Year	Model	Application	Grinding type	Wafer size
				(mm)
1981	DFG-83H/6	Back grinding	Creep-feed	150
1988	DFG-82IF/8	Back grinding	In-feed	200
1994	DFG840	Back grinding	In-feed	200
1995	DFG830 (DFG840HS)	Flattening	In-feed	200
1997	DFG870	Flattening	In-feed	300
1998	DFG850	Back grinding	In-feed	200
1998	DFG860	Back grinding	In-feed	300
2001	DFG8540	Back grinding	In-feed	200
2002	DFG8560	Back grinding	In-feed	300
2004	DGP8760	Back grinding; polishing	In-feed	300
2005	DFG8360	Flattening	In-feed	300

History of wafer grinders at Disco Corporation [44]

Year
1960
1964
1973
1975
1979
1981
1985
1991

Progression of silicon wafer size (after [53])

Wafer size (mm)	TTV (µm)	Reference	
75	25	[58]	
100	10	[59]	
125	10	[60]	
150	10	[61]	
200	10	[62]	
300	3	[63]	

Typical TTV specifications for silicon wafers of various sizes

Impacts of wafer size progression on the role of grinding in flattening of silicon wafers

Wafer size (mm)	Flattening process	Note		
< 200	Lapping			
200	Lapping \rightarrow Single-side grinding	Changing from single-side grinding		
	(→ Lapping)	back to lapping was due to the		
		replacement of ID sawing by wire		
		sawing. (See Section 4.)		
300	Simultaneous double-side			
	grinding			

Effects of slicing on	the role of a	grinding in	flattening of	200 mm s	silicon wafers
		588			

Slicing method	Flattening process	Note		
ID sawing	Lapping	When 200 mm wafers were first manufactured,		
		ID sawing was used to slice ingots into wafers		
		and lapping was used to flatten sliced wafers.		
ID sawing	Grinding	Due to its significant improvement, in-feed wafer		
		grinding became more cost effective than lapping		
		for flattening and successfully replaced lapping in		
		some cases.		
Wire sawing	Lapping	In-feed wafer grinding (single-side grinding)		
		could not remove wire-sawing induced waviness,		
		and hence was replaced by lapping to flatten		
		wire-sawn wafers.		

Evolution of process flows for manufacturing of silicon wafers

Year	Process flow					
< 1990	ID sawing \rightarrow Lapping \rightarrow Etching \rightarrow Polishing					
1990	ID sawing / grinding \rightarrow Grinding (SSG) \rightarrow Etching \rightarrow Polishing					
1995	Wire sawing \rightarrow Lapping \rightarrow Etching \rightarrow Polishing					
	or					
	Wire sawing \rightarrow Lapping \rightarrow Etching \rightarrow Fine grinding \rightarrow Polishing					
2000	Wire sawing \rightarrow SDSG \rightarrow Etching \rightarrow Polishing					
	or					
	Wire sawing \rightarrow Lapping \rightarrow Etching \rightarrow Polishing					

Process	Machine	Machine cost (\$k)	Typical abrasive	Throughput (wafer/hour)	Flatness	Roughness	Depth of damage (µm)
Slicing	Wire saw	600-800	Silicon carbide, free abrasive	High	Poor	Poor	5-15
Slicing	ID saw	200-400	Diamond, fixed abrasive	Low	Poor	Poor	5-15
Lapping	Lapper	700-900	Alumina, free abrasive	High	Good	Good	2-5
Grinding	Grinder	600-800	Diamond, fixed abrasive	High	Good	Good	2-5
Etching	Etcher	200-1,200	None	Very high	Poor/good	Poor/good	None
Polishing	Polisher	1,000-3,000	Silica, free abrasive	Low/high	Very good	Very good	None