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INTRODUCTION

As a consequence of the development of high-speed data

processors, groups of investigators became aware of the diffi-

culty of supplying data to high-speed digital computers with a

speed comparable to that of the computer. Unfortunately, at the

present stage of the art, all data collection must be done

through the human channel which, while being amazingly flexible

and complex, is inherently slow due to its low capacity. In this

line very little has been done of any practical consequence. A

few attempts to recognize time pattern can be listed, such as

the work done at IBM, London University, and BTS on recognition

of sound.

Most of the several approaches that have been investigated

are of deterministic nature that would work well only in situa-

tions where the group of signals would be strictly constrained

to be of a deterministic type. As a result of this situation,

the various authors have been forced to introduce unbearable re-

strictions to the possibility of application of their methods.

Typical examples of the failure to which these endeavors are

doomed are the BTS digit recognizer that had to be regulated to

a single speaker, and the recognizing machine developed at

London University that systematically failed on some sound

combinations.

In recent years a new point of view has been formulated.

This point of view may be summarized by stating that to perform

recognition, redundancy reduction, and noise elimination, one
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must deal with a cognitive system. In other words, only a

system that Is able to learn the probability distributions of

the ensemble on which it is operating will have a fair chance

to succeed.

Along this line of thought we find the contributions due

to Allanson, at the University of Birmingham, Taylor, at London

University, and Rosenblatt, at Cornell Aeronautical Laboratories.

The purpose of this paper is to investigate and evaluate

the theory of operation of a machine or class of machines called

the Perceptrons originated by Dr. Rosenblatt, of the Cornell

Aeronautical Laboratories.

BASIC CONCEPTS OF STATISTICAL
SEPARABILITY THEORY

The Theory of Statistical Separability is the theory of

operation of a system called the Perceptron which operates ac-

cording to certain statistical principles.

The system is so designed that it responds to a statistical

bias. Information is stored on the basis of retaining that

which is essential to the classification or discrimination of

stimulus. Associative memory is employed rather than exact re-

producibility of remembered materials.

For the Perceptron the idea of memory will be realizable in

quite a different fashion as compared to the digital computer

memory system. Representational memory employed in the computer

is the logically translatable coding of desired information to



be stored. If the Perceptron, for example, were to use digital

computer memory devices, then for each retinal on--off cell

there must be a corresponding storage for one bit of informa-

tion. Then for a million on— off retinal cells a million stor-

age units would be required. Although this requirement is

realizable, the time required to select or identify the storage

unit which corresponds most nearly to each new input would fall

quite short of simulating any operation comparable to that of

the human visual performance. Fortunately, this type of memory

is not employed in the Perceptron. Rather an associative memory

is used to identify or discriminate Inputs. Although the orga-

nization of the Perceptron will be discussed later, it is suf-

ficient at this point to say that the retinal cells are connected

at random to a set of cells called association units. Thus any

pattern of cells stimulated on the retina would activate a sub-

set of these association cells. With associative type of memory

the information content is contained in the connection patterns

resulting from points of stimulation on the retina to cells of

activity in the associations units.

In place of the idea of errorless retention, redundancy is

employed in the use of the same associate units.

The system will occasionally make errors in identification

of a pattern which has been correctly identified before, not be-

cause of malfunctioning of the electronic hardware, but because

the system operates in a probabilistic manner. Since the nature

of the system is statistical, the probability of correct recog-

nition fluctuates with time. That is, the adapting of the



system to its inputs is a function of time. Learning takes

place, and then the system is said to adapt to its environment.

Thus it follows that the statistical bias which determines the

proper response will change with time.

The principle for connections is essentially random within

limitations of the plan of organization. In an analogous manner

the biological nervous system is assumed to have entire freedom

in the details of connections.

According to biological nervous system theories, a system

spontaneously adapts to its environment by two possible methods.

In one theory a system learns or adapts to Its environment

by change in network topology. As the nervous system adapts to

its environment, neuron connections or branches of the neuron

network continually change their topology.

The other theory assumes that a system adapts to its en-

vironment by changing a value function associated with the neu-

rons. The network once established (upon birth) remains con-

stant throughout the system's entire life and learning is accom-

plished by changes of some parameters of the neuron composition.

The latter theory of learning is the basis of Dr. Rosen-

blatt's Perceptron Theory.

ORGANIZATION OP THE PERCEPTRON

The basic organization of the Perceptron will consist of a

sensory unit, two response units, R^ and R2, and their asso-

ciated source sets, A^ and Ag, respectively. The relatively



simple model shown will be capable of a limited vocabulary; how-

ever, it will serve to illustrate the basic principles of the

function and organization of the Perceptron. One method of

pictorial representation of the basic organization is by use of

the Venn diagram, Plate I, Pig. 1. The circles represent sets

or classes of units, and the arrowed lines indicate directional

excitatory connections of the various sets of units. The lines

terminated by small circles indicate inhibitory connections.

Figure 2, Plate I, is a schematic representation corresponding

to Fig. 1, Plate I.

Now consider the laws or rules which govern the connections

between the different sets of units of the Perceptron. The net-

work of connections between S- and A-units is one of uniform

random distribution. That is, any S-point may be connected to

any A-unit with equal probability. Each S-point may be connected

to several A-units distributed uniformly over the entire A-set.

Each A-unit will have several S-points connected to it. These

S-points are called the origin points of an A-unit. In the

simplest Perceptron the origin points are uniformly distributed

at random throughout the S-set. However, in order for the Per-

ceptron to have sensitivity to contours and gradients, the

origin points for a single A-unit must be concentrated in a small

area such as an exponential distribution about a central point.

The A-units are connected to the R-units at random, similar

to that of the S-points and A-unit connections. In general,

this connection results In three A-subsets. One subset will be

those A-units, denoted by A^ set or R^ source set, transmitting



EXPLANATION OF PLATE I

Fig. 1. A Venn diagram of the organization of a

simple Perceptron.

Fig. 2. A schematic representation corresponding to

Fig. 1.



PLATE I
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to R^ response unit. The second subset consists of those A-units

(A2~set or Rg-source set) connected to the response unit R2»

The other is a small subset of overlapping A-units which is con-

nected to both Ri and R£ response units.

In Pig. 1, the A^set is shown to be in the upper circle,

the A2-set the lower circle, and the intersection of the circles

represents the overlapping set of A-units. There is no need for

topographical segregation of the R-source sets in the actual

system as the diagram was drawn in this manner for clarity.

As illustrated in the diagram of Pig. 1, the response units

are mutually exclusive, that is, when Ri, for example, responds

to a stimulus, it sends inhibitory impulses to A-units of A2-set

and to the other response unit Rg» Thus the rule of connection

is that each R-unit inhibits the complement of its source set.

When one R-unit has responded, it suppresses the other source

-

sets limiting the activity to the dominant A- set. The inhibitory

impulses will prevent the non-dominant responses from being

activated by impulses from the intersections of this source-set

with the source-set of the dominant set.

Consider what happens upon presentation of the first stim-

ulus to the sensory points of the Perceptron. A subset of uni-

formly distributed members of the A-system will respond. This

set of points which is activated is the superset responding to

the presented stimulus. At this point probably no R-unit will

respond since the activated set of A-units is uniform in all

source-sets. A response unit, say Ri, will be forced to respond

by the experimenter. Then this response unit suppresses the
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other R-source sets. That is, the members of the original super-

set are inhibited except those of R^ which become the dominant

subset. The dominant R^-subset consists of the active units of

the Ri-source set which responds to a particular stimulus asso-

ciated with R^. Upon activation the active units of R^ gain

value with respect to the rival subsets. Since discrimination

is based on the net value of the source-sets, then with increas-

ing number of stimuli presented of this type the higher the

probability that R^ will respond autonomously. Similarly, with

a different type of stimulus presented, R2 may be forced to re-

spond. When R2 responds it inhibits the other source-sets;

hence they are unable to gain value, and only the dominant R2

subset (activated units of Rg) are allowed to gain value with

respect to its complementary set.

The more presentations of the type of stimulus associated

with Rg, the higher the value of R2 due to stimulus S^_ and the

higher the probability of correct response of R2»

In the biological nervous system there are three classes

of cells: sensory, associative, and motor neurons. Correspond-

ing to the biological system, the Perceptron has three elementary

units which are the following: S-points (sensory points in a

simulated retina), A-units (association units), and R-units

(response units).

The sensory units receive the stimuli whatever they may be.

For example, in the photoperceptron the stimulus will be pro-

portional to the level of illumination. The response units may

be considered the code center or a label of a particular class
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of stimulus.

The activity of the Perceptron upon the presentation of a

stimulus will be divided into two classes, the predominant and

the postdominant phases.

The predominant phase is only a transient phenomenon. When

a stimulus has been shown to the sensory system, a certain num-

ber of A-units are activated. Some of these activated A-units

will be members of both source-sets. The source-set, say Rj_,

for example, which contains the largest number of activated

units will tend to have a higher net value than the other set.

Thus Ri will tend to respond. As R^ responds, it suppresses

the R2~source set and the Ra-response unit. The above procedure

takes place in a very short amount of time and is essentially

a transient phenomenon.

Once a response unit has responded and the complement set

has been suppressed, then the Perceptron is In the postdominant

phase of its activity. During this phase the resulting unsup-

pressed activated A-units gain an increment of value, while the

inactive A-units remain unchanged. It is evident that the next

time the same stimulus is presented, the same reinforced A-units

will be reactivated with a higher probability, and thus they

will indicate the correct response. All of the above is a de-

scription of the reaction of the Perceptron to a presented

stimulus.

The detailed analytical description of the predominant

phase of Perceptron response was carried out by Dr. Rosenblatt

and given in the Report on "A Theory of Statistical Separability
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In Cognitive Systems".

Two variables Pa , the expected proportion of A-units acti-

vated by a particular stimulus of a given size, and Pc , the ex-

pected proportion of A-units activated by one stimulus which

are also activated by another stimulus, are sufficient to de-

scribe the predominant phase of the Perceptron.

The numerical evaluation of the equations for Pa and Pc

were obtained by a Monte Carlo computation technique on the

IBM 704 computer. The equations for Pa and Pc are essentially

functions of the parameters of the Perceptron organization.

The connections of the system consist of random homogeneous

distribution of connections between the S- and A-units. Each

A-unit receives some excitatory connections and may, but not

necessarily, receive some inhibitory connections from the sensory

cells. The only restraint on the design of connections is that

no two A-units are connected to identical sets of S-points.

This restriction is placed so as to insure maximum difference

in response of the system to different stimuli.

When any stimulus is presented to the sensory mosaic, a

set of S-points is stimulated. The S-points are connected to

the A-units by excitatory and inhibitory connections. If a suf-

ficient number of net excitatory connections to an A-unit are

excited by the stimulus, then the A-unit is activated. That is,

if an A-unit receives a net amount of excitation greater than

or equal to the threshold value, then that A-unit is to respond

or become active. P
fl

and Pc are functions of the formulation of

possible combination of excitatory and inhibitory connections
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and various levels of threshold values for the A-units. Hence

the analysis concerning these quantities is essentially one of

design possibilities of the Perceptron system.

This report will not be concerned with the aspect of the

Perceptron analysis mentioned above, but it will be concerned

with the feasibility of such a system for its intended purpose,

that of learning its environment.

ALTERNATE PERCEPTRON MODELS

With the general statistical separability theory and the

rules of organisation given, several alternative Perceptrons

are possible. On the basis of response unit discrimination

there are two possible forms, the sum value and the mean value

systems. In the sum value system, discrimination of the response

units is based on a comparison of the total value of each A-

subset (the set of active A-units per source-set).

Discrimination by the mean value system is the comparison

of the mean value over the sets of active A-units. That is, an

average is taken over each entire active subset, and the result

is the mean value per active A-unit per subset, and the compari-

son for discrimination is made between the source-sets. The sum

discriminating and the mean discriminating systems will be de-

noted by ^--systems and ^c^ -systems, respectively.

Three alternative Perceptron models will be considered with

respect to the dynamics of the value change of each source set.

One model is the uncompensated gain system called the Alpha
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Perception. Each A-unit gains an increment of value per unit

of time the cell is activated. When an A-unit is inactive or

suppressed, it remains at a constant value which is determined

by the number of reinforcements previously received. Thus the

total value gain of a source-set per reinforcement is equal to

the number of activated A-units per source-set. The mean value

of the A-system increases with the number of reinforcements.

This system has the advantage of being easy to design. How-

ever, it must operate under the restricted conditions that each

response unit on the average is reinforced or becomes dominant

with equal frequency. In the random environment the probability

of correct response decreases to a random or chance expectancy

of 0.5 when Ns , the number of stimuli presented to the system,

becomes large enough. The system, under these conditions, be-

comes saturated.

The results of the analysis using mean discrimination for

the Alpha system show that the performance is improved for

higher values of ns . In addition, the range of values of Pa for

which the system operates satisfactorily is widened.

The second model is the constant-feed system which is called

the Beta Perceptron. Independently of the number of reinforce-

ments, a constant rate of value Is fed to each source-set of

the A-system. Hence the total value of all source-sets is

always equal.

Within the source-set the active units take precedence over

the inactive units; thus the value gain is distributed prefer-

entially to the active units of each source set. The total value
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gain of a source-set per reinforcement is a constant, K, and the

mean value of the A-system increases with time. An A-unit active

for one unit of time gains 105^, where N^ is the number of

active units in a source-set. The gain of an inactive A-unit

outside the dominant set is K/NAr , where NAr equals the number

of A-units connected to a response unit, while the gain of an

inactive A-unit of the dominant set is zero.

The analysis of the Beta system has poorer performance than

the Alpha system under all conditions, even with variation in

n3r , the number of stimuli associated to each response unit.

The reason is the accumulation of value in the inactive units.

The parasitic gain system, or Gamma Perceptron, is the third

Perceptron model that will be considered. The total value as

well as the mean value of each source-set remains constant. Re-

inforcement produces only the effect of redistribution of the

value among the A-units of a source-set. Within a source-set

active A-units gain value at the expense of inactive A-units,

which decrease in value.

Continuing the comparison of logical characteristics of the

three systems, the total value gain of the source-set per rein-

forcement is, of course, zero. An A-unit active for one unit

of time gains one increment of value. The inactive A-units out-

side of the dominant set gain zero value, while the inactive
NarA-units of the dominant set loses increment of value.

NAr - N
ar
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ANALYSIS OF TEE ALPHA PERCEPTRONS
FOR IDEAL ENVIRONMENT

Response of the Alpha Systems with Uniform nSr

The performance of the Perceptron will be analyzed quanti-

tatively on the basis of a hypothetical experiment. The exper-

iment consists of a learning period and a testing period, during

which time the capabilities of the machine will be evaluated.

During the learning period a specified number of stimuli,

n3 , will be shown to the Perceptron. The experimenter will force

each of these stimuli to become associated with one of the re-

sponses by forcing the desired response unit to respond. The

stimuli for ideal environment each consists of a random collec-

tion of S-points to be stimulated. The stimuli will have the

same measure, that is, each consists of the same number of S-

points. It will be assumed that on the average an equal number

of stimuli are associated to each response unit. In symbols

n s i stimuli are associated during the learning period to re-

sponse R^.

In the testing period spontaneous reaction of the system to

the previously reinforced stimulus s^will be observed. Correct

response is achieved if the testing and learning period re-

sponses are the same.

General considerations will now be given to the analysis

of Pr , which is the probability of correct response during the

testing period to stimuli previously reinforced during the
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learning period. Upon the presentation of a stimulus, the dis-

crimination of the response units will be measured by the rela-

tive difference between the value of the source-sets. Thus the

net bias B will be referred to as the net difference of value

between R^ and Rg source-sets which results from a stimulus be-

ing presented. A convention to be used in this analysis is that

only two response units will be assumed. However, the same

analysis is valid for any number of response units. Under these

conditions, if B is positive R-^ will be preferred, and if B is

negative Rg will be preferred.

The net bias 3 can be decomposed into two bias components--

b, the controlled bias, and d, the random bias. The controlled

bias b is the value gained by R^ source-set due to stimulus S^

associated with R, when it was originally presented during the

learning period. The random bias d is the net value between R^

and Rg source-sets due to all stimuli other than S^.

Extensive use of statistical parameters will be made

throughout this report and as each parameter is needed it will

first be introduced in general statistical notation with the

proper explanation. Then the application to the particular

problem will be made.

The arithmetic mean of a distribution is the sum of the

products of the values and their corresponding proportions. The

arithmetic mean is also called the expected value of a member of

the population to be chosen at random. If X is to denote a mem-

ber of the set to be chosen at random and E denotes the expected

value, then E(X) means the expected value of a member of the set
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chosen at random. The arithmetic mean is the center of gravity

of a distribution since the sum of deviations from E(X) is zero.

It should be noted that the expected value of a quantity X, for

example, may be denoted by either E(X) , or X\ Both notations

will be used in this report.

Expressing the above two bias components as expected values

plus their fluctuations, the following definitions result:

b m the expected bias gained by the R^ 3ource-set by the

reinforcement due to the stimulus in question, s^.

d* as the expected bias gained due to all reinforcements

of the R^ and Rg source- sets, exclusive of s^

At> = the difference between the actual value of b from

the expected value of b

Ad = the difference of the actual value of the random

bias d, from the expected value of d.

In terms of the above components, the net bias may be ex-

pressed by

B = b"+d+Ab+ Ad (1)

For correct response of a particular stimulus, B must be

positive for the stimulus. Therefore

b" + d" + 4 b + ,Ad ;>

or b" + d" y- -(Ah + A\&)

which indicates that the sum of the expected bias must be greater

than the fluctuation bias for correct response to occur.

The performance of the Perceptron systems may be measured

by the correctness of response due to any particular stimulus

in question. This is measured by Pr , the probability that when
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one stimulus of a class of stimuli associated with R^ -response

unit is presented during the learning periods, this stimulus

will be preferred over any particular response Rj in the testing

phase.

From the previous considerations of the biases of the

system, Pr would be directly proportional to the net expected

bias and inversely proportional to the standard deviation of the

bias components b and d. It is evident that Pr would be a func-

tion of the expected bias. However, this quantity must be nor-

malized with respect to the standard deviation of the bias com-

ponents denoted by <T~(b + d)

.

In notational form,

b + d

CT(b + d)

Pr =
J

f(X) dx (2)

where f is some suitable distribution function.

Ab and Ad, the error components of the bias, are not mu-

tually independent because both components are functions of P^i*

the actual proportion of A-units activated by the i stimulus.

Thus the standard deviation of (b and d) is difficult to

evaluate. However, for a fixed value of h b, (T~(d) could be

calculated and the probability that the proper bias conditions

would exist could be expressed by

b + d + Ab

0(Z) dZ
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where# is a suitable distribution function depending on A b.

Now if the sum of all possible Ab were calculated, Pr may

be written as follows:

•b + d"

-L
Ab

^d
0(Z)dZ

-oo
P(Z\b) (3)

where P(Ab) is the frequency of occurrence of Ab.

In order to simplify this expression, consider the quantity

^b. Ab is the error component of bias due only to the stimu-

lus in question, the response of which is measured by Pr .

For the mean discriminating systems and the sum system with

a large number of A-units, Ab is, in general, small compared to

/\&. However, there is one condition which could make a criti-

cal difference in Pr if Ab was entirely neglected, and that is

when Ab = -b. This indicates that when Sj. is presented, then

no A-unit in the R± source-set will be activated. For all other

conditions, Ab can be neglected. The above sum reduces to one

term which is

F+ d*

pr
=

r

*d

uU
0(Z)dZ P(Ab t -b) (4)

The most logical choice for the distribution function, 0,

would be to assume a normal distribution function in view of

the central limit theorem. Then Pr would be the normal distri-

bution integral times the corrective factor P(Ab ^ -b).

The expression for Pr becomes
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pr s p(Ab^ -b) f
£' t2/2

dt

b" + d"

where Z = (5)
(T(d)

In the first analysis the study of the behavior of the

system in an ideal environment will be carried out. Ideal en-

vironment is a simplification of the theoretical model, presented

in order to simplify analysis, rather than an optimum. The

important feature of ideal environment is that it simplifies the

stimulus relationship associated to each response unit. Under

this condition, each stimulus of the set of stimuli associated

with a response unit has no correlation or relationship of any

kind to any other stimulus of the same class. Another assump-

tion is that all stimuli are of the same measure so that Pa will

be identical for all stimuli.

The frequency of activation of the A-units will determine

the bias of the source-sets and In turn the responses to be acti-

vated, thus determining correct recognition. With this in view

very careful consideration must be made with respect to the de-

tails of the activity of the A-units during exposures.

Let the following notation be introduced:

Pi a the probability the i**1 stimulus will be pre-

sented to the system

pAi s the probability that an A-unit will be activated

by stimulus i.

The A-units are connected at random to the sensory system

and the R-units. The expected value of P^ is the product of



21

the values of PA , and their corresponding frequency of occur-

rence Pj_.

In symbols, E(PAi ) = ZT PAi PI < 6 )

Since E(PA . ) will be used quite frequently, the following

notation is used: P a E(PA .). Several interpretations of Pa

can now be projected, keeping in mind that Pa is an expected or

mean value.

The most obvious meaning is that Pa is the probability that

any randomly selected A-unit in the entire A- system will respond

to a stimulus in question. It follows from this general defini-

tion that Pa is the proportion of A-units which will respond to

a particular stimulus.

If a particular stimulus has activated an A-unit, it will

gain an increment of value AY which has been set equal to unity.

Then a final interpretation is that Pa is the expected value of

a proportion of exposures on which an A-unit will gain an incre-

ment of value. In other words, Pa is the expected increment of

value on the average that an A-unit will gain due to one

exposure.

Many quantities In this analysis are expressible as a func-

tion of the random variable PA . It is useful to measure the

amount of variation in the value among the members of a popula-

tion. One of the most frequently used measures of variability

is variance, and its positive square root, the standard devia-
o

tion denoted by <j" and <r~, respectively.

In order to evaluate the variance of PA ., assume for

C7"
& (PAi ) a series expansion of the type
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<T-
2 <PAl ) = it *e C < 7 >

e=0

In practice, the powers of Pa higher than the second can b e neg-

lected since in most of the following considerations Pa«l.

Thus it can be assumed:

<r2 (PAi ) - «o + alpa
+ a2 pa

2
< 8)

But noting that Pa = if and only if PA for all i, then

q(Pa, SB 0) , x

0- 2
J P^= j

» = a (9)

Therefore o"*(P# 2
•

Al ) = axPa a2Pa
^ (10)

But Pa
= 1 if PA m i for all i. Thus

Pa
= 1 implies cr2 (PAl ) m

or a-]_ + &2 0, a2 -a^ (11)

and <7
" 2

(Pa
1 ) »l( pa • pa

2
> ( 12 >

This being a variance of a population of probable numbers, its

value cannot exceed 1; hence

This coincides with the value given in reference (1) without

<T*{?A ) = Pa (l - Pa ) (13)

Justification. The above derivation indicates that this is the

only feasible second order approximate of

<r
2 (PAl ) f(Pa ) (14)

Analysis for random environment is carried out because the

analytical model used will serve as a basis of analysis for the

modifications and extensions of more sophisticated Perceptrons.

For calculation of Pr as a function of Pa , the quantities

which appear in the expression for Pr , namely, b, d, and <r~&,

will now be calculated for the sum discriminating Alpha system.
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Assuming non- over lapping source-sets, then the expected

controlled bias b will be equal to the number of A-units acti-

vated in a source- set by a stimulus times the increment of value

gained by an A-unit upon activation, which can be represented

by N a AV. AV is assumed to be unity.

However, since overlap exists between source-sets, the

effective value gained by a source-set is

E*iTa
r

-ira
c

(15)

where Na « expected number of common units activated by the

stimulus in question.

!** N ari » NAr » *nd N
ftr

be defined as follows:

N a =s the number of active A-unlts per source-set when

the i tlJ
- stimulus is presented

N^ as the number of A-units connected to the response
J

Rj, or in general

Na ss the number of A-units connected per response unit,

since the variance of NA is considered negligible.

Then N
ari

- NAp ?A± (16)

The expected value of Na may now be calculated as follows:

E(Nar ) = 2" N ari
Pi = 2" NAp PAi Pi

Z= NAr U PAi Pi . MAj| P
ft

(17)

Similarly, E <N ac
) pa N

A(J

where N
Afi

= the number of A-units connected in common to Ri and

Rj, a specified pair of response units

Nmc
as the number of A-units active in the NA subset.
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Substituting in the expression for the expected controlled

bias yields

E- Pa (NAr - NAc )

Since NA - NA is the number of effective A-units connected to

a source-set, denoted by Ne , then b ss PaN e .

An experiment will be assumed in which the following con-

ventions will be used. S^. has been selected to represent a

known stimulus which will be used as a test stimulus. There is

nothing special about this stimulus except that it has been

chosen to represent any particular stimulus of the stimulus

class associated to the R^ source-set.

It is assumed that the number of stimuli associated to a

response unit, n s , are all equal. For the sake of calculation,

the discrimination between stimuli belonging to response units

Rl and R2 will be of concern, with S^ representative of the R^

stimuli class.

The net bias is to measure the net value gained by the

source-sets upon activation. The expected net bias is a measure

of the net difference of value between the R^ and Rg source- sets

due to stimuli reinforcements.

When any one stimulus is presented to the Perceptron in

particular St , the expected value gained by the source-set which

responds is equal to the number of effective units activated

^a_ " ^a * or P
a
N
e*

By definitlon > fcnls value is the expected

controlled bias b. Since S^ will be assumed to be associated

with Ri, then the PaN e units activated by S^ form a set of units

which will be called the StR1 subset. Then stimuli other than
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Sjj associated to R^ and R2 presented during the learning period

activate a portion of the S-j-R^ subset which tend to reinforce

the S.J.R-L subset. Thus the result is to increase the probability

for correct response of St during the test period. This over-

lapping bias reinforcement is measured by the random bias com-

ponent, d.

The expected proportion of overlap of A-units to two

stimuli is Pa for random environment. Then the expected bias d"

at the end of the learning period due to all stimuli belonging

to R^ and R2 other than S^, is equal to

3 . Vx . V2 » Pa (PaNe )(nar - 1) - Pa (PaNe)nsr

= -Pa (PaNe ) (18)

where 7X a Pa (PaNe)(n Sr - 1) is the expected value of the R
x

source-set due to all stimuli associated with E-^ except St , and

^2 = pa( paN e)n sr
is tne expected value of the R2 source-set due

to all stimuli of the R2 class.

The second quantity required for the Pr expression is the

standard deviation of d, <rd , which is defined as the positive

square root of the variance of d, cT^2 .

The error or random bias component, d, is given by

i = »J - V2 (19)

where V^ is the total value of the Na . units in the R^ source-

set and V2 is the total value of the Na2 units of the R2 source-

set at the time when St is presented, d is the net bias at the

time when St is presented or the bias due to all other rein-

forcements of R^ and R2 other than St . V^ is produced from

nsr - 1 stimuli, other than St , associated with R^, and V2 is
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due to n8r stimuli which were associated with R£ source-set.

The total value of either source-set R^ or R2 taken over

all the active A-units which respond to S^ is given by

N ar
Vr = Z vU«) (20)

where v(ai) * the value of the a* unit at the end of the learn-

ing period due to all stimulus other than St .

Before evaluating CT&, several quantities will first be

calculated.

The variance of Nftp is

^- 2 (Nar ) * E(Nar
2

)
- E(N a„)

2
(21)

The expected value of Na_ has been found to equal NAr Pa *

p
The expected value of Nar can be found as follows:

E(Nar
2

) -ZNa^Pi = Z"NAr
2
PAi

2
Pi » NAr

2 ^ PAl
2
Pi

= NAr
2 pa ( see P ftSe 22 for E(PAl

2
)) (22)

Substituting the above values in (1), the variance of Na

becomes:

(7- 2 (Nar ) = NAr
2
Pa - (NArPa )

2

* NAp (l - Pa )Pa (23)

Each A-unit will be exposed nSo times with a probability

of being activated upon each exposure of Pa . The value gained

by the &* unit upon the i^ exposure is PAlA.V = Pa±* assuming

the increment of value gained upon activation is unity.

The total value gained by the aj unit upon nSa exposure

can be represented by

v(aj) »Z_ PAi (24)
ial
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The variance of v(a^) will be

a-
1

v(a
J>]

cr' (naa )cr
2
(pAl )

i=l

• (n Sa )(l - Pa )Pa (25)

In order to evaluate the variance of the net value of a

source-set CT2 (vr ), which is a function of two random variables,

consider the following derivation of the analogous expression.

The expression for d is a function of two random variables

N a_ and v(aj), so that additional considerations must be made as

to the calculation of the variance of a quantity which is a func-

tion of two random variables.
Nftr

In order to calculate the variance of {__ v(a^) of which
1-1

J

Na and v(aj) are random variables, the following derivation for

the variance of summations of random variables is necessary.

Consider the summation

i=l
(26)

where x^ and n are random variables.

The expected value of S and S2 are found as follows:

ES •'%'{< EUj)E(n) (27)= EnlnEUj)

where in general En f(n) is the expected value of f(n) taken

over n.

ES2 m E
i=l

xi
s E

n

i=l l=rj
X J

= En[nE(xi2) + n (n - 1)(E(xj)) 2J

ES
2

= EtXi
2

) E(n) + E(n
2
)(E(Xj)) 2

- E(n)(E(xj)) 2 (28)
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The variance is defined as the second moment minus the square

of the first moment, or

CT2S m E(S2 ) - (E (S)) 2

= E(n) [e( Xi
2

) - (E(xj)) 2J

+ (E( Xj ))
2 [E(n2 ) - (E(n)) 2]

Q*lZ. «i> *E(n)cr2 (Xl ) + (E( Xl ))
2 <^(n)

i*l
J J

Substituting in equation Na = n and v(a^) • Xj,

then cT2 (vr ) = E{Nar )(T
2 (v(aj)) + (Ev(a-j)) 2 cT 2 (N ar ) (30)

• (PaNAr)Vl - pa)nsa + (Pa^Sa*
2 P»(l - ?*)*Ar

= P
ft
2 (l - Pa ) NAr n

Sft
1 PanSa

^Pa
3 (l - Pa )NAr (nSa )

2 (31)

It should be noted that those A-units which are In common

to the two source-sets contribute equal value to both sets.

Hence they do not affect the net difference in bias between the

sets. Since only the number of effective units are under com-

parison, Na, may be replaced by Ke In the above expression.

Prom statistical theory it Is known that the variance of a

difference of non-correlated random variables is equal to the

sum of the variance of each quantity, or

tf~
2
(Vi - v2 ) cr

2 (v1 ) + <r2 (v2 ) (32)

Now in this particular analysis the variance of each source-set

is the same. Thus

cr
2 (d z: ) m (T 2 (V1 ) o-2 (V2 ) (33)

= 2<r(Vr )

^2 Pa
3 (l - Pa ) Ne (nSa )

2
(34)
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The final quantity required in order to calculate Pr , the

probability of correct response, is P(Z\b / -b), the probability

that at least one A-unit will respond to the stimulus in ques-

tion.

P(Ab + -b) implies that Nar - Nac >0; thus P( Ab ^ -b)

• P(N ar " N ac>0).

The probability that any particular A-unit on the average

will not respond to a given stimulus is (1 - P
ft

) . In terms of

the number of effective units Ne , the probability that no A-unit

will respond to a given stimulus is

P(Nar
- N ac = 0) = P(Ab = -b) = (1 - Pa )

N« (35)

It follows that the complement of this probability is the prob-

ability that at least one unit will respond to a stimulus

?(A\> £ -b) = 1 - (1 - Pa )

Ne
(36)

Prom the above consideration the probability Pr is given

by

P„ * ~~ ll - (1 - PjNe] J /-- dt (37)

2 Pa(naJ 2
(38)

By use of the normal cumulative distribution tables, the above

expression may be evaluated. Plates II, III, and IV show the

results of such evaluations.

For the previous development for the equation of Pr and for
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those to follow, it should be noted that Pr represents the prob-

ability of correct responses for the stimulus S^. However, no

special constraints were placed on St as compared to other

stimulus except the designation of S^ to a particular class of

stimulus. Then S^ is a generic stimulus of its assigned class

and all equations concerning S-fc hold equally well for all members

of the class of stimuli to which S^. belongs.

For the various graphs to follow, it will be useful to in-

troduce the following relationships.

N
Rft

Let w m = proportion of R-units connected to an A-unit

NAC
o>c

s = proportion of A-units connected in common
NAr to the R^ and Rj response units

P /unit a^ belonging to the R^ source-set

is common to the Ri source-set]

measure {RjJ

measure /r'I

where R
1 m the set of all R-units except Ri

Prom the definition of Nr it follows:

Me {RjJ - H
Rji

- 1

and, of course Me (r
1

/ = Nr - 1

Nr - 1 a) NR - 1
Thus o> m » (39)

NR - 1 NR - 1

If Nr is large, o>c approaches o>; and when coc = 0, o> = --.

Nr
The curves of Plate II show Pr as a function of Pa for

several values of NAp with 1000 stimuli associated to each
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response unit and non-overlapping subsets. For a small number

of A-units per source-set, Pa has a critically optimum point.

Increasing the number of A-units increases the probability of

correct response for a larger range of Pa . For NAr = 106 , Pr is

nearly unity for a range from Pa = to Pa = .05.

With almost certainty that an A-unit will respond, that is,

Pa * 1 for a given stimulus, then it is. evident that Pr assumes

chance expectancy (Pp = .5).

Plate III shows a set of curves for Pr as a function of

n3r > the number of stimuli associated to each response. Param-

eters of the system consist of non-overlapping subsets and a

fixed Pa = .005 which is rather an optimum value of P
ft

. From

the curves it can be concluded that the number of stimuli which

can be associated to a response unit for correct recognition in-

creases with the number of A-units per subset.

Plate IV gives the same sets of curves with the system

parameters adjusted for co = uc .5, that is, the expected over-

lap among source-sets is 50 per cent.

Since these curves are for ideal environment, each stimulus

of each class is independent or uncorrelated with any other stim-

ulus. However, for any attempt to simulate this in a realistic

environment, there would inevitably be a relationship between

stimuli of a class. This would lead to mutual support between

stimuli of a given category. Thus an increasing number of A-

units would tend to be activated in common for stimuli of the

same class, which would in turn increase the bias in the desired

direction, making Pr higher under a given set of parameters.
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In the following section the probability of correct re-

sponse Pr will be calculated for the mean discriminating Alpha

system. With mean discrimination the Perceptron responds to

mean values of the active subsets of A-units rather than to sum

values. In this system the component of variation of the con-

trolled bias Ab is zero, since It Is due only to the variation

in the number of A-units activated by the test stimulus. The

mean value is measured over the entire number of A-units which

are activated by S^. per source-set. Hence the expected bias B

is the same as the bias in the sum system divided by the number

of active effective units per source-set which can be repre-

sented by

5/^ - *M + *M *
PaNe - P

?
%e

P. »e
a (40)

As before, the variance of the value of an A-unit after n8a

exposures is

CT2 [v(aj)J = Pa (l - Pa ) naa (41)

For Nar active A-units per set, the variance of the mean value

of the A-unit of one source- set is given by

CT T(.j)
CT [v(aj)]

(42)
NaT

Assuming disjunct sets (non- overlapping source-sets), the

variance of the difference of the two means is

.2
cr

2 (d^) « o* vxUj) v2 (aj) (43)+ cr

and assuming the variance of both source-sets to be equal, the

standard deviation of d, the positive square root of the vari-

ance, is
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Vf
[v(aj]-2
v(

<T^jj) = //—--
L—-*- (44)

N aar

or substituting for cr (vr ), N a , and simplifying

j/2(l - Pa ) nSa
CTUy,) *7 (45)M

' NAr

Allowing for the correction of overlapping sets, NA may be

replaced by Ne (the effective number of A-units which contribute

to the net bias between sets), and the above equation becomes

j/2 nSa (l - Pa
)~

Correcting as before for the probability that no A-unit will

respond, an analogous expression for Pr for the mean system can

now be written.

where Z = I (47)
' 2 ns.

Pr(zv) as a i'unc'ti 011 °? pa ls illustrated by the set of

curves in Plate V. The broken curve is given for Pr (^") for

Na_ 10,000 for comparison of the sum and the mean value sys-

tems. It is quite evident that under comparable conditions, the

mean value system allows a much wider range of Pa for relatively

good accuracy of correct recognition.

Plate VI shows a definite advantage for the ^-f-system as

compared to Plate III for the ^.-system. For Instance, with

Na 10,000 A-units per source-set, the value of Pr (/y) remains

nearly unity for about 500 associations per response and slopes
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off gradually. In addition, the graph shows that for a very

large nSr , Pr reaches the chance expectancy of 0.5.

Effect on the Alpha Systems
with Variation in nSr

In all of the previous analysis, n
3l>

, the number of Inde-

pendent stimulus associated with each response unit, has been

assumed to be equal for all response units. In reality, na may

be considered as a random variable. In the ideal or random en-

vironment, it will be shown that the Alpha system will be incap-

able of efficient operation under the condition of random na .

First consider the case of non-overlapping subsets for the

sum system of the Alpha Perceptron. Upon allowing n Sr to vary,

It will become quite evident that correct response is almost im-

possible. Consider the circumstances under which Ri is associated

with n s .. stimuli and R2 is associated with na2 stimuli. Pa may

represent on the average the value gained per A-unit per stimu-

lus. It follows that the value of the R2 source set at the end

of the learning period is Pa N&r na r>, the value of R^ set before

the presentation of the last stimulus is (na ., - 1) Pa N a , and

the value gained by the 1st stimulus is N a . The expected net

bias at the end of the learning period is

d m vx - v2 = (nSl - l)PaNar + Nar - nS2PaNar (48)

As can readily be seen, if n3 ^ is less than nS2 , then the

expected bias might easily be negative. Thus the probability

of correct response for any stimulus of the n s - class which is
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presented in the teat period is very low. In this case for

correct response the value of the stimulus must not only be posi-

tive but it must be of sufficient magnitude to overcome the nega-

tive net bias of the system. If n Sg is much greater than nSl ,

it is impossible to obtain correct response.

Now consider the condition in which the A-subsets are over-

lapping and the number of response units connected to each A-unit

is large. ns _, nS2 , . .. will be picked from some distribution

of nSr * not necessarily a normal distribution. The total number

of stimuli presented to the system Is not controlled; however,

its expected value is NRn a . In this hypothetical experiment

the variance of n 3 will be considered to be large.

Under the above conditions a quantitative analysis of the

mean discrimination Alpha Perceptron will be made. Before pro-

ceeding with the anlysis, the following relationships will be

necessary.

If x is a random variable and f is any randomly varying

function whose distribution depends on the value of x, then the

expected value of f(x) is equal to the mean value taken over all

x of the conditional mean value of the function f(x) relative

to the hypothesis x = 5, or in notational form

E[f (x)] * Ex E [f (x/x * § )] (49)

Similarly, the expected value of the square of the same

function is

E[(f2( x
)J

= Ex E [f2(x/x = % )] (50)

The variance of such a random varying function in terms of

the above equalities and inserting the second and third terms
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which sum to zero can be represented by

(X^ f(x) = ET E ) E, E(f (x/x - 5

)

2
) (51)

f2 (x/x * .

+ Ex [E(f(x/x =
|)J

2
- %[e f(x/x =

cr 2 f(x) - ex cr^fU/x =
|)J

+ crz e f(x/x - § )] (52)

Continuing with the experiment, let the test stimulus St

activate n effective cells (non-overlapping units) in the R^

source-set represented by ai, ag, • ••, an . Furthermore, let

v(aj) the value of tiie aj unit at the end of the learning

series, except for the effect of S^. The variance of the time

conditional mean value of one source-set is represented by

n
v(aj)

)

2
Vr 2 J=1

n n

which is of the form of equation (52).

Substituting in equation (52),

(53)

a-2 (

n
Ivd.)

) = EncT"
2

(

kv^ )

) + <r' E(

n

n

The expected value of v(a-j) Pa E Npa E^ ,

Z_ v( &1 )

1 J

(54)

Consequently, E( ) is independent of n. Therefore the
n

second term of the above equation is zero, and it reduces

n

--) * En C7"
2

(

2- v(ai)

) (55)
n n

In order to express the total value of a source-set, let n,
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the number of non-common A-units reacting to St , be a fixed

value. Then

n n nsr
zfv(ai) * IE X xr (a«,k)
j=l j=l k=l J

n

+ 21 Z_ £- X* Uj.k)
j=l r=3 k=l

(56)

where xr (ajk) =

\ if the Ktn stimulus associated with response
r activates a<

under all other conditions.

The total value of R^ source- set is the value gained in

the set of units non-common to R2 over ng., stimulations plus the

value gained by those A-units which are common to other sets and

which gain value due to other stimuli associated with other sets.

This second term is a summation taken over all possible response

units, r = 3 to Nr, and all nSr> the number of stimuli associated

to response r.

For the sake of clarity for further calculation, assume

that out of n cells a^ . . . a^ nip are in the r source-set.

Then, of course, m^ = n and m2 » 0.

The general term of the summation is independent for dif-

ferent values of r.

The variance of each term for different values of r takes

on the form of equation (21).

For r = 3 ...

n8,

cr
3^r mp

1_ Z. x^a^k)
k=l j*l

J
<r* Zl mi.xr (aj,k)

k*l

cr rmrxr (aj,k) E nSr + |E(mrx
r (aj,k)

2
x a"

2
(n B_ ) (57)
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2 2
mpPa (l - Pa ) E n ar + (mpPa ) (T (n Sr )

For r * 2, the corresponding quantity is zero.

With r = 1, the variance is

cr Z* Z_ xr (aj,k)
J*.

z_
k=l j»l

= n Pa (l - Pa ) E nap

+ (n Pa )

2
CT

2
(naJ

(58)

(59)

n
The total variance of \_ V(aj.) is

1

<T
^
fe

v(ai)

Ni

= Pa (l - Pa ) E nSr Y~ ^r
r=l

(P
ft
n) 2 cr 2 (n 3r )

r=*l

(60)

Nr

The summation £_ mj, represents the total number of R con-
r=l

nections originating from n cells, and is equal to nNR
ft

. In

9 2order to compute £_ mj. , the variance in the intersections of
r=l

different source -sets is neglected. Other than m^ and mg,

NRa - 1
nip = uc 'n, where coc

'
. wc ' is found in the same man-

NR - 2

ner as was <oc on page 30, except that Me JR'j « Nr - 2 for wc
'.

Then

gB nR r "]

mr
2 * n2 + J "c'

2n2 * n2 1 + (Nr - 2)coc
» 2

r=l r«=2
L J

= n'
(NRa - I)*

2

1 + _--?

Nr - 2

The variance required for equation (53) is then
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n
Z v( ftl )

, 1 Pad - Pa)^2
( ) a E nSr NRft

n n

+ ?&
2 <T2 (n s )

(H
Rft

- 1)'

+ 1 (62)

NR " 2

Now the expected value of variance taken with respect to n,

yields for the variance of the mean value in the R^ source-set:

Iv(ai)

cr2 ( ) =r Eq
n

(1 - P«)

n
r v( ai )

<r
2

{ )

n

2^-2,

N,

E nSr N
Rft

+ Pa^^^lngy)
(NR fl

- IV

NR - 2

+ 1 (63)

Since the above computation was general, the variance of R2 set

is the same.

Thus the total variance of the net random bias under the

conditions of random nSr for the ^Y~diacriminatlon o:f the A1Pna

Perceptron is given by twice the variance of the above, so that

^o 2(1 - Pa )

<=T* (d^) = • E nar NRa

+ 2 Pa
2
(T

2 (na_)
(N Rfl - 1)'

+ 1 (64)
(NR - 2)

Again assuming a normal distribution for Pr ( /y), the prob-

ability of correct response with random nSr for the Alpha Per-

ceptron is given by the expression:

-Uf)
1 - (1 - p«)

N, * 2.

f^T/.
£-tV2 dt
o&
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1 - Pa
where Z = --,- (66)

which reduces to equation (47) when cr~(n Sr ) = 0.

Plate VII illustrates quite clearly the effects of permit-

ting a large variation in n3 .

Several curves are plotted with Pr as a function of nSr for

a system with 100 response units, and 10,000 A-units.

The broken curve represents the same system with no varia-

tion in nSr . A quite definite decrease in accuracy of perform-

ance of the system is indicated by allowing nSr to vary. The

best operation results with disjunct sets. It should be kept in

mind that the ideal environment condition is imposed in which

each stimulus of each class Is entirely independent from any

other stimuli. -

A similar situation exists when the size of the stimuli is

allowed to vary. A qualitative examination will be sufficient

to demonstrate this point.

Consider the case where the stimuli of class Rp were much

larger than those stimuli associated to the R-^ source-set. Pa ,

the expected probability that any A-unit will be activated, will

be greater for stimuli of class R2, and the mean value of the

R2 set will grow faster than the mean value of the R-j^ set. Then

if the test stimulus S^ which has a disadvantage in measure Is

shown to the system, its reinforcement will probably not be suf-

ficient to overcome the already favored bias toward R2 set.

Hence incorrect response will result.

From this example one can see that the effect of variation
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From this example one can see that the effect of variation

in size of stimuli between the source-sets is to decrease the

accuracy of the system.

The decrease in performance of a system due to stimuli size

variation is less than the effect due to nSr variation, since Pa

can be held reasonably constant over a wide range of retinal

size variation.

THE GAMMA PERCEPTRONS FOR IDEAL ENVIRONMENT

Sum Discriminating Gamma System

The same logical analysis will be made for the Gamma Per-

ceptron as was made for the Alpha system. Analysis will be

carried out for both methods of discrimination.

The Gamma system will hold all sets at equal levels, and

also it has the advantage of maintaining the mean value of the

entire system constant. In terms of electronic simulation of

this system, the above advantage would prevent the saturation

of integrators and counters as would be found in the Alpha Per-

ceptron. In a physiological system, this could mean that the

cells are required to maintain an optimal range of sensitivity.

"The Gamma system can be thought of, physiologically, as

involving a constant chemical or nutrient distribution rate,

which is normally just sufficient to balance the expected rate
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of utilization."

Now we will proceed with the analysis of the Gamma system.

For the sum discrimination, the expected controlled bias b

is the same as in the Alpha system, since b is the value gained

by the R^ source set due to the presentation of S^. Therefore

b" m Pa N e . na . and n Sp are the number of stimuli associated

with R^ and R2 sets, respectively. If the test stimulus is de-

leted from the learning series, then na^ - 1 stimuli are asso-

ciated to R^ and ns _ stimuli are associated to Rg.

The value gained by the A-units active for one unit of time

is (n sl - 1) Pa^e» but the value lost from Inactive A-units of

the dominant set is

(n31 - l)PaN e (1 - Pa ) E(
N,

Therefore

Vx = (nai - l)PaNe

NAr - Nar

Nar

)

Pa - (1 " Pa) E( ----)

NAr " Nar

Similarly, for Rg source- set

(66)

f2 = n S2 PaNe
I ar

P. - (1 - P.) E( 5—)a (67)
NAr - Nar

Then the expected net bias due to all stimuli associated

with R^ and Rg except S^. it

d" Vn
- Vp = (n a , - 1 - n So)si

1 ar
Pa - (1 - Pa ) E(—----- -)

NAr - Nar
(68)

^Rosenblatt, Frank. "The Perceptron—A thBory of statis-
tical separability in cognitive systems." Cornell Aeronautical
Laboratory, Inc. Report No. VG-1196-G-1, January, 1958.
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E( ) will now be evaluated.

I ft. Nar Pr ^a Nar Pa
g/ „.« )

— g/ ~
) — g( i __)J

NAr - Nar
' NArPa - NarPa Nar - N arPa 1 - Pa

(69)

Substituting this quantity into the expression for d yields

pa
d a (ns , - 1 - nS2 ) Pa - (1 - Pa ) (70)

L 1 - pa

The expected total net bias is then

B - b + d" = Pa Ne (71)

Now let a stimulus activate m^ units (a^ ... ami ) in the

Rl source-set (exclusive of common units), and mg units

(bi ... bm2) *n the R2 source-set.

For fixed n Sr stimuli per source-set, then the Ri source-

set component di given mi is

NR nsj. mi
dl/mi * Z Z. Z. xr (aj.,h)

r«l n=l i=l
(72)

where
1 « when &± of the r source-set is activated by

the h th stimulus associated to response r

xr (aj., h)

Nar
= -E( )

NAr - Nar

Pa

1 - Pa

when ft^ of the r source- set but is not acti-
vated by the h th stimulus

* for all other conditions

For fixed n3r , the variance of di given mi is

Nro Nr o/21
CT* (di/t) « Z E nSr cT-

2 Z xr (ai,
r=l

h)y
,i=l
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mi
a E n81 a-

2, (21 x'Uj^h))
* 1=1

51
+ E n82 cr

2 CZ- x2 (ai,h))
1*1

2- cr2 (II a^(*i,h))
r=3 1*1

(73)

By definition of m^, the second term in the above equation is

zero. In this formulation the variation measured by the vari-

ance of one source-set due to all stimulus associated to all

response units is to be calculated.

In the Gamma system the h th stimulus associated with Ri

activates a certain number of non-common units, m^, and the in-

crement gained by the active units is 1 and the value lost by an

inactive unit in the H^ set is Pg/l - Pa . Assuming the average

taken over all stimuli, the net value of a unit per stimulus Is

Pa
Pa (1 - Pa )

(1 - Pa)

Previously it was shown that the expected value of a

source-set was zero. The variance Is equal to the second moment

in this case, and the calculation of the variance proceeds as

follows.

mi

cr (H xr ( ai , h)) -mi cr - xr (ai, h)
1=1 L

miE [Vtai, h)

* m1

* m1 (

'a - (1 - Pa)(—"-)'

1 - pa
P.

*

1 - P.

) (74)
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Consequently the variance of d given ns is

2 / /
Pa

CT (di/m-i) E n a . m-,
1

(1 - Pa )

?a
+ (NR. - 1) E nSp m-,

1 - pa

pa
E ns mi NR (75)

1 - ?a

The variance of dg/mg is given by the previous calculation with

m^ replaced by nig. Then the total variance of both F^ and R£

source-set is

CT 2 (d/mlf mg) = cr 2 (d-jA^) + (T 2 (dg/nig)

pa
= E n sr

~ " NRa <
ml ng) ("76)

On the average, then, the number of units in a source-set

activated by any stimulus is equal to PaN e . The variance of d

in the sum system is

cr2 (d^) = 2 E n Sr P
ft
(l - P

ft

)"l N
Rft

(P^ # ) (77)

Prom the above equation it may be noted that the variance of

n Sr does not enter into the final variance of d in any way.

This indicates that in the Gamma Perceptron the restriction that

nSr must be uniform is removed.

The expression for the probability of correct response in

terms of the system parameters for the Gamma system with sum

discrimination and varying na is

pr(2) 1 - (1 - Pa )

Ne

ftotl^
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where Z = - - « / (78)

J2 Enp Pa
* (1 - Pa

)"l NRaNe / 2 NRa E nsT

Mean Discriminating Gamma System

A quite similar development follows for the mean discrimi-

nation system. The expected bias is the same as in the previous

case divided by the average number of active units PaNe . There-

fore b = 1 and d 0; hence 15 = 1.

As before, Efd-j/m^) 0, and E(d2/m2) = °

The variance of the mean value of d-^/m^ is

CT2 (di/mx) Pa (l - Pa)" 1 Nr
. = E nSr

-5 (79)
my? m^

The total variance of d may be expressed as

a2 (dj/mi) CT
2 (dg/ng)^ V> m --

m-i-'
+ —;-r™ (30)

r
(1 - P

a ) PaNe

= 2 E nST>
* (81)

r
H# (l - Pa )

The expression for Z may be written

Z =
f

*— (82)
/ 2 E n Sr Np

ft

which is the same as Z for ?r /^-\.

Thus under ideal environment conditions for the Gamma

system

Prf,/> = PW^rM (83)'(^)
= rr(^)
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Comparison of performance for the Alpha and Gamma systems

is illustrated by Plate VIII which shows *r(/Y) versus E nna •

The graph is for ideal environment conditions and for the assump-

tion that the variance of ns_ is equal to half of its expected

value. The Gamma system has a definite advantage under these

conditions.

ANALYSIS OP THE ALPHA SYSTEMS FOR
DIFFERENTIATED ENVIRONMENT

Alpha Perceptron for Sum Discrimination

All analysis up to this point to determine the performance

of the various Perceptron systems has been for an experiment

under the assumption of ideal environment. It has been assumed

that each stimulus belonging to a particular class was chosen to

be a random collection of points on the retinal area of the sen-

sory cells. With this random environment there was no correla-

tion among any stimuli within any class. Likewise, the stimuli

for the different classes were chosen at random. Then the cor-

relation of stimuli between classes is also zero. The only re-

striction was that the measure of the stimuli be uniform.

It has been shown that the performance of all Perceptron

systems decay to a chance expectance for correct response under

random environment conditions. This result, of course, could

have been predicted.

However, the previous analysis was for the purpose of com-

parison of the possible Perceptron systems and to serve as an
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analytical model.

Now it is of importance to determine the reaction of the

Perception systems to classes of stimuli with some kind of re-

lationship and correlation among the stimuli of a class.

In the remaining analysis of this report the performance of

the Perceptron systems will be evaluated under an experiment In

which non-random or differential environment conditions exist.

Differential environment means that the stimuli of any particu-

lar class have some correlation in their characteristics. For

example, one class might be circles with different locations

within a defined retinal region, and the other class might be a

set of squares with various locations within the same specified

region. Under these conditions it will be shown that the recog-

nition performance of the Perceptron can be made to approach an

asymptotic level different from chance expectancy with increas-

ing number of stimuli.

Before proceeding to the analysis with differentiated en-

vironment, several new symbols and concepts need discussion.

In the ideal environment case it was assumed that since

there was no correlation between stimuli, the expected portion

of overlap of A-units between St and stimuli of class 1 or 2 was

equal to Pa . In the present case there exists a relationship

between stimuli of the same class which will be measured by var-

ious forms of Pc . In general, Pc may be defined as the condi-

tional probability that an A-unit activated by one stimulus S]_

will also be activated by another stimulus S2 .

Let PCxy represent the expected value of Pc for two stimuli
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from classes x and y. Pet* * s ^e expected value of Pc between

stimulus St and all stimuli belonging to classes other than 1

and 2. The probability Pc represents a mean or expected value

as did Pa . Pc for finite number of stimuli exposures will be

represented by Rcti(s) and pct2(s)* Pctl is a mea3ure °*" rela-

tionship between the test stimulus S^ and another stimulus of

class 1. If Pctl /^j denotes the expected value of Pctl for ^he

J
th unit, there is a resulting distribution of Pctl(l) over the

A-units.

Stimulus S
t associated with R-^ will activate PaNe A-units.

These units may be thought of as a particular subset of Rj

source-set. Suppose a stimulus S^ associated with R^ is shown

to the Perceptron. Then Pcn is the expected proportion of these

units in the S^R^ subset that will be activated. These units

will gain an increment of value (by convention A v = D •

^cll may also be interpreted as the expected value on the

average that an A-unit of this S^Rq^ subset will gain upon an ex-

posure by S-,. Pcn represents the expected probability that an

A-unit which is activated by a particular stimulus of class R^

will also be activated by any other stimulus of class R^.

In an analogous manner, Pcl2 * s t*16 expected probability

that an A-unit will respond to a stimulus of class Rg given

that it responds to a particular stimulus of class R^.

In view of these interpretations of these symbols, then the

expected bias d due to all stimuli other than S^ may be calcu-

lated. Consider n s to be equal for both sets. Each stimulus

associated with R^ will add an increment of value to the S^Ri
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subset equal to the number of units in the S-fcRi subset, PaNe >

times the average value that each unit gains due to any other

stimuli of class R-^.

The increment of value gained by this S-jjRi set due to a

stimulus of class R2 is equal to PaN e pcl2'

Hence the expected bias d" due to all stimuli other than

Sfc may be expressed by

3 = Vx - V2 » PaN e (nsr - DPcn - Pa^e ?c 12 n sr (84)

All stimuli associated to response units other than R^ and R2

contribute an increment of value PaNePe^ to both R^ and R2

sets. Hence the net value added to R^ or R2 effectively cancels

out. Then the above expression for d is general and independent

of overlapping among source-sets, d may be written in the

following form.

V= PaNe(n8r - D(PC11 - P012 ) " PaNe Pc 12 (85)

It is evident that d will not be a small fraction of b as was

the case in the ideal environment, but that d will be propor-

tional to n 3 , depending on the difference of Pc-n and pCtp*

If Pen y- pci2 » that is, for classes of stimuli suffi-

ciently dissimilar, then correct response will almost always

occur, provided ns is the same for both R-sets.

Assuming non-uniform ns , then for the Alpha system in

differentiated environment

^Z paNe (n
8l

PCn - nS2 P
C]L2 ) (86)

In the following analysis Pr will be evaluated in terms of the

Alpha system parameters for the Alpha system with uniform n Sr

for all responses in a differentiated environment.
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First consider the sum-discriminating system.

^1 if the Kth stimulus of the rth class, and
a member of the rth source- set activates
the aj cell under the condition that the «j
cell is activated by the test stimulus S^.

Let x?(»j,K) =

under all other conditions.

Then the bias component d^ due to the R^ source- set is

Ne nsr 5B
dx * Z 2- 2. x*(a«,K)

j=l te»l p=l J

N (

(87)
e 1JL °r „-—

-

».Z Z x'U^K) + Z- xr (»4,K)
j»l k=lL r(aj) J

where r(aj) goes through all response units to which aj is con-

nected, except R^ and R2.

For simplicity in the following analytical development,

let Yj represent the value gained by unit &* from all stimuli

( the sum over K ) . Then

n

J

r^r

k*l
(»1,K) + ^ xr (aj,K)

r(aj)
(88)

The variance of d^ given S^, a fixed member of class R^,

and, assuming that the values of different A-units are inde-

pendent, is

Ne ngr
^(di/t) S I cr 2 Z.

j»l k«l

• Z cr
2 (Y-)

x'(ai,K) + Z xr ( ai ,K)J
r(a<) J

(89)

Y« * with a probability of 1 - Pa , that is, if the unit aj is

not activated by S^. Y* * 1 with a probability of Pa . The con-

dition expectation of Yj given that S^. activates aj is denoted
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by E(Yj/t), the conditional second moment is E(Yj2/t), and the

conditional variance ,^r2 (Yj/t).

The first and second moments and total variance are

E Yj = Pa E(Yj/t)

E Yj2 Pa E(Yj2/t)

CT2 (Yj) * E Yj2 - (E Yj) 2

Substituting in terms of the conditional expectations of Yj and

introducing the second and third terms which sum to zero yields:

CT2 (Yj) = Pa E(Yj2/t) - Pa (E Yj/t) 2 + Pa (E Yj/t) 2

' [P.(E Yj/t)]
2

= Pa CT2 (Yj/t) + Pa (l - Pa ) E(Yj/t) (90)

In order to simplify notation, let the conditional value

of Yj given t be represented by Yj, then E(Yj/t) = E(Y\i),

E(Yj 2/t) - E(Yj 2 ), etc.

For different exposures the contribution made to the con-

ditional Yj (given that aj is activated by S^) is independent.

Then the sum over K is independent of the variance of Yj, assum-

ing nar to be fixed, then the variance of Yj is

(J"
2

(Yj/t) =* nSr cr
2 [x'UoD 2" **<»Jf l)

r(aj)

• ns cr
2 x'U^l) +cr

2 CL xr (a
1
,l

L J J [r(aj) J

Before actually evaluating CT2 {di/t), the above variances must

be evaluated.

The expected value that unit aj will gain on the average

due to a stimulus of class one given that »j is activated by

st# is Pctl(j)* Tne same type of reasoning as was used in

.) (91)
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deriving E(Pai
2

) can be used for the second moment of Pcti(l)

which results with E(P2c t i(
tj
)j.)

s pctl(j) ( see Pa8e 22)# Then

it follows that

I x'Uj,!)]
2

and CT

CT* [x'Uj.l)] * E [x'U^ 2

= pctl(j) " Pctl(j)

2

(92)

Z" x^a^l)
r(aj)

= 2T cr
2 ^(a^l)

r(aj) L «»
_

I - P*
ctl(j) " rctl(j) (93)

Making the proper substitutions, the variance of di given t is

Ne '

CT
2 (dx/t) -Z

3-1
Pa n s„cr :'(a Jf l) + Zl xr (aj,l)

r(aj)

r(aj)

"N

+ Pa (l - Pa ) n Sr
2

^

= I [Pa nar Pc tl(j) - pctl(J)
2 Z .frotHj) - pctl(j)7

3=1 l
L r(aj) v ',

+ Pa (l - Pa ) ns. P^l(3) +
(
rtaj

/c tr(j)
)

!

+ 2 pctl(j) ^ ,

pctr(j)
r(aj)

(94)

? ,
Pctr(j)

2

r(aj) „
Now assuming that « Pctx /4^ where Pc^x (j) is

NRa - 1

the mean value of Pc measured for unit a-j between stimulus S^

and all stimuli of classes other than 1 and 2.

CT
2

(d]/t) * Pa n8r N e [pcti ? Pc t l
2

- ^"j2 ( pctl>

(NRa - i) [potx - Pctx
2

- cr/ (Pctx )
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+ Pa (l - Pa ) n Sr
2 N e [Pctl

2 ^2 (Pc t l) (NRa - l)
2

x (Pctx
2 + crf{?ctx ) + 2(NRa - l)(Pc t i pctx 6 > < 95 >

where the cross product term 6 is assumed to be negligible.

pctl(j)» ttie probability of the aj unit responding to both Sj.

and S^, will constitute a distribution over j whose variance is

rf\ (Pc+ji^ Similarly, 01 p
CfcT is the variance associated

with the distribution of Pctx(1) over the set of A-units. The

variance cTj ( pc*i^ and ^2
( Pctx^ w111 De considered as em-

pirical values which are to be measured for any particular case

in question, since they are not, as yet, yielded to an analytic

approach.

The values of Pc result in a crude approximation to a normal

distribution. An estimate of the standard deviation is that it

would be equal to half the expected value of the variable. The

results of an experiment conducted by Dr. Rosenblatt resulted

in showing that the above was a conservative estimate.

Now consider St to be any stimulus of the first class.

The expected value of d-^ given S^ under these conditions re-

sults in the modification of the previous E(d1/t) by a factor

of Pa , the probability that St will be activated, in the follow-

ing manner.

E(di/t) = n8r % Pa Pctl( j)
+ Z Pa Pcti(j)3T»

= pa n sr Ne

r(aj)

Pctl +
(
NRa " *) pctx

Prom formula (52), the total variance of d^ in terms of the

conditional variance is

(96)
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cr
2

(di) = E^U^t) + <rt
2

(e dx/t)

= Pa nSr Ne [Pen - Pen2
- <^s

2 (PCll ) " <T? (PCll )

+ Pa (l - Pa ) n Sr
2 Ne [Pcn2 + ^s2 (PCll )

^(Pc^) + (N
Rfl

- l)
2 (Pcix

2 + 8̂
2
(Pclx )

+ ^r
j
2(Pcix ) + 2(N

*a " 1)(pcn pcix)

2 ir> \ j. /«n _ -1x2.-2.Pa
^ ns/ Ne

2 CT.« (PC11 ) + (NRa - I)*
5

0V< pcix>

+ 2(NR. - 1)£ (97)

where £rr'g
2 (Pc ,,) and cr"a (Pcir^ represent the variances of Pen

and Pcix* respectively, taken over all test stimuli St of the

set, and C is the covariance of PctiPctjc which will be assumed

to be negligible. The variances with subscript of S may be

considered as empirical variables to be measured for the case

in question. This variance of Pc*.n depends on the shape of the

stimuli of class one. If the stimuli of this class are all the

same and uniformly distributed over the infinite retina of the

sensory system, then Pcti W^-H De Identical for any stimuli of

the class chosen as test stimulus, and its variance is zero.

However, if the stimulus of the given class varies widely in

shape and its distribution on the retina, the variance of Pcti

may be considerable. The variance of the bias component dg of

the R2 source-set will be equal to that of the R^ set given by

equation (71) with PCll replaced by Pcig*

Now the probability for correct response of the Alpha Per-

ception with sum discrimination under differentiated environment

can be written as follows:
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?.r<Z> 1 - (1 - Pa )

Ke ^_ y
Vt2/2 dt

oo

where z . !*k: <°»:.^.:.!;Hl/..!^ (98 ,

fa"2 (dx ) + <r^ (d2 )

Now examine Z of the above expression. The numerator of

Z is proportional to n s , and the square of the denominator

contains two components each of which contains two additive

components, one proportional to n s and the other proportional

to nSr
2 for a given Perceptron.

c l c2 nsr
Thus Z takes on the form of - - which can

Cl
-... + c2

f

C

3 nSr + C4 nSr
2

nsr
be written , where C's are constants.

5. c*

Consequently Z will approach a limit of -
7
— as the number

fc7
of stimuli associated to each response, n s_, increases. The

importance of this is that the Perceptron will approach a better

than chance limit for probability of correct response with in-

creasing experience.

Alpha Perceptron for Mean Discrimination

Before studying the results of Pw^")* the probability of

correct response for mean discrimination will be considered.

The expected net bias B" for the mean system is equal to S for

the sum system divided by the number of units activated on the

average in any source-set by any stimulus, namely, PaNe . Then
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B = [l - (n Sr - l)(PCll - Pc 12 ) " Pc 12]

The variance of d^ given S^ for this system is

(99)

er2 (dx/t) = ari (100)
j=l

N*l(t)

where Na_(4.\ s the number of A-units activated by Sf. in the r

source-set, and

E(dx/t) = E

I
J

N*i(t)

* I Pa
K

(1 " Pa)
Ne"K

f- -"" (101)

where Pa
K
(l - Pa )

N®~K probability that the particular combina-

tion occurs in which only K out of N e units are activated by S^.

K E Y£

A = the average value an A-unit in the K set gains

by activation from St . For a given partition K, Ne - K, there

N« - 1 <
Ne ~ !U

are (J* , ) = number of different ways
* " X

(K - l)l(Ne - 1L)1

that K - 1 active units can be selected from Ne - 1 units.

Ju = the class of all possible partitions of the K and Ne

into K, Ne - K.

The possibility that K m 0, that is, no unit responds to

St , has been excluded, so that k can range from 1 to Ne . Then

E(d!/t) = Z" (k
6
.
-

!
1

) P«K (1 - Pa )

N°"K f *~£
K=l

A X
J£i K
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K,K ^ Ne . . Pa^(l - Pa )

=1
E * I, ^ *

'

K

/I N
ft

K=l

Ne-K

(102)

Now consider the second summation. The probability that

the particular combination In which K = is (i - Pt )
*. If

K were admitted the sum that all combinations would come up

is = 1. Thus the above sum is

£ p.
Kd - p.)

Ne "K
<£•> = i- (i - ?.)"•

Since Ne is large, then the sum is approximately = 1, in which

case

^0 E Yj 1 ?f- _
E(d]/t) = Z_ ----- » — Z- EL (103)

^-1 Ne Ne j«l
J

and the £- index may be replaced by the J-index since the sum

reduces to the average value of an average set*

Similarly, the second moment of d]_ given that aj is acti-

vated by S
t will be

E(d1
2/t) * E

.
N*Kt)

2

2 J£

~Ng

Z_ Y«
8

N 2

_ *l(t)

f E

Ni

i, J»l
J

N, Kt)
(104)
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where E

£

»l(t)

z
* & P.

BU - P.)"

E Y£2

±
i.J-1

N,

•iYJ

'•i(t)

To simplify notation, let

K

1th

.N.-K
p.* (i - P.) e

= *'

Then the conditional second moment will be

E( dl
2/t)

J;
- (Z E Y£ 2 * TT E Y> Yr ) (105)

Introducing a second and third term which sum to zero yields:

K

Ji
E^ 8

-i (E ^)8+ ^ (, « ):

2" p»

^ K2 „

Z P
f

,# K2

E Y^ E Yr

ZL cr
2 &£) Z E Y/ E Yr

.2

Evaluating the sum over yy gives

(106)

Ne p» M» - 1. J»
«*i

2A>=F, n <k-\ >£. <r*(*jft
K=l

P 1

^-1

r -* (

K=l K

N e - 2
2 XK - 2 (Z_ EYj) 2

- Z (E Y,)
1
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K=l K2
L- (E Yj)'

74

(107)

where the above quantity in brackets of the second term repre-

sents the terms of the cross products resulting from the second

term of the previous expression.
/

—

Due to the definition of E Yj, aj must be active and cross

product terms specify that aj £ «j_, so that a^ must be active

also. Thus at least two units must be active. Then the number

/N fl - 2.
of different combinations is ( R _ 2

).

For the squared term (E Yj) 2 , only aj must be active so that

the corresponding number of different combinations for this term

- fr.Vi.
The conditional second moment of d^ may be written as

follows:

E
KpI k2 x £*i

jal J K«l K2 e

I e

X (E Yj)' 4-, ~5 l K - 1 ;
fc, IS *

K*l K2
N e - 2

l K - 2
J=l K=l K2

Simplification of the coefficients of the terms proceeds

as follows:

^ H
(

nq -

1

} _ ^ j' .._i
N
.!.:il:_._

K=l K2
K " X '

K=l K2 (K - 1)1 (B Q - K)J

(108)

P'(B e )l

"t
K-l N eK(K)i(Ne - Kl ) Ne K*l K

P
1

(109)
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N« p i Ne p K/t p \Ne-K
- ra v± *V ,N,

Let Q»E - (Je) a ^ (»e,

K=l K K«l K

^ P ' N« - 1 1
Therefore £_ -- ( K

e
. ) = — Q

fcl K2
K " X

Ne .

Ne
where Q & ZL P.(l - Pa )

Ne~K
(|

e
)

1

" PaNe

For the coefficient of the second term:

5* P* ,Ne . g. \ *' (Ne - 2)!

K«2 K2
a *

K=2 K2 (K - 2)1 (Ne - K)'.

N§ P'(K - 1) N

K»2 K Ne (N e - 1)

1 *ft 1X (1 - -)P* {le )

Ne (Ne - 1) K=2 K

1
(1 - Q) (110)

Ne (Ne - 1)

A combination of the above two terms yields the coeffi-

cient of the third term:

Ne p K(i - p )
Ne-K Na. p K/, p %Ne -K

i~ :?-;._I_l?:
(

Ne " 1) . 2" ---------?-
(

Ne " 2

K*l "k2~ K * 1 K=2 "k2
~

K " 2

1 1 QL- 1
= _. q (1 - Q) (111)

Ne N e (N e - 1) Ne (Ne - 1)

Substituting these coefficients in the expression (108) for

the second moment of d]/t gives

)



76

N,

E(d^/tl^Zo"2 (Yi) -« <Z E Yi)
2

( )

j»l Ne j=l N e (N e - 1)

/£
J-i

(E Yj) 2
QN e - 1

N e (Ne - li
(112)

Now the total variance of d^/t may be calculated.

If
CT2 (dj/t) = E(d!2/t) - [Etdj/t)]'

Q !t ^ 1 - Q-f^ (Y-) + ( ) (Z E Y,)
N e j-l J Ha (Ne - 1) J«l

J

( — ) Z (e Y.r - (-r (Z e Y<r
Ne (N e - 1) Pi J N e j.l

J

Combining terms:

I N,

^(dj/t) = - Z (T^Y.) + — -? Z_
Ne J-l

J
Ne (Ne - 1) J.1

(E'Tj)

E Y,)'
Ne

2 (Ne - 1) '>&
" (113)

Substituting in the required expressions which were calcu-

lated for the sum system results in the following:

CT2 (dx/t) = Q nar Pctl - Pctl
2 - erf ( Pctl )

(NRa - 1) (Pctx " pctx
2

"
°~i

2 ^ctx ))

Ne Q - 1

t
2

<rf (pC4. n )'ti
n 2 P

Ne - 1 L

(NRa - I) 2 (PCtx
2 CT* (PCtx ))

2(NRa - 1) PCtl fHs
^

Ne Q - 1 ,

«tl'

N - 1
nSl pc ti + (NR

ft
- 1) Pc t:



77

* Q n sr ?ctl - Pctl
2

- ^~j
2

<Pe t i>

(NR
fl

- 1)(? tx " P°tx - ^j (pctx

Ne Q - 1

Ne > 1

+ n 8

:tx

o-f (Pctl'

~? < pctx } (114)

Letting Sj. by any stimulus of the class one the conditional

expectation of d^/t and its variance are respectively:

" I)
2 <rs

2
(Pclx >

E(d]/t) = nSr Pctl + (NRa - 1) Pctx

CTt
2 (E dx/t) = n Sr

2

[
Cr s

2
(Pc 1 i) + (Nr~

+ 2 (NRa '- lKJ (115)

where as before 6 represents the covariance of Pen Pcix*

which will be assumed negligible. Making the proper substitu-

tions from the previously derived expressions and assuming the
1

approximation of Q*^ , the total variance of d^ is given by

the general equation

• 2 i a. \ _ v. n-2

PaN e

0- a (dx ) - Et cr^ (dx/t) + 0-f (E di/t)

n s*

PaNe
(Pen - f*%3* - tf~s (Pc lx ) - (7~f

(PC11 )

+ (NRa - l)(Peix " Pcix
2 -

2 (P )
8 ^Clx'

<rf (pc

i

P.(N6
: 1)

lx >)

Ne - 1
*sr

2
<Tj

2
(PC11 )

(Mr. - 1) (Tj2 <P0lx >]

+ n. (116)^(Pcn) + (NRa - D 2
J",

8 (P
0l3C

)

The standard deviation of d for the mean system is equal to

CT^M )
/cr2 (dx ) + <r-

2 (d2 )
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where cr
2 (c^) is equal to Cf ( di) with Pen replaced with

pci2'

Then the probability of correct response for the mean system

is given by

VnM )
1 - (1 - PJ

Nq

(n s - 1)(PC11 - Pci2 ) + (1 - Pc 12 )

where Z - -— --- -.--=---- -- -— (117)

IcT* (dj.) + a-
2 W

To further study the capacity and capabilities of the Alpha

Perceptron P<j, the probability that two stimuli associated to

two different response units during the learning period will be

correctly discriminated in the test period.

The equations for Pr gave an analytical indication of the

correctness of response for one test stimulus, while P^ indi-

cates the correctness of discrimination of stimuli.

If symbols were redefined, then the correctness of response

to S^2» a test stimulus associated with Rg, could be determined.

Assuming the Pr 's to be Independent, then the probability of cor-

rect discrimination, P^, would be equal to the product of the

Pr 's for S-t-jL and S^g.

With this idea in mind, let some symbols be examined

closely. By convention, the S^Ri subset is the set of units in

the Ri source-set which are activated by S^. Then in this sub-

set each unit gains one unit of value due to one exposure of S^..

The expected net bias d" was due to all stimuli other than

S^ which (when assuming nar to be uniform) means that (nar - 1)
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stimuli were associated with R^ and nar stimuli were associated

to R2. Then the resultant mean value per unit due to the unbal-

anced association toward Rg is equal to Pci2* This can be seen

since Pci2 ^y be interpreted as the value gained on the average

by a unit of the S-^Ri set by a stimulus associated with Rg-

It follows that the net expected reinforcement bias due to

St is equal to 1 - Pci2*

By slight modification various degrees of relationship can

be obtained between the two known stimuli S^ and S>to» where

Stj denotes the test stimulus associated with R^, and S^g

represents the test stimulus associated with R2«

If the unbalanced reinforcement bias toward R2 pci2 ls re ~

placed by Pct ^ (the expected value of Pc between S^ and St2)»

then the resulting equation for correct response will be correct

for assuming that S^o corresponds to one stimuli associated with

R2« How another equation for correct response will assume that

St Is the R^ test stimulus and S^_ the oppositely associated

R2 stimulus. This equation will be denoted by Pr(tl)* Pj, (t2)

will represent the corresponding equation in which S-^g is the

test stimuli of R2, and S^ is the oppositely associated stimu-

lus of R2 .

Assuming the Pr 's to be Independent, the probability that

both known stimuli are associated correctly is the product of

individual probabilities of correct response which is equal to

the probability of correct discrimination, P^.

Pr(tl) Pr(t2) = Pd d*8 *

Thus when S^ and St2 have a specified difference measured by
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e

Pc .j. £ and Pc^2 ^ 1 , Pa represents the correctness of response of

both known stimuli during the test period.

Now if Pctit2 ~ Pct2ti> and Dotn stimuli are the same size,

then the equation for Pr(t2) * s *he same as pr(tl) witn pcn re-

placed by Pc22 in the z expression. Subject to the restrictions

of uniform stimuli size and uniform nSr » Pd can be written for

the sum system as

2 rr

PaNe (n sr - D(Pcrr - -fc]

crd(r)

and ^d(T")i
= positive square root of equation (97)

CTd(£)2 = positive square root of equation (97) with

P<5 11 rePlaced °y pci2'

Similarly, for the mean discriminating system:

Pd
(E ,

where Zr

*/"* « (V** at
'-co -oo

,o) + (1 - Pctit2
(119)

Pd
W>

where Zp

'Z
/- t2/2dt

/
[

Z2
^-t2/2 dt

(120)
(n 3r - D(PCrr - Pci2) + (1 - pctit2>

^(//)r
and ^dt^v)! * positive square root of equation (116), and

CTd{/^)2 s positive square root of equation (116) with

Pc ll rePlaced °y PC22*

It may be noted that if Petit2 Decomes increasingly large

1 - pctit2* *^a exPected known reinforcement bias approaches

zero. Provided there were no other stimuli of other classes for

reinforcement, the expression for Z would approach an asymptote

chance response.
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The above equations assume that S^ can be any stimulus of

the class 1 set and S^g may likewise be any stimuli of class 2.

That is to say, all the stimuli within a class have a high cor-

relation with each other. With this consideration Pen* Pc l2*

PC22» etc., are used in the numerator for Z rather than the

specific values Pctil* pcti2» pct22» etc * However, when Pen

is not typically the expected value Pctil* then the more specific

values must be used to be representative of the particular situa-

tion. For example, class 1 might consist of a set of circles

and class 2 a set of ellipses. If a typical circle of class 1

was chosen as S^, and an ellipse of nearly circular form was

chosen to be S*
2 , the value of Pct tg is close to unity. If

such a selection is picked for computation, Pct-,1* Pctnx' e *c.,

should replace Pen* ^c-^x * eto., and in addition the condi-

tional variance t would replace CT'(d). These stimuli are no

longer typically selected from the class in which they are

members.

In classes such as squares versus circles, the maximum

value of Pci2 was » 63 in which the centers of the two figures

were Identical, according to a simulation experiment performed

by Dr. Rosenblatt. In this type of class any square or any

circle may be taken for discrimination and there is no need to

modify equation (120).

Thus far it has been shown that the Alpha Perceptron can

perform correct discrimination between known previously rein-

forced stimulus with Increasing number of nSr .
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Consider the effect of the known reinforcement bias

(1 - Pci2) with large nsr . Unless the term (Pen - pci2^ is

extremely small, the known reinforcement bias will have negli-

gible effect. As nSr becomes large enough regardless of the

size of (Pen " Pci2^ the known reinforcement bias for any par-

ticular stimulus during the learning period becomes negligible.

This means that the system will respond just as accurately to a

test stimulus which has never before been presented or rein-

forced. This demonstrates that the system approaches a condi-

tion for which Pr is better than a chance level, even for a

stimulus of zero known bias. Therefore the ability of the Per-

ception to form perceptual generalizations has been shown.

Expressions for Pg, the probability of correct generaliza-

tion, are obtained from the equations for Pr , with zero re-

inforcement bias of the test stimulus. Then under the condi-

tions of uniform n3r and fixed stimulus size, expressions for

Pp. are the following.

*

.L, (/-*/* dtpg(D s 1 - (1 - pa )
Ne

. f~2rr L o=>

Pa N e nar (Pen - Pcip)
where Z = i-___xx tt. (121)

PS(/<) 1 - (1 - Pa )

Ne 4* (* £ - t2/2 «

nSr (PC11 - Pci2 )

where Z m (122)

and 0~^X) and &~&\m} Bre tne same as equations (97) and (116)

respectively.
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Plate IX illustrates the results of the performance equa-

tions of Pr and Pg for the mean-discriminating Alpha system.

The parameters of the system such as N e * w, etc, were modeled

after the results of a particular square-circle discrimination

simulation experiment. Pg may be interpreted as the probability

that any circle or square placed at random within the bounds of

the experiment is correctly recognized.

Three pairs of curves are given in Plate IX. One pair of

curves (Pr and Pg versus nar ) is for a system with Ne = 100

units. The other two pairs of curves are with Ne = 200 and

Ne ss 500. In all cases P
g

starts slightly above a 0.5 level for

nSr small and approaches an upper asymptote. For small nSr the

known reinforcement is zero for Pg. However, as the number of

stimuli increases, this term has negligible effect so that P
g

approaches its upper asymptote. The curves for Pr with nsr

small are nearly unity since the known reinforcement will have

little interference from bias due to other associations. As n a

increases, Pr approaches the Pg asymptote which can be made close

to unity by increasing the number of effective A-units. Pr ap-

proaching Pg indicates that the specific reinforcement bias be-

comes increasingly negligible in comparison to the steadily

increasing bias due to the difference in Pc 's. Both Pr and P
g ,

in the limit, converge to the same asymptote.

Plate X shows three pairs of curves with the probability

of error 1 - Pg versus N^. The solid curves represent M = 0.5

and the broken curves represent a system with disjunct source-

sets. Prom the curves It is evident that as the number of
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response units increases, the size of the system in terms of the

number of A-units increases rapidly to attain a given probabil-

ity criterion.

The variance for large systems increases with Nr2 for a

fixed a). For small systems, with disjunct sets, the variance

increases with Nr. As also can be seen from the curves over-

lapping source-sets are desirable for small systems, and dis-

junct source-sets are desirable for large systems.

,
CONCLUSION

The first analysis of this report was concerned with the

performance of the Alpha and Gamma Perceptrons under ideal en-

vironment conditions. Although the major goal of using the

random stimulus constraints was to achieve an analytical model

for further analysis, several characteristics of the Perceptron

resulted. It was found that the Alpha systems learned to re-

spond with better-than-chance accuracy for previously reinforced

stimuli. The probability of correct response decreased to a

chance level with increasing number of independent stimuli

associated with each response unit. Correct response for the

Gamma system was independent of the variation in the number of

stimuli associated to each response unit.

Mean discrimination was superior for the Alpha Perceptron.

For the Gamma Perceptron the probability of correct response was

Identical for both methods of discrimination. Of course, with

ideal environment there was no basis for generalization in
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recognition of non-previously reinforced stimuli since no rela-

tionship among stimuli existed.

With differentiated or non-random environment, the perform-

ance of the Alpha Perceptron with both methods of discrimination

was investigated. Stimuli within a class were correlated, of

which Pc was a measure of stimuli relationship.

Under these conditions the probability of correct response

for stimuli of a class approached a better- than- chance asymptote

with increasing number of stimuli associated to a response unit.

This asymptote approached one for large enough number of A-units.

If the Perceptron was actually to indicate that it could

adapt to its environment, then it must be capable of generaliza-

tion. That is, after sufficient learning, it should be able to

recognize stimuli of a class even though they had never been pre-

sented before to the system. With stimuli within the classes

being correlated, generalization was not only possible but also

the probability of correct generalization converged to the same

asymptote as Pr . In other words, it could be concluded that

after considerable experience the Alpha Perceptron performed

just as accurately to the recognition of stimuli which had never

before been shown to the system as to stimuli which had been

reinforced previously.
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This report was written to investigate and evaluate the

statistical analysis of the Perceptron proposed by Dr. Rosen-

blatt, of Cornell Aeronautical Laboratories. It was desired to

determine the feasibility of the self-adaptive cognitive system

presented in reference 16.

The evaluation was carried out in coordination with elec-

tronic signal recognition research, Project 264 of the Engi-

neering Experiment Station, Kansas State University. Project

264 shares the same basic idea of Dr. Rosenblatt's work on the

Perceptron. This is, both projects deal with a system capable

of learning the statistical characteristics of the input ensem-

bles. However, the two projects are quite different in their

mechanisms necessary to accomplish their goal.

A statistical analysis was employed in order to determine

the characteristics and performance properties of several Per-

ceptron models. The expressions representing the accuracy of

recognition with various sets of system parameters specified were

illustrated by the graphs given at the completion of each

analysis.

Under the ideal environment conditions the Perceptron

systems investigated in this report were capable of associating

a specific number of stimuli to specific response units. How-

ever, these associations could not be retained as the number of

stimuli presented to the system increased. In other words,

under these conditions the Perceptron systems were not capable

of self-adapting to the environment of uncorrelated signal

ensembles.



With uncorrelated signal ensembles there was no basis for

generalization. Mean discrimination resulted in better perform-

ance than sum discrimination for the Alpha Perceptron.

The Gamma system proved to be capable of performance inde-

pendent of the stimuli measure. Correctness of response was the

same for both methods of discrimination of the Gamma Perceptron.

In differentiated environment where the stimuli within

classes were correlated, self adapting to the environment was

possible. In fact, the probability of correct response ap-

proached a better-than-chance asymptote with increasing number

of stimuli associated to a response unit. This asymptote ap-

proached unity for a large enough number of A-units.

The Perceptron was capable of generalization so that self

adaptation to its environment was realized. With increasing

experience, the probability of correct generalization converged

to the same asymptote as Pr .


