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Abstract 

The purpose of this report is to numerically compare several tests that are applicable to 

longitudinal data when the experiment contains a large number of treatments or experimental 

conditions. Such data are increasingly common as technology advances. Of interest is to evaluate 

if there is any significant main effect of treatment or time, and their interactions. Traditional 

methods such as linear mixed-effects models (LME), generalized estimating equations (GEE), 

Wilks' lambda, Hotelling-Lawley, and Pillai's multivariate tests were developed under either 

parametric distributional assumptions or the assumption of large number of replications. A few 

recent tests, such as Zhang (2008), Bathke & Harrar (2008), and Bathke & Harrar (2008) were 

specially developed for the setting of large number of treatments with possibly small 

replications. In this report, I will present some numerical studies regarding these tests. 

Performance of these tests will be presented for data generated from several distributions. 
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CHAPTER 1 - Introduction 

With the development of technologies, “omics” studies, such as genomics, proteomics 

and lipidomics, are becoming more and more popular in biological studies. In these studies, the 

number of variables observed over time, such as gene, protein, and lipid species, are very large, 

but the sample size per treatment is small. For example, in a typical microarray study, the 

number of genes measured is usually ten thousand. Due to the high cost of measurement and 

other reasons, the number of replicates at each time point is often three or four. This type of data 

is called the high dimensional longitudinal data.  

Due to the large number of variables involved, it is often unrealistic to assume common 

variance/covariance structure for all the variables throughout all experimental conditions. For 

this reason, traditional methods such as linear mixed effects model may not be appropriate for 

analyzing high dimensional longitudinal data. With the small replications, some classical 

methods such as generalized estimating equations (GEE) approach tend to be invalid or have low 

power in current setting.  GEE was proposed in Liang and Zerger (1986) to extend quasi-

likelihood for exponential family by Wedderburn (1974) for analyzing longitudinal data.  

Subsequently, Liang and Zeger (1994) had given a description of several different methods to 

analyze the longitudinal data. They developed the models for analysis of longitudinal data from 

different distributions of response variables. For example, for normally distributed variables, 

they recommended to use the general linear models; but for binary and count data, they 

recommended to use the generalized linear models (GLMs). Kshirsagar and Smith (1995) had a 

study about use of growth curves to analyze longitudinal data. Also, Verbeke and Molenberghs 

(2000) provided a comprehensive treatment of linear mixed models for continuous longitudinal 

data. All of these studies are based on parametric model within the exponential family.  

Harrar & Bathke(2008), and Bathke & Harrar(2008) did some studies about 

nonparametric methods in multivariate factorial designs with a large number of treatments. They 

proposed tests that were non-parametric analogues of the ANOVA-type, Bartlett-Nanda-Pillai's, 

and Hotelling-Lawley statistics. The simulations examined in their study indicated that, none of 

the three tests they considered are uniformly best. 

Zhang (2008) also provided a set of nonparametric tests to evaluate the effect of 

treatments, time, and their interactions when there are a large number of heteroscedastic 
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treatment levels. All three references mentioned in this paragraph derived their asymptotic theory 

under the non-classical setting in which the number of treatments is large while the sample sizes 

are small.  

In this report, we will first briefly review the few nonparametric methods in 

aforementioned references. Then we will present the simulation study to investigate their 

numerical performance compared to traditional parametric methods in terms of type I error and 

power estimate. GEE, LME, Wilks' lambda, Pillai's, and Hotelling-Lawley multivariate tests, as 

well as their nonparametric analogs by Harrar & Bathke(2008), and Bathke & Harrar(2008), and 

Zhang’s nonparametric tests will be considered in the comparison.  We will examine the 

robustness of type I error of these methods for data generated from a few distributions including 

normal, gamma and Possion. The power estimates are compared for mixture distribution with 

normal and gamma components.  
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CHAPTER 2 - Background Review 

2.1 Introduction of longitudinal data set  
A longitudinal study is defined as a study in which the response for each experimental 

unit in the study is observed on two or more occasions. A longitudinal data set contains repeated 

observations on each experimental unit. People are usually interested in the pattern of change 

over time or the dependence of the outcome on the covariates.  

Denote the response from the kth subject in the ith treatment at the jth time point as Xijk. 

The observations from the same subject can be denoted as a random vector Xik=( Xi1k , …, Xibk)’ 

, i=1,2,…,a, and  k=1, …,ni. All subjects are typically assumed to be independent. The data can 

be stored in two formats in computer, the long format (Table 2.1) in which each row gives a 

single observation from a subject, and the wide format (Table 2.2) in which all observations from 

the same subject are stored in the same row.  

 
Treatments Times Subjects Responses 

i=1 

1 

1 x111 

2 x112 

… … 

n1 x11n1 

… … … 

b 

1 x1b1 

2 x1b2 

… … 

n1 x1bn1 

… … … … 

i=a 

1 

1 xa11 

2 xa12 

… … 

na xa1na 

… … … 

b 

1 xab1 

2 xab2 

… … 

na xabna 

Table 2-1 Long format 
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Treatments Subjects 
Time 

1 2 … b 

i=1 

1 x111 x121 … x1bt1 

2 x112 x122 … x1b2 

… … … … … 

n1 x11n1 x12n1 … x1bn1 

… … … … … … 

i=a 

1 x111 x121 … xab1 

2 x112 x122 … xab2 

… … … … … 

na x11na x12na … xabna 

Table 2-2 Wide format 

 

2.2 Model Specification  
We have longitudinal data with some discrete factors, such as genotypes, abiotic stresses. 

For ease of notation, we use a single factor treatment to denote a composite factor whose levels 

are level combinations of all discrete factors. In this report, we use factors and variables 

interchangeably. The number of factor levels is large and the number of time points is fixed. In 

high dimensional biological study, the data could be unbalanced. We follow the typical 

experimental setting of small number of subjects. Assume the number of subjects in treatment i 

is ni. For the kth subject, the datum at jth time point of ith factor level is denoted by 

.,...,2,1;,...,2,1;,...,2,1, iijk nkbjaiX ===  We are interested in testing if there is any significant 

differences among the treatments or time points, and whether there exits treatment effects over 

time, i.e. to test the interaction effect between treatments and time points.  

Following the notation of Wang & Akritas (2009) and Wang et al. (2009), a nature model 

is  
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where μ is the overall mean, αi is the effect of the ith treatment, βj is the effect of jth time point, γij 

is the interaction effect of ith treatment at jth time point. The model parameters are defined 

through decomposition of the observation from a randomly selected subject Sk(i) in the ith 

treatment: 

 
with the following constraints  

 
The term eijk includes the measurement error and some random subject by time 

interactions not explicitly written in above model  

 
A justification of the hidden random interactions, as pointed out by Wang et al. (2009) is 

from the Bayes regression model in which both the data and the model parameters come from 

some unknown stochastic process (Morris 1983), or from a multi-level mixed model 

(hierarchical linear model) used in educational research where the response is related to a set of 

subject level predictors via a linear model for each subject at the first stage, and the model 

parameters from the first stage are used as the response variables in a second stage model 

(Raudenbush and Bryk (2002)). The subject specific random effect Bik and the error eijk are not 

independent due to the random interactions included in eijk even though they are typically 

assumed to be independent in models of most text books. 

 

As our interest only lies in the fixed effects, we can combine the random effect Bik and 

the error eijk term together into a single composite error term εijk.  That is, a general marginal 

model without distributional assumption can be written as 

ijkijjiijkX εγβαµ ++++=                                       (2.2.1) 

where εijk is the error term with mean 0 and (εi1k,· ····· , εibk)’ has unknown covariance matrix 

following the fact that observations from the same subject are correlated. The error terms are not 
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necessary following a normal distribution, and the model allows heteroscedastic treatment 

effects. This is necessary particularly due to a large number of factor levels.  

 

2.3 Multivariate and Nonparametric Tests in Longitudinal Data Analysis 

 
In this subsection, we review the three classical multivariate tests, i.e., Wilk’s Lambda, 

Bartlett-Nanda-Pillai’s Trace, and Hotelling-Lawley’s Trace, and their nonparametric analogs 

from Harrar & Bathke(2008), and Bathke & Harrar(2008) for analyzing longitudinal data. The 

difference is mainly in calculation of the degrees of freedom. 

 

2.3.1 The Multivariate Tests 
 

For multivariate tests, the raw data are measurements from multiple variables that may be 

correlated. The structure of multivariate data can be expressed as in Table 2.3:  

p
an

p
a

p
a

anaa

anaa

p
n

pp

n

n

p
n

pp

n

n

a

a

a

xxx

xxx
xxx

xxx

xxx
xxx

xxx

xxx
xxx

aTreatmentTreatmentTreatment

...
............

...

...

...

...

...

...

...
............

...

...

...
............

...

...
...21

21

22
2

2
1

11
2

1
1

22221

2
2

2
22

2
21

1
2

1
22

1
21

11211

2
1

2
12

2
11

1
1

1
12

1
11

2

2

2

1

1

1

 
Table 2-3 The data format for multivariate tests 

 

where, p is the number of different variables (the time points), a is the number of different 

conditions (the treatment), and ni is the number of subjects per condition. To apply the 

multivariate tests to longitudinal data, we can think of the repeated measurements from the same 

subjects as measurements from the p variables that may be correlated. For convenience, we use 

vector notation Xik=(Xik
1, …., Xik

p)’ and denote 

Xi.= total of all vectors from the ith treatment condition 

X.. = overall total 
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nXX ii /. = mean vector of the ith treatment condition
 

nXX /.... = overall mean vector 

 p = Number of dependent variables  

 a = Number of treatments   

 q = rank (C (Xik´ Xik)-1C´) = a-1 

The multivariate tests can only test for the hypothesis regarding treatment effects   

.,...,2,1,0:)(0 aiforallAH i ==α  

The test of no main time or interaction effects can not be conducted through multivariate 

tests.  

 

2.3.1.1 The Classical Multivariate Tests:  

 

a. Wilks’ Lambda 

The Wilks’ Lambda test statistic is define as  

∏ +
=

+
=Λ=

i
WL HE

ET
γ1

1
)det(

)det(  

where  

....
'
..11 ......

11))(( XX
na

XX
n

XXXXnE ii
a

i

a

i ii −=′−−= ∑∑ ==
 

∑ ∑∑∑ −=′−−=
== ij i iiijij

b

j iijiij
a

i
XXXXXXXXH '

..
'

1 ..1
))((  

and γ1 > γ2 ... are the ordered eigenvalues of E-1, this can be transformed to an approximate F-

statistic: 

FW = ( )
pq

urt
t

t 21
/1

/1 −
Λ

Λ−      with degrees of freedom: pq and rt-2u,  

Where,  

p = Number of dependent variables  

k = Number of treatments   

q = rank (C (Xik´ Xik)-1C´) = a-1 

r = (N-k) – (p+k+1)/2  
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u = (pq-2)/4 















 >−+−+−
=

otherwise

qpifqpqp
t

1

05)5/()4( 222222

 
 

b. Bartlett-Nanda-Pillai’s Trace 

The Bartlett-Nanda-Pillai’s trace statistic is define as V = trace (H (H+E)-1) =
i

i

γ
γ
+

Π
1

, 

where (H+E)-1 is the Moore-Penrose generalized inverse of (H+E), E and H are same as in 

Wilks’ Lambda statistic. This can be transformed to an approximate F-statistic as   

FP = 







−








++
++

Vs
V

sm
sn

12
12  with degrees of freedom s (2m+s+1) and s (2n+s+1), 

Where,  

n = (N-a-p-1)/2 

m = (|p-q|-1)/2 

s = min (p,q) 

 

c. Hotelling-Lawley’s Trace 

The Hotelling-Lawley’s trace statistic is defined as U = trace (HE-1) = iγΠ , where, (HE)-1 

is the Moore-Penrose generalized inverse of HE. This can be transformed to an approximate F-

statistic: FHL = 
)12(

)1(2
2 ++

+
sms
Usn    with degrees of freedom: s (2m+s+1) and 2(sn + 1). 

2.3.1.2 Nonparametric Analogs of Multivariate Tests (Harrar & Bathke(2008), Bathke & 

Harrar(2008)) 

Harrar & Bathke(2008) and Bathke & Harrar(2008) both considered rank test statistics 

based on separate rankings for the p different variables, which was called time points in this 

report. Bathke & Harrar(2008) considered balanced case while Harrar & Bathke(2008) 

considered unbalanced case.  
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For the jth sample in the ith treatment condition, the observation for the kth variable X(k)
ij ~ 

F(k)
i, k = 1, … , p, where F(k)

i is the average of left and right continuous version of the cumulative 

distribution function, F(k)
i (x)=  ½ P(X(k)

ij ≤ x) + ½ (X(k)
ij<x).  

Let R(k)
ij be the (mid-) rank of X(k)

ij for all N=a n observations X(k)
11, …, X(k)

an  under 

balanced design (Bathke & Harrar, 2008), or for all ∑ =

a

i in
1

observations X(k)
11, …, X(k)

ana  for the 

kth variable (Harrar & Bathke, 2008).  Denote Rij= (R(1)
ij, … , R(p)

ij)’ and  R= (R11, …, R1n, R21, …,  

Ran), the p x N matrix of rank transforms of all observations based on ranking within each 

variable. For example, in the one-way layout below, each row is ranked separately. 

)()(
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)2()2(
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aTreatmentTreatmentTreatment

 

Table 2-4 The mid-rank of data ranked separately within each variable 

 

where p is the number of different variables (the time points), a is the number of different 

conditions (the treatment), and ni is the number of subjects per condition.  

In both Harrar & Bathke(2008) and Bathke & Harrar(2008), the nonparametric 

hypotheses were stated either in the terms of multivariate distribution or in the marginal 

distributions. Example, in the nonparametric one-way layout, the multivariate null hypothesis 

was as H0:  all of Fi are equal, the marginal null hypothesis was as Ĥ0:  all of F(k)
i are equal, 

where i =1, .., a, k = 1, …, p. 

The test statistics H (the mean squares due to treatment (hypothesis mean sum of 

squares)) and E (the mean squares due to error) based on the quadratic forms as 

'))((1)(

'))((
1

1)(

1 1
..

1 ......

∑∑

∑

= =

=

−−
−

=

−−
−

=

a

i

n

j
iijiij

a

i ii

RRRR
aN

RE

RRRRn
a

RH
   

where .iR  and ..R are p x 1 vectors as same as ijR .   
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Under null hypothesis H0: no treatment effect, the standardized multivariate 

nonparametric test statistics are asymptotically a standard normal with a →∞, n  and p fixed 

(Bathke & Harrar, 2008). 
 

a. Nonparametric Analog of Hotelling-Lawley’s Trace (Harrar & Bathke(2008)) 

 

The Hotelling-Lawley type statistic was denoted as ]))(()1[( 1−−−= GaNHatrU , then, 

the Hotelling-Lawley test is  

])([
2

)1(
1

1

rHEtr
np
naHLa −

−
= −

 
where, r1=rank(E). Here, the approximate Hotelling-Lawley’s statistic is the adjusted test statistic 

FK,D times g, U = FK,D × g, where 
DpaN

Dapg
)1(

)2)(1(
−−−
−−

= , )1( −= apK ,  
1

2)1(4
−

+−
+=

B
apD , and  

)3)((
)1)(2(

−−−−−
−−−−

=
paNpaN

aNpNB  

 

b. Nonparametric Analog of Bartlett-Nanda-Pillai’s Trace (Harrar & Bathke(2008)) 

 

The Bartlett-Nanda-Pillai type statistic was denoted as  

}])()1[()1{( 1−−+−−= EaNHaHatrV , 

then, the Bartlett-Nanda-Pillai test is ])1)[(1(
2

)1(
2

1

rVN
aN

N
nr

naBNPa −−
−
−−

=
  
where r2 is the rank of 

[(a-1) H+ (N-a) E].  And this can be transformed to an approximate F-statistic as  
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−
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=
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 and, γ =min(a-1, p). 
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2.3.2 Tests of Zhang (2008) 
 

The results of Zhang (2008) were given under model (2.2.1). The following notations will 

be used in this subsection of the report,  

∑ =
−=

b

j iji XbX
1 .

1
..

~
,    

 ∑ =
−=

a

i ijj XaX
1 .

1
..

~  

ijijkjjikijijkjji XnoteforkXXCov 2
,1, )var(,),(

1
σσσ ===  

111321321
,

2
,,,, ),,( jjijjjjikijkijkijijkjjjji noteXXXXCov σσσ ==  

 
a. Testing statistics 

1) For the null hypothesis of no treatment effect   

.,...,2,1,0:)(0 aiforallAH i ==α  

Zhang (2008) gave a modified F statistic used in mixed ANOVA model    

A

A
X MSE

MSTAF =)(          (I) 

where  

∑ ∑= =
−

−
=

a

i

b

j iA XX
a

MST
1 1

2
..... )~~(

1
1  

∑ ∑ ∑= = =
−−

−
=

a

i

b

jj ijkij
n

k ijijk
ii

A XXXX
nnab

MSE i

1 1, .1 .
1 11

)()(
)1(

11  

2) For the null hypothesis of no time effect  

.,...,2,1,0:)(0 bjforallBH j ==β  

Zhang (2008) considered a more general hypothesis on the contrast effects as 

),...,(,0:)( 10 ′== bG whereLBH ββββ . A modified Wald-type test statistic is used for 

testing )(0 GBH :      

BBBB LDLVLLDW 1)ˆ( −′′′=                                               (II) 
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where, )~,...,~( ...1. ′= bB XXD , and BV̂  is the estimated b*b covariance matrix for BD , with the value 

at the jth row and j'th column be B
jjV ′ˆ  as   

∑∑ = ′′=

′ −−
−

= in

k jikjiijijk
a

i
ii

B
jj XXXX

nna
V

1 ..12 ))((
)1(

11ˆ . 

3) For the null hypothesis of no interaction effects between treatment and time points 

bjandaiforallABH ij ,...,2,1,,...,2,1,0:)(0 ===γ  

a modified F statistic is given in Zhang (2008)  

AB

AB
X MSE

MSTABF =)(          (III) 

Where, 

∑ ∑= =
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b. Asymptotic distribution of Zhang (2008)’s test statistics 

We state the asymptotic distribution of the test statistics in Zhang (2008).  

For testing .,...,2,1,0:)(0 aiforallAH i ==α , let Fx (A) be the statistic given in (I). 

If Xijk has finite fourth moment, then under H0(A),  

.)1,0()1)((
∞→→

− KasN
V

AFa d

A

X  

Where VA is the variance component, it is defined as 
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For testing ),...,(,,0:)( 10 ′=×= bG matrixcontrstpJaisLwhereLBH ββββ , and 0 is a 

p dimensional zero vector, let WB be the statistic given in (II). If Xijk has finite second and fourth 

moments, then under )(0 GBH ,  

2
p

d
BW χ→       holds for all .,...,1,2 aini =≥  

For testing 0:)(0 =ijallABH γ , let Fx (AB) be the statistic given in (III). If Xijk has 

finite fourth moment, then under )(0 ABH , 

),1,0()1)(( N
V

ABFa d

AB

X →
−  holds for ni ≥ 4. 

 

 

2.3.3 Tests for no time or treatment by time interaction effects from Bathke et. al (2008)  
 

a. Test for no time effect 

To test the null hypothesis of time effect  in model 2.2.1, H0: βj = 0, j =1, …, b, a test 

statistic given in is Bathke et. al (2008) is 

))ˆ(
' ....

∑
=

b

b
B Ptr

xPxNF
 

where 

)11(' 11
.. nn naXx −− ⊗=

 
is the vector of mean of the response variable, and 

])('[
)1(

1ˆ XPIX
na na ⊗

−
=∑

. 
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Note that, we denoted the type I error rates from this test statistic as “Arne” for later 

simulation study of time effect. 

 

b. Tests for no interaction effect  

To test the null hypothesis of no interaction effects in model 2.2.1, H0: γij = 0, where i=1, …, 

a and j =1, …, b, a test statistic given in Bathke et. al (2008) is  

]ˆ)[(
)(' ..

VPPtr
xPPxNF

ba

ba
AB ⊗

⊗
=   

where,   

)
1

1('ˆ

)'11(.

baa

baa

P
n

IXIV

XI
n

Ix

−
⊗⊗=

⊗=
 

We denote this test statistic as “Arne” for the simulation study of interaction effect in 

later chapters. 

Since the asymptotic distribution of above test statistic of the standardized F ratio is 

independent of the underlying population distribution of the response variable when there are a 

large number of treatments, the above test statistic FAB could be approximated by its normal 

theory counterpart with assuming a spherical covariance structure to F-distribution with 

numerator degrees of freedom df1= (a-1) (t-1) and denominator degrees of freedom df2= a (t-1) 

(n-1). In later chapters, we denote this F-distribution approximation as “Arne2” in our simulation 

study. 
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CHAPTER 3 - Simulation Results  

In this section, we report our simulation studies carried out to compare the test statistics 

reviewed in Chapter 2 and some traditional tests. All calculations and simulations were 

conducted with R (2.9.2) programming. All calculations for GEE are based on R package 

“geepack” those for LME are based on commands in package “nlme”. All simulations reported 

here are based on 2000 runs per setting. 

At first, we report some simulation study to evaluate type I error rates for random data 

generated from several distributions, such as normal distribution, gamma distribution, Poisson 

distribution, and beta distribution. Secondly, we use the power analysis to compare above 

methods with data generated from mixture distributions.  

The datasets under the null hypothesis for normal distribution are based on standard 

normal; those for Gamma distribution have shape and scale parameters 1; those for Poisson 

distribution have mean of 4, those for beta distribution have shape and scale parameters 3 and 3. 

All datasets that we used for simulation study were generated based on the model as  

ijkijjiijkX εγβαµ ++++=  

with an AR(1) correlation structure with autocorrelation ρ=0.5. Note that this simple correlation 

structure is to the advantage of the classical methods in that the large number of treatments 

basically provides additional observations to estimate the single common parameter ρ. That is, 

even though we are considering the case of a large number of treatments with small replications, 

the data for different treatments generated under the null hypothesis actually can be pooled 

together to estimate the common parameter ρ leading to a large sample size setting.  

The next three subsections will present the simulation results. For a type I error estimate 

at level 0.05, if the estimate is outside of the 95% ‘confidence’ interval centered at 0.05, i.e., 

0.05+/- (0.05x0.95/2000)0.5x1.96 = (0.0404, 0.0596), the estimate is either conservative or 

liberal. We mark the estimated value with red color for liberal estimate and blue color for 

conservative estimate in all the tables presenting type I error estimate.  
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3.1 Simulation studies for treatment effaces  
In this subsection, we compare the nonparametric test statistics by Zhang (2008), Harrar 

& Bathke(2008), and Bathke & Harrar(2008), and some traditional methods, such as linear 

mixed-effects models (LME), generalized estimating equations (GEE), Wilks' lambda, 

Hotelling-Lawley, and Pillai's multivariate tests by simulation study. 

For all α-level simulation studies under the null hypotheses, we considered data generated 

with number of treatment a=10, 20, 40, 50, 100, 200, 500, the number of time point b=3, 8, and 

the number of replication n= 5 for balanced case or first 3 treatments with 3 replications and rest 

with 5 replications for unbalanced case.  

First, we examined the tests for null hypotheses of no treatment effects For balanced case. 

For each distribution setting, all dataset under the null were generated using the same mean for 

all treatments (a=10, 20, 40, 50, 100, 200, 500) at all time points (t = 3, 8).  

Tables 3-1 to 3-4 gave the type I error estimates with correlation ρ=0.5.  At level α =0.05, 

the error rates of the test by Zhang (2008), are close to 0.05 for all datasets generated by normal, 

gamma, Poisson, and beta distributions when the number of treatments is 40 or higher and the 

number of time points being 3 or 8. When the number of treatments is less than 40, Zhang (2008) 

test is liberal. This is because Zhang’s test is designed for large number of treatments.  

For data from normal distribution, Hotelling-Lawley test also has liberal type I error 

estimate. This may indicate that Hotelling-Lawley requires large sample size for good 

performance. When there are 8 time points and 500 treatments, all tests except Zhang (2008) 

become conservative.  

For data from gamma distribution, the multivariate tests and their nonparametric analogs 

are conservative when there are 40 treatments if the number of time points is 3. Similar 

phenomenon happens when the number of time points is 8 but when there are 200 time points. 

For data from Poisson distribution, we also observed similar pattern except that the estimates are 

less conservative when the number of time points is 3.  

For data from beta distribution, all multivariate tests perform well but GEE and LME 

may be liberal in some cases. 
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  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Pillai 0.053 0.045 0.039 0.059 0.042 0.047 0.053 
Hotelling.Lawley 0.064 0.042 0.044 0.060 0.044 0.046 0.055 
Wilks 0.060 0.049 0.042 0.061 0.044 0.047 0.055 
Bathke.Pillai 0.051 0.042 0.039 0.058 0.040 0.046 0.052 
Bathke.Hotelling 0.056 0.048 0.043 0.058 0.043 0.046 0.055 
Zhang (2008) 0.084 0.062 0.051 0.051 0.052 0.051 0.050 
GEE 0.063 0.056 0.059 0.050 0.046 0.047 0.039 
LME 0.056 0.052 0.055 0.050 0.045 0.049 0.046 

t=8 

Pillai 0.038 0.043 0.051 0.042 0.051 0.056 0.031 
Hotelling.Lawley 0.075 0.062 0.059 0.048 0.054 0.056 0.031 
Wilks 0.053 0.054 0.052 0.044 0.053 0.055 0.031 
Bathke.Pillai 0.042 0.043 0.048 0.041 0.047 0.055 0.031 
Bathke.Hotelling 0.042 0.054 0.051 0.046 0.051 0.054 0.031 
Zhang (2008) 0.080 0.070 0.063 0.053 0.050 0.054 0.049 
GEE 0.063 0.055 0.050 0.053 0.049 0.067 0.031 
LME 0.084 0.052 0.056 0.057 0.050 0.071 0.036 

 
Table 3-1 Estimated type I error rate of the test for null hypotheses with no treatment 
effect at α =0.05. The data generated by standard normal distribution with correlation ρ 
=0.5. The number of replications was 5.  

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Pillai 0.044 0.044 0.035 0.042 0.058 0.050 0.045 
Hotelling.Lawley 0.054 0.055 0.038 0.043 0.060 0.050 0.045 
Wilks 0.049 0.049 0.036 0.044 0.059 0.050 0.044 
Bathke.Pillai 0.044 0.042 0.034 0.049 0.056 0.046 0.043 
Bathke.Hotelling 0.049 0.049 0.037 0.050 0.058 0.050 0.044 
Zhang (2008) 0.057 0.065 0.061 0.054 0.053 0.052 0.052 
GEE 0.062 0.054 0.049 0.054 0.051 0.057 0.051 
LME 0.051 0.050 0.048 0.051 0.047 0.062 0.053 

t=8 

Pillai 0.043 0.045 0.051 0.044 0.048 0.037 0.046 
Hotelling.Lawley 0.047 0.051 0.055 0.054 0.049 0.038 0.047 
Wilks 0.046 0.046 0.051 0.049 0.048 0.037 0.044 
Bathke.Pillai 0.043 0.044 0.051 0.044 0.046 0.036 0.046 
Bathke.Hotelling 0.046 0.048 0.054 0.049 0.048 0.037 0.046 
Zhang (2008) 0.062 0.060 0.054 0.057 0.053 0.051 0.052 
GEE 0.066 0.054 0.046 0.062 0.043 0.039 0.056 
LME 0.087 0.061 0.051 0.066 0.041 0.044 0.061 

 
Table 3-2 Estimated type I error rate of the test for null hypotheses with no treatment 
effect at α =0.05. The data generated by gamma distribution with correlation ρ =0.5. The 
number of replications was 5.  



 18 

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Pillai 0.047 0.049 0.044 0.039 0.043 0.045 0.048 
Hotelling.Lawley 0.062 0.054 0.050 0.037 0.044 0.047 0.049 
Wilks 0.052 0.052 0.047 0.041 0.045 0.045 0.049 
Bathke.Pillai 0.044 0.047 0.042 0.039 0.041 0.043 0.047 
Bathke.Hotelling 0.051 0.050 0.047 0.038 0.043 0.047 0.049 
Zhang (2008) 0.078 0.072 0.055 0.047 0.050 0.056 0.042 
GEE 0.068 0.057 0.051 0.048 0.057 0.073 0.038 
LME 0.057 0.054 0.051 0.043 0.057 0.078 0.041 

t=8 

Pillai 0.044 0.041 0.040 0.047 0.042 0.037 0.041 
Hotelling.Lawley 0.045 0.043 0.042 0.054 0.044 0.037 0.042 
Wilks 0.047 0.043 0.042 0.048 0.043 0.038 0.045 
Bathke.Pillai 0.044 0.038 0.040 0.046 0.039 0.039 0.044 
Bathke.Hotelling 0.046 0.042 0.041 0.050 0.042 0.038 0.044 
Zhang (2008) 0.091 0.075 0.059 0.054 0.051 0.056 0.042 
GEE 0.052 0.051 0.059 0.047 0.058 0.045 0.031 
LME 0.077 0.064 0.063 0.046 0.058 0.048 0.041 

 
Table 3-3 Estimated type I error rate of the test for null hypotheses with no treatment 
effect at α =0.05.  The data generated by Poisson distribution with correlation ρ =0.5. The 
number of replications was 5.  

 

 No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time  

t=3 

Pillai 0.043 0.051 0.049 0.057 0.049 0.043 0.051 
Hotelling.Lawley 0.053 0.059 0.049 0.057 0.050 0.046 0.051 
Wilks 0.046 0.053 0.048 0.057 0.050 0.045 0.051 
Bathke.Pillai 0.040 0.049 0.048 0.053 0.047 0.042 0.051 
Bathke.Hotelling 0.042 0.053 0.048 0.055 0.049 0.046 0.051 
Zhang (2008) 0.086 0.065 0.054 0.059 0.054 0.055 0.045 
GEE 0.055 0.048 0.056 0.053 0.062 0.056 0.055 
LME 0.061 0.048 0.057 0.054 0.059 0.058 0.058 

t=8 

Pillai 0.054 0.046 0.051 0.051 0.049 0.049 0.051 
Hotelling.Lawley 0.063 0.057 0.052 0.055 0.052 0.051 0.051 
Wilks 0.059 0.050 0.051 0.053 0.052 0.050 0.051 
Bathke.Pillai 0.053 0.044 0.047 0.050 0.048 0.049 0.051 
Bathke.Hotelling 0.055 0.051 0.051 0.051 0.050 0.050 0.051 
Zhang (2008) 0.092 0.069 0.069 0.064 0.049 0.049 0.045 
GEE 0.065 0.062 0.048 0.064 0.051 0.046 0.072 
LME 0.072 0.068 0.047 0.063 0.044 0.042 0.063 

 
Table 3-4 Estimated type I error rate of the test for null hypotheses with no treatment 
effect at α =0.05. The data generated by beta distribution with correlation ρ =0.5. The 
number of replications was 5.  
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Secondly, we examined the tests for null hypotheses of no treatment effects for 

unbalanced dataset. The number of replications at each time point for the first 3 treatments is 3, 

and that for all other treatments is 5.  Same as the balance case, all datasets generated by same 

distribution used the same mean for all treatments (a=10, 20, 40, 50, 100, 200, 500) at all time 

points (t = 3, 8).  

For the unbalance data, neither GEE nor LME can be conducted successfully when there 

are a large number of treatments. When we ran the simulations with the R packages “geepack 

“and “nlme”, there were some warnings, such as  

#Warning messages: 

#1: In lme.formula(y ~ as.factor(trt) + as.factor(Time), data = 

data.frame(data),  : 

#  Reached total allocation of 1023Mb: see help(memory.size) 

#2: In lme.formula(y ~ as.factor(trt) + as.factor(Time), data = 

data.frame(data),  : 

#  Reached total allocation of 1023Mb: see help(memory.size) 

Therefore, in this subsection, we report simulation results without GEE and LME. 

Tables 3-5 to 3-8 present the type I error estimates for the unequal case with auto 

correlation ρ=0.5.  In this case, we observed that the type I error estimates for all tests tend to be 

liberal for data from normal or gamma distribution when the number of time points is 3 and the 

number of treatments is small with the exception of trt=10. The multivariate tests and their 

nonparametric analogs are conservative when the number of treatments is 100 and the number of 

time point is 3 for these two distributions.  

For data from Poisson distribution, the multivariate tests are conservative when there are 

8 time points and small number of treatments. On the other hand, Zhang (2008)’s test is too 

liberal to be applicable in such case.  

For data from beta distribution, majority of type I error estimates are good except for a 

few cases that the estimates of some tests are liberal.  
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  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Pillai 0.038 0.064 0.062 0.055 0.021 0.037 0.040 
Hotelling.Lawley 0.037 0.060 0.064 0.054 0.029 0.041 0.043 
Wilks 0.036 0.062 0.065 0.057 0.026 0.040 0.040 
Bathke.Pillai 0.041 0.061 0.060 0.054 0.035 0.047 0.045 
Bathke.Hotelling 0.042 0.060 0.060 0.055 0.037 0.050 0.045 
Zhang (2008) 0.083 0.070 0.062 0.063 0.055 0.051 0.050 

t=8 

Pillai 0.041 0.037 0.052 0.049 0.044 0.058 0.062 
Hotelling.Lawley 0.053 0.041 0.053 0.049 0.057 0.063 0.063 
Wilks 0.049 0.039 0.054 0.051 0.050 0.061 0.063 
Bathke.Pillai 0.051 0.045 0.052 0.050 0.053 0.055 0.057 
Bathke.Hotelling 0.051 0.046 0.053 0.052 0.053 0.057 0.060 
Zhang (2008) 0.080 0.068 0.063 0.057 0.051 0.052 0.051 

 
Table 3-5 Estimated type I error rate of the test for null hypotheses with no treatment 
effect at α =0.05. The data generated by standard normal distribution with correlation ρ 
=0.5. Each of the first 3 treatments has 3 replications, and the others have 5 replications.  

 

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Pillai 0.041 0.072 0.065 0.063 0.024 0.045 0.043 
Hotelling.Lawley 0.040 0.068 0.067 0.062 0.032 0.049 0.046 
Wilks 0.039 0.070 0.068 0.065 0.029 0.048 0.043 
Bathke.Pillai 0.044 0.069 0.063 0.062 0.038 0.055 0.048 
Bathke.Hotelling 0.045 0.068 0.063 0.063 0.040 0.058 0.048 
Zhang (2008) 0.059 0.057 0.061 0.054 0.051 0.053 0.050 

t=8 

Pillai 0.049 0.040 0.060 0.052 0.052 0.059 0.063 
Hotelling.Lawley 0.061 0.044 0.061 0.052 0.065 0.064 0.064 
Wilks 0.057 0.042 0.062 0.054 0.058 0.062 0.064 
Bathke.Pillai 0.059 0.048 0.060 0.053 0.061 0.056 0.058 
Bathke.Hotelling 0.059 0.049 0.061 0.055 0.061 0.058 0.061 
Zhang (2008) 0.125 0.011 0.085 0.071 0.053 0.049 0.050 

 
Table 3-6 Estimated type I error rate of the test for null hypotheses with no treatment 
effect at α =0.05. The data generated by gamma distribution with correlation ρ =0.5. Each 
of the first 3 treatments has 3 replications, and the others have 5 replications.  
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  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Pillai 0.037 0.045 0.048 0.038 0.042 0.048 0.047 
Hotelling.Lawley 0.048 0.049 0.054 0.036 0.043 0.051 0.049 
Wilks 0.040 0.047 0.050 0.040 0.044 0.049 0.048 
Bathke.Pillai 0.035 0.043 0.045 0.038 0.040 0.047 0.047 
Bathke.Hotelling 0.040 0.045 0.050 0.037 0.042 0.050 0.049 
Zhang (2008) 0.061 0.059 0.054 0.052 0.580 0.051 0.048 

t=8 

Pillai 0.035 0.037 0.043 0.045 0.041 0.039 0.042 
Hotelling.Lawley 0.035 0.039 0.045 0.052 0.043 0.039 0.043 
Wilks 0.037 0.039 0.045 0.046 0.042 0.040 0.045 
Bathke.Pillai 0.035 0.034 0.043 0.044 0.038 0.042 0.045 
Bathke.Hotelling 0.036 0.038 0.044 0.048 0.041 0.040 0.044 
Zhang (2008) 0.215 0.116 0.074 0.068 0.053 0.049 0.046 

 

Table 3-7 Estimated type I error rate of the test for null hypotheses with no treatment 
effect at α =0.05. The data generated by Poisson distribution with correlation ρ =0.5. Each 
of the first 3 treatments has 3 replications, and the others have 5 replications.  

 

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Pillai 0.047 0.054 0.050 0.061 0.052 0.042 0.054 
Hotelling.Lawley 0.058 0.063 0.050 0.061 0.053 0.044 0.053 
Wilks 0.050 0.056 0.049 0.061 0.053 0.044 0.054 
Bathke.Pillai 0.044 0.052 0.049 0.056 0.050 0.041 0.053 
Bathke.Hotelling 0.047 0.056 0.048 0.058 0.052 0.044 0.053 
Zhang (2008) 0.086 0.065 0.054 0.059 0.054 0.055 0.045 

t=8 

Pillai 0.060 0.049 0.052 0.052 0.052 0.047 0.044 
Hotelling.Lawley 0.069 0.061 0.053 0.056 0.055 0.049 0.043 
Wilks 0.065 0.053 0.052 0.055 0.056 0.048 0.044 
Bathke.Pillai 0.059 0.047 0.048 0.051 0.051 0.047 0.043 
Bathke.Hotelling 0.060 0.054 0.052 0.052 0.053 0.048 0.043 
Zhang (2008) 0.092 0.069 0.069 0.064 0.049 0.049 0.045 

 
Table 3-8 Estimated type I error rate of the test for null hypotheses with no treatment 
effect at α =0.05. The data generated by beta distribution with correlation ρ =0.5. Each of 
the first 3 treatments has 3 replications, and the others have 5 replications.  
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3.2 Simulation study for time effects  
 

In this subsection, we report simulations for null hypothesis of no time effects. Similar 

with the simulation study for the treatment effects, we randomly generated data from normal, 

gamma, Poisson, and beta distribution for balanced design and unbalanced design. However, the 

multivariate tests and their nonparametric analogs can not test for the time effect. Therefore, we 

only compare tests of Zhang (2008) with GEE, LME, and Bathke et al. (2008) [5] (denoted as 

Arne in all tables thereafter) in this subsection. The test in Bathke et al. (2008) that we will 

compare is a small sample size adjustment of ANOVA type statistics.  

First, we consider type I error estimates in the balanced case. All datasets were randomly 

generated under the null hypotheses of no time effect. Five replications were generated for each 

treatment exactly the same as in the balanced case for the test of no treatment effect.  

The type I error rates at α =0.05 are shown in Tables 3-9 to 3-12.  It is clear that the chi-

square test of Zhang (2008) is very liberal when the number of time point is 8 and the number of 

treatment is not large (≤ 50 for normal and Poisson distribution; ≤ 20 for beta distribut ion, ≤ 10 

for gamma distribution). Bathke et al. (2008)’s small sample size adjustment works very well for 

normal and gamma distributed data. For other tests, it is a general pattern that the estimate is 

liberal when the number of treatments is 10 or 20. We remark that is still an indication of large 

sample size requirement since all data under the null have identical distributions for all 

treatments.  

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Zhang (2008) 0.061 0.059 0.058 0.051 0.058 0.052 0.052 
Arne 0.048 0.055 0.056 0.051 0.055 0.055 0.051 
GEE 0.057 0.061 0.054 0.050 0.049 0.049 0.038 
LME 0.046 0.060 0.049 0.050 0.046 0.045 0.037 

t=8 

Zhang (2008) 0.140 0.086 0.066 0.061 0.056 0.053 0.051 
Arne 0.046 0.047 0.048 0.050 0.052 0.049 0.040 
GEE 0.071 0.058 0.047 0.046 0.043 0.050 0.036 
LME 0.096 0.065 0.052 0.053 0.045 0.051 0.044 

 

Table 3-9 Estimated type I error rate of the test for null hypotheses with no time effect at α 
=0.05. The data generated by standard normal distribution with correlation ρ =0.5. The 
number of replications is 5. 
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 No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time  

t=3 

Zhang (2008) 0.071 0.060 0.053 0.052 0.053 0.044 0.053 
Arne 0.051 0.050 0.047 0.044 0.050 0.041 0.053 
GEE 0.056 0.058 0.052 0.057 0.060 0.047 0.044 
LME 0.051 0.052 0.052 0.056 0.053 0.049 0.040 

t=8 

Zhang (2008) 0.068 0.055 0.051 0.052 0.052 0.054 0.056 
Arne 0.055 0.047 0.044 0.047 0.048 0.042 0.050 
GEE 0.074 0.054 0.058 0.056 0.054 0.046 0.042 
LME 0.098 0.055 0.060 0.065 0.055 0.042 0.037 

 

Table 3-10 Estimated type I error rate of the test for null hypotheses with no time effect at 
α =0.05. The data generated by gamma distribution with correlation ρ =0.5. The number of 

replications is 5. 
 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Zhang (2008) 0.078 0.064 0.060 0.051 0.055 0.044 0.050 
Arne 0.064 0.056 0.056 0.052 0.050 0.043 0.051 
GEE 0.068 0.061 0.056 0.052 0.057 0.049 0.037 
LME 0.057 0.054 0.056 0.045 0.042 0.053 0.035 

t=8 

Zhang (2008) 0.087 0.070 0.067 0.061 0.048 0.052 0.051 
Arne 0.063 0.055 0.039 0.054 0.036 0.053 0.046 
GEE 0.058 0.060 0.054 0.050 0.066 0.058 0.031 
LME 0.080 0.067 0.061 0.052 0.062 0.062 0.051 

 

Table 3-11 Estimated type I error rate of the test for null hypotheses with no time effect at 
α =0.05. The data generated by Poisson distribution with correlation ρ =0.5. The number of 
replications is 5. 
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  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Zhang (2008) 0.074 0.060 0.057 0.050 0.058 0.050 0.048 
Arne 0.060 0.053 0.047 0.047 0.058 0.046 0.048 
GEE 0.068 0.051 0.054 0.056 0.070 0.061 0.045 
LME 0.059 0.049 0.051 0.052 0.061 0.059 0.045 

t=8 

Zhang (2008) 0.079 0.061 0.059 0.055 0.049 0.046 0.048 
Arne 0.051 0.061 0.044 0.042 0.046 0.045 0.043 
GEE 0.073 0.062 0.043 0.055 0.051 0.077 0.063 
LME 0.097 0.067 0.051 0.060 0.041 0.081 0.054 

 

Table 3-12 Estimated type I error rate of the test for null hypotheses with no time effect at 
α =0.05. The data generated by beta distribution with correlation ρ =0.5. The number of 
replications is 5. 

 

Next, we report the test results for null hypotheses of no time effects for unbalanced 

design. The data generation is same as those for the unbalanced case in the test of no main 

treatment effect. That is, 3 replications were generated for the first 3 treatments and 5 

replications for all other treatments. Similar to the test of treatment effects with unbalanced data, 

GEE and LME fail to work when there were a large number of treatments. 

Tables 3-13 to 3-16 gave the type I error rates for the test of no main time effect for 

unbalanced design. The conclusions are similar to the balanced case. 

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 
Zhang (2008) 0.062 0.060 0.053 0.055 0.051 0.044 0.049 

Arne 0.044 0.062 0.056 0.057 0.039 0.041 0.047 

t=8 
Zhang (2008) 0.093 0.070 0.066 0.059 0.052 0.049 0.053 

Arne 0.054 0.044 0.055 0.049 0.049 0.053 0.059 

 

Table 3-13 Estimated type I error rate of the test for null hypotheses with no time effect at 
α =0.05. The data generated by standard normal distribution with correlation ρ =0.5. Each 
of the first 3 treatments has 3 replications, and the others have 5 replications.  
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  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 
Zhang (2008) 0.071 0.062 0.059 0.060 0.054 0.049 0.049 

Arne 0.046 0.072 0.066 0.066 0.040 0.060 0.049 

t=8 
Zhang (2008) 0.110 0.069 0.072 0.060 0.054 0.052 0.043 

Arne 0.061 0.050 0.064 0.057 0.064 0.060 0.064 

 

Table 3-14 Estimated type I error rate of the test for null hypotheses with no time effect at 
α =0.05. The data generated by gamma distribution with correlation ρ =0.5. Each of the 
first 3 treatments has 3 replications, and the others have 5 replications.  

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 
Zhang (2008) 0.073 0.065 0.056 0.061 0.052 0.049 0.049 

Arne 0.039 0.048 0.051 0.043 0.046 0.053 0.053 

t=8 
Zhang (2008) 0.093 0.079 0.067 0.060 0.053 0.047 0.043 

Arne 0.036 0.035 0.045 0.045 0.039 0.043 0.046 

         

Table 3-15 Estimated type I error rate of the test for null hypotheses with no time effect at 
α =0.05. The data generated by Poisson distribution with correlation ρ =0.5. Each of the 
first 3 treatments has 3 replications, and the others have 5 replications.  

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 
Zhang (2008) 0.074 0.057 0.048 0.052 0.048 0.049 0.041 

Arne 0.060 0.053 0.047 0.047 0.058 0.046 0.048 

t=8 
Zhang (2008) 0.078 0.060 0.060 0.056 0.044 0.044 0.041 

Arne 0.050 0.060 0.045 0.042 0.045 0.048 0.048 

 

Table 3-16 Estimated type I error rate of the test for null hypotheses with no time effect at 
α =0.05. The data generated by beta distribution with correlation ρ =0.5. Each of the first 3 
treatments has 3 replications, and the others have 5 replications.  
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3.3 Simulation study for treatment and time point interaction effects 
In this subsection, we report simulations for null hypotheses of no interaction effects of 

treatment and time. Similar to the simulation study for main treatment effects and time effects, 

we randomly generated data from normal, gamma, Poisson, and beta distribution with equal 

number of replications or unequal replications. And for the same reason as explained in section 

3.2, in this part, we only compare tests of Zhang (2008) with GEE, LME, Bathke et al. (2008) [5] 

(that was denoted as Arne, Arne2). 

Tables 3-17 to 3-20 gave type I error estimates for the test of no interaction effect at α 

=0.05. The performance of Zhang (2008) has similar patter to the test of no main treatment 

effect, i.e., the type I error estimate is liberal for small number of treatments in all distribution 

settings.  GEE and LME (especially LME) become liberal in some settings under non-normal 

distributions.  It is very clear that Arne by Bathke et al. (2008) [5] becomes more and more 

conservative as the number of treatments increases. 

  

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Zhang (2008) 0.080 0.063 0.054 0.060 0.055 0.048 0.043 
Arne 0.048 0.033 0.028 0.029 0.022 0.022 0.016 
Arne2 0.051 0.048 0.044 0.047 0.046 0.051 0.048 
GEE 0.059 0.056 0.050 0.047 0.045 0.052 0.078 
LME 0.055 0.055 0.053 0.048 0.042 0.047 0.098 

t=8 

Zhang (2008) 0.073 0.059 0.055 0.048 0.056 0.057 0.051 
Arne 0.011 0.010 0.004 0.002 0.004 0.003 0.000 
Arne2 0.051 0.050 0.048 0.042 0.054 0.051 0.040 
GEE 0.063 0.047 0.048 0.050 0.429 0.057 0.062 
LME 0.093 0.057 0.054 0.050 0.045 0.064 0.071 

 

Table 3-17 Estimated type I error rate of the test for null hypotheses with no interaction 
effect of treatment and time at α =0.05. The data generated by standard normal 
distribution with correlation ρ =0.5. The number of replications is 5. 
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  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Zhang (2008) 0.057 0.066 0.064 0.056 0.052 0.053 0.045 
Arne 0.004 0.023 0.021 0.016 0.019 0.009 0.007 
Arne2 0.048 0.046 0.050 0.049 0.054 0.047 0.045 
GEE 0.055 0.056 0.051 0.053 0.051 0.055 0.042 
LME 0.046 0.053 0.053 0.053 0.046 0.057 0.038 

t=8 

Zhang (2008) 0.066 0.062 0.052 0.051 0.048 0.050 0.043 
Arne 0.003 0.002 0.019 0.004 0.007 0.001 0.003 
Arne2 0.051 0.044 0.047 0.048 0.048 0.039 0.043 
GEE 0.063 0.047 0.055 0.060 0.056 0.050 0.065 
LME 0.088 0.057 0.061 0.064 0.055 0.046 0.056 

 

Table 3-18 Estimated type I error rate of the test for null hypotheses with no interaction 
effect of treatment and time at α =0.05. The data generated by gamma distribution with 
correlation ρ =0.5. The number of replications is 5. 

 

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Zhang (2008) 0.076 0.053 0.058 0.050 0.043 0.049 0.060 
Arne 0.048 0.030 0.023 0.011 0.019 0.017 0.022 
Arne2 0.054 0.043 0.044 0.045 0.042 0.051 0.053 
GEE 0.069 0.058 0.054 0.049 0.059 0.063 0.072 
LME 0.057 0.054 0.051 0.052 0.051 0.063 0.083 

t=8 

Zhang (2008) 0.068 0.054 0.051 0.050 0.050 0.054 0.048 
Arne 0.011 0.032 0.007 0.004 0.001 0.020 0.033 
Arne2 0.055 0.049 0.046 0.048 0.051 0.047 0.049 
GEE 0.056 0.052 0.059 0.044 0.057 0.060 0.061 
LME 0.078 0.060 0.067 0.052 0.061 0.059 0.041 

 
Table 3-19 Estimated type I error rate of the test for null hypotheses with no interaction 
effect of treatment and time at α =0.05. The data generated by Poisson distribution with 
correlation ρ =0.5. The number of replications is 5. 
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  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 

Zhang (2008) 0.079 0.059 0.062 0.053 0.048 0.043 0.051 
Arne 0.049 0.034 0.030 0.026 0.024 0.023 0.017 
Arne2 0.054 0.047 0.057 0.053 0.058 0.051 0.054 
GEE 0.055 0.053 0.052 0.056 0.060 0.055 0.044 
LME 0.061 0.053 0.053 0.058 0.055 0.056 0.045 

t=8 

Zhang (2008) 0.090 0.060 0.056 0.057 0.041 0.052 0.051 
Arne 0.056 0.038 0.031 0.028 0.022 0.017 0.017 
Arne2 0.063 0.051 0.055 0.051 0.051 0.053 0.054 
GEE 0.061 0.063 0.048 0.057 0.050 0.069 0.081 
LME 0.092 0.067 0.055 0.066 0.050 0.066 0.072 

 

Table 3-20 Estimated type I error rate of the test for null hypotheses with no interaction 
effect of treatment and time at α =0.05. The data generated by beta distribution with 
correlation ρ =0.5. The number of replications is 5. 

 

Secondly, simulation study was conducted to test the interaction effect under the null 

hypotheses for unbalanced design. Data were also generated under the same settings as those for 

the test of no main treatment effect. Again, GEE and LME are removed for comparison for 

unbalanced data. Tables 3-21 to 3-24 showed that the conclusions were mostly same with the 

balanced case. 

 

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 
Zhang (2008) 0.071 0.072 0.061 0.050 0.051 0.060 0.052 
Arne 0.011 0.020 0.022 0.031 0.026 0.019 0.017 
Arne2 0.053 0.046 0.049 0.058 0.052 0.050 0.051 

t=8 
Zhang (2008) 0.073 0.059 0.055 0.048 0.056 0.057 0.051 
Arne 0.009 0.013 0.005 0.002 0.000 0.004 0.001 
Arne2 0.052 0.053 0.050 0.047 0.053 0.052 0.044 

 

Table 3-21 Estimated type I error rate of the test for null hypotheses with no interaction 
effect at α =0.05. The data generated by standard normal distribution with correlation ρ 
=0.5. Each of the first 3 treatments has 3 replications, and the others have 5 replications.  
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  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 
Zhang (2008) 0.057 0.066 0.064 0.056 0.052 0.053 0.045 
Arne 0.022 0.015 0.012 0.030 0.021 0.018 0.014 
Arne2 0.040 0.061 0.056 0.056 0.036 0.052 0.043 

t=8 
Zhang (2008) 0.066 0.062 0.052 0.051 0.048 0.050 0.043 
Arne 0.003 0.006 0.003 0.004 0.003 0.003 0.001 
Arne2 0.053 0.044 0.054 0.049 0.054 0.051 0.054 

 

Table 3-22 Estimated type I error rate of the test for null hypotheses with no interaction 
effect at α =0.05. The data generated by gamma distribution with correlation ρ =0.5. Each 
of the first 3 treatments has 3 replications, and the others have 5 replications.  

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 
Zhang (2008) 0.067 0.055 0.061 0.052 0.054 0.043 0.051 
Arne 0.016 0.014 0.009 0.027 0.015 0.016 0.010 
Arne2 0.060 0.058 0.062 0.055 0.052 0.480 0.051 

t=8 
Zhang (2008) 0.075 0.062 0.058 0.052 0.047 0.051 0.049 
Arne 0.003 0.005 0.003 0.004 0.003 0.003 0.001 
Arne2 0.068 0.051 0.047 0.052 0.051 0.044 0.051 

 

Table 3-23 Estimated type I error rate of the test for null hypotheses with no interaction 
effect at α =0.05. The data generated by Poisson distribution with correlation ρ =0.5. Each 
of the first 3 treatments has 3 replications, and the others have 5 replications.  
 

 

  No. treatment 
trt=10 trt=20 trt=40 trt=50 trt=100 trt=200 trt=500 

No. time   

t=3 
Zhang (2008) 0.066 0.051 0.043 0.046 0.043 0.044 0.046 
Arne 0.013 0.011 0.012 0.025 0.013 0.014 0.007 
Arne2 0.061 0.059 0.063 0.056 0.054 0.055 0.048 

t=8 
Zhang (2008) 0.081 0.066 0.066 0.062 0.052 0.052 0.049 
Arne 0.006 0.008 0.006 0.007 0.006 0.000 0.004 
Arne2 0.069 0.053 0.048 0.054 0.053 0.039 0.053 

 

Table 3-24 Estimated type I error rate of the test for null hypotheses with no interaction 
effect at α =0.05. The data generated by beta distribution with correlation ρ =0.5. Each of 
the first 3 treatments has 3 replications, and the others have 5 replications.  
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3.4 Power analysis study 
 

In this subsection, we compare the estimated power for the tests of Zhang (2008) with 

tests by Harrar & Bathke (2008), Bathke & Harrar(2008) and some traditional methods, such as 

LME, GEE, Wilks' lambda, Hotelling-Lawley, and Pillai's multivariate tests. We generated the 

data with auto correlation ρ =0.5. The power analysis reported here is based on 2000 runs per 

setting. 

Figure 3.4.a gives the estimated power curves of the tests of Zhang (2008), Harrar & 

Bathke(2008), Bathke & Harrar(2008), LME, GEE, Wilks' lambda, Hotelling-Lawley, and 

Pillai's multivariate tests in balanced design with 500 treatments, 3 time pints, and 5 replications. 

The data for the ith treatment were generated from one of the two distributions: normal 

distribution with mean µi=3+(b/i)τ if the i ≤100;  gamma distribution with shape parameter 

µi=µ+(b/i)τ and scale parameter 1 if i>100, where b =3 is the number of time points, for τ=1, 10, 

20, 30, 40, 50, 60, 70, 80, 90, and 100.  

 The tests of Zhang (2008) has the highest power when τ is greater than 20. At τ=60, the 

estimated power of the nonparametric analog of Phillai’ test of Harrar & Bathke(2008) is 66%,  

that of Hotelling-Lawley test of Harrar & Bathke(2008) is 77%, that of LME is 53%,  that of 

GEE is 24% , that of  Wilks' lambda is 35%, that of  Hotelling-Lawley is 30%, and that of 

Phillai's multivariate test is 33%. The estimated powers of the tests of Harrar & Bathke(2008) 

and LME  did not reach 1 until τ is 80. GEE, Hotelling-Lawley, and wilks’ lambda had the 

lowest power. 
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Figure 3-1 The estimated power curves at level 0.05 of treatment effects for balanced 
design with 500 treatments, 3 time points, and 5 replications. 

 

Figure 3.4.b showed that power curves of test of Zhang (2008), test by Harrar & Bathke 

(2008), Wilks' lambda, Hotelling-Lawley, and Pillai's multivariate tests under unbalance design 

with 500 treatments, 3 time pints, and  different replications for treatment, such as the first 3 had 

3 replications, others had 5 replications. Since GEE and LME were not work for large number of 

treatment under unbalance data, there were no curves for them. The test of Zhang (2008) had the 

highest power when tau greater than 10. At tau was 100, the powers of Pillai and Hotelling-

Lawley that both based on studies of Harrar & Bathke(2008), and Bathke & Harrar(2008) 

reached to 91% and 93.5%. At tau was 100, Power of Pillai's multivariate tests, Hotelling-

Lawley, and wilks’ lambda had the worst power that were lower than 70%. 
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Figure 3-2 The power curves of treatment effect under unbalanced design with 500 
treatments, 3 time points, and first 3 with 3 replications and others 5 replications. 

 

Next, we report the power ananlysis for time effect for data generated under balanced 

design. The number of treatments is 500, number of time points is 3, and the number of 

replications for each treatment is 5. Similar to the power analysis of treatment effect, the data for 

treatment i was generated from one of the two distributions: normal distribution with mean 

µj=3+(j/a)τ  if j ≤ 2; gamma distribution with shape parameter µj=3+τ(j/a) and scale parameter 1 

if j>2, where a is the number of treatments, j=1, 2, 3, τ=1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 

and100.  Only comparisons among tests of Zhang(2008), Bathke et al. (2008) [5], GEE, and LME 

are reported here.  

 

Figure 3.4.c showed that the chi-square test of Zhang (2008) and the test of Bathke 

(2008) [5] have comparable estimated power that is higher than GEE and LME for large values of 

τ. GEE has the worst power among these four methods. 
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Figure 3-3 The power curves of time effect under balanced design with 500 treatments, 3 
time points, and 5 replications. 
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CHAPTER 4 - Conclusion and recommendations 

In this report, we reviewed and numerically compared several tests that are potentially 

applicable to high dimensional longitudinal data. For the test of no main treatments, potential 

tests include Zhang (2008), linear mixed-effects models (LME), generalized estimating equations 

(GEE), Wilks' lambda, Hotelling-Lawley, and Phillai's multivariate tests, and their 

nonparametric analogs by Harrar & Bathke (2008) and Bathke & Harrar(2008), under balanced 

and unbalanced datasets.  For the test of no main time effect or treatment by time interaction 

effects, potential tests include Zhang (2008), linear mixed-effects models (LME), generalized 

estimating equations (GEE), and the tests in Bathke et al. (2009).  

Our simulation studies suggest that the type I error estimates of the tests in Zhang (2008) 

converges to 0.05 as the number of treatments increases for both balanced and unbalanced 

designs for all distributions considered. The test statistics based on ratio of two quadratic forms 

are insensitive to the number of time points. However, the Wald-type test statistic in Zhang 

(2008) have empirical type I error converges to the true level very slowly as the number of 

treatments increases. In fact, when the number of time points is relatively medium compared to 

the number of treatments, the type I error of the Wald-type test can be very poor.  

GEE and LME may be liberal for some cases and may be conservative for some other 

cases even though their type I error estimates are within the acceptable range majority of time. 

Their performance is less consistent across different distributions. Similar phenomenon is 

observed for the multivariate tests. The nonparametric analogs of the multivariate tests seem to 

have better type I errors and empirical power than the multivariate tests, but are not as powerful 

as the test of Zhang (2008) when the number of treatments is truly large (500).  When the 

number of treatments is small or moderately large, the tests of LME, GEE, Wilks' lambda, 

Hotelling-Lawley, and Pillai's multivariate tests, Harrar & Bathke (2008) seem to be better than 

the test of Zhang (2008) for the auto-correlated data generated in this report in type I error 

estimate.  

Based on the power analysis, GEE, LME, Wilks’ lambda, Hotelling-Lawley, and Pillai's 

multivariate tests have lower power than tests of Zhang (2008) and Harrar & Bathke (2008) for 

detecting main treatment effects.  For main time effects, the powers of Bathke et al. (2008) [5] and 
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Zhang (2008) are comparable and are both more powerful than the traditional tests in LME or 

GEE.  

According to the results of the simulation studies, the traditional methods will perform 

well for the longitudinal data with small number of treatments. But when the number of 

treatments is large, the tests of Zhang (2008) should be more useful in identify significance 

effects in the data.  
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APPENDIX A - R codes for data analysis  

In the Appendix, we provide the R functions that were used for the simulation study and 

for the real data analysis.  

In the R functions for longitudinal data study, there were several input parameters to use, 

such as the input data that denote as “data”, the amount of total treatments that denote as “a”, the 

amount of total time points that denote as “b”, the number of columns of input data that denote 

as “coln”, and the vector of the number of replications for each treatment that denoted as “n”.  

For the study, the input data is a data matrix with 4 columns. The first column is the 

treatment, second column is the time point, third column is the replication, and the forth column 

is the response.  Then, the response is denoted as Xijk that is a response of the ith treatment, the jth 

time point, and the kth replicate. Therefore, the data matrixes as the following format  

211

123

122

121

112

111

112
321
221
121
211
111

x
x
x
x
x
x

 

R code for generate data: 

A1:  To generate data 
#dataformat2 function takes argument data in format1 and converts to dataformat2 

#### x_{ijk}, k=1, ..., n_i are the kth observation from the ith subject at time j. 

# 1 1 1 x111 

# 1 1 2 x112 

# 1 2 1 x121 

# 1 2 2 x122 

# 1 2 3 x123 

 

dataformat2= function(data){  

 m=ncol(data)-2 

  y=c(t(data[,-c(1,2)])) 
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  Time=rep(1:m, nrow(data)) 

  sub=kronecker( data[,1],rep(1, m)) 

  trt=kronecker( data[,2],rep(1, m)) 

  mydata= cbind(trt, Time, sub, y) 

  } 

 

f2=function(t,u) rnorm(t,u) 

f3=function(t) rpois(t,4) 

f4=function(t,u) rgamma(t,u) 

f5=function(t) rbeta(t,3,3) 

 

### R code for null hypotheses data 

datagen=function(a,m,mn,mu,tau,sigmaj =runif(1, 1.2, 1.4) ){ 

rho=0.5 

 covm=rho^abs(matrix(rep(seq(m), m), m, m)- matrix(rep(seq(m), m), m, m, byrow=T)) 

 tran=t(chol(covm) )   # transformation matrix. if X ~ N(0, I), then tran X ~ N(0, A) with 

                       # A being the cov matrix of AR(1), the covariance is sigma and the  

                       # correlation coeff is rho=exp(-1/m).  

                       # i.e. A= sigma(1  rho  rho^2 ... rho^(m-1)  

                       #               rho 1   rho   ... rho^(m-2) 

                       #                  ................... 

                       #               rho^(m-1) rho^(m-2) ... rho) 

### generate data and store it in format1 

data=numeric() 

now=0 

for (j in 1:a){  

  muj=mu 

 fj=function(x, v) f2(x, v) 

 for (i in 1:mn[j]){                                                       

  now=now+1 

   data=rbind(data, c(i, j, muj*fj(m,muj)+ c(sigmaj*tran%*%rnorm(m))))     
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    colnames(data)=c("sub", "trt", paste("time", seq(m), sep=""))   

   }               

   } #end of j                                                       

#above data is in format1 

mydat=dataformat2(data) 

} 

  

#write.table(mydat, file=paste("dat", k, ".txt",sep=""), row.names = F, col.names = T) 

list(dat.format1=data, mydat=mydat, ke.format=ke.format) 

} 

 

A2: Parts of R code for generated data for alterative hypotheses:  

For treatment effect: 

for (j in 1:a){  

  muj=mu+(m/j)*tau 

fj=function(x,v) f2(x,v)*(j<=100)+f4(x,v)*(j>100) 

  for (i in 1:mn[j]){                                                       

 now=now+1 

  data=rbind(data, c(i, j, muj*fj(m,muj)+ c(sigmaj*tran%*%rnorm(m))))     

     colnames(data)=c("sub", "trt", paste("time", seq(m), sep=""))   

    }               

   } #end of j                                                       

 

For time effect: 

for (j in 1:a){  

for (k in 1:m){ 

  muj=mu+(k/a)*tau 

fj=function(x,v) f2(x,v)*(k<=2)+f4(x,v)*(k>2) 

  for (i in 1:mn[j]){                                                       

 now=now+1 

  data=rbind(data, c(i, j, muj*fj(m,muj)+ c(sigmaj*tran%*%rnorm(m))))     
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     colnames(data)=c("sub", "trt", paste("time", seq(m), sep=""))   

     }      

}#end of k          

   }#end of j                                                       

 

A3: R code for calculation of the proposed method: 
dot=function(xbar,n){ 

 a=length(n) 

 result=numeric() 

 for(i in 1:a) result=c(result,rep(xbar[i,],n[i])) 

 result 

 } 

 

ncal=function(data){ 

 a=length(unique(data[,1])) 

 b=length(unique(data[,2])) 

 mn=numeric()  

 for(i in 1:a) mn[i]=length(unique(data[data[,1]==i,3])) 

  list(n=mn,a=a,b=b) 

 } 

### calculate the MSE 

 

msecal=function(newdat,a,n,b){ 

 res2=0  

 resv=0 

 for(i in 1:a){ 

  temp=as.data.frame(newdat[newdat[,1]==i,]) 

  tempfunc=function(x){matrix(x)%*%t(matrix(x))} 

  res=matrix(0,b,b) 

  for(k in 1:n[i]) 
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  res=res+tempfunc((temp$y-temp$Rijdot)[temp$sub==k]) 

  resv=resv+res/(n[i]*(n[i]-1))  # Vjj' 

  res2=res2+sum(res)/(n[i]*(n[i]-1)) 

  }  

 list(msea=res2/(a*b),Vb=resv/(a^2)) 

 } 

 

 

### samfun to got the value of sigma<ijj1> 

 

samfun=function(data,a,b, coln=4){ 

  sgmijj1=numeric() 

  for(i in 1:a){ 

    for(j in 1:b){ 

     for(j1 in 1:b){ 

      x=data[(data[,1]==i & data[,2]==j),coln] 

      y=data[(data[,1]==i & data[,2]==j1),coln] 

      sigijj1= cov(x,y) 

      sgmijj1=rbind(sgmijj1,c(i,j,j1,sigijj1)) 

      } 

     } 

    } 

  sgmijj1 

   }  

 

###taufun is going to cal the value of tauA=(1/ab^2)*(sum(2/n(n-

1))sum(sigma<ijj1>sigma<ij2j3> 

 

taufun=function(Data,sigma, n,a,b){ 

 

 #b = nrow(Data) 
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 #a = length(n) 

 X=Data 

 

 VQ = 0 

 V1 = 0 # variance matrix V1 -- sum(\sigma^2_{i,jj1)) for any j, j1 

   V2 = 0 

   V3 = 0 

 

 for (i in 1:a) { 

 if (i==1) start = 1 else { 

 start = sum(n[1:(i-1)])+1 

  } 

 end = sum(n[1:i]) 

 temp = X[,start:end] 

 temp.1 = cbind(temp[,-1], temp[,1]) 

 Xd = temp-temp.1 # paired difference X_{ijk}-X_{ijk+1} 

 Xd.mult1 = kronecker(Xd, rep(1,b)) 

 Xd.mult2 = kronecker(rep(1,b), Xd) 

 Xd.prod1 = Xd.mult1 * Xd.mult2 

 Xd.mult3 = kronecker(rep(1,b^2), Xd.prod1) 

 Xd.mult4 = kronecker(cbind(Xd.prod1[,-c(1,2)], Xd.prod1[,c(1,2)]), rep(1, b^2)) 

 V.prod = Xd.mult3 * Xd.mult4 

 VQ = VQ + sum(V.prod)/(2*n[i]^2*(n[i]-1)) 

 

 

    V1.id = c(TRUE, rep(c(rep(FALSE, b^2), TRUE), b^2-1)) 

     V1 = V1 + sum(V.prod[V1.id,])/(4*n[i]^2*(n[i]-1))   

     V2 = V2 + sum(V.prod)/(4*b^2*n[i]^2*(n[i]-1))    

     V3.id = c(rep(c(rep(TRUE, b), rep(FALSE, b^2-b)), b-1), rep(TRUE, b), 

               rep(c(rep(FALSE, b), rep(c(rep(FALSE, b^2-b),  

                       rep(TRUE, b)), b)), b-1)) 
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     V3 = V3 + sum(V.prod[V3.id,])/(2*b*n[i]^2*(n[i]-1))   

 } 

 tauA = VQ /(a*b^2) 

   tauAB = 2* (V1 + V2 - V3) /(a*(b-1)^2) 

 

 

 sgma=sum(tapply(sigma[,4], sigma[,1],sum)/n)/(a*b) 

      sgmijsq=sigma[sigma[,2]==sigma[,3],] 

 sgmAB1=mean(tapply(sgmijsq[,4],sgmijsq[,1],sum)/n)/(b-1) 

 sgmAB2=sgma/(b-1) 

 sigmaAB=sgmAB1-sgmAB2 

  

list(tauA=tauA, tauAB=tauAB, sigmaA=sgma, sigmaAB=sigmaAB, 

resulttaufun=c(tauA=tauA, tauAB=tauAB, sigmaA=sgma, sigmaAB=sigmaAB)) 

} 

 

### compute the main effect and interaction  

#note:  

# First coln of data is named trt, second coln is named time 

#     Third coln is named sub, and the last coln is y,  

 

test=function(Data, data, a=ncal(data)$a, b=ncal(data)$b, coln=4, n=ncal(data)$n, 

contrast=cbind(diag(rep(1,b-1)),rep(-1,b-1))){  

  

 trt=data[,1] 

 time=data[,2] 

 sub=data[,3] 

 y=data[,coln] 

 Rij=as.matrix(tapply(y, list(trt, time), mean) ) 

 Ri=as.matrix(apply(Rij, 1, mean) ) 

 Rijdot=dot(Rij,n) 
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 newdat=as.data.frame(cbind(data,Rijdot)) 

 colnames(newdat)=c(colnames(data),"Rijdot") 

  

 

### main test function;  

### test effect A(trt)  

 

 mseA=msecal(newdat,a,n,b)$msea 

 mstA=b*sum((Ri-mean(Ri))^2)/(a-1) 

 Fa=mstA/mseA 

 

 taufuncal=taufun(Data,sigma=samfun(data,a,b,coln),n,a,b) 

 tauA=taufuncal$tauA 

 sigmaA=taufuncal$sigmaA 

 Va=sqrt(tauA)/sigmaA 

 

 test.statA=sqrt(a)*(mstA-mseA)/sqrt(tauA) 

 test.statA 

 

 pA=2*(1-pnorm(abs(test.statA))) 

 

### test effect AB (trt*time) 

 

 Rj=as.matrix(apply(Rij, 2, mean) ) 

  

 Rdot=mean(Ri)   #Rdot is X...(tilde) 

 Rjmatrix=matrix(rep(Rj,a),a,b, byrow=T) 

 mstAB=sum((Rij-c(Ri)-Rjmatrix+Rdot)^2)/((a-1)*(b-1)) 

  

            mseAB1=mean(apply(tapply(newdat$y-  

                        newdat$Rijdot,list(newdat$trt,newdat$Time), 
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  function(x) sum(x^2)),1,sum)/(n*(n-1)))/(b-1) 

 mseAB2=(msecal(newdat,a,n,b)$msea)/(b-1) 

 mseAB=mseAB1-mseAB2 

 

 Fab=mstAB/mseAB 

 tauAB=taufuncal$tauAB 

 sigmaAB=taufuncal$sigmaAB 

  

 Vab=sqrt(tauAB)/sigmaAB 

 

 test.statAB=sqrt(a)*(mstAB-mseAB)/sqrt(tauAB) 

 test.statAB 

 

 pvalueAB=2*(1-pnorm(abs(test.statAB))) 

 

### test effect B (time) 

 

 Vb=msecal(newdat,a,n,b)$Vb 

 Wb=matrix(Rj,nr=1)%*%t(contrast)%*%solve(contrast%*%Vb%*%t(contrast))

%*%contrast%*%matrix(Rj,nc=1) #Chisq dist. 

 pB=1-pchisq(Wb,nrow(contrast)) 

 

### results 

list(Fa=Fa,Fab=Fab,mstA=mstA,mseA=mseA, mstAB=mstAB,mseAB1=mseAB1, 

mseAB=mseAB, test.stat.trt=test.statA, test.stat.inter=test.statAB, p.trt=pA, 

p.time=pB,p.inter=pvalueAB, tauA=tauA, tauAB=tauAB, sigmaA=sigmaA, 

sigmaAB=sigmaAB,  resultmseA=c(mseA=mseA), resultmseAB=c(mseAB=mseAB), 

 resultsgmA=c(sigmaA=sigmaA), resultsgmAB=c(sigmaAB=sigmaAB), 

resultFA=c(Fa=Fa), resultFAB=c(Fab=Fab), resultstatA=c(test.stat.trt=test.statA), 

 resultstatAB=c(test.stat.inter=test.statAB), 

resultPs=c(pA=pA,pB=pB,pvalueAB=pvalueAB), resultPA=c(pA=pA), 
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 resultPB=c(pB=pB), resultVA=c(Va=Va), resultVAB=c(Vab=Vab), 

 resultPAB=c(pvalueAB=pvalueAB), 

 resultTaus=c(tauA=tauA,tauAB=tauAB)) 

 } 

 

A4: R code for calculation of Lawley-Hotelling, Wilks' Lambda, and Bartlett-

Nanda-Pillai. 
### test treatment using Lawley-Hotelling, Wilks' Lambda, Bartlett-Nanda-Pillai 

 

mv.trt.tests=function(dat1){ 

  y=dat1[,-(1:2)] 

  trt=as.factor(dat1[,2]) 

fit1 = manova(y ~ trt) 

old.Wilks=summary(fit1, test='Wilks')$stats[1,6] 

old.Pillai=summary(fit1, test='Pillai')$stats[1,6] 

old.Hotelling.Lawley=summary(fit1, test='Hotelling-Lawley')$stats[1,6] 

old=c( old.Pillai, old.Hotelling.Lawley, old.Wilks ) 

 

########### test from Bathke  et al. 

 

##Bathke's H-L 

a=length(unique(trt) ) 

ntime=ncol(y) 

N=nrow(y) 

B = ((N-ntime-2)*(N-a-1))/((N-a-ntime)*(N-a-ntime-3) ) 

K = ntime*(a -1) 

D = 4 + (ntime*(a- 1) + 2)/(B-1) 

 

#stat.Hotelling.Lawley=summary(fit1, test='Hotelling-Lawley')$stats[1,2] 
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F.Hotelling.Lawley=summary(fit1, test='Hotelling-Lawley')$stats[1,3] 

p.Hotelling=pf(F.Hotelling.Lawley, K, D, lower.tail = FALSE) 

 

##Bathke's Pillai 

gamma=min(a-1,ntime) 

v1=((ntime*(a-1))/(gamma*(N-1)))*(((gamma*(N-a+gamma-ntime)*(N+2)*(N-1))/((N-

a)*(N-ntime))-2)) 

v2=((N-a+gamma-ntime)/N)*((gamma*(N-a+gamma-ntime)*(N+2)*(N-1))/((N-a)*(N-

ntime))-2) 

stat.Pillai=summary(fit1, test='Pillai')$stats[1,2] 

F.Pillai=((stat.Pillai/gamma)/v1)/((1-stat.Pillai/gamma)/v2) 

p.Pillai=pf(F.Pillai, v1, v2, lower.tail = FALSE) 

old=c(old, p.Pillai, p.Hotelling) 

} 

A5: R code for calculation of LME and GEE 
 

library(nlme) 

calcStat.LME = function(sim.data, n) { 

a = length(n) 

b = nrow(sim.data) 

Time =as.vector(row(sim.data)) 

Trt = as.vector(t(matrix(rep(rep(1:a, n), b), ncol=b))) 

Sub = as.vector(col(sim.data)) 

CN = as.vector(sim.data) 

X = cbind(Trt, Time, Sub, CN) 

X = data.matrix(X) 

gls.o=gls(CN~Trt+Time+Trt*Time, data=data.frame(X),corr=corSymm(form=~1|Sub)) 

summary(gls.o) 

nlme.trt=anova(gls.o, type="marginal")$"p-value"[2] 

nlme.time=anova(gls.o, type="marginal")$"p-value"[3] 
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nlme.int=anova(gls.o, type="marginal")$"p-value"[4] 

 

nlmePvalue=cbind(nlme.trt, nlme.time, nlme.int) 

} 

 

## GEE for the probe and time interaction. 

library(geepack) 

calcStat.GEE = function(sim.data, n) { 

a = length(n) 

b = nrow(sim.data) 

Time = as.vector(row(sim.data)) 

Trt = as.vector(t(matrix(rep(rep(1:a, n), b), ncol=b))) 

Sub = as.vector(col(sim.data)) 

CN = as.vector(sim.data) 

X = cbind(Trt, Time, Sub, CN) 

#X = data.matrix(X) 

family = "gaussian" #"poisson" 

gee.o=try(geese(CN~Trt+Time+Trt*Time, id=Sub,data=data.frame(X), 

family=family),T) 

geePvalue.trt=summary(gee.o)$mean[2,4] 

geePvalue.time=summary(gee.o)$mean[3,4] 

geePvalue.int=summary(gee.o)$mean[4,4] 

 

geePvalue=cbind(geePvalue.trt,geePvalue.time,geePvalue.int) 

} 
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