, with significance level of 5%. Researchers concluded that the 

shoulder-mounted signs could be excessively bright in rural areas, so unnecessary signs should 
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be removed, regardless of sheeting type. Although they did not observe a significant reduction in 

legibility, they found a large reduction in the drivers’ overall ability to detect hazardous objects 

near the roadway. 

Porter, Hankey, Binder, and Dingus (2005) performed an experiment to evaluate 

discomfort glare during nighttime driving in clear weather using various types of headlights 

(Porter et al., 2005). Empirical testing was performed on the Virginia Smart Road which was 

designed according to UUSDOT specifications for two-lane undivided highway with a 104.7 

km/hr (65 mph) speed limit. Sixty participants of various ages participated in the study. 

Participants drove toward a fixed glare source and rated it twice based on a DeBoer discomfort 

rating scale. The first rating occurred when the participant experienced discomfort from 

oncoming headlights at a range of 1,300-1,000 ft. The second rating reflected participant’s 

discomfort within a range of 450-150 ft. Halogen, ultraviolet A, high output halogen, and high 

intensity discharge headlights were compared. Results of the empirical testing suggested that 

halogen headlights produce more discomfort glare than high intensity discharge headlights.  

Methods 

Participants 

A total of 29 participants comprised of 21 males and 8 females, each with a valid driving 

license, voluntarily participated in the experiment. Participants’ ages ranged between 18 and 53 

years. Some participant’s information collected and included in the statistical analysis as 

independent variables including whether the participant uses corrective lenses or glasses, when 

the participant performed the last vision checkup, the participant’s nighttime driving frequency, 

the driving history of the participant, and if the participant involved as a driver in a vehicle 

accident in the past three years during nighttime.  

Retroreflective Sheeting and Font Details 

Combinations of two types of retroreflective sheeting and two types of fonts were used in 

this research’s experiment (hereafter referred to as the glare experiment). Selection of these 

retroreflective sheeting materials and font types was based on previous chapters’ results. The 

selected signs were received from the Kansas Department of Transportation. Table 8.1 provides 

a detailed summary of retroreflective sheeting materials and font types for each shoulder-
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mounted guide sign. The signs had green background and white legend. Each sign’s legend 

consisted from one word only, and this word was different at each sign. Sign letters consisted of 

an upper-case initial word letter and lower-case letters for the remaining letters. Upper-case 

letters were 6 in (2.362 cm) in height and lower-case letters were 4.5 in (1.772 cm), as required 

in the MUTCD of 2009. The signs were 5 ft (152.4 cm) wide and 1.5 ft (45.72 cm) high.  

Table 8.1 Used Signs Retroreflective Sheeting and Font Types 

Sign Number Retroreflective Sheeting Type Font Type 

1 High Intensity (type IV) Series E (Modified) 

2 High Intensity (type IV) Clearview 

3 Diamond Grade (type XI) Clearview 

4 Diamond Grade (type XI) Series E (Modified) 

Retroreflectivity of each sign background and legend was measured using a 920 SEL 

retroreflectometer in the Human Factors Laboratory in the Industrial and Manufacturing Systems 

Engineering Department at Kansas State University, Manhattan, KS. Retroreflectivity values, as 

shown in Table 8.2, are in compliance with minimum retroreflectivity values required by ASTM 

D4956. 

Table 8.2 Signs Retroreflectivity Values 

Sign Sign Sheeting Background Retroreflectivity 

(cd.m-2.lux-1) 

Legend Retroreflectivity 

(cd.m-2.lux-1) 

1 and 2  High Intensity (type IV) 97.3 553.3 

3 and 4 Diamond Grade (type XI) 140.9 716.3 

Experimental Setup 

The glare experiment was performed in the east parking lot of Bill Snyder Family 

Stadium at Kansas State University. Figure 8.1 shows the layout of the experiment location. A 

local street on the east side of the parking lot consisted of two-direction lanes separated by a 

white dashed-marking was selected to run the glare experiment. The width of each lane was 10.5 

ft, as in compliance with USDOT requirements for local streets.  
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Figure 8.1 Schematic Sketch for the Experiment Location (Not Drawn to Scale) 
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A post to mount the signs during the experiment was designed in the Industrial and 

Manufacturing Systems Engineering Department workshop. The post measured 8 ft (243.84 cm) 

high from the bottom of the sign to the road surface. The lateral offset for the post was 6 ft 

(182.88 cm) from the edge of the driving lane to the nearest edge of the sign. The post height and 

lateral offset were in compliance with MUTCD 2009 requirements. The post was placed 1,000 ft 

from the south side of the imitated street on the parking lot, as shown in Figure 8.1.  

Lighting poles located 100 ft to the west of the imitated street were continuously lit while 

conducting the experiment. The condition of lights in the neighboring soccer field was recorded 

for each participant and included as an independent variable in the statistical analysis.  

The glare experiment was conducted after 8:00 p.m., during night over a week of clear 

weather, in September 2014. The sign post was placed on its specified location, as shown in 

Figure 1, and 2009 MUTCD requirements for lateral distance and sign height were observed. 

The glare experiment was conducted in 45 min sessions for each participant. Only one 

participant at a time was allowed at the experiment site. 

The glare experiment involved the use of two sedan vehicles (2011 Chevrolet Impala), 

both vehicles used halogen headlights. One vehicle was driven by participants in the lane closest 

to the shoulder-mounted guide sign (right lane) at a speed of 30 mph, and the other vehicle was 

parked 50 ft behind the sign on the opposing lane (left lane). Low beam headlights of the parked 
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vehicle remained on throughout the experiment in order to generate an artificial glare source 

from an oncoming vehicle’s headlights.  

Procedure 

At the beginning of each session, the participant was asked to complete a consent form. 

Approval for using a human subject was obtained from the University Research and Compliance 

Office, Committee on Research Involving Human Subjects at Kansas State University.  

Before beginning the glare experiment, instructions and guidelines were given to each 

participant:  

1. You will be seated in the driver’s seat of a sedan vehicle and the experimenter will 

be seated in the passenger seat. You will use only low beam headlights of the vehicle 

and you cannot change to high beam headlights. 

2. Initially, you will drive the vehicle under guidance from the experimenter until you 

reach the starting point in the street that has a shoulder-mounted sign. The 

experimenter will ask you to stop there. At this point you are 1,000 ft from a shoulder-

mounted guide sign. 

3. The experimenter will explain that you have to drive the vehicle on the right lane of 

the imitated street at a speed of 30 mph. Once you are able to read the sign’s legend, 

speak it aloud, and continue driving. If you read the sign correctly, the experimenter 

will drop a sand bag out the window on the street in order to measure legibility 

distance. If you do not read the sign correctly, the experimenter will notify you and 

you will continue driving until you are able to read the sign correctly.  

4. Steps (1-3) will be repeated for a total of four signs. 

Results 

Repeated measures experimental design was used to analyze collected data using version 

9.4 of SAS Software. Satterthwaite approximation for the denominator degrees of freedom was 

selected in the analysis. The first model included all main effects and interactions between 

explanatory variables. A significance level of 5% was considered. The backward elimination 

procedure was carried out to remove the least significant variable or variables’ interaction until 

the final model was obtained. 

Dependent and Independent Variables 

The response was the legibility distance from the sign face at which the participant 

correctly read the legends of the four signs. Table 8.3 shows the independent variables and their 

categories. 
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Table 8.3 List of Independent Variables  

Variable Categories 

Sheeting/font combination (refer to Table 1 for 

details) 

Sign 1, Sign 2, Sign 3, and Sign 4 

Participant age 18-29 years, and 30 years and above  

Participant gender Male, and female 

Participant status of using lenses/glasses Yes, and no 

Participant last vision check-up  Less than 2 years, and 2 years or more 

Participant nighttime driving frequency 1-2 times/week, 3-4 times/week, and 5-7 

times/week 

Participant accidents during night in the past 

three years 

Yes, and no  

Participant driving history 3 years or less, 3-5 years, 6 years or more  

Time of the experiment 8-10 p.m., and 10-11:45 p.m.  

Lighting condition of the soccer field On, and off 
  

Each participant tested four signs and the legibility distance at which the participant 

correctly read the sign was recorded. Based on SAS Software output, 114 observations were used 

in the analysis instead of 116 because of two missing legibility distances.  

Statistical Analysis 

The first model is shown in Table 8.4. Table 8.5 presents the final model result for Type 

3 test of the fixed effects. Of all dependent variables and interactions studied, the sheeting/font 

combination was found to be the only significant variable in the final model based on its p-value 

which was less than 0.0001, and is smaller than 5%. All the other dependent variables studied 

were removed from the model when backward elimination procedure was carried out.  

Table 8.4 Type 3 Tests of Fixed Effects for the First Model 

Effect No. DF Den DF F Value Pr > F 

Age 1 16.2 0.10 0.7615 

Gender 1 16.1 1.00 0.3322 

Nighttime driving frequency 2 16.1 0.51 0.6092 

Accidents during night in the past three years 1 16 0.34 0.5654 

Participant status of using lenses/glasses 1 16 0.34 0.5683 

Participant last vision check-up  1 16 0.01 0.9301 

Participant driving history 2 16.1 2.01 0.1668 

Sheeting/font combination (sign) 3 46 2.68 0.0575 

Time of the experiment 1 16 0.10 0.7583 

Lighting condition of the soccer field 1 16.2 0.00 0.9634 

Age*Sign 3 46.1 0.67 0.5757 

Gender*Sign 3 46.1 1.57 0.2084 

driving frequency*Sign 6 46.1 1.51 0.1972 
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Effect No. DF Den DF F Value Pr > F 

Accident*Sign 3 46.1 0.18 0.9109 

Using lenses/glasses*Sign 3 46.1 1.82 0.1574 

vision check-up*Sign 3 46.1 1.54 0.2168 

Driving history *Sign 6 46.1 0.62 0.7137 

Time of the experiment*Sign 3 46.1 2.18 0.1030 

Lighting condition of the soccer field*Sign 3 46.2 0.30 0.8248 

Table 8.5 Tests of Fixed Effects for the Final Model 

Effect No. DF Den DF F Value Pr > F 

Sheeting/font combination 3 82.1 9.65 <.0001 

SAS Software output of the least square means is shown in Table 8.6. Based on the p-

value for all sign levels, all levels were significant. Table 8.6 shows the estimated influence for 

each sheeting/font combination on the legibility distance. Based on the estimate of each 

sheeting/font combination, sign 3 had the largest estimate (340.93), followed by sign 2 (307.97), 

sign 1 (295.90), and sign 4 (294.25).  

Table 8.6 Least Square Means of Sign Levels 

Effect Sign 

Number 

Estimate Standard 

Error 

DF t Value Pr > |t| 

Sheeting/font combination 1 295.90 18.06 35.2 16.38 <.0001 

Sheeting/font combination 2 307.97 18.06 35.2 17.05 <.0001 

Sheeting/font combination 3 340.93 18.06 35.2 18.87 <.0001 

Sheeting/font combination 4 294.25 18.19 35.1 16.18 <.0001 

Discussion 

Improved visibility was measured by the participants’ ability to read the legend on the 

sign from a greater legibility distance. Based on the tests of fixed effects, the only significant 

variable at a 5% significance level was the sheeting/font combination, in other words, the sign. 

All the other dependent variables and variables’ interactions were insignificant and eliminated 

one after the other while conducting the backward elimination procedure. 

Considering the least square means of sheeting/font levels, a greater level estimate has a 

greater influence on the predicted response, which was the legibility distance in the glare 

experiment. Based on the levels’ estimates of sheeting/font variable, sign 3, which was Diamond 

Grade (type XI) sheeting combined with Clearview font, was ranked first in providing the 

highest legibility distance, and consequently provided drivers with the highest visibility when 

glare was presented from an oncoming vehicle’s low beam headlights. Sign 2, which was High 

Intensity (type IV) sheeting combined with Clearview font, was ranked second, sign 1 was 



  

114 
 

ranked third, which was High Intensity (type IV) sheeting combined with Series E (Modified) 

font, and sign 4 was ranked fourth, which was Diamond Grade (type XI) sheeting combined with 

Series E (Modified) font, meaning that, regardless the retroreflective sheeting material, 

Clearview font was found to be the better font that increases legibility distance for drivers 

experiencing glare from an oncoming vehicle’s low beam headlights. The cost analysis of the 

two retroreflective sheeting which is shown in Chapter 7 showed that High Intensity (type IV) 

sheeting had cheaper average annual cost than Diamond Grade (type XI) sheeting.  

Limitations of this study included the inability of finding participants older than 53 years, 

and the inability to have the chance of measuring participants’ visual acuity at the time of the 

experiment. To avoid problems related to visual acuity, participants were asked if they have a 

vision problem that is not corrected, and those who answered yes were not allowed to participate 

in the glare experiment. 

Summary 

Results of the glare experiment revealed that Diamond Grade (type XI) retroreflective 

sheeting combined with Clearview font represented the optimal sheeting-font combination. 

However, for DOTs with limited budgets, High Intensity (type IV) retroreflective sheeting 

combined with Clearview font could be an alternative solution. The conclusion regarding the 

alternative solution of combining High Intensity (type IV) retroreflective sheeting with 

Clearview font was drawn from the influence of the sheeting-font combination on the legibility 

distance of shoulder-mounted guide signs when drivers experienced glare from an oncoming 

vehicle’s low beam headlights, and from cost analysis of the retroreflective sheeting. 

Consequently, this alternative solution of High Intensity (type IV) sheeting and Clearview font 

increases visibility, legibility and drivers’ safety on roadways. Regardless the sheeting type, 

Clearview font was found to be the better font that increases legibility distance for drivers 

experiencing glare from an oncoming vehicle’s low beam headlights.  
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Chapter 9 - Impacts of Roadway Lighting on Crashes Reduction 

and Safety Improvement 

 Introduction  

All the previous chapters of the dissertation were about increasing the visibility of guide 

signs for drivers during nighttime. The two methods of increasing guide signs visibility 

(illumination and retroreflectivity) were studied in details. The rational and motivation behind 

including this chapter in the dissertation was to confirm the effectiveness of intersection lighting 

in increasing drivers’ safety during nighttime by reducing crash frequency. Crash data were used 

to confirm the result of previous chapters in that increasing drivers’ visibility will increase safety 

and reduce crashes.  

Roadway lighting is a public amenity that increases driver and pedestrian safety (Medina, 

et al., 2013). Efficient roadway lighting can increase personal security, traffic flow operations, 

and public safety because motorists can more readily recognize roadway conditions and 

geometry (Medina, et al., 2013). Public lighting, including roadway, sidewalk, and sign lighting, 

is a basic requirement that creates a safer environment for motorists, cyclists, and pedestrians 

(AASHTO, 2005). Drivers more easily recognize street conditions and roadway geometry 

because of efficient lighting. Efficient roadway lighting also increases highway safety by 

enhancing drivers’ visual comfort and reducing drivers’ fatigue (IDOT, 2002). A primary 

purpose of roadway lighting is to increase the visual range that vehicle headlights afford during 

nighttime driving (IES, 2000).  

Lighting is considered a significant countermeasure in all Federal Highway 

Administration (FHWA) safety focus areas, including intersections, pedestrians, and horizontal 

curves/roadway departures. Studies have shown that the use of roadway lighting results in an 

approximate 60% reduction in fatal nighttime crashes (Lutkevich, et al., 2012). To compare the 

impact of roadway lighting on previously unlit roadways, Elvik and Vaa reviewed 38 studies 

related to roadway lighting. They discovered the following results after roadways were lit: a 64% 

reduction in fatal crashes, a 17% reduction in property-damage-only crashes, and a 28% 

reduction in injury crashes (Elvik & Vaa, 2004).  

Departments of Transportation (DOTs) and agencies in U.S. currently use several 

roadway lighting systems to increase roadway safety, including the designed lighting system and 
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roadway feature identification lighting. Many studies analyzed the effect of roadway lighting on 

safety by using crash analysis, considering the two roadway lighting systems, performing 

comparative studies of various roadway locations with and without lighting, or performing a 

before and after lighting comparison for identical roadway locations.  

Statistical analysis of data from 20 European Union countries showed that in dark 35.5% 

of fatal crashes occurred in rural area locations, approximately 39.7% of fatal crashes occurred in 

urban areas, and 44.6% of fatal crashes occurred on motorways (ERSO, 2011). In addition, with 

absence of street lighting, about 20% of fatalities occurred in darkness (ERSO, 2011). 

The objective of this research was to evaluate safety benefit of roadway lighting at 

intersections on reducing nighttime crashes by increasing visibility, and consequently safety. 

Crash data from the Highway Safety Information System (HSIS) were used to investigate the 

effect of intersection lighting on crashes reduction during nighttime. Recent data from Minnesota 

and California were used to estimate nighttime and daytime crash frequency models. The reason 

behind selecting only these two states is that their data files contain the needed intersection-level 

geometric design, traffic volume data, and lighting information. The negative binomial 

regression model was used to estimate nighttime and daytime crash frequency models to 

generate conclusions. 

Roadway Lighting Systems 

For roadway lighting, illuminance is defined by the density of luminous flux incident on 

a surface measured in lux or foot-candles (Swanson & Carlson, 2012). Luminance, however, is a 

measure of reflected light from the pavement surface and it is visible to a motorist’s eyes 

(AASHTO, 2005). Lux is the unit of illuminance based on the International System of Units (SI). 

Recent developments in the lighting industry have resulted in well-developed techniques for 

roadway lighting system design. Several methods are available for achieving specified lighting 

conditions with specific luminance or illuminance. These methods provide analysis based on 

available lamp alternatives, luminaires, luminaries spacing, mounting heights, and energy 

consumption to determine the preferred lighting design (AASHTO, 2005). Based on the 

AASHTO, roadway lighting installation process includes the application of specified 

photometric characteristics of selected lamp-luminaire combinations.  
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Several factors control the luminance and illuminance level and uniformity along a 

highway, including light source lumen output, mounting height, luminaire light distribution, 

luminaire position, reflectance of pavement, and poles arrangement and spacing (AASHTO, 

2005). Various installation arrangements of luminaire can be used to obtain the desired average 

illuminance or luminance level, including greater number of low-output luminaires or few high-

output luminaires (AASHTO, 2005). Lighting systems that use high efficacy (lumen per watt) 

lamps can be used to obtain illuminance or luminance uniformity at the required level.  

Roadway lighting can be categorized as designed roadway lighting (standard roadway 

lighting or continuous lighting) system and roadway feature identification lighting (nonstandard 

lighting or fixed lighting) system. For feature identification lighting, fixed lighting units are 

installed to help identify one of the FHWA safety focus areas, such as intersections.  

According to AASHTO Roadway Lighting Design Guide, roadway lighting systems are 

classified into three categories: continuous freeway lighting, complete interchange lighting, and 

partial interchange lighting (AASHTO, 2005). Continuous freeway lighting provides 

approximately uniform lighting on all main lanes, direct connections, and interchanges within the 

section. Complete interchange lighting provides relatively uniform lighting within interchange 

limits that include main lane ramp terminals, direct connections, and crossroad intersections. 

Partial interchange lighting provides illumination on roadways at specified areas, including ramp 

terminals, crossroads at ramp intersections, acceleration and deceleration lanes, and areas with 

nighttime hazards.  

The primary difference between the roadway standard and nonstandard lighting systems 

is the type of pole used (Bruneau & Morin, 2005). In standard lighting, the pole is designed 

exclusively for lighting purposes, but in nonstandard lighting, an existing public utilities pole is 

used with a fastened small lamp (Bruneau & Morin, 2005). Poles used with nonstandard lighting 

currently exist, meaning they will not increase the risk of fixed object collisions unless new poles 

are installed for lighting purposes (Bruneau & Morin, 2005). Lamp supports used with 

nonstandard lighting units are generally shorter than supports used with standard lighting poles, 

resulting in less roadway illumination with nonstandard lighting systems compared to standard 

lighting which almost completely illuminates the roadway (Bruneau & Morin, 2005). For 

standard lighting systems, lamp overhang is close to the roadway center, thereby increasing the 

lateral distance separating the pole anchor and the lamp (Bruneau & Morin, 2005). For 
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nonstandard lighting, utility poles are not necessarily ideally located to provide sufficient 

lighting; therefore, optimal pole placement is a concern for nonstandard lighting (Bruneau & 

Morin, 2005). Finally, differing light intensity based on lamp type must also be considered for 

comparison purpose. An additional benefit of standard lighting is that light intensity can be 

modified, thereby allowing this lighting type to dominate other types of undesired light sources, 

such as light originating from nearby motorways or gas stations (Bruneau & Morin, 2005). 

Literature Review 

Several factors complicate the study of roadway lighting effects on safety (IES, 1989) 

and (Bullough, et al., 2013a). First, vehicle crashes in nature are rare events, creating difficulty 

for the collection of relevant data for safety benefits evaluation based on statistical analysis. 

Second, assigning roadway lighting to various locations is not random; instead, lighting is 

installed on the required locations based on expert highway engineers’ decisions. Third, roadway 

lighting is installed with other treatments of safety engineering, including signals, signs, road 

markings, geometric features, and rumble strips. All the safety features may interact with traffic 

safety at night, causing safety improvement.   

The cost of nighttime crashes is very high in comparison to daytime crashes. Therefore, a 

primary mission of the FHWA is to improve roadway safety in the U.S., thereby reducing 

expenses associated with nighttime vehicle crashes. Statistics show that 25% of all motor vehicle 

travel occurs at night, but approximately 50% of all traffic fatalities occur during nighttime hours 

(Hasson & Lutkevich, 2002), and (FHWA, 2008). According NHTSA, Fatality Analysis 

Reporting System, fatal crash numbers in the years 2009, 2010, 2011, and 2012 were 23,447, 

22,187, 21,316, and 21, 667, respectively, and for those years, the numbers of nighttime crashes 

were 11,630 (49.6%), 10,647 (48.0%), 10,183 (47.8%), and 10,480 (48.3%), respectively 

(NHTSA, 2012b), and (NHTSA, 2013). 

According to Isebrands et al., approximately 31% of fatal crashes in Minnesota were 

intersection-related crashes, and approximately 37% of those crashes occurred at night, dusk, or 

dawn (Isebrands, et al., 2010). In comparison, intersection-related fatal crashes accounted for 

21% of total U.S. fatal crashes, with 40% of fatal crashes occurring at night, dusk, or dawn; only 

25-33%  of total vehicle miles travelled (VMT) are travelled at night (Isebrands, et al., 2010). 

Fatal crashes in Minnesota in rural areas account for approximately 70% of the state’s total fatal 
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crashes, compared to 58% in U.S. (Isebrands, et al., 2010). In general, rural roadway 

intersections are associated with a higher crash risk at night.  

For data collected between October 2005 and September 2006 for 274 intersections in 

Iowa, a total of 26% of intersection crashes occurred at rural locations at night (Hallmark, et al., 

2008). For single vehicle crashes at rural intersections, the most common crash causes are run-

off the road (27%), animal-related crashes (17%), and running-a-stop-sign crashes (16%) 

(Hallmark, et al., 2008). For multiple vehicle crashes at rural intersections, the common causes 

of rural intersection crashes include running-a-stop-sign crashes (21%), failure to yield the right-

of-the-way at yield or stop signs (20%), and other failure to right-of-way yielding (10%) 

(Hallmark, et al., 2008). In general, non-signalized rural intersection crashes could be reduced by 

implementing several strategies, including the use of retroreflective materials to improve sign 

visibility, use of advance signing before intersections to warn drivers, use of sign beacons on 

stop signs, improved signing and roadway marking, use of advance stop sign rumble strips, use 

of flashing overhead beacons at intersections, and lighting installation (Hallmark, et al., 2008).  

FHWA has deemed roadway lighting to be an effective strategy to reduce nighttime 

crashes. Lighting is considered a significant countermeasure in all FHWA safety focus areas 

which include intersections, pedestrians, and horizontal curves/roadway departures. Roadway 

lighting supplements vehicle headlights, enhance drivers’ visibility, and helps drivers obtain the 

required visual information to accomplish driving with increased safety (Hasson & Lutkevich, 

2002).  

Several studies have evaluated the effectiveness of roadway lighting on crash reduction 

and safety. Some of these studies evaluated designed lighting systems and others evaluated 

roadway feature identification lighting. These lighting studies selected candidate in rural and/or 

urban locations to perform safety analysis. The following is a review of previous studies 

performed to evaluate safety benefits of lighting systems. 

Lighting-Safety Studies at Rural Intersections 

Wortman et al. reported a comparative study in Illinois that evaluated the impacts of 

roadway lighting on crashes at rural and highway intersections (Wortman, et al., 1972). Wortman 

et al. performed comparison analysis based on a random sample of illuminated and unilluminated 

intersections using the Analysis of Variance (ANOVA) at 10% significance level. At each 
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intersection, they compared the ratio between night and total crashes and found that roadway 

lighting correlates to night crash reductions when the number of night crashes was at least one-

third the number of day crashes. They did not find a relationship between lighting and crash 

severity. The researchers also reported that roadway lighting reduced nighttime crashes by 45% 

and a 22% reduction was observed in the ratio of night-to-total crashes.   

Walker and Roberts studied the influence of lighting on crash frequency of rural at-grade 

intersections in Iowa. They conducted before-and-after lighting analysis over a six-year period 

for a total of 47 intersections (Walker & Roberts, 1976). They considered several independent 

variables, including channelization, route turns at the intersection, number of intersection legs 

(number of approaches), and number of available lights at the intersection. They performed 

ANOVA that included full consideration of the situation that connects the effect of lighting and 

time during the day, and then they studied specific effects using the student’s t test. Overall, they 

found a 49% reduction in crash frequency after lighting was installed. The average night crashes 

rate was also reduced from 1.89 to 0.91 crashes per million entering vehicles, with a reduction of 

52%. Their results were statistically significant at 1% significance level. More precisely, 

although they found no statistical differences in before-and-after nighttime crash rates after 

lighting for non-channelized intersections, their analysis showed significance of 1% in overall 

night crash reduction after lighting for channelized intersections. For intersections with route 

turns, a significant reduction in nighttime crash rate was found. No change in crash rate occurred 

for “Y” and “T” intersections after lighting, but a significant reduction in nighttime crash rate 

occurred for four-leg intersections. The researchers found no significant differences in nighttime 

crash rate and number of lights at an intersection. They suggested that driving difficulty at 

complicated intersections could be reduced after lighting. 

Preston and Schoenecker evaluated 12 rural intersections in a before-and-after study in 

Minnesota (Preston & Schoenecker, 1999). They found that the installation of roadway lighting 

resulted in 25-40% reduced nighttime crash frequency. Nighttime crash severity was also 

reduced 8-25% after light installation.  

Kim et al. evaluated 165 rural intersections, including 114 signalized and 51 non-

signalized intersections of two-lane and four-legged roads in Georgia (Kim, et al., 2006). A total 

of 837 crashes occurred, divided between 345 crashes at non-signalized intersections and 492 at 

signalized intersections. Several models were developed to estimate various covariates of rural 
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intersection crashes, including Poisson and negative binomial models. They found that the 

presence of intersection lighting reduced crashes.  

Hallmark et al. conducted a cross-sectional statistical analysis to determine safety 

benefits of roadway lighting and other low-cost measures such as advanced stop sign rumble 

strips and overhead flashing beacons at 223 rural, non-signalized intersections in Iowa 

(Hallmark, et al., 2008). A hierarchical Bayesian model with Poisson distribution was used to fit 

two separate models for daytime and nighttime driving. Variables considered for evaluation in 

the two models included the presence of overhead beacons, presence of advanced stop line 

rumble strips, and traffic control type. The presence of overhead street lighting was also 

considered in the nighttime model. Significant variables in the daytime model included whether 

or not the intersection was a high crash location and the number of approaches with 

channelization. However, in the nighttime model, significant variables were found to be whether 

or not lighting was present and whether or not the intersection was a high crash location. The 

nighttime model indicated that the expected mean number of nighttime crashes was 2.01 times 

higher for unlighted intersections than for lighted intersections. 

Isebrands et al. evaluated the effectiveness of roadway lighting in nighttime crash 

reduction at isolated rural intersections in Minnesota (Isebrands, et al., 2010). The impact of 

lighting at 33 intersections was evaluated in a before-and-after study, data were collected during 

a 3-year-before and 3-year-after lighting installation. In this study, approximately 75% of 

lighting types for selected intersections was roadway feature identification lighting and 

approximately 25% was designed roadway lighting. Poisson regression model was used to 

compare the change in expected number of nighttime crashes and to test the statistical 

significance of the model’s explanatory variables at a 10% significance level. Several 

explanatory variables were evaluated, including crash time (day/night), presence or absence of 

lighting, number of intersection’s approaches, and type of intersection control. The researchers 

found that the crash rate was statistically significant and decreased by 37% after lighting.  

Lighting-Safety Study at Urban Intersections 

Box performed an experiment to evaluate roadway lighting based on crash reduction 

(Box, 1989). Box selected a 2.8 km portion of a 5-lane roadway, 18 m in width, in an urban area 

(Ogden, IL) that had some intersections. A continuous street lighting system was installed; the 
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mounting height was approximately 15 m with a setback and mast arm length to provide 0.6 m as 

an overhang. A one-side arrangement was selected because the ratio of road width to mounting 

height was 1.2. An average illumination level of 15 lux was maintained, given that a 13 lux was 

recommended by the American National Standard Practice for roadway lighting at the time of 

study. A 400 watt HPS lamp was used in the lighting system, and calculated spacing between 

poles to provide required illumination level was 64 m. Box studied crashes throughout a 4-year 

period on the selected roadway section, 2 years before and after lighting system installation. 

More than 800 crashes occurred during the study period. Box analyzed the crashes by classifying 

them into fatal, property-damage-only, and injury/fatal crashes. Overall, nighttime crashes 

decreased from 31% to 23% in the after period, with a nighttime crash reduction of 35%. Using 

student’s t test, Box found that the reduction of nighttime crashes was statistically significant at 

1% significance level. 

Lighting-Safety Studies at Rural and Urban Intersections  

Green et al. analyzed driver safety in a before-and-after lighting study at nine 

intersections in Kentucky (Green, et al., 2003). For the selected intersections, the number of 

nighttime crashes per year was obtained for a 4-year period before lighting and a 3-year period 

after lighting was installed. The selected intersections included urban and rural locations. The 

researchers developed a procedure to identify locations in Kentucky that experience high rates of 

nighttime crashes. They found a higher number of nighttime crashes at rural locations; nighttime 

crashes were reduced by 45% after lighting. 

Bruneau and Morin compared safety aspects of designed lighting systems and roadway 

feature identification lighting of 3- and 4-leg intersections in Quebec, Canada. They compared a 

total of 376 illuminated and unilluminated intersections at rural and near-urban locations 

(Bruneau & Morin, 2005). They analyzed nighttime crash rates using student’s t test at 5% 

significance level. They found that the nighttime crash rate decreased by 29% when roadway 

feature identification lighting was used and by 39% when designed lighting system was used, 

compared to darkness. The researchers found that any system of lighting increased safety at rural 

intersections. They suggested that roadway feature identification lighting at intersections could 

be a suitable solution and an initial effective step for improving roadway safety. They also 
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indicated that safety effectiveness at rural intersections could be improved by using a designed 

lighting system, especially at risky intersections.  

Donnell et al. described a proposed framework to estimate fixed lighting safety effects at 

various intersection types and locations (Donnell, et al., 2010). Data was obtained from the 

Highway Safety Information System (HSIS), a multistate database. Researchers selected 

California and Minnesota data because the HSIS files had required information related to 

intersection-level geometric design, fixed lighting, and traffic volume. Several cross-sectional 

modeling approaches were considered in the proposed framework. The initial step of each 

modeling method was to estimate the expected crash frequency during nighttime and daytime 

driving as a function of explanatory variables. Explanatory variables included presence or 

absence of lighting, intersection type (skew or cross), location (rural or urban), and speed limit. 

The negative binomial regression model was used to estimate annual expected number of 

intersection crashes. The proposed framework included night and day crash frequency analysis to 

promote a cost-effective comparison of other safety countermeasures that do not require a 

specific time of day in order to be effective. The researchers merged the presence of roadway 

lighting, traffic volume, roadway geometric, and control data with nighttime and daytime crash 

data to evaluate the statistical association between the presence of intersection lighting and night-

to-day crash ratio in Minnesota. Many variables that affect safety not previously considered in 

lighting-safety research were considered in the statistical analysis and model estimation for this 

study. Using Minnesota data, the presence of roadway lighting at intersections was associated 

with approximately 12% lower night-to-day crash ratio than that of unlighted intersections. 

Using only observed Minnesota crash numbers without controlling for other safety-related 

features, the framework resulted in 28% reduction in night-to-day crash ratio, which was similar 

to past researches.  

Rea et al. performed an analytical study to evaluate the improvement in visual 

performance associated with roadway lighting at intersections in Minnesota (Rea, et al., 2010). 

They used a relative visual performance (RVP) model to estimate the area of visibility coverage 

at lighted and unlighted intersections. They also used photometrically accurate software to 

generate model intersection’s luminous environment (lighted or unlighted). Photometric data 

created for the various lighting models were used in the RVP model to estimate the speed and 

accuracy of visual information processing provided to drivers of different ages at rural, urban, 
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and suburban intersections to make systematic evaluation of potential visibility hazards. In this 

study, vehicle headlights were included in the generated photometrically accurate models, so 

other factors related to visibility coverage area at intersections were considered, such as glare 

and hazard contrast. Researchers concluded that intersections must be illuminated at high and 

low speeds in order to provide older drivers a high level of illumination especially on high-speed 

roadway intersections.     

Bullough et al. performed a study to examine theoretical relationships between lighting, 

visibility, and safety at intersections in Minnesota (Bullough, et al., 2013b). A statistical 

approach and an analytical approach were considered for the same lighting context. In the 

statistical approach, a count regression model was used to evaluate the effects of roadway 

lighting on crash frequency for various types of intersections. The model included variables such 

as presence or absence of lighting, intersection type (skew or cross), location (rural or urban), 

and speed in order to estimate the relationship between roadway lighting and daytime and 

nighttime crashes and the ratio of night-to-day crashes. They found that the presence of 

intersection lighting contributes to approximately 12% reduction in a night-to-day crash ratio as 

compared to unlighted intersections. In their analytical approach, for the same intersections used 

in the statistical analysis, the researchers made visual performance analysis based on 

Minnesota’s intersection lighting. Both approaches led to the result that the improvement of 

visual performance caused by intersection lighting could serve as input for forecasting crash 

frequency improvements. The researchers suggested that when relationships between lighting, 

traffic safety, and visibility have been identified, highway engineers can specify various roadway 

lighting scenarios based on expected costs and benefits.     

Johansson et al. evaluated the risk of crashes associated with darkness using three crash 

counts of datasets from Norway, Sweden, and Netherlands (Johansson, et al., 2009). Their 

method estimated the crash risk associated with darkness based on the odds ratio. This method 

relied on crash counts only, considering that some day hours will be dark at certain times of the 

year but will be daylight during the rest of the year. Dark hours throughout the year were called 

case hours. Case hours were considered when calculating the odds ratio. For one case hour, the 

ratio between the number of crashes occurring during darkness and the number of crashes 

occurring during daylight at selective times of the year was calculated first. A comparison hour 

that has daylight the whole year was selected in order to control seasonal variation in the crash 
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number. Similarly, a case hour was selected to find the ratio between the crash number during 

dark case hours and the number of crashes when the case hour was daylight. The odds ratio was 

calculated by dividing the darkness crash ratio by the daylight crash ratio for the case hour and 

then by the corresponding ratio of the compared hour. Results of the study suggested that the 

increase of crashes during darkness was moderate. For pedestrians, cyclists, and car occupants, 

relative risks during darkness were 2.1, 12.6, and approximately 1.0, respectively, meaning that 

pedestrians and cyclists were more affected by risk, while car occupants did not have any 

increased risk.  

Yannis et al. investigated lighting conditions effects on roadway accident frequency and 

severity on Greece’s rural and urban roads (Yannis, et al., 2013). They used three log-normal 

regression models to analyze a large dataset containing 358,485 crashes that occurred between 

1996 and 2008 in Greece. The developed models provided the number of fatalities, light injuries, 

and serious injuries along with explanatory variables, including lighting conditions, crash area 

type, road surface conditions, type of collision, weather conditions, and driver-specific 

characteristics such as age and gender. Using parameter elasticity analysis, the researchers found 

that the absence of roadway lighting had the highest impact on serious injuries and fatality 

number compared to when lighting was present. They found that roadway lighting significantly 

improved traffic safety and reduced crash severity.    

The Negative Binomial Regression Model  

The negative binomial regression model can accommodate overdispersion comparing to 

Poisson model. According to Washington et al., the negative binomial model is a common 

approach to model intersection crash frequency, and the best choice to estimate the expected 

number of crashes at intersection per year (Washington, et al., 2005). 

All the following equations or definitions are based on (Hilbe, 2011). 

For regression purpose, assume that: 

𝑦𝑖~ 𝑛𝑒𝑔𝑏𝑖𝑛(𝜇𝑖 , 𝑘)               

𝜇𝑖 = 𝐸(𝑦𝑖)        9.1 

𝑦𝑖  is the observed crashes occurring at intersection i, and 𝐸(𝑦𝑖) is the expected crash 

frequency at intersection i. 

The density function of the negative binomial is given by: 



  

126 
 

𝑃(𝑦𝑖) =  (𝑘−1+𝑦𝑖
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𝑘
, 𝑖 = 1, 2, … , 𝑛              9.2 

Where 𝑘 = 1/𝛼,  and 𝛼 is the overdispersion parameter. 

The negative binomial link function is: 

ln(𝜇𝑖) =  𝛽𝑇𝑋𝑖        9.3 

Where, 𝜇𝑖 is the expected number of crashes at intersection i, 𝛽 is the matrix of the 

estimated regression parameters, 𝑋𝑖 is the matrix of predictor variables.  

The relationship between the mean and variance in the negative binomial distribution is: 

𝑉𝑎𝑟(𝑦𝑖) = 𝜇𝑖 + 𝑘𝜇𝑖
2         9.4 

Where 𝑉𝑎𝑟(𝑦𝑖) is the variance of observed crashes 𝑦𝑖 occurring at intersection i. 

Methodology 

Crashes data from the HSIS database were used to investigate the effect of intersection 

lighting on crashes reduction during nighttime. The HSIS is a multistate database that contains 

crash, roadway inventory, and traffic volume data for a select group of states. These states are 

California, Minnesota, North Carolina, Illinois, Ohio, Maine, Utah, Michigan, and Washington. 

HSIS is managed by the University of North Carolina Highway Safety Research Center 

(HSRC) under contract with FHWA. Minnesota and California data were used to estimate 

daytime and nighttime crash frequency models for roadway lighting with other variables related 

to the intersection. For each selected state, a total of 60 intersections were selected randomly 

from the HSIS database, divided between 30 urban intersections and 30 rural intersections. Data 

from 2006 to 2011 were used for Minnesota, and from 2006 to 2010 were used for California.   

Two models were constructed for each state to evaluate the safety benefit of roadway 

lighting at intersection, these were: 

 Estimation of negative binomial regression model for nighttime crash frequency. 

 Estimation of negative binomial regression model for daytime crash frequency. 

Results  

Studied Variables 

Table 9.1 shows the definitions of the studied variables for Minnesota, and Table 9.2 

shows the definitions of the studied variables for California. 

http://www.hsrc.unc.edu/
http://www.hsrc.unc.edu/
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Table 9.1 Variables Definitions and Statistics Description of Minnesota Crash Data 

Continuous Variables Min Max Mean Standard Deviation 

Night crash frequency per year (Nit_Freq) 1 29 1.52 1.27 

Day crash frequency per year (Day_freq) 1 45 2.05 1.96 

Average daily traffic (AADT): day model 1,553 110,400 44,238 41,822 

Average daily traffic (AADT) night model 1,227 110,400 41,204 38,589 

Categorical Variables Categories 

Area type indicator (Urb_Rur) (1= urban, and 0= rural) 

Weather condition (weather1) (1= not clear , and 0= clear) 

Road surface condition (rdsurf) (1= not clear, wet, snow, etc., and 0= dry) 

Intersection light condition (light) Night model:  

(1= street lights on, dawn, or dusk, and 0= dark) 

Day model:  

(1= daylight, and 0=otherwise) 

Traffic control indicator (TRF_CNTL) (1= signal, and 0= stop or yield) 

Intersection lighting type (rdwy_lgh) (1= partial lighting, and 0= continuous lighting) 

Intersection type indicator (nbr_legs) (3= T or Y, and 4= Cross) 

Surface type (surf_typ) (1= concrete or asphalt, 0= otherwise) 

Curbs (curb1) (1= both sides, 0= otherwise) 

Number of lanes (no_lanes) (1= 3 or more, and 0= 2 or less) 

Lane width (Lanewid) (1= 12 ft or more, and 0= otherwise) 

Table 9.2 Variables Definitions and Statistics Description of California Crash Data 

Continuous Variables Min Max Mean Standard Deviation 

Night crash frequency per year (Nit_Freq) 1 9 1.27 0.59 

Day crash frequency per year (Day_Freq) 1 71 1.69 1.220 

Average daily traffic (AADT) day model 2,949 228,132 67,478 59,100 

Average daily traffic (AADT) night model 2,949 228,132 72,397 59,937 

Categorical Variables Categories 

Area type indicator (rururb) (1= urban, and 0= rural) 

Weather condition (weather1) (1= not clear , and 0= clear) 

Road surface condition (rdsurf) (1= not clear, wet, snow, etc., and 0= dry) 

Intersection light condition (light) Night model:  

(1= street lights on, dawn, or dusk, and 0= dark) 

Day model:  

(1= daylight, and 0=otherwise) 

Traffic control indicator (trf_cntl) (1= signal, and 0= stop or yield) 

Speed indicator (desg_spd) (1= 45 mph or more, and 0= less than 45 mph) 

Intersection type indicator (typedesc) (3= T or Y, and 4= Cross) 

Surface type (surf_ty1) (1= concrete or bridge deck, 0= otherwise) 

Number of lanes (no_lanes) (1= 3 or more, and 0= 2 or less) 

Lane width (Lanewid) (1= 12 ft or more, and 0= otherwise) 
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Statistical Analysis  

The assumption was made in that all matrix X variables in equation 9.1 were independent 

for both states. For each state, both daytime and nighttime crash frequency models for roadway 

lighting with other variables related to the intersection were estimated. A significance level of 

5% was considered. The backward elimination procedure was carried out to remove the least 

significant variable until the final model was obtained. The Akaike Information Criterion (AIC) 

was considered in which minimum value is better when performing the backward elimination 

procedure.  SAS Software was used to analyze data, all used SAS Software codes for the 

following sections can be seen in Appendix F. 

Minnesota Statistical Analysis 

In the studied period, a total of 19,293 crashes occurred during nighttime in Minnesota 

selected intersections. Nighttime Crashes frequencies were determined manually by counting 

number of crashes occurred in the same night at the same intersection per year. The analysis of 

maximum likelihood parameter estimates for the first model is shown in Table 9.3. After 

performing the backward elimination procedure to eliminate insignificant variables based on the 

5% significance level, the analysis of maximum likelihood parameter estimates for the final 

model is shown in Table 9.4.  

Table 9.3 Analysis of Maximum Likelihood Parameter Estimates for First Nighttime Model 

of Minnesota  

Parameter DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept 1 0.9607 0.1309 0.7041 1.2173 53.84 <.0001 

weather1 1 0.0440 0.0175 0.0097 0.0783 6.32 0.0119 

rdsurf 1 0.2857 0.0177 0.2510 0.3204 260.54 <.0001 

light 1 -0.0372 0.0192 -0.0750 0.0005 3.74 0.0530 

trf_cntl 1 -0.0632 0.0223 -0.1068 -0.0195 8.05 0.0045 

Urb_Rur 1 -0.2673 0.0296 -0.3253 -0.2092 81.48 <.0001 

rdwy_lgh 1 -0.0482 0.0198 -0.0871 -0.0093 5.91 0.0151 

nbr_legs 1 -0.2195 0.0272 -0.2729 -0.1662 64.98 <.0001 

aadt 1 0.0000 0.0000 0.0000 0.0000 285.81 <.0001 

surf_typ 1 0.1522 0.0251 0.1031 0.2014 36.81 <.0001 

curb1 1 0.0022 0.0179 -0.0328 0.0373 0.02 0.9009 

no_lanes 1 0.2568 0.0279 0.2021 0.3114 84.86 <.0001 

lanewid 1 -0.0805 0.0674 -0.2126 0.0517 1.42 0.2326 

Dispersion 1 0.0000 0.0001 0.0000 5.34E129   
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Table 9.4 Analysis of Maximum Likelihood Parameter Estimates for Final Nighttime 

Model of Minnesota  

Parameter DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept 1 0.8853 0.1149 0.6600 1.1106 59.32 <.0001 

weather1 1 0.0438 0.0175 0.0095 0.0781 6.27 0.0123 

rdsurf 1 0.2859 0.0177 0.2512 0.3205 261.10 <.0001 

light 1 -0.0368 0.0192 -0.0744 0.0008 3.68 0.0550 

trf_cntl 1 -0.0634 0.0222 -0.1069 -0.0199 8.16 0.0043 

Urb_Rur 1 -0.2677 0.0296 -0.3257 -0.2098 81.94 <.0001 

rdwy_lgh 1 -0.0484 0.0193 -0.0861 -0.0106 6.30 0.0121 

nbr_legs 1 -0.2193 0.0272 -0.2726 -0.1661 65.15 <.0001 

aadt 1 0.0000 0.0000 0.0000 0.0000 289.40 <.0001 

surf_typ 1 0.1496 0.0248 0.1009 0.1982 36.27 <.0001 

no_lanes 1 0.2541 0.0278 0.1997 0.3085 83.81 <.0001 

Dispersion 0 0.0000 0.0000 0.0000 0.0000   

For the Minnesota daytime model, a total of 44,322 crashes occurred at the selected 

intersections during daytime in the selected period. Daytime crashes frequencies were 

determined manually by counting number of crashes occurred in the same day at the same 

intersection per year. The analysis of maximum likelihood parameter estimates for the first 

daytime model of Minnesota is shown in Table 9.5. After performing the backward elimination 

procedure to eliminate insignificant variables, the analysis of maximum likelihood parameter 

estimates for the final daytime model of Minnesota is shown in Table 9.6. 

Table 9.5 Analysis of Maximum Likelihood Parameter Estimates for First Daytime Model 

of Minnesota  

Parameter DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept 1 1.9866 0.1239 1.7437 2.2296 256.89 <.0001 

weather1 1 0.0177 0.0152 -0.0121 0.0475 1.36 0.2439 

rdsurf 1 0.3795 0.0164 0.3472 0.4117 532.92 <.0001 

light 1 -0.2450 0.0578 -0.3582 -0.1317 17.97 <.0001 

trf_cntl 1 0.0195 0.0179 -0.0155 0.0545 1.20 0.2741 

Urb_Rur 1 -0.1545 0.0238 -0.2011 -0.1079 42.20 <.0001 

nbr_legs 1 -0.4055 0.0236 -0.4518 -0.3592 294.56 <.0001 

aadt 1 0.0000 0.0000 0.0000 0.0000 573.25 <.0001 

surf_typ 1 0.2049 0.0201 0.1654 0.2443 103.62 <.0001 

curb1 1 0.1198 0.0164 0.0876 0.1520 53.17 <.0001 

no_lanes 1 0.2624 0.0232 0.2169 0.3080 127.44 <.0001 

lanewid 1 -0.1506 0.0616 -0.2713 -0.0300 5.99 0.0144 

Dispersion 1 0.0778 0.0046 0.0692 0.0873   
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Table 9.6 Analysis of Maximum Likelihood Parameter Estimates for Final Daytime Model 

of Minnesota  

Parameter DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept 1 1.9830 0.1239 1.7402 2.2258 256.22 <.0001 

rdsurf 1 0.3891 0.0140 0.3617 0.4166 772.51 <.0001 

light 1 -0.2396 0.0576 -0.3526 -0.1267 17.29 <.0001 

Urb_Rur 1 -0.1475 0.0226 -0.1917 -0.1032 42.65 <.0001 

nbr_legs 1 -0.4045 0.0236 -0.4507 -0.3583 293.89 <.0001 

aadt 1 0.0000 0.0000 0.0000 0.0000 617.80 <.0001 

surf_typ 1 0.2055 0.0201 0.1660 0.2449 104.23 <.0001 

curb1 1 0.1199 0.0164 0.0877 0.1520 53.28 <.0001 

no_lanes 1 0.2618 0.0232 0.2163 0.3074 127.06 <.0001 

lanewid 1 -0.1490 0.0615 -0.2696 -0.0284 5.86 0.0155 

Dispersion 1 0.0778 0.0046 0.0693 0.0874   

California Statistical Analysis 

In the studied period, a total of 18,773 crashes occurred during nighttime in California 

selected intersections. Nighttime Crashes frequencies were determined manually by counting 

number of crashes occurred in the same night at the same intersection per year. The analysis of 

maximum likelihood parameter estimates for the California first nighttime model is shown in 

Table 9.7. After performing the backward elimination procedure to eliminate insignificant 

variables based on 5% significance level, the analysis of maximum likelihood parameter 

estimates for the California final nighttime model is shown in Table 9.8.  

Table 9.7 Analysis of Maximum Likelihood Parameter Estimates for First Nighttime Model 

of California  

Parameter DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept 1 -0.4305 0.0812 -0.5897 -0.2712 28.08 <.0001 

weather1 1 0.0145 0.0222 -0.0290 0.0581 0.43 0.5127 

rdsurf 1 0.0931 0.0269 0.0405 0.1458 12.02 0.0005 

light 1 -0.0667 0.0164 -0.0989 -0.0345 16.51 <.0001 

trf_cntl 1 0.0013 0.0217 -0.0412 0.0438 0.00 0.9530 

no_lanes 1 0.0813 0.0210 0.0401 0.1225 14.94 0.0001 

desg_spd 1 0.0294 0.0486 -0.0658 0.1247 0.37 0.5451 

aadt 1 0.0000 0.0000 0.0000 0.0000 9.41 0.0022 

rururb 1 0.0451 0.0190 0.0078 0.0825 5.63 0.0177 

surf_ty1 1 -0.0023 0.0239 -0.0492 0.0447 0.01 0.9247 

lanewid 1 0.0846 0.0333 0.0194 0.1498 6.46 0.0110 

typedesc 1 0.1213 0.0181 0.0858 0.1568 44.80 <.0001 

Dispersion 1 0.0000 0.0001 0.0000 1.32E113   
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Table 9.8 Analysis of Maximum Likelihood Parameter Estimates for Final Nighttime 

Model of California  

Parameter DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept 1 -0.4034 0.0714 -0.5434 -0.2633 31.88 <.0001 

rdsurf 1 0.1043 0.0205 0.0641 0.1444 25.90 <.0001 

light 1 -0.0676 0.0163 -0.0995 -0.0357 17.24 <.0001 

no_lanes 1 0.0835 0.0204 0.0436 0.1234 16.81 <.0001 

aadt 1 0.0000 0.0000 0.0000 0.0000 21.01 <.0001 

rururb 1 0.0471 0.0171 0.0135 0.0806 7.56 0.0060 

lanewid 1 0.0826 0.0327 0.0184 0.1467 6.36 0.0117 

typedesc 1 0.1221 0.0179 0.0871 0.1571 46.76 <.0001 

Dispersion 1 0.0000 0.0001 0.0000 7.35E222   

For the California daytime model, a total of 57,285 crashes occurred during daytime in 

California intersections in the selected period. Daytime crashes frequencies were determined 

manually by counting number of crashes occurred in the same day at the same intersection per 

year. The analysis of maximum likelihood parameter estimates for California first daytime model 

is shown in Table 9.9. After performing the backward elimination procedure to eliminate 

insignificant variables, the analysis of maximum likelihood parameter estimates for the final 

daytime model of California is shown in Table 9.10. 

Table 9.9 Analysis of Maximum Likelihood Parameter Estimates for First Daytime Model 

of California 

Parameter DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept 1 -1.4228 0.0485 -1.5178 -1.3277 860.94 <.0001 

weather1 1 -0.0419 0.0128 -0.0669 -0.0169 10.80 0.0010 

rdsurf 1 0.1524 0.0168 0.1194 0.1854 81.99 <.0001 

light 1 0.2767 0.0132 0.2509 0.3026 440.36 <.0001 

trf_cntl 1 0.1031 0.0122 0.0792 0.1271 71.06 <.0001 

no_lanes 1 0.2043 0.0120 0.1808 0.2278 289.77 <.0001 

desg_spd 1 0.1476 0.0290 0.0908 0.2045 25.90 <.0001 

aadt 1 0.0000 0.0000 0.0000 0.0000 4.93 0.0264 

rururb 1 0.0985 0.0106 0.0777 0.1193 86.17 <.0001 

surf_ty1 1 -0.0200 0.0132 -0.0459 0.0060 2.28 0.1310 

lanewid 1 0.2544 0.0186 0.2179 0.2910 186.11 <.0001 

typedesc 1 0.2922 0.0104 0.2719 0.3125 794.96 <.0001 

Dispersion 0 0.0000 0.0000 0.0000 0.0000   
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Table 9.10 Analysis of Maximum Likelihood Parameter Estimates for Final Daytime Model 

of California 

Parameter DF Estimate Standard 

Error 

Wald 95% 

Confidence Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept 1 -1.4451 0.0460 -1.5352 -1.3550 987.51 <.0001 

weather1 1 -0.0413 0.0128 -0.0663 -0.0163 10.50 0.0012 

rdsurf 1 0.1510 0.0168 0.1180 0.1839 80.57 <.0001 

light 1 0.2769 0.0132 0.2511 0.3027 442.23 <.0001 

trf_cntl 1 0.1113 0.0110 0.0897 0.1329 102.20 <.0001 

no_lanes 1 0.2069 0.0119 0.1836 0.2303 301.06 <.0001 

desg_spd 1 0.1501 0.0290 0.0933 0.2069 26.85 <.0001 

rururb 1 0.0996 0.0105 0.0791 0.1201 90.79 <.0001 

lanewid 1 0.2617 0.0178 0.2268 0.2966 215.95 <.0001 

typedesc 1 0.2979 0.0096 0.2791 0.3167 963.31 <.0001 

Dispersion 1 0.0000 0.0001 0.0000 1.059E80    

 Calculating the Relative Effect for Variables  

The relative effects of each indicator variable were calculated as 𝑒𝛽 − 1. The relative 

effect for Minnesota daytime and nighttime models are shown in Table 9.11, and for California 

are shown in Table 9.12. 

Table 9.11 Relative Effects for Indicator Variables in Minnesota Crash Frequency Models 
Parameter Nighttime Relative Effect (%) Daytime Relative Effect (%) 

weather1 4.48 N/A 

rdsurf 33.10 47.57 

light -3.61 -21.31 

trf_cntl -6.14 N/A 

Urb_Rur -23.49 -13.71 

rdwy_lgh -4.72 N/A 

nbr_legs -19.69 -33.27 

surf_typ 16.14 22.81 

no_lanes 28.93 29.93 

curb1 N/A 12.74 

lanewid N/A -13.84 

Table 9.12 Relative Effects for Indicator Variables in California Crash Frequency Models 
Parameter Nighttime Relative Effect (%) Daytime Relative Effect (%) 

rdsurf 10.99 16.30 

light -6.54 31.90 

no_lanes 8.71 22.99 

rururb 4.82 10.47 

lanewid 8.61 29.91 

typedesc 12.99 34.70 

weather1 N/A -4.05 
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Parameter Nighttime Relative Effect (%) Daytime Relative Effect (%) 

trf_cntl N/A 11.77 

desg_spd N/A 16.20 

Discussion 

Part 1: Minnesota 

Considering the final nighttime crash frequency model of Minnesota, intersection light 

condition (light) variable was not statistically significant at 5% significance level, however, the 

light variable was considered border line significance variable, because the light p-value was 

0.055 which is  a border line value. The intersection lighting type (rdwy_lgh) variable, was 

significant at 5%. This variable compared partial lighting (or roadway feature identification 

lighting) with continuous lighting (or designed roadway lighting) at intersections. The rest of the 

variables in the model were significant at the 5% level, these include: Weather condition, road 

surface condition, traffic control indicator, area type indicator, intersection type indicator, 

AADT, surface type, and number of lanes at intersection.  

Considering final daytime crash frequency model of Minnesota, the intersection lighting 

type variable was not considered in the initial model because during the day street lights are off. 

In the final daytime crash frequency model of Minnesota, the following variables were found 

significant at 5%: Intersection light condition, road surface condition, area type indicator, 

intersection type indicator, AADT, surface type, curbs, number of lanes, and lane width. 

The explanatory variables that were negatively correlated with the expected nighttime 

crash frequency model of Minnesota were the intersection light condition (light), traffic control 

indicator, area type indicator, intersection lighting type, and intersection type indicator. The 

explanatory variables that were positively correlated with the expected nighttime crash frequency 

were weather condition, road surface condition, surface type condition, and number of lanes.  

The explanatory variables that were negatively correlated with the expected daytime 

crash frequency in Minnesota were intersection light condition, area type indicator, intersection 

type indicator, and lane width. The explanatory variables that were positively correlated with the 

expected daytime crash frequency in Minnesota were road surface condition, surface type, curbs, 

and number of lanes.  

To explain the negative and positive correlation between explanatory variables and 

expected crash frequency in the daytime and nighttime models, the relative effects for indicator 
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variables in the crash frequency models of Minnesota were calculated. The relative effects for 

indicator variables in the models can be interpreted as follows. 

Assuming all other explanatory variables in Minnesota daytime and nighttime modes are 

held constant, the relative effects of illuminated intersections are a 3.61% decrease in the 

expected nighttime crash frequency when compared to dark intersections. Urban areas decrease 

the expected nighttime crash frequency by 23.49% compared to rural areas. Partial lighting 

decreases the expected nighttime crash frequency by 4.72% compared to continuous lighting. 

Three legs (T or Y) intersections decrease the expected nighttime crash frequency by 19.69% 

compared to four legs (cross) intersections. Traffic signals decrease the expected nighttime crash 

frequency by 6.14% compared to stop or yield signs. Not clear weather conditions increase the 

expected nighttime crash frequency by 4.48% compared to clear weather conditions. Not clear 

road surface conditions increase the expected nighttime crash frequency by 33.1% compared to 

dry intersections. Roads of three lanes or more increase the expected nighttime crash frequency 

by 28.93% compared to roads of two lanes or less. Not clear road surface conditions increase the 

daytime crash frequency by 47.57% compared to dry intersections. Daylight decreases the 

expected daytime crash frequency by 21.31% compared to dark. Urban areas decrease the 

expected daytime crash frequency by 13.71% compared to rural areas.  Three legs (T or Y) 

intersections decrease the expected daytime crash frequency by 33.27% compared to four legs 

(cross) intersections. Roads of three lanes or more increase the expected daytime crash frequency 

by 29.93% compared to roads of two lanes or less. Roads of 12 ft or more lane width decrease 

the expected daytime crash frequency by 13.84% compared with roads of less than 12 ft lane 

width. 

Part 2: California 

Considering the final nighttime crash frequency model of California, the significant 

variables at the 5% significance level are intersection light condition, road surface condition, 

lanes number, AADT, area type indicator, lane width, and intersection type indicator. 

Considering final daytime crash frequency model of California, the significant variables 

at 5% significance level are weather condition, road surface condition, intersection light 

condition, traffic control indicator, lanes number, speed indicator, area type indicator, lane width, 

and intersection type indicator. 
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The only explanatory variable that was negatively correlated with the expected nighttime 

crash frequency in California model was the intersection light condition. The explanatory 

variables that were positively correlated with the expected nighttime crash frequency were road 

surface condition, lanes number, area type indicator, lane width, and intersection type indicator. 

The only explanatory variable that was negatively correlated with the expected daytime 

crash frequency in California was the weather condition. The explanatory variables that were 

positively correlated with the expected daytime crash frequency in California were road surface 

condition, intersection light condition, traffic control indicator, lanes number, speed indicator, 

area type indicator, lane width, and intersection type indicator. 

To explain the negative and positive correlation between explanatory variables and 

expected crash frequency in the daytime and nighttime models, the relative effects for indicator 

variables in the crash frequency models of California were calculated. The relative effects for 

indicator variables in the models can be interpreted as follows. 

Assuming all other explanatory variables in California daytime and nighttime modes are 

held constant, the relative effects of illuminated intersections are a 6.54% decrease in the 

expected nighttime crash frequency when compared to dark intersections. Urban areas increase 

the expected nighttime crash frequency by 4.82% compared to rural areas. Roads of 12 ft or 

more lane width increase the expected nighttime crash frequency by 8.61% compared to roads of 

less than 12 ft in lane width. Three legs (Y or T) intersections increase the expected nighttime 

crash frequency by 12.99% compared to four legs (cross) intersections. Roads of 3 lanes or more 

increase the expected nighttime crash frequency by 8.71% compared to roads of 2 lanes or less. 

Daylight increases the expected daytime crash frequency by 31.9% compared to dark. Roads of 

three lanes or more increase the expected daytime crash frequency by 22.99% compared to roads 

of two lanes or less. Urban areas increase the expected daytime crash frequency by 10.47% 

compared to rural areas. Roads of 12 ft or more lane width increase the expected daytime crash 

frequency by 29.91% compared to roads of less than 12 ft in lane width. Three legs (Y or T) 

intersections increase the expected daytime crash frequency by 34.7% compared to four legs 

(cross) intersections. Not clear weather conditions decrease the expected daytime crash 

frequency by 4.05% compared to clear weather conditions. Traffic signals increase the expected 

daytime crash frequency by 11.77% compared to stop or yield signs. Driving at a speed of 45 
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mph or more increases the expected daytime crash frequency by 16.2% compared to speeds 

lower than 45 mph.   

Summary 

In studying the effect of intersection lighting on the expected crash frequency reduction, 

both Minnesota and California nighttime crash frequency models showed that the expected 

nighttime crash frequency was reduced for illuminated intersections. In Minnesota, assuming all 

studied variables are held constant, the relative effects of illuminated intersections are a 3.61% 

decrease in the expected nighttime crash frequency when compared to dark intersections, and 

daylight decreases the expected daytime crash frequency at intersections by 21.31% compared to 

dark intersections. In California, assuming all studied variables are held constant, the relative 

effects of illuminated intersections are a 6.54% decrease in the expected nighttime crash 

frequency when compared to dark intersections, but daylight increases the expected daytime 

crash frequency at intersections by 31.9% compared to dark. 

 In addition, for Minnesota nighttime model, partial lighting at intersections decreases the 

expected nighttime crash frequency by 4.72% compared to continuous lighting. This is a unique 

finding, which indicates that partial lighting at intersections performs better than continuous 

lighting at intersections, by reducing the expected nighttime crash frequency. 
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Chapter 10 - Conclusions 

Based on a national survey, approximately 57% of state DOTs illuminate their overhead 

guide signs, while 43% do not. Among those states which illuminate their overhead guide signs, 

the most common light sources used currently are MH, MV, HPS, induction lighting, and LED. 

States’ future plans for increasing overhead guide sign visibility include modifying existing 

lights into new, cost-efficient sources, or using new, brighter retroreflective sheeting for signs.  

Based on a light distribution experiment, the HPS light source provided the best light 

distribution among the conventional light sources followed by MH. Induction lighting source 

provided the best light distribution among light sources of the new generation, followed by the 

LED. The light sources cost analysis showed that induction lighting was the most cost-effective 

light source, followed by LED. In conclusion, combining three decision criteria for light sources 

comparison (light distribution, compliancy with EISA of 2007, and cost), the recommended light 

source to be used by DOTs for overhead guide sign illumination is induction lighting, followed 

by LED.  

According to statistical analysis of the retroreflectivity experiment, Diamond Grade (type 

XI) retroreflective sheeting enabled drivers to read signs’ legend from a longer distance and at 

lower illuminance, followed by High Intensity (type IV). Engineering Grade (type I) was the 

worst performing retroreflective sheeting. Based on the frequency of human subjects at each 

headlights brightness level in the field experiment, the Diamond Grade (type XI) sign was read 

by a majority of subjects at lower illuminance averages: 0.035 lux and 0.037 lux at 180 ft and 

240 ft, respectively. In addition, all participating subjects were able to read the legend on the 

Diamond Grade (type XI) sign, but not the High Intensity (type IV) and Engineering Grade (type 

I) sheeting. Therefore, it was concluded that Diamond Grade (type XI) sheeting provided drivers 

with the highest visibility and legibility compared to High Intensity (type IV). The cost analysis 

of the retroreflective sheeting showed that High Intensity (type IV) retroreflective sheeting could 

be a cost-effective choice for those DOTs with limited budgets to increase overhead guide sign 

visibility and legibility.  

In comparing the best option of each method of increasing sign visibility, external 

illumination and retroreflectivity, the average annual cost when using the 85W induction lighting 

was $45.37, not including labor cost. On the other hand, the annual cost when using High 
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Intensity (type IV) retroreflective sheeting was $39.15, including labor cost, meaning that High 

Intensity (type IV) retroreflective sheeting, which is the alternative solution for DOTs with 

limited budgets, is the most cost-effective method that increases overhead guide sign visibility 

for drivers, and consequently increasing safety on roadways during nighttime.  

Glare experiment for shoulder-mounted guide signs revealed that Diamond Grade (type 

XI) retroreflective sheeting combined with Clearview was the optimal sheeting-font combination 

that provided highest signs’ visibility and legibility to drivers. However, since the Diamond 

Grade (type XI) sheeting is more costly than that for High Intensity (type IV) retroreflective 

sheeting, DOTs with limited budgets can use an alternative sheeting-font combination between 

High Intensity (type IV) and Clearview. Based on the conducted experiment, this combination 

provides sufficient visibility and legibility for drivers, at lower cost. Consequently, the 

alternative combination between High Intensity (type IV) sheeting and Clearview font increases 

visibility, legibility and boosts drivers’ safety on roadways.  

Regardless the sheeting type, the glare experiment showed that Clearview font was a 

better font that increases legibility distance for drivers experiencing glare from an oncoming 

vehicle’s low beam headlights during nighttime. Results of this research will assist DOTs in 

selecting the optimal combination of retroreflective sheeting material and font type for shoulder-

mounted guide sign, to increase signs’ visibility under the presence of glare from an oncoming 

vehicle’s low beam headlights, and consequently increase safety on roadways.  

The glare experiment result could be also generalized for overhead guide signs, in that 

the optimal sheeting-font combination is Diamond Grade (type XI) and Clearview, and the 

alternative combination for DOTs with limited budgets is High Intensity (type IV) and 

Clearview.  

In studying the effect of intersection lighting on the expected crash frequency, both 

Minnesota and California nighttime crash frequency models showed that the expected nighttime 

crash frequency was reduced for illuminated intersections, compared to dark intersections. 

Assuming all the studied variables are held constant, the relative effects of illuminated 

intersections are a 3.61% decrease in the expected nighttime crash frequency when compared to 

dark intersections in Minnesota, and the relative effects of illuminated intersections are a 6.54% 

decrease in the expected nighttime crash frequency when compared to dark intersections in 

California. In addition, for Minnesota nighttime model, partial lighting at intersections decreases 
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the expected nighttime crash frequency by 4.72% compared to continuous lighting. This is a 

unique finding, which indicates that partial lighting performs better than continuous lighting at 

intersections during nighttime.  

Future Research 

The relation between illuminance and retroreflectivity will be studied to establish a 

mathematical relationship between these variables. The established theoretical relationship will 

be verified in laboratory and field experiments.  

Introduction 

Retroreflectivity is an optical phenomenon in which the reflected light rays returned in an 

opposite direction that is close to the direction from which the rays came (Austin & Schultz, 

2009). Multiple reflections within a retroreflector can cause retroreflectivity. Examples on those 

retroreflectors are microspheres of glass plastic and cube corners (Austin & Schultz, 2009). 

Retroreflectivity is the ratio between the light that is visible to the driver and the amount of light 

entering the highway target such as sign or marking (Austin & Schultz, 2009). 

In studying retroreflection, it is useful to review some related photometric quantities. 

Luminous flux (𝜑) is “the light power emitted by a light source” (Beacco, et al., 2003). It is the 

sum of the weighted radiated power within the band of the visible frequency, and in the vision 

case the sensitivity of the human eye is the weight (Beacco, et al., 2003). The luminous intensity 

(I) is “the derivative of the luminous flux along a direction in the space identified by the spatial 

angle ω” (Beacco, et al., 2003). Equation 10.1 represents the luminance intensity. 

𝐼 =
𝜕𝜑

𝜕𝜔
        10.1  

Illuminance (E) is “the incident luminous flux on a unit area of a surface” (Beacco, et al., 

2003). Illuminance can be calculated based on equation 10.2.  

𝐸 =
𝜕𝜑

𝜕𝐴
        10.2 

Where A is the surface area. 

Luminance (L) is “the intensity of the light emitted from an area A observed from a given 

direction” (Beacco, et al., 2003). Luminance can be calculated based on equation 10.3. 

𝐿 =
𝜕𝐼

𝜕(𝐴 𝑐𝑜𝑠 𝑣)
      10.3 
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Where v is the angle between the normal of the surface A and the observation 

direction. 

The surface reflection factor (𝜌) is “the ratio between the reflected and the incident flux” 

(Beacco, et al., 2003). Surface reflection factor should be determined for each pair of incident 

and reflection directions because the luminous intensity depends on the observation direction 

(Beacco, et al., 2003). The relationship between luminance and illuminance can be found in 

equation 10.4. 

𝐿(𝑣) = 𝜌
𝐸

𝜋
= 𝑞𝐸      10.4 

Where q is the luminance coefficient. 

Based on equation 4, for a uniform reflector, if the surface reflection factor is known, and 

if either the illuminance or the luminance is known, the other quantity can be obtained. The 

luminous intensity of the reflected lights depends on the material and it can be vary based on the 

light incident direction (Beacco, et al., 2003). Reflectivity (R) is “the luminance divided by 

illuminance” (Siegmann, et al., 2008).  
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Appendix A - Standard Position of Light Unit Installed for Guide 

Sign Illumination 
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Appendix B - Retroreflectivity Experiment IRB Approval Form 
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Appendix C - Field Experiment Consent Form 

I verify that my signature below indicates that I have read and understand this consent 

form, and willingly agree to participate in this study under the terms described, and that 

my signature acknowledges that I have received a signed and dated copy of this consent 

form. 

(Remember that it is a requirement for the P.I. to maintain a signed and dated copy of the 

same consent form signed and kept by the participant 

Participant Name:   

Participant Signature:    

Date:  

Witness to Signature: (project staff)    

Date:  
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Appendix D - Retroreflectivity Experiment SAS Software Codes 

Libname Exp 'C:\Mohammed Obeidat\Dissertation\Statistic'; 

Proc Format; 

Value Agegroup  

      20-<30 = '20-29' 

      30-<50 = '30-49' 

      50-High = '51 and above'; 

Run; 

Data Exp.Data; 

Input Subject Age Distance Sign Knob_pos Ill_Lux; 

Datalines; 

1 20 240 1 6 0.06 

1 20 240 2 3 0.02 

1 20 240 3 4 0.04 

1 20 180 1 5 0.06 

1 20 180 2 3 0.03 

1 20 180 3 3 0.03 

2 20 240 1 . . 

2 20 240 2 14 0.22 

2 20 240 3 11 0.15 

2 20 180 1 10 0.16 

2 20 180 2 5 0.06 

2 20 180 3 12 0.22 

3 20 240 1 14 0.22 

3 20 240 2 8 0.09 

3 20 240 3 14 0.22 

3 20 180 1 15 0.31 

3 20 180 2 6 0.07 

... 

41 35 240 2 2 0.02 

41 35 240 3 5 0.05 

41 35 180 1 4 0.04 

41 35 180 2 2 0.02 

41 35 180 3 3 0.03 

; 

Run; 

Data Exp.Data1; 

 Set Exp.Data; 

 Agegroup = Put(age, Agegroup.); 

Run; 

Proc Print Data=Exp.Data1 Label; 

Title 'Retroreflectivity Experiment Formatted Data'; 

Label Agegroup ='Age Group' 

   Knob_pos= 'Knob Position' 

   Ill_Lux='Illuminance'; 

Run; 

Title 'Repeated Measure Design'; 

Title 'Finding Significant Variables from Data'; 

Proc Mixed Data=Exp.Data1; 

Class Subject Distance Sign Agegroup; 

Model Ill_lux= Distance|sign|Agegroup/ddfm=satterth; 

Random Subject(Agegroup); 

Run;  

Proc Mixed Data=Exp.Data1; 
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Class Subject Distance Sign Agegroup; 

Model Ill_lux= Distance sign Agegroup Distance*sign Distance*Agegroup 

sign*Agegroup/ddfm=satterth; 

Random Subject(Agegroup); 

Run;  

Proc Mixed Data=Exp.Data1; 

Class Subject Distance Sign Agegroup; 

Model Ill_lux= Distance sign Agegroup Distance*sign Distance*Agegroup 

/ddfm=satterth; 

Random Subject(Agegroup); 

Run;  

Proc Mixed Data=Exp.Data1; 

Class Subject Distance Sign Agegroup; 

Model Ill_lux= Distance sign Agegroup Distance*sign /ddfm=satterth; 

Random Subject(Agegroup); 

Run;  

Proc Mixed Data=Exp.Data1; 

Class Subject Distance Sign; 

Model Ill_lux= Distance sign Distance*sign /ddfm=satterth; 

Random Subject; 

Run;  

Proc Mixed Data=Exp.Data1; 

Class Subject Distance Sign; 

Model Ill_lux= Distance sign /ddfm=satterth; 

Random Subject; 

Run;  

Title 'Keeping Significant Variables Only and/or Interactions'; 

Title1 ' Finding the Least Mean Square for Significant Variables'; 

Title2 'Difference of Least Square Mean'; 

Proc Mixed Data=Exp.Data1; 

Class Subject Distance Sign; 

Model Ill_lux= Distance sign /ddfm=satterth; 

Random Subject; 

Lsmeans Distance Sign /pdiff Adjust =Tukey;  

Run;  
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Appendix E - Glare Experiment IRB Approval Form 
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Appendix F - Database Research SAS Software Codes 

Minnesota Nighttime Model 

PROC IMPORT OUT= WORK.MNDay DATAFILE= "F:\Mohammed Obeidat New\PhD 

Dissertation\Database research\Working on Data\SAS Analysis\Minnesota 

SAS\Files for dissertation\MN Night Frequency Final.xlsx"  

DBMS=xlsx REPLACE; 

GETNAMES=YES; 

RUN; 

Title "Initila Model"; 

Proc genmod data = work.MNDay; 

model Nit_Freq = weather1 rdsurf light trf_cntl Urb_Rur

 rdwy_lgh nbr_legs aadt surf_typ curb1 no_lanes lanewid 

 /dist=negbin link=log; 

Run; 

 

Title "Remove curb1"; 

Proc genmod data = work.MNDay; 

model Nit_Freq = weather1 rdsurf light trf_cntl Urb_Rur

 rdwy_lgh nbr_legs aadt surf_typ no_lanes lanewid 

 /dist=negbin link=log; 

Run; 

 

Title "Remove lanewid"; 

Proc genmod data = work.MNDay; 

model Nit_Freq = weather1 rdsurf light trf_cntl Urb_Rur

 rdwy_lgh nbr_legs aadt surf_typ no_lanes  

 /dist=negbin link=log; 

Run; 

Minnesota Daytime Model 

PROC IMPORT OUT= WORK.MNDay DATAFILE= "F:\Mohammed Obeidat New\PhD 

Dissertation\Database research\Working on Data\SAS Analysis\Minnesota 

SAS\Files for dissertation\MN Day Frequency Final.xlsx"  

            DBMS=xlsx REPLACE; 

        GETNAMES=YES; 

RUN; 

Title "First Model"; 

Proc genmod data = work.MNDay; 

model Day_freq  = weather1 rdsurf light trf_cntl Urb_Rur

 nbr_legs aadt surf_typ curb1 no_lanes lanewid 

 /dist=negbin link=log; 

Run; 

 

Title "Remove trf_cntl"; 

Proc genmod data = work.MNDay; 

model Day_freq  = weather1 rdsurf light Urb_Rur nbr_legs aadt

 surf_typ curb1 no_lanes lanewid 

 /dist=negbin link=log; 

Run; 
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Title "Remove weather1"; 

Proc genmod data = work.MNDay; 

model Day_freq  = rdsurf light Urb_Rur nbr_legs aadt surf_typ

 curb1 no_lanes lanewid 

 /dist=negbin link=log;Run; 

California Nighttime Model 

PROC IMPORT OUT= WORK.MNDay DATAFILE= "F:\Mohammed Obeidat New\PhD 

Dissertation\Database research\Working on Data\SAS Analysis\California 

Data\Files for dessertation\CA Night data.xlsx"  

        DBMS=xlsx REPLACE; 

        GETNAMES=YES; 

RUN; 

Title "First Model"; 

Proc genmod data = work.MNDay; 

model Nit_Freq = weather1 rdsurf light trf_cntl no_lanes

 desg_spd aadt rururb surf_ty1 lanewid typedesc 

 /dist=negbin link=log; 

Run; 

 

Title "Remove trf_cntl"; 

Proc genmod data = work.MNDay; 

model Nit_Freq = weather1 rdsurf light no_lanes desg_spd aadt

 rururb surf_ty1 lanewid typedesc 

 /dist=negbin link=log; 

Run; 

 

Title "Remove surf_ty1"; 

Proc genmod data = work.MNDay; 

model Nit_Freq = weather1 rdsurf light no_lanes desg_spd aadt

 rururb lanewid typedesc 

 /dist=negbin link=log; 

Run; 

 

Title "Remove desg_spd"; 

Proc genmod data = work.MNDay; 

model Nit_Freq = weather1 rdsurf light no_lanes aadt rururb

 lanewid typedesc 

 /dist=negbin link=log; 

Run; 

 

Title "Remove weather1"; 

Proc genmod data = work.MNDay; 

model Nit_Freq =  rdsurf light no_lanes aadt rururb lanewid

 typedesc 

 /dist=negbin link=log; 

Run; 

California Daytime Model 

PROC IMPORT OUT= WORK.MNDay DATAFILE= "F:\Mohammed Obeidat New\PhD 

Dissertation\Database research\Working on Data\SAS Analysis\California 

Data\Files for dessertation\CA Day data.xlsx"  

            DBMS=xlsx REPLACE; 

        GETNAMES=YES; 
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RUN; 

Title "First Model"; 

Proc genmod data = work.MNDay; 

model Day_Freq = weather1 rdsurf light trf_cntl no_lanes

 desg_spd aadt rururb surf_ty1 lanewid typedesc 

 /dist=negbin link=log; 

Run; 

 

Title "Remove surf_ty1"; 

Proc genmod data = work.MNDay; 

model Day_Freq = weather1 rdsurf light trf_cntl no_lanes

 desg_spd aadt rururb lanewid typedesc 

 /dist=negbin link=log; 

Run; 

 

 

Title "Remove aadt"; 

Proc genmod data = work.MNDay; 

model Day_Freq = weather1 rdsurf light trf_cntl no_lanes

 desg_spd rururb lanewid typedesc 

 /dist=negbin link=log; 

Run; 


