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Local fluctuations in solution mixtures

Elizabeth A. Ploetz and Paul E. Smith?

Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
(Received 9 June 2011; accepted 1 July 2011; published online 27 July 2011)

An extension of the traditional Kirkwood-Buff (KB) theory of solutions is outlined which provides
additional fluctuating quantities that can be used to characterize and probe the behavior of solution
mixtures. Particle-energy and energy-energy fluctuations for local regions of any multicomponent
solution are expressed in terms of experimentally obtainable quantities, thereby supplementing the
usual particle-particle fluctuations provided by the established KB inversion approach. The expres-
sions are then used to analyze experimental data for pure water over a range of temperatures and
pressures, a variety of pure liquids, and three binary solution mixtures — methanol and water, ben-
zene and methanol, and aqueous sodium chloride. In addition to providing information on local
properties of solutions it is argued that the particle-energy and energy-energy fluctuations can also
be used to test and refine solute and solvent force fields for use in computer simulation studies.
© 2011 American Institute of Physics. [doi:10.1063/1.3615718]

INTRODUCTION

Kirkwood-Buff (KB) theory, more generally known as
the Fluctuation Theory (FT) of solutions, has provided
a wealth of data concerning the properties of solution
mixtures.'™ Specific examples include studies of preferen-
tial solvation in binary solutions,»®® transfer free energies
and the solubility of solutes,”!! surface tension and free en-
ergy changes due to the addition of additives,'>'3 cosolvent
effects on both small solutes and proteins,'*"'® and the inves-
tigation of protein-protein interactions.'” The approach has
also been used as a basis for the generation of improved force
fields for computer simulation.??! In all these examples KB
theory provides a rigorous statistical mechanical formulism
used to provide a link between thermodynamic data concern-
ing the system of interest, and integrals over the underlying
molecular distributions corresponding to local regions within
the system.

The primary quantities of interest which help to char-
acterize and quantify the above effects are the KB integrals
(KBIs) between the different species present in solution. The
KBIs (Gj’s) can be expressed in terms of either radial distri-
bution functions (g;;) between species i and j, or as particle-
particle fluctuations corresponding to local regions within the
system of interest,’

o0
Gij=Gj;i=4n /[g,-j(r) — 11r2%dr
0

(NDN}) (M)
where §; is the Kroenecker delta function, and SN; = N;
— (NV;) is the deviation in the number of i particles from
the average number of i particles in the fixed volume (V) for
each member of the grand canonical ensemble. Combinations
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of the KBIs and number densities then provide expressions
for thermodynamic properties — such as chemical potential
derivatives, partial molar volumes, and isothermal compress-
ibilities — in essentially any ensemble with the same average
properties as the open system. Alternatively, given an appro-
priate set of experimental data as a function of composition
one can invert the whole procedure and extract the experi-
mental KBIs,? thereby providing information concerning the
local distribution of species in solution. KB theory is particu-
larly attractive in this regard as the expressions are exact, they
can be applied to any stable solution mixture involving any
type of molecule at any composition, and the resulting KBIs
can be obtained relatively easily from computer simulation
data.

The vast majority of experimental data analyzed by the
KB inversion procedure involve binary or ternary systems at
constant pressure (P) and temperature (7) where the results
are presented in terms of local particle-particle correlations.
Far less attention has been paid to the study of local particle-
energy and energy-energy fluctuations in mixtures which
naturally arise for thermodynamic temperature derivatives
such as the thermal expansion and constant pressure (or
volume) heat capacities. The main studies of relevance to the
present work include the development of expressions for the
partial molar energies and constant volume heat capacity in
terms of molecular distribution functions provided by Buff
and Brout,”® and a series of papers by Debenedetti outlin-
ing the calculation of partial molar energies (and thereby
enthalpies) from computer simulation.?*2® However, to our
knowledge, the corresponding local fluctuating quantities for
mixtures have not been extracted from available experimental
data. This is the major aim of this study.

In the following sections we outline the theory behind a
general fluctuation description of solutions. The current ap-
proach is somewhat different from previous approaches,?®?*
but is used here as it provides a simple formulation of the
inversion process {experimental data} — {fluctuating prop-
erties} for multicomponent systems. The overall approach
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is then illustrated using available experimental data for a
variety of solutions and solution mixtures, including salt
solutions.

THEORY

The basic aim is to develop expressions for properties
of local regions within solution mixtures by reference to the
equations of the grand canonical ensemble. Hence, the an-
gular brackets used here signify an ensemble average in the
grand canonical ensemble unless stated otherwise. The re-
sulting expressions, involving fluctuations in the energy and
number of particles, can then be related to local (uVT) re-
gions within systems corresponding to a variety of different
ensembles possessing the same average properties, although
the NPT ensemble will be the one of primary concern.

In our previous and subsequent discussions we continu-
ally refer to the concept of local fluctuations within the so-
lution mixture of interest. Hence, it is important to be clear
exactly what is meant by the term “local”. Clearly, Eq. (1)
does not appear to represent a property characterizing a lo-
cal region in the solution. However, the integration to infin-
ity actually represents the extent of the open system. In the
case of closed systems, one can consider finite microscopic
regions within the solution to represent the open system of
interest, the extent of which is dictated by the requirement
that all g;; are unity at large distances. The fluctuations ob-
served within this microscopic region are the “local” fluctua-
tions of interest here. This is illustrated in Fig. 1. It should be
noted, however, that the extent of this microscopic region is
generally unknown. For the majority of solutions under ambi-
ent conditions the local region may merely extend over a few
nanometers. Alternatively, for solutions approaching a criti-
cal point the extent of the region will become macroscopic in
size and therefore may no longer be considered as “local”. As
the majority of solutions fall into the former category, and to
help distinguish the present fluctuations from the bulk system
fluctuations, we have used “local” to describe the fluctuations
provided by the current analysis.

Bulk:
NIPITI
H<V>,<E>

FIG. 1. Local fluctuations in solution mixtures. The local region of interest
is surrounded by the macroscopic bulk solution and therefore has the same
intensive thermodynamic parameters (pressure, temperature, molar energy,
molar volume, number densities, chemical potentials, etc.) as the bulk solu-
tion. Fluctuations in the number of particles and energy occur within the fixed
local volume, which can be considered to be under the thermodynamic con-
straints associated with the grand canonical («VT) ensemble. The extent of
the local region will depend on the pressure, temperature, composition, and
the nature of the solution components. However, the exact size of this region
is irrelevant as long as it is large enough that the region displays the same
intensive properties as the bulk solution — typically 3-5 solvation shells.

J. Chem. Phys. 135, 044506 (2011)

In the grand canonical ensemble the average number of i
molecules ((V;)) is a function of the set of chemical potentials
({Bu}), the volume, and the temperature (8 = 1/RT), where
R is the Gas constant. Hence, one can write the following dif-
ferential for these independent variables,

9 (N;) d(N;)
d(N;) = <—> dv + <—> dp
IV Jipurp B Jipurv
9(N;)
+ ( > dpBu;, (2)
; B/ gy v.p !

where the summation is over all j components in the mix-
ture and the prime in the subscript indicates that all Bu ex-
cept for the one of interest are held constant. The above ther-
modynamic derivatives can be related to their corresponding
fluctuating quantities using the equations for a classical grand
canonical ensemble,?’

PV = RTInE({Bu), V, B),
d(PV)=SdT + PdV + Y Nidu,,

E(Buk. V.B)= Y M NO(NYLV.B. ()

{N}=0

where Q is the classical canonical partition function provided
by

1(gm™\"™ too
O(IN). V. )= Hm(ﬁ) [ e iapiaa),

“

and {dp} and {dq} are the generalized momenta and coordi-
nates associated with the molecules, respectively. The internal
partition function (q}m) of molecule i contains the contribution
from all the intramolecular degrees of freedom, which are as-
sumed to be decoupled from the intermolecular degrees of
freedom. Using the above equations one can show that the re-

quired derivatives are given by the following expressions:>*2*
(a<1v,-)> = (SN;SN;) = (N;)(8:; + Nij)
IBIG) gy .v.p o Y o
(o) o,
W Jipmps V
a(N;
(u> = —(§N;SE). 5)
B/ ipuv

Here, E is the total internal energy for each member of the
ensemble and includes any intramolecular contributions from
the internal partition function. Hence, combining Eqgs. (2) and
(5) one finds that,

dinp; = —F,dp + Y (8 + Nipjd Bu;, (©6)
J
for any species in any multicomponent mixture and where we
have defined the energy-number fluctuations by
(6N;OE)

Fui= Ny (N
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The F),’s are intensive quantities that represent correlations
between the energy and the number of i particles in the region
of interest. The N;; = p;G;; quantities can be considered as ei-
ther particle number fluctuations for the same local region, or
as an excess coordination number, i.e., the change in the num-
ber of j particles resulting from the introduction of an i particle
to the reference volume compared to the number of j particles
observed in the same volume of the bulk solution. If the tem-
perature is kept constant the above set of equations reduce to
a series of simultaneous equations which, after taking the ap-
propriate derivatives, generate the expressions obtained from
the traditional KB theory approach for solution mixtures.?
A more convenient form of Eq. (6) for the analysis of ex-
perimental data can be obtained by defining an excess internal
energy (&) for each member of the ensemble such that,

e=E— ) NEY, ®)
J

where E;’ is a convenient reference energy per particle. For
completely miscible mixtures it is natural to take this refer-
ence energy as the average molar internal energy in the pure
liquid j at the temperature and average pressure of interest.
However, for solid solutes it may be more convenient to use
the internal energy of the solute at infinite dilution in the pri-
mary solvent. In either case one can write,

dinp; = —FdB+ Y (8 + Nij)(dBuj — ESdB), (9
J

where
(6N;d¢)

(Ni)
Equation (9) represents a series of source equations which
can be used to obtain expressions for various properties of so-
lution mixtures in terms of number-number, number-energy,
and energy-energy correlations characterizing local micro-
scopic regions within the solution of interest.

Taking derivatives with respect to 7 with P and {N} con-

stant one obtains the following expression:

> oo f0InV
RT?ap = RT
P.{N}

(10)

i

oT
= —F+) G+ Np(H; - E9), (D)
J

where H; is the partial molar enthalpy of species j and ap is
the thermal expansion coefficient. Some rearrangement pro-
vides an expression (inversion formula) for each F; in terms
of observable experimental quantities,

F; = PRTky — RT?ap + Z (8ij + Nij) US™, (12)
J

and « 7 is the isothermal compressibility provided by Eq. (9),

dlnV N
RTKT:—RT< n > = i+ Nijp)V;.
T.{N} j

aP

(13)

with V; indicating the partial molar volume of j, and we have
used the fact that H; = U; + PV; and U;* = U; — E}. The
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required excess partial molar energies U¢* can be obtained
from the relevant experimental enthalpy of mixing and density
data. The contributions to F; and Uj‘?x from the intramolecular
degrees of freedom will cancel in Eq. (12), even when the
intramolecular energy levels corresponding to the mixture are
different from those in the reference states.

Before leaving this section we note that the thermal ex-
pansion coefficient can also be expressed in terms of all
the F’s by multiplying Eq. (12) by the volume fraction (¢;
= p; V;), summing over all i, and then using Eq. (13) to pro-
vide,

RTKT

RTap = (U + PVa) = > $iFi, (14)

m

where U, is the excess molar internal energy of mixing and
Vin is the molar volume. The above expression will be used
later. It also provides a route to the excess energy of mix-
ing from a single simulation when the thermal expansion is
known, although this issue will not be considered here.

The constant pressure heat capacity can be used to pro-
vide information on the local energy fluctuations. Given the
thermodynamic relationship,

dH U
Cp= (—) = (-) + PVap, (15)
0T ) oy \OT ) p i)

and the derivative of the average energy obtained by treating
U = (E) as a function of the chemical potentials, volume and
B in a similar manner to before (see Eq. (2)), and to the ap-
proach of Buff and Brout,? one finds,

AU, (BE)?) .
RT*( —=2) = RT?U, - iFy, i H;.
(8T ),, art Ty 2N

16)

Manipulation of Eq. (16) indicates that the local excess en-
ergy fluctuations can be written in terms of experimentally
obtainable properties as

((8e)%)
(N)

+ Y xi(F = RT?ap) (U + PV, (17)

l

Ay = = RT*Cp,p,

where the F’s are given by Eq. (12). The value of 824, ob-
tained from the above expression includes contributions of 1/2
from each molecular translational degree of freedom, and ad-
ditional contributions of 1/2 from each classical intramolecu-
lar potential and kinetic quadratic degree of freedom.
Equations (12) and (17) contribute to a general the-
ory of local solution behavior in terms of experimentally
observable properties. Alternatively, the calculation of the
number-number, energy-number, and energy-energy fluctu-
ations, from theory or computer simulation, provides a
route to a series of experimental properties. For com-
pletion we include the corresponding expression obtained
for the constant volume heat capacity previously presented
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by Buff and Brout,?’

A, = RTZCV,m + Z Fi(in,'ex - ¢iU;lx)

1

2
Vi
S o (qu,ﬂ) : (18)

The two previous expressions can be shown to sat-
isfy the known thermodynamic relationship, Cp,, — Cy
= T\/ma% /Kt after some algebra and the use of Eq. (14).

Using Egs. (12) and (17) we have investigated the local
fluctuations for a variety of solutions as obtained from the rel-
evant experimental data. These fluctuations can be used to ei-
ther characterize the properties of solutions, as demonstrated
by the traditional KB approach, to help rationalize changes in
properties such as the compressibility, thermal expansion, and
heat capacities, or as target data for the testing and evaluation
of force fields developed for molecular simulation.

METHODS

Pure water was analyzed at six pressures (1, 200, 400,
600, 800, and 1000 bar) over the subset of temperatures
between 273 and 1073 K for which a given P, T point was
in the liquid region of the water phase diagram.?® Experi-
mental data were analyzed for several n-alcohols (methanol
through decanol),>*3¢ linear alkanes (hexane through
tetradecane),’ 3! 1-alkenes (hexene through octene),*3’
alkylamines (propy-, butyl-, hexyl-, and octylamine, diethy-
lamine through dibutylamine, and triethylamine through
tributylamine),42 and aromatics (benzene and methylbenzene
through propylbenzene).’”>***> For all liquids, excluding
pure water, the 7 and P were fixed at 298 K and 1 bar,
respectively. The molar volume of each liquid was calculated
from the molecular weights and densities.®

The general outline for the analysis of solution mixtures
is provided in Fig. 2. We have followed a sequential approach
whereby the usual KB analysis is performed first to obtain the
KBIs, these data are then combined with the thermal expan-
sion and excess partial molar energy data to provide the F’s,
and finally the heat capacity data are used to obtain A, val-
ues. Experimental data for the methanol + water system at a
T of 298 K and P of 1 bar was analyzed over the full com-
position range. The Redlich-Kister power series equation was
used to fit the density data (four parameters),*® excess Gibbs
energy (G®) data (three parameters),*”*8 enthalpy of mix-
ing (H*) data (four parameters),*’ ap data (six parameters),>
and Cp data (four parameters).>’ « was approximated to dis-
play ideal behavior. Data for the benzene + methanol system
at 308 K and 1 bar were analyzed over the full composition
range. G** was fit using the Wilson equation and the enthalpy
of mixing was fit using the Redlich-Kister power series equa-
tion with six parameters.’'»32 All other properties were ap-
proximated to be ideal.>*~° Aqueous sodium chloride data at
298 K and 1 bar were studied up to 4m NaCl due to a lack of
ap data at higher salt concentrations. The solution V,, was fit
to a cubic polynomial.’” Experimental activity data were fit to
the form Inys = —(A/my)/(1 + B /mg) —In(1 — Cmy), in

J. Chem. Phys. 135, 044506 (2011)

FIG. 2. The general scheme for obtaining local fluctuating properties from
the available experimental data. Here d is the solution mass density and the
definitions of the other symbols are provided in the main text.

which my is the salt molality, y 4 is the molal salt activity coef-
ficient, and the other symbols are fitting constants.'®> Poly-
nomials were used to model the enthalpy of mixing (cubic),>
ap (quadratic),’ Cp (quartic),’’! and k7 (quadratic).®® Af-
ter a fit to the data for each solution was obtained, the first
derivatives of V,, were determined to provide the partial mo-
lar volumes for use in the calculation of the KBIs and F’s,
while second derivatives of G** were used for use in the cal-
culation of the KBIs, and first derivatives of the enthalpy of
mixing were taken to obtain H*. From Hf*, the excess par-
tial molar energies of mixing were calculated according to
Us* = H™ — PV for use in the calculation of the F’s. The
solution ap, Cp, and k1 were used directly in the KBI, F;, and
A,, calculations.

RESULTS
One component solutions

The fluctuation quantities for a one component fluid (1)
are provided by the following equations where the superscript
(o) denotes the pure liquid values,

FP = PRTky — RT?a$,
2 2
Ay, = RT?C},, + PVy(PRTk) —2RT?a)), (19)

and are in agreement with previous literature values.®>% We
have evaluated the corresponding local fluctuating properties
for water over a range of temperatures and pressures. The
results are shown in Fig. 3. As expected the curves peak in
the vicinity of the critical temperature (647 K) and critical
pressure (220 bars).** The BF curves are dominated by the
thermal expansion term. This also results in all the pressure
curves adopting the same value of BF = —0.06 at 292 K, in
a similar manner to the raw thermal expansion data.®>® The
fact that dF/dP = 0O at this temperature implies a relationship
between the higher local fluctuating moments of the liquid.
These moments can be determined,®’ but this is beyond the
scope of the present work.

An analysis of the data concerning simple pure organic
liquids at 298 K and 1 bar is presented in Fig. 4. All
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FIG. 3. Local fluctuating properties for pure liquid water over a range of T
and P.

liquids studied here displayed a systematic decrease in the
number fluctuations (compressibility),?> and a corresponding
increase in F and A,, values, as the number of carbons is in-
creased. The energy fluctuations display essentially a linear
dependence on the number of carbons, which is to be ex-
pected from the relationships observed for the heat capacities
of hydrocarbons,®®® and the dominating contribution from
Cp,y at this temperature and pressure.

0.08 @—® alcohol
B ®—® alkane h
0.06 — ®—® alkene —
= - ®—@ monoalkylamine
Z 0.04 — dialkylamine
.t L trialkylamine
0.02 — ®—® aromatic |
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—
~

FIG. 4. Local fluctuating properties of pure liquids at 298 K and 1 bar. The
number of carbons for the aromatic molecules was taken as the total number
of carbons including the ring atoms, while the number of carbons for the
di- and trialkyl amines was taken as the number of carbons in a single alkyl
chain.
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FIG. 5. A fluctuation analysis of water (1) and methanol (2) mixtures at 298
K and 1 bar. The solid lines correspond to the experimental data, while the
dotted lines represent the SI solution values.

Binary solutions

One natural application of the above theory is to deepen
our understanding of the local microstructure of binary mix-
tures. For a binary mixture of a solvent (1) and solute (2) one
finds the following expressions apply:

_ J%) _ a2
r2=p (31nm2>T,P =P <81nx2>T,P 7

V.
1+ Nip = p1RT«kr -i-,01¢2 2
M22
¢2
1+ Ny = pRTkr + —-,
M22
d12
le = ,OzRTKT ——
M22

Fi = U + PRTkr — RT?ap + Ny U™ + NpUS™,
Aw = RT*Cpy — RT?ap (U + PVy) + x1 FU{*
+ X2 FU5" + PV (@1 Fi + o ), (20)

where m; and x; are the molality and mole fraction of i, re-
spectively. The first four expressions correspond to the tradi-
tional KB inversion approach. The N’s and F’s can be elimi-
nated from the last two expressions if desired, but we retain
them here for simplicity. Figures 5-7 display the results from
a fluctuation analysis of three binary solutions. It is known
that the KBIs for solutions under ambient conditions are most
sensitive to the solution activities, relatively insensitive the
partial molar volumes, and essentially unaffected by the pre-
cise value of the isothermal compressibility.® The F values
presented here were sensitive to the partial molar enthalpies
(energies), with a significant but relatively constant contribu-
tion from the thermal expansion coefficient, and an essentially
negligible contribution from the compressibility term.
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FIG. 6. A fluctuation analysis of methanol (1) and benzene (2) mixtures at
308 K and 1 bar. The solid lines correspond to the experimental data, while
the dotted lines represent the SI solution values.

The results from an analysis of methanol and water mix-
tures at 298 K and 1 bar are presented in Fig. 5. A KB analysis
of this system has already been presented.®’? At this temper-
ature and pressure the experimentally extracted F’s closely
mirror the partial molar excess enthalpies (data not shown).
The F’s and A,, functions display nontrivial variations with
mole fraction. Hence, they provide insights into the behav-
ior of solution mixtures which can be used to characterize the
solution in terms of local fluctuating properties. However, to
obtain a deeper insight into these variations with composition

2
—— Water-Water
B — NaCl-NaCl 7|
- 1F NaCl-Water _|
Z ’ 
-'—:D B 7
[%=] 0= —|

1‘nNaC]

FIG. 7. A fluctuation analysis of water (1) and sodium chloride (2) mixtures
at 298 K and 1 bar. The solid lines correspond to the experimental data using
the crystal reference state, while the dashed lines correspond to the experi-
mental data using the infinitely dilute salt reference state.

J. Chem. Phys. 135, 044506 (2011)

one probably requires a similar analysis of computer simula-
tion data.

In contrast to methanol and water mixtures an analysis
of methanol and benzene solutions at 308 K and 1 bar indi-
cates a substantial degree of methanol self association at low
methanol compositions. This is illustrated in Fig. 6. The F’s
no longer closely mimic the partial molar enthalpies, as was
the case for methanol and water, primarily due to the rela-
tively large values of the KBIs (see Eq. (20)). The energy-
energy fluctuations are essentially the same as the ideal values
as, at these temperatures and pressures, the A, term is domi-
nated by the heat capacity contribution and this was taken to
be ideal in nature. The large values of F for methanol at low
methanol mole fractions coincides with the increased self as-
sociation of methanol molecules (increase in N,) albeit at a
lower benzene mole fraction for the latter.?!

Many potential applications involve systems where one
component (2) is at infinite dilution (c0), as is the case with
many biological problems for example. Under these condi-
tions F is given by Eq. (19) and F; by the expression,

F5° = PRTky — RT?a% + U5™. @21

Hence, there is a direct link between F, and the excess partial
molar energy at infinite dilution, i.e., between a local fluctuat-
ing property and a thermodynamic derivative of the solution.
The value of F; at infinite dilution expressed in terms of fluc-
tuations reduces to

Fy° = (e)2 — (e)o = (E)2 — (N1)2EY — E3, (22)

where the subscripts 2 and o refer to ensemble averages ob-
tained for regions containing the solute molecule, or for re-
gions in the pure solvent, respectively. For classical pairwise
additive potentials this can be expressed as

F° =(Exn+ Eyn + En), — (N\E} — E3, (23)

where E»; is the intramolecular (potential and kinetic) contri-
bution to the energy from the solute, E,; is the solute-solvent
potential energy, and E; is the solvent-solvent potential and
kinetic energy. The E7 term represents the total energy that
the same number of local solvent molecules would have in
bulk solution. Hence, the solute F has been reduced to a se-
ries of simple ensemble averages for a region in the vicinity
of the solute under these conditions. Furthermore, these aver-
ages quantify the energy of the solute and the interaction with
the solvent, and how the solute perturbs the solvent-solvent
interactions from those observed in bulk solvent, all relative
to the solute reference energy.

Salt solutions

The study of electrolyte solutions by fluctuation the-
ory is slightly complicated by the electroneutrality con-
straints that are often invoked for these solutions.”! If we
consider a salt (M, X, ) which completely dissociates to
provide n, cations and n. anions, and therefore n to-
tal ions, one can relate fluctuations involving any indis-
tinguishable ion (/) to that of the cations and anions via
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the expressions,

ny\2 n_\2 nyn_
G][ = (7) G++ + <_) G__+ (G+7 + Ger)»

n n?

ny n_
Gn=Gy=—G+—G_y,
n n
Fr="tF +F, (24)
n

which were obtained from a simple substitution of N; = N,
+ N. into Eqgs. (1) and (10).”* Further imposing the elec-
troneutrality conditions,”! 7374

24 +24p+ G4 +2-p-G4- =0,

-+ Z+;0+G+7 +z_p-G__ = 0,

404G +2-0-G_1 =0,

4o Fy +z_p_F_ =0,

ny7Z4 + n_z_. = O, (25)

provides the following relationships:

1

Gip=—+G4+_,

L1
Gy =—+Gqq,

O+

1

_+G++— —+G__,
P+ —
Gn=G4 =Gy,
Fr=F, =F_, (26)

and indicates that there is only one unique (independent) so-
lute KBI and F value for a salt solution. Hence, in practice it is
often easier to treat the solution as a mixture of a solvent and
a collection of indistinguishable ions (2 = I) in which case the
following relationships should be used:

my =nmy; py=np;, nVh=7V,
dln _ _

pm =1+ 2% n0s =0, (27)
dlnms /1 p

in Eq. (20) to provide the required Gy, Gy, and F; values.
Here, the subscript s refers to the traditional salt concentra-
tion, volume, or partial molar excess energy, and y; = y 4 is
the mean molal ion activity coefficient.

The results from a fluctuation analysis of NaCl solutions
at 298 K and 1 bar are provided in Fig. 7. We have included
the results obtained from two different reference states for the
salt: namely, the salt crystal and an infinitely dilute solute. The
choice of reference state does not significantly affect the val-
ues of F for water or the energy-energy fluctuations, while the
ion F value is significantly shifted and displays a slightly dif-
ferent dependence on composition. The trend in the ion F with
composition is the same for both reference states and indicates
a decrease in the ion-energy correlation with increasing ion
concentration. The local energy-energy fluctuation displays a
similar decrease with salt concentration.

J. Chem. Phys. 135, 044506 (2011)

Ideal solutions

Ideal solutions represent interesting reference states for
comparison to real solutions. Symmetrical ideal (SI) solutions
are defined by the fact that u; = RT Inx; and 01.” = 0 for all
i species. The local fluctuations exhibited by symmetric ideal
solution mixtures involving any number of n, components are
then given by* 7>

ijl — RTK“TW -V — V]0 + Sn, Su. = Zpk(Vko)z,
k=1

Ff" = PRT«}" — RT?ay/,
ASF=RT*C}, + PV (PRTKy' — 2RT?a})),

ne

SI __ 0
Vm - 2 :xkvk ’
k=1
ne
S1 o
Kr = E ¢k’<r,k7
k=1

ne
SI o
Up = E drp 1,
k=1

ne

Cls;{m = ZkaOP,m,k' (28)
k=1

In this case the F values vary with composition, but are the
same for each component (as would be expected). The SI re-
sults have been included in Figs. 5 and 6 to help indicate de-
viations from ideal behavior.

Bulk system fluctuations

It is well known that fluctuations in the properties of bulk
systems can be related to various experimental properties. For
systems at constant { N}, pressure and temperature the experi-
mental properties are the compressibility, thermal expansion,
and constant pressure heat capacity. The appropriate relation-
ships can be obtained directly from the isothermal-isobaric
partition function,’®

(V) nypr = VRTkr,
(8VS(E + PV))ypr = VRT *ap,
((E+ PV)?)ypr = RT*Cp. (29)

These relationships are different from the ones presented here
as they represent fluctuations in the properties of bulk closed
systems and not local open regions within these systems. It is
interesting to note that the local fluctuation relationships (Eqs.
(13) and (14) and (17)) can be generated from the correspond-
ing bulk expressions by use of the transformations,

sV — —ZV,-(SN,» S(E+ PV)— SE — Zﬂi(SN,»,

(30)

followed by some algebra and a subsequent transformation of
E to € using Eq. (8).
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CONCLUSIONS

We have outlined a method for extracting information
concerning local energy-particle and energy-energy fluctua-
tions in solution mixtures from experimental data. The re-
sulting local fluctuations can be used to help characterize the
properties of solution mixtures in much the same way as the
traditional KB/FT approach. Another possible use of the ex-
perimentally derived fluctuations is for the evaluation and de-
velopment of accurate force fields for molecular simulation,
where the fluctuating quantities serve as additional experi-
mental data for the parametrization procedure.?*?! In addi-
tion, the same type of approach can be applied to understand
the effects of temperature on chemical equilibria in terms of
energy-particle and energy-energy fluctuations. Studies along
these lines will be published separately.®”-7”
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