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Abstract 
 

House fly (Musca domestica L.) larvae develop in decaying organic substrates such as 

animal manure and adult flies likely play an important role in the ecology of fecal bacteria, 

including potentially virulent strains. House fly larval development strictly depends on an active 

bacterial community in the habitat. Although the principle of this symbiosis is not well 

understood, this association plays a fundamental role in transmission of microbes by this insect. 

In this study, enterococci were chosen as a model organism to assess the role of house flies in 

dissemination of multi-drug resistant bacteria in the agricultural environment. House flies (FF) 

and cattle manure (FM) from a cattle feedlot (frequent use of antibiotics) and house flies (BF) 

and manure of the American bison (BM) from the Konza Prairie Nature Preserve (no antibiotic 

use) were collected and analyzed. Results showed a significantly higher prevalence of 

enterococci resistant to tetracycline and erythromycin in FM and FF compared to that of BF and 

BM. Enterococcal diversity did not indicate the house fly development in manure in the 

corresponding habitats but the antibiotic resistance data showed very similar profiles among 

isolates from flies and corresponding locations. Resistance genes (tetM, tetS, tetO, ermB) and the 

conjugative transposon Tn916 were the most commonly detected determinants from resistant 

isolates from both environments. The house fly digestive tract was evaluated for the potential for 

horizontal transfer of antibiotic resistance genes among Enterococcus faecalis. Horizontal 

transfer of the pCF10 plasmid with the tetracycline resistance gene (tetM) occurred in the fly 

digestive tract with a transfer rate up to 101 T/D. In addition, eight enterococcal species were 

selected to evaluate their role and survival during house fly development. Overall, the survival 

rate (egg to adult) was significantly higher with E. hirae, E. durans and E. avium compared to 

other strains. These results indicate: a) house flies play an important role in the ecology of 



antibiotic resistant enterococci; b) the house fly digestive tract provides conditions for horizontal 

gene transfer among enterococci, and c) enterococci support the house fly development and can 

colonize the gut of newly emerging adult flies. 
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Abstract 

 
House fly (Musca domestica L.) larvae develop in decaying organic substrates such as 

animal manure and adult flies likely play an important role in the ecology of fecal bacteria, 

including potentially virulent strains. House fly larval development strictly depends on an active 

bacterial community in the habitat. Although the principle of this symbiosis is not well 

understood, this association plays a fundamental role in transmission of microbes by this insect. 

In this study, enterococci were chosen as a model organism to assess the role of house flies in 

dissemination of multi-drug resistant bacteria in the agricultural environment. House flies (FF) 

and cattle manure (FM) from a cattle feedlot (frequent use of antibiotics) and house flies (BF) 

and manure of the American bison (BM) from the Konza Prairie Nature Preserve (no antibiotic 

use) were collected and analyzed. Results showed a significantly higher prevalence of 

enterococci resistant to tetracycline and erythromycin in FM and FF compared to that of BF and 

BM. Enterococcal diversity did not indicate the house fly development in manure in the 

corresponding habitats but the antibiotic resistance data showed very similar profiles among 

isolates from flies and corresponding locations. Resistance genes (tetM, tetS, tetO, ermB) and the 

conjugative transposon Tn916 were the most commonly detected determinants from resistant 

isolates from both environments. The house fly digestive tract was evaluated for the potential for 

horizontal transfer of antibiotic resistance genes among Enterococcus faecalis. Horizontal 

transfer of the pCF10 plasmid with the tetracycline resistance gene (tetM) occurred in the fly 

digestive tract with a transfer rate up to 101 T/D. In addition, eight enterococcal species were 

selected to evaluate their role and survival during house fly development. Overall, the survival 

rate (egg to adult) was significantly higher with E. hirae, E. durans and E. avium compared to 

other strains. These results indicate: a) house flies play an important role in the ecology of 



antibiotic resistant enterococci; b) the house fly digestive tract provides conditions for horizontal 

gene transfer among enterococci, and c) enterococci support the house fly development and can 

colonize the gut of newly emerging adult flies. 
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1. The house fly (Musca domestica L.) 

1.1. Biology, habitat, and behavior 

The house fly (Musca domestica L.) belongs to the order Diptera, family Muscidae 

(Moon, 2002; Triplehorn and Johnson, 2005). They are 6-9 mm long, gray and black colored 

flies. From the public health point of view, house flies are probably the most important nuisance 

insect pest and mechanical vector of pathogens (Graczyk et al., 2001a). House flies occur on all 

continents except Antarctica and have a complete (holometabolus) metamorphosis. Their life 

stages include egg, larva, pupa and adult. Females flies lay eggs directly in the larval 

developmental habitat and the larval stages consist of three instars. Larvae are mobile and 

capable of crawling and burrowing into various decaying organic substrates in search for food. 

Larvae possess porous pharyngeal ridges in their cephalopharyngeal skeleton that is used to filter 

essential food particles and bacteria from the liquid substrates (Dowding, 1967; Moon, 2002). 

The 3rd larval instar stops feeding upon reaching maturity and voids all food contents from the 

digestive tract before pupation. The pupa stage is non-feeding and immobile and encased in a 

puparium. During the pupation process, the 3rd larval integument becomes hard and forms the 

puparium (Frankel and Bhaskaran, 1973; Moon, 2002). Adult house flies are non-biting, they 

have a sponging type of mouthparts. The labellum of mouthparts consists of prestomal teeth on 

the surface of its lobe which is used for food scraping. Labella also contain chemical and 

mechanical receptors (Elzinga and Broce, 1986; Moon, 2002). The house fly digestive system 

consists of the salivary glands, foregut (esophagus, diverticulum, proventriculus), midgut, and 

hindgut. Adults feed on liquids high in carbohydrates. Though house flies are attracted to a 

variety of food materials, labella of sponging mouthparts allow them to feed only on liquid food 

whereas solid foods are liquefied by means of regurgitated saliva (Moon, 2002). For digestion, 
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food moves through the foregut then midgut. Food digestion mainly takes place in the midgut. 

After intake, some foods are temporarily stored in the diverticulum, which can be regurgitated 

and retaken. All undigested food particles and wastes move through the hindgut and is excreted 

by the anus (Moon, 2002).  

House flies require an active microbial community for larval development (Spiller, 1964, 

Schmidtmann and Martin, 1992; Zurek et al., 2000). Consequently, larvae can be found in a wide 

variety of decaying organic substrates rich in microbes. House flies oviposit on and develop in 

decaying organic matters such as animal manure, human garbage dumps, open privies, animal 

bedding, soil bedding, poultry litter, and also in wastes around food and vegetable processing 

plants that have a diverse and active microbial community (Greenberg, 1973; Graczyk et al., 

2001a; Moon, 2002). Clearly, livestock confinement facilities are the primary house fly 

developmental habitat (Skoda and Thomas, 1999). Urban refuse such as wastes from meat 

processing plants can also be the breeding sites for house flies. Several habitats have been 

investigated in more details to characterize the developmental sites of house fly larvae (Campbell 

and McNeal, 1979; Meyer and Petersen, 1983). These include cattle manure, manure mixed with 

soil or hay, and feed of cattle. House fly larval development can occur in fresh manure, 

approximately 2-5 days old. The average colonization period for fly larvae in cattle manure is 22 

days and fly population size fluctuates with the season (Broce and Hass, 1999). House flies 

exhibit broader preferences for age of the manure, moisture, and temperature range for 

development than that of other muscoid flies (Stafford and Bay, 1987; Fatchurochim et al., 

1989).  

House flies can develop throughout the year in tropical countries but not in winter in 

temperate regions. In North America, they develop throughout the year in the southern parts 



 4 

where the temperatures remain above freezing. The house fly developmental time (from egg to 

adult) takes only 14 days under optimum conditions in summer (Moon, 2002). The optimum 

temperature to complete the life cycle is 27-32oC and no development occurs below 10oC. House 

flies are multivoltine and one of the most fecund filth flies. Average longevity for female flies is 

15-25 days and they lay 5-6 batches of eggs (120-150 eggs/cycle) in their lifetime. Under 

temperate climates, the number of generations ranges from 10 to 12 in summer (Skidmore, 1985; 

Hedges, 1990; Moon, 2002). House flies resume the reproductive cycle inside cattle barns, 

poultry houses and other indoor animal facilities in winter time.  

Adult house flies aggregate around garbage, compost piles and enter buildings. They can 

easily get access inside and start crawling on human food or resting on walls, windows and 

ceilings (Moon, 2002). House fly adults are mostly active during the daytime when they are 

engaged mostly in flying, finding the food, feeding, mating, and ovipositing. House flies show 

random dispersal pattern. They exhibit less movement in areas or farms that have more breeding 

sites (Broce, 1993). House flies generally do not fly more than 4 km but they are capable to 

disperse as long as 35 km (Murvosh et al., 1966; Hedges, 1990; Iwasa et al., 1999)   

 

1.2. Digestion of bacteria in the house fly digestive tract 

The contribution of microbial community for the larval development of muscoid flies 

including house flies (Schmidtmann and Martin 1992; Zurek et al., 2000), stable flies (Lysyk et 

al., 1999, Romero et al., 2006), horn flies (Perotti et al., 2001), and face flies (Hollis et al., 1985) 

has been investigated. These studies have clearly demonstrated the dependence of muscoid fly 

larvae on active bacterial communities using artificial or natural media. House fly larval 

development occurs on artificial substrates such as egg yolk agar (Watson et al., 1993; Zurek et 
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al., 2000) and blood agar (Schmidtmann and Martin, 1992) inoculated with selected bacteria as 

well as natural substrates such as cattle manure (Hogsette, 1996) and poultry manure (Moon et 

al., 2001) that were sterilized by autoclaving and inoculated by bacterial isolates. Clearly, no 

muscoid fly larval development occurs in sterile substrates (Gerberich 1948; Schmidtmann and 

Martin 1992; Zurek et al., 2000). The principle of this dependence is not known; however, these 

data indicate that bacteria support larval development by providing some essential nutrients (e.g 

vitamins) (Silverman and Silverman, 1953; Schmidtmann and Martin, 1992; Zurek et al., 2000). 

Several reports have suggested that non-pathogenic bacteria might serve as a primary nutritional 

source for house flies (Levinson, 1960; Silverman and Silverman, 1953; Watson et al., 1993) 

whereas pure culture of pathogenic bacterial strains (eg. Serratia marcescens) are detrimental to 

larval development (Zurek et al., 2000). The midgut of fly larvae is capable to lyse the ingested 

bacteria with several enzymes such as cathepsin-D protease, lysozyme, and acidic pH (Lemos 

and Terra, 1991; Zurek et al. 2000). Salivary enzymes of house fly larvae such as amylase, 

maltase and trehalase enzymes show hydrolytic activities. The pH varies in three different 

regions of the larval midgut (Espinoza-Fuentes and Terra, 1987). The pH is 6.1 in the fore-

midgut, 3.1 in the mid-midgut and 6.8 in the hind-midgut. Digestion mainly takes place in the 

mid-midgut region with acidic pH. Midgut enzymes contain hydrolase, lysozyme, pepsin, 

alkaline phosphatase, aminopeptidase, γ-glutameal transferase and trehalase (Espinoza-Fuentes 

and Terra, 1987). The larval digestive system exhibits several physiological adaptations to kill 

and digest bacteria. First, carbohydrates are degraded in the fore-midgut by amylase activity 

which is secreted from salivary glands, cells of midgut caeca and fore-midgut. Bacteria in the gut 

become more vulnerable to the actions of pepsin, lysozyme and acidic pH when the carbohydrate 

concentration is low (Espinoza-Fuentes and Terra, 1987).  After being digested or killed in the 
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mid-midgut, remaining bacteria reach the hind-midgut. Proteins/ bacteria are mainly digested in 

the hind-midgut by the action of trypsin (Espinoza-Fuentes and Terra, 1987). In the hind-midgut, 

all the digestion takes place inside of the peritrophic membrane. Moreover, the secretions of 

larval salivary glands and hindgut, amylase and maltase can act outside the host body. Their dual 

action includes liquefication of solid food and digestion of starch in surroundings which make 

the glucose available for larvae as a nutritional supplement (Espinoza-Fuentes and Terra, 1987). 

However, the nutritional value of different bacterial species for different species of muscoid 

larvae is variable (Lysyk et al., 1999; Zurek et al., 2000; Romero et al., 2006).  

 

1.3. Pathogen transmission mechanisms of the house fly 

House flies can carry bacteria in their digestive tract or on the body surface (Moon, 

2002). House flies are highly mobile and they can spread bacteria by mechanical contact with the 

substrates. Because of electrostatic charges, the setae and hairs on the body surface of flies have 

higher capacity to attach foreign particles. The viscosity of feces enhances the adhering capacity 

of pathogens/foreign particles to the fly body (Graczyk et al., 1999a). Moreover, the pulvillus 

structure on the fly legs contains sticky substances that accelerate the chances to adhere viruses, 

bacteria or protozoan cysts (Hedges, 1990). House flies can potentially contaminate any substrate 

by the unique regurgitation type of feeding and fecal excretion. The pathogen transmission 

mechanism involves feeding on fecal material with pathogens, ingestion and regurgitation of 

pathogen contaminated digestive fluids or fecal excreta on human food which is eventually 

ingested by people (Osato et al., 1998; Graczyk et al., 2001a). Ingested viruses or bacteria can 

retain their virulence in the fly gut and contaminate the substrate when excreted in feces 

(Greenberg, 1971; Wallace, 1971; Greenberg, 1973; Graczyk et al., 2001b). In addition, the 
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prestomal teeth of the house fly mouthparts can contribute in their capacity to transmit bacteria, 

including pathogens. Previously, prestomal teeth of house flies was considered less damaging in 

comparison to other flies due to the smaller size, shape and more blunt apex as well as feeding 

behavior (Mahan’ko, 1973; Broce and Elzinga, 1984). The more recent report showed that the 

house fly prestomal teeth can be more damaging sometimes due to ≥ 2 vigourous movements 

when they are kept in one place. This teeth even can cut the epithelium conjunctiva about 30-50 

μm deep which may allow the invasion of microorganisms into the host and successful pathogen 

transmission (Kovacs et al., 1990).  

 

1.4. The house fly (Musca domestica L.) as a potential carrier for bacteria 

Musca domestica (L.) belongs to the group of filth flies which poses tremendous health 

risk in public health as potential vector of microorganisms. Biologically and ecologically, the 

house fly habits and habitats make this insect a very effective mechanical vector for microbes. 

House flies have been regarded as mechanical or biological vectors of pathogenic bacteria 

including, Salmonella spp. (Greenberg, 1971), Escherichia coli O157:H7 (Kobayashi et al., 

1999; Moriya et al., 1999; Sasaki et al., 2000; Alam and Zurek, 2004; Ahmad et al., 2007), 

Proteus spp., Shigella spp. (Greenberg, 1971), Chlamydia spp., Campylobacter jejuni (Shane et 

al., 1985), and Vibrio cholerae (Fotedar, 2001; Graczyk et al., 2001). They are also implicated in 

the transmission of other serious diseases such as anthrax, ophthalmia, typhoid fever, 

tuberculosis, cholera and infantile diarrhea (Scott and Lettig, 1962; Greenberg 1965; Keiding, 

1986); protozoan infections such as amebic dysentery (Szostakowska et al., 2004); helminthic 

infections such as pinworms, roundworms, hookworms and tapeworms, as well as viral and 

rickettsial infections (Greenberg 1971; Gregorio, 1972; Greenberg, 1973; Graczyk et al., 2001a). 



 8 

House flies were reported being involved in several disease outbreaks including E. coli O157:H7 

(Sasaki et al., 2000) in Japan and Vibrio cholerae in India (Fotedar, 2001). House flies can also 

transmit eye diseases such as trachoma and epidemic conjunctivitis and infect wounds or skin 

leading to cutaneous diphtheria, mycoses, yaws and leprosy. House flies have been actively 

found with infectious Chlamydia trachomatis causing childhood blindness in children in 

endemic areas (Forsey et al., 1981; Emerson et al., 2000; Graczyk et al., 2001a).  

Furthermore, house flies are now increasingly considered more than a simple mechanical 

vector based on several recent reports (Sasaki et al., 2000; Alam and Zurek, 2004, Macovei and 

Zurek, 2006; Petridis et al., 2006). A nationwide survey of Japan for the prevalence of 

enterohaemorrhagic Escherichia coli (EHEC) in house flies showed that flies (0.6%) carried the 

bacteria, and that almost all positive flies were collected from cowsheds and slaughterhouses. 

The authors also suggested that house flies were not simple mechanical vectors of EHEC, 

because the bacteria proliferated in the mouthparts and were excreted for at least 3 days after 

bacterial feeding after which the number of bacteria abruptly decreased in the gut (Sasaki et al., 

2000). Recently, house flies have been shown to harbor antibiotic resistant bacteria that are an 

increasing public health concern. This study showed that house flies in urban fast-food 

restaurants commonly carried a large and genetically diverse population of enterococci with 

antibiotic resistance and virulence genes that were frequently expressed and likely carried on 

mobile genetic elements and therefore a food safety concern (Macovei and Zurek, 2006). 

Moreover, house flies have been reported as mechanical vector of nosocomial infections of 

multidrug-resistant bacteria in clinical settings (Fotedar et al., 1992; Rady et al., 1992). 
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1.5. Horizontal transfer of antibiotic resistance and virulence genes in digestive tract 

of house flies  

The habitat of house flies harbors a diverse microbial community (Greenberg, 1973; 

Schmidtmann and Martin, 1992; Zurek et al., 2000; Graczyk et al., 2001; Moon, 2002). The 

rapid adaptation process of ingested microbes in the insect gut may involve gene transfer among 

different bacterial strains (Watanabe et al., 1998, Watanabe and Sato, 1998). Several studies 

suggested that the digestive tract of insects provides conditions conducive for horizontal transfer 

of antibiotic resistance genes on mobile genetic elements such as plasmids or transposons 

(Watanabe et al., 1998a; Watanabe et al., 1998b; Hinnebusch et al., 2002; Dillon and Dillon, 

2004). Horizontal transfer of antibiotic resistance genes on plasmids has been shown in 

Collembola, Folsomia candida using E. coli in (Hoffman et al., 1998), Erwinia herbicola in the 

silk worm (Watanabe et al., 1998a; Watanabe et al., 1998b), and Yersinia pestis and E. coli in cat 

fleas (Hinnebusch et al., 2002). Recently, one study reported the horizontal transfer of antibiotic 

resistance genes among E. coli strains in the house fly digestive tract (Petridis et al., 2006). The 

authors reported the horizontal transfer of chloramphenicol resistance genes on a plasmid, or 

lysogenic, bacteriophage-born Shiga toxin gene stx1 (bacteriophage H-19B::Ap1) from the donor 

to recipient E. coli strains. The study showed that the plasmid with the resistance gene was 

transferred in the fly midgut (10-2 / donor cell) and also in the crop (10-3 / donor cell). Transfer of 

the Shiga toxin gene stx1 also occurred at a low frequency through bacteriophage transduction in 

the fly digestive tract. Plasmid transfer was detected in the fly gut after 1 hr exposure to the 

inocula. The authors suggested that the house fly digestive tract serves as an ideal spot for 

resistance gene transfer as well as rapid evolution of virulent strains (Petridis et al., 2006).  
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To our knowledge, there are no reports of horizontal transfer of antibiotic resistance 

genes or any other genes among Gram-positive bacteria in the house fly digestive tract.  

 

2. Enterococci 

2.1. Taxonomy and biology 

Enterococci are Gram-positive cocci and a widely distributed group of bacteria in the 

phylum Firmicutes, class-Bacilli, order-Lactobacillales, family-Enterococcaceae, genus-

Enterococcus (Schleifer and Kilpper-Balz, 1984). The cell arrangement is in single cells, pairs or 

short chains. They are facultative anaerobic, thermoduric, lactic acid bacteria. The optimum 

growth temperature of enterococci is 35oC but they can grow in a wide temperature range from 

10 to 45oC at pH 9.6.  Enterococci can grow in 6.5% NaCl and 40% bile salts and are capable to 

hydrolyze esculin (Sherman and Wing, 1935; Sherman and Wing, 1937; Moellering et al., 1999). 

Previously, enterococci were classified in the genus Streptococcus as a group D-streptococci. In 

1984, enterococci were separated to a different genus based on DNA-DNA re-association data, 

whole protein analysis, and 16S rRNA sequences which made them distinct enough from the 

Streptococcus genus (Schleifer and Kilpper-Balz, 1984; Moellering et al., 1999; Facklam et al., 

2002). So far, 32 different species have been identified in the Enterococcus genus 

(http://www.bacterio.cict.fr/bacdico/ee/enterococcus.html, 2005).  

 

2.2. Enterococci as a part of gut microbiota   

Enterococci comprise the normal facultative anaerobic gut microbiota of animals, 

including humans (Mollering, 2000; Aarestrup et al., 2002; Simjee et al., 2006). They are found 

in mammals, birds, reptiles, and insects. The host range of enterococci is variable depending on 

http://www.bacterio.cict.fr/bacdico/ee/enterococcus.html
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the species. In adult humans, enterococci represent only about 1.0% of intestinal microbiota 

(Sghir et al., 2000) but the population size is much more abundant in the infant gut (Stark and 

Lee, 1982). The fecal enterococcal concentration has been reported as high as 109 CFU/ g feces 

of 4 week old babies (Stark and Lee, 1982) whereas the average concentration range for adults is 

105-107 CFU/ g feces (Jett et al., 1994). Enterococci can be also present in low numbers in 

oropharyngeal secretions, the urogenital tract, and skin. In humans, most common species are E. 

faecalis and E. faecium. Enterococcus faecalis is excreted in 90-100% and E. faecium in 25% of 

human feces (Moellering, 2000; Teixiera and Facklam, 2003). In farm animals, most frequently 

reported species are E. faecalis, E. faecium, E. hirae, and E. durans (Devriese et al., 1987). 

Enterococci have also been reported from various insects including beetles, flies, termites, and 

bees (Martin and Mundt, 1972; Bauer et al., 2000). In insects, most common species were 

reported as E. faecalis, E. faecium, and E. casseliflavus (Fotedar et al., 1992; Sramova et al., 

1992; Bauer et al., 2000; Macovei and Zurek, 2006).  Enterococci were also found in various 

ecological habitats including soil, water, food, and plants, especially when contaminated with 

fecal material (Moellering, 2000; Giraffa, 2002). 

 

2.3. Enterococci as opportunistic pathogens  

For decades, enterococci were not considered as clinically significant (Murray and 

Weinstock, 1999). However, over the past decade, they have become the third most common 

causative agent of nosocomial infections in blood (Wisplinghoff et al., 2004) and the second 

most important causative agent of urinary tract infections and heart infections (Huycke et al., 

1998; Bouza et al., 2001) in the United States. Overall, in the USA, 12.0% of the hospital 

acquired infections are caused by enterococci. These infections are sometimes life threatening 
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and difficult to treat due to the multidrug-resistance of these strains (McGowan et al., 2006; 

Comert et al., 2007; Hew, 2007). Enterococcus faecalis and E. faecium are the clinically most 

important species. Up to 80% clinical isolates are E. faecalis and 20% are E. faecium (Huycke et 

al., 1998; Reynolds et al., 2004; Coque et al., 2005). Although E. faecalis and E. faecium are the 

causative agents of most of the infections, the other species such as E. gallinarum, E. avium, and 

E. durans are also occasionally associated with human infections (Murray, 1990; Devriese and 

Pot, 1995; Tiexeira and Facklam, 2003; Mcgowan et al., 2006). Enterococci frequently also 

cause post surgical infections in humans (Malani et al., 2002). 

Moreover, enterococci confer natural resistance to many antimicrobials that are used in 

clinical settings and also commonly acquire the resistance genes from other bacteria. Their 

ubiquitous nature contributes to the persistent infections and potential transfer of resistance genes 

to other microbes. Most importantly, since 1980s, enterococcal stains developed resistance to 

vancomycin (vancomycin is the last choice to treat the multidrug-resistant enterococci, recently 

quinupristin/dalfopristin also showed efficacy for VRE treatment) (Huycke et al., 1998; Winston 

et al., 2000). The emergence of vancomycin resistant enterococci (VRE) is a serious human 

health concern. According to the Center for Disease Control and Prevention (CDC), 28.5% of the 

nosocomial enterococcal infections in intensive care unit in USA are caused by VRE 

(vancomycin resistant enterococci (Lewis, 2002; NNIS report, 2004; Sherer et al., 2005; 

McGowan et al., 2006). After colonization in patients, 14% of VRE result into active infections 

within 15 days (Calfee et al., 2003).  The risk factors for VRE colonization in hospital patients 

include inter-facility transfer and previous hospitalization record (Weinstein et al., 1996; 

Ostrowsky et al., 1999). VRE are also capable to transfer the vanA phenotype to more pathogenic 

bacteria such as Staphylococcus aureus which possess a serious threat in clinical settings 
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(Flannagan et al., 2003; Weigel et al., 2003). Most of the VRE isolates are multi-drug resistant 

and vancomycin resistance is most commonly found among E. faecium (Teixeira and Facklam, 

2003). There is an increasing trend (20 fold from 1989 to 1993) of emergence of VRE which are 

responsible for nosocomial infections (Moellering, 2000; Mundy, 2000). Based on the clinical 

laboratory data, 52% E. faecium and 1.9% E. faecalis were vancomycin resistant in 1997 (Simjee 

et al., 2006). In the USA, increased mortality is reported for enterococcal endocarditis infections 

(Mc Donald et al., 2005). Severity of infections, age and prior antibiotic therapy are the common 

risk factors for mortality from enterococcal infections (Sood et al., 1998). Serious enterococcal 

infections are not easily treatable with one type of drug, so the drug of choice is a combination 

therapy of drugs (Herman et al., 1991). 

 

2.4. Antibiotics and development of antibiotic resistance 

Antibiotics are chemical compounds that act in a specific way to kill or inhibit the growth 

of bacteria. Some antibiotics are naturally produced by bacteria or fungi. Synthetic and semi-

synthetic antibiotics are called antibacterials (Salyers and Whitt, 2005). Antibiotic resistance is 

the capability of bacteria and other microorganisms to resist the action of antibiotics. Multi-drug 

resistance has become a serious issue in clinical medicine. The main concern is the increase of 

resistance development in virulent bacterial strains and its correlation to the heavy use of 

antibiotics. The resistant bacteria are selected for by the selective pressure and by disseminating 

and sharing the resistance genes (Bogaard et al., 2000).   

Bacteria develop resistance to antimicrobials in two main different ways: a) DNA 

mutation and b) acquisition of resistance genes from other bacteria by horizontal gene transfer. 

Bacteria can acquire resistance genes by three general mechanisms: transduction, transformation 
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and conjugation (Rice, 2000). In transduction process, DNA moves from one bacterium to 

another through a bacteriophage. Transformation mechanisms involve the intake of free DNA 

from the environment and integration into the host chromosome by DNA recombination 

(Dowson et al., 1989). Conjugation process occurs during cell to cell contact where DNA moves 

on a plasmid or transposon from a donor cell to a recipient cell (Swinfield et al., 1990; Dunny et 

al., 1995; Rice, 1998; Rice, 2000).  

The rapid spread of antibiotic resistance is likely due to the heavy use of antibiotics in 

food animal productions and clinical medicine. Antibiotics are used for treatment and 

prophylaxis in clinical settings and animal productions. In the USA, antibiotics are used 

frequently as one of the feeding supplements to animal feed for growth promotion and to 

increase feed efficacy (Bogaard et al., 2000). The use of low level antibiotics (e.g. 

oxytetracycline, tylosin) in cattle feed and water are very important to producers to get efficient 

production, healthy livestock and higher longevity and productivity of food animals (Schroeder 

et al., 2002; Sprague, 2006; Sapkota et al., 2007). However, this heavy use of antibiotics has 

become a serious public health concern because the continuous practice of antibiotic use in food 

animals has lead to the rapid emergence, selection, and spread of resistant, commensal and 

potentially virulent bacterial strains. These resistant strains already have been reported from the 

food animals, in animal based food products, surrounding environmental samples (water, air, soil 

etc.) and also from farmers (Sørum et al., 2006; Sapkota et al., 2007,). Although the therapeutic 

and sub-therapeutic levels of antibiotics in animal feed is approved and regulated by FDA, no 

specific data collection system is available on the amounts that are used in animal feed. To close 

this data information gap several research groups have published estimates based on the USDA 

livestock production data and FDA antibiotic usage regulations. Approximately 60-80% of the 
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total antibiotics produced in the USA are used at sub-therapeutic levels in food animals (Mellon 

et al., 2007; Sapkota et al., 2007). Among these antibiotics, many compounds such as 

tetracyclines, macrolides, streptogramins and fluoroquinolones have analogue compounds that 

are also used in the clinical medicine (Turnidge, 2004; FDA, 2007; Sapkota et al., 2007). This 

poses a serious risk to public health due to the enormous selective pressure on environmental 

bacteria and consequently, the selection and spread of resistant strains to clinical settings.  

European Union (EU) banned the antibiotic-based growth promoters in animal-feed in 

1999 in attempt to reduce the prevalence of antibiotic resistant strains (Lester et al., 2006). In 

2005, it was the first time the US Food and Drug Administration (FDA) banned a veterinary 

drug, enrofloxacin (Baytril), which had been used in poultry to treat respiratory disease 

(Turnidge, 2004). CDC reports showed that using this drug in poultry likely leads to an increase 

of ciprofloxacin resistant campylobacters which account 21% infections in humans per year 

(http:// www.cdc.org). 

 

2.5. Antibiotic resistance of enterococci in humans and animals  

Enterococci show intrinsic resistance to several categories of antibiotics, including low 

levels of aminoglycosides, beta-lactams (especially 3rd generation of cephalosporins), and 

quinolones (Ogier and Serror, 2008). Moreover, enterococci are capable to acquire frequent 

resistance and virulence genes through plasmids and transposons (Kak and Chow, 2002; Hew, 

2006; Simjee et al., 2006). Over time, enterococci have become more important as pathogens and 

consequently placed under more antibiotic pressure for treatment of several serious infections 

resulting in greater selection of resistant strains.  

http://www.cdc.org
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Ampicillin belongs to the β-lactam group which acts by inhibiting the peptidoglycan 

synthesis. Enterococci show naturally, intrinsic resistance to β-lactam compounds because of 

their lower affinity to PBPs (penicillin binding proteins). However, the degree of resistance 

differs among different β-lactam agents for enterococci (Kak and Chow, 2002; Simjee et al., 

2006). Aminoglycosides bind to the 16S rRNA of the 30S ribosomal subunit and inhibit the 

protein synthesis of bacteria. Enterococci show a very low level resistance to this class of drugs. 

Aminoglycosides act more effectively on enterococci in combination with penicillins or 

glycopeptides than alone (Kak and Chow, 2002). Streptomycin antibiotic falls into the class of 

aminoglycosides, which is produced as a secondary metabolite by Streptomyces strains. Since 

early 1940s, streptomycin had been used to treat several severe infections. Resistance 

mechanisms of enterococci to this class of antibiotics involve aminoglycoside modifying 

enzymes and resistance to the cell wall active agents (Fontana et al., 1996). 

Glycopeptide antibiotics are also cell wall biosynthesis inhibitors of Gram-positive 

bacteria. They bind to D-Ala D-Ala and interfere with the cross-linking of the peptidoglycan. 

Vancomycin is one of the major one that is used in treating the severe multi-drug resistant Gram-

positive infections. Enterococci confer resistance to glycopeptides by modifying the target by 

changing D-Ala-D-Ala presursor composition at one end which can be D-Ala-D-lactate or D-

Ala-D-serine (Bugg et al., 1991). In enterococci, there are six gene clusters: vanA, vanB, vanC, 

vanD, vanE, vanG. Five of these are acquired resistance traits and one is intrinsic/natural 

resistance (vanC) (Gholizadeh and Courvalin, 2000; Kak and Chow, 2002). The specific 

resistance mechanisms are followed by a series of events, encoding the enzymes,  sensing the 

presence of enzymes, making a resistant phenotype of peptidoglycan, and elimination of the 
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normal peptidoglycan  precursors for prevention for further binding to cell wall (Kak and Chow, 

2002).. 

Macrolides inhibit protein synthesis of bacteria. Erythromycin falls in the macrolide 

group. It acts by binding to the 50S ribosome which blocks P site and inhibits peptidyl transfer 

and translocation (Weisblum, 1995; Jensen et al., 1999). Enterococci confer acquired resistance 

to this type of antibiotic by specific enzyme production which methylates an adenine residue in 

the 23S rRNA of the 50S ribosomal subunit, resulting in a lower binding efficacy to bacterial 

ribosomes (Jensen et al., 1999).  

Chloramphenicol is also a protein synthesis inhibitor antibiotic. It acts by binding to the 

50S ribosomes and blocks the peptidyl transferase reaction (Shaw, 1983). Chloramphenicol 

became the drug of choice for enterococcal infections due to resistance development to other 

drugs. But as it has been used very frequently, enterococci have developed resistance to this 

antibiotic as well (Kak and Chow, 2002). Chloramphenicol resistance is mediated by an acetyl 

transferase enzyme by which acetylation occurs in chloramphenicol hydroxyl molecule thus 

prevent ribosomal binding (Shaw, 1983).  

Tetracycline also works as a protein synthesis inhibitor. It is a bacteriostatic drug and also 

inhibits protein synthesis by binding to the 30S ribosomal subunit and blocking the charged 

aminoacyl t-RNA binding (McMurray and Levy, 2000). This drug is commonly used in 

veterinary medicine (in food animals) as oxytetracycline and chlortetracycline. Enterococci show 

resistance by rapid efflux of the drug from the cell or by production of proteins that bind to the 

drug and protect bacterial ribosomes (Jones et al., 1998; Kak and Chow, 2002; FDA, 2007).  

Ciprofloxacin belongs to the fluoroquinolone group and it is a synthetic compound. It 

shows bactericidal activity and inhibits DNA gyrase and topoisomerase and thus inhibits 
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bacterial DNA replication and specifically reduces DNA supercoiling. Enterococci confer 

resistance to ciprofloxacin by mutational change in the parC gene and the gyrA gene (Kanematsu 

et al., 1998; Kak and Chow, 2002). 

 

2.6. Virulence determinants in enterococci 

The majority of enterococci are commensals of animals and humans. This balanced 

relation can be changed depending on various predisposing factors and by some enterococcal 

strains acquiring virulence traits. Consequently, enterococci have become increasingly important 

as a serious nosocomial pathogen. Several studies showed that virulent lineages of enterococci 

are different from the normal flora populations (Willems et al., 2000; Kak and Chow, 2002).  

Enterococci can posses several factors which enable them to become more virulent. Cytolysin is 

a bacterial toxin which is expressed in E. faecalis and responsible for hemolytic and bactericidal 

activity (Hancock and Gilmore, 2000). A complex operon of eight genes encodes the production 

of cytolysin (Gilmore et al., 1990; Ike et al., 1990; Segarra et al., 1991; Gilmore et al., 1994; 

Coburn et al., 1999; Haas et al., 2002). The cylA gene encodes the production of a serine protease 

similar to subtilisin which is secreted by general secretory pathway independently (Gilmore et 

al., 1990). The two structural subunits of cytolysin, CylLL and CylLS generate CylLL
' and CylLS

' 

which eventually generate the production of active toxin subunits CylLL
'' and CylLS

'' (Booth et 

al., 1984; Segarra et al., 1991). Another virulence factor of enterococci is gelatinase. It exhibits 

proteolytic activity and is capable to liquefy gelatin, lactoglobulin, fibrin, collagen, casein, and 

human endothelin (Makinen et al., 1989; Garcia de Fernando et al., 1991; Waters et al., 2003). 

Gelatinase is a zinc-mettaloprotease enzyme, encoded by gelE which is regulated by the fsr 

operon (Gilmore et al., 2002; Hancock and Perego, 2004).  The role of fsr regulatory locus as a 
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two-component system in biofilm formation has been investigated. Studies with E. faecalis 

OG1RF showed that the complete fsr locus is needed for gelatinase production (Gilmore et al., 

2002) and gelE inactivation can prevent biofilm formation in E. faecalis V583 (Hancock and 

Perego, 2004). Enterococcus protein, the aggregation substance, is a surface protein and encoded 

by pheromone responsive plasmid and plays an important role during conjugation and horizontal 

gene transfer (Clewell, 1993). Enterococcus surface protein, Esp acts as an adhesion protein and 

exhibits higher cell colonization in infections and also contributes to biofilm production (Shankar 

et al., 2001; Toledo-Arana et al., 2001; Hew et al., 2006). 

 

2.7. Mobile genetic elements (plasmids and transposons) 

Bacteriophages, plasmids, transposons, and insertion sequences carry DNA that can be 

transferred horizontally among different cells. Enterococci possess a great variety of plasmids 

and transposons some of which have been identified and studied. Plasmids and transposons of 

enterococci show similar characteristics to those of enterobacteria but some of them are very 

unique. This gene movement plays a very important role in spread of resistance and virulence 

traits. Enterococci are capable to transfer genes to more pathogenic bacteria such as 

Staphylococcus aureus, a potential human pathogen. Rapid emergence of MRSA (Methicillin 

resistant Staphylococcus aureus) and VRSA (vancomycin resistant Staphylococcus aureus) in 

hospitals is a very serious concern for public health. Recent report shows that the VRSA strain 

from US hospitals has acquired vancomycin resistance genes, eg. vanA from vancomycin 

resistant E. faecalis (Flannagan et al., 2003; Weigel et al., 2003; Sung and Lindsay, 2007). 

Vancomycin resistant E. faecalis V583 carries one of the highest proportions of mobile or 

acquired DNA among the known bacterial genomes. In V583, >25% of the whole genome 
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consists of mobile or acquired DNA. This mobile DNA includes three plasmids, seven integrated 

phage regions, 38 insertion elements, several conjugative and composite transposons, 

pathogenicity island, and integrated plasmid genes (Paulsen et al., 2003).  

Enterococci have three types of self replicating plasmids: RCR (rolling circle replicating) 

plasmids, Inc18 plasmids and the most well studied pheromone responsive plasmids. The 

pheromone responsive plasmids are conserved to enterococci in terms of replication whereas the 

other two types of plasmids have the capacity to replicate non-specifically in Gram-positive 

bacteria.  

Enterococci may acquire multi-drug resistance through different conjugation 

mechanisms. The conjugation mechanisms include pheromone responsive plasmid conjugation, 

non-pheromone responsive plasmid conjugation, and conjugative transposons. Pheromone 

responsive plasmid conjugation system is extensively studied in E. faecalis and it is restricted 

within the same species (Dunny et al., 1978; Buttaro et al., 2000; Hirt et al., 2005). In this 

conjugation process, pheromone oligopeptide and pheromone responsive plasmids are involved. 

E. faecalis recipient strains typically secrete peptide pheromone which induces the transfer of 

specific plasmids from the potential donor E. faecalis strains. The plasmid pCF10 specifically 

responds to cCF10 pheromone from the recipient cells. The plasmid pCF10 encodes the 

conjugation genes, cCF10 induces the expression of conjugative transfer genes, such as prgB. 

prgB then encodes the aggregation substance on the cell surface. This sticky protein causes cell-

cell aggregation or clumping of cells. This clumping allows the transfer of specific pheromone 

responsive plasmid from donor to recipient strains (Olmsted et al., 1991; Bensing and Dunny, 

1993; Murray, 1998; Buttaro et al., 2000). After the plasmid acquisition, the plasmid transfer 

stops but aggregation substance (Asc10) is present for long time on cell surface (Hirt et al., 
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2005). This conjugation process is very efficient and was investigated in several in vitro and in 

vivo studies. In enterococci, five pheromone plasmids pAD1, pCF10, pPD1, pOB1 and pAM373 

have been described, each of which responses to specific pheromones (Wirth, 1994).  

Non-pheromone responsive conjugation mechanism involves plasmids which can 

replicate in a wide range of hosts. Enterococci are capable transfering resistance genes within 

and to different Gram-positive bacteria such as streptococci and staphylococci. However, 

plasmid transfer in this conjugation system is less efficient than pheromone responsive 

conjugation process (Clewell, 1981; Swinfield et al., 1990; Murray, 1998).  

Enterococci have several distinct classes of transposons. Those are Tn3-family 

transposons, composite transposons, and conjugative transposons (Weaver et al., 2002). In this 

study, conjugative transposons, Tn916 and Tn916 /Tn1545 family were screened from 

enterococcal isolates. Both Tn916 and Tn1545 act as important vector for tetM-mediated 

tetracycline resistance and they move from donor to recipient cells by intercellular contact. 

Tn1545 can also confer erythromycin and kanamycin resistance (Weaver et al., 2002). 

Conjugative transposons are not self-replicative, so they may incorporate to a plasmid or the host 

chromosome and move within the same cell or to different cell via plasmids (Torres et al., 1991; 

Rice et al., 1992). Most of the conjugative transposons carry tetM which confers resistance to 

tetracycline and minocycline. Conjugative transposons are most efficient to transfer the 

resistance genes to many different bacteria due to their integration capacity into host 

chromosome or plasmids (Roberts, 1990a; Roberts, 1990b; Clewell, 1986; Murray, 1998).  

Several in vitro and in vivo studies have been conducted to investigate the transfer 

efficiency of resistance genes/plasmids of among enterococci and from/to other genera. The 

plasmid with tetM and ermB has been transferred from Lactobacillus plantarum to E. faecalis 
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JH2-2 in the gastro-intestinal tract of gnotobiotic rats (Jacobsen et al., 2007). One report showed 

that plasmid transfer of vanB among E. faecium strains was more efficient in vivo experiments 

using a mice model than in vitro (Dahl et al., 2006). Recently, the transfer of vanA from E. 

faecium strain of animal origin to E. faecium isolate of human origin was reported in the human 

intestine. This in vivo study with human volunteers explored the serious risk factors of resistance 

genes acquisition as well as possible selection without any selective pressure (Lester et al., 

2006). Moreover, a recent study reported the persistence of vancomycin resistance genes in VRE 

among environmental isolates. In Norway, after 3-8 years ban of glycopeptide avoparcin in food 

animals, glycopeptide resistant enterococci were characterized. A specific Tn1546-plasmid 

junction fragment has been found in 93.9% E. faecium isolates. One widespread plasmid 

mediated vanA-PRE25-PSK element was reported that maintains the resistance determinants 

without any selective pressure (Sørum et al., 2006).  

The present study is focused on the role of house flies in the ecology and dissemination 

of antibiotic resistant and potentially virulent enterococci. House flies have been chosen for this 

study because of their high dispersal ability, vector potential, ecological habitat, and larval 

dependence on the bacterial community. The dependence of house flies on bacteria plays a vital 

role in the potential transmission of microbes. Enterococci were chosen as a bacterial model 

system because of their medical importance, frequent antibiotic resistance, great variety of 

mobile genetic elements, and their ubiquitous presence in the animal feces/manure and digestive 

tract of manure-borne insects. This research will be helpful for better understanding of the 

microbial ecology of house flies as well as the risk factors and molecular epidemiology and 

dissemination of antibiotic resistant enterococci in the environment 
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The specific objectives of this project: 

1. To assess the role of house flies in dissemination of antibiotic resistant 

and virulent enterococci 

  

2. To determine the potential for horizontal gene transfer among  
Enterococcus faecalis strains in the house fly digestive tract 

 

3.  To evaluate the significance and survival of enterococci during the 

house fly development (egg to adult) 
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ABSTRACT 

 

Multi-drug resistance in bacteria has become a serious problem in clinical medicine. 

Though this remains a controversial issue, the connection between antibiotic resistance of the 

food animal origin and that of clinical isolates and community health has been suggested. Insects 

such as house flies that develop in decaying organic substrates including animal feces/manure 

may disseminate antibiotic resistant strains from rural to urban environments. House flies (FF) 

and cattle manure (FM) from a cattle feedlot (frequent use of antibiotics) as well as house flies 

(BF) and bison manure (BM) from the Konza Prairie Nature Preserve (no antibiotic use) were 

collected. Enterococci were quantified, identified, and characterized for selected antibiotic 

resistance and virulence factors and mobile genetic elements by polyphasic approach. Isolates 

from FF (n = 223), FM (n = 189), BF (n = 141), and BM (n = 167) were identified and 

characterized. Overall, the majority (89%) of samples were positive for enterococci at high 

concentrations (104 - 106 CFU/g of manure) and (105 - 106 CFU/fly) with the exception of BF 

(37.7% prevalence).  My results show that phenotypically resistant enterococci to tetracycline 

and erythromycin were prevalent in the FM (Tet - Ery, 91% and 75%) and FF (Tet - Ery, 53% 

and 41%) which likely reflects the high antibiotic use in this environment. Although much lower, 

enterococcal resistance to tetracycline and erythromycin was also detected in the bison 

environment in BM (Tet-Ery, 3% and 19%) and BF (Tet-Ery, 18% and 9%). Overall, identified 

isolates represented E. faecalis, E. faecium, E. gallinarum, E. casseliflavus, and E. hirae. The 

dominant species in cattle feedlot was E. hirae (91.9% in FM) and E. faecalis (35.7% in FF); E. 

casseliflavus was dominant (58.4 %) in BM, and E. faecalis (57.6 %) was most common in BF. 

Resistance genes (tetM, tetS, tetO, ermB) and the conjugative transposon Tn916 were most 

commonly detected determinants from phenotypically resistant isolates from both environments. 
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In FM isolates, the highest multi-drug (six antibiotics) resistance was observed in E. hirae 

(1.9%) and 20% of E. hirae were resistant to four different antibiotics. E. gallinarum from FF 

(25.0%) showed multi-drug resistance to six antibiotics. Enterococcus faecalis (7.5%) and E. 

faecium (4.1%) were resistant to five antibiotics. There was no significant difference in 

tetracycline resistance profiles between FM and FF; however, a significant difference was 

observed in resistance profiles between BM and BF. Regardless of the samples and sites, by far 

the most dominant virulence gene was gelE of E. faecalis and it was phenotypically expressed 

(FM=100%, FF=82.5%, BM=73.6% and BF=75.5%). This study showed that antibiotic resistant 

enterococci are common in confined cattle production and house flies likely play an important 

role in the ecology of these bacteria in agricultural environments and potentially transmit 

antibiotic resistant strains to other environments. 
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INTRODUCTION 

 

Antibiotic resistance and virulence in enterococci  

Multi-drug resistance has become a serious issue in clinical medicine. The main concern 

is the increase of resistance development in virulent bacterial strains and the correlation to the 

increased use of antibiotics. The resistant bacteria are selected for by the selective pressure and 

by disseminating and sharing resistance genes (Bogaard et al., 2000).  Bacteria can develop 

resistance to antimicrobials in two different ways: a) DNA mutation and b) acquisition of 

resistance genes from other bacteria by horizontal gene transfer. For example, Enterococcus 

faecium clonal complex (CC-1) clearly depicts the accumulation of adaptive changes in a 

bacterial population. E. faecium CC-1 acquired ampicillin-resistance determinants by the 

transposable element. Furthermore, in several instances, CC-1 acquired Tn1546, the transposable 

element that encodes vancomycin resistance (Baquero, 2004). Serious enterococcal infections are 

not easily treatable with one type of drug, so the choice is the combination therapy. For example, 

it has been reported that treatment of enterococcal carditis infections was ineffective with one 

antibiotic only (Herman et al., 1991). 

Increased antibiotic resistance development and spread are likely due to a heavy use of 

antibiotics in food animal productions and clinical medicine. In domestic animals, antibiotics are 

used for treatment and prophylaxis. In the USA, antibiotics are also used continuously as one of 

the feeding supplements to animal feed for growth promotion and to increase feeding efficiency 

(Bogaard et al., 2000). The use of low level antibiotics (e.g. oxytetracycline, tylosin) in cattle 

feed and water are very important to producers for efficient production, healthy livestock and 

higher longevity and productivity of food animals (Schroeder et al., 2002; Sprague, 2006; 

Sapkota et al., 2007). However, this heavy use of antibiotics has become a serious public health 
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concern because the continuous practice of antibiotic use in food animals has lead to the rapid 

emergence and selection of resistant and potentially-virulent as well as commensal bacterial 

strains. These resistant bacterial strains already have been reported from food animals, in animal 

based food products, surrounding environmental samples (water, air, soil etc.) and also from 

farmers (Sørum et al., 2006; Sapkota et al., 2007).  

Though the therapeutic and sub-therapeutic levels of antibiotics in animal feed are 

approved and regulated by Food and Drug Administration (FDA), no specific data collection 

systems are available on the amounts that are used in animal feed. To close these data 

information gap several research groups have published estimates based on the USDA livestock 

production data and FDA antibiotic usage regulations. Approximately 60 - 80% of the total 

antibiotics produced in the USA are used at sub-therapeutic levels in food animals (Mellon et al., 

2007; Sapkota et al., 2007). Among these antibiotics, many compounds such as tetracyclines, 

macrolides, streptogramins and fluoroquinolones have analogue compounds that are also used in 

clinical medicine for humans (Turnidge, 2004; FDA, 2007; Sapkota et al., 2007). This poses a 

serious risk to public health due to the enormous selective pressure on environmental bacteria 

and consequently, the selection and potential spread of resistant strains to clinical settings and 

urban communities.  

Animal and human feces are important reservoirs of diverse and numerous microbial 

communities that may contain human and animal pathogens. In addition, the development of 

antibiotic resistance among clinical isolates as well as commensal bacteria causes a great concern 

because of the potential dissemination and horizontal transfer of antibiotic resistance genes in the 

environment, primarily from the agricultural to urban environments.  
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Enterococci are gram positive cocci, diverse, ubiquitous group of lactic acid bacteria 

(Schleifer and Kilpper-Balz, 1984). The optimum growth temperature of enterococci is 35oC but 

they can grow from 10 to 45oC with a broad range of pH.  They have the ability to grow in 6.5% 

NaCl and also hydrolyze esculin (esculin selective medium with 40% bile salts) (Teixeira and 

Facklam, 2003; Simjee et al., 2006). So far, 32 species have been identified in Enterococcus 

genus (http://www.bacterio.cict.fr/bacdico/ee/enterococcus.html, 2005).  

Enterococci are most commonly found in the normal microbiota of GI tracts in animals 

and humans. They are also present in oropharyngeal secretions, the urogenital tract, and in lower 

numbers on the skin (Moellering, 2000; Tancock and Cook, 2002; Teixiera and Facklam, 2003, 

Simjee et al., 2006). They are frequently reported as the causative agent of nosocomial infections 

in the blood circulatory system, CNS (central nervous system), UTI (urinary tract infections) and 

heart (endocarditis). In the USA, 12% the hospital-acquired infections are caused by enterococci. 

These infections are sometimes life threatening and difficult to treat due to the multi-drug 

resistance (McGowan et al., 2006; Comert et al., 2007; Hew, 2007).  Among all species, E. 

faecalis and E. faecium are clinically the most important. Although E. faecalis and E. faecium 

are the causative agents of most of the infections, other species such as E. gallinarum, E. avium 

and E. durans are also infrequently found in human infections (Murray, 1990; Devriese and Pot, 

1995; Tiexeira and Facklam, 2003; Mcgowan et al., 2006; Simjee et al. 2006). Moreover, 

enterococci confer natural resistance to many antimicrobials (e.g. low levels of aminoglycosides) 

that are used in clinical settings and also commonly acquire resistance genes from other bacteria 

by horizontal gene transfer through plasmids and transposons (Kak and Chow, 2002; Hew, 2006; 

Simjee et al., 2006). Their ubiquitous nature makes them more likely to transfer the resistance 

genes to other microbes. Most importantly, since the 1980s, E. faecium and E. faecalis acquired 

http://www.bacterio.cict.fr/bacdico/ee/enterococcus.html
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resistance to vancomycin, (vancomycin, quinopristin-dalfopristin are the last choice antibiotics to 

treat drug-resistant infections). According to Center for Disease Control and Prevention (CDC), 

28.5% of the nosocomial enterococcal infections in intensive care unit in USA are VRE 

(vancomycin resistant enterococci) (Lewis, 2002; Sherer et al., 2005; McGowan et al., 2006).  

Several reports support the suggestion that more virulent lineages of enterococci are 

related with the clinical isolates and they are different from the normal enterococcal 

environmental populations (Gilmore et al., 2002).  Enterococci posses several virulence factors 

that are associated more frequently with clinical isolates (Gilmore et al., 2002; Hew et al., 2006). 

Cytolysin is a bacterial toxin which is expressed in E. faecalis and responsible for hemolytic and 

bactericidal activity (Hancock and Gilmore, 2000). A complex operon of eight genes encodes the 

production of cytolysin. The cylA gene encodes the serine protease similar to subtilisin. Another 

virulence factor of enterococci is the enzyme gelatinase. Gelatinase is a metaloprotease regulated 

by the fsr operon. It exhibits proteolytic activity and has the ability to hydrolyze gelatin, 

lactoglobulin, collagen and other proteins and it is involved in biofilm formation (Gilmore et al., 

2002; Hancock and Perego, 2004; Hew et al., 2006). The aggregation substance is a surface 

protein encoded by pheromone responsive plasmids and it plays a role during conjugation and 

horizontal gene transfer. Enterococcus surface protein esp acts as an adherent and exhibits higher 

cell colonization in infections as well as contributes to biofilm production (Shankar et al., 2001; 

Toledo-Arana et al., 2001; Hew et al., 2006). 

Bacteriophage, plasmids, transposons/insertion sequences carry DNA that is conserved 

and can be transferred among bacteria as well as the two prokaryotic domains (Weaver et al., 

2002). Enterococci posses great variety of plasmids and transposons, many of which have 

already been identified and thoroughly studied. Although plasmids and transposons of 
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enterococci show similar characteristics to those of enterobacteria; some of those are very 

unique. Plasmids and transposons are responsible for resistance gene mobilization within and 

between bacterial species and genera. This gene movement plays a very important role in 

evolution of resistance and pathogenic and virulent strains. Enterococci are capable of transfer 

these genes to more pathogenic bacterial strains such as Staphylococcus aureus, a potential 

human pathogen (Weigel et al., 2001). Rapid emergence of MRSA (methicillin resistant 

Staphylococcus aureus) and VRSA (vancomycin resistant Staphylococcus aureus) in hospitals is 

a very serious concern for public health. Recent reports show that VRSA strains from US 

hospitals have acquired the resistance gene, vanA from vancomycin resistant E. faecalis (Weigel 

et al., 2001). It is reported that E. faecalis pAM830 transferred the vanA on Tn1546 through 

donor plasmid to S. aureus though this plasmid was not stable (Sung et al., 2007). Clinical isolate 

V583 (vancomycin resistant E. faecalis) carries one of the highest proportions of mobile or 

acquired DNA among the known bacterial genomes. In V583, more than 25% of the whole 

genome consists of mobile or acquired DNA (Paulsen et al., 2003). This mobile DNA includes 

the vanB gene on a transposon, three plasmids, seven integrated phage regions, 38 insertion 

elements, several conjugative and composite transposons, pathogenicity island, and integrated 

plasmid genes. This large portion of portable DNA might be a great contributor in spreading 

virulence and antibiotic resistance (Paulsen et al., 2003).  

In this study, conjugative transposon Tn916 and Tn1545 with a broad host range were 

screened in our isolates. Both Tn916 and Tn1545 act as important vectors for carrying tetM-

mediated tetracycline resistance and they move from donor to recipient cells by conjugation. 

Tn1545 can confer erythromycin and kanamycin resistance. Both Tn1545 and Tn916 share the 

same structural ending of a common ancestor (Weaver et al., 2002).  
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Role of the house fly (Musca domestica L.) as a potential vector for bacteria 

Musca domestica L. belongs to the group of muscoid flies that posses tremendous health 

risk in public health as potential vector of microorganisms (Grazcyk et al., 2001). This occurs in 

all continents except Antarctica. They are non-biting insects and have sponging type of 

mouthparts. Larvae feed on a moist food rich in organic matter (Moon, 2002). Although they are 

attracted to a variety of food material, House flies have sponging mouthparts which allow them 

to ingest only liquid food whereas solid foods are liquefied by means of regurgitated saliva. 

House flies require an active microbial community for larval development (Zurek et al., 2000). 

Therefore, immatures can be found in a wide variety of decaying organic substrates rich in 

microbes. They oviposit and develop mainly in decaying organic matter, human garbage dumps, 

open privies, animal and human excretion, animal bedding, soil bedding, poultry litter and also in 

wastes around food and vegetable processing plants which has a diverse and active microbial 

community (Graczyk et al., 2001; Moon, 2002). House flies can breed outdoors throughout the 

year in tropical countries but not in winter in temperate regions. Larval developmental habitat, 

unrestricted movement of adults, mode of feeding, and attraction to human food and drinks make 

this insect an ideal vector for bacteria originating from feces, manure, and other decaying 

substrates (Grazcyk et al., 2001). In addition, the house fly life cycle takes only 14 days to 

complete in summer and they are multivoltine. Female house flies longevity is 15-25 days and 

they lay 5-6 batches of eggs in their lifetime (Moon, 2002). House flies resume the reproductive 

cycle inside cattle barns and poultry houses in winter time. Adult house flies aggregate around 

garbage, compost piles, and enter buildings in search for food and warmth (Moon, 2002). 

House flies can carry bacteria in their gut or in other body parts or body surfaces (Moon, 

2002). They have been regarded as mechanical vectors of pathogenic bacteria including 
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Salmonella, Escherichia, Proteus, Shigella, Chlamydia, and Campylobacter, Vibrio cholerae 

(Graczyk et al., 2001). They may be also actively involved in transmission of other serious 

infections such as anthrax, ophthalmia, typhoid fever, tuberculosis, cholera and infantile diarrhea 

(Scott and Lettig, 1962; Greenberg, 1965; Keiding, 1986). They are also associated with 

protozoan infections such as amebic dysentery; helminthic infections such as pinworms, 

roundworms, hookworms and tapeworms (Greenberg, 1971; Gregorio, 1972; Greenberg, 1973; 

Graczyk et al., 2001), as well as viral and rickettsial infections (Graczyk et al., 2001; Gorham 

and Zurek, 2006). House flies are potential carriers of Escherichia coli O157:H7 and also 

involved in several disease outbreaks such as Escherichia coli O157:H7 in Japan and Vibrio 

cholerae in India (Kobayashi et al., 1999; Fotedar et al., 2001; Petridis et al., 2006). Flies can 

also transmit pathogens of eye diseases such as trachoma and epidemic conjunctivitis, and infect 

wounds or skin with pathogens of cutaneous diphtheria, mycoses, yaws and leprosy. Fly 

transmitted trachoma alone causes 6 million cases of childhood blindness each year (Graczyk et 

al., 2001). House flies are highly mobile and they can travel as far as 20 miles so they can spread 

this pathogens also to the surrounding environments (Moon, 2001). It is not surprising that they 

are involved in transmission of so many serious and widespread diseases. They can potentially 

contaminate any substrate by the unique regurgitation habit and/or fecal excretion. The pathogen 

transmission mechanism involves feeding on fecal material with pathogens, ingestion and 

regurgitation of pathogen contaminated digestive fluids or fecal excreta on human food (Osato et 

al. 1998; Graczyk et al., 2001).    

House flies were chosen in this study because of their larval development in animal 

feces/manure, high dispersal ability of adults (Broce, 1993) and vector capacity for bacteria. The 

dependence of house fly larval development on bacterial communities indicates a close 
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evolutionary association. The physiological association between house flies and bacteria plays a 

vital role in potential transmission of microbes. Also to have a complete understanding of 

pathogen or microbe dissemination, house flies need to be studied with microorganisms in an 

ecological context. In this study, the role of house flies in the ecology of enterococci and 

associated antibiotic resistance and virulence genes from animal manure was assessed.  

  

Rationale:    

This research should be helpful in better understanding the microbial ecology of house 

flies as well as the role of these flies in the ecology of antibiotic resistance and virulence genes in 

agricultural and nature preserve environments. 

 

HYPOTHESIS:  

House flies act as vectors of antibiotic resistance and virulence genes associated with 

enterococci originating from manure of food animals 

 

OBJECTIVES:  

The general objective of this research was to assess the role of house flies in the ecology 

of enterococci and associated antibiotic resistance and virulence genes by comparing enterococci 

population of house flies from a cattle feedlot and an American bison pasture and corresponding 

animal feces. 
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Specific approach 

1. Isolation, quantification, identification, and characterization of enterococci from the feces 

of animals frequently exposed to antibiotics (feedlot cattle) and animals with no exposure 

to antibiotics (American bison) and from the associated house flies. 

2. Assessment of the antibiotic resistance profile of enterococci by phenotypic analysis 

3. Determination of the prevalence and diversity of tetracycline and erythromycin resistance 

genes of identified isolates of enterococci. 

4. Assessment of the prevalence of virulence factors of enterococci including gelatinase, 

hemolysis, and aggregation substance by phenotype. 

5. Evaluation of the prevalence of enterococcal virulence genes including cylA (hemolysis 

activity), gelE (proteolytic activity), asa1 (aggregation substances) and esp (enterococcus 

surface protein). 

Assessment of the prevalence of mobile genetic elements with a broad host range: 

Tn1545/916 family and Tn916. 

 

MATERIALS AND METHODS 

Selection of sites. Sites for sample collection were determined based on the status of 

antibiotic use on animals. All samples were collected from two sites. One was an experimental 

cattle feedlot of the K-state Agricultural Experimental Station located approximately 2 km 

northeast of Manhattan, KS. Antibiotics (monensin, tylosin phosphate, chlortetracycline 

hydrochloride, oxytetracycline hydrochloride, tiamulin) (Food and Drug Administration, 2007) 

are frequently used in feedlot cattle. The other site was the tall grass prairie on Konza Prairie 

Nature Preserve Biological Station. This is a 3487-hectare area in the Flint hills of northeastern 
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Kansas located approximately 13 km south of Manhattan, KS. Konza prairie inhabitants include 

large grazers such as American bison with  no antibiotic exposure (www.konza.ksu.edu).  

 

Collection of samples. Fresh (<2-5 hr) cattle fecal samples (n = 110) were collected from 

the cattle feedlot into sterile plastic bags using sterile tongue compressors. Associated house flies 

(n = 124) were collected from feed bunks and cattle pens. Bison manure samples (n = 23) were 

collected directly manually from the rectum of a group of two year old American bison (Konza 

Prairie Biological Station) during the annual spring round up for vaccination and weight 

determination. House flies (n = 114) were collected from fences of the bison either by sweep net 

or sticky traps. Sticky traps were routinely checked in every other day. All samples were 

immediately placed in the cooler with ice bags and transported to the laboratory.   

  

Isolation of enterococci. All samples were processed immediately after the arrival to the 

laboratory. One gram of cattle and bison fecal samples was homogenized in 10 ml of PBS 

(Phosphate Buffer Saline, pH 7.0; MP Biomedicals, USA) and serially diluted. House flies from 

both sites were surface sterilized with sodium hypochlorite and ethanol (Zurek et al., 2000) and 

homogenized individually in 1 ml PBS. All manure and fly samples were diluted into two 10-

fold serial dilutions and drop plated on m-Enterococcus agar (Difco, Franklin Lakes, NJ). Plates 

were incubated at 37oC for 24 - 48 hrs. After incubation, the concentration of enterococci was 

determined by colony counting method (CFU count) and 3-5 dark purple colored colonies 

(presumptive) of Enterococcus genus were picked from each sample for confirmation tests. Each 

colony was streaked on TSBA (Trypticase Soy Broth Agar, Difco) to obtain the pure culture and 

processed for confirmatory biochemical analysis. Each strain was cultured in enterococcosel 

http://www.konza.ksu.edu
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broth (Difco) in 96-well plates to confirm the Enterococcus genus by the esculin hydrolysis test. 

Also, the growth of isolates was confirmed in Trypticase Soy Broth (Difco) with 6.5% NaCl at 

44oC (Facklam et al., 2002). All positive isolates were stabbed into TSBA (0.3% agar) in 2.0 ml 

vials and stocked at room temperature.  

 

Identification of enterococcal species. Enterococcus species were determined by 

multiplex and single PCR. Four different species including E. faecalis, E. faecium, E. 

casseliflavus and E. gallinarum were identified by multiplex PCR (Kariyama et al., 2000; 

Elsayed et al., 2001). E. mundtii ATCC 43186 was used as a negative control. E. hirae was 

identified by single PCR and E. hirae ATCC 8043 was used as a positive control. Only 11 

isolates of cattle manure from a feedlot were identified by multiplex PCR. To identify the 

isolates from cattle manure, the sodA gene (superoxide dismutase) was amplified by PCR and 

then sequenced and confirmed by BLAST search in the NCBI GenBank database (Poyart et al., 

2000). All identified isolates were processed for further characterization. 

 

Antibiotic susceptibility by phenotype. All identified isolates from bison manure, cattle 

manure, and house flies were assessed for antibiotic susceptibility test. This screening was done 

by disk diffusion technique using the Mueller-Hinton Agar (Difco) and six different antibiotics, 

tetracycline (30 μg), erythromycin (15 μg), vancomycin (30 μg), ciprofloxacin (5 μg), 

chloramphenicol (30 μg), and ampicillin (10 μg). Susceptibility to aminoglycosides such as 

streptomycin (2000 μg/ml) and kanamycin (2000 μg/ml) was evaluated by the agar dilution 

method using TSBA plates. The Clinical and Laboratory Standards Institute protocols were used 

as standards for these procedures (Clinical and Laboratory Standards Institute, 2000). 
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Virulence factors (Gelatinase activity, aggregation substances and hemolysis by 

phenotype). Gelatinase activity was determined by using Todd Hewitt Broth (THB) Agar plates 

with 1.5% dry milk incubated at 37oC for 24 hrs. After the incubation period, the clearance zone 

was measured to assess gelatinase activity. 

Cytolysin gene expression was evaluated by streaking the isolates on Columbia blood 

agar plates with 5% human blood and incubated at 37oC for 24 hrs. Hemolytic activity was 

assessed by measuring the partial or total clearing zone around colonies. Total clearance zone 

was determined as the β-hemolysis or complete hemolysis and recorded positive for cytolysin 

gene expression. 

Enterococcal aggregation substance was screened phenotypically for all E. faecalis strains by 

the clumping assay (Dunny et al., 1978). In this assay, E. faecalis JH2-2 was used for cCF10 

peptide formation. THB was used to grow E. faecalis JH2-2 and incubated at 37°C for 18 hrs. 

The pheromone peptide in the supernatant was collected by centrifuging (10,000 rcf for 10 min) 

and sterilized by autoclaving for 15 min. E. faecalis isolates were cultured in THB broth for 18 

hrs at 37oC, then 1 ml E. faecalis JH2-2 supernatant was added to each culture and incubated at 

37°C overnight in a shaker incubator. After the incubation period, isolates were considered 

positive if clumping or aggregation of cells was observed by naked eye or under a microscope. E. 

faecalis OG1RF (pCF10) was used as positive control with every batch of isolates (Dunny et al., 

1978). 

 

Antibiotic resistance genes and virulence genes. All identified isolates from bison and 

cattle manure and house flies were screened for tetracycline and erythromycin resistance genes 

by multiplex and single polymerase chain reaction (PCR). Tetracycline resistance genes were 
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divided into three groups. Group I included tetA, tetC, and tetQ genes. Group II included the 

tetM, tetS, tetK, and tetO genes. The protocols were followed as described previously (Ng et al., 

2001; Turnidge et al., 2004). Group III included the tetW gene (Aminov et al., 2001) and group 

IV erythromycin gene, ermB (Sutcliffe et al., 1996) which were detected by single PCR.  

Four virulence genes were screened for: gelE (gelatinase activity), asa1 (aggregation 

substances), cylA (cytolysin, hemolytic activity), and esp (enterococcus surface protein) and 

identified by multiplex PCR (Vankerckhoven et al., 2004).  

 

Mobile genetic elements (Tn916 and Tn1545/916 family). Integrase gene (int) was used 

for detection of the Tn916/Tn1545 conjugative transposon family (Doherty et al., 2000; Gevers 

et al., 2003) which frequently carry the tetracycline resistance genes tetM. The ORF13 gene was 

used to detect the transposon Tn916 (Andrews et al., 2004). E. faecalis OG1RF (pCF10) was 

used as a positive control for both PCR.  

 

Statistical analysis. The statistical analysis was done by using Chi-square analysis of 

contingency tables test (p<0.05) and Fisher’s exact test (p<0.05) with the SAS statistical 

package (SAS institute, 2003). 
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RESULTS 

Prevalence, quantification, and identification of enterococci in fecal samples and house flies 

from Konza Prairie and cattle feedlot  

The prevalence of enterococci was high in most of the samples including, BM (100%), 

FM (77.2%), FF (96.8%) with the exception of BF where prevalence was only 37.7% (Table 1).  

The enterococcal concentration in positive samples was high across all sampled sites and 

ranged from 5.1± 3.8x106 CFU per g (BM) to 1.4 ± 0.5x105 CFU per BF (Table 1). A subset of 

isolates from each site including BM (n=176), BF (n=141), FM (n=189) and FF (n=223) was 

selected for identification and further characterization. Multiplex or single PCR resulted in 

identification of enterococcal isolates in range from 74.8% (BM) to 50.2% (FF) (Table 1).  

The majority of identified isolates from BM was represented by E. casseliflavus (58.4%), 

followed by E. faecalis (15.2%), E. hirae (12.0%), and E. faecium (8.0%). In contrast, BF carried 

more E. faecalis (57.6%) followed by E. casseliflavus (42.3%) and E. hirae (0.9%). E. 

gallinarum was not detected in samples from Konza prairie (Table 1). 

The dominant enterococcal species in FM was E. hirae (91.9%), followed by E. 

casseliflavus (6.3%), E. faecalis and E. faecium (both 0.8%). The diversity of enterococci in FF 

was more evenly distributed among E. faecalis (35.7%), E. faecium (21.4%), E. gallinarum 

(19.6%), and E. casseliflavus (17.9%) (Table 1).   

Prevalence of each species was significantly different (P<0.0001) within and between 

two different sites except E. casseliflavus in BM and BF (P<0.99) and E. faecalis in BF and FF 

(P<0.99) (Table 1). 
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Phenotypic antibiotic resistance  

All identified isolates were tested for antibiotic susceptibility to eight antibiotics:  

tetracycline (TE), erythromycin (E), vancomycin (VA), kanamycin (K), streptomycin (S), 

ciprofloxacin (CIP), chloramphenicol (C) and ampicillin (AM). The main emphasis was to test 

tetracycline and erythromycin susceptibility as these two antimicrobials are widely used in food 

animals for growth promotion. In BM, TE resistance was found at a low frequency and only in E. 

casseliflavus (2.7%) and in E. hirae (13.3%) (Fig. 3). E. faecalis (36.8%), E. faecium (70.0%), E. 

hirae (26.7%) and E. casseliflavus (8.2%) from BM showed resistance to erythromycin. The 

majority of isolates from BM exhibited susceptibility to ciprofloxacin with the exception of E. 

casseliflavus which is intrinsically resistant to ciprofloxacin (Figure 3). E. faecalis (57.9%) 

isolates showed resistance to kanamycin. Streptomycin resistance was not found among BM 

isolates (Fig. 3). Fifteen percent isolates of E. faecalis were resistant to three different drugs and 

10% E. faecium showed multi-drug resistance for four antibiotics. 

There was a similarity in ciprofloxacin resistance between BM and BF isolates. In BF 

samples, the majority of E. faecalis (60%) and E. casseliflavus (69.23%) isolates were resistant 

to ciprofloxacin. E. faecalis (20.8%) as well as E. casseliflavus (7.7%) showed resistance to 

vancomycin. No kanamycin resistance was detected in BF isolates. In BF, E. faecalis showed 

tetracycline (24.5%) and erythromycin (5.7%) resistance whereas E. casseliflavus had resistance 

10.3% for tetracycline and 15.4% for erythromycin (Fig. 4). Three isolates of E. faecalis showed 

resistance to three different antibiotics.  

Overall, there was a significant difference in prevalence of antibiotic resistance between 

BM and BF isolates. There was no significant difference between BM and BF isolates for 
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ampicillin (P = 0.09), chloramphenicol (P = 0.76) and ciprofloxacin (P = 0.99) resistance 

profiles.  

In contrast, a very high antibiotic resistance was observed in FM isolates for tetracycline 

and erythromycin (Fig. 1). The majority of E. hirae were resistant to tetracycline (94.2%) and 

erythromycin (77.7%) followed by chloramphenicol (55.3%), ciprofloxacin (43.7%), and a small 

portion (6.8%) was also resistant to vancomycin (Fig. 1). No streptomycin, kanamycin, or 

ampicillin resistance was found in FM. One E. faecalis from FM exhibited resistance to 

tetracycline, erythromycin, ciprofloxacin and chloramphenicol. Forty two percent of E. 

casseliflavus showed resistance to tetracycline, erythromycin and ciprofloxacin. In FM samples, 

the highest multi-drug resistance was observed in E. hirae (1.9%) for six different antibiotics and 

20% of E. hirae isolates were resistant to four different antibiotics.      

Among all samples, most frequent resistance to various antibiotics was detected in FF 

isolates (Fig. 2). Tetracycline resistance was most highly prevalent in E. faecium (60.9%), E. 

faecalis (55.0%), and E. gallinarum (52.4%), followed by erythromycin resistance in E. faecium 

(47.6%) and E. faecalis (40.0%). E. casseliflavus and E. hirae also expressed frequent 

tetracycline (40.0% and 50.0%, respectively) and erythromycin resistance (50.0% and 12.5%, 

respectively). High ciprofloxacin resistance was observed in E. casseliflavus (80.0%), E. faecium 

(60.9%), E. gallinarum (47.6%), E. faecalis (32.5%), and E. hirae (12.5%). E. gallinarum (25%) 

showed multi-drug resistance to six antibiotics. E. faecalis (7.5%) and E. faecium (4.1%) were 

resistant to five antibiotics. At least two different species exhibited resistance to at least two 

antibiotics. 

There was no significant difference observed in different antibiotic resistance profiles 

between FM and FF isolates except ampicillin (P=0.002) and kanamycin (P=0.001).  
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Gelatinase activity, aggregation substances and hemolysis by phenotype 

All identified isolates from BM, BF, FM and FF were tested for gelatinase activity. 

Hemolysin (cytolysin acivity) test was done on all isolates using human blood agar. Clumping 

assay to determine the activity of aggregation substances was conducted on E. faecalis.  

In BM isolates, all E. faecalis showed proteolytic (gelatinase) activity (Fig. 3). Also, E. 

faecium (70%), E. hirae (60.0%), and E. casseliflavus (15.1%) exhibited proteolytic activity on 

1.5% milk agar plates. None of the E. faecalis isolates from BM showed aggregation in the 

clumping assay (Fig. 3). Hemolytic activity on human blood was found only in E. faecium 

isolates (10%) from BM (Fig. 3).  

Among BF isolates, 79.2% of E. faecalis were positive for gelatinase activity (Fig. 4). 

None of E. casseliflavus was positive for the gelatinase phenotype. Only 5.6% of E. faecalis 

isolated from BF showed aggregation in the clumping assay (Fig. 4).  On human blood, 39.6% of 

E. faecalis were hemolytic (Fig. 4).     

Among the feedlot site samples, none of the FM isolates were positive for proteolytic 

activity (Fig. 1). None of the E. faecalis isolates from FM were positive for the aggregation 

substance (Fig. 1).  Only 14.3% E. casseliflavus showed hemolytic activity on human blood 

(Fig.1). 

In FF samples, 72.5% E. faecalis showed proteolytic activity (Fig. 2) which was followed 

by E. casseliflavus (30.0%), E. gallinarum (13.6%) and E. faecium (12.5%). Aggregation 

substance was detected in 5% E. faecalis isolates from FF (Fig. 2). The highest number of E. 

faecalis isolates (45.0%) from FF was hemolytic on human blood, followed by E. faecium 

(33.3%), E. casseliflavus (25%) and E. hirae (12.5%) (Fig. 2). 
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There was no significant difference observed of hemolytic activity (P=1.0) and gelatinase 

activity (P=0.68) between BM and FM isolates.  

 

Screening of antibiotic resistance genes, virulence genes, mobile genetic elements (Tn916 and 

Tn1545/916 family) and correlation of resistance and virulence genes with phenotypic 

expression 

Eight tet genes were screened in this study along with ermB and Tn916 and Tn1545/916 

family. In BM isolates, the most common combination observed was tetM with ermB and Tn916 

for E. hirae (13.3%) in which 100% of isolates with the ermB gene were phenotypically 

expressed (Table 3). Among E. faecalis, several isolates (31.5%) were positive for tetK without 

any phenotypic expression. Multiple tet genes (tetM, tetK) and Tn916 were present in 5.2% E. 

faecalis isolates. Thirty percent of E. faecium isolates either carried tetM or tetK with no 

phenotypic expression. E. casseliflavus commonly carried tetM and 1.4% isolates were positive 

tetM with Tn916 with phenotypic expression of tetracycline resistance. 

In BF samples, tetM was also the most commonly observed resistance determinant.  

Among E. hirae, 17.5% isolates were found to have the combination of tetM (phenotypic 

expression 94.4%) with ermB (phenotypic expression 72.2%) and Tn916. (Table 3). Another 

frequent combination (17.5%) observed in E. hirae was tetO (100% expressed) with ermB 

(88.9% expressed). One isolate of E. faecalis had tetO and ermB with 100% expression. One E. 

faecium had tetK which was phenotypically expressed (Table 2). E. faecalis (2.0%) along with 

ermB and Tn916 exhibited 100% phenotypic expression. Most frequent tet resistance gene was 

tetO in E. casseliflavus (15.4%) (Table 3).  
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FF isolates represented the most diverse group with the highest frequency of resistance 

and virulence factors (Table 2).  E. faecalis (22.5%) had tetM as the most common tet resistance 

gene (100% phenotypic expression) with Tn916 and Tn1545/916 family. In E. faecalis, all 

(100%) tet and ermB resistance genes were phenotypically expressed. TetM also was the most 

common resistance determinant in E. faecium (33.3% with 87.5% phenotypic expression) (Table 

3).  

Among the virulence factors, gelE was the most frequently found virulence gene in E. 

faecalis from BM (73.6% with 100% gelatinase activity) and BF (75.5% with 87.5% gelatinase 

activity) (Table 5). E. faecalis (5.6%) was positive for gelE (100% phenotypic expression) and 

asa1 (33.3% phenotypically expressed). 

Most of the FF isolates carried one or more virulence determinants. E. faecalis isolates 

were positive for gelE. E. faecalis carried the most common virulence determinant, gelE (100% 

in FM and 82.5% in FF) with phenotypic activity (100% in FM and 72.7% in FF).  The cylA 

gene was found in E. casseliflavus (14.3%) and E. hirae (1.9%) from FM isolates with no 

phenotypic expression. In FF, 2.5% isolates of E. faecalis, 4.7% isolates of E. faecium and 5% 

isolates of E. casseliflavus also were positive for gelE with asa1 and esp (Table 4).  
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DISCUSSION 

  

Enterococci are common members of the normal microbiota of the intestine of humans 

and other animals (Mollering, 2000; Aarestrup et al., 2002; Simjee et al., 2006). However, some 

enterococcal strains, especially of E. faecalis and E. faecium are opportunistic human pathogens 

causing for example endocarditic, urinary tract infections, and peritonitis (Huycke et al., 1998; 

Mollering, 2000; Reynolds et al., 2004; Coque et al., 2005). In addition, there is a growing 

concern about the development of multi-drug resistance in enterococci.  Twenty nine percent of 

nosocomial infections in USA hospitals are caused by multi-drug resistant enterococci which 

includes in some cases resistance to vancomycin (Kummerer, 2003; Sherer et al., 2005; Heuer, 

2006; Simjee et al., 2006). Furthermore, enterococci have the ability to acquire and transfer the 

resistance genes including vancomycin resistance genes to other strains of more pathogenic 

bacteria, such as Staphylococcus aureus (Weigel et al., 2003; Levy and Marshall, 2004; Lester et 

al., 2006).  

In the USA, approximately 70% of the total produced antibiotics are used in livestock 

production (Mellon et al., 2007; Sapkota et al., 2007). The heavy use of antibiotics in livestock 

production contributes to resistance development and a growing reservoir of resistant 

enterococcal population (Simjee et al., 2006). This raises the debate on several important public 

health issues. Most of the antibiotics that are used in food animals are analogues of drugs that are 

used in human thus might confer the resistance to human drugs (with some exceptions including 

ionophones, quinoxalines, and avilamycins). The relationship between antibiotic use and the 

development and spread of antibiotic resistance has been studied extensively in clinical as well 

as environmental isolates (Kummerer et al., 2003; Turnidge et al., 2004; Macovei and Zurek, 

2006; Simjee et al. 2006; Sørum et al., 2006). 
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In this study, samples were collected from two different settings to evaluate the 

prevalence and diversity of antibiotic resistance and virulence factors associated with enterococci 

and to assess the potential role of house flies as vectors for these enterococcal strains. House flies 

can only develop in decaying organic substrates such as animal manure with an active microbial 

community (Zurek et al., 2000; Graczyk et al., 2001; Moon et al., 2001; Moon, 2002) and adult 

flies commonly carry in their digestive tract bacteria originating from the larval habitat (manure, 

feces, compost) (Zurek et al., 2000; Graczyk et al. 2001). It has been reported that house flies 

carry enterococci in the alimentary tract in high concentrations (Macovei and Zurek, 2006). The 

developmental habitat, unrestricted movement of adult flies (Broce, 1993) and their feeding 

mode (regurgitation) make house flies a likely candidate as a vector of bacteria originating from 

decaying organic substrates, including feces and manure. 

 Feedlot cattle manure (FM) and house flies (FF) were obtained from a cattle feedlot 

where antibiotics are used as promoters and for prophylaxis and treatment. American bison 

manure (BM) and house flies (BF) were collected from the Konza nature preserve where no 

antibiotics are used. Therefore, BM and BF are considered as a control group whereas FM and 

FF served as treatment group.  

The majority (> 77.2%) of the samples from BM, FM and FF was positive for 

enterococci in high concentrations. Although only 37.7% BF were positive for enterococci, the 

concentration was also very high in the fly digestive tract: 105-106 CFU/BF which is similar to 

results in other studies (Macovei and Zurek, 2006).  

The majority of isolates from BM were E. casseliflavus followed by E. faecalis and E. 

faecium. This large portion of E. casseliflavus is likely due to the association of this species with 

plants (Muller et al., 2001). Since American bison are grazers on Konza Prairie they likely ingest 
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E. casseliflavus frequently. There was no difference between E. cassseliflavus prevalence 

between BM and BF isolates (P = 0.99).  However, many BF were negative for enterococci, 

most of the species in positive BF were E. faecalis (57.6%) which indicates that many of these 

flies did not develop in bison manure. Some flies may have developed in garbage and food trash 

close to the office and human dwellings on the Konza Biological Station or even further away in 

feces of pastured or confined cattle and other animals.  

Diversity of enterococci in FM was very low and that was reported previously from adult 

dairy cattle (Aarestrup et al., 2001). Moreover, E. hirae was the second most prevalent species in 

calves (Devriese et al., 1992) though reports are available with data on E. faecalis and E. faecium 

present in cattle feces (Devriese et al., 1992; Thal et al., 1995). Enterococcus faecalis, E. 

faecium, E. hirae and E. durans were most commonly found in farm animal intestines, including 

cattle (Simjee et al., 2006). In FM, almost all species (91.9%) were E. hirae as opposed to FF 

isolates that showed a broader and more even diversity that included E. faecalis, E. faecium, E. 

gallinarum, E. casseliflavus and E. hirae. My house fly data showed species diversity similar to 

previous studies (Macovei and Zurek, 2006). Overall, enterococcal species distribution showed 

very interesting results that did not match the study hypothesis. The species diversity in FM 

strongly suggests that FF did not develop in the feedlot cattle manure. FF either developed in 

nearby farms or after emergence flew to other animal production sites where they acquired other 

enterococcal species and returned to the cattle feedlot.  

Antibiotic susceptibility test data reflect the antibiotic use in cattle. Ninety one percent of 

all FM isolates were resistant to tetracycline and 75% were resistant to erythromycin. These two 

types of drugs are FDA approved (tetracycline, tylosin as well as sulfa drugs and tiamulin) for 

use in cattle (FDA, 2007) and they are commonly used as growth promoters. Erythromycin and 
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tetracycline resistance in farm animals has been commonly associated with antibiotic use in 

animals (Bogaard and Stobberingh, 2000; Johnston and Jaykus, 2004). High tetracycline 

resistance is also very common in clinical isolates (Jones et al., 1998). In our study, E. hirae 

were the most dominant species and these exhibited very high resistance (94.0%) to tetracycline 

and erythromycin (77.7%).  

In contrast, very low resistance but surprisingly still detectable was observed in BM 

isolates, especially for tetracycline (3.1%) and erythromycin (19.2%) suggesting that there is an 

influx of antibiotic resistant strains to Konza Prairie from elsewhere. Relatively high level 

resistance to ciprofloxacin has been found in BM samples. No sequencing has been done to 

identify the ParC or GyrA gene alterations for ciprofloxacin resistance . This finding certainly 

warrants further investigations. 

Interestingly, the difference in resistance profiles between BM and BF isolates was 

highly significant (P<0.05-0.0001) with the exception of streptomycin, ciprofloxacin and 

ampicillin. This supports the hypothesis that BF did not develop in BM and BF dispersed from 

the nearby farms or picked up the resistant strains from human residences around Konza Prairie. 

Furthermore, it is also possible that BF are the vector and source for antibiotic resistant 

enterococci in BM and represent one of the sources of the influx of antibiotic resistant strains to 

Konza Prairie.    

FF isolates showed significantly higher (P<0.00001) phenotypic resistance compared to 

BF for tetracycline, erythromycin, vancomycin, kanamycin, ciprofloxacin, and chloramphenicol 

suggesting that BF are a subpopulation of FF. When FF disperse, their gut microbial community 

may be changing depending on the food sources.   
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In this study, very low level vancomycin resistance was observed and it was associated 

mainly with the E. casseliflavus in BM, BF, FF samples. E. casseliflavus and E. gallinarum 

confer the intrinsic resistance to vancomycin with vanC (Kak and Chow, 2002). No vancomycin 

resistance was found in E. faecium. This species poses a great risk with van-resistance and it has 

been reported to transiently colonize the human gut and transfer the vanA gene to human colon 

microbiota (Sorensen et al., 2001; Lester, 2006).  Vancomycin resistance was detected in several 

E. faecalis isolates from BF and this is a subject of further studies (detection of van genes) in 

laboratory. 

Regardless of the species diversity, antibiotic resistance showed very similar profiles (P= 

0.1) in FM and FF isolates except for ampicillin (P < 0.01) and kanamycin (P < 0.0001). 

Although it is likely that FF did not develop in cattle manure, they could have acquired the 

resistance strains from manure from other animal productions in the vicinity of the cattle feedlot, 

namely poultry and swine farm where tetracycline and tylosin are also used. Additional studies 

using for example PFGE (pulsed field gel electrophoresis) genotyping will be required to test this 

hypothesis. 

Screening of resistance genes revealed that the most commonly found combination is 

tetM with ermB and Tn916 and Tn1545/916 family. In FM isolates, identified tet genes (M, S, 

O) and ermB were phenotypically expressed in 72.2%-100% isolates. All the tet genes and ermB 

that were identified in FF isolates were 100% phenotypically expressed. Isolated tet genes are 

tetM, tetS, tetO, tetK from all the samples. Tn916 and Tn1545/916 family were frequently 

detected with tetM gene. A very interesting trend was observed between FM and FF samples. 

The most prominent species, E. faecalis in FF and E. hirae in FM, showed very similar trend in 

carrying the resistance genes and transposons. These results indicate that these isolates share the 
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resistance genes and transposons. No tetA, tetC, tetQ, tetW were detected in any FM or FF 

isolates. Clearly, BM and BF isolates had lower resistance gene profile with transposons than 

cattle feedlot samples and some of these genes were phenotypically expressed. In BM and BF 

samples, tetM was the most commonly observed resistance genes which exhibited 100% 

phenotypic expression, other commonly found resistance genes were tetO, ermB with Tn916. No 

tetA, tetC, tetQ and tetS were detected in BM or BF samples. Tn916 and Tn1545/916 frequently 

carries tetM (Weaver et al., 2002). This conjugative transposon is likely to mediate tetracycline 

resistance by tetM and Tn1545 mediates resistance to kanamycin and erythromycin. Having a 

very broad range, this transposon can transfer even between Gram positive and Gram negative 

bacteria (Bertram et al., 1991; Poyart et al., 1995). At this point the origin and acquisition of 

tetM, ermB with Tn916 in BM isolates can not be explained although it is possible that house 

flies carried the strains with these genes to Konza prairie from areas with high prevalence of 

antibiotic resistant strains.  

Similar to other studies (Hew, 2006, Macovei and Zurek, 2006), the majority of E. 

faecalis (100%) in BM showed proteolytic (gelatinase) activity on 1.5% milk agar plates and 

79.2% of E. faecalis from BF also exhibited gelatinase activity. No significant differences were 

observed (P=0.21) between BM and BF isolates regarding gelatinase phenotype. No proteolytic 

activity was observed in FM but in FF samples, the majority of E. faecalis (72.5%) showed 

gelatinase activity. This indicates that gelatinase is widely spread among environmental 

enterococci and these may represent a reservoir for clinically relevant enterococcal strains. 

Clumping assay for detection of the phenotypic aggregation substance was also 

conducted. Only E. faecalis from house flies from both sites showed clumping referring to the 

fact that flies are carrying phenotypically virulent strains as compared with the animal fecal 
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samples. E. faecalis from BF (5.6%) and FF (5.5%) isolates exhibited cell aggregation. E. 

faecium (10%) isolates from BM showed hemolytic activity. In BF isolates, 39.6% of E. faecalis 

were hemolytic on human blood. E. casseliflavus (14.3%) from FM was positive for hemolysis 

on human blood. In FF, almost a half of E. faecalis (45.0%) were hemolytic on human blood. 

Phenotypic data of virulence factors did not show a very different trend. Virulence factors were 

distributed among all samples from BM, BF, FF and FM. Flies from both sites tended to carry 

more hemolytic strains than manure isolates (P<0.0001). FF isolates were positive for virulent 

phenotypes more frequently than BF isolates (P<0.01) especially for hemolytic and gelatinase 

activity. 

Correspondingly, the most abundant virulence gene was gelE which was found in E. 

faecalis from all samples.  E. faecalis (73.6% from BM) and BF (75.5% from BF) carried gelE 

which was commonly expressed (100% in BM and 87% in BF). In FF, gelE was found in all 

species but the majority of gelE was detected in E. faecalis (82.5%) and it was phenotypically 

expressed (72.7%). Among FF isolates, the highest combination of virulence factors was found 

in E. faecalis (2.5%) with gelE, asa1 and esp. In BF, one E. faecalis (0.9%) also carried esp with 

gelE. E. faecalis (5.6%) was found to have two virulence factors gelE and asa1 (33.3% 

phenotypically expressed). Two isolates in E. hirae and one in E. casseliflavus from FM had the 

cylA gene. Cytolysin toxin was used to be described only in E. faecalis (Hancock and Gilmore, 

2000) but other species such as E. hirae and E. casseliflavus also have been investigated and 

were found with complete hemolysis activity and cyl genes (Semedo et al., 2003). E. faecalis 

with gelE and esp is associated with clinical isolates and biofilm formation (Toledo-Arana et al., 

2001; Shankar et al., 2001; Hancock and Perego, 2004). 
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The data of genotypic screening of enterococcal virulence factors supports our 

phenotypic results and confirms that some environmental enterococcal strains accumulate 

virulence factors and may become clinically important. The functional significance of these 

factors in the non-clinical environment remains to be investigated but it may involve biofilm 

formation (gelE, esp), nutritional advantages (gelE), horizontal gene transfer of resistance genes 

(asa1) during conjugation, and other potentially fitness enhancing strategies.    

Persistence of antibiotic resistance in farm animals makes this scenario more serious and 

complicated. After the use for several years, Norway, Germany, Denmark and all other European 

Union countries banned glycopeptide avoparcin and all other antibiotics for the use as growth 

promoters in 1997. This was due to reports of high prevalence of van-A type glycopeptide – 

resistant enterococci in farm animals and the connection between resistance development and 

avoparcin use and furthermore vancomycin resistance in community isolates (Sørum et al., 

2006).  

In this study, our results clearly indicate the antibiotic selective pressure has an influence 

on the prevalence of resistant bacteria.  Also, low level resistance and associated resistance and 

virulence genes in bison manure was not expected. From this data, the origin (developmental 

site) of house flies collected from the cattle feedlot and Konza prairie and the associated 

enterococci can not be determined. Nevertheless, enterococci from house flies were found to be 

more associated with resistance and virulence genes of clinically important strains. House fly 

dispersal ability makes this insect likely to transfer and disseminate antibiotic resistance and 

virulence genes from the farm environment to urban settings and therefore an important vector 

from the public health perspective. 
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Table 1. Prevalence of enterococci in house flies and manure from cattle feedlot and Konza Prairie Nature Preserve  

 
Values within the same source and different type of samples followed by the same lowercase letter are not significantly different and 

values of the two different sources and same type of samples followed by the same capital letter are not significantly different (p> 

0.05; PROC T-Test: SAS Institute 2003). 
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Table 2. Correlation of genotype and phenotype characteristics of cattle manure and 

houseflies from feedlot 
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Table 3. Correlation of genotype and phenotype characteristics of enterococci  from bison 

manure and house flies from Konza Prairie 
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Table 4.  Correlation of genotype and phenotype characteristics of virulence factors of enterococci from feedlot cattle feces 

and house flies.  
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Table 5.  Correlation of genotype and phenotype characteristics of virulence factors of enterococci from bison feces and 

houseflies from Konza Prairie 
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Fig. 1. Antibiotic resistance and virulence phenotypic profiles of enterococci 
from feedlot cattle manure
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Fig. 2. Antibiotic resistance and virulence phenotypic profiles of enterococci
 from houseflies from the feedlot
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Fig. 3. Antibiotic resistance and virulence phenotypic profiles of enterococci 
from bison manure
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Fig. 4. Antibiotic resistance and virulence phenotypic profiles of enterococci 
from house flies from Konza Prairie Preserve
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CHAPTER 3 

Assessment of the potential for horizontal gene transfer among 

enterococci in the house fly (Musca domestica L.) digestive tract 
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ABSTRACT 

In the context of heavy antibiotic use and rapid emergence of resistant bacteria, 

horizontal transfer of resistance genes is a very important area of research. As a part of an 

Enterococcus-house fly symbiosis study, the house fly digestive tract was evaluated for the 

potential of horizontal transfer of the antibiotic resistance gene tetM on the plasmid pCF10 

among Enterococcus faecalis strains. The house fly digestive tract is of a particular interest due 

to house fly larval habitat (decomposing organic material with large and diverse microbial 

communities), unrestricted movement of adult flies, modes of feeding (regurgitation), and 

attraction to human food and drinks. Moreover, no reports are available for horizontal transfer of 

resistance genes among enterococci or any other Gram- positive bacteria in the house fly 

digestive tract.  

In this experiment, house flies were exposed to the donor (E. faecalis OGIRF:pCF10) (D) 

for 12 hrs and the recipient (E. faecalis OGISSP) (R) inocula (DR group) for 1 hr and another 

group received the recipient first and the donor second (RD group). The flies were screened daily 

to determine donor, recipient and transconjugants (transfer of pCF10 plasmid with tetM) for 5- 6 

days. Both groups of flies (DR, RD) (n= 90/group) showed that transfer that occured 24 hrs after 

exposure with the rate up to 10-1 CFU transconjugant per donor (T/D).  There was no significant 

difference (P>0.05) in transfer rate between these two groups of flies. The corresponding water 

(drinking water for flies) samples were also tested and positive for transconjugants but their 

consistent appearance after the conjugation in flies strongly indicated that the transfer took place 

within flies first. In the next set of experiments, the conditions were the same as previously but 

the flies (n= 75/group) were dissected to separate the labellum and rest of the fly body was 

surface sterilized to determine the site of the conjugation within the flies. Transconjugants were 
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isolated from the flies after 24 hrs of bacterial exposure. Interestingly, transconjugants were 

found in labella of both groups (DR and RD) with a transfer rate up to 101 T/D. In this case, the 

transconjugant transfer frequency was higher (P<0.01) in DR group (34%) of flies than RD 

group (3%). In surface-sterilized flies, transconjugant transfer rate (T/D) ranged from 10-5 to 101 

CFU in the DR group and 10-3 to 10-1 CFU in the RD group. Transfer of transconjugants was 

significantly higher (p<0.01) in DR group (52%) of flies than RD group (19%). Water samples 

were again inconsistently positive for transconjugants from day 2. The high concentration of 

transconjugants in the surface-sterilized flies clearly indicated that the conjugation took place in 

the fly digestive tract and flies likely contaminated the water during drinking. It is difficult to 

make any conclusions about the higher transfer rate in DR group of flies than in the RD group. 

Overall, the transfer rate was very high as much as 101 T/D which may be due to growth of the 

transconjugant population in the fly gut and/or drinking the contaminated water. Non-surface 

sterilized and surface sterilized flies were positive for transconjugants for the following 4-5 days 

of inoculum exposure. This has great implications for public health. All these data suggest that 

the house fly digestive tract provides the conditions for horizontal transfer of resistance genes 

among enterococci which underscores the importance of this insect as a potential vector of 

antibiotic resistant bacterial strains. 
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INTRODUCTION 

Acquisition of antimicrobial resistance occurs very frequently in nature and resistance 

genes can spread very fast in bacterial populations by horizontal gene transfer (Hall, 2004). 

Many studies have been conducted to determine the origin and fate of pathogens (acquisition of 

virulence genes) during evolution as well as for treatment and control of the infections 

(acquisition of antibiotic resistance genes) (Rice, 2000; Elsas and Bailey, 2002; Choi, 2007). 

There are different mechanisms by which bacteria can transfer DNA with resistance and 

virulence genes (Murray, 1998; Rice, 2000) and this includes mainly conjugation, transduction, 

and transformation. Resistance gene transfer in gram-positive bacteria occurs mainly by 

conjugation through plasmids and transposons (Rice, 2000; Elsas and Bailey, 2002). This can, 

for example, involve pheromone responsive plasmids, non-responsive conjugative plasmids, 

non-conjugative mobilizable plasmids, and conjugative transposons (Rice, 2000; Elsas and 

Bailey, 2002). 

Enterococci are intrinsically resistant to several antimicrobials (e.g. low concentration 

aminoglycosides, quinolones, and third generation of cephalosporins) (Ogier and Serror, 2007). 

In addition, enterococci frequently acquire antibiotic resistance (glycopeptides, tetracyclines, 

macrolides) and virulence determinants via conjugation through mobile genetic elements such as 

plasmids and transposons. There are no well-documented reports of gene transfer by natural 

transformation or transduction in enterococci (Jacobs and Hobbs, 1974; Clewell and Dunny, 

2002). Plasmids of enterococci may carry and encode the transfer of antibiotic resistance 

determinants, hemolysins, bacteriocins and they can also induce the movement of chromosomal 

determinants ( Franke et al., 1978; Murray, 1998; Clewell and Dunny, 2002). In enterococci, 

three different self-replicating plasmids include rolling circle replicating plasmids (RCR), Inc18 
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plasmids, and the pheromone responsive plasmids (Weaver et al. 2002). The RCR and Inc18 

plasmids can replicate in a broad host range but pheromone responsive plasmids are conserved to 

enterococci (Murray, 1998; Weaver et al., 2002). Enterococcus faecalis exhibits pheromone 

responsive conjugation by which it can transfer resistance and virulence genes by plasmids at 

high frequency within the same species (Murray 1998, Buttaro et al., 2000). Enterococci also can 

transfer the broad host range plasmids by a non-pheromone responsive conjugation system by 

which the plasmid can be transferred to other species as well as other gram-positive genera such 

as streptococci and staphylococci. However, in such conjugation system, the transfer rate is 

much lower than that of pheromone responsive mechanisms (Clewell, 1981). The transfer of 

vanA Tn1546 by E. faecalis plasmid pAM830 to Staphylococcus aureus is an example of such 

transfer (Sung and Lindsay, 2007). Another type of conjugation in enterococci involves the 

conjugative transposons. Conjugative transposons are not self-replicable but they have the ability 

to integrate into the host chromosome or plasmid hence posses more risk to transfer the 

resistance genes to Gram-positive as well as Gram-negative bacteria (Roberts, 1990a, Roberts, 

1990b). 

In this experiment, the principles of pheromone responsive plasmid conjugation system 

were adopted.  

 

Pheromone-responsive plasmid conjugation: Pheromone responsive plasmid 

conjugation is so far the best known conjugation system in E. faecalis which involves 

oligopeptide pheromones and pheromone responsive plasmid (Clewell and Keith, 1989). The 

plasmid pCF10 of E. faecalis OG1RF is one of the most studied pheromone inducible plasmids 

and encodes the tetracycline resistance tetM (Tomich et al., 1979; Dunny et al., 1981). In this 
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conjugation system, E. faecalis donor cells are induced by specific signaling 

peptides/pheromones and transfer the conjugative plasmid to E. faecalis recipient cells. This 

process is very specific and a specific single plasmid or closely related family of plasmids can 

only be transferred in response to its specific pheromone peptides. The plasmid pCF10 transfers 

by specific induction of the pheromone cCF10 (LVTLVFV) produced by the recipient cells 

(Buttaro et al., 2000). Enterococcus faecalis donor cell exhibits the dual genetic capacity of 

chromosomal production of cCF10 and plasmid encoded response. In pheromone responsive 

conjugation, the recipient cells of E. faecalis secrete different specific pheromone peptides that 

interact with specific plasmids (Wirth, 1994). When the potential donor cell interacts with the 

pheromone (Leonard et al., 1996), the pheromone responsive plasmid induces the prg 

transcriptions. The cCF10 pheromone induces prgB gene expression in donor cells which results 

in synthesis of a sticky substance called the aggregation substance on the cell surface (Olmsted et 

al., 1991; Chung and Dunny, 1992; Bensing and Dunny, 1997). When the donor cells of E. 

faecalis get into contact with the E. faecalis recipient cells, the aggregation substance attaches to 

the binding substances on the surface of cells. This binding causes clumping of cells in which the 

donor cells transfer the pheromone responsive plasmid to the recipient cell (Dunny et al., 1978; 

Olmsted et al., 1991; Bensing and Dunny, 1997; Murray, 1998; Hirt et al., 2005). When the 

recipient cells receive the plasmid, plasmid transfer stops though aggregation substances are on 

the cell surface for long time in pCF10 (Hirt et al., 2005). 

Several studies of horizontal gene transfer of bacteria have been conducted in laboratory 

and in the field. The ecological studies have been done to highlight the role of environmental 

factors such as temperature, moisture, nutrients, competing populations and transfer rates. 

Emergence of VRE (Vancomycin resistant enterococci) nosocomial infections in the USA and 
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spreading vanA to other bacteria such as Staphylococcus aureus are serious threats to human 

health. Being recognized as a growing concern of multi-drug resistance microbes, horizontal 

transfer of antibiotic resistance genes in enterococci has been investigated in intestinal 

microbiota (Sung and Lindsay, 2007) of different hosts. These studies involved the transfer of 

vanA of E. faecium from porcine to human microbiota (Moubareck et al., 2003), transfer of vanA 

and vanB in mice digestive tract (Dahl et al., 2007), transfer of the vanA resistance gene among 

E. faecium in the intestine of human volunteers (Lester et al., 2006), and transfer of the tetM and 

ermB resistance genes from Lactobacillus plantarum to Enterococcus faecalis JH2-2 in 

gastrointestinal tract of gnotobiotic rats (Jacobsen et al., 2007). 

In this project, the house fly gut was evaluated as potential site for horizontal gene 

transfer among enterococci. The horizontal gene transfer in the house fly digestive tract is of 

particular interest due to several factors. Several studies have suggested that house flies pose a 

high risk to human health by carrying resistant and potentially virulent strains of enterococci in 

the urban environments (Graczyk et al., 2001; Macovei and Zurek, 2006).  House flies are the 

most important non-biting insect pest of public health in their role as mechanical vectors of 

potential pathogens. Development of house fly larvae occurs in various decaying organic 

substrates such as manure and garbage with rich microbial communities (Schmidtmann and 

Martin, 1992; Zurek et al., 2000). Therefore, house flies are likely to carry a diverse microbial 

population in their digestive tracts. Adult house flies have been reported to carry and transmit 

Yersinia pseudotuberculosis, Helicobacter pylori, Campylobacter jejuni, Escherichia coli 

O157:H7, Salmonella spp., Aeromonas caviae, Enterococcus spp. (Greenberg, 1971; Shane et 

al., 1985; Moriya, 1999; Sasaki et al., 2000; Graczyk, et al., 2001; Zurek et al., 2001; Alam and 

Zurek, 2004). The habitat, feeding habit by regurgitating, high dispersal ability, close contact 
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with humans, free movement from animal farms to human residences make them more important 

as vectors of bacteria originating from animal manure and other decaying organic substrates.   

Several studies have suggested that the digestive tract of some insects serves as a site for 

horizontal gene transfer (Jarrett et al., 1990; Hoffmann et al., 1998; Watanabe et al., 1998; 

Hinnebusch et al., 2002; Dillon and Dillon, 2004; Petridis et al., 2006). The bacterial community 

in the insect gut can withstand antibiotic selective pressure and adapt to the microenvironment by 

continuous transfer of plasmids and other mobile genetic elements. Escherichia coli 

demonstrated transfer of the conjugative plasmid pRP4-luc to several proteobacterial species in 

the gut of Folsomia candida (Collembola) (Hoffmann et al., 1998). Bacillus thuringiensis 

plasmid transfer was successful between strains in the gut of Galleria mellonella and Spodoptera 

littoralis (Jarrett et al., 1990). The plasmid (conjugative plasmid pBPW1::Tn7) was also 

transferred between Erwinia herbicola strains in the gut of silkworm (Bombyx mori) larvae 

(Watanabe et al., 1998). Horizontal transfer of the antibiotic-resistance plasmid of E. coli to 

Yersinia pestis was demonstrated in the cat flea (Ctenocephalides felis), midgut (Hinnebusch et 

al., 2002). House flies have long been known as a mechanical vector for various bacteria and 

other microorganisms. One recent study reported the horizontal transfer of antibiotic resistance 

genes and virulence genes among E. coli strains in the house fly gut (Petridis et al., 2006).  

So far, no reports are available for horizontal transfer of antibiotic resistance genes or any 

other genes among Gram-positive bacteria in the house fly gut. In this study, horizontal transfer 

of the antibiotic resistance gene among Enterococcus faecalis strains in the house fly gut was 

investigated.     
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OBJECTIVE 

To determine the potential for horizontal gene transfer among E. faecalis strains in the 

house fly digestive tract 

 

HYPOTHESIS 

Horizontal transfer of antibiotic resistance genes takes place in the house fly digestive 

tract 

 

MATERIALS AND METHODS 

Pheromone-responsive plasmid conjugation  

The pheromone responsive plasmid conjugation system of enterococci was used to 

conduct the horizontal transfer of the plasmid pCF10 from E. faecalis OGIRF:pCF10 to E. 

faecalis OGISSp.  

 

Experimental design 

Two different types of bioassays were conducted. In the first experiment, house flies 

were analyzed every day for 5 days for donor, recipient and transconjugants without surface 

sterilization and dissection. Five flies were processed every day from two different groups of 

flies: 1) Exposure to donor first, recipient second (DR group) and 2) Exposure to recipient cells 

first and donor second (RD group). Three replications (n = 75) were conducted for each group. 

In the second experiment, the fly labellum was separated and analyzed separately from 

the rest of the body. The rest of the fly body was surface sterilized before further processing. 

Labellum and fly body then were processed to isolate donor, recipient, and transconjugant cells. 
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Every day 5 flies were processed and three replications (n = 75) were done for both groups, DR 

and RD.  

Enterococcus faecalis strains 

E. faecalis OGIRF:pCF10 was used as a donor strain. This strain has the rifampicin 

resistance gene on the chromosome and the tetracycline resistance gene tetM on the plasmid 

pCFI0. Enterococcus faecalis OGISSp was used as a recipient strain with streptomycin 

resistance gene on the chromosome (OGISSp). All strains were cultured on THB with antibiotics 

to confirm the viability of resistance genes before experiments. Fresh bacterial culture was used 

for each experiment. 

 

Selective media 

m-Enterococcus agar plates with rifampicin (50 mg/L) and tetracycline (4.0 mg/L) were 

used to isolate donor cells, E. faecalis OGIRF:pCF10. m-Enterococcus agar plates with 

streptomycin (2.0 g/L) antibiotics was used for recipient cells, E. faecalis OGISSp. m-

Enterococcus agar plates with streptomycin (2.0 g/L) and tetracycline (4.0 mg/L) for 

transconjugants.  All agar plates were made following the agar dilution method.  

 

In  vivo plasmid transfer experiments  

Fresh house fly pupae were obtained from the laboratory house fly colony (origin: 

Beltsville, MD) reared in the Department of Entomology, Kansas State University. All pupae 

were surface sterilized following a standard procedure (Zurek et al., 2000). All pupae were 

separated into two groups and transferred to two sterile Petri dishes and kept at room temperature 

(~25oC) in an incubator for adult emergence.  
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Two fresh cultures of donor (OGIRF:pCF10) and recipient (OGISSp) cells were made by 

inoculating from fresh pure culture plates supplemented with antibiotics. Donor and recipient 

cultures were grown in 5 ml TSB media at 37oC for 18 hrs. After overnight incubation, all 

cultures were transferred separately into 2.5 ml Eppendorf tubes and centrifuged for 1 minute at 

10,000 rpm. The supernatants were discarded and the pellets were re-suspended in sterilized de-

ionized water. The donor and recipient culture turbidities were measured by spectrophotometer 

and adjusted with sterilized distilled de-ionized water to obtain the same concentrations for both 

cultures (107 CFU/ml).  

As soon as the house flies began to emerge, one group received the donor inoculum (3 

ml) plus dry milk and sugar cube ad libitum for 12 hrs. At the same time, another group was 

offered the recipient inoculum (3 ml) for 12 hrs with dry milk and sugar ad libitum. Another set 

of donor and recipient inoculum was prepared in 5.0 ml TSB medium and incubated at 37oC for 

18 hrs for the next day.  

The donor and recipient inoculums with same concentration were prepared by 

centrifugation and re-suspension in sterilized water following the same procedures as described 

above. After the 12 hrs of incubation, house flies that received donor inoculum were offered the 

recipient inoculum for 1 hr (DR group). In a similar way, after 12 hrs, the fly group that received 

recipient inoculum was switched to donor inoculum for 1 hr (RD group). After the 1 hr 

incubation, flies in both group (DR and RD group) were aseptically transferred to deep sterile 

Petri dishes and separated to 7 house flies/dish with sterile tap water and new foods (sugar and 

dry milk ad libitum). At this time, five flies from each group (DR and RD) were processed 

immediately to isolate donor, recipient, and transconjugants (as described below).   
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Two different types of experiments were conducted as described above. Every day five 

flies, water samples and labella (in one type experiment) from each group were processed for 4 -

5 days. Each fly was homogenized in 1.0 ml phosphate buffer saline (PBS), two 10-fold serial 

dilutions were made and 34 µL were drop plated on media to isolate donor, recipient and 

transconjugants. Each day, 1 ml water sample was processed from each group with two 10-fold 

serial dilutions into PBS and drop plated on three different media to compare the concentration 

of donor, recipient, and transconjugant cells. Each labellum was homogenized in 200 µl of PBS; 

two 10-fold serial dilutions were made and processed on three selective media.  

 

Assessment of transconjugants, donor and recipient 

Growth of transconjugants was observed daily for both groups for the following 4 -5 

days. All bacterial colonies were counted and calculated to determine the concentration of donor, 

recipient and transconjugant cells. 

 

Data analysis 

Spotted graphs were created by InStat 3 software (GraphPad Software, Inc., San Diego, 

CA). Each graph shows the concentration of donor, recipient and transconjugants for individual 

fly, water samples, and labella from all fly groups. The normal distribution test was conducted by 

Chi-square test for discrete variables using WinSTAT Statistics for Excel.  
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RESULTS 

In the non-surface sterilized flies, both the donor and recipient established in a similar 

concentration and stayed relatively constant throughout the experiment (~104 – 106 CFU per fly) 

(Figs. 1, 3). In the DR group, as expected, all flies (N = 15) were negative for transconjugants on 

Day 0 immediately after the exposure to donor and recipient cells (Fig. 1, Table 1). The first 

transconjugants were isolated from house flies 24 hr. (Day 1) after the inoculum exposure. On 

day 1, four of 15 flies were positive for transconjugants (6.0 x 101 - 2.1 x 104 CFU/fly). The 

range of transfer rate of transconjugants per donor (T/D) was from 1.4 x 10-3 to 8.0 x10-3 CFU/fly 

(Figure 1, Table 1). Transconjugants were isolated consistently for the next four days from the 

flies (Figure 1). The range of transfer frequency of transconjugants per donor (T/D) was 9.6x10-3 

to 0.3x101 CFU/ fly on day 2; 9.3x10-4 to 1.9x10-2 CFU/ fly on day 3, 7.6x10-3 to 1x10-1 CFU/ fly 

on day 4 and 8.6x10-3  to 1.5x10-1 CFU/ fly  on day 5 (Table 1). Overall, 52% of the flies were 

positive for transconjugants when they were not surface sterilized and received donor inoculum 

first, recipient second. Also, the corresponding water samples (n=3/day) that were fed to the flies 

were processed (day 1 to day 5) to detect the donor, recipient and transconjugant levels. Though 

the water was positive for donor and recipient strains, transconjugant appearance was 

inconsistent. No transconjugants were present in water on days 1, 2, and 5 (Figure 2). 

Transconjugants were isolated from water for the first time on day 3 (3x101 CFU/ml) and again 

on day 4 (1.8x104 CFU/ml) (Figure 2).    

Among the group of non- surface sterilized flies that were fed recipient first donor second 

(RD group), the concentration of donor and recipient cells was similar to that of DR group 

throughout the bioassay. No transconjugants were isolated from flies on day 0. Transconjugants 

were detected for the first time in flies on day 1, 24 hr after the recipient and donor exposure 
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(Figure 3, Table 3). The transconjugant concentration in flies ranged from 3x101 to 6.9x103 

CFU/fly (Figure 3). Seven out of 15 house flies were positive for the transconjugants on day 1. 

The transfer rate (T/D) varied from 1.1x10-3 to 0.1x101 CFU/fly. Transconjugants were isolated 

from flies the following four days with the T/D range (2.9x10-4 to 1.2x10-1 CFU/fly on day 2; 

3.2x10-3 to 2x10-1 CFU/fly on day 3; 7.6x10-3 to 0.1x101 CFU/fly on day 4 and 9.1x10-2 to 

1.1x10-1 CFU/fly) (Figure 3). Overall in this group, 58.6% flies were positive for the 

transconjugants. There was no statistical difference (P>0.05) of transfer between the DR and RD 

flies.  

The water samples from the non-surface sterilized RD fly group were processed on a 

daily basis (Figure 4). There were no transconjugants on day 1. The transconjugants were found 

in water samples on day 2 (7.5x102 CFU/ml) and then again on day 3 (1.1x103 CFU/ml), day 4 

(8.1x102 CFU/ml), and day 5 (3.9x102 CFU/ml).  

In the follow-up experiment, the labella were aseptically dissected from the flies to 

determine the presence of transconjugants in the mouthparts. The rest of the fly was then surface 

sterilized to remove the surface bacteria. Then, each labellum and rest of the fly body were 

homogenized and processed the same way as described above. Three replicates (n=75) were 

done (25 flies/replicate). The concentration of donors, recipients, and transconjugants were 

monitored in the flies, labella, and water for five days.  

The concentration of donor and recipient cells in the labellum of flies in the DR group 

was relatively high (~103 CFU per labellum). The labella were negative for transconjugants on 

day 0. Transconjugants were isolated for the first time from labella of these flies on day 1 and the 

concentration range was from 6 x 101 to 2.1 x 102 CFU/labellum (Figure 5, Table 3). Five labella 

out of 15 were positive on day 1. The transfer frequency was 5.7x10-1 to 0.3x101 T/D. The 
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transfer of transconjugants in the labella was similar for the following 3 days (5.5x10-1 to 1.9x101 

CFU/labellum on day 2, 0.9x101 to 4.5x101 CFU/labellum on day 3,  0.1x101 to 2.9x101 

CFU/labellum on day 4) (Table 3). In total, 34% of the labella were positive for transconjugants. 

The concentration of donor and recipient cells in the digestive tract of the corresponding 

flies (surface sterilized body) in both groups (DR and RD) were not significantly different (P = 

0.11, P = 0.09) from that of the non-surface sterilized flies indicating that the majority of 

enterococci resided in the digestive tract and not on the body surface. In the DR group, no 

transconjugants were detected from the fly digestive tract immediately after the exposure of 

donor and recipient inoculum (day 0) (Figure 6). Twenty four hours after the exposure, 

transconjugants appeared in the fly gut in the DR group (Figure 6, Table 4). Nine flies out of 15 

were positive for transconjugants and the concentrations ranged from 3.1x101 to 3x103 CFU/fly. 

The transfer rate (T/D) ranged from 0.1x101 to 2.6x10-3 on day 1, 8.1x10-3 to 1.1x101 on day 2, 

8.6x10-5 to 0.1x101 on day 3 and 1.6x10-1 to 0.5x101 CFU/fly on day 4 (Table 4). In this group of 

flies, 52% of the flies showed transconjugants over the four days. 

In the water samples in the DR group, no transconjugants were found on the first day, 

after 24 hr of inoculum exposure to the flies (Figure 7). Transconjugants were isolated from 

water consistently with high concentration over the following days (3.6x105 CFU/ml on day 2; 

1.1x104 CFU/ml on day 2; 7.1x102 CFU/ml on day 2). 

In the RD group, the concentration of donor and recipient cells was lower than that in the 

DR group and greatly varied among flies (101-104 CFU per labellum) (Figure 8). No 

transconjugants were detected in the labella of flies in the RD group immediately after the 

exposure to the inocula (Figure 8, Table 5). Only two labella (3.0%) were positive for 

transconjugants on day 1 with the concentration of 1.2x102 CFU/labellum. The rate of transfer 
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(T/D) ranged from 5.4x 10-4 to 1.1x10-1. No transconjugants were isolated from the labella of this 

group of flies on days 2, 3, and 4.  

The surface sterilized group of flies in the RD group exhibited very low frequency of 

transfer (19%) (Figure 9, Table 10). No transfer of transconjugants occurred in the flies on day 0. 

The transconjugants were isolated for the first time on day 1 (Figure 9). On day 1, only 3 out of 

15 flies were positive for transconjugants (range 6x101 to 1.7x103). The transfer rate per donor 

ranged from 7.5x10-3  to 1.5x10-2 on day 1; 1.5x10-3  on day 2; 4x10-4 to 5.7x10-2 on day 3; 

4.6x10-3 to 2.2x10-1 on day 4 (Table 10). The transfer in the flies that were fed recipient first, 

donor second (RD group) was significantly lower (P<0.001) than in the DR group.  

Water samples from this corresponding group of flies (RD) were not positive for 

transconjugants on day 1. However, transconjugants were isolated from water every day for the 

next 3 days. The mean concentration of transconjugants was 2.4x102 CFU/ml (day 2), 2.2x102 

CFU/ml (day 3) and 1x101 CFU/ml (day 4) (Figure 10). 

 

DISCUSSION 

Bacterial evolution and rapid emergence of resistant strains emphasize the importance to 

explore new microenvironments that can provide the conditions for DNA transfer among 

bacteria (Hall, 2004; Choi and Kim, 2006; Light and Wilcks, 2006). Enterococcus faecalis has 

been recognized as a very important nosocomial pathogen (Richard et al., 2000) and for the 

frequent transfer of genetic determinants (Dunny et al., 1978; Murray, 1998; Simjee et al., 2006). 

It has been shown that the digestive tract of humans (Shoemaker et al., 2001) and animals 

provides the suitable conditions for the horizontal gene transfer (Dillon and Dillon, 2004; 

Kazimierczak and Scott, 2007). Many studies have been published that focusing on the transfer 
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of resistance and virulence genes of enterococci in vivo and in vitro (Jensen et al., 1998; Jensen 

et al., 1999; Boggard et al., 2000, Moubareck et al., 2003; Hirt et al., 2005; Lester et al., 2006; 

Coburn et al., 2007; Dahl et al., 2007; Jacobsen et al., 2007; Sung and Lindsay, 2007). 

House flies are known as a potential mechanical vector of various bacteria, including 

pathogenic strains originating from animal feces and other decaying organic materials (Zurek et 

al., 2000; Moon, 2002). However, to my knowledge, there is only one study assessing the 

horizontal gene transfer in the house fly digestive tract. Petridis et al. (2006) reported recently 

that horizontal transfer of resistance and virulence genes can occur among the gram- negative 

bacteria, specifically E. coli strains, in the house fly gut. Chloramphenicol resistance genes on a 

plasmid or the lysogenic bacteriophage-born virulence gene Shiga toxin gene stx1 (bacteriophage 

H-19B::Ap1) were transferred from the donor strain to the recipient strain. The rate of plasmid 

transfer was 10-2 CFU (T/D) in the house fly midgut and 10-3 CFU (T/D) in the crop and 

occurred within 1.0 hr of exposure. The authors suggested that antibiotic resistance or toxins can 

horizontally transfer in the fly gut by plasmid or phage transduction. There are no reports of 

horizontal transfer of antibiotic resistance genes or any other genes among gram-positive bacteria 

in the house fly gut. 

 In this study, horizontal transfer of antibiotic resistance genes of enterococci in the house 

fly gut was evaluated. For this assay, the pheromone responsive plasmid conjugation method of 

enterococci were followed to transfer the tetracycline resistance gene on a plasmid from the 

donor E. faecalis OGIRF:pCF10 to the recipient E. faecalis OGISSp strain. This transfer depends 

on the specific cCF10 peptide pheromone production and is restricted for the same species 

(Dunny et al., 1978; Buttaro et al., 2000; Hirt et al., 2005). The results clearly show that E. 

faecalis donor and recipient population established in the house fly gut within 24 hr of inoculum 
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exposure regardless if they received first donor or recipient inoculum. The concentration of 

donor, recipient, and transconjugant populations in house flies (mean concentration up to 105 

CFU/fly) was relatively stable and similar to that obtained from field collected house flies 

(Chapter 2, Macovei and Zurek, 2006). Transconjugants were readily detected in the flies 24 hr 

after the inoculum exposure. In non-surface sterilized flies, it was not possible to determine if the 

transfer took place on the surface of flies or in their digestive tract. Results of the surface 

sterilization flies revealed that the plasmid transfer took place mostly in the gut. More 

importantly, the corresponding samples of drinking water were negative for transconjugants 24 

hr after the inoculum exposure. The consistent presence of transconjugants in house flies at least 

24 hr prior the corresponding water became positive for transconjugants clearly supports the fact 

that transconjugants originated from the flies. Transconjugants were also detected from the 

labella of mouthparts at the same time they were observed in flies. In general, the gut 

microenvironment provides the optimum conditions for gene transfer due to diverse microbial 

community and the influx of new transient microbes from food in a nutrient rich environment 

(Kazimierczak and Scott, 2007). Several studies that have focused on the insect gut have shown 

that this organ can serve as a suitable site for gene transfer (Jarrett et al., 1990; Hoffmann et al., 

1998; Watanabe et al., 1998; Hinnebusch et al., 2002; Dillon and Dillon, 2004; Petridis et al., 

2006) but the specific conditions of the house fly gut that allows resistance gene transfer have 

not been investigated. However, in house flies, the midgut has been suggested as a more 

favorable site for plasmid transfer than the crop (Petridis et al., 2006).  

Data obtained from the house flies in this study showed a very high transfer rate of 

plasmids - up to 101T/D (range: 10-4 - 101 T/D).  Enterococcus faecalis was extensively studied 

regarding the conjugative plasmids and transposons with resistance and virulence traits (Clewell 
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and Dunny, 2002; Gilmore et al., 2002; Coburn et al., 2007). The transfer mechanism of the 

plasmid pCF10 was investigated in several in vitro studies (Dunny et al., 1978; Buttaro et al., 

2000; Clewell and Dunny, 2002; Hirt et al., 2005). Our study reports for the first time the 

transfer of tet resistance gene on pCF10 in the house fly digestive tract. Plasmid transfer rates 

between donor and recipient strains involving the expression of the aggregation substance were 

demonstrated to be as high as 10-1 T/D in in vitro studies (Dunny et al., 1978). As the sex 

pheromone plasmids of E. faecalis represent one of the most efficient conjugation mechanisms, 

it has been suggested that the plasmid transfer rate can exceed 10-1 T/D in vivo (Hirt et al., 2005). 

Transconjugant colonization level was frequently higher in this study than the donor population. 

It has been reported previously that plasmid transfer frequency in bacterial populations depends 

mainly on the donor efficiency (Dionisio et al., 2002) and the high plasmid transfer frequency is 

not reflected by the size of the recipient population (Turner, 2004).  

From my data, it can not be concluded that all transconjugant cells originated from the 

conjugation itself since the transfer was monitored only every 24 hr. Consequently, the high 

number of transconjugants in house flies could be a result of the high plasmid transfer rate 

combined with the rapid growth of the transconjugant population after plasmid transfer took 

place. In addition, the inocula intake by flies was beyond control in this study. If individual flies 

were force fed with a known inoculum concentration and volume, the inoculum influx could be 

better controlled. Much more frequent monitoring (every hour) of the transfer rate would enable 

us to determine the actual transfer rate in the individual flies. Further experiments are needed to 

address this issue.  

Interestingly, the observed transfer frequency of pCF10 was significantly higher (P = 

0.0001) in the surface sterilized flies that received the donor first and the recipient second 
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compared to those flies that received the inoculum in the opposite order. This phenomenon is not 

clear and will require further studies.    

It is well established that house flies harbor a diverse microbial community from their 

larval habitat. Adult flies are frequent visitors of decaying organic substances for feeding and/or 

oviposition. House flies were positive for transconjugants for the 4-5 days throughout this study 

period. This provides the evidence for the vector potential of house flies beyond carrying and 

disseminating viable bacteria with resistance genes and horizontal transfer of antibiotic 

resistance genes among bacteria in the digestive tract of wild house flies is possible. House flies 

are then capable to transmit these resistance genes by regurgitation or defecation. Previously, it 

was demonstrated that house flies can retain viable E. coli O157:H7 in the gut and labella after 3 

days of exposure and these can be shed in the fly feces (Kobayashi et al., 1999; Sasaki et al., 

2000).  

In conclusion, house flies greatly amplify the risk of human exposure to food-borne 

pathogens as well as resistant strains. Our study supports the hypothesis that the house fly 

digestive tract provides suitable conditions for horizontal transfer of antibiotic resistance genes 

mediated by plasmids among gram-positive bacteria. The results of this study make a major 

contribution for ranking house flies far beyond a simple mechanical vector of pathogens.  
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Figure 1.  Horizontal transfer of antibiotic resistance gene in non-surface sterilized house flies (N=90) (Donor 

first, recipient second) 
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Figure 2.  Horizontal transfer of antibiotic resistance gene in water (N=90) (Donor first, recipient second)  
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Figure 3.  Horizontal transfer of antibiotic resistance gene in non-surface sterilized house flies (N=90) (Recipient 

first, donor second) 
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Figure 4.   Horizontal transfer of antibiotic resistance gene in water (N=90)  (Recipient first, donor second)  
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Figure 5.   Horizontal transfer of antibiotic resistance gene in the house fly labellum (N=75) (Donor first, recipient 

second) 
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Figure 6.   Horizontal transfer of antibiotic resistance gene in surface-sterilized house flies (N=75) (Donor first, 

recipient second) 
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Figure 7.   Horizontal transfer of antibiotic resistance gene in water samples of surface-sterilized house flies (N=75) 

(Donor first, recipient second) 
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Figure 8.   Horizontal transfer of antibiotic resistance gene in surface-sterilized house fly labellum (N=75) (Recipient 

first, donor second) 

               

Day 0 Day 1 Day 2 Day 3 Day 4
1.0x101

1.0x102

1.0x103

1.0x104

1.0x105

Donor Recipient Transconjugant

Isolates
 

 

 



 134 

Figure 9.   Horizontal transfer of the antibiotic resistance gene in surface sterilized house flies (N=75) (Recipient 

first, donor second) 
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Figure 10.    Horizontal transfer of the antibiotic resistance gene in water samples of surface sterilized house flies 

(N=75) (Recipient first, donor second) 
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CHAPTER 4 

Significance and survival of enterococci during the house fly  

(Musca domestica L.) development 
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ABSTRACT 

House flies (Musca domestica L.) are considered as the most important non-biting insect 

pest of medical and veterinary importance. House fly larvae strictly develop in decaying organic 

substrates that are comprised of rich and active microbial communities that are essential for 

house fly larval development. These microbial communities possibly provide nutrition to the 

house fly larvae through degradation and fermentation of organic substrates or synthesize 

essential nutrients (e.g. vitamins). Moreover, house fly larvae also likely ingest bacterial cells as 

a nutritional source. In this study, eight ATCC (American Type Culture Collection) strains of 

enterococci were used to evaluate the role of enterococci and their survival during the house fly 

development from eggs to adults. The strains used in this study included Enterococcus avium 

ATCC 14025, E. casseliflavus ATCC 25788, E. durans ATCC 19432, E. hirae ATCC 8043, E. 

mundtii ATCC 43186, E. gallinarum ATCC 49573, E. faecalis ATCC 19433, and E. faecium 

ATCC 19434. A total of 25 surface sterilized eggs were used for each treatment in five 

bioassays. Percent pupation, pupal weight, adult emergence, overall house fly survival rate, 

enterococcal survival rate, and concentration of enterococci in the puparium and the gut of adult 

flies were measured. No fly development occurred in sterile egg yolk trypticase soy agar 

(EYTSA) plates used as a medium for bacteria and flies. Significant difference was observed in 

the proportion (%) of pupation among treatments. Overall, significantly higher proportion of fly 

larvae reached the pupae stage when grown on E. hirae (80.0%) and E. durans (76.0%) than on 

other isolates. The pupal weight from EYTSA inoculated with different strains varied but was 

not significantly different among treatments except for E. durans that supported larval 

development into significantly less degree in this respect than E. casseliflavus. The highest adult 

emergence was observed from pupae from EYTSA with E. hirae (95.0%), followed by E. avium 
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(94.1%) and E. mundtii (92.3%). A significantly lower adult emergence was recorded on EYTSA 

with E. faecium (60.0%), E. faecalis (50.0%), and E. gallinarum (50.0%). Overall survival rate 

of house flies (egg to adult) was significantly higher on EYTSA with E. hirae (76%), E. durans 

(64.0%), E. avium (64%) compared to E. gallinarum (36.0%), E. faecium (33.3%), and E. 

faecalis (24.0%). Enterococci were detected in puparia and newly emerged flies with 

concentration ranging from 103-105 CFU/puparium and 102 - 105 CFU/fly. The prevalence of 

enterococci in newly emerged adults ranged from 30.8% to 89.5% and in puparia from 75.0% to 

100.0%. This study indicates that potentially clinically important enterococcal strains, E. faecalis 

and E. faecium, did not support the fly development well comparing to commensal enterococcal 

strains E. hirae, E. avium, and E. durans.   
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INTRODUCTION 

The house fly, Musca domestica L. (Diptera: Muscidae) is considered as the most 

common pest of great public and animal health importance. House flies have been implicated as 

mechanical or biological vectors of enteric pathogenic bacteria including Salmonella spp., 

Shigella spp. (Greenburg 1971), Escherichia coli O157:H7 (Kobayashi et al., 1999; Moriya et 

al., 1999; Sasaki et al., 2000; Alam and Zurek, 2004; Ahmad et al., 2006), Campylobacter spp. 

(Shane et al., 1985), and Vibrio spp. (Fotedar, 2001; Graczyk et al., 2001). In addition, they have 

been associated with highly virulent infections such as anthrax, ophthalmia, typhoid fever, 

tuberculosis, cholera and infantile diarrhea (Scott and Lettig, 1962; Greenberg, 1965; Keiding, 

1986). House flies are also involved in the ecology of protozoan infections such as amoebic 

dysentery (Szostakowska et al., 2004); helminthic infections by pinworms, roundworms, 

hookworms and tapeworms (Getachew et al., 2007), as well as viral and rickettsial infections 

(Greenberg 1971; Gregorio, 1972; Greenberg, 1973; Graczyk, 2001). As mechanical vectors and 

nuisance pests, house flies represent a great public and animal health concern. Several studies 

have shown a positive association between the incidence of diarrheal diseases and the density of 

filth flies in developing countries (Esrey et al., 1991; Graczyk, 2001). 

 Animal manure, manure-soiled animal bedding, household garbage and other decaying 

organic substrates provide a suitable habitat for the growth and development of muscoid flies, 

primarily house flies (Zurek et al., 2000; Graczyk et al., 2001; Moon, 2002). These organic 

wastes comprise of diverse and active microbial communities (Schmidtmann and Martin, 1992; 

Zurek et al., 2000; Dillon and Dillon, 2004). Several studies addressing the significance of these 

microbial communities in the development of immature stages of muscoid flies including, house 

flies (Schmidtmann and Martin 1992; Zurek et al., 2000), stable flies (Lysyk et al., 1999; 
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Romero et al., 2006), horn flies (Perotti et al., 2001), and face flies (Hollis et al., 1985) have 

shown that larvae of these flies fail to develop on a sterile substrate, demonstrating their 

dependence on live bacterial communities.  The principle of this symbiosis is unknown; it is 

possible that fly larvae require bacteria as a direct source of nutrients (Greenberg, 1954; 

Levinson, 1960), or these bacteria may contribute to larval absorption and metabolism of 

nutrients by making them more hydrolyzed. Larval survival and development of muscoid flies 

vary greatly depending on the bacterial species (Lysyk et al., 1999; Zurek et al., 2000; Romero et 

al., 2006).   

The colonization of the insect gut by microbes depends on various factors such as pH, 

redox potential, digestive enzymes, and type of food. On the other hand, the gut microbiota also 

adapts to the intestinal microenvironment by changing their gene expression. Therefore, through 

all of these adaptations, ingested bacteria can survive in the larval midgut until pupation and 

establish in the alimentary tract of the newly emerged adult flies. The structural modification of 

pharyngeal ridges in fly maggots also supports this fact; fly larvae use this structure to filter 

bacteria from liquid media (Dowding, 1967; Schmidtmann and Martin, 1992; Watson et al., 

1993; Zurek et al., 2000).  

Enterococci are ubiquitous, Gram-positive cocci that comprise the normal flora of the 

intestine of animals ranging from insects (102 to 104 CFU/house fly [Macovei and Zurek, 2006]) 

to humans (105 to 107 CFU per gram of stool/feces [Murray, 1990]). Enterococcus faecalis, E. 

faecium and E. casseliflavus are enterococcal species frequently isolated from insects (Herman 

and Gerding, 1991; Jhonston and Jaykus, 2004; Sherer et al., 2005; Macovei and Zurek, 2006). 

Some enterococcal species are opportunistic pathogens and recognized as the third most frequent 

cause of nosocomial septicemia in the USA (Wisplinghoff et al., 2004). Among all the species, 
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E. faecium and E. faecalis are clinically the most important species and comprise up to 80% and 

20% of clinical isolates, respectively (Huycke et al., 1998; Reynolds et al., 2004; Coque et al., 

2005). Enterococci have the ability to acquire antibiotic resistance genes and can transfer these 

genes through plasmids and transposons to more pathogenic bacteria such as Staphylococcus 

aureus (Weigel et al., 2003). In the USA, 28.5% of nosocomial infections in hospitals are caused 

by vancomycin resistant enterococci (VRE) (CDC, 2002; NNIS report, 2004; Sherer et al., 2005) 

and these infections are very difficult to control.  

The objective of this study was to evaluate the symbiotic relationship between 

enterococci and house flies in terms of nutrition for larval development as well as survival of 

enterococci during house fly development and enterococcal colonization of the gut of adult flies.  

 

RATIONALE 

This is the first study evaluating the role of enterococci in growth and development of 

house flies. As a ubiquitous commensal and opportunistic pathogen, it is important to identify the 

fate of enterococci throughout the developmental stages of the house fly, a common pest of 

public and health importance. This study will provide the basis for understanding Enterococcus 

and house fly symbiosis and contribution of different enterococcal strains including potentially 

pathogenic strains to house fly larval development. This study will also evaluate the vector 

potential of house flies for the dissemination of enterococci in the environment.    
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OBJECTIVES 

1. To assess the development of house flies reared on an artificial medium with different 

species of enterococci.  

2. To examine the survival of enterococci during house fly development. 

 

HYPOTHESIS 

Enterococci support the development of house flies, survive pupation, and colonize the 

gut of adult flies. 

 

MATERIALS AND METHODS 

Enterococcal strains: Eight different species of enterococci (type strains from ATCC: 

American Type Culture Collection) were used in these experiments: Enterococcus avium ATCC 

14025, E. casseliflavus ATCC 25788, E. durans ATCC 19432, E. hirae ATCC 8043, E. mundtii 

ATCC 43186, E. gallinarum ATCC 49573, E. faecalis ATCC 19433, E. faecium ATCC 19434. 

 

Preparation of EYTSA (Egg yolk trypticase soy agar) media: Trypticase soy broth 

agar (Difco) with egg yolk was prepared as described in previous studies (Watson et al., 1993; 

Zurek et al., 2000). Briefly, trypticase soy broth (Difco), with agar (12g/L) (Difco), was 

autoclaved and left in a water bath to cool down to 51-55oC. Large commercial chicken eggs (2 

egg yolks/l) were surface-sterilized by submerging into the 90% ethanol for one hour.  When the 

TSBA medium was about 51-55oC, yolks were aseptically separated from the rest of the egg and 

mixed with the medium. The medium was poured into deep Petri dishes (100 x 25 mm) and 

cooled down. 
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Surface sterilization of house fly eggs:  Freshly laid house fly eggs were harvested from 

the laboratory house fly colony, Department of Entomology, Kansas State University. Eggs were 

collected to a sterile 15 ml falcon tube and immediately surface sterilized. Surface sterilization 

technique was followed standard procedures described in previous studies (Zurek et al., 2001). 

Briefly, eggs were washed with 10% bleach solution (0.05% sodium hypochlorite) for one 

minute. After pouring out bleach, eggs were rinsed with sterile de-ionized water three times. 

Eggs were then washed with 70% ethanol solution for one minute followed by rinsing with 

autoclaved de-ionized water three times. After surface sterilization, eggs were transferred 

aseptically on a sterile moist black filter paper to sterile Petri dishes. Petri dishes were incubated 

at 28oC for 24 hr to allow the eggs to hatch. 

    

Bacteria on EYTSBA medium: Bacterial suspensions were made for eight different 

enterococcal ATCC strains from fresh cultures and then streaked with a sterile swab stick on 

EYTSBA plates covering approximately 3/4 of the plate. Approximately ¼ of the plate was left 

sterile on every plate for placement of fly larvae. All plates were incubated at 37o C for 18 hours. 

  

Introduction of 1st-instar larvae: After 24 hr, when the eggs hatched, fly larvae were 

transferred aseptically with a sterile brush to the open space of the EYTSBA plates with each 

Enterococcus ATCC strain. Each bioassay was conducted with 5 larvae/plate/Enterococcus 

ATCC strain. All bioassays were replicated five times. For control group, sterile larvae were 

transferred to EYTSBA plates without any bacterial inoculation. All plates were incubated at 

28oC till pupation. 
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Monitoring fly survival rate:  All plates were examined daily for larval mortality and 

pupation. As soon as the larva pupated, the pupae were removed from the plates, weighed and 

surface sterilized. All pupae were transferred to individual sterile Petri dishes and incubated at 

28oC for adult emergence. The pupation rate, adult emergence and survival rate, pupal weight, 

and adult weight were recorded. 

 

Determination of enterococci in puparia and adult house flies: After emergence, all 

flies and puparia were homogenized in Phosphate Buffer Saline solution (1 ml/ sample). Two 10-

fold serial dilutions were made and drop plated on m-ENT agar plates to count enterococcal 

population. Enterococci were confirmed phenotypically as described previously (Chapter 2).  

 

Statistical analysis: Data for percent pupation, fly emergence, fly survival (egg to adult), 

and survival of enterococci in fly adults and puparia were transformed with arcsine square root 

[arcsine sqrt (percent/100)] to stabilize error variance (Gomez and Gomez 1984) and analyzed 

using analysis of variance (ANOVA). Means were compared by the least-squares means 

(LSMEANS) protocol (P=0.05) of the general linear model (PROC GLM) (SAS Institute 2003). 

Although all tests of significance (except pupal weight) were based on the transformed data, the 

untransformed percent values are reported. 
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RESULTS 

Our bioassays using artificial medium EYTSBA inoculated with eight different ATCC 

enterococcal strains demonstrated that fly larvae failed to develop on the sterile media and that 

enterococci are required to complete larval development.  Pupation occurred at almost the same 

time in all media plates inoculated with different ATCC strains and no significant differences 

occurred among treatments in length of time for fly larvae reaching pupation (data not shown).  

Overall, a significantly higher proportion of fly larvae reached the pupal stage when kept on 

media inoculated with E. hirae compared to that of E. mundtii (P = 0.0014), E. faecalis (P = 

0.0004), and E. faecium (P = 0.0176) (Table 1). The proportion of larval pupation on media 

inoculated with E. hirae (80.0%) did not differ significantly from that on media inoculated with 

E. durans (76.0%, P = 0.6266), E. gallinarum (72.0%, P = 0.3181), E. avium (68.0%, P = 

0.1420) and E. casseliflavus (68.0%, P = 0.1420) (Table 1). A significantly lower proportion of 

pupation was observed on media inoculated with the potentially human pathogenic strain, E. 

faecalis (48.0%) compared to that of all other strains, except E. faecium (P = 0.1461) and E. 

mundtii (P = 0.6266) (Table 1).   

The mean pupal weight did not differ significantly among E. avium, E. gallinarum, E. 

durans, E. hirae, E. mundtii, E. faecalis, E. faecium and ranged from 0.018 to 0.020 g (Table 1). 

Only fly larvae fed on media inoculated with E. casseliflavus had a significantly greater pupal 

weight that those fed on E. durans (P = 0.0117).   

Regardless of the strain, house flies started to emerge in 3-4 days after pupation. The 

proportion (%) of adult emergence was significantly higher in larvae fed on EYTSA inoculated 

with E. hirae (95.0%, P = 0.0003, 0.0013, 0.0002), E. avium (94.1%, P = 0.0003, 0.0013, 

0.0002), E. mundtii (92.3%, P = 0.0007, 0.0026, 0.0003) and E. durans (84.2%, P = 0.0052, 
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0.0173, 0.0025) compared to E. faecalis (50.0%), E. faecium (60.0%), and E. gallinarum 

(50.0%). The adult emergence on EYTSA inoculated with E. hirae did not differ significantly 

from that on media inoculated with E. avium (94.1%, P = 1), E. mundtii (92.3%, P = 0.8), and E. 

durans (84.2%, P = 0.3228) (Table 1). 

The overall survival rate of house fly larvae (egg to adult) varied among treatments. The 

highest adult emergence was recorded from the media inoculated with E. hirae (76.0%), 

followed by EYTSA inoculated with E. avium (64.0%) and E. durans (64.0%). A significantly 

lower proportion of adult emergence was recorded in media with E. faecalis (24.0%) compared 

to E. hirae (P  < 0.0001), E. avium (P < 0.0001), E. mundtii (P = 0.0013) and E. durans (P < 

0.0001) and E. casseliflavus (P  = 0.0013) treatments (Table 1). 

Enterococci were detected in newly emerged fly adults that were fed as larvae on 

different enterococcal strains.  Table 1 shows the prevalence of enterococci in newly emerged 

adults that ranged from 25.0 to 89.5%. The highest colonization was recorded in E. hirae 

(89.5%) followed by E. durans (87.5%) in the gut of newly emerged flies and that was 

significantly different (P < 0.0001 and P < 0.01) compared to all other strains. The poorest 

colonization rate was observed with E. casseliflavus (25.0%). The bacterial concentration ranged 

from 102 to 105 CFU/fly. The concentration varied among the individual flies and showed high 

standard deviations. E. gallinarum survived in the fly gut throughout the developmental time 

with the highest mean concentration of 6.6 ± 5.7x105 CFU/fly (Table 1).  

The puparia were also tested for the presence of enterococci. The majority of puparia 

(75%- 100%) were positive for enterococci. Hundred percent of puparia were positive from 

EYTSA with E. hirae, E. faecalis, E. gallinarum, E. mundtii (Table 1). The enterococcal 
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concentration was found higher in the puparia than the corresponding fly gut (Table 1). The 

mean concentration range among different strains was 103-105 CFU/puparium.   

 

DISCUSSION 

House fly (Musca domestica L.) larvae develop primarily in decaying organic substrates 

such as animal manure, household garbage, and other decaying organic materials (Moon et al., 

2001). This type of habitat contains a rich microbiota that likely provides essential nutrients for 

larval development through continuous fermentation or degrading organic substrate (Zurek et al., 

2000; Moon et al., 2001; Moon, 2002). Developing and residing in these sites with diverse 

microbes make house flies a likely vector for bacteria from feces/manure including human and 

animal pathogens (Sasaki et al., 2000; Graczyk et al., 2001). Several studies have shown the 

symbiotic relationship between microbes and muscoid flies in terms of nutrition for larval 

development (Schmidtmann and Martin, 1992; Zurek et al., 2000), bacterial digestion in the fly 

gut, oviposition stimuli, and vector competence (Espinosa-Fuentes and Terra, 1987; Zurek et al., 

2000; Schmidtmann and Martin, 2002; Petridis et al., 2006; Romero et al., 2006).   

In this study, we investigated the role of enterococci in the house fly larval development 

as well as their survival throughout the fly development from eggs to adults. To our knowledge, 

no previous work has been done for Enterococcus-house fly symbiosis in terms of support of 

insect development. Our bioassays using the artificial medium (EYTSBA) inoculated with eight 

different ATCC enterococcal strains demonstrated that fly larvae failed to develop on the sterile 

media and bacteria are required to complete larval development. This is in agreement with 

results of similar studies with muscoid fly larvae and different enteric bacteria showing strict 

dependence of larval development on live and active bacterial cells (Schmidtmann and Martin, 
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1992; Zurek et al., 2000). However, the overall fly survival rate from eggs to adults varied 

depending on the bacterial strain. The highest fly survival was observed with E. hirae (76%) 

compared to potentially pathogenic strains, E. faecalis (24%) and E. faecium (36%). Likewise, 

percent pupation (80%), percent adult emergence (95%) was significantly higher in larvae fed on 

YETSA inoculated with E. hirae compared to that of E. faecalis (48% and 50% respectively) and 

E. faecium (60% and 60% respectively). E. faecalis and E. faecium are opportunistic pathogens 

and clinically most important whereas E. hirae is categorized more as a commensal strain. In the 

USA, 60-80% of nosocomial infections by enterococci are caused by E. faecalis strains (Sherer 

et al., 2005). Other studies with potentially pathogenic strains also showed low survival rate for 

house fly larval development (Zurek et al., 2000).  

In nature, house flies receive nutrition from complex interactions of the diverse bacterial 

community. Larvae develop in decaying organic substrates with microbes and they have the 

capacity to digest bacteria for nutrition. Bacteria in the house fly midgut are lysed by several 

proteases (lysozymes, cathepsin) and low pH (Espinosa-Fuentes and Terra, 1987; Dillon and 

Dillon, 2004). Intestinal commensals act in food digestion and provide micronutrients by 

degrading complex molecules. Pupal weight data indicated that house fly larvae received enough 

nutrients to gain sufficient weight mainly with E. hirae. Enterococcus hirae and E. durans also 

showed the highest colonization rate (89.5%) in the gut of newly emerged flies compared to that 

of all other strains. E. faecalis did not support larval development well and it was recovered from 

the gut of 50% of newly emerged adult flies only. This fact indicates that potentially human 

pathogenic strains do not have the capacity to adapt, survive pupation, and establish in this 

microenvironment. In addition, the virulence factors of E. faecalis and E. faecium including 

gelatinase, aggregation substance, cytolysin (Clewell, 1993; Hancock and Gilmore, 2000; 
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Hancock and Perego, 2004) might have a negative impact on fly tissues and overall biology 

resulting in a low survival rate of house flies although additional studies will be required to fully 

address this phenomena.  

Interestingly, not all newly emerged adult flies were positive for enterococci in the 

digestive tract. In contrast, the majority (75 - 100%) of the puparia was positive for enterococci 

indicating that many bacteria are left behind in the puparium when the adult fly emerges. The 

bacterial concentration in the fly gut ranged from 102 to 105 CFU/ fly and the mean concentration 

range among different enterococcal strains ranged from 103 to 105 CFU/puparium. Other studies 

have also confirmed the fact that fly maggots were carrying pathogenic strains in their gut when 

reared on substrates inoculated with T. gondii (Wallace, 1971) or C. parvum (Graczyk et al., 

1999) but no pathogens were isolated from the gut of newly emerged flies. During the complete 

metamorphosis, the midgut of the adult insect is completely reformed from larval stage by 

multiplication of regenerative cells. These regenerative cells eventually form the lining of the 

lumen of the new alimentary canal for the next stages of life cycle such as pupa or adult 

(Chapman, 1998).  

Clearly, enterococcal cells are able to survive the pupation process and can colonize the 

puparium and the gut of adult flies. Further research will be necessary to elucidate how the 

bacterial cells escape the enzymatic processes during metamorphosis and/or how the fly 

larva/pupa avoids bacteremia. Great differences were observed in colonization of the digestive 

tract of adult flies (25 - 90% prevalence). These finding have a great relevance for the vector 

capacity of adult house flies to transmit bacteria originating from animal manure. The bacteria 

that survive pupation and colonize the adult gut first likely establish the resident gut bacterial 
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community and are consequently disseminated to the environment in the house fly 

flight/dispersal range.  
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Table 1.   Contribution and survival of enterococci in the gastro-intestinal tract during the house fly development (egg to   

adult) on EYTSA (egg yolk trypticase soy agar) medium (n =25) 

 

 

*Values within same column followed by the same letter are not significantly different (p> 0.05; PROC GLM; SAS Institute 2003)  
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Table 1.  Horizontal transfer of the antibiotic resistance gene in the non surface-sterilized house flies (donor first, 

recipient second)  
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Table 2. Horizontal transfer of the antibiotic resistance gene in the non surface-sterilized house flies (recipient first, 

donor  second) 
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Table 3.  Horizontal transfer of the antibiotic resistance gene in the house fly labellum (donor first, recipient second)  
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Table 4.  Horizontal transfer of the antibiotic resistance gene in the gut of the surface-sterilized house flies (donor first, 

recipient second) 
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Table 5.  Horizontal transfer of the antibiotic resistance gene in the house fly labellum (recipient first, donor second) 
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Table 6.  Horizontal transfer of the antibiotic resistance gene in the gut of surface-sterilized house flies (recipient first,  

donor second)  

 
 


