AN IMPLEMENTATION OF THE GKS
TEXT PRIMITIVE

by
HENRY BRADLEY FOUT III
B.S.,B.A. Loyola College of Baltimore, 1974

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by:

ajo essgz_j;___'

Page i

LD

id | AL1202 L18779 |
Fg, | e]
[;é g ACKNOWLEDGEMENTS
By Lo

There where many individuals involved in the project %o
implement GKS at Kansas State University. All of them
should be recognized for their contributions. Mike Cavins,
our project leader, had the somewhat arduous job of melding
everyones work together. Mike deserves special thanks for
always finding the time to help. Also, Dr. William Hankley
for suggesting and sponsoring this project, which was the

first summer-on-campus group Masters project.

Aside from the pfoject and report, I feel it proper %o
mention a coﬁple special people. When I finish the summer
of 1984 I will have spent five summers at KSU in pursuit of
my Masters Degree in Computer Science. The five weeks each
summer are very intense, and at sometimes +the pressure
seemed overwhelming. There were two people who helped make
the summers memorable. They did everything possible to make
mine and the other students lives a little bit nicer. I am
referring to Mick and Mary Beth Cole. They worked hard +to
prepare for our arrival each summer, planned picnics and
other social events. 1In géﬁéral, they were always there to
help. Mick and Mary Beth treated us like family. So, to

Mick and Mary Beth from the bottom of my heart, thank you.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERENTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

Page ii
TABLE OF CONTENTS

ACKNOHLEGHEKTS..."..-...I"....'...‘...""..-... i
TABLE OP CONTENTSI....... OOOOOOO LR N IO BT I B IR B I B) ii
LIST 0? FIG’URESOCCOCOGOUt ------- e & 8 ® 2 8 8 8 3 0 P R e S SRS iv

1.0 SUHFXARY.'.'.'lD..I..‘..l...'..l..'ll'l....l.l.. 1

1.1 Definition and History of the Graphic

Kernel System...sse. T — e T
1.2 XKSU Implementation Project.cccecienno..s. 3
1.3 Report Overview..c.soveeecscevoanns crenas 4

2.0 GKS TEXT GRAPHICAL OUTPUT PRIMITIVE: A Tutorial
and Comparison.ssseees sesesrsnsnessssesnnonenne T

1 GeEnarAlisvassnvp e we uwe wm e ws . T

2 TEXT - an Output Primitive..cviecvcenennnn

3 TEXT Attributes...c.cvce.. 8 o0 e g 6 8 G W e 1
2281 GEOMBTRIC s .o wsmnwwewsiw v mowiamymsomms 7
2.5.2 NON GEOMETRIC.:veesnss B WA 5 6 6 R 1

2.4 Font and Precision......... cssteveenaase ee 2

2.
2.
2.

%.0 REVIEW OF THE CORE SYSTEM....ccvesennenncnns ies 35

3.1 General..... ¥ ¥ W W S W 8 R 33
2.2 TEXT as defined 1n CORE... e TItITITE

4.0 KSU IMPLEMENTATION OP TEXT.¢eercecncanss wamemen G0

4.1 General..cccesssssosssssesasnosse - G- 40
4.2 Data StructureS.cccesscesssssconcnssssses 42
4.3 TEXT User ProcedureS...ciceoseascnasccns . 44
4-4 Data Flow.uo ------ * 2 8 4 4 % 8 8 8 P RSB P e AR PE L) 47
4.5 Possible Enhancements....... - 52

Page iii

5.0 DISCUSSION OF IMPLEMENTATION CONCERNS...:..2.... 54
5.1 General'...."..'.'l..!.I..l..l.l.l.l.i.- 54
5.2 Decision to Bundle all Attributes........ 54
503 The TEXT Index ------- 8 8 5 008 8B PO RSO E RS 57
APPENDIX A - SOURCE CODE LISTINGS..eeecceease in e ae 59
APPERDIX B - CODE LEVEL DATA FLOW...eeeeesesvseacee. 60
LIST OF REFERENCESII..!..I..'l.'...l.'.il'.l'..'l.' 61

ABSTRACT

LIST OF FIGURES

- TEXT attributes'...tl.I.C'....I.'l..'.l.l..'.

Representation of geometric TEXT attributes..

Font description coordinate system......c.0..

Aspect Source Flags (ASF)eeeeesncrocncncanens

. Representation of non-geometric

TEXT attributes-l!-.loovu IIIIIII LI T B B B O R

KSU Data Flow for the TEXT Primitive..

Page iv

14
15
16
23

27

Page 1

1.0 SUMMARY

1.1 Definition and History of the Graphical Kernel System

The Graphical Kernel System (GKS) is currently a
proposal for sfandard by +the International Standards
Organization (ISO). GKS was developed by a subcommittee of
the German Institute for Standardization (DIN). It was
submitted to the ISO by DIN in November of 1979. The
following year, GKS became a proposal for standard in
Germany. In late 1984 GKS is expected to be accepted as the

first international graphical standard.

The Gfaphical Kernel System is an interface between
graphics application programs and configurations of
graphical input and output devices. GKS is a set of
functions callable by application programs that generate two
dimensional pictures on line or raster graphic devices [11].
The significance of GKS is that it hides the peculiarities
of the graphics hardware from the application program, thus
allowing for portability of both the application program and

the programmer.

The work which eventually lead to the development of

GKS began in 1974 when ACM SIGGRAPH established the Graphics

Page 2

Standard Planning Committee (GSPC) [9]. This committee was
given the charter of developing a set of standard graphics
primitives to allow creation and viewing transformations of
2D and 3D line drawings. The main goal of this
standardization work was to obtain machine and device
independence to protect the software investment of the user.
The work of the GSPC resulted in the CORE graphics system.
The German Standards Institute, DIN, began the design of a
Core graphics system which became known as GES. Both
systems were designed with the same goal in mind, and in
many wayskare very similar. GKS 1is being pursued as an

international standard mainly due to the fact that it was

presented to the ISO before CORE [9].

EFxtensions and modifications to the basic GKS package
are already being planned by standards organizations and
user groups. In order to satisfy the needs of the more
sophisticated CAD/CAM wusers, the X3H31 subcommittee of the
American National Standards Institute (ANSI) is working on a
richer GKS system. Three dimensional graphics capabilities
is one of their planned extensions. The X3H31's "rich"

systezr is not expected to reach the final draft stage until

1985 [2].

Page 3

Concurrent with the efforts to standardize GKS there is
work being done to develop a standard hardware interface.
Intel, Digital Equipment Corporation, Tektronics, and others
are working together to develop a2 Virtual Device Interface
(VDI) standard [13]. It is felt that an increased
standardization of +the hardware will promote the use of

goftware standards such as GKS.

There are naturally critics of GKS as an international
standard. The fact remains that a standard is needed.
There will be no requirement for companies to implement GKS,
nor will there be any requirement for companies using the
CORE system to switch. GKS will have +to earn acceptance.

Many in the industry feel it will [9].

1.2 KSU Implementation Project

The Kansas State University's Department of Computer
Science began a project to study and implement subsets of
GKS in the spring semester of 1983. The project continued
through the summer semester, from which this report is
derived. Besides the interest generated by its periing
standardization, the study of GKS, as a project, provided

its participants with a valuable educational experience.

Page 4

The study of GKS by the =spring semester students
resulted in the framework from which the summer students
study and development efforts began. Using the ISO/DIS 7942
(Draft International Standard) [11] and other available
literature, the spring semester students designed the
general data flow, named and coded most major data
structures, developed a device driver <for the Chromaties
terminal, and partially developed some of the GKS output

primitives.

The major goal of +the GKS project was for the
participants to obtain an educational experience from the
study of GKS. In addition to the study of the overall GKS
system, each student focused on a specific subset. Using
the skeleton developed by the spring semester and the GKS
Draft[11] as a base, each student set out to implement their
subset{s). Some of the individual implementation projects
included working subsets of graphic output primitives,
segmentation, device drivers, and the development of a

compatible Virtual Device Interface (VDI).

1.3 Perort Overview

In addition to the brief definition and history of the

Page 5

GKS system, this report focuses on the TEXT output
primitive. Section 2.0 provides an overview of +the TEXT
output primitive and its associated attributes, as specified
by the GKS ISO Draft[11]. Throughout +this section,
"COMMENTS" are used to highlight the differences between the
ISO Draft[11] and the KSU specification of the TEXT output

primitive.

Throughout most of the literature written about GKS,
reference is made to the CORE graphics system. Section 3.0
provides a general review of the CORE system. Specifically,
it describes the TEXT output primitive as defined in the
CORE system. Key differences between GKS and CORE are

noted, which leads to an appreciation GKS over CORE.

The study of the GKS TEXT output primitive included the
effort to implement a minimal subset of TEXT. General
implementation decisions to bundle all attributes, and
develop minimal subsets contributed to the design of this
subset. The effects of these decisions, and a detailed
account of the data structures, user procedures, and overall

data flow of the KSU version of TEXT are provided in Section

4.0,

The concept to bundle attributes in GKS appears to

Page 6

provide many advantages over non-bundling, as found in the
CORE system. However, sometimes negative results can occur
when a good thing is pushed too far. Thus is the case with
the general implementation decision to "bundle all
attributes". Section 5.0 presents a discussion of this

decision and other implementation concerns.

The project to implement a minimal subset of +the GKS
TEXT output primitive was not completed. The goal of this
project was to generate single lines of text on a graphics
output device. The code to accomplish this task was written
and compiled, however, there was not enough time +to fully
test and integrate it into the base system developed by the
spring semester. All design changes are discussed in

Section 4.0 and included in APPENDIX A.

Page 7

2.0 GKS TEXT GRAPHICAL OUTPUT PRIMITIVE: A Tutorial and

Comparison

2.1 General

This section provides a tutorial of the GKS TEXT output
primitive as specified by the GKE 1S0/DIS 7942 Draft[11].
Because of basic decisions made early in the KSU project,
the KSU specification differs slightly from the Draft[11].
Comparisons of the two specifications are highlighted by

COMMERTS throughout this section.

The term "workstation" is used throughout this report
and other 1literature on the subject of GKS. A workstation
represents a collection of graphical input devices such as a
keyboard, joystick, light pen, or a trackball, and/or output
devices such as a refresh display, or plotter. GKS treats
the whole workstation as one logical unit [S5]. TPFor each
kind of workstation in a given GKS implementation, an entry
exists in a workstation description table. This table
defines +the <capabilities gnd characteristics of each
workstation. These tables are maintained at the GKS level.

GKS provides a set of inquire functions that may be used by

Page 8

the application program to determine the capabilities
available on a given workstation. The application program
does not have to deal directly with bothersome intricacies
and differences of various pieces of hardware. Instead, GKS
hides them and provides an abstraction of the hardware, in

the form of a workstation, to the application program.

The appearance of the graphic output primitives will
vary between vworkstations, since the capabilities of these
facilities may differ significantly. The ISQ/DIS Draft [11]
specifies facilities to allow for these variations such as
POLYLINE REPRESENTATION, TEXT REPRESENTATION, etc.. The KSU
implementation supports the same capability by the use of
functions such as DEFLINE, DEFTEXT, etc.. These functions
are used %to define the attribute values in the workstation

bundle table of each workstation.

The TEXT output primitive differs from the other output
primitives defined under GKS in that its attributes are
split- into two distinet groups. The first group of
attributes are workstation-independent, and are referred to
as geometric attributes. Z_These attributes control the
geometric aspects of the text representation such as height,

direction of character string, its path and alignment. The

Page 9

second group of attributes are workstatlion-dependent, and
are referred to as non-geometric attributes. These
attributes control +the aspects of the text representation
such as font, precision, expansion factor (relative width),

spacing between characters, and color.

"he precise control of +the appearance of the TEXT
output primitive on a given workstation is determined by the
combination of the geometric and non-geometric attridutes.
The extent to which the geometric attributes are applied to
the final appearance of TEXIT generated depends on the value
of the TMprecision" attribute. The precision attribute
determines the closeness of the text representation at the
workstation in relationship to the values specified by the
geometric attributes. The possible values of the precision
attribute, in order of increasing adherence to the defined
geometric attribute values are STRING, CHARACTER, and

STROKE.

2.2 TEXT an Output Primitive

The graphical output that is generated via GKS is pade
up o0f basic pileces called "output primitives”". COCutput

primitives are an abstraction of the capabilities of the

Page 10

graphics device such as line drawing, marker generation ,
and printing character strings. GKS supports the following
graphical output primitives:

POLYLINE

POLYMARKER

TEXT

FILL AREA

CELL ARRAY

GENERALIZED DRAWING PRIMITIVE

One of the basic requirements of any graphics system is
the capability to generate 1lines of text (character
striﬁgs). Text is essential for both annotating diagrams,
and communicating with +the console user of an interactive
program. Today, the use of presentation graphies, which
heavily relies on a variety of character font styles, is
growing at an unpresidented rate [13]. Many graphics
devices are being manufactured today with a rich set
character generators. GKS is designed to take full

advantage of such device capabilities.

The appearance of the text output primitive such as
color, character height, etc. is determined by the

attributes applied to the pfimitive and the capabilities of

Page 11

a particular workstation.

2.3 TEXT Attributes

The text output primitive has +the 1largest set of
attributes which control its appearance on a workstation.
These attributes are divided into geometric and non-

geometric attributes as shown in FIGURE 1.

2.3.1 GEOMETRIC

The geometric attributes are also referred +to as
workstation independent or primitive attributes. -These
attributes are specified individually and are bound +to the
text primitive when it is created. The geometric
information such as height can be subject to the same
transformations as the geometric data that is part of the
primitive. The values of the geometric attributes are
stored in world coordinates at the GKS level prior to any
transformations. The stored values represent the current
values of the associated attribute. The current values are
unaffected by the transformations. The geometric text
attributes are considered workstation independent because
they are stored at the GKS 1level, are bound to the

primitive-regardless of the workstation capability, and only

Page 12

some may affect the appearance of the text-depending on the

value of the precision attribute.

The Draft ISO/DIS 7942 [11] specifies that the current
values of the geometric attributes for TEXT are stored in
the GKS state list. The values are used in the creation of
all subsequent text output primitives. The current values
are set or changed by the use of the féllowing attribute
setting functions:

SET CHARACTER HEIGHT

SET CHARACTER UP VECTOR

SET TEXT PATH -
SET TEXT ALIGNMENT

** COMMERT **

The KSU implementation does not allow for +the
setting of these attributes individually. Instead,
they are bundled in much the same way as the
workstation dependent attributes. This is a result of
2 general decision, made early in the project, +to

bundle all attributes.

The TEXT geometrid attributes are stored in an
array of records called GKSTEXTTABLE. Each record
contains values for character HEIGHT, UP VECTOR, PATH

Page 13

and ALIGNMENT. The values of the attributes are set by
the STOTEXT function (procedure). The current values
to be used by the TEXT output primitive depends on the
value of the current TEXTINDEX into +the GKSTEXTTABLE.
These functions and data structures will be covered in

more detail in Section 4.0 of this report.

A discussion concerning the decision to bundle all

attributes will follow in Section 5.0 of this report.

#* END COMMENT **

Page 14

CHARACTER HEIGHT | TEXT FONT

CHARACTER UPVECTOR ' TEXT PRECISION
TEXT PATH TEXT CHARACTER
| EXPANSION FACTOR

TEXT ALIGNMENT CHARACTER SPACING

- HORIZONTAL TEXT COLOR

- VERTICAL
GEOMETRIC ATTRIBUTES NON-GEOMETRIC ATTRIBUTES
PRIMITIVE | +WORKSTATION DEPENDENT

+WORKSTATION-INDEPENDENT

FIGURE 1. TEXT ATTRIBUTES

Page 15

'CHARACTER: HEIGHT = 1.0
UPVECTOR = (0.0, 1.0)
-k i_ _ PATH = RIGHT
- TEXT ALIGHNMENT -
(NORMAL ., NORMAL)

,UIKI A HEIGHT = 0.8

A ALIGNMENT = (RIG&T. TOP)

A UPVECTOR = (-1.0, 1.0)

i)

»
g

AN

X = TEXT POSITION

FIGURE 2. REPRESENTATION OF GEOMETRIC TEXT ATTRIBUTES

Page 16

kera

<+ = ==} = = =4 - bottomline |
left right

FIGURE 3. FONT DESCRIPTION COORDINATE SYSTEM

Page 17

The TEXT geometric attributes are further defined below
and illustrated in FIGURE 2.

HEIGHT

-Permitted values: Real > 0, specified in World Coordinates.
-Specifies the nominal height of a capital 1letter. The
value of 1.0 {one) would represent default size of the font
as specified by the font designer. A change of HEIGHT
would uniformly change the size of the character.

-The HEIGHT is the distance between the baseline and the

capline of the font coordinate system. See FIGURE 3.

UP VECTOR
-Permitted values: tuple (Real,Real), specified in World

Coordinates.

-Specifies the up direction of a character. The UP VECTOR
is parallel to the center line and perpendicular to the
baseline of the font description c¢oordinate system. See
FIGURE 3.

-PIGURE 2 illustrates the relationship bYetween the world

coordinate values and the x,y coordinate system.

PATH

-Specifies any one of the enumerated values: right, 1left,

up, or down

Page 18

-In general, these values represent the direction in which
one would read the text in relation to the up vector, i.e.
right- means read to the right, down- means read down. See

FIGURE 2.

TEXT ALIGNMERT

-Specifies the position of the text extent rectangle 1in
relation to the text position, as shown in FIGURE 2.

-This attribute has a horizontal and vertical component.
The horizontal component is specified by one of the
enumerated values: left, center, right, or normal. The
vertical component 1is specified by one of the enumerated

values: %top, cap, half, base, bottom, normal.

#* COMMENT **

The KSU implementation specifies the two components as
separate attributes as follows:

-HALIGN -specifies any one of the enumerated
values: 1left, center, right, or normal. See
FIGURE 3.

-VALIGN -specifies any one of +the enumerated
values: top, cap, half, Dbase, bottom, normal.

See FIGURE 3.

Page 19

** END COMMENT *=*
2.3.2 NON GEOMETRIC

The non geometric attributes are also referred to as
workstation dependent attributes. These attributes are
stored in workstation bundle +tables specific for each
workstation. Fach entry(TEXTINDEX) contains the desired
combination of values to apply to the text primitive at the
workstation. The values of the non geometric attributes
are restricted to +the capabilities of the associated

workstation.

The Draft ISO/DIS 7942[11] specifies the SET TEXT
REPRESENTATION function to build an entry 1in the

workstation bundle table.
%% COMMENT **

The KSU project defines the DEPTEXT(define text)
function(procedure) to build an entry into an array of
records containing the attribute values for a specific
workstation identifier and +text 1index, which are

parameters of this function.

*% END COMMENT **

Page 20

In addition to specifying the non geometric attributes
in the workstation bundle table, the Draft[11] standard
allows them to be specified individually in the GKS state
list. In this case the non geometric attributes are
workstation independent. 1If an application program desires
the use of an individually specified attribute, i.e. color
= red, this value will be used in defining the primitive at
the workstation, instead of the value for color specified
in the workstation bundle table at the current text 1index.
If the individually specified attridbute does not conform to
the workstation capabilities, i.e. red is not defined 1in
the workstations color table, then a default value is used.
This facility allows, within the capabilities of a
workstation, consistency of desired attributes when
generated on different workstations, independent of the

value specified in the bundle table.

The capability to individually specify non geometric
attributes was not a part of the original GKS proposal.
Pressure from the American National Standards Institute
(ANSI) resulted in the ISO adopting it [9]. ANSI did not
support GKS's bundling of attributes because the appearance
of the primitive was determined at the device 1level

according to the values of the attributes assigned, and the

Page 21

devices capabilities. More direct programmer control of

the attributes was desired.

0f course, if all devices supported the same
capabilities, and all workstation bundle tables were built
identical, there would be no need for individually
specifying attributes. Also, there would not be a need for
a standard such as GKS. None of the above is realistic,
thus the need for a standard in the first place. This
ability gives GKS added flexibility.

GKS specifies the following functions to set the
current values of the TEXT non geometric attributes in the
GKS state list:

SET TEXT FONT AND PRECISION
SET CHARACTER EXPANSION FACTOR
SET CHARACTER SPACING

SET TEXT COLOR INDEX

The display of the subsequent TEXT output primitives
depends on the values of the INDIVIDUAL, BUNDLED or a
combination of both sets of non geometric attributes. The
value used depends on the éetting of the Aspect Source Flag
(ASF) associated with each attribute. Each ASF can be

assigned the enumerated value INDIVIDUAL or BUNDLED. If

Page 22

the ASF of an attribute is set +to INDIVIDUAL, then the
current Yalue of that attribute, specified in the GKS state
list, is bound to the primitive at creation, and wused 1in
the display of subsequent TEXT output primitives. If the
ASF of an attribute is set to BUNDLED, then the value
specified in the workstation bundle table, at the current
text index, is used. In this case, binding of the ©bundled

attributes occurs at the workstation.

FIGURE 4 illustrates the results of specifying a non
geometric attribute as BUNDLED or INDIVIDUAL.

GKS specifies the SET ASPECT SOURCE FLAG function to be
used by the application programmer for setting an

attribute's ASF in the GKS state list.

** COMMENT **

For reasons of simplicity and the limited scope of
the KSU project, it was decided not to provide the
capability to individually specify non geometric

attributes.

** END COMMENT *¥

Page 23

EITHER
ATTRIBUTE

(ASF) = BUNDLED
OR

NOT SET

ATTRIBUTE
(ASF)=INDIVIDUAL

_ ATTRIBUTE VALUE
CURRENT VALUE OFATTRIBUTE SPECIFIED IN
IN THE GKS STATE LIST 1Is WORKSTATION BUNDLE
USED FOR THE DISPLAY OF TABLE IS USED
SUBSEQUENT TEXT ouTpuT
PRIMITIVES

FIGURE 4. ASPECT SOURCE FLAGS (ASF)

Page 24

The TEXT non geometric attributes are further defined

below, and illustrated in FIGURE 5.

FONT and PRECISION

-TEXT FONT and PRECISION will be discussed in section 2.4.

CHARACTER EXPANSION FACTOR

-Permitted values: Real > O, initial value = 0.0.

-Specifies the deviation of the character width {0 height
ratio from that indicated by the font designer. 1In effect,
a change in the expansion factor 1is a change in the
character width.

-EXAMPLE: If the font design specifies the height to width
ratio to be 8:4 {(could mean 8 pixels : 4 pixels), then an
expansion factor value of 1.0(one) would result in the font
being displayed with a height to width ratio of 8:4. If
the expansion factor is set to .75, the character would be

displayed with a height to width ratio of 8:3 (see PIGURE
B)

CHARACTER SPACING

-Permitted values: Real, initial value = 0.0.
-Specifies the space %o be 1inserted Dbetween adjacent

character boxes. A value of 0.0(zero) will yield no space

Page 25

between character boxes. A positive value will yield +the
specified space Dbetween each character box. A negative
value will subtract space, causing an overlap of each
character bYox equivalent to the absolute value specified.
The value used to specify character spacing is a fraction
of the specified CHARACTER HEIGHT.

~FYAMPLE: If the font design specifiesgs the height to width
ratio to be B8:4, and the CHARACTER HEIGHT attribute is
specified as 1.5, the resultant height to width ratio will
become 12:6. If the CHARACTER SPACING is specified as 0.5,

the resultant space between character boxes will be 6 (six

pixels).

TEXT COLOR INDEX

-Specifies the index into the workstation dependent color

table, which points to the desired color.

#* COMMENT **

The KSU implementation uses the enumerated color
name instead of building a color table for each
workstation. The attribute name is TEXTCOLOR. If the
color specified ié' not a capability of the
workstation, a default color will be used. 1In effect,

the result is the same as if TEXTCOLOR was an

Page 26

individually specified workstation attribute.

#% END COMMENT *#

Page 27

[j[]f;:ﬂi{f]jl CHARACTER: EXPANSION FACTOR = 1.0
—_ CHARACTER SPACING = 0.0

EXPANSION FACTOR = 0,75

TENXD v

FIGURE 5. REPRESENTATION OF NON-GEOMETRIC TEXT ATTRIBUTES

Page 28

2.4 PONT and PRECISION

The GKS Draft{11] specifies that TEXT ©FONT and
PRECISION constitute one aspect, thus are specified as a
tuple and represented by the attribute name: TEXT FONT AND
PRECISION.

** COMMENT **

The KSU implementation specifies the two separate

attribute names: TEXT FONT, and TEXT PRECISION.
#% END COMMENT **

The FONT is basically defined as the shape of the
gsymbol which represents each character. ZEach character
defined in the 2D font coordinate system has an associated
character body, font baseline, font halfline, capline, and
a centerline (see FIGURE 3). Each character body or symbol
represents a specific pattern, generated by the workstation
character generator, within the boundary of +the character
box. Possible font types on a particular workstation may

include standard, italic, boldface, etc..

In raster graphic systems, character fonts are defined

in terms of a pixel array. ZEach character is defined as a

Page 29

pattern of dots(pixels) within the character box [14]. 1In
general, if the character box is 8(eight) pixels by 4(four)
pixels, each possible character can be represented as a bit
pattern of 32(thirty-two). Typical hardware character

generators generate characters in this fashion.

For a graphiecs application program to have the
capability <to control such aspects as character height,
spacing, etc., it would require much overhead software to
handle the hardware generated characters and/or provide its
own software character set. GKS provides this overhead by
providing an application program the ability to choose the
desired TEXT attributes. The control and appearance of the
resultant displayed TEXT is dependent on the TEXT FONT
specified and the value of the TEXT PRECISION attribute.

The value of the TEXT PRECISION attribute influences
the quality of TEXT displayed in relation to other
attributes specified. On the 1low end +text will ©be
interpreted very 1loosely, in a workstation dependent way.
On the high end text is displayed at the specified text
position with all attributes applied. The possible TEXT
PRECISION values, from low to high quality, are STRING

CHARACTER, and STROKE. They are briefly defined as

Page 30

follows:

STRING
-The character string is generated in the desired TEXT FONT

starting at the given +text position. The specified
character HEIGHT and EXPANSION FACTOR are interpreted
depending on the capabilities of the specified workstation.
The clipping applied to the character string or individual
characters is implementation dependent. the wvalues of the
character UP VECTOR, TEXT PATH, TEXT ALIGNMENT, and SPACING
attributes may not be applied.

-This precision is used to generate efficient low quality
text such as a message to the console user, or when normal
horizontal text is desired.

-All GKS implementations support at least STRING precision

for every defined font.

CHARACTER

-The text character string is generated using the specified
font. The position of the resultant text extent rectangle
is determined by the value of text alignment and given text
position. The aspects of character HEIGHT, UP VECTOR, and
EXPANSION FACTOR are evaluated in a workstation dependent

way for +the representation of each character. Character

Page 31

SPACING is exact and the character body is 1ideal, because
they are calculated precisely from the text aspects and
font dimensions. Clipping is performed on a character by
character Dbasis. This means that if part of a character
extends beyond the given window or viewport boundary, only
that character is clipped or removed.
-CHARACTER precision should be supported by most GKS
implementations.
-Not as efficient as STRING, but allows for more graphical

uses of the TEXT primitive.

STROKE

-The character string generated reflects the application of
all specified attributes, unless those attributes were
specified individually and are not within the capabilities
of the workstation. The character string 1is clipped
exactly at the clipping rectangle. This means that only
the part of the character extending beyond the window is
clipped.

-This precision allows the greatest control over the use of
the TEXT attributes as they are applied to the TEXT output
primitive. It is also the least efficient of the
precisions and should only'ﬁe used when required.

-The GKS Draft [11] specifies that those installations that

Page 32

support STROKE precision, must support at least one STROKE
precision font on every workstation. This font would be
the same and designated as font number 1(one) representing

a standard character set such as the one used in the

writing of this report.

Page 33

3.0 REVIEW OF THE CORE SYSTEM

3.1 General

As mentioned in the opening summary, the CORE system
was a result of the ACM SIGGRAPH's Graphics Standard
Planning Committee. Though development began Dbefore GKS
the GSPC acted tenuously by not submitting CORE %o the IS0
when they could have. Instead, they submitted it to the
ANSI X3H31 subcommittee. Meanwhile DIN submitted GKS to
the IS0, which took world attention away from CORE and onto

GKS.

Both GKS and CORE were designed with the goal of
providing machine and device independence +to graphical
application software. To achieve +this independence the
application program c¢alls core/kernel functions, which in
turn drive "virtual" graphics I/0 devices. A device driver
translates the "virtual” instructions 1into hardware
instructions [9]. The CORE system supports a set of output
primitives similar to +those found in GKS. The major
difference between GKS and CORE is the way in which each

system applies the associated attributes +to define the

Page 34

output primitives.

The basic difference between CORE an GKS is in the way
each generates the appearance of the graphic output
primitives. In GKS +the appearance 1is defined in two
stages. In the first stage a symbolic attribute(TEXT
INDEX) is associated with the primitive. In the second
stage this attribute is mapped onto the capabilities of the
workstation (attributes set at TEXTINDEX for that
workstation). Both stages are under the control of the
application program. Thus, GKS has the capability of
representing the same output primitive differently on
separate workstations without regenerating the primitive.
In the CORE system the appearance of the primitive is
associated with the primitive itself. To get the same
effect as in GKS the associated attribute settings need to

be changed and the primitive regenerated [5].

The next section describes how the TEXT output
primitive and primitive attributes are defined by the CORE
graphics system.

%.2 MEXT as defined in CORE

Since GKS currently has two dimensional capabilities,

Page 35

the following will only describe the two dimensional
capabilities of the CORE system.

In order for the CORE. system to generate an output
primitive it must be aware of the "current position", which
is a reference point defined in world coordinates, from
which objects are defined. The first character of the TEXT
string must be positioned with its lower left corner at the
"current position”. Therefore, prior %o generating the
TEXT output primitive a "MOVE" command must be performed to
set the "current position" of where the character string
will start. As the character string is generated the wvalue
of +the "current position", as known to the system, will
change to the position of the next character +to be
generated. To generate another primitive a "MOVE" command

must be invoked again, to adjust the "current position”.

GKS does not support the concept of "current position”.
The "text position" is an input parameter used by the TEXT

primitive, and is not remembered by the system.

The following primitive attributes are defined for the
CORT system TEXT primitives: -
CHARSIZE
CHARSPACE

Page 36

CHARQUALITY

The primitive attributes, CHARSIZE and CHARSPACE may be
used in determining +the size and extent of the character
string [12]. The CHARQUALITY attribute is analogous to the
TEXT PRECISION attribute, defined in GKS, in that its wvalue
determines the degree to which the other attribute values
are adhered to. A brief definition of each of the CORE
attributes follows.

CHARSIZE

-The SET_CURRENT_CHARSIZE (a,b) function specifies the size
of the character box in world coordinates. The wvalues
a(width) and b(height) are used to determine the size of
the characters drawn.

-EXAMPLE: If a=3.0 and b=5.0, then each character will be
drawn within a rectangle 3(three) world coordinates wide

and 5{five) world coordinates high.

CHARSPACE

-This attribute is used to manipulate the spacing between
characters and the TEXT orientation.

-The SZT CURRENT_CHARSPACE (x,y) function specifies the
x{horizontal) and y(verticél) distance in world coordinates

between the setting of the M"current position" of each

Page 37

character to be generated. When the TEXT primitive is
invoked, each character in the string advances the "current
position™ to +the next "current position" based on the
values of x and y. The orientation of the resultant TEXT
character, or string of characters, is a function of the
CHARSPACE values and the setting of CHARQUALITY.

-This attribute is analogous to a combination of the GKS

functions, CHARACTER SPACING and UP VECTOR.

CHARQUALITY

-This attribute defines how strictly CHARSIZE and CHARSPACE
will be interpreted, which will determine the appearance of
the character string on the viewing surface [2].

-CHARQUALITY can have the values LOW, MEDIUM, or HIGH, which
are analogous to the GKS TEXT PRECISION possible values of
STRING, CHARACTER, or STROKE, respectively.

It is not the purpose of +this section to give a
detailed account of the CORE system, but instead, to touch
on the major aspects associatsd with - the CORE TEXT
primitive. Much of the detail omitted was not necessary to
illustrate the basic simila;ities and differences Dbetween

the CORE and GKS systems.

As one can see, there are similarities in the way each

Page 38

system defines the treatment of the TEXT output primitive.
Most of the similarities can be attributed to the similar
goals of both systems. On the other hand, the differences
can be attributed to the difference in philosophy. The
major distinction between GKS and CORE, which has been
noted several times, is that the attributes are bundled in
GKS and are not in +the CORE system. The bundling of
attributes in GKS allows for defining a workstations
capabilities, and the mapping of these capabilities onto
the primitive at the workstation. In CORE the appearance
of the primitive is associated with the primitive itself.
In CORE the current values of an attribute, i.e. color,
are known to the system. If a POLYLINE were just drawn in
red, then the subsequent TEXT will be generated 1in red,
unless the "current color™ is changed. Bundling allows an
application program to generate the same primitive
differently on multiple workstations, CORE will not.
Proponents of each system will argue a case for each
system, but it is obvious that the workstation concept of

GKS provides for better order and flexibility.

Taking advantage of - the capabilities of each
workstations 1is certainly a characteristic of GKS. The

CORE system seems to be deficient in this area. An obvious

Page 39

example of +this difference is that CORE does not define a
way to specify the "font" type to be applied to +the TEXT
primitive, 1i.e. CORE does not define a font primitive
attribute. This obviously leaves the bdurden of ﬁefining
the font on the application program. The burden of
determining the devices capabilities is on the application
programmer. GKS defines the font capabilities of a
workstation in its associated bundle table. Software
generated <fonts are also defined at the GKS level. The
application program can "inquire" wvia GKS in order to
determine a workstations capabilities. GKS provides a much
better level of abstraction of +the capabilities of a

graphics device than does CORE.

In general, GKS seems to provide a much more
comprehensive and flexible interface between graphics
hardware and an application program than does the CORE

system.

Page 40
4.0 KSU IMPLEMENTATION OF TEXT

4.1 General

The implementation of a GKS system at Kansas State
University has evolved over a period of time. Therefore, it
reflects the efforts of several students over a period of
several semesters. The TEXT output primitive was
implemented during the 1983 summer semester. At that time
the GKS project had only sparse capabilities. Most of the
work completed by the prior semester, which was the first,
included defining most of the basic data structures,
development of minimal LINE and MARKER primitive
capabilities on one workstation, and much of the code
representing the heart of the GKS system. The 1983 fall
semester has the task of melding everyones work and adding

enhancements.

The GKS project used an Interdata 3320 host mini under
a UNIX* operating system. The Pascal programming language
was used for writing the main GKS source code and data

structures.

The KSU implementation of the TEXT output primitive
differs slightly from the ISO Draft[11]. These deviations

Page 41

basically are a result of general decisions to ©bundle all
attributes, and provide a minimal subset. Overall, the
intent of the IS0 Draft was adhered to. The effects of

those decisions are discussed below.

Bundle all attributes - The IS0 Draft specifies that

the non geometric(workstation dependent) attributes are
bundled. We do that in WSTEXTTABLE. It also specifies
that the geometric (workstation independent) attributes
be defined in the GKS statelist, where they represent
the current values %o be applied to subsequent TEXT
primitives. Our implementation ©bundles the TEXT
geometric attributes in GKSTEXTTABLE. The CURTEXTINDEX
value is used to index both tables for %the attributes
to be applied to the TEXT primitive. A discussion of

this decision will follow in section 5(five).

Minimal subset of TEXT primitive - In order to provide

a minimal subset of the TEXT primitive, certain
capabilities defined in the IS0 Draft were not
incorporated in this implementatioﬁ. The ability to
specify the workstation dependent attributes
INDIVIDUALly via the Aspect Source Flag (ASF)

capability, was not defined. In addition, the ability

Page 42

to generate TEXT with the precision of CHARACTER or
STROKE was not provided. Though not resolved by this
implementation, CHARACTER and STROKE are still valid

values for the precision attribute.

4.2 Data Structures

This implementation provides the GKSTEXTTABLE,
WSTEXTTABLE and WIS data structures for handling and storage
of data and data types associated with the TEXT output

primitive. They are described below.

The GKSTEXTTABLE is an array of records of type
GKSTEXTREC. Each defined record contains the values of the
workstation independent (geometric) attributes CHARHEIGHT,
CHARUPVECTOR, CEARPATH, HALIGN and VALIGN.

The data contained in the GKSTEXTTABLE is maintained by
the STOTEXT user procedure. See Sec. 4.3 and APPENDIX A &

B.

The WSTEXTTABLE is a %two dimensional array of records
of type WSTEXTREC. The first index into this array
represents the workstation identifier. The second index

addresses +the WSTEXTREC in the specified workstation bundle

Page 43

table. FEach defined record contains the wvalues of +the
workstation dependent (non geometric) attributes TEXTFONT,
TEXTPRECISION, TEXTEXPFACTOR, TEXTSPACING and TEXTCOLOR.

The data contained in the WSTEXTTABLE is maintained by
the DEFTEXT user procedure. See Sec. 4.3 and APPENDIX A &
B.

The GKSTEXTTABLE and WSTEXTTABLE are initialized by the
internal procedures "initgkstables" and "initwstables"

respectively. See APPENDIX A.

The Workstation Independent Segment (WIS) is an array
of records of +type WIELEMENT. These records contain
primitive information used by +the DISTRIBUTOR in the
generation of subsequent LINE, MARKER or TEXT output.
Therefore, the WIELEMENT records are of differing types,
depending on the type of primitive information stored. PFor
the TEXT primitive, the WIS record stores the value of the
CURTEXTINDEX, the length of the text string, the start point
of the %text string in Normalized Device Coordinates and an

array containing the text string.

The WIS records for TEXT are built by the WITEXT

procedure, which is called by the DRAWIEXT user procedure.

Page 44

See Sec. 4.3 and APPENDIX A & B.

4.3 TEXT User Procedures

This section describes the major user procedures
developed for +the KSU implementation, which allow for the
TEXT output capability. These procedures provide for a
minimal subset of the ISO definition of TEXT. They can be

extended to provide fuller capabilities.

There are seven TEXT user functions(Pascal procedures)
defined by the KSU implementation: DRAWTEXT, DEFTEXT,
INQTEXT, STOTEXT, QRYTEXT, SETTEXTINDEX, and QRYTEXTINDEX.

They are described individually below.

The DRAWTEXT procedure performs an output function.
Its purpose is to output character strings to be generated.
The start point, specified in world coordinates, and the
character string are input. This procedure performs the
transformation of the start point from World Coordinates
(WC) to Normalized Device Coordinates (NDC), and clips to
the world window. Next, DRAWTEXT calls the WITEXT procedure
and passes the parametersléssociated with the current text
index, the number of characters that make up the input

string, the start point in NDC, and the character string.

Page 45

The DEFTEXT(DEPine TEXT) ©procedure performs an
attribute setting function. This procedure is used to add
or change an entry at the specified text index in the
WSTEXTTABLE for the specified workstation identifier. The
new entry consists of the desired combination of non
geometric attribute values. It should be noted that
multiple workstation capabilities were not available,
therefore, the workstation identifier was not required

input.

The INQTEXT(INQuire TEXT) procedure is used by the
‘application program, or interactive user to determine the
attribute settings in the WSTEXTTABLE for the specified text
index and workstation. The wvalues for TEXT FONT, PRECISION,
EXPANSION FACTOR, SPACING, and COLOR are returned in

response to this inquire.

The KSU provides two kinds of "inquire" procedures.
The inquire procedures preceded by "INQ" are for inquires at
the workstation level. The inquire procedures preceded by
"QRY" are for inquiries at the GKS level. In general,
inquire procedures are prov;ded to allow the application
program or the interactifel user to inguire as to the

capabilities of a particulaf workstation, the settings of

Pége 46

GKS 1level attributes, or system status. Depending on the

values returned, the appropriate action is taken.

The STOTEXT(STOre TEXT) procedure performs an
attribute setting function. This procedure is used to add
or change an entry at the specified text index in the
GKSTEXTTABLE. The new entry consists of the desired

combination of geometric (workstation independent)

attributes.

The QRYTEXT(QueRY TEXT) procedure is used by the
application program or interactive to determine the
attribute settings in the GKSTEXTTABLE at the specified
entry(textindex). The values for CHARACTER HEIGHT, UP
VECTOR, PATH, HORIZONTAL ALIGNMENT, and VERTICAL ALIGNMENT

are returned in response to this inquire(query).

The SETTEXTINDEX procedure sets the variable
"curtextindex" (current text index). If this index is not
defined for the GKSTEXTTABLE or WSTEXTTABLE, a default entry
is built by +this procedure. It should be noted here that
the "curtextindex" is the same index into each table. A

discussion concerning this will follow in Section 5.

The QRYTEXTINDEX procedure simply returns the current

Page 47

value of the variable "curtextindex", when invoked.

The input and output parameters for +these procedures

are discussed in more detail in APPENDIX A.

4.4 Data Flow

This section describes the data flow based on the
status of the project when this participant was involved.
There were other capabilities Dbeing developed concurrent
with this effort, however, they will not be included in this
description. See FIGURE 6, qu Data Flow for +the TEXT
Primitive and APPENDIX B for Code Level Data Flow.

To begin, assume that the GKSTEXTTABLE and WSTEXTTABLE
are built, and the current text index has been set by

SETTEXTINDEX.

The DRAWTEXT procedure requires the input of the start
point, and string of text. DRAWTEXT is invoked by the
scanner call (startpoint,textstring). The startpoint is
specified in world coordinates, and is the point from which
the text string 1is +to -begin. The DRAWTEXT procedure
performs the normalized ﬁransformation of the startpoint

from World Coordinates (WC) to Normalized Device Coordinates

Page 48

(NDC). Clipping to the world window is done here, though
not shown in the code section of this report. In addition,
this procedure calls the WITEXT procedure and passes the
current text index, the number of characters in the text
string, the startpoint in NDC, and the text string. At this
point the index(curtextindex) is bound to the TEXT

primitive.

The WITEXT procedure, which is called by the DRAWTEXT
procedure, builds the "WI"™ record in +the Workstation
Independent Store (WIS). At this point the T"curtextindex"
is bYbound to the TEXT primitive. The 1index can not be
changed, but the attribute values pointed to by it in Dboth
the GKSTEXTTABLE and WSTEXTTABLE can be dynamically
modified. No further action occurs until +the Redraw Work

Station (RWS) command is invoked.

The KSU implementation is in the "ASTI" deferral state,
as defined by the ISO Draft[11]. This means that the visual
effects of output functions such as DRAWTEXT will be
generated on the workstation "At Some TIme". "At Some TIme"

is when the RWS command is invoked.

Though the data flow, up to this point, does not

violate the IS0 Draft, there are some basic differences.

Page 49

The geometric attributes are not yet bound to the TEXT
primitive. The Draft specifies that +they be bound at
creation of the primitive so that they are subject to the
same transformations as the primitive. Another difference,
is in where clipping is performed. As mentioned, clipping
to the world window 1is currently being resolved in the
DRAWTEXT procedure. This was done in order to provide some
sort of clipping capability by the 1initial cutover.
Clipping to the screen viewport will bYe processed by the
DISTRIBUTOR at some later date, and will be applied against
the primitive just prior to being sent to the workstation.
For the purpose of this project, it is not essential that

these differences be resolved.

When the RWS command is invoked +the WIS records are
processed by the DISTRIBUTOR. The WIS records are read, all
geometric and non geometric attributes, currently in effect
based on the stored "curtextindex", are bound to the TEXT
primitive as the Virtual Device Interface (VDI) oprimitive
records are built. The VDI records are then passed on to
the workstation device drivers of open workstations - in
this case the Chromatics driver, by the DISTRIBUTOR driver.
The workstation device driver translates the VDI primitives

into Escape Codes(ESC), which are interpreted by the

Page 50

workstation. The result is the displayed output primitive.

The Data structures and internal procedures which make
up the Scanner, Distributor, Distributor Driver and the
Chrometics Workstation Driver were developed by the spring
semester students. These structures and procedures allowed
for, but in some cases were not complete, the generation of
a horizontal string of TEXT with only the font type and
color attributes applicable. To generate TEXT in this

manner was the goal of this implementation project.

Page 51

(APPL PROGRAM)

USER

FIGURE 6.

VDI PRIMITIVES W
7} i i
i [S A
o |

=>i RATEXT =>l s

= CURTEXTINDEX J

F}l— GKSTEXTTARLE
| s
=>|wsrex1'rm.s =
| DISTRIBUTOR
DISTRIBUTOR
DRIVER

1

' CHROMATICS I | oTHerR |

i DrRIVER I 1 | DRIVERS |

d e 2 L]
Device DRiVERs

KSU DATA FLOW FOR THE TEXT PRIMITIVE

Page 52

4.5 Possible Enhancements

In order for the KSU version of GKS to generate the
TEXT primitive - with all attributes applied, much more work
is required. Because of the workstation dependent nature of
the resultant TEXT generated by the above, it is considered
to be of "string"™ precision by default. No mechanism exists
to differentiate between the various precisions, nor does
the required software exist to allow the system +to respond
accordingly. However, with the current design as a base,
except for late binding of geometric attributes, the KS3U

version can be extended to be a richer system.

To achieve a richer system would require some basic
changes. The geometric attributes need to be bound at
creation. This could be accomplished by providing two text
indexes. Early binding is required to create a height
vector(parallel to the up vector) and width
vector{perpendicular to the up vector) early enough to be
influenced by the normalization and workstation
transformations. Both vectors are of length equal to the
character height. After the vectors have been passed down
the viewing pipeline, and end‘up in device coordinates, they

can be influenced by the values of the font coordinate

Page 53

system. The value of the character expansion factor is used
to determine the character width. Additional coding is
required to interpret which attributes should be applied,
depending on the specified precision attribute, and how they
are applied. With these suggested changes, the KSU version
of GKS will more <closely resemble the TEXT primitive
capability defined in the ISQ Draftf11].

* JNIX is a trademark of AT&T Bell Laboratories

Page 54
5.0 DISCUSSION OF IMPLEMENTATION CONCERNS

5.1 General

As with any implementation project there will be
deviations from the standard recommendations. Usually such
deviations represent a perceived advantage over the
standard. However, this is not always the case. Some
decisions made early in the KSU project actually produce
undesirable effects. A few of these deviations are

discussed in this section.

Note that when the KSU project began, the ISO Draft[11]
had not yet been released. Therefore, some decisions were
made, not as deviations from the standard, but instead,

based on other available information.

5.2 Decision to Bundle all Attributes

The bundling of attributes is certainly a major
characteristic of GKS. It is also the major difference
between GKS and CORE. The ISO Draft[11] specifies that the
workstation dependent, non ééometric attributes are to be
bundled in a workstation bundle table for each workstation.

It also specifies, as mentioned in section 4.1, that the

Page 55

workstation independent, geometric attributes are defined
individually in the GKS state list, where they represent the
current values to be applied to subsequent primitives. The
KSU project took the concept of bundling one step further by
requiring all attributes to be bundled. Thus, incorrectly
modeling GKS.

While the bundling of workstation dependent attributes
provides advantages to the user, over non-bundling, the same
advantages are not realized by bundling geometric

attributes.

Bundling of workstation dependent attributes takes
advantage of the finite capabilities of a particular
graphics device. The workstation bundle table contains sets
of desirable combinations of these capabilities. As
mentioned earlier, the KSU project defines the TEXIT
workstation dependent attributes in the WSTEXTTABLE. Each
record in this table contains a different combination of
attributes. The number of these combinations will vary
depending on capabilities of a particular workstation. It
is likely that not all, butrqnly commonly used combinations
are present. Bundling of thése attributes provides a

beneficial level of abstracfion of a devices capabilities to

Page 56

the application program and programmer.

The "curtextindex" is a variable that is set by the
application program or programmer to define the desired
combination of attributes that are to be bound to subsequent
TEXT primitives. To change the appearance of a primitive
becomes merely a matter of changing the value of
"curtextindex" into the WSTEXTTABLE, instead of changing the
value of each attribute individually, as would be the case

in the CORE system.

At first thought, it may seem that the same advantages
might be realized by bundling the TEXT geometric attributes.

This however, I do not believe will prove 4o be the case.

The TEXT primitive can be influenced by a large set of
geometric attributes. The character HEIGHT and UP VECTOR
attributes can take on an almost infinite possibility of
values specified in world coordinates. In addition, the
character PATH and ALIGNMENT attributes can be assigned a
wide range of defined enumerated values. Together, these
attritutes can provide an infinite number of possible
permutetions. This could result in an unnecessarily large

GKSTEXTTABLE.

Page 57

If the GKSTEXTTABLE contains a large quantity of
records, it would become a burden for the applications
programmer to inquire each record in search of an existing
desired combination. It would become easier to juét
establish a new record, thus, increasing the size of an
already unmanageable data structure. Any perceived value of

bundling the geometric attributes is lost at this point.

One major objective of GKS is to abstract the
capabilities of a graphics device or workstation. Bundling
the TEXT geometric attributes is an attempt to abstract

infinity.

If the KSU project results in a complete system, I

recommend that the geometric attributes be unbundled.
5.3 The TEXT Index

Another concern, which compounds the above problem, is
that the KSU model specifies only one pointer into both
bundle tables. While it is true that the GKS Draft[11]
specifies only one ftextindex, it is also true that the Draft
specifies only the bundling 6f workstation dependent

attributes. The value of “éurtextindex" is used to index

Page 58

into the GKSTEXTTABLE and the WSTEXTTABLE, and is bound to

the TEXT primitive at creation.

Using the same index for both tables could lead to
multiple records containing the same combination of
attribute values in each bundle table. As a result, memory
is wasted, the data structures become too cumbersome to use
properly, and it becomes easier to define new records
instead of inquiring. This is a bad situation and

definitely distracts from the intent of GKS.

A solution could be to establish a separate index for
each table. This would require additional coding and would
not completely resolve the problems resulting from the
bundling of geometric attributes. The easiest solution

would be to unbundle the geometric attributes.

Unbundling the geometric attributes would result in s
more manageable and user friendly system. In addition, a
system that more closely resembles the GKS standard defined
by the ISO Draft[11].

Page 59

APPENDIX A
SOURCE CODE LISTING

Page 1A

(*—m GRAPHICS KERNEL SYSTEM - -

procedure drawtext (gks)

s - =)

; procedure drawtext (startpoint : point
; textstring : tstring)

(* PURPOSE: This function outputs characters to be generated

NEW*% %% X% %XEER

INPUT PARAMETERS:

startpoint - start coordinates (real) for
the text string

textstring - string of characters

=)
; var
starttext : ipoint;
scalex,scaley,consx,consy : real

; begin (* text *)
(#*** gcale text startpoint into unit coordinates ***¥)

with gkswintablel[curwinindex] do
begin
scalex := xmaxnder - xminnder;
scaley := ymaxndcr - yminndcr;
gcalex := scalex / (xmaxwin - xminwin);
scaley := scaley / (ymaxwin - yminwin);
consx := xminnder + scalex * xminwin;
consy := yminnder + scaley * yminwing;
(* end of scaling *)
starttext.ix := trunc (startpoint.x * scalex + consx);
starttext.iy := trunc (startpoint.y * scaley + consy);

{****% perform clipping if in effect ¥****)
end; (* with gkswintable *)

witext{curtextindex,maxstring,starttext,textstring)
end (* text *)

Page 2A

-— GRAPHICS KERNAL SYSTEM -— -

procedure deftext (ws)

(DEFine TEXT)

%5

?

procedure deftext (textindex : index

ME e BE e we

itextfont : fontset
itextprecision : precisionset
itextexpfactor : real
itextspacing : real
itextcolor : colorset)

(* PURPOSE: This function defines an entry in the WSTEXTTARLE
of non geometric(workstation dependent) attributes

function.

INPUT PARAMETERS:

wkstation -

(not in this version)

textindex -

itextfont -

itextprecision -

itextexpfactor

itextspacing

itexteolor -

specifies which work station's text
index table is to be (added to or
changed) by this call

specifies where in the text table to
(add or replace) the set of text
attributes

this specifies the font to be used
for this entry in the text table

specifies how the character is to be
generated (eg.
string - hardware generated writes
several characters at a time
character - hardware generated
writes only one character at a time
stroke - all attributes are applied
to the text primitive

- specifies the height to width
definition of the character fonts

- this specifies the distance between
characters

this specifies the color of the text
for this entry in the text table

begin (* deftext *)

end

with wstexttable[textindex]
do begin (* make entry in WSTEXTTABLE *)

d e Bd WE B

defined := true

textfont := itextfont
textprecision := itextprecision
textcolor := itextcolor
textexpfactor := itextexpfactor
textspacing := 1textspaclng

end (* make entry in WSTEXTTABLE *)

(* deftext *)

Page 3A

(I-

Page 4A

GRAPHICS KERNEL SYSTEM - -

procedure ingtext (ws)

*)

procedure ingtext (textindex : index

@8 WE B0 an wd

var otextfont : fontset

var otextprecision : precisionset
var otextexpfactor : real

var otextspacing : real

var otextcolor : colorset)

(* PURPOSE: This function returns the attributes of a entry
in the WSTEXTTABLE.

INPUT PARAMETERS:
wkstation

not in ver 2.0
textindex

QUTPUT PARAMETERS:
otextfont

otextprecision

otextexpfactor

otextspacing

otextcolor

specifies which work station's text
index table is to be (added to or
changed) by this call

specifies where in the text table to
(add or replace) the set of text
attributes

this returns the font type from the
set of fonts for the specified entry
in the text table

this returns the precision type from
the set of fonts for the specified
index table is to be (added to or
changed) by this call

- this returns the height to width
definition of the character fonts

- this returns the distance of the
character spacing

this specifies the color of the text
for this entry in the ftext table

Page 5A

; begin (* ingtext *)

with wstexttable[textindex]
do if not defined
then begin (* set return values to default *)

otextfont := futura
; otextprecision := textprecision
; otextexpfactor := 1.0 (* check these !! *)
; otextspacing := 0.0
; otextcolor := white

end (* set return values to default *)

else begin (* assigns table entry to output vars *)

otextfont := textfont
; otextprecision := textprecision
; otextexpfactor := textexpfactor
; otextspacing := textspacing
:+ otextcolor := textecolor

end (* assigns table entry to output vars *)

end (* ingtext *)

(-

Page 6A

GRAPHICS KERNEL SYSTEM -

procedure stotext (gks)

procedure stotext (textindex : index

w4 wh we W ws

-*)
icharheight : real
icharupvect : point
icharpath : textenum
ihalign : textenum
ivalign : textenum)

(* PURPOSE: This function defines an entry in the device
independent text table(GKSTEXTTABLE) of attributes
to be set by the settextindex function.

INPUT PARAMETERS:

textindex

icharheight

icharupvect

icharpath

ihalign

ivalign

specifies where in the device inde-
pendent text table to(add to or
replace) the set of text attridbutes

this sﬁécifies the height of the
chars for this entry in the text
table

specifies the vector of text flow
from the alignment point to the
point given

specifies the direction that char-
acters are to be generated alon
the given vector of text flow %eg.
up, down, left, right)

the horizontal alignment of the text
position

the vertical alignment of the text
position

Page TA

; begin (* stotext *)
with gkstexttable[textindex]
do begin (* make entry in GKSTEITTABLE *)
defined := true
charheight := icharheight
charupvector := icharupvect
charpath := icharpath
halign := ihalign
valign := ivalign
nd

(D w* w2 we wa e

(* some atributes may have to default *)

end (* stotext *)

Page B8A

(* -GRAPHICS KERNEL SYSTEM ——

procedure gqrytext (gks)
*)

: procedure qrytext (textindex : index
;+ var ocharheight : real
; var ocharupvect : point
; var ocharpath : textenum
; var ohalign : textenum
; var ovalign : textenum)

(* PURPOSE: This function returns an entry in the device
independent text table of attributes.

INPUT PARAMETERS:

textindex - specifies which entry in the device
independent text table is to be
returned

OUTPUT PARAMETERS:

charheight - this returns the height of the chars
for an entry in the text table

charupvect - the point which specifies the vector
of text flow is returned

charpath - returns the direction that char-
acters are to be generated along
the specified vector of text (eg.
up, down, left, right)

halign - the horizontal alignment value
for the text position is returned

valign " = the vertical alignment value for
the text position is returned

-

begin (* qrytext *E
with gkstexttable[textindex]
do begin

ocharheight := charheight
ocharupvect := charupvector
ocharpath := charpath
ohalign := halign
ovalign := wvalign

end
end (* qrytext *)

g e we e

Page GA

Page 10A

(* GRAPHICS KERNEL SYSTEM _—

procedure settextindex (gks)

— *)
; procedure settextindex (textindex : index)

(* PURPOSE: This function specifies which entry in the
text table(GKS and WSTEXTABLES) is to be used
for the following function calls.
function calls

INPUT PARAMETERS:

textindex - gspecifies which entry in the text
table is to be used for following
calls

%)

svar pt : point
; begin (* settextindex *)
if not wstexttable[textindex].defined
then
begin
deftext(textindex,futura,string,1.0,0.0,white)
(*textindex,font,precision,expfactor,spacing,color*)

end
else begin end

; pt.x := 0.0

s pt.y := 1.0

: if not gkstexttable[textindex].defined
then

stotext(textindex,1.0,pt,right,normal,normal)

(*textindex,charhieght,upvector,path,halign,valign¥*)

; curtextindex := textindex
end (* settextindex *)

Page 11A

(* --GRAPHIC KERNEL SYSTEM

procedure qrytextindex (GKS)

; procedure qrytextindex (var otextindex : index)

y

(*purpose : This function returns the value of the current
text index- CURTEXTINDEX

INPUT PARAMETERS :
NONE !!
OUTPUT PARAMETERS :

otextindex - returns the value of the current text
index - CURTEXTINDEX.

*)
; begin (* gqrytextindext *)

otextindex := curtextindex

end (* qrytextindex *)

Page 12A

(* --GRAPHICS KERNEL SYSTEM -

procedure witext (gks)

- S S *)

sprocedure witext (textindex:index;
nochars :textcharrange;
starttext :ipoint ;
textstring :tstring);
var
i: integer;

begin
if wistop < maxwielements then
begin
wistop := wistop +1;
with wis[wistop] do begin
opcode := ltext;
tinx := textindex; (¥ fix *)
ten := nochars;
tp0.ix := starttext.ix;
tp0.iy := starttext.iy;
for i := 1 to maxstring do
tstr[i] := textstring[il;
end; (* with wis[wistop] *)

end (* if wistop < maxwielements *)
else begin end
end (* witext *)

Page 13A

(%= - GRAPHICS KERNEL SYSTEM

procedure initgkstables (ws internal)

; procedure initgkstables

(* PURPOSE: This function initializes all gks tables and
current pointers to default values. (some

entries in the tables are to be set as
NOT DEFINED)

var
count : integer
ADD -=> ;pt : point

s begin (* initgkstables *)
curwinindex :=
stowindow (curwinindex, 0.0, 1.0
stoview (curwinindex, 0.0 ,1.0,0
for count := 2 to minindex
do gkswintable[count].defined := false
+ curtextindex := 1
ADD -=> ; pt.x := 0.0
ADD -=> ; pt.y := 1.0
ADD --> ; stotext (curtextindex, 1.0, pt, right, normal,normal)
: for count := 2 to maxindex
do stexttable[count}.defined := false
end (* initgkstables *

’
.

-e ee Wa

Page 14A

(= GRAPHICS KERNEL SYSTEM - ————-

procedure initwstables {(ws internal)

- - e *)
; procedure initwstables

(* PURPOSE: This function initializes all ws tables and
current pointers to default values. (some
entries in the tables are to be set as
NOT DEFINED)

*)

s var
count : sindex
s+ count! : index

; begin (* initwstables *)

curlineindex := 1

curmarkerindex := 1

curtextindex := 1

curwinindex := 1

for count! := 1 to minindex

do begin (* set table entries to undefined *)
wslinetable[counti].defined := false

: wsmarkertable[counti].defined := false

: wstexttable[count1}.defined := false

; wsviewtable|{counti |.defined := false

end (* set table entries to undefined *)

e Wd we W

;: defline (curlineindex, solid, 1, white)
: defmarker (curmarkerindex, dot, 1, white)
ADD -=> ; deftext (curtextindex, futura, string, 1.0, 0.0,
white)
:+ for countl := 1 to minindex
do wstable[counti].state := inactive
: wstable[3].state := active
end (* initwstables ¥*)

Page 15A

GRAPHICS KERNEL SYSTEM -

CONSTANT DECARATIONS for TEXT

e Me e

MININDEX = 10
MAXSTRING = 41
MININDEX = 5

(* END OF GKS CONSTANT DECLARATIONS *)

GRAPHICS KERNEL SYSTEM s

TYPE DECLARATIONS for TEXT

)

e wE e el

INDEX = 1..MAXINDEX

SINDEX = 1..MININDEX

TEXTCHARRANGE = 1..MAXSTRING

COLORSET = (BLACK, BLUE, GREEN, CYAN, RED,
MAGENTA, YELLOW, WHITE)

FONTSET = (ROMAN, FUTURA, SCRIPT, ITALIC)

PRECISIONSET = (STRING, CHARACTER, STROKE)

TEXTENUM = (NORMAL, UP, DOWN, LEFT, RIGHT, CENTER,
TOP, BOTTOM, CAP, EALF, BASE)

OPTYPE = (LTOP, LEND, LCALL, LLINE, LMARKER,
LTEXT, LCLEAR, LCONT)

GKSWINREC =

RECORD
DEFINED : BOOLEAN
XMINWIN : REAL
XMAXWIN : REAL
YMINWIN : REAL
YMAXWIN : REAL
XMINKDCR: REAL
XMAXNDCR: REAL
YMINNDCR: REAL
XMINNDC : UNIT
XMAXNDC : UNIT
YMINNDC : UNIT
YMAXNDC : UNIT
END (* GKSWINREC ¥*)

E R NS B NI 9d WS R B we B

POINT

RECORD
END (*
GKSTEXTREC =
RECORD
END (%
IPOINT =
RECORD
END (*
WSTEXTREC =
RECORD
END (*

TSTRING = ARRAY

WIELEMENT =
RECORD

Page 16A

X : REAL
Y : REAL
POINT *)

DEFINED : BOOLEAN
CHARHEIGHT : REAL
CHARUPVECTOR : POINT
CHARPATH : TEXTENUM
HALIGN : TEXTENUM
VALIGN : TEXTENUM
GKSTEXTREC *)

IX : INTEGER
IY : INTEGER
IPOINT *)

DEFINED : BOOLEAN

TEXTFONT : FONTSET
TEXTPRECISION : PRECISIONSET
TEXTEXPFACTOR : REAL
TEXTSPACING : REAL

TEXTCOLOR : COLORSET
WSTEXTREC *)

[1..MAXSTRING] OF CHAR

CASE OPCODE: OPTYPE OF

CCT Y]

LTOP : (A: INTEGER)
LEND : (B: INTEGER)
LCALL : (C: INTEGER)
LLINE : (TNX :INDEX
:N :LINERANGE
: PO,
P{ : IPOINT)
LMARKER : (MINX : INDEX
tMN : MARKERRANGE
:MPO : IPOINT)
LTEXT : (TINX : INTEGER
:PCN : TEXTCHARRANGE
:TPO : IPOINT
:TSTR : TSTRING)

Page 17A

: LCLEAR : (G : INTEGER)
: LCONT : (CP1,

CP2,

CP3 : IPOINT)

END (* WIELEMENT *)

TGKSTEXTTABLE = ARRAY [IHDEI] OF GKSTEXTREC
TWSTEXTTABLE = ARRAY [SINDEX] OF WSTEXTREC

(* END OF GKS TYPE DECLARATIONS for TEXT *)

Page 18A

(#=-m=m=m==—==== GRAPHICS KERNEL SYSTEM -

VAR DECLARATIORS for TEXT

i *)

CURTEXTINDEX : INDEX
GKSTEXTTABLE : TGKSTEXTTABLE
GKSWINTABLE : TGKSWINTABLE
WISTOP : INTEGER
WSTEXTTABLE : TGKSTEXTTABLE
TEXTSTRING : TSTRINGE

e WE W WM wh 9P

(* END GKS VAR DECLARATIONS for TEXT *)

Page 60

APPENDIX B
CODE LEVEL DATA FLOW

Page 1B

®#3canner T sTi sT d7
—\ {(coord,text) (textid) (textid) (WSid, textid)
RWS —_—gT — qT iT
(textid) (Wsid, textid)
AW
v A4 VY A4
ocedure: ocedure: ocedure: /NProcedure:
DRAWTEXT EXTINDEX 4\ TEXT DEFTEXT
(APPX A,pg 14) APPX A,pg 10A) APPX A,pg BA) (APPX A,pg 2)
i V;
?roceggre: ocedure: Procedure:
DRYTEXTINDEX QRYTEXT INQTEXT
(APPX A,pg 11A) kAPPI A,pg 84) (APPX A,pg 4A)
| ?
h 4 \ 4
var: var:
GKSTEXTTABLE WSTEXTTABLE
(pg 184) (pg 184)
rocedure: type:
TEXT ltext >t WIS
[(wielements)
4 APPY A,pg 12A) (APPX A,pg 16A
DISTRIBUTOR ltext I
DIST. driver

VDI Primitives

v

WorkStation
Driver

CODE LEVEL DATA FLOW

(*scanner for immlementation vurposes onlv)

(1)

(3)

(4)

(5)

(8)

(9)

Page 61

LIST OF REFERENCES

Baily, C. "Graphics standards are emerging-
slowly but surely." Electronics Design , Vol
31, 20 Jan. 1983, 103-1710.

Bergeron, R.D., Bono, P.R., Folly, J.D.
"Graphics Programming using the Core System."
ACM Computing Surveys , 10, No.4 (Dec. 1978),
389-143.

Bono, P.R., et.al., "GKS- The First Graphics
Standard." Computer Graghics and Applications
¥ 2, KO.B (uy 2] - L]

Buttuls, P. "Some Criticisms of the Graphical
Kernal System (GKS)." Computer Graphics , 15,
No. 4 (Dec. 1981), -302= "

Encarnacao, J., et. al., "The Workstation
concept of GKS and the resulting conceptual
differences to the GSPC Core System."
Computer Graphics , 14, No. 2 (July 1980),

Fichera, R. "Graphics compatibility." Mini-
Micro Systems , (July 1983), 189-194.

Hatfield, L. "GKS and the Alphabet Soup of
Graphics Standards." Computer Graphics , 16,
No. 2 (June 1982), 161,162.

Nicol, C.J. and Kilgore, A.C. "A Pascal
Implementation of the GSPC Core Graphics
Package." Computer Graphics , 15, No.4 (Dec.
1981), 327-335.

Shrehlo, Kevin B. "ﬁKSI graphics standards
coalesce around the international kernel."
Mini-Micro Systems , (November 1982), 175-

(10)

(11)

(12)

(13)

(14)

Page 62

Stluka, F.P., Saunders, B.F., Slayton, P.M.,
Badler, N.I. "OVERVIEW of the UNIVERSITY OF
PENNSYLVANIA CORE SYSTEM STANDARD PACKAGE
IMPLEMENTATION." Computer Graphics , 16, No.
2 (June 1982), 177-185.

"Draft International Standard ISO/DIS 7942."
Information Processing Graphical Kernal
System (GKS) Punctional Desecription, 17 Jan.
1983.

"Status Report of the Graphics Standards
Planning Committee of ACM/SIGGRAPH.",
Computer Graphics quarterly report of
SIGGRAPH-ACM, Vol 11, No 3 (fall 1977), whole
issue.

"Graphics that any computer can use." Business
Week , 30 Aug. 1982, p.62A.

Foley, J.D. and Van Dam, Andries, Fundamentals
of Interactive Computer Graphics Addison-
WesIley Publishing Co., gE—

AN IMPLEMENTATION OF THE GKS
TEXT PRIMITIVE
by
HENRY BRADLEY FOUT III
B.S.,B.A. Loyola College of Baltimore, 1974

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements of the degree
MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Page 1
ABSTRACT

The Graphical Kernel System is a <functional software
interface between graphics application programs and
configurations of graphical input and output devices. GKS
shields the peculiarities of these devices from an
application program by providing a set of callable functions
which abstract their capabilities. As of the writing of this
report, GKS is in the process of being accepted as the first

international graphics standard.

Because of the interest generated by this pending
standard, the Kansas State University Department of Computer
Science began a project to study and evaluate GKS. The
project included the implementation of a minimal version of
BKS. Bach student involved studied GKS in general, then
focused their implementation and subsequent report on a
subset of GKS. This is one of several reports resulting from

the KSU project to study GKS.

This report provides a detailed description of the GKS
TEXT graphical output primitive and its associated
implementation. After a definition and history of GKS, the
report focuses on the EEXT output primitive. Throughout a

tutorial on TEXT, comments are used to highlight the areas

Page 2

where the KXSU specification differs from +the Draft
International Standard (ISO/DIS) 7942[11] specification. 1In
addition, GKS 1is compared with the CORE graphics system by
way of a review of the CORE system. The design and
implementation of the KBSU version of TEXT is analyzed.
Because of decisions made early in the design phase, and
deviations from the Draft[11], the KSU version yields
special concerns. This report concludes with a discussion of

these concerns.

1430-74
CD-53

