/o

EFFICIENT ALGORITHM USING HOUSEHOLDER'S FORMULAS
FOR THE SOLUTION OF FAULTED POWER SYSTEMS//

by

ARMANDO 'ALTAMIRANO CHAVEZ

A MASTERS REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

Approved by :

A= Elez

Dr. Anil Pahwa
Major Professor

AL1209 480933

TABLE OF CONTENTS

List of Tables . « &+ & « ¢ & o ¢ o o o o o &

List of Figures . . « &+ + « ¢ ¢ o & ¢ « «

Chapters

1

2

Introduction o v + & & ¢ o » o o s o o o o @

Algorithm for Faults Calculations

2,1 Prefault Conditions . . . « ¢« « « o« &
2.2 Types of Faults . ¢« ¢« o ¢ « ¢ o o &
2.3 The Sequence Impedance Matrices . . .
2.4 The Householder's Formulas for

Pault Simulation e s s e s & e o o @

The sequence networks and their connections

3.1 Three Phase Fault . . « « « « o « « o &
3.2 Two Line Fault . . . + ¢ ¢« o o o & & &
3.3 Two Line to Ground Fault . . .« « . . .
3.4 Single Line to Ground Fault . « « . .« .
3.5 FAUult CUrrenktB .« o« « » = o # © » © =
3.6 Corrections for wye - delta

transformer connections . . « ¢ +« .+ . .

Page
iv

. v

- 34

4

5

Computer Program . « + « o s s s o s s &«

4.1 The Input File . . . ¢« « ¢« « o« &
4.2 The Main Program . . « « « o+ o &

4.3 The Output File ¢« « « «

Example - L] L] L] L] - L] * - . L L] L] Ll L

5.1 Sample System . . . ¢ ¢ & « o o

5.2 Results - L] - L] . L] - L] - L] - . -

Practical Considerations and Enhancement

of the Algorithm . . « ¢« ¢« ¢ &+ &+ ¢ ¢ « &

Conclusions . . + v ¢ ¢« o« o o o « ¢ o

References « o« « o o o o o o o s o o o «
Appendix A.

Computer Program PRUEBA.PAS . .

38

39

42

43

44

44
47

56

59

60

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

LIST OF TABLES
Page
1. Connection code for transformer connections 40
2. Sample System Data . . « « ¢ ¢ o o ¢ ¢ o o o & o o 45

3 - Input File Data] [} - - - L] - L] - L] - - - - - L] L] - 46

iv

LIST OF FIGURES

Figure

10
11
12

13

14
15

System sequence networks before their
interconnections to simulate faults
Bquivalent circuit for a three phase fault . .
Equivalent circuit for a double line fault . .
First step for a two line to ground fault . . .
Equivalent circuit for a two line to

ground fault A e
Equivalent circuit for a two line to ground
faplt usBing 2" « » & & % & ¥ ¥ @ ® & & & B & « .
Equivalent circuit for a single line to

ground fault o & ow om e w e W w8 w6 s 8 e e
Modification to circuit of figure 7
Variation of Z2 before considering the fault i
Connection between negative and zero sequence .
Circuit of figure 10 without the dummy reactance
Final connection for single line to

ground fault « o e o w w w w e e e W e
One line diagram of a power system including
shift code for the buses REEEEEEEERE
Example System s s s & = 2 s & s s s+ s s =
One line diagram for a transmission line

showing the protection of it o B & % & s & &

- Page

14
17
20

23

23

25

27

27

29

32

32

36
45

57

ACRKRNOWLEDGEMENTS

I wish to express deep gratitude to Dr. Anil Pahwa for
his guidance and great help throughout this Master's report

and my graduate studies.

My appreciation is also extended to Dr. Janice Honeyman

for her generous time and assistance with this work.

I also want to thank Dr. Gary Johnson and Dr. Richard

Greechie for agreeing to be members on my commitee.

CHAPTER 1

INTRODUCTTION

One of the purposes of a protection scheme of a power
system is to ensure the maximum possible service continuity
with minimum system disconnection. When a fault occurs the
power system goes temporarily out of its normal balanced
condition until the corresponding protective devices act.
If the faulted equipment is not promptly disconnected from
the rest of the system, damage may result to other parts of
operating equipment. The fault conditions are detected by
continuous monitoring of current, voltage, power, freguency,
and impedance at various points of the system, The most
significant ones are voltages and currents. It is
important to determine the values of system voltages and
currents during fault conditions so that protective devices
may be set to detect and minimize the harmful effects of

such contingencies [1].

Several methods for computer analysis of faulted
systems have been developed since the advent of computers
[1,2,3,4]. A detailed list of references is available in
[1,2,3]. However, there has been a need for continuous
development of new and more efficient methods to keep up
with the computer technology. This has been more true in

the last few years because of rapid advances in personal

computer technology. The objective of this report is to
develop an algorithm for calculating voltages and currents
of a faulted system for implementation on a persconal
computer. Simplicity and efficiency are the two main

features of the proposed algorithm.

The faults to be considered are the most common ones:
balanced three phase, line to line, double line to ground,
and single line to ground. The method developed in this
report is based on Householder's work on matrix methods [5]
and later application of these methods for fault computation
in analog circuits by Pahwa and Rohrer [6]. The formulas
presented in reference [6] for open a short circuit between
two nodes are used to simulate connections among the three
sequence networks in order to get the voltages and currents
in the faulted power system. The connections and
modifications made over the sequence networks are
illustrated in a simple and logical manner. A computer
program to generate the solution for a faulted system based
on the proposed algorithm is developed. The program is
written in Turbo Pascal, which is a dialect of Pascal and
very popular on personal computers. Pascal facilitates
writing structured programs and Turbo Pascal provides
several extensions that make it easy to use [7]. Following
the program an example is considered as an illustration of
the method. The results are discussed and suggestions for

some applications of the method are made.

CHAPTER 2

ALGORITHM FOR FAULT CALCULATIONS

Faults of many types and causes may appear on electric
power systems. Moreover, these faults are unpredictable
with regards to both time of occurrence and location. In
order to predict the performance of a protective scheme it
is necessary to know what the fault conditions will be.
When a study over a power system is made to observe its
behavior during a fault, it is necessary to assume the
location of the fault and to know the impedance of the
lines, transformers, and generators of the system. The
results of a study provide the engineer all the information

needed for setting the protective devices.

2.1 Prefault Conditions.

The algorithm developed in this report assumes standard
simplifications with respect to prefault conditions. These
simplifications do not significantly affect the accuracy of
the results ahd, at the same time, they avoid unnecessary

complications.

i) Series resistances are neglected: Although an
impedance consists of a resistance and a reactance,
it is sufficient to take only the reactance into

consideration in fault conditions.

ii) Shunt elements are neglected: This includes shunt
capacitances of the transmission line model and

leakage conductances,

iii) Loads are neglected: This implies that the voltage
at all points in the system can be considered to be

1 p.u.

Thus, summarizing the prefault conditions to

be uitlized:

v (i) = 1/.0 for all 1

|
(=]

I (i,3) for all i, j

where V (i) represents the phasor voltage in each bus of
the system and I (i,j) is the phasor current flowing from

bus i to bus j.

2.2 Types of faults.

It is useful to distinguish between shunt faults and
series faults, A shunt fault is an unbalance between

phases or between phase and neutral. A series fault is an

unbalance in the line impedances and does not involve the
neutral or ground, nor does it involve any interconnection
between phases [2]. This report will study only shunt
faults, which are balanced three phase, line to line, double
line to ground, and single line to ground. The description
of each fault and its analysis is given in the following
chapter. It is assumed that the fault impedance is zero.
However, extension of the algorithm to include non zero
fault impedance will not be very difficult, It is also
assumed that the faults occur on the buses. Faults
elsewhere, such as the middle of a the transmission line are
not considered. Again it is not very difficult to extend

the algorithm to include such faults.

2.3 The Sequence Impedance Matrices.

——— —— T ————— T —— T ——————— - —

The report shall use the bus impedance matrices for the
fault analysis problem. The bus admittance matrix which is
easily formed will be created first and then Shipley's
Inversion Method [3] will be used to invert it and get the
bus impedance matrix for each sequence network. In
Shipley's Inversion Method an operation that is referred to
as pivoting is performed on each major diagonal in any
sequence. When the process has been completed, the inverse
replaces the original matrix [3]. Instead of using this

method one could form the impedance matrices directly using

any Zbus building algorithm [1,2,3]. For convenience +j
has been taken common out of all the entries of the

impedance matrix.

Thus the first step is formation of the bus admittance
matrix for the three segquence networks under prefault
conditions. For a general case these three networks appear
as shown in figure 1, where n is the number of buses in the
system and rl, r2 and r0 are the reference buses for
positive, negative and zero sequence networks, respectively.
It is considered here that all reference buses are connected
to ground. Hence, we get three n x n sequence impedance
matrices with ground as the reference. It is also assumed
that the system configuration is such that its zero sequence
network does not have any buses without a path to the
reference. This path could be through any number of
branches of the system. If there are buses which do not
have a path to the reference then the Ybus matrix turns out
to be singular and thus its Zbus matrix does not exist.
This situation is similar to that of connecting an impedance
between two new buses in Zbus building algorithm as is
explained in reference [1]. Such a situation is very rare
for practical systems and therefore it will not be dealt
with in this report. However, it can be handled by sub-
dividing the zero sequence network into several networks
based on connectivity and representing each sub- network by

a sub-matrix.

Note that under prefault conditions all the buses in
the positive sequence.network have wvoltage of 1 p.u.,
whereas the buses of negative and zero sequence networks
have zero voltage. Also, note that capital letters
represent matrices and lowercase ones represent elements.
So, V1 is a voltage vector of positive sequence, 22 is the
negative sequence impedance matrix, 20 is the zero sequence
impedance matrix, rl is the reference for positive sequence,
r2 is the reference for negative sequence, r0 is the
reference for zero sequence, z0 (2,5) represents the entry
at location (2,5) in the zero sequence network, zl (1,2)
represents entry at location (1,2) in the positive sequence

matrix, and so on.

= = S
JARR RS 72 n; Al
e '—'1 =
| l‘)
= I re re

Figure 1.~ System sequence networks before their
interconnections to simulate faults.

2.4 The Householder's Formulas for Fault Simulation.

In the analysis of faults, the interconnections to be
done with the sequence networks is the key for the solution
of a faulted system, For a general circuit, application of
Householder's formula gives a direct method of simulating
open and short circuit faults in elements of the circuit
[6]. According to this method if prefault voltages are

known then the post-fault voltages can be calculated from:

t t
Vopen = [Id + GZ XX /[1~-GX ZX]1V (1)
= AV
t t
Vshort = [Id - Z XX /X 2 X1 V (2)
= AV

where,

V is the voltage vector before the fault,

Vopen is the voltage vector after an open circuit occurs,
Vshort is the voltage vector after a short circuit occurs,
Id is an identity matrix,

Z is the impedance matrix of the pre-fault circuit,

G 1is the admittance of the open line,

X 1is the connectivity vector having in general its 'a'

entry equal to 1 and its 'b' entry equal -1

consideringthat the fault is between nodes 'a' and
‘b, The rest of the terms are zero. If node 'b'

is ground then the 'b' entry has value 0.

Note that under pre-fault conditions for any
circuit Vv = Z I, where I is the vector of currents or
equivalent currents entering the buses. Therefore, if I

stays the same for the faulted case, then:

Vv fault = AZI = 2' 1 (3)

Hence, Z' 1is the impedance matrix of the modified

circuit.

In power systems the faulted condition is analyzed with
the help of proper connections among the sequence networks.
Thus,a given power system fault can be simulated using the
Householder's formulas repeatedly starting from the pre-
fault circuit shown in figure 1. To achieve the faulted
circuit configuration certain points in the circuits of
figure 1 are shorted and opened in a proper order, which is
dependent on the type of fault and it is selected in such a

way that the computations are minimized.
Now, under pre-fault conditions the composite system of
figure 1 can be represented by a block diagonal matrix of

size three times (or three times plus one in a special

10

case, which will be discussed later) the size of each

sequence network.

This matrix is:

zZl 0 0
z = 0 Z2 0 ; (4)
0 0 zo}

Thus, in the composite system, node numbers 1 tq n
represent the system buses in the positive sequence network,
n+1 to 2n represent the system buses in the negative
sequence network, and 2n +1 to 3n represent the system
buses in the zero seguence network. Thus, if one is
considering fault on bus k, then it will mean faulted nodes
in the composite system are k, n + k, and 2n + k. For the
presentation of the method it is necessary to start with
this composite matrix but it will be shown later that
because of the decoupled nature of the problem the
implementation of the method does not require formation of

this composite matrix.

Upon application of Householder's formulas to simulate
connection between the sequence networks this composite
matrix will get modified in each step. Note from figure 1
that zero and negative sequence networks do not have sources
and therefore connections between them will not result in
flow of currents. Flow of currents takes place only when

connection to positive sequence network is made. Also note

11

that until connection to positive sequence network is made
the voltages in zero and negative sequence networks remain
zero and similarly the voltages at the nodes of positive
sequence network remain 1 /_0 . Therefore, to reduce
computation, connection to the positive sequence network is

done as the last step.

Thus, the procedure for fault computation is as follows:

i) If only one step is needed for fault simulation
then matrix A is calculated for that fault.

ii) If more than one step 1is needed for simulation

then 2Z' for intermediate steps 1is calculated

and in the final step matrix A 1is calculated.

Recall that the last step will always be connection to
the positive sequence network of the rest of the network.
Therefore, computation of intermediate voltage vectors is
not necessary because they will have 1's in their first n
rows (n is the number of buses of the system), and 0's in
the remainder of their rows until the connection to positive

sequence network is done, which is the last step.

Now, the calculation of the sequence voltages after the
occurrence of a fault requires multiplication of A with V.
Because of the nature of the vector V, the multiplication
process can be accomplished by simple addition of the first

'n' terms of each row of matrix A.

12

CHAPTER 3

————— i ——

In this section the power system faults will be
considered individually and method for connection of
sequence networks to simulate these faults will be
presented. Also, steps used in developing the computer
program are presented. It will be assumed that the system

has 'n' buses,

3.1 Three Phase Fault.

Here, only the positive sequence network is needed.
For a fault on bus ' k ' figure 2 represents the faulted

network.

It must be noted that the composite matrixz isonly Z1
for this case, so the size of it is nxn. Moreover, the
column vector X has only a value of 1 in its k row and the

rest of its rows have value 0. Now, using equation (2):

X Z X = zl (k,k) (5)

and

13

$ >

Z1 .

Figure 2.- Equivalent circuit for a three phase fault,

14

B swemmens ZLIL:RF svesmwsws 0
0 2 e 80 &0 e 31(2,]{) a8 % 8 8 * e e o
t L] L] -
- = . . . (6)
0 zl (n,k) O
column k
Hence,
t t
A= [1Id - 2 X X / X 2 X] (7)
- =
1 0 . - 21 (1,k)/z1(k,k) ; . . 0
0 1 . =21 (2,k)/z1(k, k) . . . 0
0 0 1 " W . . 0
= . v 0
l - 0 *
. 1

0 5 i - 21 (n,k)/z1(k,k)

column k

Note that this matrix has 1 in all the diagonal entries
except kth entry, which is zero. Other non zero entries

are in column k as indicated.

Then, the post-fault voltages can be calculated which

are:

15

vl (i) = 1 - zl(i,k) / zl(k,k) ; (8)

i= l,....n

]
o

vl (k)

Thus the standard formula for the computation of the
post-fault voltages for a three phase fault has been

obtained.

3,2 Two Line Fault.

In this case the simulation of the fault involves two
sequence networks, positive and negative. The egquivalent
circuit for a two line fault is presented by figure 3.
Remember, il, i2, vl, and v2 represent seguence currents and
voltages. Let kl and k2 represent the faulted bus in each
sequence network. Thus, if kl = k then k2 = n + k . The
composite impedance matrix in this case contains only Z1

and 22 and before any modifications it is :
z1 0
Z . : (9}

Now, to short k1l and k2 equation (2) is used. The
column vector X is of dimension (2n x 1) and has 1 on
its k th row and -1 onits (n+ k) th row. The rest of

its row have wvalue 0.

16

7 | 73

11 A2
+ +
119 ¥+ Ve

Figure 3.- Equivalent circuit for a double line fault.

E 5

With all the information above:

t
X 12 X = zl(k,k) + z2(k,k) (10)
and
i'_ =]
;0 TR 21(1'k) XN -21(1'k).-.-- 0
i 0 ----- ZI(Z’R) sesss -zl(Z'k)ouocl 0
£t o z1(n,K) wuu.. —21(n,K)eeuus 0
z X X =] . =22(1,K) seere 22(1,K)ueeee O | (11)
. _ZZ(Z'R) san e zz(z,k)lulcl 0 3
* L 3 L] - I
L] L 2 L] - |
0 -22(n,K) «.... 22(n,k) ... O |
column k column n + k
t
v = [111 seeee 1 00 0 seees 0] (12)
- (1 x 2n)
column n

Now, upon making appropriate substitutions in (2) the
elements of Vshort are obtained. The first n entries of
Vshort are the positive sequence voltages and the rest are

the negative sequence voltages, such that:

t t t
V short = [Vlshort V2short] (13)

Therefore, the elements of Vlshort and v2short are:

18

vl (i) = 1 - z1(i,k) / [z1l(k,k) + z2(k,k)] (14)
v2 (i) = z2 (i,k) / [z1l(k,k) + z2(k,k) 1] (15)
where, i= 1, n.

Again, the standard formulas are obtained for the post-

fault voltages for a line to line fault.

3.3 Two Line to Ground fault.

The two line to ground fault involves the three
sequence networks and so the size of the composite matrix is
3n x 3n. However, to minimize computation the steps for
the connection of the three sequence networks are done in
such a way that the use of the three sequence networks

together is left as the last step.

In the first step the negative and zero segquence
networks are connected in parallel as shown in figure 4 and
then this set is connected in series with the positive

sequence network.

Because of this first step, the initial composite
matrix Z contains only %2 and ZO0. Thus, the prefault 2

matrix looks like:

19

¢ ko

Figure 4.- First step for a two line to ground fault.

20

(16)

Now, the connection between k2 and k0O (the faulted
buses on negative and zero sequence respectively) is done
using equation (2). This results in modifications in

matrix 2 and let the modified matrix be called Z'.

Note that from equation (3) Z' can be found,which is:

, & t
z' = 2 - ZXX % /[X %X] (17)

where X is a c¢olumn vector 2n x 1 in which k row and

(n + k) row have values 1 and -1 respectively and rest of

the entries are 0.

To £find Z2' manipulation of (17) can be done in several
steps. First, consider that the resulting matrix z X xt z

is called Ztemp. Upon expansion the entries of Ztemp are

found to be :

ztemp(i, 3) = z2(i, k) * z2(k,]) (18)
ztemp(i, n+ j) = - z2(i,k) * z0(k,3) (19)
ztemp(n + i,) = - z0(i,k) * z2(k,3) (20)

2X

ztemp(n + i, n+ j) = z0(i, k) * =z0(k,J) (21)

where i and j are integers and have values from 1 to n.

Besides, as was found in (10) the calculation of the
value Xt z x is simple, In this case, this value involves

negative and zero sequence values as is presented by (22).

X 2 X = z2(k,k) + z0(k,k) (22)

Thus upon substitution of proper terms in equation
(17) 2' is found. Note that this connection has not

changed the pre-fault voltages.

Figure 5 represents the final circuit for a two line
to ground fault. The implementation of this step is
simple. This case looks like a two line fault if 22 is
replaced by Z' in figure 3. Figure 6 represents this
similarity. In this case Z2 and Z0 are replaced by 32'.

Of course, the size of Z' is 2n x 2n.

Thus, the sequence voltages after fault are calculated
directly applying (2), (10), (11), and (12) . Making the
simplifications it is found that :

vl (i) = 1 - =zl(i,k) / [zl(k,k) + z2'(k,k)] (23)

22

| ki k2 ka |
/2 :

Figure 5.- Equivalent circuit for a two line to ground fault.

21l Z

ki ks

/2

Figure 6.- Equivalent circuit for a two line to ground
fault using 2'.

23

v2 (i) = 2'(i,k) / [2zl(k,k) + z'(k,k)] (24)

vo (i) = z'(n + i,k) / [zl(k,k) + z'(k,k)] (25)

Note that the final formulas for calculating the
sequence voltages of a two line to ground fault have a
similarity with those for calculating three phase and line

to line fault.

3.4 Single Line to Ground Fault.

For this type of fault the three sequence networks are
connected in series through the faulted bus for each
sequence as shown in Figure 7. Note that in this figure
the references for negative and zero sequence networks are
not connected to the ground. However, as far as series
connections are concerned, they can be arranged as shown in
figure 8 without affecting the magnitude of the currents and
voltages of the system. The only difference that arises
out of this rearrangement is a phase shift of 180 degrees in
the currents and voltages in the negative and zero seguence

circuits.

With the above mentioned rearrangement the reference

node of zero sequence network gets connected to ground but

24

ke

71 BEH 722 4 70

Figure 7.- Equivalent circuit for a single line to ground
fault.

25

that of negative sequence network is still not connected to
ground. Recall that under pre-fault conditions all the
references are considered to be connected to ground. Al so,
these references remained connected to ground under fault
conditions for the faults considered so far. Therefore,
for a single line to ground fault a step for open circuit
between r2 and ground will be incorporated in the algérithm.
However, this step must be selected carefully to avoid

excessive computation.

Hence, the first step is to create a new negative
sequence network (Z2') such that its reference is connected
to ground through a 1 p,u. dummy reactance. Introduction
of this dummy reactance is necessary because the algorithm
can not simulate open circuits between twe points with zero
impedance, such as the short circuit between r2 and ground.
A value of 1 p.u. for the dummy reactance is chosen because
it is easy to manage during the calculations. Figure 9

presents this variation.

The matrix Z2' involves creation of a new node. 80,
the size of 2Z2' is (n + 1) x (n + 1) but it is not much
different from z2. All the values of the (n + 1) column
and (n + 1) row of Z2' are 1. The remaining elements of

Z2' are the same elements of Z2 plus 1.

26

k1 ke

71 R 70 1B 70 -8

Figure 8.- Modification to circuit of figure 7.

ke

Figure 9.- Variation of Z2 before considering the fault.

27

Now, a composite matrix 2 (2n+l x 2n +1) is formed

with Z2' and 20 , which is :

z2° 0

The next step is to connect negative and zero sequence
networks by simulating the connection between r2 and k0 as
shown in figure 10. Thus, Householder's formula is used
and Z' is obtained. In this case Z' represents the
modified matrix resulting due to connection between r2 and
kO, which is

t t
' = p - Z XX zZ/[X Z X1 (27)

where, the vector X (2n + 1 x 1) has all its values equal

to 0 except the (n +1) and (n + 1 + k) rows that have values

1 and -1, respectively. Note that r2 n+1, which is
the new node that was created and kO = (n + 1 + k), which
is the new number for the faulted bus in the zero sequence

network,
Now, for computer implementation, as in the two line to

ground fault, Z X xt z is called Ztemp and all its values

are calculated using (28), (29), (30), and (31), which are

28

72 22 20

1pu.$

||}
a|}

Figure 10.- Connection between negative and zero sequence.

29

ztemp (i, 3§) = 1.0 : (28)

i,9 = lyeeesr(n + 1)

ztemp(i, n+ j+1) = - z0(k,3) ; (29)
i = 1;...,(!‘1 + l)

j=1r---’n

ztemp(n+i+1l, 3)= - z0(i,k) (30)

e

i = l’.lll’n

j = l}oo-r(n + 1}

ztemp(n + i + 1, n+ j + 1) = 2z0(i,k) * z0(k,3) : (31)
1 =1;seasn

j=1,04.,n

And, in this case :

t
X 7 X = 1 + z0({(k,k} (32)

Then, upon proper substitution in (27) the elements of

Z' are easily obtained.
After Z' is formed another modification must be done,.

30

The reactance between r2 and ground neéds to be removed
because this was introduced as a dummy for putting together
the negative and zero segquence networks avoiding the
complication of having the reference for negative sequence
grounded. To achieve this, equation (1) for open circuit is
used. The new modified matrix is called 2''. Z'!
represents the system formed as a result of removing the
dummy reactance in fiqure 10. The resulting circuit is

shown in figure 11,

Therefore :

z'" = &' = 2'X X z2'/ [1 - X 12' X]

s sem s (33)

In (33) the vector X (2n+l1l x 1) has all its values
equal to zero except the (n + 1) row that has value 1. The
computation of Z2'' is done using equation (27). Now, the
matrix 2' X Xt 2' is called Ztemp. So, as far as memory
of the computer is concerned no more memory is required for
this new Ztemp because the new values of Ztemp replace the

old ones. The new values of Ztemp are calculated as follows.

31

k2 re ke

t 72— 70

Figure 1ll.- Circuit of figure 10 without the dummy reactance.

—— e — ————— i — ———

ki ks re ke

2 ez 2z

e

Figure 12.- Final connection for single line to ground fault

32

ztemp(i,j) = z'(i,n+l) * z'(n+l,3)(34)
1= 1,00e0aaear(2n+1)

j = 1;-.-.----;(2“”‘1)

and,

X 2' X = z'(n+l,n+l) (35)

The values of Z'' are then easily found using (34) and

{(35) in (33).

Now, the sequence networks are ready to be connected in
series, so the positive sequence network must be included.

This last connection is represented by figure (12).

It should be noted that this last step is similar to
those for double line and double line to ground faults.
The simplification now is the same, Note that there is no
need to create the composite matrix that involves all the
three sequence networks. Using the Householder's formula
for the last connection the sequence voltages after fault

are obtained to be:

vl (i) = 1 = =zl(i,k) / [zl(k,k) + z''(k,k)] (36)
vz (i) = =z''(i,k) / [21l(k,k) + z''(k,k)] (37)
vo (1) = z2''(n+ i+ 1,k) / [2z1(k,k) + =z2''(k,k)] (38)

33

Again, note that these expressions have a similarity to

the expressions obtained for the other faults.

3.5 PFault Currents,

———————— ——————— -

So far the method has obtained all sequence voltages of
the system upon the occurrence of faults. If the voltages
at the end points of a impedance are known, the current
across the impedance can be calculated. This information
is necessary but not enough to calculate the sequence
currents in all elements of the system. There is still a
small complication if the system includes transformers with
wye - delta connections. Then, the computer program must
be developed to recognize such a connection and do the
necessary corrections on angles for the sequence voltages as
well as the sequence currents. These connections are
recognized establishing a special code for each bus as is

explained in the following section.

3.6 Corrections for wye - delta transformer connections.

-—— —— ——— i ——— ——— ————— - — — - - — — — ————— —

A procedure needs to be established for calculating the
phase relationship of all voltages and currents for all

types of transformer connections. According to ASA

34

(American Standards Association) convention it is assumed

that the voltages on the high voltage side lead the

corresponding voltages on the low voltage side by 30 degrees
for all wye-delta or delta-wye transformers. The actual
phase relationship depends upon the labeling of the three
phases and may be positive or negative values of 30, 150,

and 90 degrees [2].

To take account of the phase shift a code is used for
the buses which is as follows. A reference bus is chosen
and it is assigned a code of 0. To assign a code to other
buses a path from the reference bus to the bus under
consideration is traversed. A count of +1 indicates a 30
degree shift and a count of -1 indicates a -30 degree
shift. If there are wye - delta connections then counts of
+1 and -1 are used to count the number of 30 degree shifts
in the path traversed. The integer value thus obtained
indicates the number of 30 degree shifts in phase of that
bus with respect to the reference bus and the sign
indicates the direction of shift. Thus, +2 will mean a
shift of +60 degrees in phase between the voltage of the bus
under consideration with respect to the reference bus.
Figure 13 [1] shows an example of a power system with the
respective shift codes (between parenthesis) for the buses.

The reference bus in this case is bus number 1.

35

ORI TLI2 1 T2 s¢n
| Inf

(ay

Figure 13.- One line diagram of a power system including
shift code for the buses.

36

Although selection of reference bus is arbitrary, it
is customary to consider the faulted bus as the reference
bus. Thus, during fault study if the faulted bus has to be
considered as the new reference, then the codes for the

buses are changed to reflect this change according to the

following equation.

shift[i] = shift[i] - shift(k] (39)

where, k is the faulted bus,
i is a bus of the system, and
shift is the name for the array that keeps all the

codes for the buses of the system.

In this way it is easy to keep track of the angles of

the buses with respect to one another.

The new codes thus obtained are with respect to a new
reference, Now, if another bus has to be faulted then
equation (39) is used again to get shift codes with respect
to next reference. Note that it is a moving reference
situation and it is not necessary to preserve original or
old shift codes. The latest shift codes are maintained in
any one session of running this program. After quitting if
one reruns the program then the shift codes will be the ones

that have been specified in the data.

37

Chapter 4

COMPUTER PROGRAM

———— ——— — —— - ———

In this chapter, some details on how to use the
computer program and the way the data of the system is
entered are discussed. As it was mentioned at the
beginning of this report the program is written in Turbo
Pascal, which facilitates writing programs that are
relatively easy to read, understand, and maintain. So, the
program can be run on any personal computer that has the
Turbo Pascal System. This system includes an editor for
creating and modifying programs and a compiler and loader.
It also has the capability to save and retrieve files on a
disk [7]. Moreover, the program itself is a file that is
saved on a disk under the name PRUEBA. After the program
is run, the results are also in a permanent file that is
generated and saved by the program. The only file that the
user must create and save is the input file which includes
all the necessary data for the solution of the faulted
system, The chapter will explain the organization of the

input file, the main program block, and the output file.

38

4,1 The Input File

Complete information about the configuration of the
system must be given to the computer before any fault study
can be applied. This data must be saved on a disk and

created as follows.

The first line of the input file has four integers which
represent the number of buses, generators, lines and
transformers in the system, respectively. Following this,
the data for the generators is entered. Each of these
lines contains information about each generator of the
system, which includes the bus number to which the generator
is connected followed by the positive, negative, and zero
sequence reactance, and finally the neutral reactance. All
reactance values must be in percent. If the generator is
connected in wye ungrounded or in delta, then the zero
sequence reactance and the neutral reactance must be set to

zZero, Note that each line of generator data has five

numbers.

After the information for the generators is entered the
one for the lines of the system follows. 1In this case, each
line of the input file includes the two terminating bus
numbers, and the positive, negative, and zero sequence

reactances. Again, the values for the reactances are in

39

percent.

The transformer data, which is entered next, is a
little more complicated but it is taken care of in the
following manner. Since the transformers can be connected
in different ways a code for the connections is implemented,
which is given in table 1. Each line for transformer data
has eight entries in the following order; the first
terminating bus number, the second terminating bus number,
the connection code, the positive, negative, and zero
sequence reactance, the neutral reactance for the first
terminating bus, and finally the neutral reactance for the
second one, If any side of the transformer is connected in
delta or wye ungrounded the neutral reactance must be
entered as 0 for that terminating bus. Once again, the

reactance values must be in percent.

Connection Connection Code
bus P bus Q
wye grounded wye ungrounded 1
wye grounded wye grounded 2
wye ungrounded wye ungrounded 2
wye grounded delta 4
wye ungrounded delta 5
delta wye grounded 6
delta delta 7

Table l1.- Connection code for transformer connections.

40

Note that this code is different from the shift code

used for phase angles between buses,

So far, all the information about generators, lines,
and transformers of the system have been entered. Now, the
shift code for the buses that tells the computer the

differents levels of angles must be entered.

Thus, in the next line a number is entered which
indicates the number of buses which have non zero code. If
there are no wye - delta transformers in the system then all
the buses will have the same phase and so in this line a
zero is entered to indicate that no buses require a shift in
angle. Note that the shift code will be determined by the
user based on selected reference, the high voltage side of
the system, and the presence of wye - delta transformers.
Thus, the following lines have two integers, one represents
the bus number and the other the shift code assigned for

that bus.

With the last step completed, the input file is saved
and ready to be processed with the main program, The name
for this input file depends on the user. Any legal name

can be chosen as the file name,

41

4.2 The Main Program,

The program PRUEBA for the solution of the power system
is run in an interactive mode. The instructions in the
main program block are in such a sequence that it permits
the user to know exactly what the program is processing.
Questions are asked during the running of the program to
which the user must respond in order for the computer to
continue doing different types of calculations. The
questions that the user will be asked are the following in

order.

Enter the name of your input file.

Enter the name of your output file.

Enter the bus number to be faulted.

Do you want a three phase fault ? : Y / N

Do you want a two line fault ? : ¥ / N

Do you want a two line to ground fault ? : Y / N

Do you want a single line to ground fault ? : ¥ / N

Do you want to repeat the faults for another bus ? : ¥/N

42

Each question must be answered according to what the
user wants. Once the type of fault is selected the
execution starts. After the computation for the selected
fault has been completed the program displays a message on
the screen and then prompts by asking the user next question

in the sequence.

4,3 The Output File,

The output file containing the results is created by
the program and saved on the same disk as a permanent file
and it can be accessed as often as needed. The computer
will use the selected name of the output file for creating a

file type TEXT that is predefined in Pascal [7].

At the beginning of this output file the information
entered as data for the configuration of the system is
found. After this, the solution for the faulted system is
presented. This include the voltages for each bus of the
system and the currents for all the branches. The results
are in per unit for magnitudes and degrees for angles. The
type of fault and the bus number is listed. The user can
repeat the faults for different buses of the system as many
times as he wishes and the output file gets appended with
each run, Thus after completion of the selected runs the

output file will contain complete results of all the runs.

43

CHAPTER 5

In order to illustrate the algorithm presented in this
report for the solution of faulted power system, an example
is presented. The example system is taken from reference
[1]. The data is filled out in the input file named
PROOFDAT.PAS as explained in section 4.1. After this, the
computer program PRUEBA.PAS is run considering the bus 3 of
the sample system as the faulted bus and results for the
four different types of faults mentioned above are obtained.
The results obtained as an output of the program execution
are compared with the actual results of reference [1] which

uses the fault analysis program entitled FALTCALC.

5.1 Sample System.

The sample system under consideration is presented in

figure 14 which corresponds to figqure 9-3 in reference [1].

The sample system data is given in table 2 [1].

44

ITEM

Gl
G2
Tl
T2
TL12
TL23

TL13

MV
RAT

100
100
100
100
100
100
100

A VOLTAGE X1 X2
ING RATING
{ KV) (per unit)

25 0.2 0.2
138 0.2 0.2
25/230 0.05 0.05
13.8/230 0.05 0.05
230 0.1 0.1
230 0.1 0.1
230 0.1 0.1

Table 2.~ Sample System Data.

X0

0.05
0.05
0.05
0.05
0.3
0.3
0.3

a T | TLI2 1 1 s
o H—O°=

Figure 14, Example System.

45

Taking the system data, the input file named
PROOFDAT.PAS is created as mentioned earlier, which"is

presented in table 3.

5 2 3 2

4 20 20 5 3

5 20 20 5 3

3 1 10 10 30

2 1 10 10 30

2 3 10 10 30

2 5 4 5 5 5 0 0
1 4 2 5 5 5 0 0
1

5 =1

Table 3.- Input File Data.

Let us take a look to this input file. In this case,
it consists of 10 lines., The first line tells that the
system under consideration has 5 buses, 2 generators, 3
transmission lines, and 2 transformers. So, with this
information in mind the two following data lines are for
generator data, followed by three data lines for the
transmission lines, and two for transformer data. The

nineth line holds the number of changes that must be done

46

over the shift code of the buses. In this case there is
only one change that corresponds to bus number 5 with a
shift code equal to -1l. This change in shift code is
because of the presence of wye - delta connection
transformer. Note that the shift code for the buses 1 to 4

remains 0.

5.2 Results.

The output for the above mentioned runs was named
SOLUTION., All the system data and the calculated values
for the different faults appear in SOLUTION in a sequentizal
order, The print out of the file SOLUTION is presented in

the following pages.

47

L}

@a "2t P2 @i 2@ o1 £

[1 Qo "ai [t I 4 T z
[+ I i1 I - . R T £
jorau @ 19ead — 10834 + SNG O3 SN woay

(AT 2 22 2R I R s
B3NIT SHL ¥0d4 vidad

1 B 0" B ~] 20792 9 "9z =]
29 -E 0 °S 09 °2z2 Q00 "0z L]
Teajnau 30®Faa g joead — 3awad 4 sng

L e R e R)
SB0LUH3NGT ¥04 vivd

I SJA3WAQISUELY JO BaGuNnU £ T €28UIl JO a3agmnid

(]

H s40jesaual jo aagqunu [1 sasng 3o aagunu

o

R
NOI LUkb0dNT HW3LSAS

48

00

STuz

g uzx

2 °S

20°S

00 °S 02 °c]

Q0 °'c 20 °S L -1
2 ix WPOd Uoj 3IIuu0d n sng
3}l - T3iap
papunoal aim - waiap
witag - papunoafun aim
LER< I- I pepunodl afm
papunosBun adn — papunosZun aim
papuncodl sfm - papunodl afm
pepunosSun aim - papuncual adm

UL IS EF T L)

o3

M e N 9 »

N

-

apo3

=ngq

tpajicdde ay Buimoiioy aygp

D8 JIIUUCI B UWD SAISIOSSUTL] BU3 SAem

BUSUBSSTID BL] OF BABIIL BP0 UDTITIIULGD BY]

SSBBRBNRRRISSUR AR NS HTES

SHISWE0ISNUYEL

S+l 804 viwa

49

Q2@krT "2
Q20000 ‘2
Q2000 "9
Q0000 "9

20000 "2

T¥Y63T "0
650L0 '
20001 ‘2
9L1T1 "0

Y2990 "0

i%6=T "0
650L0°0
Q0001 "9
9LTTIT1"@

$2G00 "9

(2'q)
(S'y)
(R 'E)
(2'2)

{-24)

(='s)
(S'9)
(2'E)
=2y

[{-24 §)

s's)
(%)
(S'E)
s'2)

(8%

oV0Vd "3
SYSED O
ELLYB D
1ESI00

SE6.0 70

650.0°9
%621 @
Q23T "d
#2890 "0

9LITT @

650L0 "0
%628 "0
00001t "3
¥Z880 "2

LIIT D

(9 'g)
(rty)
(v'g)
(v*2)

(% %)

ty'c)
(g 'y)
(')
(v'2)

(e*n)

tv's)
(r'y)
v’y
(v'2)

(L0 4)

2QQ00 "2
ELLYD "D
96361 @
562070

LLYI0 "

20001 "2
Q20021 "2
PASLET @
L=t

QQsZ1 "0

Q22201 "2
2001 "@
QOSLT "0
2OSZT "0

29521 @

(£t
(')

(e'c)

(E'T)

(E*'S)
(E'y)
te'e)
'y

(E'D)

COevd "9
I65i0°Q
S&EZEQ "0
LYY "0

€E53Z0 @

9LITIT @
YZ2B60 "0
20521 "9
1LBET "0

€223 @

9LTIT O
¥Z880 "0
P0521 "0
TL6ET Q@

62011 "0

Q2920 "a
S56L0°0
LLYID D
E5ic0 "2

S6L01 "0

(E 9]

XIHiUW 3ININDSS 032

2's)
(')
(2'g)
(2'ay

t2'n

%2860 "0
L3I "R
295z @
CEC A]

TL6ET O

(1'5)
(3 'y
(1)
(1'a)

('

XiHivW IIONSNO5S 3NIiUOSN

(2'a)

('

¥=962 "2
9LITIL "D
00521 "9
&EZ031 "0

TLBET "O

(1's)
(S92
(1 'g)
(')

(G 5l)

Xidibd 3ONINO3S 3AILIS0d

R P T Y
3INSNO5S5

S§3TiH1YW

SINUASdW T

50

QBT AT
QIDV0 ‘D
Q2R "Vic
A28 "9ic
00020 "OE
02000 '@
03000 "Iz
BO0ad "D
0O20d "L

Q0200 "d
00030 "2
02090 "0
00000 "0
00000 "2
02200 "2
00200 "2
220D "0
202909 @

Y1458 °2 Q900 "VsT LAYA: R DIV "WE— LAY A"
LAY 2=1: -] 022D "B=T LR¥a=1- Rt il B) LAY A1 -1
LATAN: -] 19000 "JE- #1450 °2 QOJ2D "B& yiLse "2
¥iiG8°e 10003 "Bt~ ¥1L56°2 Rl 0 Ih] nd =Y LATA: =1
%1458 °2 Qa20d "05% ¥ii58°2 QIAAQ "VE— LATAN: -
Q0300 "@ 0902 "d 20200 "0 09020 *a 20000 "0
#3150 °2 Q0202 "05% 14882 Q002D "VE— 7iL88°2
LR ¥4~ R OPTLd "B=3 ¥I1L58°2 VIAED "OvE LA TA=: R
YiL58°2 QY00 "0=1 #1488 °2 QIJOD "RE~ ¥1488°S
(saaafap) ajBue pue (jiun aad) apnitulewm :
Q2000 "2 Q939D "B 02002 "0 QY30 "QE— %1458 °2
02200 "0 09202 "0 20009 "0 QUS00 "G=i— Y1582
00009 "0 003D "D Q2003 "0 QVJQD “ve LAY A~ i
22003 "2 Q0@0d "0 20020 "0 03039 "0E ¥1L509°2
29032 "0 QoA "? 20000 "0 Q0900 "VE~ LATA~ - R
02200 "2 Qa2 "2 Q0200 ‘2 QDEQD "0& oT00d "
00009 "2 Q0020 "0 20200 "9 Q00 "QE— #3488 "2
Q3000 ‘9 Q2093 "0 00002 "9 QDOVD "B=T -~ ®iLG9°2
Q000Q "0 Q0000 "2 o2203 "0 P03V "V5~- ¥1488°C
(saasfap) ajlue pur (37un uad) apniiubew 1 ¢ ousaz ‘aajzefau
02 "9 LS9Zy "0 289 "9i= LS8ZY "0 L
200 "921 LSEZF "0 209 "oy LEG2Y "Q 209 @
202 "9 29202 "a Q90 "2 00099 "2 2900 "0
Q00 921 14882 7@ 000 "ay2 148620 200 "0
000 "9t 1488920 200 "ey2 14582 "0 200 "0
(s@aufap) atBue pue (3i:un aad) apn3ytulem
000 "2 00009 "2 000 "0 Q2000 "2 200 "0E—
000 "0 02000 "9 Q02°0 02000 "2 2020
0029 00000 3 290 "0 00000 "V Q009
290 "2 02000 "2 Q02 "0 .1 1 1 U 9002
092 "2 02020 0 L Dol B6R02 "@ Q000
(saaufap) ajfue pue (jrun uac) apniiuSew t { ouaz ‘aaizeiau

t(3

£

o3
o3
o3
o3
o3
o3
o3
o3
o3

UMMM T e

o3
o3
o3
o3
o3
o3
o3
o3
o3

TNMUMD TN~

L592Y "@
LSEZY "0
29002 "8
14582 "0
14562 "0

LR R RV RN (- IE R TTRE I

“umMmen

mo.d g
Wy
vIou g
wouay
mou
wuoay
wo.y
woday
uoay

Y) Sjusauand aseyc

mody
wo.d g
nousy
(L. N¥Y
vioag
voag
wouy
wouy
vIOW)

‘aariisod) sSjuaLund aduanbas

sNng
sng
=ng
sng
sng

‘a 'y) salejjon aseyd

LSEEY "0
LSHZY "O
00000 "0
145829
14582 0

t 57 ENG pajiney

-“Maen

Lt i s 2R S AR 2RSSR sl s R 2T)

Faninl-E

3SuHd

33HHL

HOS

SLTNS3H

sng
ang
sNG
sng
sng

taarzzisad) salejzjoa asuanhas

51

QQACd "0
[nd» 1 I
Q0000 "9T3
2IVJD "8T
hlnlunr
Q0009 "2
Q022D "
$2002 "2
29000 "

Q09002 "9
GRG0 "D
92002 @
Co200 "9
200090 "
Q2202 @
00Q00@ "
93009 "9
20290 @

gEvLh "2
#1i53°2
IEyLy "2
Ly "2
9EYLY *Z
Q39T "D
IENLY " E
b1i59°2
9EYLY "=

22000 "2 cYIDD 06 LSESY 1 OY@I0 "ve—
(212 i 03009 "0zt LSEeh ° % DDAV "Q= -
2T000 "2 80093 "d6- L3E8Y "1 DITID "6
00330 "9 GOV "06— L3GEY "1 [1 I g
Q0000 @ 29033 "0& LegSY "1 QIIVID "AE—
00009 " QPO "QE— 02000 "0 i 1 1 L 1
23000 "0 209200 "0s L86SY "1 o0V "05—
Lalecdvdn e) a1 Bl =2 FA=1- -4 B JTAJV "D -
3000 "0 QI0ID "B& [A=1- -1 B Q0330 V5~
(s@asBap) ailue pue (314N aad) apnijulew 1 (ouaz
229 95 LEESY "0 68 "EBT i<ed "9
Eiv "ERT QLEEIQ L3S 3i2 ' Pirt=g .
2909 "8t 2000% "0 202 "egt Q3205 "D
@L9 "EGT LBLEE "D 62E 9902 LBLSS "D
QLI "EGT FA- FA=~3d"] 62K "903 FA: FR~1~0]
(s@aaBap) ®iBue pue
" 2] 00209 "d Q30 "0z VL5992 @
209 "@ ' 00OV O 229 "0 TLSTZ "2
290 "0 Q3203 *d 002 02005 0
032 "0 009000 "2 Q00 "2 LAY A~ 20"]
2990 "0 00200 "3 09 "2 HILGE "
(saaxSap) aifue puw (3jun Jad) apniiulew : { ouaz

BTV 0Tt
P03 "vTl
QIQID "
VITTY "a
00J03 "aTt
Qo020 "
@9@32 "231
oUoRd "@3IT
0TIV "GT

SEYLY "2
=82y * 3
JEYLY "2
IERLY °Z
FEWLY "2
22000 "3
9EYLY "2
PRS- -4 B
IThLN "2

QI3
GI0Y9 "631
BISTB "D
Bo00d "D
IJJIQ "B
Q020D "B
QITY "D
VIV "B
QIPL0 "0

02229 "0
L8azy "1
Q3QId "
20000
00000 "0
0000 "0
230200 "0
LGN "1
229023 "2

(saaufiap) aijSuw pue (3iun aad) apn3tulew = { J*

FA=1-rd Sl
LSEEY "%
LSBTy "L
L3EZY T
LS@2H T
02032 "2
L532H "3
LSEZEY "1
L5882y "1

o3
o3
o3
a3
23
o3
o3
o3
o3

TUMAMI SN

8

T o3
2 o3
v o3
=4 o3
E o3
e o3
£ o3
= o3
L] o3

QG w0l)T

QO v =00 1T

wouy
wouy
VDA F
wuosy
woay
mouay
[N
oy
Wou,

'Y) sS3u3aand aseyd

wouy
uouy
wou
wod
Mou s
-NYY
Wouty
_..Zn(pm.
[T

‘aatswBau ‘aArsiisod) Ssjuaaund ajuanhas

8968 "£i-
030 ‘2
2?90 "2
Q93 e
290 "0

(37un wad) apnitullen 1¢ I

Q90 "0E—
Lol
2900 "2
Lo 0 B)
o200

»1CE8 "0
Q000 "3
0303 "%
QA0 "1
20009 "%

M ae N

sng
snG
sng
sng
sng

‘g 'y) satejzioa aszeyd

&ZviL"O
EZVIL"Q
23005 "0
982Z%3 "0
9%2%3 70

=M

sng
sng
snqg
sng
sng

‘aatzefau ‘aajizisod) salwijoa aouanbas

£

: =t sSnG paginey

HABS PR RAABERBE BTN AN BERTHAE B AR RS RN B

l-E

3NIT 35dNag

(s E

S1WIS3H

52

Se¥Ed "ZZ
[D R
Z28%T3 "Z03
83093 =iz
EY9EG "62
00000 ‘36—
yLB@% "92
00002 "d
ca¥E?"EZ

20002 "0&
Q020D "9

Q000D "0a—
Q00TD "5
Q0020 “95
20009 "0&—
0000 "Ba
92000 "0

00000 “a5

S82993°2 L3TIT "LGT 589832 [1" s R P gLLL2d H o3 L} Wo.tg
LAY A~ 1 1GdiT 23T @333 EvE5d "L032 @z3ITI"} < o3 S L F §
3083 = E&%EF "2~ 80632 VIJIT "I6 GLLLE @ ¥ o3 H wosy
SLEEE T 67083 "SE- Z2L8E6 2 QA3 "5~ gLLLZ "D S o3 Z woy
toyva 2 9=19% "0351 19whE@ "2 QABORD "Y6 65262 "2 £ o3 4 woay
61581 "Q 0SOTD "vE- 61581 "2 02DQD "CE~- &icai -2 e Qo3 4 wo.uy
ShLEL 2 92119 "EG3 SYiGL "2 Q302D “d&— EGZED "2 £ o3 T wou 3
LA ¥2-1- -1 iE={" A at-{~11 QEIII"L BY6ET "L92 QEIII"T s o3 "] Hou,
S5383 " LOSIZ "LG1 cEa83 2 Q03999 "ve- 8LLL2 0 L Q3 "] VS y
(S@aaatap) atfue pur (3iun uacd) apnituiem 1 (9* g* Y) szuaaand aseyd

»ZCES "9 So00 Ve 9086 QD 00030 "a5- 0598 "; T o3] wo.a g
Q0TI "D QIDV0 "@=3 90Z65 "D 00203 "az i — 99898 "1 =4 o3 S uoa g
L4~] 23300 "v6—- 93266 "0 Q02D "5 20538 "1 L o3 T oy
BLOSI T 023900 “06— 99366 "0 Q233D "Q5 e9s98 "3 S o3 2 uouy
139596 "0 22000 ¢G5 99285 "0 Q0209 "v6— ga538 24 a3 < wo.uay
6183t @ Q0T “BE—- Q03930 Q002D "Q& 20000 "2 2 Qo3 1 wWoay
2y@08L '@ Q0020 "0a 992660 Q3220 A5~ g0s99 -1 £ o3 T wouay
Q3T "D Q0330 "933 90ZE6 "0 Q220D "a=Z1— §2599 "1 S o3 L) woug
Y2565 "0 Q202300 08 9226569 QJJDD "BE~ |9598°1 r o3 a wosy
(saaafap) atlue pur (3fun uad) apniiuSenr 1 (ocaaz ‘aarjrlau ‘aaizrsed) Sjuarand aduandas

230 "9s8 LSESY "@ 993 "967 »ZI7L 0 889 91~ $Z9%L "0 -1 Bng
988 "IET Z2296% "2 LAY -t Z2Z95% 0 020 "9 ELGTE "0 v sng
200 "a 29009 “2 o] Q20990 "0 Q0D "2 £3Tv0 "1 E =ng
EIYEYS EISli® 0 L89S 932 EISiv D 033 "9 6269 "0 < =ng
90€ "9ttt QO2SLE QO Y63 182 QA2LE D 292 "¢ YavE0 "9 ¥ sng
(s@a1%ap) ajSuw puw (3iun Jaad) apnztulve 1(I *d ‘y » salezioA aswyd

2020 29039 "9 @99 "9 I»361 "0 9909 "oE- 889390 ~] wng

Q900 EEED@ "D Q00 "2 19867 "3 0092 86929 "0 L} sng

Q00 "0 ! SILYE"Q 229 "0 EZLYE “Q 99 "0 cSLHYE "R £ sng

Qo0 D »SLSO O Q00 "0 c@av2-0 299 -2 ELEES O 2 sng

200 "9 QIfit '@ Q00 *a Qa2 "0 0992 ELEES D 3 sng
(3aa4slap) aifue pur (3jun aad) apniiulen t (oxaz ‘aativlau ‘aalisod) salwiioAa ajuanbas

£ 1 S} =ng pajine;

ARERARAANNADBERBE AR AN A SRR R DD BB BN AR BB BE
R4 GNNOED 0L SNIT 35ENcd w04 SLTOS3H

53

Q303D "v6
Q00T "D

092302 96~
03003 "06
Q220D "956~
Q2209 256
Q2209 "06
QA2ad "2

000Qd "05

Q00009 "0&6~
02002 "2
20020 "06
Q0209 “28
00090 “06~-
QD20 "06
00000 "06—
09200 "9
Q000 "6~

93692 "Q 29002 "05 FH8862 "0 22003 "Q5- 99TYY "2 K o3 L] vy
Lol ©o099 "06 STLLE "1 Q0Qva "6~ SILLE ™Y 2 o3 S uoa}
99602 "Q GODQ0 "05— 99669z "0 299¢d "Q& 9OENH "= L4 23 1 waay
39682 "0 Q2290 "05 I968Z "0 [0 T Il S LLZZ0°E -] o3 < vioJa
€39é0 2 @330 "Ve— 3360 "9 Q9302 "V5~- %3629 °2 £ o3 2 wadg
»3E6T R QVOBD "0& YZEST "D Q0Q2d "035 hZLaT " 2 o3 3 wou
239609 Q239D *v& £9960 "0 QDY "9E~ QE9EI "= £ o3 T wad)
29000 "2 ¢DO0D ‘06 SOLLE T QADDD "Q5— SALLE "1 = o3 2 nody
99692 "2 Q320D "0s 99582 "0 Q000 "35- GDER N "2 L] o3 "] woay

(s@aaalasp) ajSue pue (jiun aacd) apniiulew 1 (7' @' Y) sSjuaaand aseyc
2itz3‘e Q0900 *Q&6— LEDI6 "D Q2900 "25— L6Q167@ 9 o3 L4 L= ¥
Q00009 "0 023900 03— LEDTIE O Q0000 "2 T~ LEDTIE "D 2 23 S wo-t}
citgo'e 0980Q "05 LEDIE D 20300 "0a& LE@IE "D L4 o3 T wouay
£EGQ0Z "1 Q0092 “G6 LEAIE "D Q209 "5 LERIE "D i~ o3 =1 vio-1}
65L00°T 2T “0&6— LEDIGE D 03300 "0~ LE@IE "D £ o3 2 wouy
¥ZEGT "0 Q3902 "2 QOJD "D Q00222 20200 2 2 o3 T wo.t)
STyig"Q 000 “06—- LEDIG "D 20002 "06- LEDIG "D £ o3 T wouy
032002 "2 02200 "A0T LEDIE @ QAR "=~ LEDI6 "D s o3 "} wolLy
sitgI’e QY2 "AL2 LEDIE D VAV "B5~ LE@i6 "D Yy o3 "} woa,

(saaslap) ajSue pur (Tun uad) apniiulew I { OWIZ ‘FATIREAU 'BAT3IENC) SIUIIIND aJuandas

200 "985 23000 °1 052 "2e=2 YIEYL D o8e "Sv- YI9EYL"Q@ S sng
@SV 'St S6556 °0 BS6 "vy2 266552 290 “@ SIEvS ‘2 L] sng
11122t EyZE0 "1 693 "LEZ 1ol ool R 020 "9 20000 “@ E sng
266 01T ESLS6 "0 90a “&6%3 654760 90 "0 FALL L] 2 =nq
1~ Ad 201 a&6Y¥6 "0 2L SY2 26676 "9 222 "9 2c92y "0 T sng

(s@aasSap) aiSur pue (3tun uad) apnyiulem 1(3 ‘g ‘Y) salejzioa aseyd

009 "2 Q00029 "2 Q99 "0i3 6120910 Qa0 "OE- 1941870 S sng

Q02 "09 . 969389@°0 2¢O "8t 6129t @ 200 "9 1gL19°9 v snq

930 "991t SEZ9E"Q 200 “0a1t YgeIE @ 0000 973i89 2 £ sng

092 Q81 %2090 °Q QY0 "233 YLls2 "9 0022 9Z2LL"Q 4 =ngq

202 083 toaii-e 200 "33 YLL22°Q 009 "0 922LL70 H snq

{saaufap) ajfue pur (31un aad) apniiulew 1 (ouaz ‘asrielau ‘aariisoc) saejioa aosuanbas
£ 1 2§ SnG pazine}

e T N TN N YRS S R P RS2 R E L
L7NYd GNOOES 0L SNITT FONIS 803 SLiTNS3H

54

Comparing the results obtained after running the
computer program PRUEBA.PAS with those of reference 1 it is
quite satisfactory to observe that these are the same in

each one of the fault types.

Moreover, the output file is now saved as a permanent
file on disk and it can be accessed as often as needed.
Thus, it can be printed out as many times as the user likes
without running the program PRUEBA.PAS again. If this
program is run again it can use another input file (for
another sample system) and create another output file.
Therefore, the disk can have more than one input and output
file depending on the user. Each sample system will have

its input and output permanent files independently.

55

CHAPTER 6

————————————— — — T — T G S —— A ————— — T — ———— ——— —————— — i — ——

In this chapter possibilities of enhancing the
algorithm to include some practical situations in power
systems are considered. The implementation of the
modifications to the algorithm presented depends on the
additional situations the user wants the computer program to
solve. Some new ideas will be proposed in this chapter

for further work on this topic.

All the faults studied in the algorithm developed in
this report have been considered as direct short circuits
between lines or lines and ground. If the faults are
considered through a impedance the modifications to be done
in the computer program PRUEBA.PAS can be easily achieved.
The first step is augmentation of the proper impedance
matrix to include the fault impedance. In the next step
proper points are short circuited using the Householder's

formula.

If the computer program is implemented for the solution
of faulted power systems including the faults through an

impedance, there are other cases that can be dealt with

56

easily. For example, consider figure 15 as a part of a
power system : the transmission line with bus 1 and 2 at
the two ends, and the circuits breakers CBl and CB2 for
protection of the line. One situation that can be
considered is that CB2 is opened and there is a fault at y
or there is a fault at x. To take care of this situation
first an open circuit between 1 and 2 is simulated using
Householder's formula. Then, if the fault is at x, bus 1
can be considered faulted without impedance. However, if
the fault is aty with CB2 open, then this can be simulated
like a fault through impedance and the fault impedance is
equal to the impedance of the transmission line. A similar
situation is present if CBl is opened and the fault occurs

at points y and x respectively.

Figure 15.- One line diagram for a transmission line
showing the protection of it.

57

Another problem that deserves to be implemented is the
consideration of a power system that does not have a path to
reference for one or more buses in the zero sequence
network. For this case, the impedance matrix of the zero
sequence network does not exist. The idea is to develop an
algorithm for the zero sequence network which recognizes
this situation and gives as a result the bus number of the
bus or buses that have no path to reference. Not only is
this necessary but also the knowledge about the buses which
are connected together. Let us suppose for example it is
found that in a sample power system the buses 7, 8, 10, 12,
15, 22, 23, and 25 have no path to ground, and among these
the buses 7, 8, 10, and 12 are connected together, and buses
15, 22, 23, 25 are too, Thus, the sample system can be
visualized in its zero sequence network like three
unconnected sub_networks such that one of them has path to
ground and the other two do not. So, the new algorithm to
be developed must recognize this situation and be able to
simulate the shunt faults by creating proper connections

between the sequence networks.

58

CHAPTER 7

CONCLUSIONS

The main purpose of this report was to develop an
efficient algorithm for solving power systems under shunt
faults. This algorithm uses the Householder's formulas to
simulate the connection among the sequence networks for the
analysis of the shunt faults, The algorithm also takes
into consideration the phase shifts because of wye-delta
transformer connections. An interactive computer program
in PASCAL suitable for a personal computer has been written
based on the developed algorithm, Some examples were
tried and the results were found to be exactly as found

using other algorithms,

The algorithm is very simple in nature and
understandable, Thus, it can be used as a teaching tool in
power systems courses at the senior and graduate levels.
Also with certain enhancements the computer program can be
upgraded to commercial category. Some of these

enhancements have been suggested in the previous chapter.

59

4.

REFERENCES

Gross,Charles A,, Power System Analysis, 2nd edition,
John wiley and Sons, Inc., New York, 1986.

Anderson, Paul M., Analysis of Faulted Power Systems,
Iowa State Press, Ames, Iowa, 1973.

Brown, Homer E., Solution of Large Networks by Matrix
Methods, 2nd edition, John Wiley and Sons, Inc., New
York, 1985.

Brandwajn, V., and Tinney, W.F., "Generalized method of
fault analysis,"IEEE Transactions on Power Apparatus
and Systems, Vol.PAS-104, No.6, pp.1301-1306, June
1985.

Householder, A.S., "A survey of some closed methods for
inverting matrices,"SIAM J. Appl. Math., Vol.5, pp.l155-
159, 1957.

Pahwa, A., and Rohrer, R., "™ Band Faults: efficient
approximations to fault bands for the simulation before
fault diagnosis of linear circuits,"IEEE Transactions
onCircuits and Systems, Vol.CAS-29, No.2, February
1982,

Koffman, Elliot B., Turbo Pascal A Problem Solving

Approach, Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1986.

60

APPENDIX A.

COMPUTER PROGRAM PRUEBA,PAS

program prueba ;
{ CONSTANT DECLARATION }
const

node_lim = 30 {* set the maximum number of nodes of

-e

the system
nodeliml = 31 ; {* maximum number of nodes + 1
doublel =61 ; {* (maximum number of nodes * 2) + 1
limitdat = 80 ; {* maximum # of lines in input file
trflim = 20 ; {* maximum number of transformers
maximum = 100 ; {* 1limitdat + ¢trflim

{ TYPE DECLARATION }

type
ingresos = record
al,bl : integer;
cl : real :
end;
impedan = array [l..limitdat] of ingresos;
linedat = record
X : real;
done : boolean:

end;

{ size of each sequence network. maximum : nodelim }
matrix = array [l..node_lim, l..node_lim] of
linedat:;

{ array that holds the shift code for the buses }
class = array [l..node_lim] of integer ;

vector = record
magn : real;
angle : real :}
end;

A.l

*}
*}
*}
%}
*}
®}

{ array for the nodes of the system }
volt = array [l..nodeliml] of vector ;

{ array for the composite matrix that holds }
{ the negative and zero sequence impedances }
compose = array [l..doublel, 1l..doublel] of real ;

{ VAR DECLARATION }

var

positive, negative, zero : impedan ; { input data for
sequences }

text -

string[20]; {input / output
files names }

infile, outfile
inproof, outproof

numbus : integer; { number of
buses of the
system}
zbusl , zbus2 , zbus0 + matrix { seguence
impedance
matrices}
total : integer ; { number of
line data }
1+ : integer ; { counters }
faultbus : integer ; { faulted bus }
shift : class : { shift code
for buses }
vpos, vheg, Vzero : volt : { sequence
voltages }
gener, lines, transf : integer ;
ftype : integer ; { fault type
code }
answer : char

- WO

response : boolean

A.3

{************************************i*********************}

[* *}
[* P R O CE D UR E 8 *1
{* - *}

{******************i***************************************}

{**}

{ getting information and writing it out }
{**}

procedure getdata (var positive, negative, zero : impedan;
var numbus : integer; var total : integer;
var gener, lines, transf : integer ;
var shift : class };

var
temp : integer;
i, 3 : integer;
connec : integer;

bus, fbus, tbus,bus_p,bus_q,hv,1v : integer;
x1,x2,x0,xn,zn_p,zn_g : real 8

modif : integer;

begin { procedure get-data }

writeln (outfile, 'SYSTEM INFORMATION ')

writeln (outfile, Thkhkhkhkkkkkhthdkhkkhkhkkdkk 1):

writeln (outfile);
writeln (outfile);
writeln(outfile);

readln (infile,numbus, gener, lines, transf);
total := gener + lines + transf ;

wrlteln { outfile, 'number of buses : ', numbus:4,

number of generators : ',gener:4);
wrlteln { outfile);
wrlteln(outflle,'numbez of lines : ',lines:4,

number of transformers : !',transf:4):
writeln(outfile,),
writeln (outfile,' ');

writeln{outfile, ' DATA FOR GENERATORS ')
writeln(outfile, " ***xikkkkkkkhkkkkkrx 1)
writeln(outfile);
writeln (outfile,

'bus + react - react 0 react neutral');
writeln (outfile);

s m

A.4

for i := 1 to gener do

begin

readln(infile, bus, x1, x2, x0, xn);

writeln(outfile,bus:3,! ', x1:10:2,%x2:11:2,x0:10:2,
¥xn:13:2);

writeln(outfile, ' ');

positive([i]l.al := Q;

positive[i] .bl := bus;

positive[i]l.cl := x1;

negativel[i].al := 0;

negative[i].bl := bus;

negative[i]l.cl := x2;

{ for generators in Y ungrounded or Delta }
if { x0 = 0.0) then
begin
zero[i].al
zero[i].bl
zeroli].cl
end
else
begin
zeroli].al
zero[i].bl :
zerol[il.cl :
end;

nunn
oo o
T

e oy =m

i

/) T

0
bus:
x0 + (3 * xn);
end; { all data of generators are entered }

writeln(outfile);
writeln(outfile);
writeln (outfile, ' DATA FOR THE LINES ')
writeln (outfile, ' **%kkkkkkkdhhkdkhkks 1)
writeln(outfile);
writeln (outfile,

'from bus to bus + react - react 0 react');
writeln (outfile);
for i := (gener + 1) to (gener + lines) do

- we

begin

readln (infile, fbus, tbus, x1, x2, x0):

writeln {(outfile, fbus:7, tbus:9,!' ', x1:9:2, x2:12:2,
x0:10:2)3

positive[i].al := fbus;

positive[i].bl := tbus;

positive[i].cl := x1 ;

negative{i].al := fbus;

negative[i].bl := tbus;

negative[i].cl := x2 ;

zero[i].al := fbus;

zerof[i].bl := tbus;

zero[i]l.cl := x0 ;

end; { all data for lines are entered }

A.5
{* DATA FOR THE TRANSFORMERS *}
IF (TRANSF > 0) THEN

BEGIN

writeln(outfile);

writeln(outfile);

writeln{outfile, ' DATA FOR THE TRANSFORMERS ')
writeln(outfile, ' ***kkkkkkkkkkkhthktdhkhds 1)
writeln(outfile);

writeln(outfile);

- we

writeln(outfile,

'The connection code refers to the differents');
writeln(outfile,

'ways the transformers can be connected.');
writeln({outfile);
writeln(outfile,'The following is applied: '):
writeln(outfile);
writeln(outfile,' code connection)3
writeln(outfile);
writeln(outfile,

A 1 wye grounded - wye ungrounded ');
writeln(outfile,

! 2 wye grounded - wye grounded Y);
wrtiteln(outfile,

! 3 wye ungrounded - wye ungrounded ');
writeln(outfile,

! 4 wye grounded - delta ')
writeln{outfile,

A 5 wye ungrounded
writeln(outfile,

' 6 delta - wye grounded)
writeln(outfile,

' 7 delta - delta Vs
writeln(outfile);
writeln(outfile);
writeln(outfile);

delta 1)

write(outfile,’ bus P to bus Q connection code ')
write(outfile,' x1 x2 x0 ');
writeln({ outfile,' Zn_p zrn_q');

writeln (outfile);
for i := (gener + lines + 1) to (gener + lines + transf) do

begin

readln (infile, bus_p, bus_g,connec, x1,x2, x0, zn_p, zn_q);

write (outfile, bus_p:7,'

writeln(outfile

1
[

positivelil.al := bus_p
positive[i].bl := bus_g
positive[i].cl := x1
negative[i].al := bus_p
negative[i].bl := bus_g
negative[i].cl := x2
case connec of
1, 3, 5, 7 : begin
hv:= 1;
lv:= 1;
end;
23 begin
hv:= 0;
lv:= 0;
end;
4 : begin
hv:= 0;
lv:= 1;
end;
6 : begin
hv:= 1;
lv:= 0;
end:
end; {* case connec

if (hv = 0) and (1lv

begin
zero[i].al
zerco[i].bl :
zero[i]l.cl :
end;

:= bus_p;

= bus_q;
= x0 +

if (hv = 0) and (1lv =

begin

zerof[i].al := 0;

.
’
.
r
.
-
’
.
[

r

', bus_g:8,"
connec:4," V)

Yo %12 T22y X2:T752,
zn_p:7:2,2z2n_q:7:2);

*}]

0) then

(3 * (zn_p + zn_qg)
{ connection is star - star }

1l) then

x0:7:2,

i i

A.7

zero[i].bl := bus_p;
zero[i]l.cl :=x0 + (3 * zn_p);
end; { connection is star - delta }

if { hvw=1) and (1lv =0) then
begin
zerof[i].al := 0
zero[i].bl := bus_qg;
zerof[i]l.cl := x0 + (3 * zn_q);
end; { connection is delta - star }

if (hv =1) and " (1v=1) then
begin
zero[i].al :
zero[i]l.bl :
zerof[i].cl :
end; { conn

-

= vy
= 0;

= 0 :
ection is delta - delta }

end; { all data for transformers are entered }
END; { IF TRANSFORMERS EXIST }

{ changing positions of buses if the second one is greater }

for i:= 1 to (gener + lines + transf) do
begin
if positive[i]l.al > positive[i].bl then
begin
temp := positive[i].al;
positive[i].al := positive[i].bl;
positive[i].bl := temp;
end:;

if negative[i].al > negative[i].bl then
begin
temp := negative[i].al;
negative([i].al := negative[i].bl;
negativel[i].bl := temp;
end;
if zerol[i].al > zero[i].bl then
begin
temp := zerol[i].al ;
zero[i].al := zero[i].bl;
zero[i].bl := temp ;
end;

end;

writeln (outfile);

writeln (outfile);
Write (outfile, Thhkhkkhthtdhkhkhkhhkhhkhkhkdhkhkhthrhkhhkhhkhkhkhkkhkkkkx!)

writeln (outfile, '"**&xkkkkkkkhkkhkhkhhkhhhhkhhhhhhkdhkk ')

- ™o

writeln (outfile);
writeln (outfile);
writeln (outfile);

{**k*kkkkt** jnformation for shift ****x*xkkkkkss}

{ initialize the code for each bus to 0 as a reference }
for i := 1 to numbus do

shift[i] := 0 ;

readln (infile, modif);

if modif > 0 then

for i := 1 to modif do

readln (infile, j , shift []j]);

end; { procedure get-data. The sequence networks are formed}

A.g

{*************i******t*************************************}
{ Procedure for forming the sequence impedances matrices }
{ one at a time . Inside there is a nested procedure for }
{ }
f }

inverting matrices.
kkhkhkhkkhkhkkhhdkhkkhkhkhhkhkkhhhkkdthkhkrthkdhkhkhhhhhkbhhrhkhhrhkhkhhkhkkdhkhthhikdk

procedure formzbus (positive : impedan ;
numbus, total : integer;
var zbus : matrix):

var
i, J : integer ;
sum : real ;
first : integer ;
inv : real 7
k : integer ;

{ **Nested procedure for inverting a matrix ***%kkxxx}
procedure changes (var z : matrix; numbus, k: integer);

var

i,j : integer;
begin

z[k,k].done := ue;
z[k,k].x := 1.0 / z[k,k]l.x ;
for i:= 1 to numbus do

if 1 <> k then

z[i,k].x := z[i,k].x * z[k,k].x ;

for i:= 1 to numbus do

for j:= 1 to numbus do

if (1 <>k) and (j <> k) then

z{i,jl.x = 2[i,jl.x - (z[i,k].x * z[k,j]l.x):
for j:=1 to numbus do

if j§ <> k then

z[k,3]l.x := - z[k,jl.x * z[k,k].x ;

end; { procedure changes }

avoid connection
ta=delta

{ **=* end of the nested procedure
begin
for i := 1 to numbus do
for j := 1 to numbus do
begin
zbus[i, j] .done := false ;
zbus([i,jl.x := 0.0;
end:
for i := 1 to total do
if positive[i].bl <> 0 then { to
del
begin { forming mutual impedances }
first := positiveli].al;
if first > 0 then
begin
zbus|[positive[i].al,positiv

1.0

el[i]l.bl].x :=
/ positive[i].cl

}

inv := zbus[positive[i].al,positive[i].bl].x;

zbus [positive[i].bl,positive([i].all.x := inv;

end;
if first = 0 then
zbus[positive[i].bl,positive]

1.0 /

end; { forming mutual admitances }
{ forming y(i,i) }
for i := 1 to numbus
begin
sum ¢
for j
sum :=
zbus[i,i].x

do

= 0.0;

:= 1 to numbus do
sum + zbus[i,j].x;

:= — sum;

end;

{ now, we invert the matrix }

for i := 1 to numbus do

begin

i].bl] .x 2=
positive[i].cl

»
r

kkkkkkkhkkk }

.
r

A.10

A.ll

k == 1;
while ((zbus[k,k].done = true) or (zbuslk,k].x = 0.0))
and (k <= numbus) do

k :=k + 1 ;

f clue for inverting the matrix }
changes (zbus, numbus, k);

end; { all changes are done . zbus is formed }
writeln(' matrix is being inverted');
writeln;
for i := 1 to numbus do
for j :=1 to numbus do
zbus([i,jl.x := - zbus[i,j]l.x / 100 ;

{ check if any Zbus([k,k].done := false }
for i:= 1 to numbus do
if (zbus[i,i].done = false) then

begin

writeln (' WARNING '):

write(' IT IS NOT POSSIBLE TO GET Zbus '');
writeln ('IN THIS SEQUENCE ');

writeln;

end;

end; { procedure formzbus }

Allz
{**}

{* procedure for writing the sequence impedance matrices *}
{***i}

procedure networks (zbusl, zbus2, zbus0 : matrix

s we

numbus : integer)
var
% 9 : integer ;
begin
writeln(outfile,' SEQUENCE IMPEDANCE MATRICES ');
WritEIn(outfile'l khkdkkkhkhkkkhkkhkkhkhkhkhkhkhkkhkkkhkhkhkkhhkhkhkhkhkkhkk ');

writeln(outfile);
writeln(outfile);
writeln(outfile,' POSITIVE SEQUENCE MATRIX ');
writeln(outfile);

for i:= 1 to numbus do
for j := 1 to numbus do

begin

write(outfile,'(',i,"',',j,") ',
zbusl[i, j]l.x:8:5,"' ")

if (jmd 5 =0) then writeln (outfile);

if (j = numbus) then writeln (outfile);

end;

writeln(outfile);

writeln(outfile);

writeln(outfile,' NEGATIVE SEQUENCE MATRIX ');
writeln(outfile);

for i:= 1 to numbus do

for j := 1 to numbus do

begin

write(outfile,"(',i,',',3i.")
zbus2([1i,7].x%:8:

if (jmod 5 =0) then writeln

if (§ = numbus) then writeln

end;

! T

5, ')
(outfile);
(outfile);

writeln(outfile);

writeln(outfile);

writeln(outfile,' ZERO SEQUENCE MATRIX ');
writeln(outfile);

for i:= 1 to numbus do
for j := 1 to numbus do

A.13

begin

write(outfile,'(',i,',',3,") ',
zbus0[i,j].x:8:5," ')

if (j mod 5 =0) then writeln (outfile);

if (J = numbus) then writeln (outfile);

end:;

writeln(outfile);
erte(Outflle,'***');

writeln (outfile,'**xkkkkkhdkhhkhdhhhbkkhdhhheht A rhhkhkhddrl),

writeln({ outfile);

writeln (outfile);

writeln (outfile);

writeln (outfile);

writeln (outfile,

J ***l);
writeln (outfile,

vox R E -8 U L T S *1) .
writeln (outfile,

T ***i***t*l):
writeln (outfile);

writeln (outfile);

writeln (outfile);

end; { procedure for writing sequence matrices }

A.l4

{**}

{ general procedure to get phase values from sequence ones }
{**}

procedure seqtophase (po, poang, ne, neang, ze, zeang: real;
var iorva, iorvang, iorvb, iorvbang,
iorvc, iorvcang : real);

const

pi = 3.1415926 ;

var
xa, ya, xb, yb, xc, yc { real,imag for phase }

é :
anpos, anneg, anzer : real ; { angles in radians for
sequence }

{ general procedure inside for converting a complex }
{ number from rectangular to polar }

procedure transform (xr, yi : real;
var mgn, angles : real);

const
pi = 3.1415926 ;
epsilon = 0.0001;
begin

if abs(xr) <= epsilon then =xr :=
if abs(yi) <= epsilon then yi :=

if xr = 0.0 then

begin
if yi = 0.0 then
begin
mgn := 0.0 ;
angles := 0.0;
end; { values at origen }
if yi > 0.0 then
begin
mgn 1= yi;
angles := 90;
end; { values over axe y positive }
if yi < 0.0 then
begin

mgn := abs (yi);

A.l15

angles := -90 ;
end; { values over axe y negative }
end; { when x is always zero }

if yi = 0.0 then

begin
if xr > 0.0 then
begin
mgn = Xr ;
angles := 0.0;
end; { values over axe x positive }
if xr < 0.0 then
begin

mgn t= abs (xr);:
angles := 180 ;
end; { values over axe x negative }
end; { when y is always zero }
if xr > 0.0 then
if yi <> 0.0 then
begin
mgn := sqrt (sqr(xr) + sqr(yi));
angles := (arctan(yi/xr)) * 180 / pi ;
end; {this covers first and fourth quadrant}
if xr < 0.0 then
if yi <> 0.0 then
begin
mgn := sqgrt (sqr(xr) + sgr(yi)):
angles := 180 + (arctan(yi/xr) * 180 / pi);
end;{this covers second and third quadrant}
end; { procedure transform }

{***** and of nested procedure khkkkkkk]

begin { for procedure segtophase }

{ angles in radians for each sequence }
:= poang * pi / 180
anneg := neang * pi / 180
:= zeang * pi / 180

- ™8 %o

{ real and imaginary part for phase A }
xa := (2e * cos(anzer)) + (po * cos(anpos))

+ (ne * cos(anneg)) ;
ya := ze * sin(anzer) + po * sin(anpos)

+ ne * sin(anneqg);

{calling the procedure for getting magnitude and angle

for phase A }
transform (xa, ya, iorva, iorvang };

{********i**************************}

{ now real and imaginary part for phase B.
First chande angles }

anpos := (poang + 240) * pi / 180

anneg := (neang + 120) * pi / 180

- ng

xb := ze * cos{anzer) + po * cos(anpos)
+ ne * cos(annegqg);

ze * sin(angzer) + po * sin(anpos)
+ ne * sin(annegqg);

vb

{ getting magnitud and angle for phase B }

transform (xb, yb, iorvb, iorvbang) ;
{*************************************}

{ now phase C }
anpos := (poang + 120) * pi / 180 ;
anneg := (neang + 240) * pi / 180 ;
X¢ := ze * cos (anzer) + po * cos(anpos)
+ ne * cos(anneg);
yc := ze * sin (anzer) + po * sin(anpos)

+ ne * sin(anneg);

transform (xc, yec, iorve, iorvcang);
{************************************}

A.l6

end; {end - procedure to get phase values from sequence ones}

A, L17

{***t}

{**** the following gives the sequence and phase currents *}
{********************i*************************************}

procedure segcurr (vpos, vneg, VzZero : volt
positive, negative, zero : impedan
gener, lines, transf,numbus,
ftype : integer);

const

epsilon = 0.0001;
type

linecurr = record

frombus, tobus : integer;
pos, posangle,

neg, negangle,

zero, zeroangle : real;
end;

{ array must match with maximum number of lines
for data plus the maximum number of transformers.}

datacurr = array [l..maximum] of linecurr :

var
current : datacurr ;
i : integer;
fb : integer; { current from bus }
tb : integer; { current to bus }
ia, iang, ib, ibang, ic, icang : real ; {phase values}

begin { for procedure segcurr }

{ corrections - aproximations }

for i := 1 to numbus do

begin
if vpos[i].magn <= epsilon then
begin
vpos[i].magn := 0.0
vpos[i].angle : %
end;

A.18

if vneg[i].magn <= epsilon then
begin

vneg[i].magn := 0.0;
vneg[i].angle := 0.0;

end;

if vzero[i].magn <= epsilon then
begin

vzero[i].magn := 0.0;
vzero[il.angle := 0.0;

end;
end; { corrections -~ aproximations }

{ initialize values for frombus and tobus }
for i :=1 to (gener + lines + transf) do
begin

current [i].frombus := positive[i].al ;
current [i].tobus := positive[i].bl ;

if i > (gener + lines) then
begin
current[i + transf].frombus :
current[i + transf].tobus :

end;
end; { loop for initializing values frombus and tobus }

= positive[i].bl;
= positivel[i].al;

{ currents for + - and 0 seq. for generators }
for i := 1 to gener do

begin

tb := current[i].tobus ;

current[i].pos := (1 - vpos[tb].magn)
* 100.0 / positive[i].cl

-e

current [i].posangle := vpos[tb].angle - 90 ;

e

current[i).neg := vneg[tb]l.magn * 100 / negative[i].cl
if current([il.neg <> 0.0 then

current[i].negangle := vneg[tb].angle + 90
else current[i].negangle := 0.0 ;
if zero[i].cl <> 0.0 then
current[i].zero := vzero[tb].magn * 100.0 / zero[i].cl
else current|[i].zero := 0,0 ;

if current[il.zero <> 0.0 then
current([i].zerocangle := =90
else current[i].zeroangle := 0.0

end; { currents for the generators are assigned }

~

A.19

{ now the currents for the lines }
{********************************}
for i := (gener + 1) to (gener + lines) do
begin
fb current[i].frombus ;
tb := current[i].tobus;
current[i].pos :=(vpos[fb].magn - vpos[tb].magn)
* 100.0 / positive[i].cl ;

if current[i].pos = 0.0 then current[i].posangle := 0.0 ;
if current[i].pos > 0.0 then current[i].posangle := -90 ;
if current[i].pos < 0.0 then current[i].posangle := 90 ;

current[i].pos := abs (current[i].pos);

current [il.neg := (vneg[fb].magn - vneg[tb].magn)
* 100.0 / negative[i].cl

if current[i].neg = 0.0 then current[i].negangle := 0.0 ;
if current(i]l.neg > 0.0 then current[i].negangle := 90 ;
if current[i].neg < 0.0 then current[i].negangle := =90 ;

current[i].neg := abs (current[i].neg);

(vzero[fb].magn - vzero[tb].magn)
* 100.0 / zero[i].cl

current[i].zero :

-8

if current[i].zero = 0.0 then current[i].zeroangle := 0.0;
if current[i].zero > 0.0 then current[i].zeroangle := 90;
if current[i].zero < 0.0 then current([i].zeroangle := -90;
current[i].zero := abs (current[i].zero);

end; { all currents for the lines are assignned }

IF (TRANSF > 0) THEN

BEGIN

{ now working with transformers }
for i:= (gener + lines + 1) to (gener + lines + transf) do

begin { initial for transformers in general }
fb := current[i].frombus ;
tb := current[i].tobus :
{ transformers positive sequence }
current[i].pos :=(vpos[fb].magn - vpos[tb].magn)

* 100 / positive[i].cl;
current[i + transf]J.pos := abs (current[i].pos) ;
if current([i].pos = 0.0 then

begin
current[i].posangle := 0.0;
current[i + transf].posangle :=0.0;
end;
if current[i]l.pos > 0.0 then
begin

A.20

current[i).posangle := -90;
current[i + transf].posangle := 90;
end;
if current[i].pos < 0.0 then

begin
current[i].posangle := 90;
current[i + transf].posangle := -90;
end;
current[i].pos := abs (current[i].pos):

{f transformers negative sequence }
current[i].neg := (vneg[fb].magn - vneg[tb].magn)
* 100 / negativel[i].cl;

current[i + transfl.neg := abs (current[i].neq) :
if current[i]l.neg = 0.0 then
begin

current[i].negangle := 0.0;
current [i + transf].negangle
end;

if current([i).neg > 0.0 then
begin
current [i].negangle := 90;
current[i + transf].negangle := -90;
end;

if current[i].neg < 0.0 then
begin
current[i].negangle := =90;
current [i + transf].negangle := 90;
end;

current[i].neg := abs (current[i].neg) ;

..
[}
o

L]
o
~e

{ corrections for angle currents when delta-star }
{ correction is for positive and negative sequence }

if (vpos[fb]l.angle - vpos[tb].angle) < 0.0 then
begin
current [i].posangle := current[i].posangle +
(vpos(fbl.angle - vpos[tbl.angle) ;
if current[i].neg <> 0.0 then
current [i].negangle := current([i].posangle -
(vpos[fb].angle - vpos|[tb].angle) ;
end;

if (vpos[fb].angle - vpos[tb].angle) > 0.0 then
begin
current[i + transf].posangle :=
current[i + transf].posangle -
(vpos[fbl.angle - vpos[tb].angle);

if curfent[i + transfl.neg <> 0.0 then

A.21

current[i + transf].negangle :=
current[i + transf].negangle +
(vpos[fb].angle - vpos[tb].angle);
end; .
{ corrections for star delta are done }

{ analysis for zero sequence delta star transformers }
{**********************************i*i***************}

if (positive[i]l.al = zero[i].al) and
(positive[i].bl = zero[i].bl) then
begin
current[i].zero := (vzero[fbl.magn - vzero[tb].magn)
* 100 / zerof[i]l.cl ;
if currentli].zero = 0.0 then
begin
current[i].zeroangle := 0.0 ;
current[i + transf].zerocangle := 0.0
end;

if current[i].zero > 0.0 then
begin
current{i].zeroangle := 90 ;
current[i + transf].zeroangle
end;

-
]
|

w

(=]

-

if current[i].zero < 0.0 then
begin
current[i].zerocangle := =-90;
current[i + transf].zeroangle
end;

..
]
(Ve
o

-

current[i].zero := abs (current{i].zero) :
current[i + transf].zero := current[i].zero ;
end; { in this case connection is star star both grounded }

if (zero[il.al =0) and (zeroli]l.bl =0) then
begin
current[i].zero := 0.0 ;
current[i + transf]l.zero := 0.0 ;
current[i].zerocangle := 0.0;
current [i + transf].zeroangle := 0.0 ;
end;
{ this was for connection delta delta }

{ now continue with star delta or delta star }

if (zero[i].al = 0) and (zero[i].bl = positive[i].al) then
begin
current[i].zero := vzero[fb].magn * 100 / zeroc[i].cl ;
if current[i].zero <> 0.0 then

A.22

current[i].zercangle := 90
else

current[i].zeroangle := 0.0;

-~

current[i + transf].zero := 0.0
current[i + transfl.zeroangle :
end;

if (zero[i].al = 0) and (zero[i].bl = positive[i].bl) then
begin
current[i].zero := 0.0;
current [i].zercangle := 0.0;
current[i + transfl.zero := vzero[tb].magn

* 100 / zero[i]l.cl :
if current|[i + transf].zero <> 0.0 then

current[i + transf].zeroangle := 90

else

current[i + transf].zeroangle := 0.0;
end; ,
{all connections are checked }

end; { for the loop of transformers in general }

END;

{ last modifications to include all faults }

{ this will include corrections for all faults }
if ftype > 2 then
begin
for i := (gener + 1) to
{ gener + lines + (2 * transf)) do

if current[i].neg <> 0.0 then
if current([i].negangle > 0.0 then

current [i] .negangle := current[i].negangle - 180.0
else '

current[i].negangle:=current[i].negangle+ 180.0;
for i :=1 to (gener + lines + (2 * transf)) do

if current[i].zero <> 0.0 then
if current[i].zerocangle > 0.0 then

current[i].zeroangle := current[i]).zerocangle - 180.0
else

current[i].zeroangle:=current[i].zeroangle + 180.0;

end;

A.23

writeln (outfile);
writeln (outfile);
write (outfile,
' sequence currents (positive, negative, zero) :');

writeln(outfile,
' magnitude (per unit) and angle (degrees) ');
writeln (outfile);

for i :=1 to (gener + lines + 2 * transf) do
with current[i] do
writeln(outfile,'from',frombus:5,

1 to ', tobus:5,! 'y
pos:10:5," ', posangle:10:5,' 'y
neg:10:5," 'y negangle:10:5,"' 'y
zero:10:5," ', zeroangle:10:5);

writeln (outfile);:

writeln (outfile);

write (outfile,' phase currents (A ,B ,C) :");
writeln(outfile,'magnitude (per unit) and angle (degrees)');
writeln (outfile);

for i :=1 to (gener + lines + 2 * transf) do
begin
segtophase (current[i}.pos, current[i].posangle,
current{i).neg, current[i].negangle,
current[i].zero, current[i].zeroangle,
ia, iang, ib, ibang, ic, icang });

writeln{outfile, '"from',current[i].frombus:5," to ',
current[i].tobus:5," L
ia:10:5," ';yiang:10:5," L
ib:10:5," ‘,ibang:10:5,' L
ic:10:5,! ',icang:10:5);
end;

writeln(outfile);
writeln{ outfile);

writeln(outfile);
write(outfile, '***kxkkkkkkkhhhdhhhdhhhhhhhhhhhhhhhohhksxl),

writeln(outfile, "**xkkkkhhkhhhhhkhhhhhkhhhhhrhrhhdkkddhhhrst),
writeln(outfile);
writeln(outfile):;
writeln(outfile);

end; { end of procedure segcury ***kkkkkkdkkikkhkik }

A.24

**}

{

{ the following procedure writes sequence and phase voltage}
{ using as input sequence values . Inside it calls the }
{
{

procedure transform to get the phase values. }
*******i*******i**}

procedure volwrite (vpos, vneg, vzero : volt ;
numbus : integer);

const

epsilon = 0.0001;
var

i : integer;

va, vang, vb, vbang, vc, vcang : real ; { phase values }
begin

{ corrections - aproximations }
for i := 1 to numbus do

begin

if vpos[i].magn <= epsilon then
begin
vpos[i]J.magn := 0.0;
vposlil.angle := 0.0;
end;

if vneg[i].magn <= epsilon then
begin
vneg[i].magn := 0.0;
vneg[i]l.angle := 0.0;
end;

if vzero[i].magn <= epsilon then
begin

vzero[i].magn := 0.0
vzero[i].angle :
end;

end; { aproximations }

write (outfile, 'sequence voltages');
write (outfile,' (positive, negative, zero) : ");
writeln(outfile,
'magnitude (per unit) and angle (degrees)');

writeln (outfile);
for i := 1 to numbus do

writeln (outfile, 'bus ',i:3,"' Voo

vpos[i].magn:9:5, ' ‘yvpos[i].angle:9:3," .

vnegli].magn:9:5,' ',vneg[i].angle:9:3,

vzero[i].magn:9:5, ' ',vzero[i].angle:9:3);

writeln(outfile);
writeln(outfile);

write (cutfile,'phase voltages (A, B,
writeln(outfile,

' magnitude (per unit) and angle (degrees)');

writeln (outfile);

for i := 1 to numbus do

begin

seqtophase(vpos[i].magn, vpos[i].angle,
vneg[i].magn, vneg[i].angle,
vzero[i].magn,vzero[i].angle,

C):')

va, vang, vb, vbang, ve, vcang):

writeln (outfile,'bus ',1i:3,' L
va:l10:5,"' ''vang:10:3,'
vb:10:5," 'yvbang:10:3,'
vc:l0:5," ',vcang:10:3);

end;

writeln(outfile);
writeln (outfile);:

"
r
]
r

A.25

end; { of procedure to write sequence and phase voltages }

{ *** PROCEDURES FOR FAULTS ARE FOLLOWING

%* %k % }

A.26

{**i**********}

{ PROCEDURE FOR SINGLE LINE TO GROUND FAULT }
[REE Rk hk ko h Rk kk Rk kAR AR R R kAR Rk Rk Ak kR Ak ARk k kK k&]

procedure slgfault (zbusl, zbus2, zbus0 : matrix ;
numbus, faultbus : integer;
shift : class ;

var vpos, vneg, vzero : volt)

var
zold, ztemp : compose;
i, i,k : integer;
divisor : real ;

begin { procedure slgfault }

k := faultbus; { clue for knowing which bus is faulted }

{initialize matrix that put
together negative and zero sequence}

for i :=1¢to (2 * numbus + 1) do
for j :=1 to (2 * numbus + 1) do

zold[i,j)] := 0.0 ;

{ introducing zbus2 }
for i := 1 to numbus do
for j := 1 to numbus do

zold[i,j] := zbus2[i,jl.x + 1.0 ;

for i :=1 to (numbus + 1) do
zold[i, numbus + 1] := 1.0;

for j :=1 to numbus + 1 do
zold[numbus + 1, j] :=1.0;

{ introducing zbus0 }
for i := 1 to numbus do
for j := 1 to numbus do
zold[numbus + 1 + i, numbus + 1 + j] := zbusO0[i,]j].x ;

{ now, introducing changes for this old bus }

{ forming z x ¥t z }
for i :=1 to (numbus + 1) do
for j =1 to (numbus + 1) do

ztemp([i,]j] 3= 1.0 ;

for i ;=1 to (numbus + 1) do
for j := 1 to numbus do

ztemp[i, numbus + j + 1] .=

for i := 1 to numbus do
for j :=1 to (numbus + 1) do

ztemp[numbus + i +1, j] :=

for i = 1 to numbus do
for j := 1 to numbus do

ztemp[numbus + i + 1, numbus + j + 1] :=
zbusO[k,j]l.x

zbusO[i,k].x

{ we have completed zold and ztemp }

{ now we need zold -~ ztemp }
divisor :=1 + zbus0[k,k].x ;

for i :=1 to (2 * numbus + 1) do

for j :=1to (2 * numbus + 1) do
zold([i,j] := zold[i,j] - (ztempli,j] / divisor)
{ we have completed the union of zbus2 znd zbus0 }

{ now we need to remove the old reference of zbus?2
divisor := 1 - zold[numbus + 1, numbus + 1];

{ new ztemp }
for i :=1 to (2 * numbus + 1) do

for j :=1 to (2 * numbus + 1) do
ztemp[i,jl:= zold[i, numbus + 1] * zold[numbus + 1,

{ zold + ztemp/ divisor }

for i :=1 to (2 * numbus + 1)} do
for j :
zold[i,

{ ready for connecting with zbusl1 }

divisor := zbusl[k,k].x + zoldl[k,k]

{ solution for slgfault }

for i:= 1 to numbus do

- zbusO0[k,j]l.x ;

- zbusO0[i,k].x ;

=1 to (2 * numbus + 1) do
jl := zold[i,j] + (ztempl[i,j] / divisor)

A.27

.
r

A.28
vpos[il.magn :=1 - (zbusl[i,k].x / divisor) ;

for i :=1 to (numbus + 1) do
vneg[i].magn := zold[i,k] / divisor ;

for i :=1 to numbus do
vzero[i].magn := 2zold[numbus + i+ 1, k] / divisor ;

{ all results can be written }

writeln (outfile,
1 **q:

writeln (outfile,
b * RESULTS FOR SINGLE LINE TO GROUND FAULT *').

writeln (outfile,

' kkkkdkhkkkhkkkkkkkdtdthkhkhhkkhkhkhkhkhkkhkhkhkkkthkhthhkkkhhkkkxk !);
writeln (outfile);
writeln (outfile, ' faulted bus is : '",k:4);

writeln (outfile);

writeln (outfile);

{*** correction of values for negative sequence ***%xk%%}
for i := 1 to numbus do

vneg[i].magn := vneg[i].magn - wvneg[numbus + 1].magn ;

{ working now on the angles for the voltages }
for i := 1 to numbus do

begin

vpos[i].angle := 0.0 ;

vneg[i].angle := 180.0;

vzero[i]l.angle := 180.0;

end;

{ corrections for the angles }

for i := 1 to numbus do

begin

vposii].angle := vpos[il.angle + (shift[i] * 30.0)
vneg[il.angle := vneg[il.angle - (shift[i] * 30.0)
end;

~ =

{ writing results }

volwrite (vpos, vneg, vzero, numbus);

end; { procedure slgfault }

A.29

{**t*****}

[PROCEDURE FOR THREE PHASE FAULT ek ok k)
{*i***********t**}

procedure fault30 (zbusl : matrix; numbus,
faultbus: integer ;
shift : class;
var vpos, vneg, vzero : volt);

i, k : integer;

k := faultbus ; { clue for knowing fault bus }

for i := 1 to numbus do
begin

vpos[i].magn :=1 - (zbusl[i,k].x / zbusl[k,k].x) :
vneg[i].magn := 0.0 ;

vzero[i].magn := 0.0 ;

vpos[i].angle := shift[i] * 30.0 ;

vneg[i]l.angle := 0.0 ;

vzero[il.angle := 0.0 ;

end;
{ writing results for 30 fault . voltages }

writeln(outfile,'***xkkdkkkthhhhhhhhhrehhkkh ko khhkkhxl),

writeln(outfile,
' * RESULTS FOR THREE PHASE FAULT * ');

writeln(outfile,

! khkkhkhkkhkkkkhkhkkkkhkhkhkkkhkhkhkhkhkhkdkhkkkhhkkkhkhkkkkdk |);
writeln(outfile);
writeln(outfile, ' faulted bus is : '",k:4);

writeln (outfile);
writeln (outfile);
volwrite (vpos, vneg, vzero, numbus);:

end; { procedure for fault 30 }

A.30

{**************************************t****************}

{ PROCEDURE FOR DOUBLE LINE FAULT }
{Fhkkkkkhkhhkhhhhhhhkhhhhhhhhhhhkhhkhhkhrhhkhhhhhhkhkrkhkh®]

procedure fault2l (zbusl, zbus2 : matrix ;
numbus, faultbus : integer;
shift : class ;
var vpos, vneg, Vzero : volt) ;
var
i,k : integer

e we

divisor : real

begin
k := faultbus ; { faulted bus }
divisor := zbusl[k,k].x + zbus2[k,k]l.x ;

{ assignning magnitudes for the voltages }
for i := 1 to numbus do

begin

vpos[i].magn := 1 - (zbusl[i,k].x / divisor) ;
vneg[i] .magn := zbus2[i,k].x / divisor ;
vzero[i].magn := 0.0 ;

end;

{ now working on the angles for the voltages }
for i := 1 to numbus do
begin
vpos[i].angle := 0.0;
vneg[i].angle := 0.0;
vzerof[i].angle := 0.0;
end;

{ corrections for the angles }
for i := 1 to numbus do

begin

vpos[i].angle := vpos[i].angle + (shift[i] * 30);
vneg[i].angle := vneg[i].angle - (shift([i] * 30);
end;

{ writing results for double line fault }
wrlteln ({ outfile,
*************t***************************t*****l):

writeln (outfile,
y * RESULTS FOR DOUBLE LINE FAULT *!'):
wrlteln ({ outfile,
********************************t*t************1)
writeln (outfile):
writeln (outfile, ' faulted bus is : ',k:4);

A.31
writeln (outfile);
writeln (outfile);
volwrite (vpos, vneg, vzero, numbus);

end; { end procedure for double line fault }

A.32

{***}

{ PROCEDURE FOR DOUBLE LINE TO GROUND
R T e e T I 2 e L

procedure fault2lg (zbusl, 2zbus2, 2zbus0 : matrix ;
numbus, faultbus : integer;
shift : class ;

var vpos, vneg, Vzero : volt) ;

var

zold, ztemp : compose;

i, 3,k : integer;

divisor : real s

begin { begin of procedure double line to ground }

k := faultbus;

{ initialize matrix that put together negative
and zero sequence }
for i =1 to (2 * numbus) do
for j :=1 to (2 * numbus) do
zold[i,j] := 0.0 ;

{ introducing zbus2 1}

for i := 1 to numbus do
for j :=1 to numbus do
zold[i,j] := zbus2[i,jl.x ;

{ introducing zbus0 }
for i := 1 to numbus do
for j := 1 to numbus do
zold[numbus + i, numbus + j] := zbusO[i,j].x ;

{ now we need zold - (zold * x * xt * zold / divisor) }
{ working with ztemp = (zold * x * xt * zo0ld) }

for i := 1 to numbus do
for j := 1 to numbus do
ztemp[i,j] := zbus2[i,k].x * 2zbus2[k,]jl.x :

{now rows from lto numbus,columns from numb + 1 to 2 * numb}
for i:= 1 to numbus do
for j := 1 to numbus do
ztemp[i, numbus + j] := - zbus2[i,k].x * zbus0[k,]j].x;

{now rows from numbus + 1 to 2 numbus,columns 1 to numbus}
for i := 1 to numbus do

A.33

for j := 1 to numbus do
ztemp|[numbus + i, j] := - zbusO[i,k].x * zbus2[k,]j].x;

{ now rows and columns from numbus + 1 to 2 numbus }
for i := 1 to numbus do
for j := 1 to numbus do
ztemp[numbus + i,numbus + j] :=
zbusO[i,k].x * zbusO[k,j].x ;

{ now zold - ztemp / divisor }
divisor := zbus2[k,k].x + zbusO[k,k]l.x ;
fori :=1to (2 * numbus)} do
for j :=1 to (2 * numbus) do
zold[i,j] := zold[i,j] - (ztemp[i,j] / divisor) ;

{ we have completed the union of zbus2 and zbus0 }
{ now put thiswith zbusl and calculate the voltages }
divisor := zbusl[k,k].x + zold[k,k] :

{ solution for doble line to ground is following }
for i := 1 to numbus do

begin
vpos[i].magn
vneg[i].magn
vzero[i].magn
vpos[i].angle
vneg[i].angle
vzero[i].angle :
end;

(13
"

l - (zbusl[i,k].x / divisor) ;

zold[i,k] / divisor ;

zold|[numbus + i, k] / divisor ;
shift([i] * 30 ;

- ghift[i] * 30 ;

0.0;

e % L. e

{ writing results for double line to ground fault }

writeln(outfile,
v **l):

writeln(outfile,
! * RESULTS FOR DOUBLE LINE TO GROUND FAULT *1) .

writeln(outfile,
L] ****************************it************i*********l):

writeln(outfile);

writeln(outfile):

writeln(outfile,’ faulted bus is : ',k:4);
writeln { outfile);

writeln(outfile);

volwrite (vpos, vneg, vzero, numbus):

end; { procedure doble line to ground fault }

A.34

{ i**}

{ *okk MAIN PROGRAM kkk k)
{**}

begin { main program }

writeln (' Enter the name of your input file ');
readln (inproof);
writeln:

writeln (' Enter the name of your output file ');
readln (outproof);
writeln;

assign (infile, inproof);
assign (outfile, outproof);
reset (infile);

rewrite (outfile);

getdata (positive,negative,zero , numbus,total, gener,
lines, transf,shift);

writeln (' positive sequence admittance');
formzbus (positive, numbus, total, zbusl);

writeln (' negative sequence admittance');
formzbus (negative, numbus, total, zbus2);

writeln (' zero sequence admittance');
formzbus (zero, numbus, total, zbus0);

networks (zbusl, zbus2, zbus0, numbus);

writeln;

response := true ;
while response do
begin

writeln (' Enter the bus number to be faulted ');
readln(faultbus);

{now change shift of all buses
according to that of faultbus}
for i := 1 to numbus do
shift[i] := shift[i] - shift[faultbus] ;

A.35

{****** THREE PHASE FAULT *********t***********}

writeln(' Do you want a three phase fault ? : ¥ / N"');
readln (answer);

if (answer = 'Y') or (answer = 'y') then

begin

fault30 (zbusl, numbus, faultbus, shift,
vpos, vneg, vzero);

ftype := 2 ; { this means fault is 30 }

segcurr (vpos, vneg, vzero, positive, negative, zero,
gener, lines, transf,numbus, ftype):

writeln ('three phase fault was completed ');
writeln;

end;

{******** DOU‘BLE LINE FAuLT ********i*************}
writeln (' Do you want a two line fault ? : Y/ N ') ;
readln (answer);

if (answer = 'Y') or (answer = 'y') then

begin

fault2l (zbusl, zbus2, numbus, faultbus,shift,
vpos, vneg, vzero);

ftype :=3 ; { this means fault is 21 }

segcurr (vpos, vneg, vzero, positive, negative, zero,
gener, lines, transf,numbus, ftype);

writeln ('double line fault was done ');
writeln ;

end;
{*****%x DOUBLE LINE TO GROUND FAULT AEEIEIRERERKIRR

write (' Do you want a two line to ground fault 2?2 ');
writeln (' : Y/ N');
readln (answer);

if (answer = 'Y') or (answer = 'y') then

A.36

begin

fault2lg (zbusl, zbus2, zbus0O, numbus, faultbus, shift,
vpos, vneg, vzero);

ftype := 4 ; { means fault is 21qg }

seqcurr (vpos, vneg, vzero, positive, negative, zero,
gener, lines, transf,numbus, ftype);

writeln (' double line ground fault was done ');
writeln ;

end:;

{rxx SINGLE LINE TO GROUND FAULT FARKEFRRAKXRRANR]

write(' Do you want a single line to ground fault ?');
writeln(' t Y/ N');
readln (answer) ;

if (answer = 'Y') or (answer = 'y') then
begin

slgfault (zbusl, zbus2, zbus0, numbus, faultbus, shift,
vpos, vneg, vzero);

ftype := 1; { this mean fault is single line to ground }

seqcurr (vpos, vneg, vzero, positive, negative, zero,
gener, lines, transf,numbus, ftype);

writeln (' single line to ground fault was done ');
writeln;

end;

{***}

write (outfile,
'hkkxxkkk*x END ***%k%k POR **kkkkkkkkkkdkd PAULTS **%%x!),

writeln (outfile,

Thkkkhkikhkkhx OF khkkkkhkkkk% BUS *kk%k ',faultbus:3,' ***');
writeln (outfile);
writeln (outfile });
writeln (outfile);
writeln (outfile ,
l*************************t**************************l);
writeln (outfile);
writeln (outfile);
writeln (outfile);

A.37

write (' Do you want to repeat the
faults for another bus 2');

writeln(' : Y / N ");
readln (answer);

if (answer = 'Y'") or (answer = 'y') then
response := true

else response := false ;
end; { for repeating the faults }

{******************* dkhkkkhkkhkhkhkhkhkkhkhkhkkkkkkkkk* *******}

close (infile);
close (outfile);

END. { END OF MAIN PROGRAM }

A EFFICIENT ALGORITHM USING HOUSEHOLDER'S FORMULAS
FOR THE SOLUTION OF FAULTED POWER SYSTEMS

by

ARMANDO ALTAMIRANO CHAVEZ

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KEANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

AN EFFICIENT ALGORITHM USING HOUSEHOLDER'S FORMULAS
FOR THE SOLUTION OF FAULTED POWER SYSTEMS

ABSTRACT

An efficient algorithm for solving faulted power
systems using the Householder's formulas is presented.
The faults under consideration are three phase, single line
to ground, double line, and double line to ground fault,
The formulas for open and short circuit between two nodes
are used to simulate connection among the three sequence
networks in order to get voltages and currents in the
favulted power system. A computer program based on the
developed method is written in TURBO PASCAL for running on a-
personal computer, Results are found to be in an excellent
agreement with those computed using other algorithms, The
limitations of the algorithm are discussed. Suggestions

and recomendations for enhancing the method are pointed out.

