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Abstract 

Grasslands are one of the largest, most biodiverse, and productive terrestrial biomes but they receive 

very low levels of protection. The temperate grasslands in the United States are one of the most 

threatened grassland ecosystems. Every year, a significant portion of grasslands in the Great Plains 

are converted to agricultural use, with almost 96% of the historical extent lost. Other factors that 

affect existing grassland health include significant climatic changes, invasion of woody, non-native 

species, fragmentation, lack or inadequate burning, and excessive grazing. The impact of the 

combination of these factors on grasslands in the US Great Plains is still unknown. The goal of this 

research is to investigate the long-term grassland vegetation conditions using a well-known indicator 

(greenness) and assesses its impact on the provision of select grassland ecosystem services within the 

US Great Plains from 2001 to 2017. 

 The above goal was achieved with three objectives addressed in three chapters. In Chapter 3, a time-

series analysis of Moderate Resolution Imaging Spectrometer (MODIS) 16-day maximum value 

composite Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) 

data (MOD13Q1 Collection 6) was performed to assess long-term trends in vegetation greenness 

across the Great Plains ecoregion of the United States. The Breaks for Additive Season and Trend 

(BFAST) decomposition method was applied to a time series of images from 2001 to 2017 to derive 

spatially explicit estimates of gradual interannual change. Results show more 'greening' trends than 

'browning' and 'no change' trends during the study period. Comparing the trend results from both 

vegetation indices suggests that EVI is more suitable for this analysis in the study area, especially in 

areas with high biomass. 

In Chapter 4, a time-series analysis of Moderate Resolution Imaging Spectrometer (MODIS) 16-day 

maximum value composite Enhanced Vegetation Index (EVI) data (MOD13Q1 Collection 5) is used 

to explore spatial patterns of vegetation phenology and to assess long-term phenology trends across 

the region. The program TIMESAT was used to extract key measures of vegetation phenological 

development from 2001 to 2017, including the phenometrics (1) season length, (2) start of growing 

season, (3) end of growing season, (4) middle of the growing season, (5) maximum NDVI value, (6) 

small integral, (7) left derivative, and (8) right derivative. Results show important variation in 

phenological patterns across the region such as a shift to a later start, earlier end, and shorter the 

growing season length, especially in the southern parts of the region. As shown in the small integral 



 
 

and maximum EVI, vegetation productivity appears to have increased over many areas in the Great 

Plains ecoregion. 

Finally, Chapter 5 focuses on developing a methodological improvement to the widely used Invest 

ecosystem services model that uses remotely sensed inputs to capture the interannual spatio-temporal 

dynamics of grassland vegetation on the provision of grassland ecosystem services across the US 

Great Plains. A selected set of grassland ecosystem services was quantified (economic and 

biophysical values) for the period between 2001 and 2017. This exploratory study will be a basis for 

highlighting the role grasslands play in providing essential ecosystem services and how improved 

long-term vegetation monitoring can benefit land-use decisions locally and regionally. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Time series analysis of long-term vegetation trends, phenology, and ecosystem service 

valuation for grasslands in the U.S. Great Plains 

 

by 

 

Hilda Uloma Onuoha 

 

B.Tech., Federal University of Technology Owerri, Nigeria, 2008 

M.S., Southern Illinois University Edwardsville, 2016 

 

A DISSERTATION 

submitted in partial fulfillment of the requirements for the degree 

 

 

DOCTOR OF PHILOSOPHY 

 

Department of Geography and Geospatial Sciences. 

College of Arts and Sciences 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

2022 

 

 

 

Approved by: 

Major Professor 

Dr. J. M. Shawn Hutchinson 
  



 
 

Copyright 

© Hilda Onuoha 2022. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Abstract 

 Grasslands are one of the largest, most biodiverse, and productive terrestrial biomes but they receive 

very low levels of protection. The temperate grasslands in the United States are one of the most 

threatened grassland ecosystems. Every year, a significant portion of grasslands in the Great Plains 

are converted to agricultural use, with almost 96% of the historical extent lost. Other factors that 

affect existing grassland health include significant climatic changes, invasion of woody, non-native 

species, fragmentation, lack or inadequate burning, and excessive grazing. The impact of the 

combination of these factors on grasslands in the US Great Plains is still unknown. The goal of this 

research is to investigate the long-term grassland vegetation conditions using a well-known indicator 

(greenness) and assesses its impact on the provision of select grassland ecosystem services within the 

US Great Plains from 2001 to 2017. 

 The above goal was achieved with three objectives addressed in three chapters. In Chapter 3, a time-

series analysis of Moderate Resolution Imaging Spectrometer (MODIS) 16-day maximum value 

composite Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) 

data (MOD13Q1 Collection 6) was performed to assess long-term trends in vegetation greenness 

across the Great Plains ecoregion of the United States. The Breaks for Additive Season and Trend 

(BFAST) decomposition method was applied to a time series of images from 2001 to 2017 to derive 

spatially explicit estimates of gradual interannual change. Results show more 'greening' trends than 

'browning' and 'no change' trends during the study period. Comparing the trend results from both 

vegetation indices suggests that EVI is more suitable for this analysis in the study area, especially in 

areas with high biomass. 

In Chapter 4, a time-series analysis of Moderate Resolution Imaging Spectrometer (MODIS) 16-day 

maximum value composite Enhanced Vegetation Index (EVI) data (MOD13Q1 Collection 5) is used 

to explore spatial patterns of vegetation phenology and to assess long-term phenology trends across 

the region. The program TIMESAT was used to extract key measures of vegetation phenological 

development from 2001 to 2017, including the phenometrics (1) season length, (2) start of growing 

season, (3) end of growing season, (4) middle of the growing season, (5) maximum NDVI value, (6) 

small integral, (7) left derivative, and (8) right derivative. Results show important variation in 

phenological patterns across the region such as a shift to a later start, earlier end, and shorter the 

growing season length, especially in the southern parts of the region. As shown in the small integral 



 
 

and maximum EVI, vegetation productivity appears to have increased over many areas in the Great 

Plains ecoregion. 

Finally, Chapter 5 focuses on developing a methodological improvement to the widely used Invest 

ecosystem services model that uses remotely sensed inputs to capture the interannual spatio-temporal 

dynamics of grassland vegetation on the provision of grassland ecosystem services across the US 

Great Plains. A selected set of grassland ecosystem services was quantified (economic and 

biophysical values) for the period between 2001 and 2017. This exploratory study will be a basis for 

highlighting the role grasslands play in providing essential ecosystem services and how improved 

long-term vegetation monitoring can benefit land-use decisions locally and regionally. 
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Chapter 1 – General introduction 

1.1 Overview 

Grasslands are one of the largest terrestrial ecosystems globally, covering about 40 percent of the 

Earth's surface (Briggs et al., 2005). Grasslands occur naturally on every continent except Antarctica, 

although a few grass species occur on the Antarctic Peninsula and surrounding islands due to recent 

warming (White et al., 2000; Suttie et al., 2005; Blair et al., 2014). They are one of the most biodiverse 

and productive terrestrial biomes but receive low levels of protection (Mark & McLennan, 2005; 

Pendall et al., 2018).  

Vast grassland areas are converted each year for agricultural production or urban development. In the 

last decade, more than 8,100 square kilometers of grasslands were converted to croplands in the entire 

Great Plains (Plowprint report, 2021). In 2019 alone, approximately 10,500 square kilometers of 

grasslands in the Great Plains were lost to crop cultivation (Plowprint report, 2021). The temperate 

grasslands in the United States are among the most threatened grassland ecosystems, with almost 

62% of the historical extent lost (Comer et al., 2018; Oakleaf et al., 2015).   

In addition to conversion to other land-use, threats to grassland include the invasion of non-native 

species (woody species), fragmentation, overgrazing, desertification, and fire suppression (Gibson, 

2009; Jacquin et al., 2016; Ratajczak et al., 2016). Based on the NatureServe landscape condition 

model for the Great Plains, approximately 20% of shortgrass prairie, 15% of mixed-grass prairie, and 

60% of tallgrass prairie are in poor to worst conditions (Comer et al., 2018). 

Shafer and colleagues' (2014) assessment of the climate in the Great Plains of the U.S. includes 

increasing temperatures alongside hazardous event events like flooding, drought, and tornadoes. The 

changing climate has had several impacts, including water stress and agricultural practices, but most 

importantly, the variation in vegetation structure and growth cycles (Shafer et al., 2014). The 

projection of climate in the region is continued rising temperature, increased winter and spring 

precipitation in the northern Great Plains and increased dry spells in the southern Great Plains (Shafer 

et al., 2014). Little is known on how the changing climate and other aforementioned anthropogenic 

activities impact the grasslands in the Great Plains ecoregion. In the Northern hemisphere, phenology 
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studies have shown changes in seasonality with shifts in time-dependent phenometrics; there are 

longer growing seasons and delayed end of growing season (Jeong et al., 2011; Wang et al., 2016; 

Cui et al., 2017). 

Declining quality in grasslands can alter the structure and function of grassland ecosystems, and they 

also likely affects the provision of the many grassland-related ecosystem services. Grassland-related 

ecosystem services include but are not limited to carbon sequestration, erosion control, water storage, 

recreation, nutrient cycling, very high biodiversity, and grazing productivity (Briggs et al., 2005; 

MEA, 2005; TEEB, 2010; Ratajczak et al., 2016). The value of these and other ecosystem services 

provided by native grasslands in the United States Great Plains is estimated to be more than $5,000 

(in 2004 U.S. dollars) per hectare annually (Dodds et al., 2008). 

The current declining trends in grasslands have generated considerable interest in the quality and 

quantity assessments of grasslands (Henebry, 1993; Wang et al., 2013; Ratajczak et al., 2016; 

Chakraborty, 2018). These studies help comprehend the changes in the environment as climatic 

patterns change, including the impact on plant growth, carbon balance, and food productivity. The 

findings, in turn, will help estimate market values of ecosystem services to assess and easily portray 

the current benefits of an area's natural capital and the potential costs of human impact. 

Remotely-sensed images are popular for monitoring grasslands because of the cost-effectiveness of 

extensive area coverage coupled with advances in data properties (better spatial, spectral, and 

temporal qualities of data). Analysis of a time series of remotely sensed imagery to evaluate temporal 

trends in grasslands may be used to inform management practices. NDVI is the most applied 

vegetation index (VI) used as a proxy to provide an approximate measure of relative vegetation 

amount (Wang et al., 2018). NDVI has shown a consistent correlation with vegetation dynamics in 

various scales of land area, and the ratio concept reduces many sources of noise, but it has the 

limitation of saturation of value over high biomass areas (Huete, 1988; Wang et al. 2018). The 

enhanced vegetation index (EVI) was developed to improve sensitivity in high-biomass areas and 

further reduce atmospheric influences. The EVI uses additional wavelength bands and a soil 

adjustment factor to adjust NDVI for atmospheric and soil noises as well as mitigating the saturation 

in dense vegetation areas. However, the soil adjustment factor used in calculating the EVI makes it 

more sensitive to the variation in the radiance that accompanies a change in the topography of a 
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surface in response to a change in the light source and sensor position (Matsushita et al., 2007). 

Therefore, making it difficult in areas with rough terrains or mountainous areas (Matsushita et al., 

2007).  

Long-term studies on a major terrestrial biome like grasslands are critical to achieving an integrated 

understanding of ecosystems' response to climate change. Understanding the impact of climate 

change and ecosystems is necessary because these changes impact the provision of various essential 

ecosystem services provided by grasslands. Therefore, long-term analysis of grassland is needed for 

monitoring and evaluating long-term changes in biomes like grasslands is also key environmental 

policy and decision making and evaluating the impact of some implemented policies on the 

environment. 

Some existing studies have highlighted the changing spatial extent of grasslands in the Great Plains 

(Comer et al., 2018), the phenological trends in the northern hemisphere (Jeong et al., 2011), and 

greening/browning trends globally (De Jong et al., 2012). Comer et al. (2018) analyzed long-term 

spatial trends in grassland types across the Great Plains, including identifying species of concern, 

protected areas, intactness, and connectivity among grassland areas and identifying Grassland 

Potential Conservation Areas (GPCAs). Results of the long-term spatial trends showed that the 

tallgrass prairies had the most severe declines in extent, followed by mixed-grass, shortgrass, and 

semi-desert grasslands. Results from the time-series analyses of long-term phenological trends in the 

northern hemisphere by Jeong et al. (2011) showed a general earlier start of the growing season and 

later end of the growing season, which resulted in an increased growing season length. Also, Jong et 

al. (2012) carried out an analysis on global vegetation greening and browning trends between 1982 

and 2008. Although a net greening was detected across all biomes, the trend for grasslands and 

shrublands showed abrupt greening followed by gradual browning. The southern hemisphere showed 

the most browning, and the temporal analysis indicates more browning than greening in the time 

studied.  

Despite these past studies, relatively little is known about the long-term conditions of grasslands in 

the interior of the United States. The objective of this study is to assess long-term trends and spatial 

patterns in grasslands within the U.S. Great Plains based on vegetation greenness as measured by the 
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Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) over the 

period 2001 to 2017. 

A time series of vegetation indices can be used to determine trends and seasonal variation in 

vegetation properties (Heumann et al., 2007). One approach used to accomplish this is temporal 

decomposition, which separates time-series image data into three components, including seasonality 

(annual), trend (interannual and could be linear or nonlinear), and residuals (remainder of data signal 

after removing seasonality and trend) (Verbesselt et al., 2010). Phenology metrics or phenometrics 

such as the start and end of season or duration of the growing season can be extracted from time series 

of fitted VIs using statistical methods too (Jonsson et al., 2004; Jonsson & Eklundh, 2004).  

In North America and the northern hemisphere, phenology studies have shown changes in seasonality 

with shifts in time-dependent phenometrics like the longer length of the growing season and delayed 

end of the season (Jeong et al., 2011; McManus et al., 2012; Cui et al., 2017). Jeong et al.'s (2011) 

study was on the entire northern hemisphere and focused on the broad vegetation categories. Results 

from the time-series analyses of long-term phenological trends in the northern hemisphere show a 

general earlier start of the growing season, later end of the growing season, and increased length of 

the growing season. In North America, existing studies focusing on grasslands are in Canada 

(McManus et al., 2012; Cui et al., 2017;). Cui et al. (2017) examine the long-term drought-related 

variability of grassland phenology in relation to drought in the southwestern part of Canadian prairies 

in Alberta and Saskatchewan (part of the Great Plains) from 1982 to 2014. Results show that droughts 

do impact the timing of the start and of the growing cycle, with a shorter growing cycle with decreased 

precipitation.  

The U.S. Great Plains ecoregion is the largest grassland reserve in the U.S. The aforementioned 

drastic decline of this highly biodiverse, agriculturally-dependent ecoregion coupled with the spatial 

variability in environmental and socioeconomic characteristics makes it essential to understand the 

health status and dynamics of the ecoregion. Therefore, the overall purpose of this research is to 

investigate long-term grassland vegetation conditions using a well-known indicator (greenness based 

on VI values) within the U.S. Great Plains for the period 2001-2017 (based on data availability) and 

assess the impact on the provision of related grasslands benefits.  
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1.2 Research question and objectives 

As a reflection of the purpose of this dissertation, the comprehensive research question is: what are 

the long-term grassland vegetation conditions within the U.S. Great Plains, and what impact might 

change in these conditions have on the provision of grassland-related ecosystem services?  

This research has three objectives to answer the research question. The objectives of this study are 

to: 

1. Assess the long-term trends in grassland based on vegetation greenness within the U.S. Great 

Plains grasslands over the period 2001-2017.  

The temporal decomposition of a time series of vegetation indices (NDVI and EVI) data and the 

statistical analysis of the trend within the period 2001-2017.    

2. Assess the spatial patterns and trends of grassland phenology in the U.S. Great Plains over 

the period 2001-2017.  

Filtering of a time series of vegetation indices (NDVI and EVI) data, the extraction of phenology 

metrics, and the use of summary statistics to assess temporal and spatial patterns over the period 

2001-2017. Also, determine the significance of phenometrics across the study area using statistical 

tests. 

3. Estimate the spatio-temporal changes in grassland-related ecosystem services within the U.S. 

Great Plains. 

Improve existing spatially-explicit ecosystem valuation methods by highlighting the temporal 

component in the provision of ecosystem services and estimating the economic value of a subset of 

grassland-related ecosystem services to assess the impact of changing grassland conditions on the 

provision of these ecosystem services. 

From these objectives, this research primarily seeks to answer one of the National Research Council's 

(NRC) 2010 grand challenges for Geographic Information Science: "How are we changing the 

physical environment of earth's surface?" (Gould, 2010). This research also advances our 

understanding of North American grassland vegetation dynamics as it relates to the global decline in 

ecosystem services (MEA, 2005) and grasslands in the ecoregion (Comer et al., 2018; Plowprint 

report, 2018). Finally, this research highlights the importance of the need for the best practices for 
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grasslands conservation and restoration by showing the potential impact on important benefits 

grasslands provide.   

1.3 Dissertation structure 

This dissertation is divided into six independent chapters. Chapter one presents a general introduction 

of the research-the background of the study, research need, research questions, and objectives. The 

second chapter discusses the literature that is pertinent to the research, including definitions, 

classification, importance, and current management challenges for grasslands. The chapter covers a 

broad view of remote sensing of vegetation, including land surface phenology and long-term trend 

analysis, highlighting the need for research in the Great Plains. The literature review also covers the 

evolution of the ecosystem services concept, ecosystem services classification and valuation methods, 

a survey of grassland ecosystem service research, and concludes with the implication of the review, 

which provides a further justification for the study.  

The third chapter to the sixth chapters are manuscript-format chapters, each focusing on each 

objective of this dissertation. Chapter three provides the detection and of long-term grassland 

vegetation trends for the Great Plain's ecoregion using temporal decomposition and satellite-derived 

vegetation indices. Chapter four provides a time series analysis of phenometrics for the U.S. Great 

Plains ecoregion using satellite-derived vegetation indices. The fifth chapter provides a spatio-

temporal valuation of grassland ecosystem services in the U.S. Great Plains while presenting 

improved methods of ecosystems services valuation for vegetation. Chapter six presents the 

conclusion and summary of findings based on the research question and objectives. The chapter also 

discusses the future direction for this research. 

 

 

 

 

  



7 
 

1.4 References 

 

Blair, J., Nippert, J., & Briggs, J. (2014). Grassland Ecology. In R. K. Monson (Ed.), Ecology and 

the environment (pp. 389–423). Springer New York. https://doi.org/10.1007/978-1-4614-

7501-9_14 

Briggs, J. M., Knapp, A. K., Blair, J. M., Heisler, J. L., Hoch, G. A., Lett, M. S., & McCarron, J. K. 

(2005). An Ecosystem in Transition: Causes and Consequences of the Conversion of Mesic 

Grassland to Shrubland. BioScience, 55(3), 243–254. 

Comer, P. J., Hak, J. C., Kindscher, K., Muldavin, E., & Singhurst, J. (2018). Continent-Scale 

Landscape Conservation Design for Temperate Grasslands of the Great Plains and Chihuahuan 

Desert. Natural Areas Journal, 38(2), 196–211. https://doi.org/10.3375/043.038.0209 

Cui, T., Martz, L., & Guo, X. (2017). Grassland phenology response to drought in the Canadian 

prairies. Remote Sensing, 9(12), 1258. https://doi.org/10.3390/rs9121258 

Dodds, W. K., Wilson, K. C., Rehmeier, R. L., Knight, G. L., Wiggam, S., Falke, J. A., Dalgleish, H. 

J., & Bertrand, K. N. (2008). Comparing ecosystem goods and services provided by restored 

and native lands. Bioscience, 58(9), 837–845. https://doi.org/10.1641/B580909 

Gibson, D. J. (2009). Grasses and grassland ecology (1st ed.). Oxford University Press. 

Gould, M. (2010). GIScience Grand Challenges: How can research and technology in this field 

address big-picture problems? Esri. https://www.esri.com/news/arcuser/1010/ 

files/geochallenges.pdf 

Henebry, G. M. (1993). Detecting change in grasslands using measures of spatial dependence with 

Landsat TM data. Remote Sensing of Environment, 46(2), 223–234. 

https://doi.org/10.1016/0034-4257(93)90097-H 

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 

295–309. https://doi.org/10.1016/0034-4257(88)90106-X 



8 
 

Hutchinson, J. M. S., Jacquin, A., Hutchinson, S. L., & Verbesselt, J. (2015). Monitoring vegetation 

change and dynamics on US Army training lands using satellite image time series analysis. 

Journal of Environmental Management, 150, 355–366. 

https://doi.org/10.1016/j.jenvman.2014.08.002 

Jacquin, A., Goulard, M., Hutchinson, J. M. S., Devienne, T., & Hutchinson, S. L. (2016). A 

Statistical Approach for Predicting Grassland Degradation in Disturbance-Driven Landscapes. 

Journal of Environmental Protection, 07(06), 912–925. 

https://doi.org/10.4236/jep.2016.76081 

Jeong, S. J., Ho, C. H., Gim, H. J., & Brown, M. E. (2011). Phenology shifts at start vs. end of growing 

season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. 

Global Change Biology, Feb 17, Early View. https://doi.org/10.1111/j.1365-

2486.2011.02397.x 

Johnson, L., Cooke, B., Ramos, V. H., & Easson, G. (2008). Use of NASA Satellite Assets for 

Predicting Wildfire Potential for Forest Environments in Guatemala [Preliminary report]. 

University of Mississippi Geoinformatics Center (UMGC), Mississippi State University, and 

National Council for Protected Areas, Guatemala. https://www.gri. 

msstate.edu/research/nasa_rpc/2005/Wildfire%20REPORT%20SUBMISSION_MSU_RPC0

5.pdf 

Jönsson, P., & Eklundh, L. (2004). TIMESAT—a program for analyzing time-series of satellite 

sensor data. Computers & Geosciences, 30(8), 833–845. 

https://doi.org/10.1016/j.cageo.2004.05.006 

Mark, A. F., & McLennan, B. (2005). The conservation status of New Zealand's indigenous 

grasslands. New Zealand Journal of Botany, 43(1), 245–270. 

https://doi.org/10.1080/0028825X.2005.9512953 

Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the Enhanced 

Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic 

Effects: A Case Study in High-density Cypress Forest. Sensors (Basel, Switzerland), 7(11), 

2636–2651. https://doi.org/10.3390/s7112636 



9 
 

McManus, K. M., Morton, D. C., Masek, J. G., Wang, D., Sexton, J. O., Nagol, J. R., Ropars, P., & 

Boudreau, S. (2012). Satellite-based evidence for shrub and graminoid tundra expansion in 

northern Quebec from 1986 to 2010. Glob Change Biol, 18(7), 2313–2323. 

https://doi.org/10.1111/j.1365-2486.2012.02708.x 

Millennium Ecosystem Assessment [MEA]. (2005). Ecosystems and human well-being: Synthesis 

(2nd ed., p. 160). Island Press. 

Oakleaf, J. R., Kennedy, C. M., Baruch-Mordo, S., West, P. C., Gerber, J. S., Jarvis, L., & Kiesecker, 

J. (2015). A world at risk: aggregating development trends to forecast global habitat 

conversion. Plos One, 10(10). https://doi.org/10.1371/journal.pone.013833 

Pendall, E., Bachelet, D., Conant, R. T., El Masri, B., Flanagan, L. B., Knapp, A. K., Liu, J., Liu, S. 

& Schaeffer, S. M. (2018). Chapter 10: Grasslands. In Cavallaro, N., G. Shrestha, R. Birdsey, 

M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, & Z. Zhu (eds.). Second State of 

the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report.(pp. 399-427). US 

Global Change Research Program. https://doi.org/10.7930/SOCCR2.2018.Ch10. 

Plowprint annual report (2018). World Wildlife Fund. Retrieved from https://c402277.ssl. 

cf1.rackcdn.com/publications/1171/files/original/PlowprintReport_2018_FINAL_082318Lo

wRes.pdf?1535470091. 

Plowprint annual report (2021). World Wildlife Fund. Retrieved from 

https://files.worldwildlife.org/wwfcmsprod/files/Publication/file/5yrd3g00ig_PlowprintRepo

rt_2021_Final_HiRes_b.pdf?_ga=2.206397267.119456530.1640946732-

1705276999.1640946731 

Ratajczak, Z., Briggs, J. M., Goodin, D. G., Luo, L., Mohler, R. L., Nippert, J. B., & Obermeyer, B. 

(2016). Assessing the Potential for Transitions from Tallgrass Prairie to Woodlands: Are We 

Operating Beyond Critical Fire Thresholds? Rangeland Ecology & Management, 69(4), 280–

287. https://doi.org/10.1016/j.rama.2016.03.004 



10 
 

Shafer, M., Ojima, D., Antle, J. M., Kluck, D., McPherson, R. A., Petersen, S., Scanlon, B., & 

Sherman, K. (2014). Ch. 19: Great Plains. Climate change impacts in the United States: the 

third national climate assessment. U.S. Global Change Research Program. 

https://doi.org/10.7930/J0D798BC 

Suttie, J. M., Reynolds, S. G., Batello, C., & Food and Agriculture Organization of the United Nations 

(2005). Grasslands of the world (Series No. 34 ed.). Rome, Italy: p.536.  

TEEB. (2010). The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of 

Nature: A synthesis of the approach, conclusions and recommendations of TEEB. Progress 

Press  

Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and seasonal 

changes in satellite image time series. Remote Sensing of Environment, 114(1), 106–115. 

https://doi.org/10.1016/j.rse.2009.08.014 

Wang, C., Hunt, E. R., Zhang, L., & Guo, H. (2013). Phenology-assisted classification of C3 and C4 

grasses in the U.S. Great Plains and their climate dependency with MODIS time series. Remote 

Sensing of Environment, 138, 90–101. https://doi.org/10.1016/j.rse.2013.07.025 

Wang, S., Yang, B., Yang, Q., Lu, L., Wang, X., & Peng, Y. (2016). Temporal Trends and Spatial 

Variability of Vegetation Phenology over the Northern Hemisphere during 1982-2012. Plos 

One, 11(6), e0157134. https://doi.org/10.1371/journal.pone.0157134 

Wang, S., Lu, X., Cheng, X., Li, X., Peichl, M., & Mammarella, I. (2018). Limitations and 

challenges of MODIS-Derived phenological metrics across different landscapes in Pan-Arctic 

regions. Remote Sensing, 10(11), 1784. https://doi.org/10.3390/rs10111784 

White, R., Murray, S., Rohweder, M., & Prince, S. D. (2000). Pilot analysis of global ecosystems: 

grassland ecosystems (Illustrated, p. 94). World ResourcesBaghi, N. G. & Oldeland, J. (2015). 

BFAST: A replacement of climate indicators for monitoring time-series using MODIS. The 

XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage 

Production, Biodiversity and Environmental Protection). New Delhi, India. 

https://uknowledge.uky.edu/igc/23/1-2-1/2 

 



11 
 

Chapter 2 - Literature review 

2.1 Grasslands 

Grasslands are one of the largest terrestrial ecosystems and major biomes. They cover roughly 20 to 

40 percent of the entire earth's surface (Blair et al., 2014; Briggs et al., 2005). The variation in extent 

is because of the varying definitions and classification of grasslands. In the following sections, we 

discuss the variations in the definition and classification of grasslands along with the spatial 

distribution of grassland globally. We also discuss why grasslands are important and the several 

management challenges of managing grasslands.  

2.1.1 Definition 

The International Union for Conservation of Nature (IUCN) and UNESCO describes the definition 

and usage of the term “grassland” as ecological as opposed to associated terms like “rangeland” or 

“grazing land,” which is land-use based and sometimes interchanged. This definition based on 

ecosystems is a significant factor in the variation of grassland extent as there are several ecosystem 

classification systems. Ecosystem classification systems are dependent on the investigator(s), scale 

(local or regional), environmental conditions, including physiography, climate, soils, and hydrology 

(Singh et al., 1983).  The common theme in grassland definition is the vegetation composition, which 

is linked to ecosystem division based on climate (Bailey, 2009). Vegetation composition, in this case, 

is the absence or sparse presence of trees and/or shrubs.   

Grasslands are generally defined as gramineous vegetation (dominated by grasses) that include 

variable amounts of other herbaceous plants, small amounts of shrubs, and sparse trees (Barnes & 

Nelson, 2003; Suttie et al., 2005; White et al., 2000; Xu & Guo, 2015). That means the term 

‘grassland’ broadly encompasses non-woody vegetation, savannas, woodlands, shrublands, and even 

tundra. Therefore, it can be used to describe ecosystems with significant variations in the ratio of 

relative abundance of grasses to other plants like legumes, sedges, trees, and shrubs (Blair et al., 2014; 

West & Nelson, 2017). For example, some definitions allow 10 to 40 percent tree or shrub cover in 

areas covered with grass (UNESCO, 1973; White, 1983). Other definitions allow 15 to 50 percent 

tree or shrub cover provided the ground layer has a continuous grass layer, and some specify less than 

one tree per 5 acres (Anderson, 2006; White et al., 2000). In most cases, the term grasslands generally 
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mean natural and semi-natural grasslands, meaning they have had little improvement and are mostly 

native species (Bengtsson et al., 2019). 

 

Variation in definitions also comes with differences in grassland terminology. Most of the popular 

terms relating to grasslands originate from historic grassland management, land use, and geographic 

location (Gibson, 2009). Several international organizations have developed formal descriptions for 

grassland-related terms. A popular example is the Forage and Grazing Terminology Committee that 

several U.S. agencies, with representation from Australia and New Zealand, published the definitions 

of several grassland-related terms in 1991 (Allen et al., 2011; Gibson, 2009).  A more recent edition 

of definitions was published in 2011 that includes more international participation. The newer edition 

includes definitions of specific terms that are used synonymously to the term “grasslands” based on 

varying geographic locations and structures (Table 1.1). From relatively open savannas and 

woodlands (e.g., the cerrados of South America), treeless rolling grasslands in North America 

(Prairies), and some deserts and shrub grasslands referred to as steppes.  

 

 Table 2.1: Grassland terminology. The definitions are modified from those provided by Allen et al. 

(2011) for Forage and Grazing Terminology Committee.  

 

Term Definition Category* 

 Grazing land All-inclusive of any (vegetated) land that is or can be grazed.  a 

Pastureland  Vegetation used to produce introduced or indigenous forage for 

grazing or harvest by cutting.  

 

a 

Rangeland Land on which the indigenous vegetation is predominantly 

grasses, forbs, or shrubs that is or can be grazed and is managed 

as a natural ecosystem. 

  

a 

Savanna Grasslands with variable proportions of trees or large shrubs, b 
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especially in tropical and subtropical regions. It is often a 

transition between grassland and forests.  

Steppe Semi-arid, sparse to rolling grassland with short to medium-

height grasses occurring with other herbaceous vegetation and 

some shrubs. Common in North America, south-eastern Europe, 

and Asia. 

b 

Tundra Arctic and alpine regions without large trees and covered with 

varying low-lying vegetation to bare ground.  

b 

Prairie Nearly level or rolling grassland, few or no trees treeless. They 

are short, intermediate, or tall-grass prairie depending on the 

variation of climate, fire regimes, and soil depth. Common in 

North America.  

c 

Campos Consist of grasses with herbs, small shrubs, and a few trees on 

an undulating and hilly landscape. Climate is colder than in 

Cerrados. Common in Uruguay, southern Brazil, and north-

eastern Argentina. 

c 

Pampa Treeless grasslands on low-lying temperate grassland or 

subtropical steppe. Named after the pampas region and includes 

grasslands in southern South America. 

c 

Cerrados Specific to central Brazil. They are savanna with varying 

amounts of trees and shrubs along rivers and in valley bottoms.  

c 

Veld  Open, indigenous grasslands. The term is of Afrikaans origin; 

they are found in most southern African countries. 

c 

*Category: a = Land use; b = Grassland type; c = Location-specific grassland synonym 
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Another factor in the variation of grassland extent that is closely related to the definition 

aredifferences in land cover characterization (Faber-Langendoen & Josse, 2010; White et al., 2000). 

Because grasslands areas are usually large, estimation of extent, which is extremely important in 

monitoring temporal alteration in their extent, structure, and composition with modification, is 

usually done using remotely sensed data.  Variations in sensor capabilities and remote sensing data 

properties might result in slightly different area estimations. For example, the U.S. Geological 

Survey’s Global Land Cover Characterization (GLCC) with the International Geosphere-Biosphere 

Project (IGBP) classified landcover using a 1-km Advanced Very High-Resolution Radiometer 

(AVHRR) data, compared to the Chinese 30-m GlobeLand30 land cover classification created using 

Landsat and Chinese HJ-1 satellite images (Wang et al., 2018b; White et al., 2000). Land cover data 

have different classification methods and levels of accuracy, but beyond these, and more importantly, 

the variation in extent is primarily dependent on the choice of land cover classes and what constitutes 

grassland by an organization, authority, or researcher. The Pilot Analysis of Global Ecosystems 

(PAGE), a pioneering and popularly accepted estimate of global and regional grassland extent, 

highlights different authorities' variations in grassland definition. An example is the modification of 

the IGBP land cover classification to include tundra in grassland extent after separating these areas 

from classes like barren land and snow; also, the exclusion of urban areas from grassland extent using 

nighttime lights (Gibson, 2009; Grekousis et al., 2015; White et al., 2000). Other factors in the 

variation of grassland extent are the difficulty characterizing the limits of grasslands because their 

canopy structure is less persevering, the frequency of disturbance regimes, and occurrence within a 

continuum between forests and deserts (Dixon et al., 2014). 

2.1.2 Global extent 

Grassland occurrence and distribution are linked to climate and land management practices: 

temperature, precipitation (moisture), soil type, fire regimes, and grazing (Mucina et al., 2006; Singh 

et al., 1983). Globally, natural grasslands occurrence is extensive because they encompass a wide 

range of ecological communities and have a wide range of climatic tolerance (Belesky & Malinowski, 

2016; Blair et al., 2014). They generally exist in areas with a fair amount of dry season (semiarid to 

sub-humid areas). That is, a variation from temperate to tropical regions with annual precipitation 

ranging from 250 to 1020 mm and mean annual temperature from temperature 00C to around 260C 

(Blair et al., 2014; Watkinson & Ormerod, 2001; Woodward et al., 2004). A fair amount of grasslands 
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still exist in Cold and arid zones (Squires & Feng, 2018). The climatic variation correlates to grassland 

net primary productivity, and they are sensitive to climate variability and change (Woodward et al., 

2004). Even though the climate is a significant factor in the occurrence of grasslands, it is ill-advised 

to use this sole factor to define the distribution of biomes as it could lead to circularity (Woodward 

et al., 2004). Other factors that are also key in determining the distribution of grasslands include 

grazing intensity and fire regimes that prevent tree regeneration or soil properties that support the 

existence of natural grasslands in areas with relatively high precipitation (Watkinson & Ormerod, 

2001; West & Nelson, 2017).  

Grasslands occupy between 41 to 56 million square kilometers and occur naturally in every continent 

except Antarctica; although a few native grass species do occur on the Antarctic Peninsula and 

surrounding islands due to recent warming (Archibold, 1995; Blair et al., 2014; O’Mara, 2012; Suttie 

et al., 2005; White et al., 2000). Sub-Saharan Africa has the most substantial portion of its total land 

area as grassland, with approximately 30% of the global grassland area (White et al., 2000; Squires 

& Feng, 2018). However, on a country level, Australia, Russia, China, the United States of America, 

Canada, and Brazil hold the largest grassland areas (White et al., 2000; Gibson, 2009; Blair et al., 

2014).  

Based on Bailey’s (2009) ecosystem divisions using the Köppen–Trewartha climate zones, natural 

grassland occurs in five major conditions or habitats savanna, steppes, Mediterranean, tundra, and 

prairie❋ (❋updated from Borchert’s (1950) recognition as a climate type). Savanna is found in humid 

tropical areas without frost, and other conditions like soil properties and large herbivores prevent the 

growth of trees. Savannas, which includes the Llanos of the Orinoco Valley in Colombia and 

Venezuela, the veld of South Africa, and the Campos and Cerrados of Brazil (Watkinson & Ormerod 

2001; Blair et al. 2014).  Steppes are found in dry, tropical, and temperate regions where evaporation 

is higher than precipitation, and therefore, forest growth is limited. Steppes are typical in eastern 

Europe and Asia (Russia, Mongolia, and China). Prairies are found in humid temperate with eight 

months or less below 100C, and major examples are the tallgrass, mixed-grass, and shortgrass prairies 

of North America. Mediterranean grassland is like prairies (in temperate regions), but they have dry 

summers with short, wet, and relatively warm winters. Examples include the grasses found in the 

California area of the US (Blair et al., 2014; Bailey, 2009). Tundra is found in polar regions where 

most months are too cold for forest growth (Squires & Feng, 2018). Grasslands can also be found in 
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marine and montane regions (White et al., 2000; Blair et al., 2014). The Pilot Analysis of Global 

Ecosystems (PAGE) report’s calculation of grassland area shows there are more savannas and 

shrublands (66%) globally compared to non-woody grasslands or steppes (about 20%) and tundra 

grasslands has the least area covering approximately 14% (White et al., 2000). 

2.1.3 Importance of grasslands 

Grasslands have significant importance globally, both for human well-being as well as ecosystem 

function.. They provide a range of goods and services necessary for the livelihood and well-being of 

people, and it also plays a massive role in maintaining the structure, functions, and processes of 

ecosystems (Briggs et al., 2005; Dodds et al., 2008; Nelson et al., 2009).  White et al. (2000) estimates 

that approximately 800 million people (many are low-income) globally, whose livelihoods depend 

directly on grasslands.  

 

Of all the many important functions of grasslands, their provision of food is the most popular. 

Grasslands provide food for both livestock, wildlife, and humans equally (O’Mara, 2012). With the 

exponential population growth rates since the 18th century and continuous growth to date (from 

approximately 3 billion in 1950 to 7.8 billion in 2018), the concern for food security has heightened 

(The United Nations, 2019). Besides population growth, growing incomes and shift towards high 

protein repackaged foods have also been linked to increased food demand (O’Mara, 2012). 

Grasslands constitute a major feed supply ruminant, including domestic herbivores like cattle, sheep, 

and goats (Gibson, 2009; O’Mara, 2012). A range of 20 to 60% (up to 70% in temperate regions) of 

the net primary production of grasslands is consumed by herbivores (West & Nelson, 2017).  

Although livestock densities (head per square kilometers) are higher in developed countries because 

of high-intensity production, the total number of livestock in developing countries with extensive 

natural grassland is more (White et al. 2000). Livestock production, in turn, provides a large 

percentage of protein-based food for humans: milk and meat and other relevant products like wool 

and leather (White et al., 2000; Carlier et al., 2009; O’Mara 2012; Hönigová et al., 2012).  Demand 

for livestock-generated food is higher in developed countries; Europe, North and Latin America, and 

Asia are the main regions of livestock meat and milk production (O’Mara, 2011). In general, 

grasslands indirectly contribute to the global food supply (O’Mara, 2012).  
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Recently, the roles and functions of grasslands that are perceived to be very important with the current 

changing climate are carbon sequestration. Grasslands act as carbon sinks by reducing greenhouse 

gas (GHG) emissions (Peeters, 2010; Boval & Dixon, 2012). The global stock of carbon (SOC) stored 

by grasslands is 50% more than other agroecosystems (West & Nelson, 2017). The World Resources 

Institute PAGE analysis on grasslands reported that grassland carbon storage potential ranges from 1 

to 3 metric tonnes per square kilometer. There is more SOC in the upper soil layer than in the 

grasslands because of the concentration of biomass production in grass roots; therefore, there is more 

carbon storage in grassland soils than in forest soils (White et al., 2000, Blair et al., 2014). Grassland 

soil holds up to 20% of the world’s carbon stock (Rumpel, 2011). The downside to high carbon 

storage in grasslands soils is that it could become a carbon source when converted to other land uses 

(De Vliegher & Van Gils, 2010). In addition to carbon, grasslands are also known for the retention 

of nutrients like Nitrogen, Calcium, Magnesium, Sodium, and other micronutrients that are not only 

essential for plant/animal production but act as a sink for excessive availability of compounds like 

nitrogen in the atmosphere (Dubeux et al., 2007). 

Another great thing about grasslands that is related to their soils is the high soil organic matter. High 

soil organic matter is tied to more root biomass, and organic material steadies soil aggregates to resist 

erosion and retain water and nutrients (West & Nelson, 2017).  Many soil erosion models show that 

land cover influences short to long-term erosion rates (Wischmeier & Smith, 1978). Grasslands and 

forests provide a permanent vegetation cover that mitigates soil erosion compared to arable lands and 

other non-vegetated land covers (Cerdan et al., 2010). 

Grasslands are also known to be one of the most biodiverse ecosystems that provide habitat for both 

plants and micro to megafauna (White et al., 2000). The IUCN’s summary analyses of species 

richness for grasslands around the world for plot-level studies indicate all grassland types have high 

levels of richness with temperate grasslands and shrubland being distinctively very rich (Faber-

Langendoen & Josse, 2010). Ricketts et al. (1999) carried out a broader analysis of biodiversity in 

the North American region using the term biological distinctiveness index (BDI). BDI is a broader 

(than species richness) definition of diversity that is inclusive of species richness, endemism, rare 

ecological and evolutionary phenomena, and rare habitat types. So, incorporating these measures not 

only represent biodiversity but the ecological processes that sustain ecological biodiversity (Ricketts 

et al., 1999). The authors grouped BDI assessments into scale-dependent categories, and the 
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Mediterranean/flooded grasslands and savanna ranked high as globally outstanding. Temperate 

grasslands also ranked the highest as regionally outstanding (Ricketts et al., 1999). 

With the growing demand/cost of fossil fuels and the increasing concerns on environmental pollution 

and sustainability, agro-fuel production amongst many other “cleaner” and more sustainable fuel 

sources have become popular (De Vliegher & Van Gils, 2010).  Even though arable lands are the go-

to for agro-fuel production (like ethanol from sugarcane and corn), grasslands have an advantage 

because they give 50 percent more energy per hectare than corn ethanol and they do not need 

additional help like fertilizer or biofuels to grow (Machovina & Feeley, 2017; Patel, 2017). There 

have been concerns about the ability of sustainably growing or using the “low-input” grasslands for 

biofuel related to arable lands having the necessary nutrient input for biofuel biomass (Russelle et al., 

2007). Tilman et al. 's (2007) experiment results show that low input biofuels could provide similar 

or higher net energy gains per land area than biofuels produced from crops grown on fertile soil with 

high inputs. Ceotto’s (2008) review to highlight the downsides of using grassland for biofuel; he 

presented issues like the displacement of grasslands from their essential role of providing highly 

demanded foods and the release of reactive nitrogen during biofuel processing.  On the other hand, 

urged that the use of grassland for biofuels should still be considered as arable lands do provide food 

for people just like grasslands (Ceotto, 2008).  

The trending use of grasslands is a destination for tourists and recreational activities. These activities 

include hiking, biking, horse rides, camping, picnics, spiritual needs, and aesthetic views (Gibson, 

2009).  Generally, the tourism industry supports millions of jobs and contributes significantly to the 

Gross National Product (GDP). According to the World Tourism Organization (2017), international 

tourism accounts for 10% of world GDP, and one in every eleven jobs globally is in tourism (World 

Tourism Organization, 2017). In Japan, the Aso region grasslands have an estimated 19 million 

tourists visits annually (Inoue, 2017). The added perk with ecotourism is that it encourages the 

conservation of some native ecosystems. The trend of eco-friendly tourism is becoming popular with 

increasing awareness of how environmental alteration can change the climate. In the U.S., nature-

based tourism, as reported by the National Park Service, had about 331 million visits and an estimated 

$18.2 billion was spent by visitors in areas within 60 miles of a park in 2017 (Cullinane et al., 2018).  

Grasslands are also important for other cultural, spiritual, and aesthetic benefits (Hönigová et al., 

2012). Some native to semi‐native grasslands in northeastern Europe are located on ancient sacred 
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sites; this is common with ethnic religions that tie sacred sites to the physical environment (Lindborg 

et al., 2008).  Estimating the value of grasslands for tourism and recreation can be tricky because the 

level of enjoyment or recreational satisfaction derived from grasslands is subjective (White et al., 

2000). Some proxies have been used to estimate these values; popular examples include the 

willingness to pay for a service or distance traveled to the site (Van Berkel & Verburg, 2014).  

2.1.4 Current management challenges for grasslands 

Despite all the many benefits of grasslands discussed in the last section, they are one of the most 

unprotected terrestrial ecosystems (Mark & McLennan, 2005). Significant proportions of the earth’s 

grasslands have been modified or converted to other land uses (Finch & Dahms, 2004). Generally, 

approximately 54 percent of grasslands worldwide are degraded (White et al., 2000). The factors 

driving grassland degradation are intricate and sometimes contested, but they are generally a give-

and-take between climatic factors and land use. 

The major threats to grasslands are conversion to croplands and invasion of non-native species; others 

include fragmentation, overgrazing, desertification, and lack of fires (Gibson, 2009). Globally, the 

temperate grassland ecosystems are the most altered, with over 48% lost or degraded (Gibson, 2009; 

Henwood, 2010). Of all temperate grasslands, the prairie or plains of North America is the most 

altered (Finch & Dahms, 2004). Even though policies like the 2018 Farm Bill have been put in place 

to reduce the conversion of grassland to cropland, there is still rapid decline. In the Great Plains, a 

total of 62% of the historical extent of grassland has been lost, and in the years 2016 and 2017 alone, 

approximately 17,400 square kilometers of grassland was lost to cropland (Comer et al., 2018; 

Plowprint report, 2018). Also, with the growing crop production for biofuel, the source of new 

cropland in the contiguous U.S. from 2008 to 2012 was 77 % from grasslands (Lark et al., 2015). 

Fragmentation of grasslands into smaller units or patches from a more heterogeneous landscape is 

mostly driven by disturbances that can be more subtle than the conversion to other land uses but can 

also affect grassland structure and function (Gibson, 2009). White et al. (2000) report a high 

fragmentation of grasslands in the Great Plains due to road networks with 70 percent of grasslands in 

this region with patches that are less than 1,000 square kilometers. Wang et al. (2009) analysis in 

grasslands in the Northeastern region of China using time series of geospatial data and results show 

the number of patches increased from 865 to 2035, and the mean patch size decreased from 16.4km2 
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to 2.5 km2 between the years 1954 and 2000. This study also links the increased fragmentation to 

socioeconomic factors and climate change. The greatest concern with grassland fragmentation is the 

loss of biodiversity as habitat loss and isolation can lead to decreased species population, richness, 

and in some cases, complete extinction (Debinski & Holt, 2000; Krause et al., 2015).   

 

The invasion of non-native species can also lead to degradation of grasslands. Gibson (2009) 

summarized the IUCN Species Survival Commission (SSC) invasion of non-native or exotic species 

that invade and sometimes dominate native grasslands. The invasion of non-native species can lower 

soil quality and alter the structure and dynamics of grassland ecosystems. Invasion of nonnative 

species is linked to other stressing factors like overgrazing, lack of or infrequent burning, 

fragmentation, drought, increased available nitrogen from fertilization of crops, and the increasing 

carbon dioxide concentration (Gibson, 2009; Karl et al., 2009). An example is the invasion of the 

herbaceous Japanese knotweed (Fallopia japonica (Houtt.) Ronse Decraene) and the salt cedar into 

North American, European, and Australian grasslands (Gibson, 2009). 

Fires are an essential component of grasslands globally. Grasslands are derived and maintained by 

fires (Gibson, 2009). Unintentional and commonly intentional annual burning is a common 

maintenance practice, especially in tropical and subtropical grasslands (Pathak et al., 2017; Squires 

& Feng, 2018). The fundamental uses of fires in grasslands are for the prevention of woody 

encroachment in grass-dominated ecosystems (Ratajczak et al., 2014). Woody encroachment is also 

a threat to grasslands globally (Eldridge et al., 2011; Archer et al., 2017). The process of shrubland 

and woodland encroachment in grasslands is complex and is attributed to a hierarchy of drivers 

operating at varying spatial and temporal scales- climate change, geomorphology, soils, and 

topography fire, grazing frequency, and land use (Archer et al., 2017). Fires eliminate woody species 

encroachment, although they might have some difficulty eliminating fire-resistant woody species 

from grasslands (Gibson, 2009). The frequency and intensity of fires in maintaining grasslands has 

been a contentious subject; plot experiments conducted in the Flint Hills region of the Great Plains 

in the United States show that fire frequency less than three years return can lead to transitions to 

shrublands and greater than ten years can lead to transition to woodlands (Ratajczak et al., 2016). 

There is, therefore, trends of increased frequency (annual or biannual) in burning in areas with broad 

grassland coverage to improve or maintain grasslands in most of the North American grasslands 

(Mohler & Goodin, 2012; Ratajczak et al., 2014). Fires also maximize grassland productivity, which 
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in turn increases livestock production and preserves native biota (Towne & Kemp, 2003; Pathak et 

al., 2017). There has been an evident increase in warm-season grasses after burning; the aboveground 

biomass of annually burned prairie was found to be almost double that of the infrequently burned 

prairie (Benson & Hartnett, 2006; Towne & Kemp, 2003). Pathak et al. 's (2017) field experiment 

also showed increased aboveground and belowground biomass production in burned sites compared 

to unburned sites. Also, herbicide application has been used as a method of preventing woody 

encroachment in North American grasslands, but the process is short-lived and, in most cases, 

requires a follow-up prescribed burning (Scholtz et al., 2018). There are some downsides to 

prescribed burning, air pollution with chemicals and particulates, increased danger of wildfire, 

reduction of nutrient cycling, and possible harm to native biota (Blair et al., 2014; KDHE, 2010; 

Mohler & Goodin, 2012). The benefits, as mentioned earlier of the prescribed burning of grasslands, 

demonstrate that the lack of fires can present management and conservation issues for grasslands. 

One of the many uses of grasslands, as discussed previously, is livestock grazing. It is considered one 

of the fundamental uses of grasslands worldwide (Asner et al., 2004). Livestock grazing of grasslands 

has few perks; they create opportunities for lease hunting, which provides ecotourism revenue; they 

can also prevent woody plant encroachment (Archer et al., 2017). Livestock grazing can also maintain 

the quality (tillering rate and density) of grasses (Cao et al., 2013). Just like fire, grazing frequency 

and intensity for grassland conservation are highly contested and vary with spatial and temporal scale. 

Some studies have shown that grazing can increase species diversity and net carbon storage (Gomez‐

Casanovas et al., 2018; Isbell & Wilsey, 2009), but high-intensity grazing is attributed to vegetation 

decline which ultimately leads to the lowering of species diversity particularly in xeric grasslands 

(Isbell & Wilsey, 2009; Hilker et al., 2014; Blair et al., 2014; West & Nelson, 2018).  There is 

vagueness in a global continuum of low to high-intensity grazing, as represented as grazing pressure 

(Zhang et al., 2015). Overgrazing is also attributed to biomass reduction, which decreases 

productivity and reduces the frequency and intensity of fires, thereby enhancing woodland and non-

native species encroachment (Archer et al., 2017). The interaction between grazing and fires can lead 

to selective grazing of burned areas by livestock, increasing the grazing intensity of the areas, and 

leading removal of aboveground biomass (Blair et al., 2014). Even though grasslands in certain parts 

of the world (Africa and the Americas) are resilient to grazing, degradation, woodland, and non-

native plant invasion, nutrient loss by overgrazing is common in many areas of the world without 

moderation and optimizing the exploitation of grassland for (Blair et al., 2014; Zhang et al., 2015). 
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Desertification in this context is the large-scale transition of native, productive, tasty-for-livestock 

grassland to unproductive non-grazable invasive species, woodland, or bare ground (Peters et al., 

2013). The impacts of desertification on grassland ecosystems is complicated because the threat is a 

cumulative both climatic and land-use drivers working in varying time and spatial scales (Peters et 

al., 2013; Weber & Horst, 2011). Figure 2.1 shows an example of the process of desertification of 

grassland in Arizona over a century attributed to a combination of overgrazing and reduced rainfall 

in the southwest region of the United States (Karl et al., 2009). 

 

 

Figure 2.1: Desertification process of grassland over a 100-year period. (Reprinted from Karl et al. 

2009).  

These factors include those discussed earlier (overgrazing, fire, drought, invasive species, and more). 

In essence, it could be large-scale extreme weather events like floods to large-scale changes in 

climate; on the other hand, it could be small-scale grazing pressure that can lead to large-scale changes 

in ecosystem dynamics (Peters et al., 2013). In summary, grasslands are threatened mostly by 

conversion to cropland and urban development and an interplay of grazing pressure, fire 

intensity/pressure, and encroachment of woody plants and invasive species. 
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2.1.5 The Great Plains ecoregion  

In North America, the expansion of the grass-dominated ecosystem and the expense of forests was 

prominent in the late Cenozoic (mid to late Miocene) era (Squires & Feng, 2018). A large portion of 

grassland ecosystems in North America is found in the Great Plains. The extent of the Great Plains 

varies with definitions and classifications of ecosystem components. A popular example of the 

definition of the ecoregion includes Omernik’s (1987) definition based on both biotic and abiotic 

components. Another example is the definition by Bailey (2009) based on Koppen’s climatic regions 

and the variety of vegetation and soils. In general, the ecoregion begins in the Canadian prairie 

provinces (Alberta, Saskatchewan, and Manitoba), a large portion cutting through the middle of the 

United States (Montana, Wyoming, North Dakota, South Dakota, Minnesota, Iowa, Missouri, 

Nebraska, New Mexico, Colorado, Kansas, Oklahoma, Texas, and Louisiana), and ending in 

grassland areas in the Mexican States (Coahuila, Nuevo Leon, and Tamaulipas) close to the Gulf of 

Mexico (Wiken et al., 2011; Tollerud et al., 2018).  

The Great Plains, predominantly grasslands, have developed and are maintained by a combination of 

fire, grazing, and climate (Robin-Abbott & Pardo, 2011). There has been a lot of conversion to other 

land uses and degradation dating back to the 16th-century wave of migration and settlement in the 

United States. Over 50% of the historical extent of grasslands has been lost with the current coverage 

of approximately 44% of the ecoregion (Comer et al., 2018; Tollerud et al., 2018). Of the 50% of the 

historic grasslands lost, 96% of the Tallgrass prairie, 76% of the mixed-grass prairie, and 46% of the 

shortgrass prairie were lost (Comer et al., 2018). Furthermore, these prairies mostly exist in smaller 

fragments now compared to the historical state (Tinker & Hild, 2005). 

The region is known to be highly biodiverse and one of the significant agricultural centers of the 

world (Gauthier et al., 2003). In the U.S., agriculture in this region (alongside related industries) 

contributed 1.053 trillion dollars to the U.S. GDP and 21.6 million jobs in 2017 (USDA, 2019).  With 

mostly fertile soils (mollisols), it is one of the productive areas in the world for the cultivation of the 

most corn, sorghum, soybean, wheat, alfalfa, cotton, hay, and some fruit farming like peaches in the 

south (Wiken et al., 2011). The region is also known for ranging and dairying livestock for 

consumption and export in the U.S., Canada, and Mexico. They include the reintroduced bison, cattle, 

sheep, goats, and (Robin-Abbott & Pardo, 2011; Wiken et al., 2011). The region is significant to 

meeting regional and global food demands (USDA, 2019).    
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There is also tourism and recreation through wildlife, hiking, and scenic views. Wildlife and other 

grassland-adapted animals in the ecoregion include but are not limited to prairie dogs, coyotes, white-

tailed deer, and the snowshoe hare (Wiken et al., 2011). The region is also home to a variety of bird 

species like prairie chickens, sharp-tailed grouse, ducks and geese, and native plants like the 

tobosagrass, grama grass, switchgrass, wheatgrass, bluestem, and Indiangrass (Robin-Abbott & 

Pardo, 2011; Wiken et al., 2011). With the loss of grasslands and climate change in the region in the 

last two decades, the population of indigenous bird species in the region are continually declining 

(Comer et al., 2018; Wesley et al., 2019), and so are prairie dogs (Martínez-Estévez et al., 2013). The 

declining biodiversity is a major concern regarding the future of the ecoregion in general.  

The Great Plains is also rich in oil and gas (mostly in the south), coal mining, and vast tar sands 

reserves in the north (Canada).  It is also one of the major water systems in the U.S. and southern 

Canada, draining the Missouri and Saskatchewan River systems (Robin-Abbott & Pardo, 2011). 

There is also a lot of surface water in the form of temporary pools or playa lakes (prairie potholes) 

that replenishes the very important Ogallala Aquifer (Wiken et al., 2011). 

The region is very complex, with variations in rainfall, soils, management practices, temperature, and 

elevation (Tollerud et al., 2018). There is a wide range of temperatures (higher in the south and 

reducing toward the north) and precipitation (higher in the east and reducing toward the west) in the 

Great Plains region. The climate in the region, including hazards like floods, droughts, tornadoes, and 

hurricanes, profoundly impacts the energy-water-food nexus (Shafer et al., 2014). According to 

Shafer et al. (2014), there have been increasing temperatures in the Great Plains generally, and the 

increasing average temperature is projected to occur more frequently in the future. There is also a 

projection of increased winter and spring precipitation in the northern Great Plains and more dry 

spells in the southern Great Plains (Shafer et al., 2014). These diverse climatic patterns also impact 

the composition and conditions of grasses in the region. Climate-impacting factors on grasslands 

include increasing landscape fragmentation, water stress, and changes in vegetation growth cycles 

that may need change(s) in management practices (Shafer et al., 2014).  

Manier and colleagues (2019) modeled four climate scenarios (warm-dry, warm-wet, hot-dry, and 

hot-wet) to weigh the vulnerability of grassland to future climate change in the southern Great Plains 

using grass species indicators for the grass communities in the region. The results show relatively 

low vulnerability for semi-desert grasslands and shortgrass prairie, higher vulnerability for mixed-
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grass, and a very high vulnerability for tallgrass prairie. The high vulnerability of the tallgrass prairie 

was linked to the potential sensitivity of indicator species (indiangrass and the big bluestem grass) to 

the climate scenarios used and lower adaptivity due to long-term conversion to croplands (Manier et 

al., 2019).  

Private-lands conservation programs, such as the Conservation Reserve Program, may play an 

important role in managing and conserving mixed-grass and tallgrass prairies by addressing potential 

changes in productivity of some species and addressing the landscape distribution of plants 

communities. The results of our analysis could help prioritize locations and species composition for 

habitat management on private lands, for example, through the CRP and public lands that could 

enhance the connectivity of prairie grasslands and supplement current conservation areas. 

The loss and degradation of grasslands due to climate change and land use is a big issue. Even though 

lands in the Great Plains are mostly privately-owned, conservation strategies like the 2018 Farm Bill, 

the U.S. Department of Agriculture’s Northern Great Plains Grasslands Strategic Plan, the U.S. 

Department of the Interior’s BLM Grasslands Strategic Plan, the Saskatchewan/Manitoba Prairie 

Conservation Action Plans and other tri-national collaboration and financial incentives were 

implemented to encourage conservation (Gauthier et al., 2003; Drummond & Auch, 2015). Despite 

these, there is still a need for improvement in regulations, policies, and programs that favor grasslands 

conservation, better inter-agency coordination, and across-the-board technique for long-term 

monitoring and terminology (Gauthier et al., 2003). 

2.2 Remote sensing of vegetation 

Remote sensing of vegetation involves the interpretation of satellite images to measure and monitor 

vegetation status through their biophysical character (Xu & Guo, 2015). The use of remote sensing 

techniques and data for vegetation monitoring and grassland dates explicitly back to four decades ago 

(Xu & Guo, 2015). The use of remote sensing techniques is popular for monitoring grasslands 

because of the cost-effectiveness of extensive area coverage coupled with advances in techniques 

(better spatial, spectral, and temporal qualities of data) and methods. Ali et al. (2016) reviewed the 

use of several remote sensing data and methods for deriving grassland information. They found that 

high temporal optical satellite data is popularly used to generate time series because of the generation, 

and particularly to overcome cloud interruptions. However, popularly used data are usually low 
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spatial resolution data because of the limited availability high-resolution data and the required 

technology for processing. 

For landscape analysis, low to moderate spatial resolution data like the National Oceanic and 

Atmospheric Administration (NOAA) agency’s 250m to 1km Moderate Resolution Imaging 

Spectrometer (MODIS), and the Advanced Very High-Resolution Radiometer (AVHRR) have been 

sufficient (Reed et al., 1994; Zhang et al., 2003; Tan et al., 2011). With consistent, repeatable 

measurements of vegetation condition, they are adequate to capture phenological events in sufficient 

detail (Reed et al., 1994; Kennedy et al., 2009). An example is the MODIS 16-day composite NDVI 

data is accessible; it has sufficient and consistent temporal coverage for most long-term vegetation 

trend analyses (Reed et al., 1994; Wang et al., 2018). 

Vegetation mapping with remote sensing uses the measurement of reflectance at visible and infrared 

wavelengths to discern the status of vegetation using distinct spectral signatures from chlorophyll in 

plants (Ali et al., 2016). Alongside these measures is the prevalent use of vegetation indices (VI). 

They used the surface reflectance at two or more wavelength bands that emphasize vegetation 

properties. Examples include the normalized difference vegetation index (NDVI) (Reed et al., 2003; 

Zhang et al., 2003), enhanced vegetation index (EVI) (Zhang et al., 2007), the soil-adjusted vegetation 

index (SAVI) (Huete, 1988) and several others. These VI have shown a considerable correlation to 

and used as proxies for vegetation amount or condition (Wang et al., 2018).  

NDVI is the most applied VI; it uses a ratio of the red and near-infrared reflectance values to provide 

an approximate measure of relative vegetation health or greenness (Wang, 2018). NDVI has shown 

a consistent correlation with vegetation dynamics in various scales of land area, and the ratio concept 

reduces many sources of noise, but it has the limitation of saturation of value over high biomass areas 

(Huete, 1988; Wang et al., 2018). NDVI is the ratio of the difference and sum between near-infrared 

band reflectance (where most radiation is absorbed by vegetation) and red band reflectance where 

most radiation is reflected by vegetation (Zhang et al., 2003). Values vary between -1 to 1 (Equation 

1); higher values are associated with healthier vegetation, while degraded vegetation is associated 

with lower NDVI values (Zhang et al., 2003).  

NDVI =
 𝝆𝒏𝒊𝒓 − 𝝆𝒓𝒆𝒅

𝝆𝒏𝒊𝒓 + 𝝆𝒓𝒆𝒅
    ___________________________________ [1]                                       
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where: 

NDVI = normalized difference vegetation index 

ρnir = reflectance in the near-infrared spectrum 

ρred = reflectance in the red spectrum 

 

The NDVI does have several limitations that include sensitivity to the effects of soil brightness, soil 

color, atmosphere, clouds, and shadows; but the most prominent limitation is the saturation of values 

in areas with high biomass due to the non-linearity of the index (Matsushita et al., 2007; Xue & Su, 

2017).  

The enhanced vegetation index (EVI) was developed to improve sensitivity in high-biomass areas, 

reduce soil interference, and to further reduce atmospheric influences (Matsushita et al., 2007). It also 

uses a coefficient to correct scattering in the red band using the blue band and includes a soil 

adjustment factor (Equation 2) (Xue & Su, 2017).  

EVI = 𝑮 ×
𝝆𝒏𝒊𝒓 − 𝝆𝒓𝒆𝒅

(𝝆𝒏𝒊𝒓+𝑪𝟏× 𝝆𝒓𝒆𝒅−𝑪𝟐×𝝆𝒃𝒍𝒖𝒆 + 𝑳)
      ___________________      

  [2]                                                    

 

where: 

EVI = enhanced vegetation index 

ρnir = reflectance in the near-infrared spectrum 

ρred = reflectance in the red spectrum 

L = soil brightness adjustment factor 

C1 = atmospheric scattering red correction coefficient 

C2 = atmospheric scattering blue correction coefficient   

G = gain factor  

 

Generally, the value for the above coefficients is as follows; G=2.5, C1=6.0, C2=7.5, and L=1, but 

they may vary depending on the situation or sensor (Huete, 1997). 

 

Very similar to the NDVI, the EVI is also popular in vegetation studies. It also provides an 

approximate measure of relative vegetation health or greenness, and it was adopted by the MODIS 

Group as the second global-based vegetation index for monitoring the Earth's terrestrial vegetation 
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activity (Matsushita et al., 2007). However, the soil adjustment factor used in calculating the EVI 

makes it more sensitive to the variation in the radiance that accompanies a change in the topography 

of a surface in response to a change in the light source and sensor position (Matsushita et al., 2007). 

Therefore, making it difficult in areas with rough terrains or mountainous areas (Matsushita et al., 

2007). 

Other vegetation indices have been developed recently to minimize the limitations mentioned above 

of using those VIs as a monitoring tool.  Wang et al. (2018) reviewed and compared the performances 

of different VI’s for extracting phenological metrics across different landscapes; they all show 

uncertainties in varying landscapes against eddy covariance estimates from flux sites. Xue and Su 

(2017) also reviewed over 100 vegetation indices, summarizing their developments, abilities, and 

limitations. Conclusions were that VI’s are suitable for specific applications, and choice should be 

made based on capabilities or a combination of VI’s. This study uses both NDVI and EVI because 

they correlate the most to vegetation vigor and biomass, which have been proven by many studies to 

show high correlation ground measurements during validations. 

2.2.1 Land surface phenology 

Phenology is the variation in seasonal patterns of natural phenomena on land surfaces in relation to 

climate (Cleland et al., 2007; Tan et al., 2011). Vegetation structure and production are tied to climate, 

and they respond to even small climatic variations; hence, phenological records have been used to 

monitor climate change (Schwartz, 1994; Bailey, 2009; Tan et al., 2011). Land surface phenology is 

the term for using remote sensing data to study the timing of seasonal patterns of variation in 

vegetated land surfaces (Tan et al., 2011; Wang et al., 2018).  

Historically, specific plant species were used as indicator plants to study seasonal plant development 

with many data collection, observers, and network stations for regional studies (Schwartz, 1994). 

However, remote sensing is now widely used for monitoring vegetation because of the relatively cost-

effective data acquisition, improving spatial, spectral, and temporal sensors’ capacity and data quality 

resulting in advancing techniques and methods (Reed et al., 1994).  

Since the dawn of remote sensing, phenological studies have used several methods to study the 

seasonal patterns and trends in vegetation. Methods have gone from the use of less accurate analog 

models in the early 20th century to algorithms that automatically retrieve land surface phenology 

metrics from satellite data (Schwartz, 1994; Tan et al., 2011). It is challenging to retrieve land surface 
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phenology metrics from satellite data directly because of atmospheric and radiometric noise, and data 

is a measurement of reflectance in different bands of wavelengths in the electromagnetic spectrum.  

Therefore, parameters like leaf area index (LAI), the fraction of photosynthetically active radiation 

(FPAR), green aboveground biomass, and vegetation indices have been used to determine vegetation 

structure (Pasolli et al., 2015). Changes in phenology are part of a complex system; they are 

influenced by forces other than long-term climate change, forces such as fire or conversion to urban 

areas (Willis, 2015). Coupled with the complexity that comes with variation in community 

composition, micro and regional climate, soils, and land practice at a regional scale (Zhang et al., 

2003). In some cases, some vegetation types can show multiple modes of growth within one annual 

cycle. Therefore, both seasonality and trend components are crucial.  

2.2.2 Methods for assessing phenological development 

Phenological parameters or metrics (phenometrics as commonly referred to) such as the start of the 

season (SOS) and end of the season (EOS) can be extracted from remotely sensed vegetation index 

time series using linear or non-linear fitting functions and models (Jonsson & Eklundh, 2004). Before 

raw remote sensing data can be used for phenology analysis, it is put through a series of filtering, 

compositing, and smoothing procedures to isolate the signal from the noise. (Cai et al., 2017). Many 

smoothing methods exist; asymmetric Gaussian (AG), double logistic (DL), Savitzky–Golay filtering 

(SG), locally weighted regression scatterplot smoothing (LO), and spline smoothing (SP) (Tan et al., 

2011; Cai et al., 2017). There is no conclusive evidence that one method is better than the many 

existing others. Cai et al. (2017) investigated several smoothing methods using MODIS NDVI, 

comparing them to ground NDVI measurements. Results indicate that the local filtering methods (SG 

and LO) can generate accurate results if smoothing parameters are optimally calibrated with function 

fitting methods (AG and DL) when calibration is impossible. 

 

The conventional method is the derivation of the phenological parameters from a fitted curve 

identified by examining curve characteristics where VI data exhibit a rapid, sustained increase, 

decrease, and dormancy of increased value (Reed et al., 2003). The vegetation curve depicting the 

seasonal cycle of vegetation growth has varying definitions and terms for parameters or metrics used 

to measure the temporal changes in vegetation growth patterns (Figure 2.2). For example, Reed et al. 

(2003) defined the start of the growing season as to where the left time derivative transitions from 
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zero to a positive number and the end of the growing season as to the point where the right derivative 

transitions from a negative number to zero. Some limitations with this method are the difficulty of 

extracting these parameters in vegetation that is evergreen, snow-covered, or has a slow senescence 

rate (Reed et al., 2003). Also, Moulin et al. (1997) defined SOS and EOS as the timing of the highest 

positive and lowest negative derivative in VI, respectively. The limitation with this method is the 

difficulty in determining these parameters if the VI values do not follow an abrupt increase or 

decrease (De Beurs & Henebry, 2010). 

Threshold-based phenology has become an effective technique to curb several limitations in hardline 

methods for the extraction of phenological parameters. The threshold-based method uses a relative 

reference value for defining the parameters (Reed et al., 2003). It could be the day of the year the VI 

value reached a certain threshold in an upward or downward direction. The threshold could be based 

on long-term average VI values, baseline year, NDVI ratios, NDWI (the Normalized Difference 

Water Index), or reference value (from an area with similar variables) (De Beurs & Henebry, 2010). 

 

Figure 2.2: Typical temperate North American grassland phenology curve and some associated 

phenometrics generated in TIMESAT (Concept from Reed et al., 2003). 
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This study uses threshold method based on relative reference values for North America to define 

parameters (Reed et al., 2003). The software with this method is a widely used method of analyzing 

time-series satellite sensor data: TIMESAT (3.3) (Jonsson & Eklundh, 2004). It provides five 

smoothing functions to fit time series data and extracts (up to 13) phenometrics from smoothed data; 

then, it uses an analytical indicator to define the start and end of the growing season (Zhang et al., 

2003; Eklundh & Jonsson, 2010). In North America, phenology studies have shown changes in 

seasonality with shifts in time-dependent phenometrics; there is the longer length of growing season 

and delayed end of growing season (Jeong et al., 2011; Wang et al., 2016; Cui et al., 2017). Cui et al. 

(2017) used the double logistic smoothing function in TIMESAT to smooth and extract long-term 

grassland phenology in the northern (Canadian) area of the Great Plains ecoregion. Results show a 

significant correlation to variation in precipitation. These findings are like Jeong et al. (2011) in the 

northern hemisphere.  These findings are similar to other vegetation studies conducted in Canada 

(McManus et al., 2012; Ju & Masek, 2016), North America (Jong et al., 2012), and my preliminary 

results in the Great Plains ecoregion. 

2.2.3 Long-term trend analysis of satellite time-series data 

A time series of remote sensing data (usually vegetation indices) can be used to determine trends, 

seasonal variation in vegetation properties, and dynamics (Heumann et al., 2007; Eklundh & Jonsson, 

2010). A temporal decomposition of time series data results in three elements: the trend, seasonality, 

and remainder. The time series decomposition is used to extract relevant information in the time series 

data. For this study, the trend component was used for the analysis. A popular method for 

decomposing trends in time series data is the use of the Breaks for Additive Seasonal and Trend 

(BFAST) (Verbesselt et al., 2010).  

 

The BFAST routine is based on a LOESS-driven STL temporal decomposition, one of the many 

statistical methods used to extract the trends from time-series data.  BFAST uses the least-squares 

regression to model the trend component within a time series, which detects gradual (interannual) 

and abrupt (intraannual) changes (Verbesselt et al., 2010). A newer method developed for detecting 

both abrupt and non-abrupt changes, named DBEST (Detecting Breakpoints and Estimating 

Segments in Trend), and can quickly accurately estimate change time and magnitude just like BFAST 

(Jamali et al., 2012). Nevertheless, DBEST cannot detect changes in the seasonal component (Fang 
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et al., 2018). Forkel et al. (2013) did a performance test on several methods used to detect trends and 

trend changes in the long-term VI time series, season-trend method (BFAST) had an overall excellent 

performance in both gradual and abrupt interannual variability. Fang et al. (2018) used BFAST to 

decompose grassland phenology trends in Canada; results show a general increased positive trend 

(greening). 

 

Several (statistical) methods exist to extract and analyze trends from time-series data, and the choice 

falls on the characteristic of the data. Characteristics include seasonality, autocorrelation between 

observations, and whether it is stationary (properties not changing with time). Various trend detection 

methods include the ordinary linear regression, moving least squares regression smoother (LOESS), 

Nonparametric correlation coefficient (Man-Kendall’s test), test using first derivatives, likelihood 

ratio test, autoregressive-moving average (Gray, 2007; Tan et al., 2011). The prevalent method of 

trend analyses in a time-series, especially for ecological data, is a linear regression model using the 

least-squares approach. The ordinary linear regression model (OLS) implemented with the primary 

assumption of linear and gradual changes in image time-series, making it suitable for analyzing linear 

changes in time-series data (De Beurs & Henebry, 2005; Jamali et al., 2012). The OLS regression, in 

this case, time is the independent variable and VI values (or summarized measure) the dependent 

variable and trend are expressed as the slope of the regression curve (De Beurs & Henebry, 2005). 

The simple regression method does have its limitations as the character of vegetation is dynamic and 

presents a variation in seasons and temporal trends. Besides the overall error for the OLS, there is 

also associated error with the parameter estimated because the parameters are not always significant 

from zero, and the slope parameter does not report this error (De Beurs & Henebry, 2005). The 

method is also susceptible to outliers alongside some assumptions with the OLS method. The 

assumptions are that the estimation error or residual must be normally distributed, be independent of 

the explanatory variable (time in this case), have a mean value of zero, and have a constant variance 

(De Beurs & Henebry, 2005; Qin, 2011). 

 

Unlike the OLS regression, the non-parametric Mann-Kendall trend test (MK) does not depend on 

the normality of residuals for the validity of significant tests and is not sensitive to outliers and can 

work with missing values in the data (Helsel & Hirsch, 2002; Yue et al., 2002). The MK is also 

useful for analyzing linear changes, and it uses the same slope estimation format as the OLS 
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regression, but the estimation of the intercept and slope are non-parametric (Helsel & Hirsch, 2002). 

The slope is computed by comparing the data in a pairwise manner and ranking them in 

chronological order, that is a data set of an (X, Y) pairs will result in n(n-1)/2; the slope for each of 

these comparisons computed, and the median of all possible pairwise slopes estimated. The test 

determines the significance of any changes (decrease or increase) according to the differences 

between observation pairs (yearly observations in this case). So, the differences between 

observations of a given year and those of a previous year result in positive or negative values as a 

reflection of positive or negative change (Suepa et al., 2016).  The Man-Kendall statistical test is 

popularly used in hydrological studies (Helsel & Hirsch, 2002; Yue et al., 2002) but recently being 

applied to vegetation studies for both general and phenological trends from VI time-series data (Cui 

et al., 2012; Suepa et al., 2016; Wang et al., 2016). 

 

The OLS and MK methods are both useful in the analysis of linear, gradual, long-term trends. Even 

though the OLS methods involve some assumptions, Jamali et al., (2012) compared the performance 

of parametric vs. nonparametric techniques for trend analysis in different sites using these 

aforementioned methods as examples and the results show that slopes and statistical significance 

were comparable for the two methods in sites with linear and monotonic trends, but the OLS method 

performed better in sites with abrupt changes in slopes.  

2.3 Ecosystem services 

The concept of ecosystem services was developed as a bridge between nature and humans, 

specifically, the environmental functions of ecosystems and their value to human beings (De Groot, 

1987). Although there are other terms used to describe ecosystem benefits to humans like “nature 

services,” “nature’s contribution to people,” “environmental services,” or “ecological services,” 

ecosystem services (ES) remain the most common and used term (Chaudhary et al., 2015; Díaz et al., 

2018). The concept has ecological, socio-cultural, and economic roots (De Groot et al., 2017). The 

ecosystem services concept was not just developed to draw attention to the benefits we derive from 

ecosystems but also to promote biodiversity conservation and environmental sustainability.  

There are several definitions of ecosystem services, but the general idea or theme is that they are 

benefits people obtain from ecosystems either directly or indirectly (Daily, 1997; MEA, 2005; TEEB, 

2010). A lot of working terms and conditions have been interwoven into the general definition of 
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ecosystem services to enable a more consistent way of quantification and mapping of ES. Examples 

include Costanza et al.'s (1997, 2017) distinction between ecosystem process and function from ES 

and TEEB’s (2010) identification of intermediate versus final services. Crossman et al. (2013) and 

La Notte et al. (2017) provide a detailed set of examples of ecosystem services terminology and 

definitions compiled from selected literature. The ecosystem services-related terminologies are a bid 

to avoid double-counting arising from linkages, stock, and flows of function and the need to break 

down the very complex ecosystem functions into discrete services (Birkhofer et al., 2015).   

2.3.1 Evolution of ecosystem services 

 The concept dates to five decades ago (1960’s: Marsh, 1965; Westman, 1977), and the term was 

coined in the 1980s by Ehrlich and Ehrlich (De Groot et al., 2012; 2017). But the concept garnered 

full attention with the invention of publications that presented innovative and collaborative 

definitions, classification, and valuation methods like those of Constanza and Daily both in 1997 then 

the UN’s Millennium Ecosystem Assessment in 2005 (De Groot et al., 2012; Chaudhary et al., 2015; 

De Groot et al., 2017). Ecosystem service reached an even broader audience after the publication of 

the UN’s second initiative, the Economics of Ecosystems and Biodiversity (TEEB), in 2010 

(Costanza et al., 2014). Another huge milestone in the evolution of ecosystem service is the creation 

of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) in 2012. This 

platform placed the concept on a political table, igniting the inception and improvement of national-

level involvement in using the concept to ignite conservation and sustainability (De Groot et al., 

2017). More recently (in 2018), (Díaz et al., 2018) described nature benefits as “nature’s contribution 

to people” (NCP) instead of ecosystem services. This idea, an extension of the existing ecosystem 

services concept, recognizes the role of culture as central to the link between people and nature; the 

NCP concept also includes both positive and negative contributions to people. The view of culture 

being central in NCP is to widen the viewpoints of the concept to involve more people, especially 

stakeholders (Díaz et al., 2018). This generalized perspective is evident in the categorization of these 

benefits different from the popular classifications (I will discuss more details in the next section).  

Several reviews of the literature on the evolution and trends of research in “ecosystem services” exist 

(Seppelt et al., 2011; De Groot et al., 2012; Chaudhary et al., 2015; McDonough et al., 2017). 

Chaudhary et al. 's (2015) findings show that before the 1997 popularity of ecosystem services, there 
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were only 166 studies with that term, and there has been an exponential increase to (over 5000 in 

2015) thousands in this field since then. These findings are like those of De Groot et al.’s (2017) 

review, and a more recent review by McDonough et al. (2017) shows the same trend in the last decade.  

Beyond the number of professional publications in the field, there is also an increase in subject areas, 

applications, contributions from different countries, the number of outlets (scientific journals and 

publications) focused on reporting ecosystems services trends (Chaudhary et al., 2015). Subject areas 

have grown from mostly environmental sciences and economics to health sciences, medicine, 

political ecology, and Engineering. The top subject areas are environmental sciences, agriculture, and 

biological sciences (Chaudhary et al., 2015; McDonough et al., 2017). Also, the top-ranking countries 

with a contribution to the ecosystem services field are the United States, the United Kingdom, China, 

Australia, and Germany. The U.S. and U.K. are top of this list, while sub-Saharan African and middle 

eastern countries are still lacking in this research area (Chaudhary et al., 2015; McDonough et al., 

2017). The MEA in 2005 reports a declining global trend in ecosystem services despite the advances 

made in this regard, possibly due to the long list of countries or regions not making adequate 

contributions to this field to encourage biodiversity, conservation, and sustainability. In summary, 

this concept has gone from increased economic and policy interest, global and regional research, 

collaboration in the form of intergovernmental bodies on biodiversity and ecosystem services, and 

several national organizations and agencies (Chaudhary et al., 2015). There is still a need to expand 

the views of this concept and address some specific issues like consensual definition, classification, 

and valuation methods. 

 

2.3.2 Ecosystem services classification 

One of the significant challenges with ecosystem services research alongside variation in terminology 

is the variation in classification systems. Since the 1997 popularity milestone, there has been an 

emergence of several methods to classify ecosystem services. The central theme of all classifications 

of ecosystem services is the variety of ways in which ecosystems support human needs (La Notte et 

al., 2017). There is also the need to consider the following: variation in spatial scales, beneficiaries, 

direct or indirect use, short-term or long-term benefits, perspectives, approaches (service flow) and 

terminologies, and mostly level of detail (hierarchies) have evolved with time (USEPA, 2015). 

Popular classification systems for ecosystem services include the following: Daily (1997), 
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Millennium Ecosystem Assessment (2005), Haines-Young and Potschin-Young (2013, 2018), 

Common International Classification of Ecosystem Services (CICES) in 2017, U.S. Environmental 

Protection Agency (2015), and the IPBES adopted NCPs in 2018. 

A form of categorization of ecosystem service is required to adequately map, measure, value, and 

communicate findings (De Groot et al., 2017).  The initial studies of ES were in the form of a list of 

ecosystem services with the expectation of expanding those lists with time (Daily, 1997; Costanza et 

al., 1997). Daily (1997) included a list of 13 services, and Costanza et al. (1997) used a list of 17 

ecosystem services to estimate the value of global ecosystem services and functions. The UN’s MEA 

(2005) classification system groups existing ES into ways that benefit humans. These categories 

include provisioning, regulating, supporting, and cultural services, as described below (MEA, 2005).  

● Provisioning services are materials and energy directly used by humans; examples include 

food and fiber, water, medicine from natural sources. 

● Regulating services are services that regulate ecosystems or other environmental processes; 

examples include water regulation, flood control, and erosion control. 

● Cultural services are nonmaterial value services. They include recreation, aesthetics, 

reflection, place identity, and other derived cultural or spiritual benefits. 

● Supporting services – services that support other types of services. They include soil 

formation and nutrient cycling. They are different from other types of services because their 

impacts on humans are either indirect or occur over a very long period. 

 

The TEEB (2010) classification system further expands on the MEA system adding a more 

economical aspect (Figure 2.3). It includes provisioning, regulating, and cultural services, but the 

fourth category is “habitat services” (USEPA, 2015; Costanza et al., 2017).  The new category 

includes two new services: ‘maintenance of life cycles of migratory birds’ and ‘maintenance of 

genetic diversity’ (TEEB, 2010; La Notte et al., 2017).  
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Figure 2.3: Ecosystem services classification by TEEB (Source: TEEB, 2010) 

 

The Common International Classification of Ecosystem Services (CICES) was initially developed in 

2013 (4.3), the latest version (5.1), which is an extension of the 2013 version, was released in 2018 

(Haines-Young & Potschin-Young, 2018). The CICES uses three functional groups of the MEA and 

TEEB classification (provisioning, regulating, and cultural services) but describes the ES groups in a 

five-level hierarchy with a more scientific approach (Figure 2.4). Each level in the hierarchy has more 

detail and specificity. This classification system considers only ‘final services’; that is, only the end-

product of nature that has a direct contribution to human well-being (Fisher et al., 2009; Costanza et 

al., 2017).  For the reason of not being considered a ‘final service,’ the supporting services from the 

MEA and TEEB categories are not included in this system (Costanza et al., 2017; Ruskule et al., 

2018). The supporting services are considered a ‘function’ rather than a ‘service’ (La Notte et al., 

2017). The CICES also category called ‘regulating and maintenance services,’ which is a merge of 
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the TEEB’s (2010) ‘habitat services’ and ‘regulating services’ (Haines-Young & Potschin-Young, 

2018). The difference between the current version (V5.1) and the older version (V4.3) clarification 

of the definition of ecosystem services, the extension of the scope of the classification, provision of 

more straightforward ES names and numeric codes of each ES to aid easy referencing (Haines-Young 

& Potschin-Young, 2018). 

 

Figure 2.4: Illustration of the hierarchical structure of CICES V5.1 using cereals. (Source: Haines-

Young & Potschin-Young, 2018). 

  

The U.S. Environmental Protection Agency also developed two classification systems; the Final 

Ecosystem Goods and Services Classification System (FEGS-CS) and the National Ecosystem 

Services Classification System (NESCS) (Landers & Nahlik, 2013; USEPA, 2015). They are like the 

CICES in the sense that they only consider final ecosystem services to avoid double counting, and it 

has a hierarchical order with numeric codes for each category (USEPA, 2015; Costanza et al., 2017).  

The NCP concept as adopted by the IPBES has developed its own classification framework. This 

system is not very popular because it is relatively new, but it is gaining recognition with varying 

views from researchers in their fields. Pascual et al. (2017) describe these benefits and steps to their 

valuation which include both popular valuation techniques like modeling and narrative analysis to 

capture people's views. Categories in this classification system include three broad groups; regulating 

NCPs (similar to the MEA’s regulating services), non-material NCPs, and material NCPs (Díaz et 
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al., 2018). All NCP's have a cultural context, so cultural benefits are not a separate category like the 

popular MEA classes. Figure 2.5 shows an example of NCPs and their categories.  

 

Figure 2.5: IPBES NCP and categories. (Source: Díaz et al., 2018). 

 

The U.S. Environmental Protection Agency (2015), Costanza et al. (2017), and Ruskule et al. (2018) 

reviewed in extreme detail major ecosystem services classification systems. They discussed various 

challenges related to the categorization of ecosystem services. One of the major issues, especially 

with the earlier typologies (Daily, Costanza, and MEA), is the possibility of double counting in 

valuation from overlapping services (La Notte et al., 2017). An example of possible overlapping is 

the explicit Millennium Ecosystem Assessment (2005) supporting ecosystem services that are 

dependent on underlying ecosystem functions of other ecosystem services (i.e., provisioning, 

regulating, and cultural). Also, the impacts of supporting services on humans are either indirect or 

occur over a very long period compared to changes in the other categories being direct with short-

term impacts on people (MEA, 2005; TEEB, 2010). The double-counting issue is the main reason 

more recent classification systems (CICES, FEGS-CS, NESCS) consider only final services. 
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However, there is a problem with determining what is considered ''final services'' as they vary with 

application, the reason CICES lists potential services (La Notte et al., 2017). There is also the issue 

of differentiating ecosystem services, goods, or benefits for proper valuation (La Notte et al., 2017). 

Although there are widely used classifications of ecosystem services (MEA and TEEB), the choice 

of an appropriate classification system to use should be based on the application area while 

considering their strengths and limitations (La Notte et al., 2017).  

2.3.3 Ecosystem service valuation and valuation methods 

The valuation of ES is as old as the concept (four decades ago). There are specific reasons why 

estimating the value of these services is essential. They include helping supranational, national, and 

local policymakers/environmental managers in urban and land use planning, raising awareness to the 

general population, estimating payments and incentives for ecosystem services, and more (Costanza 

et al., 2014). With the growing fields and applications of the ecosystem services concept, chances are 

there might be other needs for valuation arising in the future.  

The valuation of ecosystem services has several challenges. First, the varying definitions and 

classifications for ecosystem services based on views on how they are generated and linked to their 

benefits to the well-being of humans (Birkhofer et al., 2015; Boerema et al., 2017; Seppelt et al., 

2011). The ambiguousness in the definition makes the research on ecosystem services concept fluid 

across disciplines, but on the other hand, it makes it difficult to draw a generally accepted line for 

quantification (Seppelt et al., 2011). The variation in classification schemes has brought up the notion 

of double counting in economic valuation arising from linkages, stock, and flows of function and the 

need to break down the very complex ecosystem functions into discrete services (Birkhofer et al., 

2015). Also, there is confusion between the quantification of stocks and flows, for example, 

measuring carbon stocks instead of carbon sequestration for climate regulation ecosystem service 

(Boerema et al., 2017). 

Second, the diversity of beneficiaries of this contributes to complexity and plurality to the idea of 

quantifying ecosystem services.  This can be an issue of both spatial and temporal scales. A plant 

considered food in a specific region might not be very useful in a different location and temporally, 

some plants currently considered as medicinal could be realized to be toxic or invasive in the future 

(Small et al., 2017). The third is the challenge for quantifying intangible ecosystem services, most 
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notably cultural services like aesthetic, spiritual, and religious values as defined by the Millennium 

Ecosystem Assessment. Since culture is individualistic, it is difficult to determine the interaction of 

an individual vs. community with their environment. It is making quantification of services very 

subjective and widely dependent on scale and time. Also, cultural services are prevalent within other 

services (i.e., provisioning, regulating, and cultural); Fishes or snails can be considered as a cultural 

service from the angle of recreation and also a provisioning service as a source of food (Small et al., 

2017). 

Fourth, it is difficult to distinguish between anthropogenically-created, potential, and actual supply 

of ecosystem services by an ecosystem (Millennium Ecosystem Assessment, 2005). This differs at 

spatial scales, and with the increasing presence of modified landscapes, it is hard to draw a line or get 

an accurate measure of an ecosystem's productivity. Finally, there is a wide variation in methods used 

to measure ecosystem services, ranging from simple scoring systems to complex field-specific 

surveys, measurements, and modeling. Also, the use of indicators as a proxy (Yu et al. 2005), making 

services values sometimes a proxy of a proxy as the case of using remotely sensed data for indicators. 

With all these challenges, several methods of valuation of ES used (especially recently) have yielded 

substantial values enough for policy and legal decisions (Costanza et al., 2014; Kallis et al., 2013).   

The methods used in the valuation of ecosystem services are based on the type of service, data 

available, and researcher. Around the explosion of the ES concept, the well-known Daily (1997) had 

three categories of valuation methods: avoided cost for provisioning services, direct (consumptive) 

and indirect (non-consumptive) values for other services. Currently, broad categories of valuation 

methods include economic, sociocultural, and ecological or biophysical valuation methods (TEEB, 

2010, Castro et al., 2014; Gómez-Baggethun et al., 2016; Burkhard & Maes, 2017; Ruskule et al., 

2018).  These methods incorporate the well-known ecosystem cascade that ties a biophysical structure 

from ecosystems and biodiversity to human well-being; going from and biophysical processes 

through functions, services, benefits, and finally values (Costanza et al., 2017; De Groot et al., 2017).  

Biophysical valuation methods measure in biophysical units, that is, a measure of the physical costs 

of producing a service (Pascual et al., 2010; Ruskule et al., 2018). Therefore, these methods use 

indicators, proxies, or models for quantification (Gómez-Baggethun et al., 2016; Ruskule et al., 2018; 

Vihervaara et al., 2017). An example is the quantification of the amount of soil carbon or forest stock 

in biomass units.  The focus of this method is the assessment of structures or health, processes, and 
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functions of services. In other words, these methods are suitable for measuring both stocks and flows 

of ecosystem services (Vihervaara et al., 2017). Ruskule et al. (2018) grouped these methods into 

direct and indirect methods. The former being the use of directly measured indicators (surveys or 

field measurements like vegetation biomass), and the latter uses some assumptions alongside 

secondary (for vegetation indices from remote sensing data). Lang (2018) used the biophysical 

method for urban green mapping in city planning. He utilized a proxy for land cover (high-resolution 

satellite image) to delineate areas with uniform vegetation and generate units of “geons” of urban 

green space in Salzburg, Austria. 

Sociocultural valuation methods also involve the quantification of ES in non-monetary units.  These 

methods are focused on perceptions of demand and supply of society regarding social needs. The 

contribution of nature in this sense includes but is not limited to cultural, inspirational spiritual, 

emotional, or aesthetic needs (Gómez-Baggethun et al., 2016; Santos-Martin et al., 2017). It is 

common to use primary data in socio-cultural methods. Due to the difficulty (time and cost) of 

collecting primary data, coupled with the lack of formality of a common methodological approach, 

these methods were the least popular. But the use of the methods has grown in the last decade and 

incorporates better social and cultural valuation techniques (Gómez-Baggethun et al., 2016; Santos-

Martin et al., 2017). Examples of methodologies under this category include the use of narrative 

methods, participatory mapping, preference assessment, photo-elicitation surveys, scenario planning, 

and time-use assessment (Ruskule et al., 2018; Santos-Martin et al., 2017). 

The economic valuation methods measure the value of goods and services in monetary values. These 

methods are popular because it promotes awareness of the importance of nature as most people can 

relate to or understand monetary terms (Boerema et al., 2017; Gómez-Baggethun et al., 2016). It is 

often used to measure ES demands which are also known as the cascades of value and benefits 

(Boerema et al., 2017; Vihervaara et al., 2017). A lot of economic valuation methods have been 

developed over the last four decades with refinement as time goes by (Gómez-Baggethun et al., 2016). 

Brander and Crossman (2017) classified economic valuation methods into two broad categories; the 

first is primary valuation methods. Primary valuation methods use primary data that is related directly 

to ecosystem services if available (Brander & Crossman, 2017; Gómez-Baggethun et al., 2016). The 

process of primary valuation is usually costly and time consuming the reason for the other category, 

the value transfer methods. The methods in this category include market prices, public pricing, 
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hedonic pricing, contingent valuation, restoration cost, replacement cost, choice modeling, etc. The 

second category is the value transfer methods, they are for a quick and low-cost valuation. The 

methods include the use of existing primary values for decision making or for extrapolation values to 

a larger spatial scale (Brander & Crossman, 2017). A valuation (TEEB) database exists for this 

purpose with estimates of economic values of ecosystem services (Van der Ploeg et al., 2010). 

Examples of value transfer methods include the unit value transfer (using existing primary values for 

similar ecosystems), value function transfer, and the use of estimation from many primary values 

(Brander & Crossman, 2017; De Groot et al., 2012). Pascual et al. (2010) further classified the 

primary economic valuation methods into three subcategories. They include (1) direct market value, 

(2) revealed preference approaches, and (3) revealed preference approaches. Table 2.2 summarizes 

the difference between these classification systems.  

 

 

 

 

 

 

Table 2.1: Summary of economic valuation methods 

Brander and Crossman 

(2017) 

Pascual et al. (2010) Methods 

Primary valuation methods Direct market value methods Market price, Restoration cost, 

Replacement cost, Avoided 

cost, Public pricing, 

Production function, Damage 

cost avoidance 
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Revealed preference methods Hedonic Pricing, Travel Cost 

Stated preference methods Contingent 

valuation, Choice modelling, 

Group valuation, Factor 

income 

Value transfer methods Benefit transfer Unit value transfer, Value 

function transfer, Meta-

analytic function transfer 

 

A detailed review of economic valuation methods is beyond the scope of this study, a complete 

description including the strengths and limitations of these methods are available in the cited 

publications (Brander & Crossman, 2017; Pascual et al., 2010; TEEB, 2010). The authors also discuss 

the concept of total economic value (TEV), which describes the comprehensive value derived from 

an ecosystem and not just from one service (Brander & Crossman, 2017). 

With the long list of valuation methods as presented in the last three paragraphs, a pressing and 

important question in the ecosystem services valuation process is “what method to use.” Beyond the 

strengths and weaknesses of the existing methods, factors like data availability, cost of data 

acquisition, the purpose of valuation, spatial scale, technical certainty of the method, and type of 

service. Even though there are these categories of valuation methods, most ecosystem services studies 

combine, compare, or attempt to link the categories of methods in the valuation process (Castro et 

al., 2014; Kragt et al., 2010; Nelson et al., 2009; Whitham et al., 2015).  Castro et al. (2014), in other 

to assess the relation between supply and demand of scarce ecosystem services by analyzing trade-

offs on several landscape units in Spain, used biophysical values to measure supply and socio-cultural 

and economic values to measure demand.  

A common characteristic with the varying ecosystem services valuation methods is the use of 

statistical methods and models to extract values. A detailed review of ecosystem services models was 

carried out by Dunford et al. (2017) and Kienast and Helfenstein (2016); they include process-based 

models, Empirical models, Landscape models, Statistical models, Conceptual models, etc. But for ES 
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services, integrated models are more effective in modeling the natural environment, they include 

biophysical models and LULC models. In the last two decades, ES modeling frameworks with 

consistent methods were created specifically for the biophysical and economic quantification and 

valuation of ecosystem services (Dunford et al., 2017). These modeling frameworks use a mix of 

several modeling components (process-based, conceptual, agent-based, etc.) and they are commonly 

used in regional scale studies where input data are not as detailed as local or site scale studies (Kienast 

& Helfenstein, 2016). These frameworks have become popular too because of the high use frequency 

in policy and decision making as most policies for large-scale areas. Widely used and well-tested 

examples of the modeling software packages include InVEST (models 18 ES for supply and demand 

yielding both biophysical and economic values); Artificial Intelligence for ES (ARIES) (uses AI to 

assess the best model to map and quantify the ES using the driver-response correlation; Multiscale 

Integrated Model of ES (MIMES) (models ES by linking them to the earth systems); Social Values 

for ES (SoLVE) (more for social-cultural methods, using data from surveys or value transfer. It 

alleviates the challenges of quantifying cultural services); ESTIMAP (developed by the European 

Union to assess the supply, demand, stock and flows of ES) (Bagstad et al., 2013; Dunford et al., 

2017; Kienast & Helfenstein, 2016; Turner et al., 2016). Other modeling packages include GLOBIO-

ES, EcoServ, EcoAIM, ESValue, LUCI (polyscape), etc.   

Bagstad et al. (2013) reviewed and carried out a performance rating for seventeen modeling tools 

against criteria that include data requirement, level of development, scale application, and capacity 

of the independent application. Seven of the seventeen tools (included InVEST, ARIES, and 

EcoAIM) were tested on the San Pedro watershed in Arizona, U.S.A. InVEST, ARIES, SoLVE, and 

MIMES include tools that are generalizable, independently applicable, and suitable for landscape-

scale areas, while LUCI was more site-specific.  InVEST has been the top choice tool for most ES 

valuation studies not because it is open source and has standalone tools (like ARIES, MIMES) but 

because it has high generalizability, unlike ARIES that has a model for specific geographic areas; 

InVEST is also well documented and readily available without contacting for the required software 

like MIMES (Bagstad et al., 2013). 

The choice of model to use is like that listed for the choice of methods: spatial and temporal scale, 

available data, output expected, involved stakeholders, and type of ES (Kienast & Helfenstein, 2016). 

This study uses both biophysical and economic valuation methods to assess the impact of grassland 
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trends in the Great Plains ecoregion between 2001 and 2017. The modeling tools used is the InVEST 

model suite because it has been well tested, opensource, generalizable, suitable for the spatial scale 

of the study area and the availability of required data (Bagstad et al., 2013; Dunford et al., 2017; 

Kienast & Helfenstein, 2016; Nelson et al., 2009).                

2.3.4 Survey of grassland ecosystem service research 

The importance of grasslands, as discussed in the previous section (2.1.3), include but are not limited 

to the use for livestock food and, in turn, food production, the use of biofuels, sequestering carbon in 

vegetation and soil, water regulation, soil erosion control, high biodiversity, and nutrient cycling 

(White et al., 2000). These, in turn, translate to the supply and demand of ecosystem services for 

humans. Even with the popularity of provision and valuation ecosystem services from other biomes 

like forests and water bodies, the grasslands biome, which is one of the largest and important biomes 

are, yet to receive the attention it needs in highlighting how the ever-changing, very little protected 

biome affects the supply of ecosystem services.  Costanza et al. (1997) published the estimated 

individual and total economic values of ES from major biomes in the world based on the estimated 

value for each biome, and grasslands did not come off as very valuable as other biomes as importance 

was mainly for food provision and waste treatment. Grasslands have therefore been overlooked in 

global and regional policy discussions relating to ES (Bengtsson et al., 2019; Pascual et al., 2017). 

Focus on the ES provided by grasslands was brought to the limelight by Sala and Paruelo in the same 

year (1997). In the last decade, more attention is being drawn to grassland ES as global declination 

in grasslands is still ongoing. There is an increasing number of studies focusing on grasslands, with 

the inclusion of previously overlooked services, ES that require indirect methods of valuation and 

those ES that have non-use values (Bengtsson et al., 2019; Hendrickson et al., 2019; Hönigová et al., 

2012; Sala et al., 2017; Sollenberger et al., 2019; Yu et al., 2005).  The current ecosystem services 

provided by grasslands include but are not limited to the provision of food both for livestock and 

agriculturally for humans; regulation of erosion, pest, water flow, soil fertility, and climate; Cultural 

services such as tourism, recreation, and the use in scientific studies (Havstad et al., 2007; Hönigová 

et al., 2012; Inoue, 2017; Sala et al., 2017; Sollenberger et al., 2019). There is also further study into 

the role of synergies and tradeoffs in ecosystem services with the conversion of land use and how it 

impacts policy decisions and management practices (Bengtsson et al., 2019); like will the conversion 
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from grassland to forests yield more ecosystem services? But the multifunctionality of grasslands is 

undisputed and requires more attention (Bengtsson et al., 2019). 

With the growing focus on grassland ES and growing environmental concerns, there are several 

policies that have been put in place to either protect grasslands or restore natural grasslands that have 

been converted to other land covers.  Though grasslands are resilient and highly adaptable to various 

environmental conditions, recovery may be difficult, and restoration yields much lower quality than 

natural grasses (Roch & Jaeger, 2014). A study shows reduced total value in restored grasslands 

compared to natural or semi-natural grasslands in the Great Plains region of the U.S., and 

conservation is therefore recommended for grasslands (Dodds et al., 2008). 

Due to the vast coverage of grasslands, remote sensing is a popular method of data acquisition for 

mapping and valuation of grasslands ES. Remotely sensed data is used to produce spatially explicit 

assessments and quantification of ecosystem services (De Araujo Barbosa, et al., 2015; Liquete et al., 

2016). They also provide adequate temporal scale data or even real-time data for monitoring of ES 

(Ayanu et al., 2012). A detailed review of remote sensing data, techniques suitability was described 

by several studies (Ayanu et al., 2012; De Araujo Barbosa, et al., 2015; Liquete et al., 2016). Ayanu 

et al. (2012) provide details of commonly used remotely sensed data (which include the Landsat, 

SPOT, and MODIS series), their key attributes, and their suitability in mapping and quantifying 

several ES. De Araujo Barbosa, et al. (2015) presents a summary of trends in remote sensing for 

ecosystem services research and what can be improved upon in the future in this research area by 

addressing methodological challenges and suggesting solutions. Even though remote sensing for ES 

mapping and quantification is cost-effective and relatively accurate, there are several limitations 

associated with the techniques; they include spatial data resolution, temporal scale, sensor type, and 

data uncertainties (Ayanu et al., 2012). These factors also determine the suitability of any available 

remotely sensed data for a study. 

Remotely sensed data are usually used as a proxy for a variable or indicator, which is then used as a 

proxy for an ES; that is, a proxy of a proxy (Ayanu et al., 2012). In this case, vegetation greenness 

(indices) is a proxy for a service like carbon sequestration. There is either the direct use of remote 

sensing data using the radiative transfer or statistical models or the indirect use of generating land 

use/land cover data or vegetation indices. The direct methods will be problematic in this study 

because of the large spatial scale of the Great Plains ecoregion and the unavailability or high-
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acquisition-cost of site measurement required for the model.  So, the land use/land cover or VI is the 

best bet for this study. 

Valuation of grassland ecosystem services is similar to the valuation of the ecosystem services of 

other biomes (e.g., forests). Values could be biophysical, socio-cultural, or economic and valuation 

methods cut across a broad range and discussed in the last section. The biophysical and economic 

valuation methods are most common for grassland ecosystem services (Table 2.3). Economic values 

range from contingent valuation-the willingness to pay (Costanza et al., 1997; Costanza et al., 2014) 

to unit value transfer (Yu et al., 2005). Table 2.3 summarizes valuation methods used (alongside other 

aspects) for grassland ecosystem research.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2: Summary of services, valuation methods, and outputs used in existing grassland ES 

valuation research. 

ES group 

(TEEB) 

Ecosystem 

service 

(TEEB) 

Scale of/ and study area Valuation 

Method 

Valuation 

Output (unit) 

References 

Provisioning Food 

provision 

1. Regional (Mongolian 

Plateau) 

2. Country (Czech Republic) 

3. Municipality (Shenzhen, 

China) 

1.Preference 

assessment 

(socio-cultural) 

2. Market price 

3. Benefit transfer 

1. Kg/capita 

2. Euro/yr 

3. USD/ha/yr 

4. Kg per 

capita/yr 

1. Zhen et al., 2010 

2. Hönigová et al. 2012 

3.  Li et al. 2010 

4. Du et al. 2018 
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4. Landscape (inner Mongolia 

China) 

4. Biophysical 

Water 

(drinking) 

1. Landscape (Te Papanui 

Conservation Park, New 

Zealand) 

2. Municipality (Shenzhen, 

China) 

1. Market price 

2. Benefit transfer 

1. NZD/ha/yr 

2. USD/ha/yr 

1. Butcher Partners 

Limited 2006 

2. Li et al. 2010 

Regulating Climate 

regulation 

(Carbon 

sequestration) 

1.Landscape (Tibetan- Plateau 

China) 

2. Landscape (Paramo 

grasslands, Ecuador) 

3. Landscape (Northern 

Chihuahuan desert) 

4. Country (Czech Republic) 

5.Landscape (Eastern 

Colorado USA) 

1. Public pricing 

2. Biophysical 

3. Biophysical 

4. Damage cost 

5. Benefit transfer 

 

1. USD/hm2 

2. Tons/ha 

3. C/m2/yr 

4. Euro/ton 

5. USD/ha/yr 

1. Yu et al. 2005 

2. Farley et al., 2013 

3. Petrie et al., 2015 

4. Hönigová et al. 2012 

5. Sala & Paruelo 1997 

Water 

retention 

1.Landscape (Tibetan- Plateau 

China) 

2.Country (Czech Republic) 

3. Regional (Catalonia, Spain) 

1. Production 

function 

2.Replacement 

cost  

3.Benefit transfer 

1. USD 

2. Euro/ha/yr 

3. USD/ha/yr 

1. Yu et al. 2005 

2.Hönigová et al. 2012 

3. Brenner-Guillermo, 

2007 

Water 

purification 

1. Regional (Catalonia, Spain) 

2. Municipality (Shenzhen, 

China) 

1.Benefit transfer 

2.Benefit transfer 

1. USD/ha/yr 

2.Yuan/ha/yr 

1. Brenner-Guillermo, 

2007 

2. Li et al. 2010 

Soil 

conservation 

1.Landscape (Tibetan- Plateau 

China) 

2. Landscape (inner Mongolia 

China) 

1. Production 

function 

2. Biophysical 

1. USD/month 

2. g/kg 

1. Yu et al. 2005 

2. Du et al. 2018 

 

Soil nutrient Landscape (inner Mongolia 

China) 

Biophysical 

 

mg/kg Du et al. 2018 

Erosion 

Prevention 

1. Country (Czech Republic) 

2. Landscape (Central 

grasslands, USA) 

3. Country (USA) 

4. Regional (Catalonia, Spain) 

1. Damage cost 

2. Market price 

3. Benefit transfer 

4. Benefit transfer 

1. Euro/ha/yr 

2. USD/ha/yr 

3. USD/ha/yr 

4. USD/ha/yr 

 

1. Hönigová et al. 2012 

2. Barrow 1991 

3. Sala & Paruelo 1997 

4. Brenner-Guillermo, 

2007 
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Air quality Municipality (Shenzhen, 

China) 

Benefit Transfer Yuan/ha/yr Li et al. 2010 

Cultural  

Ecotourism 

1. Country (Czech Republic) 

2. Country (Botswana) 

1. Contingent 

valuation 

(WTP) 

2. Market price 

1. Euro/ha/yr 

2. Botswana 

Pula/ha 

 

1. Hönigová et al. 2012 

2. Barnes 2002 

Aesthetic 1. Landscape (Los Angeles, 

California, USA) 

2. Landscape (Drakenberg Hill 

& Harz Mountain Villages, 

Germany) 

1. Hedonic 

pricing 

2. Contingent 

valuation (WTP) 

 

1. USD/month 

2. Euro/month 

1. Brookshire et al. 

1982 

2. Barkmann & 

Zschiegner 2010 

Recreation 1. Country (Czech Republic) 

2. Municipality (Shenzhen, 

China) 

 

1. Contingent 

valuation 

(WTP) 

 2.Benefit transfer 

1. Euro/ha/yr 

2. Yuan/ha/yr 

1. Hönigová et al., 

2012 

2. Li et al. 2010 

Habitat Genepool 

(Biodiversity) 

Protection 

1.Landscape (Tibetan- Plateau 

China) 

2. Municipality (Shenzhen, 

China) 

3. Country (South Africa) 

1. Value transfer 

2.Benefit transfer 

3. Contingent 

valuation 

(WTP) 

1. USD/hm2 

2. Yuan/ha/yr 

3. USD/ha/yr 

1. Yu et al. 2005 

2. Li et al. 2010 

3. Turpie 2003 

 

 TEV 1. Global 

2. Global 

3. Country (Australia) 

Total Economic 

Value 

1. USD/ha/yr 

2. USD/ha/yr 

3. AUD/ha/yr 

1. Costanza et al. 1997 

2. Costanza et al. 2014 

3. Blackwell 2006 

USD=U.S. dollars; AUD=Australian dollars; NZD=New Zealand dollars; hm2=square hectometer; ha=hectares; yr=year; 

WTP=willingness to pay 

 

Some existing modeling suites that incorporate the methods listed in table 2.3 can be used to value 

grasslands ecosystem services as well as other ES. Although there are some conceptual models for 

the monitoring of grasslands and vegetation-properties-based models to map grassland ecosystem 

services (Tinker & Hild, 2005; Lavorel et al., 2011), there is no modeling suite built specifically for 

grassland ecosystem services valuation. Other limitations with grassland ES valuation in the variation 

in definition and categorization of grasslands coupled with the varied categorization of ecosystem 

services. With this growing list of ecosystem services grasslands provide, it can be challenging to 

decide which ES to map and value that will best impact policy decisions. Yu et al. (2005) highlight 
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the need to choose related ecosystem services based on the varying structure of the grassland 

ecosystem. 

2.4 Implications of the literature review on the current study 

Having reviewed several related works of literature in the previous sections, the implication for the 

current study is that despite several definitions and classification of grasslands, they occur largely 

globally, and they are very important to humans and the environment. The review also shed some 

light on major methods used in mapping and monitoring grasslands, including their pros and cons. 

The temporal condition and spatial coverage are important in the mapping and monitoring effort.  

Specifically important in the time series analysis of remote sensing data to analyze grassland 

vegetation trends and highlight the impact of climate change and other factors influencing the 

dynamics of grasslands.  

The most important implication of the review of literature is the dearth of studies assessing the 

condition of the Great Plains ecoregion as a whole. The Great Plains is one of the very important 

ecoregions in the U.S. and the world with its impact on climate regulation, livestock production, and 

biodiversity, to name a few. Second, is also a scarcity of studies in the valuation of grassland 

ecosystem services. The TEEB database shows only 56 out of 1310 entries for grassland, and most 

of the studies entered do not specifically focus on grassland. Even in the past decade, highlighting 

the services provided by grasslands and how they are impacted by the changing state of grasslands 

(declination and degradation) still needs more work. 
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Chapter 3 - Detection of long-term grassland vegetation trends for the Great 

Plains ecoregion using temporal decomposition and satellite-derived vegetation 

indices. 

 

 

Abstract 

 

Grasslands cover approximately half of the terrestrial earth surface and provide a plethora of 

environmental benefits and ecosystem services. They have become one of the most changed biomes 

in the world, and therefore, proper monitoring and management of grasslands cannot be 

overemphasized. Remotely sensed, vegetation indices timeseries dataset is an effective tool to 

investigate large-scale vegetation change dynamics. A time-series analysis of Moderate Resolution 

Imaging Spectrometer (MODIS) 16-day maximum value composite Normalized Difference 

Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) data (MOD13Q1 Collection 5) was 

performed to assess long-term trends in vegetation greenness across the Great Plains ecoregion of the 

United States. The Breaks for Additive Season and Trend (BFAST) decomposition method was 

applied to a time series of images from 2001 to 2017 to derive spatially-explicit estimates of gradual 

interannual change. Results show more ‘greening’ trends than ‘browning’ and ‘no change’ trends in 

the study area during the study period. Comparing the trend results from both vegetation indices 

implies that the EVI is more suitable for this analysis in the study area, especially in areas with high 

biomass. The findings of this study suggest the need for additional analyses to quantify the influence 

of climate and soils, along with critical regional anthropogenic factors such as fire, on shaping long-

term vegetation dynamics and estimate the impact on the values or services we acquire from 

grasslands in the ecoregion. 

 

KEYWORDS: Grasslands, Trends, NDVI, EVI, Great Plains Ecoregion, and BFAST. 
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3.1 Introduction: 

3.1.1 Background and purpose 

Grasslands are one of the most biodiverse and productive terrestrial biomes that provide many 

benefits or ecosystem services (ES) (Millennium Ecosystem Assessment [MEA], 2005; TEEB, 

2010). Despite grasslands providing for a number of ES, including supporting services (e.g., nutrient 

cycling and soil formation), regulating service (carbon sequestration, erosion control, and water 

storage), provisioning services (e.g., food, freshwater, wood, and fiber), and cultural services (e.g., 

recreation and aesthetics), they receive very low levels of protection (Mark & McLennan, 2005; 

Pendall et al., 2018). In the last decade, more than 8,100 square kilometers of grasslands were 

converted to croplands in the entire Great Plains (Plowprint report, 2021). In 2019 alone, 

approximately 10,500 square kilometers of grasslands in the Great Plains were lost to crop cultivation 

(Plowprint report, 2021). The temperate grasslands in the United States are among the most 

threatened grassland ecosystems, with almost 62% of the historical extent lost (Comer et al., 2018; 

Oakleaf et al., 2015). Many factors have, and continue, to contribute to this, including fire frequency, 

invasion of non-native species (usually woody species), fragmentation, and conversion to other land 

use (Gibson, 2009; Jacquin et al., 2016; Ratajczak et al., 2016). 

Long-term studies on a major terrestrial biome like grasslands are critical to achieving an integrated 

understanding of ecosystems' response to climate change. Understanding the impact of climate 

change and ecosystems is necessary because these changes impact the provision of various essential 

ecosystem services provided by grasslands. Therefore, long-term analysis of grassland is needed for 

monitoring and evaluating long-term changes in biomes like grasslands is also key environmental 

policy and decision making and evaluating the impact of some implemented policies on the 

environment. 

Some existing studies have highlighted the changing spatial extent of grasslands in the Great Plains 

(Comer et al., 2018), the phenological trends in the northern hemisphere (Jeong et al., 2011), and 

greening/browning trends globally (De Jong et al., 2012). Comer et al. (2018) analyzed long-term 

spatial trends in grassland types across the Great Plains, including identifying species of concern, 

protected areas, intactness, and connectivity among grassland areas and identifying Grassland 

Potential Conservation Areas (GPCAs). Results of the long-term spatial trends showed that the 
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tallgrass prairies had the most severe declines in extent, followed by mixed-grass, shortgrass, and 

semi-desert grasslands. Results from the time-series analyses of long-term phenological trends in the 

northern hemisphere by Jeong et al. (2011) showed a general earlier start of the growing season and 

later end of the growing season, which resulted in an increased growing season length. Also, Jong et 

al. (2012) carried out an analysis on global vegetation greening and browning trends between 1982 

and 2008. Although a net greening was detected across all biomes, the trend for grasslands and 

shrublands showed abrupt greening followed by gradual browning. The southern hemisphere showed 

the most browning, and the temporal analysis indicates more browning than greening in the time 

studied.  

Despite these past studies, relatively little is known about the long-term conditions of grasslands in 

the interior of the United States. The objective of this study is to assess long-term trends and spatial 

patterns in grasslands within the U.S. Great Plains based on vegetation greenness as measured by the 

Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) over the 

period 2001 to 2017. 

Time-series analyses of remotely-sensed imagery have been used to monitor vegetation conditions to 

inform management practices (Hutchinson et al., 2015; Jeong et al., 2011). The most commonly used 

vegetation index for this purpose is NDVI which serves as a proxy for important biophysical measures 

such as aboveground biomass and leaf area index (Wang et al., 2018). NDVI has shown to have 

reliable correlations with several vegetation properties at varying spatial scales, with the ratio-based 

value reducing many sources of noise. However, a key limitation of NDVI is saturation over areas 

with high biomass (Huete, 1988; Wang et al., 2018). An alternative vegetation index, EVI, was 

developed to improve sensitivity over areas of high biomass and to further reduce atmospheric 

influences. The EVI uses additional wavelength bands and a soil adjustment factor to adjust NDVI 

for atmospheric and soil noises as well as mitigating the saturation in dense vegetation areas. 

However, the soil adjustment factor used in calculating the EVI makes it more sensitive to the 

variation in the radiance that accompanies a change in the topography of a surface in response to a 

change in the light source and sensor position (Matsushita et al., 2007). Therefore, making it difficult 

in areas with rough terrains or mountainous areas (Matsushita et al., 2007). While several other 

vegetation indices exist, EVI and NDVI remain popular choices among remote sensing researchers 

(Wang et al., 2018).  
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A time series of vegetation indices can be used to determine trends and seasonal variation in 

vegetation properties (Heumann et al., 2007). One approach used to accomplish this is temporal 

decomposition, which separates time-series image data into three components, including seasonality 

(annual), trend (interannual and could be linear or nonlinear), and residuals (remainder of data signal 

after removing seasonality and trend) (Verbesselt et al., 2010).  

A popular method for decomposing trends in time series data is using the Breaks for Additive 

Seasonal and Trend (BFAST) (Verbesselt et al., 2010).  The BFAST routine is one of the many 

statistical methods used to extract the trends from time-series data. BFAST uses least-squares 

regression to model the trend component within a time series to detect gradual (interannual) and 

abrupt (intraannual) changes (Verbesselt et al., 2010). A newer method developed for detecting both 

abrupt and non-abrupt changes, named DBEST (Detecting Breakpoints and Estimating Segments in 

Trend), can quickly and accurately estimate change time and magnitude just like BFAST (Jamali et 

al., 2012). However, DBEST cannot detect changes in the seasonal component (Fang et al., 2018). 

Forkel et al. (2013) did a performance test on several methods used to detect trends and trend changes 

in long-term VI time series and noted that BFAST showed excellent performance in detecting both 

gradual and abrupt interannual changes in trend. Fang et al. (2018) used BFAST and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) 16-day NDVI at a spatial resolution of 250 m to 

detect abrupt vegetation trends (disturbances) in Southern Quebec, Canada, during the years 2000 to 

2011. Results were presented in and discussed in land cover categories, and the results for grasslands 

in the region show an overall positive trend (greening) for the study period. However, the years 2001, 

2002, and 2007 had abrupt vegetation browning (a more negative trend) for grasslands. De Jong et 

al. (2012) also used BFAST and the Global Inventory for Mapping and Modeling Studies (GIMMS) 

NDVI data to detect trend changes in NDVI data between 1982 and 2008 at the global scale. Results 

show more negative than positive gradual change for grasslands in the northern hemisphere during 

the study period. Baghi and Oldeland (2015) used BFAST and MODIS (MOD13Q1) 16-day EVI at 

a spatial resolution of 250 m to detect the abrupt and gradual trend of grasslands in Northeast Iran 

between the years 2000 to 2004 (monthly intervals). Results showed a more stable than positive or 

negative trends and an average of 3 breaks per study period. 

This study uses BFAST and a time series of MODIS NDVI/EVI images to quantify long-term 

interannual trends across the entire U.S. Great Plains. The Great Plains ecoregion is the largest 
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grassland reserve in the U.S. Given the dramatic decline of grasslands in this highly biodiverse, 

agriculturally-dependent ecoregion, coupled with the spatial variability in environmental and 

socioeconomic characteristics, improving our understanding of long-term changes in the dominant 

grassland vegetation will provide useful insight into the future provision of ecosystem services.  

3.2 Study area 

The Great Plains region is situated in the vast interior of North America, running from Canada in the 

North to Mexico in the south and lies east of the Rocky Mountains and west of the eastern temperate 

forests and the Appalachian Mountains (Rossum & Lavin, 2000). The region experiences extreme 

weather with periodic floods, droughts, and tornado events (Drummond & Auch, 2015). Climate is 

also diverse across this large region and is influenced by latitude (north to south) and elevation 

(increasing from east to west) (Tollerud et al., 2018). The Koeppen-Geiger climate classifications 

within the Great Plains show the range from the cold (snow) climate in northwestern North Dakota 

with warm, humid summers and long, cold, snowy winters to the arid climate of Texas in the south 

(Beck et al., 2018). Precipitation in the Great Plains is highly variable from year to year and, based 

on 30-year normal (1981-2010), ranges from a high of 1500 mm in the southeast to a low of 250 mm 

in the west.  Annual mean temperatures range from 00C in the north to 220C in the south (PRISM 

Climate Group, 2019). Elevations in the region are similarly varied but generally decrease from a 

maximum of 3610 meters above sea level in Colorado to an average of 200 meters in eastern 

Oklahoma to central Texas (U.S. Geological Survey, 2017). 

 

The boundary for the Great Plains region used for this study is that defined by the United States 

Environmental Protection Agency (EPA) based on Omernik (1987) and Omernik and Griffith’s 

(2014) ecoregion classifications. These classifications are based on patterns of phenomena, including 

geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology (Omernik, 1987). 

The U.S. EPA categorizes the Great Plains as a Level I ecoregion. one of the 15 coarsest ecosystems 

in North America. In this ecosystem classification, the Great Plains has four level-II divisions and 16 

Level III subdivisions (Omernik, 2014).  

The Great Plains in the U.S. spans over 2.2 million square kilometers, with more than 40 percent of 

this land area in grassland, followed by agricultural land uses (Drummond & Auch, 2015). This study 
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focuses only on grassland areas as defined by the grassland/herbaceous class of the United States 

Geological Survey’s National Land Cover Dataset (NLCD) for 2011 (Homer et al., 2015). The 

grassland area, as defined for this study, is approximately 826,000 square kilometers and covers 13 

U.S. states (Figure 3.1). It contains a mixture of tallgrass prairie (east), mixed-grass prairie (north 

central), and short grass prairie (west). 
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Figure 3.1: U.S. Great Plains study area showing Omernik level III ecoregions and grassland pixels 

extracted from the 2011 NLCD. 
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3.3 Data and methods 

3. 3. 1 Data and data preparation 

For this analysis, MODIS (MOD13Q1 Collection 6) 16-day maximum composite normalized 

difference vegetation index (NDVI), and the enhanced vegetation index (EVI) products for the period 

of 2001 to 2017 were used. Twenty-three composite images are produced per year, resulting in a total 

of 391 images for the study period. Images were downloaded from NASA’s Earth Observation Data 

website using the “MODIStsp” package (version 1.3.3) in R as a 16-bit signed integer grid.  The 

MOD13Q1 data has a 250-meter spatial resolution. The various scenes of the downloaded images 

that make up the EPA Great Plains were mosaiced and reprojected from their native sinusoidal 

projection to the USA Contiguous Albers Equal Area Conic projection.  

 

To extract the area of interest, pixels belonging to the “grassland/herbaceous” class of the 2011 NLCD 

data produced from a 30-meter spatial resolution were resampled to match the spatial resolution of 

the MOD13Q1 imagery. To address the potential for misidentifying a grassland pixel, resampled 

pixels having at least 80% of their area comprised of the original NLCD grassland/herbaceous class 

were retained and used as a mask to extract the grassland pixels from the time series MODIS NDVI 

and EVI images. Due to the size of the study area and the computational effort required to perform 

the later analyses, the original NDVI and EVI images for the Great Plains (11634 rows and 7629 

columns) were subdivided into a total of 423 smaller tiles having a maximum size of 350 rows by 

350 columns (or up to 122,500 individual pixels).  

3.3.2 Methods        

Pixel values for each tile were extracted based on centroids and stored in tables. As a quality control 

step and to meet the data requirements of later analyses, missing VI data were replaced with the mean 

of the preceding and succeeding values of the same pixel in the time series. Tables for each tile were 

exported in CSV format and analyzed using the Breaks for Additive Seasonal and Trend (BFAST 

version 1.5.7) package for R in parallel using Beocat, the high-performance computing cluster at 

Kansas State University.  
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The BFAST routine is based on a LOESS-driven STL temporal decomposition that produces reliable 

estimations of seasonal and trend components from time-series data (Johnson et al., 2008). BFAST 

is also capable of modeling the trend component using linear or nonlinear regression to detect 

breakpoints, identifying when they occur, and quantifying the magnitude of change associated with 

each abrupt change (Verbesselt et al., 2010). 

 

BFAST method uses an additive model (Equation 1) to decompose each pixel of a time series dataset 

into three components:  Seasonal (St), trend (Ct), and residuals (εt) (Cleveland et al., 1990). 

 

Yt = St + Ct+ εt           [1] 

 

Performing temporal decomposition using BFAST requires specification of several parameters,  

including (1) the length of the time series, in this case, the total number of images in the time series, 

(2) the length of the season or the number of images within one vegetation cycle, (3) the season 

model, (4) a value (h) which relates to the minimum time interval between potential breaks in the 

trend component which is given as the fraction of the number of images in one vegetation cycle and 

the total number of images in the time series, and (5) the maximum number of breaks determined by 

h (Verbesselt et al., 2010). Table 1 summarizes the parameters used for this analysis. 

Table 3.1: Parameters used in the BFAST routine analysis. 

 

BFAST Parameter 

Parameter Value 

1 Length of the time series 391 

2 Length of the season time series 23 

3 Season model harmonic 

4 h 0.05 

5 Maximum number of breakpoints 17 (based on h value) 
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The BFAST change detection algorithm decomposes the time series into seasonal, trend, and the 

residual components (Figure 3.2). In the example, BFAST graphical outputs shown in Figure 3.2, the 

time factor on the horizontal axis represents the year in the study period. The first row is the raw VI 

value; the second row is the seasonal component, which is a fitted seasonal model of the VI values; 

the third row is the trend component, which is a fitted (multi-annual linear or nonlinear) trend of the 

VI values consisting of segments with gradual or abrupt changes. The fourth row is the residual or 

remainder component after removal of trend and seasonal components. In addition to the graphical 

output, BFAST generates tabular outputs with raw values for the trend component for each pixel 

during the study period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 
 

(a)  

(b)  

(c)  

 

Figure 3.2: The BFAST output showing the raw NDVI time series (Yt), seasonal (St), trend (Tt), 

and residual components(et). Image (a) Pixel (in southwestern TX) with an overall negative trend 

over time and significant five breaks (b) Pixel (in northeastern KS) with an overall positive trend 

over time and three significant breaks (c) Pixel (in northeastern KS) with an overall null trend over 

time and one significant break. 
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The long-term trend in surface greenness, or gradual interannual change, was calculated for each 

pixel and VI using data returned by BFAST in the trend component. Gradual interannual change 

corresponds to the linear slope of the trend component across the 17-year study period without 

considering the presence or magnitude of any intraannual breaks detected in the trend. Ordinary least 

squares regression was used to calculate the slope of the trend, and its significance against a null slope 

was assessed using a Student’s t-test (Hutchinson et al., 2015). Based on the statistical significance 

and sign of the slope, all pixels were placed into one of three gradual interannual trend classes (Table 

3.2). The percentage of trend classes was calculated for the entire Great Plains Level I ecoregion 

study area and each of its Level III subdivisions. 

 

Table 3.2: Definition and interpretation of gradual interannual trend classes (source: Hutchinson et 

al., 2015). 

Trend Class Significance of trend 

slope value (α = 0.05) 

Sign of trend 

slope 

Interpretation 

Browning Slope value significantly 

different from a null slope 

Negative VI-derived trend indicates 

surface greenness has 

declined over time. 

 

Greening Positive VI-derived trend indicates 

surface greenness has 

increased over time. 

No Change Slope value is not 

significantly different from 

a null slope 

Negative and 

Positive 

VI-derived trend indicates 

surface greenness has 

remained stable over time. 

3.3.3 Validation of the time series trend analyses 

To validate the resulting trend classes calculated using the MODIS VIs during the study period, a 

change analysis was computed using Landsat-derived NDVI images for the starting year (2001) and 
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ending year (2017) of the study period. This validation method has been used for change analysis in 

grasslands (Borak et al., 2000; Tarantino et al., 2016), especially in large study areas that make field 

validation challenging or that might rely on historical data to calculate. Given the intra-region 

diversity of grasslands within the Great Plains, sample areas for validation were chosen to include 

shortgrass, mixed-grass, and tallgrass prairie sites (Figure 3.3). Using a power analysis based upon a 

95% confidence level and 0.5 confidence interval, 38,320 pixels were determined to be the minimum 

required number of pixels to be sampled. Here, a total of 455,600 pixels were used for the validation 

process. Two cloud- and scan-line free Landsat images for each sample area were acquired from the 

USGS Earth Explorer website (https://earthexplorer.usgs.gov/). The Landsat sensor and date of 

acquisition for each sample area are listed in Table 3.3. 

 

https://earthexplorer.usgs.gov/
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Figure 3.3: Map of the study area location of Landsat image pairs (sample sites) used for validation.   
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Table 3.3: Details of Landsat image pairs used for validation 

 

Sample Site Image and Image dates Area of 

Sample site 

(KM2) 

No. of Pixels in 

Sample Sites 

Montana Landsat-5 TM: 08/25/2001 

Landsat-8 OLI: 08/21/2017 

7,163 71465 

Nebraska  Landsat-5 TM: 08/24/2001 

Landsat-8 OLI: 08/20/2017 

6,901 99077 

New Mexico Landsat-5 TM: 09/09/2001 

Landsat-8 OLI: 06/17/2017 

13,757 168356 

South Dakota Landsat-5 TM: 06/16/2001 

Landsat-8 OLI: 07/14/2017 

4,187 38285 

Texas 1 Landsat-7 TM: 07/17/2001 

Landsat-8 OLI: 07/21/2017 

3,323 27847 

Texas 2 Landsat-7 TM: 06/19/2001 

Landsat-8 OLI: 06/23/2017 

4,924 50570 

 

NDVI was calculated from the multispectral Landsat images and non-grassland pixels masked. The 

Landsat-derived NDVI images were then resampled and reprojected to match the characteristics of 

the MODIS NDVI images. The grassland pixels difference (2001 - 2017) in the Landsat NDVI was 

calculated for each sample area. As with the MODIS NDVI trend classes, three high-resolution trend 

classes were created (browning, no change, greening) for the Landsat NDVI using thresholds. That 

threshold was based on upper and lower levels of the mean NDVI difference standard deviations, 

which vary for each sample area (Table 3.4). Finally, the percentage of the change classes from the 
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Landsat NDVI validation dataset were compared to those created from MODIS NDVI analysis for 

the same sites. 

 

 Table 3.4: Landsat NDVI difference class threshold 

Sample Site Threshold (Standard deviation from the mean) 

NDVI EVI 

Montana ∓ 0.5 ∓ 0.25 

Nebraska  ∓ 0.25 ∓ 0.75 

New Mexico ∓ 0.25 ∓ 0.5 

South Dakota ∓ 1.25 ∓ 0.5 

Texas 1 ∓ 1.25 ∓ 1.25 

Texas 2 ∓ 0.5 ∓ 0.5 

3.3.4 Comparison of NDVI and EVI for trend analysis 

To compare the results of trend analysis from the MODIS NDVI and EVI time series, a Chi-square 

test was first carried out to determine if the gradual interannual trend results were dependent on the 

VI used. The null hypothesis that the trend is independent if the VI used should be rejected if the test 

statistic (p < 0.05) is significant.  

 

Second, an error matrix was constructed to compare trend results based on the two indexes. The focus 

of the error matrix was on summarizing the cross-tabulation, rather than reporting the proportion 

“correct” and a kappa index, to gain more valuable insights into the two trend outcomes. The error 

matrix includes the user’s and producer’s accuracy metrics. The user’s accuracy represents the 

proportion of a category in the reference data that have been correctly identified, but, in this case, it 

represents the number of pixels that are the same in both NDVI and EVI results. The producer’s 

accuracy represents the proportion of a category in the reference data that were classified properly (it 

does not apply in this situation). Differences between the reference (NDVI) and comparison (EVI) 

maps were quantified in terms of quantity and allocation disagreement (Pontius & Millones, 2011). 

Quantity disagreement results from an imperfect match in the number, or proportion, of pixels across 

categories represented in the reference and comparison maps. Allocation disagreement arises when 

there is an imperfect match in the spatial allocation of categories caused by pairs of misallocated 
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pixels. Within such pairs, one pixel represents an error of omission and the other an error of 

commission. The concepts behind quantity and allocation disagreement have been called by various 

terms in different fields. For example, in landscape ecology, composition is the “quantity” of each 

category, and “configuration” describes how categories are arranged spatially (Gerger & Turner, 

2002). Allocation disagreement can further be subdivided into two components called exchange and 

shift, which result in allocation differences due to confusion in pairwise and non-pairwise categorical 

comparisons with a minimum of three categories, respectively (Pontius and Santacruz, 2014). 

 

Figure 3.4 shows several comparisons of trend results with their corresponding error matrices and 

values for quantity disagreement, exchange, and shift. The first example illustrates a pure quantity 

difference where six green pixels (positive trend) exist in the reference, but only three are found in 

the comparison map. As in this case, quantity differences are indicated when the marginal totals of 

the reference do not exactly match those for the comparison. The second example is a complete 

exchange difference given that three pixels that are red (negative trend) on the reference are replaced 

by green on the comparison, but there are six green and three red pixels on both. The third example 

presents a complete shift difference and highlights the requisite of having a minimum of three 

categories present for such differences to exist. The total number of pixels in each of the three 

categories is the same across both maps, but there are six total pixels that shift values (e.g., red to 

green, gray (stable) to red, and green to gray). These differences cannot be considered exchanges 

because there are, for example, three pixels that are red in the reference that become green in the 

comparison but no green pixels in the reference that are red in the comparison. The fourth and final 

comparison illustrates all three types of differences. 
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Figure 3.4: Four comparisons of trends results produced using NDVI and EVI that illustrate three 

measures of disagreement: quantity, exchange, and shift (after Pontius and Santacruz, 2014). 

 

To further assess the impact of using NDVI versus EVI for grassland trend analysis in the Great 

Plains, trend results from two level III ecoregions within the study region having the lowest and 

highest average VI values were compared. Based on a zonal analysis, the level III ecoregion with the 

highest average VI values was the Central Irregular Plains. However, the Flint Hills (the next highest) 

was used for this analysis because it included significantly more grassland pixels as compared to the 

Central Irregular Plains, including high-biomass tallgrass prairie. The level III ecoregion with the 

lowest average VI values in the Great Plains during the study period was the Southwestern 

Tablelands. To conclude the comparison of the NDVI- and EVI-derived trends, a pixel difference 

analysis was carried out to illustrate any spatial variation between the two results. 
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3.4 Results 

3.4.1 Gradual interannual trend 

 The gradual interannual trend classes for 2001 to 2017 from MODIS VI analyses are shown in 

Figures 3.5 (NDVI) and 3.6 (EVI). Pixels with statistically significant positive (greening) and 

negative (browning) trends are shown in green and red, respectively. Pixels without a significant 

trend (null slope) are shown in dark grey. Pixels with a positive trend indicate grasslands are getting 

greener over time which suggests improvement in condition (e.g., higher aboveground biomass, 

greater leaf area index, etc.). Conversely, pixels with a negative trend highlight areas where VI values 

are declining over the study period, which points to degrading vegetation condition (e.g., less 

aboveground biomass, lower leaf area index, etc.). Finally, pixels with non-significant, or null, slopes 

are considered to exhibit stable greenness values over time.  
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Figure 3.5: Gradual interannual NDVI trend classes for the 2001- 2017 period in the U.S. Great 

Plains as determined by BFAST analysis. No Data = non-grassland areas. 
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Figure 3.6: Gradual interannual EVI trend classes for the 2001-2017 study period in the U.S. Great 

Plains as determined by BFAST analysis. No Data = non-grassland areas. 
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Gradual interannual trend classes are quantified in Table 3.5. Results from the analysis of MODIS 

NDVI show that 73.3% of the grassland area in the Great Plains experienced significant greening, 

6.8% significant browning, and 19.9% stable conditions during the study period. The percentages 

from the EVI-derived classes were similar, with 68.7% of grasslands experiencing greening, 7.8% 

browning, and 23.5% stable trends. 

 

 

Table 3.5: Summary of results for gradual interannual trend classes for the 2001-2017 study period 

in the U.S. Great Plains as determined by BFAST analysis of MODIS NDVI and EVI imagery. 

Grassland Interannual 

Trend Classes  

Negative Trend 

(Browning) 

Positive Trend 

(Greening) 

Stable (No Significant 

Trend) 

 NDVI EVI NDVI EVI NDVI EVI 

Number of pixels 1,048,040 1,200,757 11,281,432 10,572,918 3,057,760 3,613,160 

Area (sq. kilometers) 56,242.7 64,438.2 605,414.3 567,392.1 164,093.7 193,899.0 

Percent of Total Area 6.8% 7.8% 73.3% 68.7% 19.9% 23.5% 

 

 

3.4.1.1 Regional gradual interannual trend results 

Gradual interannual trend classes were also summarized at the level III ecoregion scale (Figures 3.7 

and 3.8). Grasslands in most level III ecoregions experienced a higher percentage of positive VI 

trends during the study period. The Nebraska Sand Hills had the highest percentage of positive trends, 

with 95.9% and 85.2% of grasslands greening over time, respectively. This ecoregion has the largest 

grassland extent in the U.S. and is also the most homogeneous ecoregion in North America (Omerick, 

1987; Tollerud et al., 2018).  The few areas with a significantly negative trend are generally located 

in the western part of the ecoregion. The Edwards Plateau had the highest percentage of negative VI 

trends with 31.6% and 42.6% of grasslands browning over time, respectively. This ecoregion also 
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had the lowest percentage of grassland pixels having a greening trend. The Edwards Plateau is located 

entirely in Texas and is hilly and mostly semiarid (Tollerud et al., 2018). Significant differences 

between the NDVI and EVI derived trends results on the level III ecoregions are in the Western Corn 

Belt Plains, Northwestern Glaciated Plains, Central Irregular Plains, and the Southern Texas Plains; 

most of which are tallgrass prairies (Figures 3.7 and 3.8). 

 

 

 

 

Figure 3.7: Summary of results for gradual interannual trend classes for the 2001-2017 study period 

for level III ecoregions in the U.S. Great Plains based on BFAST analysis of MODIS NDVI 

imagery. 
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Figure 3.8: Summary of results for gradual interannual trend classes for the 2001-2017 study period 

for level III ecoregions in the U.S. Great Plains based on BFAST analysis of MODIS EVI imagery. 

3.4.2 Validation 

The comparison of the percentage of trend classes from the Landsat NDVI analysis (Table 6) shows 

good agreement across indexes, sensors, and spatial resolutions. This provides additional confidence 

in the results reported for the MODIS-derived trend classes. The difference calculated for the NDVI 

and the EVI trend classes in the six samples are as follows (Table 3.6): At the Montana site, the EVI 

has more stable and fewer negative trend pixels at higher spatial resolution. The EVI has more 

positive, less stable, and more negative trend pixels at the Nebraska site at higher spatial resolution. 

At the New Mexico site, the EVI has less positive, less stable, and more negative trend pixels at 

higher spatial resolution. At the Texas 1 site, the EVI has less positive, less stable, and more negative 

trend pixels at higher spatial resolution. At the Texas 2 site, the EVI has less positive, more stable, 

and less negative trend pixels at higher spatial resolution. At the South Dakota site, the EVI has more 
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positive, less stable, and more negative trend pixels at higher spatial resolution. There are no clear 

patterns in the variation between the differences calculated for the NDVI and the EVI trend classes. 

 

While the agreement is generally high for each index and trend class, the EVI validation samples 

have a lower total difference compared to NDVI. The largest differences between the Landsat-derived 

and MODIS-derived validation data were in the stable class (Montana, South Dakota, and Texas 2 

sites). These variations can be attributed to any of the following factors: differences in the method of 

classification of the change classes, the difference in the spatial resolution of data used for both 

analyses, and the fact that Landsat-derived classes consist of only two time periods.  

 

Table 3.6: Landsat NDVI and EVI change classes compared to MODIS NDVI and EVI change 

classes. The Landsat NDVI and EVI change classes were considered the reference of the comparison. 

Sample 

Site 

Interannua

l Trend  

Class 

NDVI 

(Percent of Total Grassland Area) 

EVI 

(Percent of Total Grassland Area) 

MODIS Landsat Difference MODIS Landsat Difference 

Montana Positive 69.6 68.8 -0.8 52.6 51.8 -0.8 

Stable 10.1 14.1 4 7.3 14.4 7.1 

Negative 20.3 17.1 -3.2 40.1 33.8 -6.3 

Nebraska  Positive 54 51 -3 51 51.1 0.1 

Stable 37.9 38.6 0.7 38.8 39.1 0.3 

Negative 8.1 10.4 2.3 10.2 9.8 -0.4   

 New 

Mexico 

Positive 45.8 44.9 -0.9 40.1 39 -1.1 

Stable 39.8 37.7 -2.1 46.9 43.9 -3 

Negative 14.4 17.3 2.9 13 17.1 4.1 
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South 

Dakota 

Positive 31.3 28.1 -3.2 53 53.2 0.2 

Stable 49.1 54.6 5.5 38 39.5 1.5 

Negative 19.6 17.3 -2.3 9 7.3 -1.7 

Texas 1 Positive 75.1 73.0 -2.1 76.7 75.9 -0.8 

Stable 20.3 22.1 1.8 19.6 18.5 -1.1 

Negative 4.6 4.9 0.3 5.6 3.7 1.9 

Texas 2 Positive 30.9 37.1 6.2 29.4 29.8 -0.4 

Stable 48.8 40.3 -8.5 51.6 47.0 4.6 

Negative 20.3 22.6 2.3 19 23.2 -4.2 

 

3.4.3 Comparison of NDVI and EVI trend results 

The Pearson’s Chi-squared test of NDVI- and EVI-derived interannual trend classes showed 

significant differences exist (X2 = 8101700, df = 2, p-value << 0.001). Therefore, the null hypothesis 

that calculated intraannual trends are independent of VI is rejected, and it can be concluded that trends 

are highly dependent on the VI used. The trends results are further summarized in a contingency table 

or error matrix (Table 3.7). The error matrix shows nearly 80% agreement between the interannual 

trend classes computed from the NDVI and EVI time series. Also evident from the error matrix is 

that there is a much higher agreement between VIs with the positive trend class, whether considering 

producer’s or user’s accuracy metrics.  When differences in trend classes happen, the majority of 

those differences occur between “adjacent” trend classes.  For example, when the MODIS NDVI 

results for negative, stable, and positive trends are stable, positive, and stable in the MODIS EVI 

outcomes. This suggests that the EVI algorithm may be more sensitive to small magnitude differences 

in surface greenness that have an important impact on the ultimate trend class into which a pixel is 

placed.  

 

 



98 
 

Table 3.7: Error matrix of NDVI and EVI interannual trend class results for grasslands of the Great 

Plains ecoregion (2001-2017). The NDVI change classes are considered the reference, and the EVI 

change classes are considered the comparison map. The number of pixels in an agreement between 

the NDVI and EVI change classes are in bold. The grey cells contain the higher number of 

‘misclassified’ pixels. 

 

NDVI 

Trend 

EVI Trend 
 

Negative Stable Positive Total User’s accuracy 

(%) 

Negative 691,127 247,204 108,261 1,046,592 66.0 

Stable 340,006 1,925,179 789,670 3,054,855 63.0 

Positive 169,451 1,440,624 9,670,715 11,280,790 85.7 

Total 1,200,584 3,613,007 10,568,646 15,382,237 
 

Producer's Accuracy 

(%) 

57.6 53.3 91.5 
 

79.9 

 

 

The differences between MODIS VI trend classes are considered further in terms of quantity and 

allocation disagreement (Figure 3.9).  While quantity disagreement (non-spatial) is important, 

especially for the positive and stable trend classes, allocation disagreement (spatial) is the dominant 

type of difference for each trend class.  Within the allocation differences, it is exchange that largely 

explains differences, particularly for the stable and positive classes.  It should also be noted that only 

the stable class experienced any shift.  Combining data from Table 3.7 and Figure 8 illustrates that 

most of the allocation difference that occurs is between MODIS NDVI positive and stable pixels that 

are classified in the MODIS EVI results as stable and positive, respectively.  Exchange between 

MODIS NDVI negative and MODIS EVI stable is also evident. 
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Figure 3.9: Differences in MODIS NDVI and EVI interannual trend classes for the Great Plains 

ecoregion (2001-2017). 

Comparing the difference in NDVI- and EVI-derived interannual trend classes, the level III ecoregion 

with the lowest average VI value (Southwestern Tablelands) shows 78.6 percent agreement between 

the interannual change classes of the NDVI and EVI trend results (Table 3.8). While the level III 

ecoregion chosen to represent the highest average VI (Flint Hills) shows 82.5 percent agreement 

(Table 3.9).   

Table 3.8: Error matrix with the NDVI and EVI trend results for the Southwestern Tablelands 

ecoregion interannual trend classes. The NDVI and EVI trend classes are considered the reference 

and comparison maps, respectively.  The number of pixels in an agreement between NDVI and EVI 

trend classes are in bold. The grey cells contain the higher number of ‘misclassified’ pixels. 

NDVI 

Trend 

EVI Trend 
 

Negative Stable Positive Total User’s Accuracy (%) 

Negative 79,691 49,754 5,704 135,149 59.0 

Stable 48,591 396,369 157,428 602,388 65.8 

Positive 8,099 197,328 1,234,851 1,440,278 85.7 

Total 136,381 643,451 1,397,983 2,177,815 
 

Producer's 

Accuracy (%) 

58.4 61.6 88.3 
 

78.6 
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Table 3.9: Error matrix with the NDVI and EVI trend results for the Flint Hills ecoregion interannual 

trend classes. The NDVI and EVI trend classes are considered the reference and comparison maps, 

respectively.  The number of pixels in an agreement between the NDVI and EVI change classes are 

in bold. The grey cells contain the higher number of ‘misclassified’ pixels. 

NDVI 

Trend 

EVI Trend 
 

Negative Stable Positive Total User’s 

Accuracy (%) 

Negative 9,391  4,085 4,555 18,031 52.1 

Stable 2,683 31,410 31,388 65,481 48.0 

Positive 1,319 15,340 238,472 255,131 93.5 

Total 13,393 50,835 274,415 338,643 
 

Producer's 

Accuracy (%) 

70.1 61.8 86.9 
 

82.5 

 

The Southwestern Tablelands ecoregion cross-tabulation shows that the largest difference between 

the NDVI and EVI results is within the negative trend class. Thirty-seven percent of pixels that were 

negative in the NDVI trend results were stable in the EVI trend results. Twenty-six percent of pixels 

that were stable in the NDVI trend results were positive in the EVI trend results. Finally, only 14 

percent of pixels that were positive in the NDVI trend were stable in the EVI trend. Figure 3.10a 

confirms that the stable class has the largest overall difference and that exchange, or interchanges 

between the stable and the negative class, are driving that disagreement. 

  

The cross-tabulation for the Flint Hills ecoregion reveals that, like the Southwestern Tablelands, the 

stable class contains the largest difference between the NDVI and EVI trend results. Forty-eight 

percent of pixels that were stable in the NDVI trend were positive in the EVI results. There is also a 

large portion (25 percent) of negative pixels in the NDVI trend that was positive in the EVI 

comparison map (Table 3.9). Figure 9b shows that most of the difference in the stable class is 

allocation disagreement comprised largely of exchange with some shift.  In the Flint Hills, non-spatial 

quantity differences are much more prevalent and account for approximately 1/3 of the disagreement 

in the positive and negative classes.  
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a)  

 

                  b) 

Figure 3.10: Sources of disagreement in NDVI and EVI interannual trend classes (2001 to 2017) for 

the (a) Southwestern Tablelands and b) Flint Hills ecoregions. 

 

In addition to summarizing quantity and allocation disagreement from the error matrix, differences 

in trend class results calculated from the NDVI and EVI time series can also be mapped to better 

visualize the spatial component of the differences. (Figure 3.11). Pixels in blue and red shades 

indicate a move to a “greener” or “browner” trend result, respectively, in the EVI comparison versus 

the NDVI reference map.  Pixels shown in yellow indicated no change between the maps in terms of 

computed trend class.  
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No change pixels dominate Figure 3.11 and are present in large proportions across the entire study 

area. Generally, much of the movement to browner classes in the EVI trends results occurred in the 

mixed and shortgrass prairies of the western, and especially the northwestern, part of the Great Plains.  

However, movement to greener classes is almost exclusively found mixed and tallgrass prairies in 

the eastern Great Plains.  
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 Figure 3.11: Visualizing pixel difference in MODIS NDVI and EVI trend class results in the Great 

Plains. The difference indicated is from NDVI to EVI. 
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3.5 Discussion and conclusions 

3.5.1 Discussion 

 

Results from the BFAST trend analysis provide a summary of the vegetation dynamics within the 

Great Plains that should be of interest not only to land managers and owners but also policymakers 

and other researchers.  From 2001 to 2017, most of the Great Plains (68.7-73.3%) experienced 

significant positive or greening trends suggesting improved or more robust grassland vegetation over 

time.  Positive trends can be found within each ecoregion of the study area but are especially 

prominent within the Nebraska Sand Hills, Northwestern Great Plains, Northwestern Glaciated 

Plains, Flint Hills, and the High Plains of Colorado and northern New Mexico.  Much of the study 

area (19.9-23.5%) also experienced no significant change or a stable trend in grassland greenness 

over the study period.  Ecoregions with large proportions of stable trend grasslands were mostly in 

the southern Great Plains and included the Southern Texas Plains, Edwards Plateau, Cross Timbers, 

Texas Blackland Prairies, and Western Gulf Coastal Plain.  Relatively little of the Great Plains (6.8-

7.8%) were found to have a significant negative or browning trend.  Despite the relative paucity of 

negative trends within the region, several ecoregions had relatively high percentages of grassland 

pixels classified as browning, including many of those listed above for the stable class as well as 

ecoregions on the northeast corner of the Great Plains such as Northern Glaciated Plains, Western 

Cornbelt Plains, and Lake Agassiz Plain.  Considering the locations of dominant trend “signals”, there 

appears to be a generalizable north to a south gradient where greening is strongest in the northwest 

and central Great Plains and browning in the south and southeast.  

 

Trend analysis results computed from MODIS NDVI and EVI were compared to simple difference-

based trends calculated from higher spatial resolution Landsat imagery for several sample sites 

throughout the Great Plains.  This validation step was similar to those employed by Hutchinson et al., 

(2015) and Browning et al. (2017), who also examined grassland regions.  For this study, a strong 

agreement was found between MODIS and Landsat VIs, with EVI-based trends having a lower total 

difference compared to NDVI.  These validation findings confirm that trend class results from the 

coarse resolution MOD13Q1 data product are both valid and reflect the reality on the ground at least 

as well as higher spatial resolution imagery. 
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Comparing BFAST-derived NDVI and EVI results via Chi-square analysis showed that the two VIs 

produced a significantly different number of pixels in the three trend classes. The cross-tabulation 

and examination of its disagreement components (quantity, exchange, and shift) revealed while 

quantity (non-spatial) disagreement existed in each of the trend classes, it was a larger component for 

the positive and stable classes.  A more important source of disagreement, however, was allocation 

and, in particular, exchange differences between the NDVI stable and EVI positive classes and NDVI 

negative and EVI stable.  These results are important for at least two reasons.  First, trend results 

computed from MODIS NDVI and EVI time series yield different results.  This outcome corroborates 

the findings of Zhang et al. (2017), who reported significant differences between trend results based 

on NDVI and EVI image products acquired from the MODIS MOD13C2 and MYD13C2 satellites.   

Comparison of NDVI and EVI-derived trend classes suggest that, overall, EVI results are more 

conservative in the identification of positive trends and slightly more likely to distinguish negative 

trends within relatively stable greenness trajectories.  However, where important trend differences 

occur (allocation disagreement) support that the improvements in the EVI calculation that correct for 

atmospheric conditions, reduce canopy background noise, and saturation over dense vegetation are 

effective.  “Greener” trend classes in the EVI output tend to occur in the east and south, in regions of 

higher grassland vegetation biomass, while “browner” classes typically are found in the south and 

west. 

 

The overall grassland trend results reported here compare well to findings reported by similar studies, 

with some important differences.  Zhang et al. (2017) analyzed global vegetation trends from 2001 

to 2015 using the MODIS (MOD13C2 and MYD13C2) data products and noted greening was 

predominant in the Great Plains region. On the other hand, Lamchin et al. (2020) carried out a global 

vegetation greenness trend analysis from 1982 to 2014 using NDVI. The vegetation greenness trend 

results within the period of 2003 to 2014 in the Great Plains ecoregion show a negative trend 

predominantly. This result is unlike our findings. Also, Braget's 2017 study, which is similar to ours, 

was carried out in the Flint Hills Ecoregion from 2001 to 2015. The results showed a prominent 

browning compared to our results, with a majority greening trend in the same ecoregion using the 

same VI but with two additional years to the time series. The dissimilarity in these results compared 
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to ours demonstrates the impacts of time sensitivity on long-term trend analysis (Liebmann et al., 

2010). 

The variability of trend classes with different start and end dates is very important and should 

seriously be considered when carrying out this type of analysis. Since trends are estimated using 

values of a phenomenon (in this case, vegetation greenness) and time, the variation in the start and 

end dates could result in a "strong positive/negative" when the connection between the two variables 

is strong within the study time or a "weak positive/negative" when the connection the two variables 

is not very strong within the study time. So, if the first or last data used represents an abnormal year, 

drought, or wet period, this could overly influence the overall trend and skew the trend to be positive 

or negative. Liebmann et al. (2010) developed a method to determine the appropriate time frame 

where trend results are robust and representative of a long-term trend using global surface 

temperature. Based on the results of the study, changes around 20 years ending after about 2000 

exceed the 95% significance level (using the student t-test); this indicates that results from this 

analysis are representative of a real, significant long-term trend. 

Considering the expanse or extent of the Great Plains ecoregion, the major influence under greenness 

as a proxy for productivity is climate. We discussed the trends and patterns of key climate variables: 

temperature, precipitation, and soil moisture across the region and tied them to other factors that may 

impact grassland trends in smaller regions of the Great Plains. Climate is varied in this region, but 

because it is influenced by latitudes from north to south and elevation from east to west, each variable 

has apparent patterns (Tollerud et al., 2018). the Great Plains has a distinct north-south gradient and 

average temperature patterns with higher temperatures in the south and lower temperature and the 

not. On the other hand, the Great Plains has a distinct east-west gradient of average precipitation, 

with a wetter east and a dryer west (Shafer et al., 2014). The near-surface soil moisture patterns, 

which is a good proxy for both temperature and precipitation, are different. The region's middle is 

drier than the east and west ends based on the average annual surface soil moisture values from 1987 

to 2016 (McDonough et al., 2020).  

Regarding the trends of the climate variables discussed for the past two decades in the Great Plains, 

Precipitation has varied annually, but there has been overall increasing precipitation with more 

increase in the north than southern Great Plains (Conant et al., 2018; Kloesel et al., 2018). 
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Precipitation is also projected to keep increasing in the future. Like precipitation, the temperature has 

also been rising in the Great Plains with more increase in temperature in the south down the northern 

Great Plains, and temperature is also projected to keep rising (Kunkel et al., 2013; Conant et al., 

2018). The soil moisture trend show and overall north-south gradient with a significant drying trend 

in the southern parts of the ecoregion (McDonough et al., 2020). 

Comparing the trend of climate variables to the MODIS NDVI and EVI trend results, the increased 

browning trends prominent in the south and southeastern parts of the ecoregion can be attributed to 

the increasing temperature. Even though precipitation was generally increasing in this region in the 

time studied, the increasing temperature can lead to increased evapotranspiration reduce water 

availability for vegetation growth. Precipitation, temperature, and drought frequency are projected to 

increase in the Great Plains (Walsh et al., 2014). Despite the projected precipitation increase, 

projected increases in temperature and drought frequency will likely stress moisture availability for 

vegetation in the Great Plains. 

Focusing on regions with distinct trend patterns, one of which is in Nebraska Sandhills ecoregion. 

The region has a predominantly greening trend and has the largest and most homogenous grassland 

expanse in North America. It also lies in the part of the region with the close to median temperature 

and precipitation values in the Great Plains. This region's average near-surface soil moisture is one 

of the lowest in the Great plains because it is predominantly sandy, but there is usually an abundance 

of groundwater reservoirs and wetlands that promotes vegetation growth, hence the greening trend 

(Tollerud et al., 2018; McDonough et al., 2020). 

The Northwestern Great Plains ecoregion has similar trend patterns as the Nebraska Sandhills. The 

ecoregion borders the north of Nebraska cuts through the west of the Dakotas, then covers eastern 

Montana and northeastern Wyoming. The ecoregion had more areas with a negative trend than the 

Nebraska Sandhills. The areas with negative trends are close to the boundaries of the ecoregion, 

which borders the Rocky Mountains front. The region has less precipitation than Nebraska Sandhills 

and comes to play when considering the interplay of elevation, temperature, and precipitation 

(McDonough et al., 2020). Even though the region has less precipitation than the Nebraska Sandhills, 

the soil texture is primarily loamy and clay loam, hence more rainfall retention than the sandy 

Nebraska Sandhills. The predominant positive trend can be attributed to that. In addition, the areas 
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with negative trends are mainly close to the region's boundary, and those negative trends can be 

attributed to the fact that those regions are within the transition zone from the flat Great Plains to the 

higher-elevation Rocky Mountains. There is also a possibility those pixels are likely not grasslands 

or mixed. 

Another distinct trend pattern in the ecoregion is the southern part of the study area that extends from 

the northeastern parts of New Mexico. It cuts across Texas, Oklahoma, and the southwestern parts of 

Louisiana. In the areas close to New Mexico, the temperature is high, but precipitation is very low; a 

combination of these two is evident in the drying surface soil moisture trend in this region, leading 

to a significant amount of the area having a negative trend or browning. The areas within Texas, 

Oklahoma, and Louisiana also have a significant portion with a browning trend. This area generally 

has high temperatures and precipitation, but the sun moisture trend in this area is also drying. Even 

though rainfall is high in this area, with high temperatures, it could result in excessive 

evapotranspiration leading to a general negative trend or browning of grasslands in this region. 

3.5.2 Conclusions 

Long-term studies on a major ecosystem are critical to achieving an integrated understanding of how 

components of ecosystems interact. The use of remotely-sensed VI time series for trend analysis using 

BFAST is a reliable and valuable method to characterize long-term trends in grasslands and other 

vegetation biomes. This study uses the MOD13Q1(C5) NDVI and EVI data to determine grassland 

vegetation greenness in the Great Plains over a 17-year interval. The description of both the overall 

and area-specific trends in the U.S. Great Plains can provide important information to aid decision-

making in conservation, biodiversity, and sustainability-related policies.  

Overall, our results show a prevalent greening trend within the time studied, indicating that vegetation 

greenness or productivity, as implied, increased over the study period. Our study also found, by 

comparing our results to climate patterns in the region, that this period was associated with the 

increasing precipitation and temperature trends. There is a north-south temperature gradient with 

higher temperatures and the south and east-west precipitation gradient with higher precipitation in 

the east after Great Plains. The gradients of these climatic variables influence the distinct trend 

patterns in various regions after the study area, with more browning trends in the southern and 

southeastern parts of the study area. This leads us to conclude that even though there was increasing 
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precipitation, overall high temperatures in the south have more influence on vegetation patterns than 

precipitation. 

Comparing our results to similar studies conducted within the same region and within a similar time, 

there were some findings that were not similar to ours and a few that were similar to ours too, but the 

validation using higher resolution images provides confidence in interpreting the interannual trend 

results confirming the overall greening in the Great Plains (2001-2017). The comparison of our results 

to other studies with dissimilar findings can be attributed to a difference in the period of the time 

series that was analyzed. Meaning an additional or excluded couple of years can highly impact our 

trend results given that the major driver of vegetation trends – climate, is highly variable. This has 

led us to infer that climate change impacts are unpredictable; therefore, there is a need for continuous 

trend monitoring analysis (Lamchin et al., 2020). 

We also explored the impact of using difference VI data for the trend analysis in this region. The 

difference between the NDVI and EVI results shows the prominent limitation of the NDVI: the 

saturation of values in areas with high biomass making pixels to be classified as stable, whereas in 

the EVI trend, they were classified as positive. The impact of saturation and less variation in high 

biomass areas can affect the classification into and the overall trend analysis. The EVI is thereby 

strongly recommended for long-term trend analysis in the Great Plains, especially in the tallgrass 

prairies. 

The findings of this study suggest the need for additional analyses to quantify the influence of climate 

and soils, along with critical regional anthropogenic factors such as fire, on shaping long-term 

vegetation dynamics and estimate the impact on the values or services we acquire from grasslands in 

the ecoregion.  To further assess the long-term condition of grassland in the U.S. Great Plains, follow 

on studies will look at the spatial patterns and trends of grassland phenology and how the trends 

reported in this work impact the provision of selected grassland-related ecosystem services within the 

U.S. Great Plains.  
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Chapter 4 -Time series analysis of phenometrics for the US Great Plains 

ecoregion using satellite-derived vegetation indices. 

 

 

Abstract 

 

Grasslands are one of the largest terrestrial ecosystems in the world. They are one of the most 

biodiverse and productive terrestrial biomes but receive very low levels of protection. The temperate 

grasslands in the United States are one of the most threatened grassland ecosystems, with almost 96% 

of the historical extent lost. In the bid to understand the dynamics of grassland in the Great Plains 

ecoregion of the United States, a time-series analysis of Moderate Resolution Imaging Spectrometer 

(MODIS) 16-day maximum value composite Enhanced Vegetation Index (EVI) data (MOD13Q1 

Collection 5) to explore patterns of vegetation phenology and was used to assess long-term phenology 

trends across the region was performed. Using the program TIMESAT to extract key measures of 

vegetation phenological development from 2001 to 2017. Phenometrics of interest included (1) 

season length, (2) start of growing season, (3) end of growing season, (4) middle of growing season, 

(5) maximum NDVI value, (6) small integral, (7) left derivative, and (8) right derivative. The results 

show variation in phenological patterns across the region. The overall patterns show a shift to a later 

start, earlier end, and consequently a decrease in the growing season length, especially in the southern 

parts of the region. As shown in the small integral and maximum EVI, vegetation productivity has 

increased over many areas in the Great Plains ecoregion. To further assess the long-term condition of 

grassland in the U.S. Great Plains, follow-on studies will look at how the spatial patterns and trends 

of grassland phenology reported in this work impact the provision of selected grassland-related 

ecosystem services within the U.S. Great Plains. Future analyses will also seek to quantify the 

influence of climate and soils, along with key regional anthropogenic factors such as fire, on shaping 

long-term vegetation dynamics. 

 

 

 

KEYWORDS: Grasslands, Phenometrics, EVI, Great Plains Ecoregion, and TIMESAT. 
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4.1 Introduction 

4.1.1 Background and purpose 

Grasslands are one of the largest biomes covering about 20 to 40 percent of the terrestrial earth surface 

(Blair et al., 2014; Briggs et al., 2005). They are highly biodiverse and productive, yet they are not 

adequately protected (Mark & McLennan, 2005; Ricketts et al., 1999). The grassland biome is 

considered the most at-risk natural land (Oakleaf et al., 2015). Generally, approximately 54 percent 

of grasslands worldwide are degraded (White et al., 2000). North America’s temperate grasslands are 

the most altered grassland ecosystems (Finch & Dahms, 2004). The U.S. temperate grasslands are 

one of the most threatened, with almost 62% of the historical extent lost (Comer et al., 2018). The 

factors driving grassland degradation or loss are intricate, but they are generally a give-and-take 

between climatic factors and land use. They include changing precipitation/temperature patterns, burn 

frequency, invasion of non-native species (usually woody species), overgrazing, fragmentation, and 

conversion to other land use (Archer et al., 2017; Gibson, 2009; Ratajczak et al., 2016). 

 Not tackling these factors individually, it is crucial to know the general condition of grasslands 

because they are essential for agronomic and, more important ecological purposes (Briggs et al., 

2005). They contribute to carbon sequestration through high carbon storage in their high-biomass 

roots, control erosion, help store groundwater, help with adequate nutrient cycling, are used for agro-

fuel, are important for recreation or ecotourism, and are most popularly known to provide food for 

livestock (Cerdan et al., 2010; Inoue, 2017; Machovina & Feeley, 2017; O’Mara, 2012; Rumpel, 

2011; West & Nelson, 2017). Long-term studies on a major biome like grasslands are critical to 

achieving an integrated understanding of how components of ecosystems interact and how the 

conditions of grasslands (degradation, restoration, loss, or conversion to other uses) may impact an 

ecosystem. However, relatively little is known about the long-term conditions of grasslands in the 

Great Plains ecoregion of the U.S. (which is predominantly grassland).  

Vegetation phenology is the variation in seasonal patterns of vegetation growth in relation to climate 

(Cleland et al., 2007; Tan et al., 2011). Vegetation responds to even small climatic variations; hence, 

phenological records have been used to monitor climate change (Schwartz, 1994). Land surface 

phenology is the use of remote sensing data to study the timing of seasonal patterns of variation in 

vegetated land surfaces (Tan et al., 2011; Wang et al., 2018). The analysis of a time series of remotely 
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sensed imagery can be used to quantify temporal and spatial phenological changes hence 

phenological monitoring (Suepa et al., 2016). 

In addition to satellite remote sensing, satellite image derived vegetation indices like the normalized 

difference vegetation index (NDVI) and the enhanced vegetation index (EVI) have been used to 

assess and monitor vegetation phenology successfully (Cui et al., 2017; Jeong et al., 2011; Reed et 

al., 2003; Suepa et al., 2016; Wang et al., 2016). The NDVI has shown a reliable correlation with 

vegetation dynamics in varying spatial scales, and the ratio concept reduces many sources of noise, 

but it has the limitation of saturation of values over areas with high biomass (Wang et al., 2018). The 

enhanced vegetation index (EVI) was developed to improve sensitivity in high-biomass areas and to 

further reduce atmospheric and soil influences (Matsushi et al., 2007). These characteristics, coupled 

with a recent recommendation from our previous work of a better performance in the Great Plains 

ecoregion, make it ideal for this study. MODIS-derived indices are suitable for monitoring vegetation 

phenology because they support a wide variety of phenology-related data products (i.e., NDVI, EVI, 

Leaf Area Index (LAI), and Albedo). Also, MODIS images are acquired daily, then composited into 

eight or sixteen-day products (Willis, 2015). 

Phenological parameters or metrics (phenometrics from now on) like the start of the growing season 

(SOS) and end of the growing season (EOS) can be extracted from remotely sensed vegetation index 

time series using linear or non-linear fitting functions and models (Jönsson & Eklundh, 2004). The 

conventional method derives the phenometrics from a fitted curve identified by examining curve 

characteristics where VI data exhibit a rapid, sustained increase, decrease, and dormancy of increased 

value (Reed et al., 2003). The vegetation curve depicting the seasonal cycle of vegetation growth has 

varying definitions and terms for parameters or metrics used to measure the temporal changes in 

vegetation growth patterns (Figure 4.1). This study uses thresholds based on long-term average VI 

values to define phenometrics (Reed et al., 2003). TIMESAT software is a widely used method for 

analyzing time-series satellite sensor data (Jönsson & Eklundh, 2004). It provides five smoothing 

functions to fit time series data and extracts (up to 13) phenometrics from smoothed data; then, it uses 

an analytical indicator to define the start and end of the growing season (Eklundh & Jönsson, 2017; 

Zhang et al., 2003). 
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Figure 4.1: Typical temperate North American grassland phenology curve and some associated 

phenometrics generated in TIMESAT (Concept from Reed et al., 2003). 

 

Some existing studies using satellite-derived time-series data to derive phenometrics include the 

following: Moulin et al.’s (1997) study on a global scale and focused on the broad category of 

vegetation, satellite-derived data (NDVI) was used to derive the main phenological stages of the 

vegetation including the start, the maximum, the end, and the length of the vegetation cycle. Results 

show that the start of the vegetation cycle was related to temperature sums in temperate deciduous 

forests and related to precipitation in savannahs. Jeong et al.’s (2011) study of the northern 

hemisphere also focused on the broad vegetation category. Results from the time-series analyses of 

long-term phenological trends in the northern hemisphere show a general earlier start of the growing 

season, later end of the growing season, and increased length of the growing season. In North 

America, existing studies focusing on grasslands are in Canada (Cui et al., 2017; McManus et al., 

2012). Cui et al. (2017) examine the long-term drought-related variability of grassland phenology in 

relation to drought in the southwestern part of Canadian prairies in Alberta and Saskatchewan (part 

of the Great Plains) from 1982 to 2014. Results show that droughts do impact the timing of the start 

and of the growing cycle, with a shorter growing cycle with decreased precipitation. McManus et al. 
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(2012) used a time series of Landsat data to analyze the contrast in long-term climate-related 

phenology trend between forests and grasslands in northern Quebec province, Canada, between 1986 

to 2010. The trend results, which indicate leaf area, show that the grasslands contributed more to the 

greening trend, while forested areas show less significant trends in NDVI. In the US, there are existing 

phenology studies in the forested northeastern US (Zhang et al., 2003), the grasslands of the northern 

Great Plains (Dunnell & Travers, 2011), and the grasslands of the Flint Hills (Braget, 2017). Zhang 

et al., 2003 examines vegetation phenology (2000-2001) in the northeastern US and southeastern 

Canada. Results show the northern parts of the study area had a later start of growing season than the 

southern parts. The end of growing season did not show significant spatial variations, however. 

Dunnell and Travers (2011) compared climate-associated phenological shifts of grasslands in the 

northern US Great Plains for the periods between 1910 to 1961 and 2007 to 2010. Results show and 

overall lengthened growing season with increasing temperatures. Braget (2017) examined the 

vegetation development using the phenology metrics of grasslands in the Flint Hills Ecoregion for 

the period starting from 2001 to 2015. The result shows a significant variation of vegetation 

development in the area. 

This study’s objective is to capture the spatiotemporal dynamics of grasslands phenology across the 

entire U.S. Great Plains. TIMESAT and a time-series of MODIS EVI images were used to extract 

key vegetation phenological development measures across the same period from 2001 to 2017 (the 

study period is based on data availability). The ANOVA and Tukey tests are employed to determine 

the significance of spatiotemporal differences in the phenometrics across the study area, and the 

Mann–Kendall trend test was utilized to determine the phenological trend of grasslands in the study 

area from 2001 to 2017. 

4.2 Study area 

The Great Plains region is the vast interior of North America running from Canada in the North to 

Mexico in the south and lies between east of the Rocky Mountains and west of the eastern temperate 

forests and the Appalachian Mountains (Rossum & Lavin, 2000). The Great Plains Ecoregion used 

for this study is defined by the United States Environmental Protection Agency (EPA) based on 

Omernik (1987) and Omernik and Griffith’s (2014) classifications. The ecoregion classifications are 

based on patterns of geology, physiography, vegetation, climate, soils, land use, wildlife, and 
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hydrology affecting ecosystem quality (Omernik, 1987). The US EPA categorizes the area as a Level 

I ecoregion of the 15 coarsest level ecosystems in North America. In this ecosystem classification, 

the Great Plains has 4 level II divisions and 16 Level III subdivisions (Omernik & Griffith, 2014).  

The EPA Great plains cover approximately 2.8 million square kilometers, with more than 80 percent 

of this area in the US (about 2.2 square kilometers). The ecoregion is dominated by grasslands 

followed by agricultural lands, then other land uses (Drummond & Auch, 2015). This study, however, 

focuses only on grasslands in the Great Plains Ecoregion within the United States. The grassland area 

was defined by the grassland/herbaceous class of the United States Geological Survey’s National 

Land Cover Dataset (NLCD) for 2011 (Homer et al., 2015). As defined for this study, the grassland 

area is approximately 825,000 square kilometers and covers 13 U.S. states (Figure 4.2). It contains a 

mixture of tallgrass prairie (east), mixed-grass prairie (north central), and short grass prairie (west). 

 

 

Climate is also diverse in this region, influenced by latitudes from north to south and elevation from 

east to west (Tollerud et al., 2018). The Koppen-Geiger climate classifications within the Great Plains 

show the range from the cold (snow) climate in northwestern North Dakota, with warm, humid 

summers and long, cold, snowy winters, to the arid climate of Texas (Beck et al., 2018). Precipitation 

in the Great Plains is highly variable from year to year. Based on 30-year normal (1981-2010), 

precipitation ranges from 1500 mm in the southeastern portions of the Great Plains to 250 mm in the 

west, and annual mean temperature ranges from 00C in the north to 220C in the south (PRISM Climate 

Group, 2019). The Great Plains elevation is generally described as low lying, but it decreases from 

the foot of the Rocky Mountains in the west to the east in meters above sea level. The west edge with 

a maximum of 3610 meters above sea level in Colorado to more than 18230 meters in New Mexico 

but on the eastern edge, it reduces to an average of 200 meters from east Oklahoma to mid-Texas 

(U.S. Geological Survey, 2017). 
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Figure 4.2: U.S. Great Plains study area showing Omernik level III ecoregions and grassland pixels 

extracted from the 2011 NLCD. 
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4.3 Methodology 

4.3.1 Data and data preparation 

The MODIS (MOD13Q1 Collection 6) 16-day maximum composite enhanced vegetation index 

(EVI) and pixel quality reliability products for the period of 2001 to 2017 were used in this study. 

Twenty-three composite images are produced per year, resulting in a total of 391 images for the study 

period. Images were downloaded from NASA’s Earth Observation Data website 

(https://urs.earthdata.nasa.gov/) using the “MODIStsp” package (version 1.3.3) in R. The MODIStsp 

package is used to download MODIS HDF files automatically. The MOD13Q1 has a 250-meter 

spatial resolution. The scenes of the downloaded images that make up the study area were mosaiced 

and reprojected from their original sinusoidal projection to a more useful projection (the US 

Contiguous Albers Equal Area Conic projection). To extract the area of interest, pixels belonging to 

the “grassland/herbaceous” class of the 2011 NLCD data produced from a 30-meter spatial resolution 

were resampled to match the spatial resolution of the MOD13Q1 images. To address the potential for 

misidentifying a grassland pixel, resampled pixels included an 80% minimum of the original NLCD 

grassland/herbaceous class. This grassland mask was then used to extract the grassland pixels from 

the EVI data. After the extraction of the EVI grassland pixels, the resulting images were exported in 

a binary file format as required for processing in the software TIMESAT (version 3.3) used to extract 

the phenometrics. The MODIS products, just like all satellite-derived data, encounter some cloud and 

atmospheric contamination. To further reduce the effects, the pixel reliability data provided by the 

MOD13Q1 was used to assess the quality of the EVI pixels, and a Savitzky–Golay function was 

applied within the TIMESAT program to eliminate outliers and spikes. The pixel reliability data were 

assigned weights for each pixel (Table 1) to ensure the only good quality of pixels were processed. 

Of the pixels in the study area, 98.8% belong to the good data class, 0.7% belong to the marginal data 

class, 0.1% belong to the snow/ice class, 0.3% belong to the cloudy class, and no pixel was classified 

as ‘No Data’ (Table 4.1). 

 

 

 

 

https://urs.earthdata.nasa.gov/
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Table 4.1: MODIS MOD13Q1 pixel reliability values and weights applied within TIMESAT for the 

extraction of phenometrics. 

 

Pixel Reliability 

Score 

Summary Quality 

Assurance 

Information 

Description Weight in 

TIMESAT 

Percentage of 

pixels in each 

category 

-1 Fill/No Data Not processed 0.0 0 

0 Good data Use with 

confidence 

1.0 98.9 

1 Marginal data Useful, but depend 

on other QA 

information 

0.5 0.7 

2 Snow/Ice Target covered 

with snow/ice 

0.5 0.1 

3 Cloudy Target not visible, 

covered with cloud 

0.1 0.3 

4.3.2 Calculation of phenometrics     

The TIMESAT program (Jönsson & Eklundh, 2004) graphical user interface was used to create time-

series curves, select a smoothing method, and set associated parameters to estimate phenometrics for 

one pixel. The settings were then applied to other pixels. The parameters used are described in Table 

4.2. 
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Table 4.2: TIMESAT input parameters 

Parameters Input Values Description (Eklundh & Jönsson, 2017) 

Job name EVIWithQuality Unique file name (identifiable and no spaces) 

Image/series mode (1/0) 1  Image mode 

Trend (1/0) 0 No 

Use quality data (1/0) 1 Yes 

Data file list/name ...\EviImagesDat\

file_list_full.txt 

Input VI data list file (see appendix B-1 for 

content) 

Quality file list/name ...\QualImagesDa

t\file_list_full.txt 

Input quality data list file 

Image file type 3 = 32-bit real Image file type representing a wide ranges of 

values 

Byte order (1/0) 0 0 = little endian byte order  

Image dimension (nrow ncol) 11634   7629 The number of rows in an image and the 

number of columns per row 

Processing window (row 

start/stop; col start/stop) 

1/11634; 1/ 7629      Window or sample pixels to process 

No. of years and points per 

year 

17    23 23 data points per year for 17 years 

Data range -10000 to 10000 Valid lower and upper data values 

Quality 1 range and weight 0    0     1 Lower and upper quality data class 1 and its 

assigned weight (See Table 1) 
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Quality 1 range and weight 1    2     0.5 See Table 1 

Quality 1 range and weight 3    3    0.1 See Table 1 

Amplitude cutoff value 0.0 Low amplitude cutoff. Any series with 

amplitude lower than this values will not be 

processed  

Debug (0-3) 0 Debug flag. 0 =do not print debug data 

Output files (1/0 1/0 1/0) 1 1 0 1= create seasonality output, 1= create fitted 

data output, 0= original data 

Use land cover (1/0) 0  None: due to single land-use class 

Name of the land cover file none None was used 

Spike method  1 (median filter) The median filter method retains all raw data 

values and classifies significantly different 

from neighboring values as outliers. 

Spike value 2  Weights from STL-decomposition 

STL stiffness value 3 Default parameter value for STL trend 

stiffness. 

Seasonality parameter  1 (one season) Indicates one growing season per year in North 

America. 

Number of envelope iteration 2 A value of 2 was determined to fit the raw data 

values within the region better. 

Adaptation strength 2 A value of 2 was determined to eliminate very 

low VI values. 

Force to minimum (1/0) and 1 and 0.15 1 = points below value of minimum given 
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value of minimum minimum value will be forced to the specified 

minimum value.  

Fitting method (3/2/1) 1 (Savitzky–

Golay (SG) filter) 

The SG sensitive to local variations in VI 

values, which is useful in regional comparisons. 

Window size for SG 4 Half window for SG filtering. A large window 

value yields a high degree of smoothing 

Start/end of season method 1 (seasonal 

amplitude) 

Based on the curve.  

Season start values 0.2 The value of 0.2 means a season start was 

identified when 25% of the maximum growing 

season amplitude is reached. 

Season end values 0.2 Same as above 

 

TIMESAT (3.3) extracts a total of 13 phenometrics for each pixel from a vegetation curve for a 

maximum of n-1 years in a time series. This study only examines 8 phenometrics (Table 4.3) for 16 

seasons (17 years minus 1) because they can illustrate phenology changes in North America.  
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Table 4.3: Description of selected TIMESAT Phenometrics. Source: (Eklundh & Jönsson, 2017).  

Phenometric Definition Biological Significance Unit 

Start of Season Time for which the left edge 

has increased to a user-defined 

level measured from the left 

minimum level 

Time of initial 

vegetation green-up 

Day of the year 

from Jan 1 

End of Season Time for which the right edge 

has decreased to a user-defined 

level measured from the right 

minimum level 

Time of initial 

vegetation senescence 

Day of the year 

from Jan 1 

Growing Season 

Length 

Time from the start to the end 

of the season 

Length of the growing 

season from green-up to 

senescence 

Days 

Middle of 

Season 

Mean value of the times for 

which the left edge has 

increased to 80% level, and the 

right edge has decreased to 

80% level 

Time of the middle of 

the growing season 

Day of the year 

from Jan 1 

Maximum 

Value 

The largest data value for the 

fitted function during the 

season 

The highest VI value of 

the season 

VI unit 

(unitless) 

Left derivative The ratio of the difference 

between the left 20% and 80% 

levels and the corresponding 

time difference 

Rate of vegetation 

green-up 

VI unit 

(unitless) 
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Right derivative The absolute value of the ratio 

of the difference between the 

right 20% and 80% levels and 

the corresponding time 

difference 

Rate of vegetation 

senescence 

VI unit 

(unitless) 

Small Integral Integral of the difference 

between the function 

describing the season and the 

base level from season start to 

season end 

Proxy for the relative 

amount of vegetation 

biomass while regarding 

minimum values 

VI unit 

(unitless) 

 4.3.2.1 Phenometrics Extraction and Spatial Patterns 

Seasonality parameters were extracted from the smoothed curves and processed to generate numerical 

phenometric data and converted to images using the TSF_seas2img program in TIMESAT. The mean 

values and standard deviation of 8 of the phenometrics of interest (Table 3.2) were calculated in a 

GIS to analyze and present a general view of the spatial patterns of seasonality in the study area over 

the period of 2001 to 2017.  

4.3.3 Phenology trend analysis 

The Mann–Kendall (MK) trend test and Sen’s methods (De Beurs & Henebry, 2005; Helsel & Hirsch, 

2002; Yue et al., 2002) were used to determine the phenological trends from 2001 to 2017. The test 

determines the significance of any changes (decrease or increase) according to the differences 

between observation pairs (annual seasons in this case). So, the differences between observations of 

a given year and those of a previous year result in positive or negative values as a reflection of positive 

or negative change, and the sum of these values specifies the strength and direction of a trend (Suepa 

et al., 2016). The Kendall rank correlation coefficient or score ranges from − 1 to + 1 with a value of 

+ 1, meaning that a trend consistently increased (no decrease) during the time studied and vice versa 

for a value of – 1; a 0 value means there was no consistent trend (Davis et al., 2017). The statistical 

significance for phenological trends (p < 0.05) was computed using an MK significance test (Helsel 
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& Hirsch, 2002).  So, pixels that had P values that are higher than 0.05 we excluded from the results 

presented. 

4.3 Results 

4.3.1 Spatial patterns of phenology  

The spatial patterns of the 16-year (2001 to 2016) median values of the eight phenometrics of interest 

derived from EVI are shown in Figure 4.3 The median values were calculated because of the non-

normal phenometrics values. The start of growing season (SOS) usually ranged from late January 

(day 30) to late July (day 210) (Figure 4.3). The early SOS dates usually occurred in the southern 

parts of the study area in the eastern parts of Texas. The predominant SOS dates were in May; there 

are also areas with June to July SOS dates across North Dakota, Nebraska, Colorado, and New 

Mexico.  

The midpoint or middle of the growing season (MOS) usually ranges from late June (day 180) to the 

end of the year. Generally, the middle date of growing season in this region was between July and 

October. However, the middle dates in the southernmost edge of Texas and western New Mexico 

were in December. The later middle dates are close to the EOS dates in those regions, indicating a 

fast senescence rate. Also, the northwestern area of the study area had middle dates close to the EOS 

dates in those regions, indicating a fast senescence rate. The growing season’s length varied across 

the ecoregion from north to south, with the growing season length increasing southwards (Figure 4.3). 

 

The end of growing season (EOS) ranged from late June (day 180) to the end of the year (Figure 4.3). 

The early EOS dates usually occurred mostly in the western parts of the study area (Montana, parts 

of North Dakota and South Dakota, Wyoming, and Colorado). The rest of the study area has EOS 

dates that range from late October to the end of December and a few areas in the southernmost edge 

of Texas with EOS dates that extend into the next season or year. The growing season length usually 

ranged from 180 to 300 days. There were short growing seasons on the Northeastern axis that ranged 

from 60 to 120 days. The Mid to western axis had growing season lengths between 180 to 240 days 

and 240 to 300+ days in the south. 
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The left derivative is like the maximum EVI values in the ecoregion. Generally, values usually 

increased going from west to east (Figure 4.3), meaning that the areas in the east with higher grassland 

biomass usually experienced a longer or rather slower green-up rate than the western parts of the 

study area. The right derivative signifies the rate of senescence, and it also increases from west to 

east of the ecoregion (Figure 4.3). This means that the areas in the east with higher grassland biomass 

usually experienced a longer or rather slower senescence rate than the western parts of the study area. 

The east-west variation in senescence rates can be implied from the difference in the SOS, MOS, and 

EOS dates described earlier. The small integral indicates seasonally active vegetation, which is a 

proxy for vegetation biomass or productivity. The small integral was usually higher in the east than 

the western parts of the study area (Figure 4.3). The maximum EVI values vary from west to east of 

the study area, increasing eastwards (Figure 4.3). These showing values are like the prairie-type 

biomass and rainfall distribution in the ecoregion, also increasing eastward. The spatial pattern of the 

small integral was similar to the maximum EVI, right derivative, and left derivative phenometrics, 

which corresponds to vegetation types in the ecoregion.    
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Figure 4.3: The median values of grassland phenometrics derived from MODIS (MOD13Q1) EVI 

data from 2001 to 2017 for the Great Plains ecoregion. Start, middle. and end of growing are in day 

of year. The growing season length is in days. The left/right derivatives, Maximum EVI and small 

integral are in VI values; they are unitless. 

4.3.2. Phenology trends 

The trends of phenology were processed by using the MK method. Trends in phenometrics were 

detected for the first 16 growing seasons during the period 2001 to 2017 at a 90% confidence level 

(α=0.05). Figure 4.4 shows the spatial distribution of significant overall trends, while table 4.4 shows 

the summary of results for trend analysis for the eight phenometrics of interest. In Figure 4, the pixels 
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with statistically significant increasing trends are shown in green (positive MK statistic score). The 

pixels with statistically significant decreasing trends are shown in red (negative MK statistic score), 

and pixels with a zero score were considered to have no trend are shown in grey. Positive and negative 

trends refer to later and earlier dates for the time-based phenometrics (SOS, MOS, EOS), longer and 

shorter lengths of growing seasons, as well as increased and decreased magnitudes for small integral 

and the rates of green-up/senescence. 

 

 

 

Figure 4.4:  Trends in grassland phenometrics derived from MODIS (MOD13Q1) EVI data from 

2001 to 2017 for the Great Plains ecoregion using the Mann Kendall trend test. Green pixels indicate 

a positive trend, red a negative trend, and grey pixels indicate no trend.  
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Table 4.4 shows a 65% positive trend (shift a later start date) and a 35% negative trend (shift an 

earlier start date) for the start of growing season. Overall, the portion of the study that has no trend 

(stable) is not significant (Table 4.4). The shift to a later start of the growing season is spread across 

the study area but more prominent in the northwestern and southeastern axis of the study area, while 

the shifts to an earlier start date close across the middle of the study area, specifically in South Dakota, 

Nebraska, Northern Kansas, and Northern Texas (Figure 4.4). The trends of the middle of growing 

season are similar to the start of start of the growing trends, in that there is a slightly higher percentage 

of the area with positive trends than negative trends. Approximately 65% of the area experienced a 

positive middle-of-season trend, and 35% had a negative trend. The spatial distribution of the MOS 

Trend is varied across the study area (Figure 4.4).   

On the other hand, the end of growing season and growing season lengths had a slightly higher 

negative trend than positive trends. Table 4 shows 53% and 59% negative trends and 47% and 41% 

positive trends for EOS and GSL, respectively. This means that more of the area experienced a shift 

to earlier EOS dates than shifts to a later date, and for the growing season length, it means there is a 

slightly higher shift to a shorter growing season length than increasing growing season length. The 

shift to an earlier end of growing season trend is prominent in the middle and southern portion of the 

study area: South Dakota, Nebraska, Kansas, New Mexico, and Texas (Figure 4.4). In contrast, the 

North experienced a shift to later EOS dates. The spatial distribution of the GSL trends is similar to 

the EOS trends. It can be inferred that the shorter EOS dates in those regions led to a shorter growing 

season length (Figure 4.4).  

The LDER and RDER represent the green-up and senescence rates. Table 4 shows a 23.5% and 16% 

negative trends and 77.5% and 84% positive trends for the LDER and RDER, respectively. This 

indicates that most of the study area experienced faster green-up and senescence rates within the time 

studied. Figure 4 shows that there has been a general increasing green-up rate, and this trend is spread 

across the study area but more prominent in the western axis of the study area. Decreasing increasing 

green-up rates occur in the Northwestern and southeastern parts of the study area. The decreasing 

senescence rates are particularly predominant over the northern and southern regions (Montana, 

North Dakota, New Mexico, and Texas); however, some areas in the central area (Nebraska and 

Kansas) experienced an increase in the senescence rates (Figure 4.4). 
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The maximum EVI and Small Integral are proxies for vegetation productivity within the growing 

season. The two phenometrics trends show similarity, with approximately 95% of the area having a 

positive trend for both phenometrics (Table 4.4). This trend s means that there was generally 

increasing productivity or biomass in the time studied. The spatial pattern of both phenometrics trends 

is similar too (Figure 4). The maximum EVI and small integral have increased significantly over 

areas in the Great Plains ecoregion extending from the northern to the central region while the 

southern region shows decreasing trends (Figure 4.4). 

 

 

Table 4.4: Summary of results for trends in phenometrics derived from MODIS (MOD13Q1) EVI 

data from 2001 to 2017 for the Great Plains ecoregion using the Mann Kendall trend test.   

 

Phenometric Negative trend No trend Positive trend 

 Number 

of pixels 

Percent of 

total 

Number of 

pixels 

Percent of 

total 

Number of 

pixels 

Percent of 

total 

SOS 280545 34.9 2 0.0 523922 65.1 

MOS 291770 35.2 6 0.0 538140 64.8 

EOS 649557 52.6 7 0.0 585108 47.4 

GSL 782916 58.6 5 0.0 553391 41.4 

LDER 226048 22.5 15 0.0 779990 77.5 

RDER 193848 15.6 10 0.0 1047024 84.4 

MAX EVI 88105 5.0 5 0.0 1676028 95.0 

SINT 94307 0.05 3 0.0 1988156 95.5 

 

4.4 Discussion  

The results from the time-series analysis of phenometrics provide a summary of the vegetation 

phenology, productivity patterns, and their trends in the Great Plains Ecoregion for the period 2001 

to 2017. Characterizing the long-term vegetation phenology and productivity is important because it 

provides a spatially explicit summary of grassland vegetation dynamics across the ecoregion, 
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providing information to efficiently understand change which should be of interest not only to land 

managers and owners within the ecoregion but policymakers and other researchers. The phenometrics 

derived from MODIS (MOD13Q1) EVI data and defined by TIMESAT were able to capture the 

spatial patterns of vegetation dynamics across the Great Plains ecoregion. There are no existing 

similar field-based studies in the Great Plains, but Suepa et al. (2016) used the same data and method 

for vegetation in Southeast Asia and found great agreement between the results from satellite-derived 

phenology and field-based phenology. So, we are confident in our results.    

The summary of the grassland phenometrics in the Great Plains ecoregion between 2001 and 2017 

are as follows: the average start of growing season was day 105, the average middle of growing 

season was day 189, the average end of growing season was day 313, and average growing season 

length was 204 days. Values of these time-based phenometrics do not have much variation across the 

ecoregion, with the coefficient of variation values ranging from 0.1 to 0.2. For the VI-based 

phenometrics, the average left derivative value was 0.04, the average right derivative value was 0.03, 

the average maximum EVI value was 0.34, and the average small integral was 1.75. The values of 

the VI-based phenometrics vary greatly across the ecoregion, with the coefficient of variation values 

ranging from 0.3 to 0.6.  

The trend of the time-based phenometrics for grasslands in the Great Plains between 2001 and 2017 

showed a predominant move to a later start of growing season, a later middle of growing season, an 

earlier end of growing season, and a shorter growing season. There were also increasing rates of 

green-up and senescence, including increasing productivity as seen in the maximum EVI and small 

integral trends.  

The observed spatio-temporal patterns and trends of the phenometrics studied varied across the 

ecoregion. There were several distinct patterns in various regions for the observed spatial patterns of 

the time-based phenometrics (Figure 4.5). The observed pattern indicates a longitudinal separated 

regions at the 100°W. In the 19th century, John Wesley Powell, introduced the idea that the 100th 

meridian divides the North American continent into arid regions in the west and humid regions in the 

east (Seager et al., 2018). Seager et al. (2018) in their 2018 study confirms an obvious west-east 

gradient in aridity roughly at the 100°W that is expressed in hydroclimate, soil moisture, and as a 

result, vegetation. 



138 
 

 

Figure 4.5: Observed regions of distinct spatial patterns for the 2001 to 2017 phenometrics in the 

Great Plains 

In region A, the Northeastern corner of the ecoregion (Montana, Wyoming, the west of North Dakota, 

and west of South Dakota), the start of growing season ranges from day 60 to day 100 (March to 
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April), the middle of the growing season ranges from day 150 to 210 (June to July), there is a lot of 

variation in the end of growing season in this region, with values as low as 210 (July) to values as 

high as 350 (December). The region has one of the shortest growing season lengths in the entire Great 

Plains ecoregion, with season length values ranging from 100 to 200 days. For the VI-based 

phenometrics, there are generally lower values of maximum EVI, green-up rate, senescence rate, and 

relative amount of grassland biomass in this region compared to the rest of the Great Plains. The 

temporal trend for grassland phenometrics between 2001 and 2017 in this region includes a 

predominant move to an earlier start of growing season, an earlier middle of growing season, a 

predominant move to a later end of growing season, and an increased growing season length. Overall, 

there were increasing green-up rates, decreasing senescence rates, and increasing vegetation 

productivity (Max EVI and small integral). 

In region B (New Mexico, Northwest Texas, and Colorado), the time-based phenometrics have 

overall later dates than region A. The start of growing season dates goes up to day 200 (July), the 

middle of the growing season ranges from day 200 to day 270, and the end of growing season ranges 

from day 300 to a few pixels of day 365. The growing season length is like that of region A, except 

for some areas (in the south of region B) that have longer growing season lengths up to 270 days. The 

VI-based phenometrics are not very different from region A. A general east-west gradient is obvious, 

with higher values in the east. The temporal trend of phenometrics from 2001 to 2017 in the region 

showed a predominant move to a later start of growing season, an earlier move to an earlier middle 

of growing season, an earlier end of growing season, and a decreased growing season length. There 

was an overall increasing green-up rate, senescence rate, and productivity in this region.  

In region C (Most of Texas except the northwest area and southern Oklahoma), the time-based 

phenometrics have overall earlier dates for the start and middle of growing season and later dates for 

the end of growing season than other regions. The earlier start/middle of growing season and later 

end of growing season makes it the region with the longest growing season length (between 270 to 

350 days). For the VI-based phenometrics, the green-up and senescence rates are not very different 

from regions A and B, but the productivity phenometrics (maximum EVI and small integral) show 

an east gradient with higher values in the east. The temporal trend of phenometrics from 2001 to 2017 

in the region showed a predominant move to a later start of growing season except for the east end of 

the region (east Texas and Oklahoma). Also, a predominant move to an earlier middle of growing 
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season and end of growing season, and a decreased growing season length. There was an overall 

decreasing green-up rate, senescence rate, and productivity in this region. 

In region D (Eastern parts of North Dakota and South Dakota, Minnesota, Iowa, Nebraska, Kansas, 

northern Texas, and northern Oklahoma), the start of growing season dates is more varied than other 

regions, with the day of the year ranging from 20 to 180. The middle of growing season dates are 

earlier than regions A and C but later than region B, and the end of growing season dates are very 

close to the end of the season (day 300 to day 365) like regions B and C. The growing season length 

in this region is also varied but generally longer than regions A and B but shorter than region C. The 

VI-based phenometrics show a general east-west gradient is apparent with higher values in the east. 

This means that this region has the highest green-up rate, senescence rate, and productivity values. 

The temporal trend of phenometrics from 2001 to 2017 in the region showed a predominant move to 

an earlier start of growing season, and a move to an earlier middle of growing season, a later end of 

growing season, and a decreased growing season length. The region shows the most decreasing 

growing season length compared to other regions. There was an overall increasing green-up rate, 

senescence rate, and productivity in this region. 

We compared our findings of phenology and phenology trends in the Great Plains to other phenology 

studies carried out in a similar area and time. Wang et al. (2016) studied the spatial variability and 

temporal trends of vegetation phenology in the Northern hemisphere between 1982 and 2012, 

focusing on time-based phenometrics (start, middle, end, and length of growing season). Liang et al. 

(2021) analyzed the temporal trends of vegetation phenology across the contiguous U.S. between 

1982 and 2016, focusing on time-based phenometrics (start, end, and length of growing season). Their 

results show that the start of growing season became predominantly earlier, the end of growing season 

became later, and the season length was shorter in the Great Plains region. These trends (start, middle, 

and end of growing season) disagree with our findings, but a shortening season length is similar to 

our results. There are some disparities in comparison that can be attributed to the study period 

difference. Liebmann et al. (2010) developed a method to determine the appropriate time frame where 

trend results are robust and representative of a long-term trend. Results of the study suggest a 20-

years period. So, the longer time series you used in this study (2001-2017) compared to Wang’s 

(2002-2012) should impact the difference in findings. Comparing Wang et al. (2016) results that 

coincide with the spatial (latitudinal) and period (2002-2012) of ours to our findings, there was an 
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overall shift towards a later start and middle of growing season, a shift toward an earlier end of 

growing season and shift to a shorter growing season length. These trends are similar to the findings 

reported here. 

To understand the spatio-temporal patterns of vegetation phenology in the region, we drew 

connections between our results and key climate variables temperature, precipitation, and soil 

moisture. Other factors like land-cover changes and sea surface temperature may also contribute to 

changes in vegetation phenology (Jeong et al., 2011). In addition to latitudinal variation, other 

geographic factors like elevation and the proximity to water bodies contribute to the climatic 

variability in the Great Plains. But the Great Plains has a distinct north-south gradient and average 

temperature patterns with higher temperatures in the south and lower temperature in the north. On 

the other hand, the Great Plains has a distinct east-west gradient of average precipitation, with a wetter 

east and a drier west (Shafer et al., 2014).  

The spatial patterns of the time-based phenometrics (SOS, EOS, MOS, and growing season length) 

reflect the influence of temperature. There is an overall north-south gradient with earlier SOS and 

later EOS days in the south, resulting in a longer growing season length in the south than in the north. 

According to the 2018 National Climate Assessment for the northern and southern Great Plains, the 

average temperature trends in the Great Plains indicate increasing temperatures since the 1900s 

(especially in the northern Great Plains), with the most recent years being the warmest (Conant et al., 

2018). Temperatures in the Great Plains are projected to continually increase by 3.50F to 9.50F by 

2085, even with low emission scenarios, with the greatest warming expected in the northern states of 

the region (Kunkel et al., 2013). The number of maximum/extreme temperature days exceeding the 

current hottest days is expected to increase, and the number of minimum (>100F) temperature days is 

expected to reduce (Kunkel et al., 2013; Shafer et al., 2014). 

The spatio-temporal patterns of the VI-based phenometrics (green-up rate, senescence rate, maximum 

EVI, and small integral) reflect the influence of precipitation. They all show a west-east gradient with 

lower values in the west and higher values in the east. The Great Plains Ecoregion has experienced 

increasing precipitation in the last two decades, and the increased precipitation has been more 

prominent in the northern Great Plains (Conant et al., 2018; Kloesel et al., 2018). Precipitation is 

projected to increase (by 3% at the end of the century) during the winter and spring in the northern 
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and central Great Plains. Heavy rainfalls and snowfalls are also projected in the north and central 

Great Plains. Winter and spring precipitation is projected to decrease in the southern Great Plains. A 

lesser amount of summer rainfall is projected throughout the region, but it will be worse in the south 

with longer periods without rainfall (Walsh et al., 2014).  

McDonough et al. (2020) studied near-surface soil moisture trends in the Great Plains ecoregion from 

1987 to 2016, and the trends in soil moisture showed an overall north-south gradient with significant 

negative or drying trends in the southern parts of the ecoregion. The study factored in elevation and 

soil texture, temperature and precipitation, but temperature had the most influence on soil moisture 

trends within the time studied. The influence of temperature is also evident in our time-based 

phenometrics and phenology trends. Therefore, it is concerning data projected increase in temperature 

might severely change the growing patterns of grasslands in the region and impact the ecosystem. 

Even though precipitation is projected to increase, rising temperatures will lead to increased 

evapotranspiration and reduce water availability for vegetation growth. Based on the increasing 

temperature and precipitation trends (coupled with increasing atmospheric carbon dioxide 

concentrations), Conant et al. (2018) forecasted an increase in soil water availability during the 

primary growing season in the north and a decrease in the south. These forecasted conditions will 

alter vegetation phenology and increase the amount and competitiveness of invasive species for the 

ecoregion. The impact of climatic variables like temperature and precipitation on grasslands can be 

evaluated or assessed by analyzing the services provided by grassland ecosystems to humans, thereby 

known as ecosystem services. A temporal analysis of ecosystem value can highlight the impact of 

changing grasslands conditions. 

4.5 Conclusions 

Understanding long-term seasonal patterns of vegetation activity is critical to studying inter-annual 

variability, monitoring land degradation, and the impact of climate change in biomes like grasslands. 

The use of a high temporal and adequately spatial resolution remotely sensed VI data is a reliable and 

valuable method to characterize long-term trends in grasslands and other vegetation biomes. The 

characterization and evaluation of changes in vegetation grassland in the Great Plains ecoregions over 

the period of 16 growing seasons is presented in this study. The results show variation in vegetation 

phenology and productivity across the Great Plains over the last two decades. There was generally a 
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later or delayed start of season dates, a later middle growing season, and earlier end of season dates, 

resulting in shorter growing season lengths; vegetation productivity was usually increasing during 

the period. This is similar to Hufkens et al.’s (2016) findings.  

 

Changing climate alters vegetation phenology. The impact of climate on the grassland phenology and 

phenology trends was obvious from the comparison of our results to climate variables such as 

temperature, precipitation, and soil moisture. There was an overall rising temperature and increasing 

precipitation in the time studied. The time-based phenometrics showed patterns that indicate a 

dominant temperature influence, and the VI-based phenometrics showed patterns that imply a 

dominant precipitation influence. Overall, temperature had the most significant impact on phenology 

patterns and trends in the ecoregion. Even though the growing season periods in the Great Plains are 

becoming shorter from increasing temperatures, the combination of the trends of the climatic 

variables examined resulted in improving or increasing greenness. Temperature is projected to keep 

rising in the ecoregion as well as precipitation. But in most parts of the study region, precipitation is 

projected to decrease in the summer, which is the peak of the growing season. It would be interesting 

to see how these climatic variables come into play to impact grassland conditions in the ecoregion in 

the future. 

 

The results presented in this study provide important baseline information on the dynamics of 

grasslands in the Great Plains that will provide a benchmark for assessing future change in the region. 

Such information is important in aiding decision making in conservation, biodiversity, and 

sustainability-related policies for land managers because the result of this study has significant 

implications of long-term changes in vegetation phenology, gross primary production and affect the 

carbon cycle, water cycle, and energy fluxes through photosynthesis and evapotranspiration (Xiao et 

al., 2009). These impacts may subsequently influence food security, water resource availability, and 

climate (Suepa et al., 2016).  

To further assess the long-term condition of grassland in the U.S. Great Plains, follow-on studies will 

look at how the spatial patterns and trends of grassland phenology reported in this work impact the 

provision of selected grassland-related ecosystem services within the U.S. Great Plains. Future 
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analyses to complement this work would be to understand the role of land-use change, climate 

change, and soils, along with other regional anthropogenic factors such as fire, on shaping long-term 

vegetation dynamics in the region. 
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Chapter 5 - Spatio-temporal valuation of grassland ecosystem services in the 

U.S. Great Plains 

 

 

Abstract 

 

Grasslands are well known for their high biodiversity, environmental regulation, social and cultural 

values. However, their capacity to deliver multiple ecosystem services (ES) and how changes in 

grasslands impact the provision of ES is surprisingly understudied compared to other biomes. Some 

existing studies have estimated total ES value of global grasslands and spatially explicit ES values at 

discrete times. This paper focuses on developing improved ES estimation methods using remote 

sensing data to capture the spatio-temporal dynamics of vegetation (grasslands specifically) while 

highlighting the impact of environmental factors/anthropogenic activities on the provision of 

grassland ES in the U.S. Great Plains. A selected set of grassland ecosystem services within the Great 

Plains was quantified (economic and biophysical values) for the period between 2001 and 2017 (time 

is based on data availability). Climate change (past, present, and future) influences grassland 

productivity and phenology with consequences on ecosystems and their value. Results from this study 

show the impact of changing grassland conditions based on greenness on the Great Plains ecoregion 

and how these changes might be manifested as variable levels of ES provision. An analysis of the 

carbon stock value over the period studied showed and overall positive trend. This agrees with 

findings from other previous work on increased productivity of grasslands in the time studied. Future 

work is suggested to analyze the specific factors that contribute to the increasing productivity of 

grasslands in the Great Plains ecoregion and its implications for the ecoregion. 

 

KEYWORDS: Grasslands, Ecosystem Services, NDVI, Great Plains Ecoregion, and InVEST. 
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5.1 Introduction 

5.1.1 Background and purpose 

Grasslands are one of the most biodiverse and productive terrestrial biomes. They do provide many 

benefits that include environmental regulation, social and cultural values, yet grasslands receive very 

low levels of protection. The temperate grasslands in the United States are one of the most threatened 

grassland ecosystems, with almost 62% of the historical extent lost (Comer et al., 2018; Oakleaf et 

al., 2015). Many factors, including fire frequency, fragmentation, and conversion to other land use, 

come to play. The most significant is the conversion of grasslands to croplands. The conversion of 

grasslands to croplands have reaccelerated in the past decade; the rates of conversion of grassland to 

cropland have quadrupled after 2008 compared to 15 years ago in the U.S. Midwest (Lark et al., 

2019). In 2019 alone, approximately 10,500 square kilometers of grasslands in the Great Plains were 

lost to crop cultivation (Plowprint report, 2021). 

Long-term studies on a major ecosystem are critical to achieving an integrated understanding of how 

components of ecosystems interact. However, relatively little is known about the long-term 

conditions of grasslands in the Great Plains and how any change in the conditions long-term 

conditions (productivity) of the grassland biome impacts the provision of ecosystem services. The 

U.S. Great Plains hold the largest expanse of grasslands in the U.S. that are still intact (Lark, 2020). 

Reduction in grassland biomass by climate impact or conversion to cropland has negative 

ramifications. Negative environmental impacts include increased risks of soil erosion decrease in soil 

organic carbon, and an increase in atmospheric carbon (Zhang et al. 2021). Zhang et al. (2021) 

highlight the dire need to estimate the impact of changing grassland conditions in the U.S. to enable 

proper environmental monitoring and determining the extent of the consequences. 

There are several definitions of ecosystem services (ES), but the general idea or theme is that they 

are benefits people obtain from ecosystems either directly or indirectly (Daily et al., 1997; MEA, 

2005; TEEB, 2010). While the concept of ecosystem services has become prominent as a decision-

making supporting tool over the last 20 years, there is little emphasis on grassland ES and how 

changes due to anthropogenic activities and resulting climate change impacts the provision of ES 

compared to other biomes; especially in the Great Plains where most of the U.S.’s grasslands occur. 

Some existing studies include the estimation of the total ES value of global grasslands and spatially-
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explicit ES values of a single time period on some regional level (Costanza et al., 1997; Sala & 

Paruelo, 1997; Costanza et al., 2014; Xia et al., 2014). Costanza et al. (1997) estimation of the total 

ES value of global grasslands in 1997 was 302 (1994) U.S. dollars per hectare; also, Costanza et al.'s 

(2014) re-estimation of the total ES value of global grasslands in 2011 was 4,166 (2007) U.S. dollars 

per hectare. Sala and Paruelo (1997) demonstrated the provision of ES by grasslands through carbon 

sequestration and conservation of soil. They estimated the economic value carbon lost by converting 

native grasslands to cropland in eastern Colorado (U.S.) to $200 per hectare. Xia et al. (2014) also 

modeled the carbon density of grasslands but in North America (including the Great Plains on 

Canada) between 1982 and 2006; there was an overall positive trend in total C and an estimated value 

of 207.72 Tg/C of total carbon stock. This research will address this knowledge gap by quantifying a 

select set of grassland ecosystem services within the Great Plains using remotely sensed data for ES 

modeling to capture the spatio-temporal dynamics of grasslands.  

Due to the vast coverage of grasslands, remote sensing is a popular method of data acquisition for 

mapping and valuation of grasslands ES. Remotely sensed data is used to produce spatially explicit 

assessments and quantification of ecosystem services (De Araujo Barbosa et al., 2015; Liquete et al., 

2016). They also provide adequate temporal scale data or even real-time data for monitoring ES 

(Ayanu et al., 2012). Remotely sensed data are usually used as a proxy for a variable or indicator, 

which is then used as a proxy for an ES; that is, a proxy of a proxy (Ayanu et al., 2012). In this case, 

Vegetation indices as a proxy for a service like carbon sequestration because they provide an 

approximate measure of relative vegetation amount (Wang et al., 2018). The normalized difference 

vegetation index (NDVI) has shown a consistent correlation with vegetation dynamics in various 

scales of land area, and the ratio concept reduces many sources of noise (Huete, 1988; Wang et al., 

2018). A wide range of ES modeling tools that usually require remote sensing data input exist. A 

detailed review of ecosystem services models was carried out by Dunford et al. (2017) and Kienast 

& Helfenstein (2016). Widely used and well-tested examples of the modeling software packages 

include the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), Artificial 

Intelligence for ES (ARIES), Multiscale Integrated Model of ES (MIMES), Land Utilization and 

Capability Indicator (LUCI), Social Values for ES (SoLVE) (Bagstad et al., 2013; Dunford et al., 

2017; Kienast & Helfenstein, 2016).  

Bagstad et al. (2013) reviewed and carried out a performance rating for seventeen modeling tools 
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against criteria that include data requirement, level of development, scale application and capacity of 

the independent application. Seven of the seventeen tools (including InVEST, ARIES, and EcoAIM) 

were tested on the San Pedro watershed in Arizona, USA. They all had their specific strengths (e.g., 

LUCI is more site-specific), but InVEST was utilized because it has been well tested, open source, 

generalizable, suitable for the spatial scale of the study area and the availability of required data 

(Bagstad et al., 2013; Dunford et al., 2017; Kienast & Helfenstein, 2016; Nelson et al., 2009). 

To sum this up, this project focuses on the use of remotely sensed data for ES modeling in InVEST 

to highlight the relative change in grasslands and its impact in the U.S. Great Plains. The study will 

use remotely sensed data which will be input into a geographic information system software and 

analyzed. While this project focuses on addressing the knowledge gap grassland ES quantification in 

the (especially in the Great Plains), improved methods were developed to better utilize the increasing 

remote sensing data qualities. These improved methods can be applied to vegetation monitoring not 

just in the United States but globally.  

5.2. Study area 

The Great Plains region is the vast interior of North America running from Canada in the North to 

Mexico in the south and lies between east of the Rocky Mountains and west of the eastern temperate 

forests and the Appalachian Mountains (Rossum & Lavin, 2000). The Great Plains Ecoregion used 

for this study is defined by the United States Environmental Protection Agency (EPA) based on 

Omernik (1987) and Omernik and Griffith's (2014) classifications. The ecoregion classifications are 

based on patterns of geology, physiography, vegetation, climate, soils, land use, wildlife, and 

hydrology affecting ecosystem quality (Omernik, 1987). The US EPA categorizes the area as a Level 

I ecoregion of the 15 coarsest level ecosystems in North America. In this ecosystem classification, 

the Great Plains has four level-II divisions and 16 Level-III subdivisions (Omernik & Griffith, 2014).  

The EPA Great plains cover approximately 2.8 million square kilometers, with more than 80 percent 

of this area in the U.S. (about 2.2 square kilometers). Grasslands followed by agricultural lands 

dominate the ecoregion, then other land uses (Drummond & Auch, 2015). This study, however, 

focuses only on grasslands in the Great Plains Ecoregion within the United States. The grassland area 

was defined by the grassland/herbaceous class of the United States Geological Survey's National 

Land Cover Dataset (NLCD) for 2011 (Homer et al., 2015). As defined for this study, the grassland 
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area is approximately 825,000 square kilometers and covers 13 U.S. states (Figure 5.1). It contains a 

mixture of tallgrass prairie (east), mixed-grass prairie (north central), and short grass prairie (west). 

 

Climate is also diverse in this region, influenced by latitudes from north to south and elevation from 

east to west (Tollerud et al., 2018). The Koppen-Geiger climate classifications within the Great Plains 

show the range from the cold (snow) climate in northwestern North Dakota, with warm, humid 

summers and long, cold, snowy winters, to the arid climate of Texas (Beck et al., 2018). Precipitation 

in the Great Plains is highly variable from year to year. Based on 30-year normal (1981-2010), 

precipitation ranges from 1500 mm in the southeastern portions of the Great Plains to 250 mm in the 

west, and annual mean temperature ranges from 00C in the north to 220C in the south (PRISM Climate 

Group, 2019).  

 

The Great Plains' elevation is generally described as low lying, but it decreases from the foot of the 

Rocky Mountains in the west to the east in meters above sea level. The west edge with a maximum 

of 3610 meters above sea level in Colorado to more than 18230 meters in New Mexico, but on the 

eastern edge, it reduces to an average of 200 meters from east Oklahoma to mid-Texas (U.S. 

Geological Survey, 2017). The hydrology of the Great Plains ecoregion is subjugated by the Missouri 

River basin in the northern areas; Arkansas and the Red Rivers basins in the southern portion with 

tributaries flowing into the Mississippi River (Galat et al., 2005; Matthews et al., 2005). Besides the 

Prairie Pothole Region in the upper Midwest parts of the ecoregion, most enclosed water bodies in 

the Great Plains region are manmade (Zhu et al., 2011).  
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Figure 5.1: U.S. Great Plains study area showing Omernik level III ecoregions and grassland pixels 

extracted from the 2011 NLCD. 
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5.3. Data and methods 

5.3.1 Modeling important ecosystem services 

With the list of ecosystem services grasslands provide, it can be challenging to decide which ES to 

quantify and value that will best impact policy decisions. The choice of services to estimate was 

determined by the availability of data considering the large extent of the study area. The ES modeling 

tool used (InVEST) can be run at different levels of complexity, making it sensitive to data 

availability (Nelson et al., 2009). Based on the TEEB classification system, the following ecosystem 

services were estimated: climate regulation (carbon sequestration) and Erosion prevention (soil 

conservation) using the InVEST carbon and sediment retention models, respectively. 

Due to the vast coverage of grasslands, remote sensing is a popular method of data acquisition for 

mapping and valuation of grasslands ES. Remotely sensed data is used to produce spatially explicit 

assessments and quantification of ecosystem services (De Araujo Barbosa, et al., 2015; Liquete et al., 

2016). They also provide adequate temporal scale data or even real-time data for monitoring ES 

(Ayanu et al., 2012). A detailed review of remote sensing data, techniques suitability was described 

by several studies (Ayanu et al., 2012; De Araujo Barbosa, et al., 2015; Liquete et al., 2016). Ramirez-

Reyes et al. (2019) discussed the important role remote sensing could play in ES valuation and 

assessment; they highlighted the potential of remotely sensed data in improving the modeling of ES 

demand, being a more direct indicator of ES supply and better and more accurate modeling of the 

temporal dynamics of ES. 

The (version 3.9.0) model suite was used to quantify ecosystem services. InVEST is a suite of GIS-

based models developed by Natural Capital Project (a partnership of Stanford University, University 

of Minnesota, Chinese Academy of Sciences, Stockholm Resilience Centre, the Nature Conservancy, 

and the World Wildlife Fund). InVEST comprises a suite of GIS-based models. It is the top choice 

tool for most ES valuation studies because it is open-source, highly generalizable, well documented, 

and independently applicable (Bagstad et al., 2013).  

The InVEST models are based on land use and land cover (LULC) maps, converting them to 

production functions and ecosystem service supply (Nelson et al., 2009). Besides the common 

limitation of classification accuracy of LULC maps, another limitation is the lack of variability in 
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production functions tied to the LULC classes. That is, all pixels in a "forest" class are assigned one 

value: limiting the characteristic explicit spatial variability in this class. It is well known that the 

vegetation land cover specifically is very dynamic, so if the focus is on one land cover class like this 

study, there will be no explicit spatial distribution in the resulting ecosystem service supply using the 

existing data input method. Muche et al. (2019) used MODIS NDVI to account for spatiotemporal 

differences in grassland land cover conditions in the calculation of surface runoff using the curve 

number approach. In this study, the normalized difference vegetation index (NDVI) for grasslands 

was used in place of LULC maps for this study. The NDVI has shown a reliable correlation with 

vegetation dynamics in varying spatial scales and the available data for carbon and erosion modelling 

were NDVI based (Wang et al., 2018). 

To prepare the NDVI for both models, the MODIS (MOD13Q1 Collection 6), a 16-day maximum 

composite NDVI product for the period of 2001 to 2017, was used (Table 5.1). Images were 

downloaded from NASA's Earth Observation Data website using the "MODIStsp" package (version 

1.3.3) in R; as a 16-bit signed integer grid. The MODIStsp package was used to download MODIS 

HDF files automatically. The MOD13Q1 has a 250-meter spatial resolution. The various scenes of 

the downloaded images that make up the EPA Great Plains were mosaiced and reprojected from their 

original sinusoidal projection to a more useful projection: the USA Contiguous Albers Equal Area 

Conic projection. To extract the area of interest, pixels belonging to the "grassland/herbaceous" class 

of the 2011 NLCD data produced from a 30-meter spatial resolution were resampled to match the 

spatial resolution of the MOD13Q1 image. To address the potential for misidentifying a grassland 

pixel, resampled pixels included an 80% minimum of the original NLCD grassland/herbaceous class. 

This grassland mask was then used to extract the grassland pixels from the NDVI data.  

5.3.2 Carbon model 

The natural carbon stock that acts as a climate regulator is modeled in this study benefits according 

to four main carbon pools: aboveground (living plant) biomass, belowground (root) biomass, soil 

organic component, and dead organic matter (litter). The InVEST carbon stock and sequestration 

model aggregates the amount of carbon stored in the above-mentioned pools with values that are 

based on LULC maps. The model uses the LULC classes, and the amount of carbon stored in carbon 

pools (in a lookup table) to estimate the total amount of carbon stored in a landscape or the amount 

of carbon sequestered over a given time. Valuation is then applied to sequestration (change in carbon 
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stock/storage in an ecosystem over time; annually in this case) to estimate the economic value. See 

https://invest-userguide.readthedocs.io/en/latest/carbonstorage.html for more details on the general 

InVEST method. A new method of data input was adapted for this study. Grassland VI-based classes 

and VI-related values for the carbon stored in carbon pools for the lookup table are discussed below 

(Appendix C1). 

The details of the data used to estimate the values of each carbon pool for each pixel in the study are 

presented in Table 1, and all carbon stock values are MgC/ha (megagrams of carbon per hectare). 

The aboveground and belowground biomass carbon values were estimated using the Oak Ridge 

National Laboratory's global aboveground and belowground biomass carbon density images for the 

year 2010 (Spawn & Gibbs, 2019). Aboveground and belowground carbon biomass correlate to 

several VI's, including NDVI (Kelsey & Neff, 2014; Vicharnakorn et al., 2014; Xia et al., 2014). 

Therefore, the best-fit regression model between the aboveground and belowground carbon biomass 

density (AGB, BLG; MgC/ha) for each pixel and its average annual growing season NDVI (NDVIg) 

are given below (Equations 1 and 2). The growing season is defined as the period from May to 

October based on the majority start and end of growing season for the ecoregion.  

 

Log AGB = -1.047895 + 2.307363 * NDVIg      (R
2 = 0.48, RSME= 0.29, P <0.0001)      [1] 

Log BLG = 0.2476662 + 2.5910314 * NDVIg     (R
2 = 0.59, RSME= 0.24, P <0.0001)      [2] 

 

The dead organic matter pool values were estimated from the range for grassland in North America 

available in the literature. Values are summarized in the 2006 IPCC Guidelines for National 

Greenhouse Gas Inventories based on Kauffman et al. (1997) and Naeth et al.'s (1991) carbon 

estimates for grasslands (as cited in Verchort et al., 2006). For the soil organic component, we used 

average values of the Global Soil Organic Carbon Map (GSOC map) covering the study area (Food 

and Agriculture Organization [FAO] & Intergovernmental Technical Panel on Soils [ITPS], 2020). 

The GSOC map was acquired from the Food and Agricultural Organization of the United Nations.  

 

 

 

 

https://invest-userguide.readthedocs.io/en/latest/carbonstorage.html
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Table 5.1: The details of datasets used for the carbon model. 

Data       Spatial  

Resolution 

Source 

NDVI layers of the MODIS  

(MOD13Q1 Collection 6) 

250m NASA 

(https://urs.earthdata.nasa.gov/) 

Global aboveground and 

belowground biomass carbon 

density images for the Year 2010 

300m Oak Ridge National Laboratory (ORNL DAAC) 

(https://doi.org/10.3334/ORNLDAAC/1388) 

IPCC's (2006) dead litter carbon 

estimates for grasslands 

N/A IPCC, Kauffman, et al., 1997 and Naeth, et al., 1991  

https://www.ipcc-nggip.iges.or.jp/public/2006gl/ 

pdf/4_Volume4/V4_06_Ch6_Grassland.pdf 

GLOSIS - Global Soil Organic 

Carbon Map (GSOC map) 

(v1.5.0) 

800m Food and Agriculture Organization [FAO] of the UN 

http://54.229.242.119/GSOCmap/ 

Social Cost of CO2, 2015-2050 

(in 2007 dollars per metric ton 

CO2) 

N/A EPA 

https://19january2017snapshot.epa.gov/climatechange/

social-cost-carbon_.html 

 

5.3.2.1 Economic valuation of carbon 

Data for modeling economic values of carbon was acquired from the EPA's Social Cost of CO2 (SCC) 

values for 2015-2050 in 2007 U.S. dollars per metric ton of carbon (Table 5.1). The data includes the 

price/metric ton of carbon, market discount in the price of carbon (an integer percentage value that 

reflects society's preference for immediate benefits over future benefits), and the annual rate of 

change in the price of carbon used for valuation. A 3% market discount rate was used as suggested 

by EPA, and the SCC price (per ton of carbon) values for the 3% discount rate were in increments of 

5 years from 2015 to 2050. A simple linear interpolation used was used to estimate price (per ton of 

carbon) for the preceding and interval years in the study period. The annual rate of change in carbon 

price was calculated to be approximately 0.04% every year. The SCC values alongside a lookup table 

comprised of aboveground biomass, belowground biomass, soil organic component, and dead organic 
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matter carbon values with their corresponding NDVI values in increments of 0.04 were input for the 

carbon model. (Appendix C2). The InVEST carbon sequestration model calculates the net economic 

value over time, in this case, the difference between the economic values for a year and the preceding 

year. 

5.3.3 Sediment delivery model 

Controlling erosion naturally can benefit humans by improving water quality, reducing flooding, 

reducing pollutant transport, and increasing agricultural productivity (Duarte et al., 2016). Erosion 

control and sediment retention estimation in InVEST requires modeling the impact of land cover on 

on-site soil erosion using a set of landscape variables. Those variables include precipitation, land 

cover, topography, and soil properties. Then the sediments retained by the presence of a vegetative 

cover using the values of potential soil erosion for each watershed in the study area is estimated (Yoo 

et al., 2014).  

 

The InVEST Sediment Delivery Ratio model uses the Universal Soil Loss Equation-USLE 

(Wischmeier & Smith, 1978): 

ASL = R *K *LS * C * P                                          [3] 

 

where ASL expresses annual soil loss (tons ha−1 yr−1); R is rainfall erosivity (MJ mm (ha . hr . yr)−1); 

K is a measure of soil erodibility (tons. ha . hr/(ha . MJ . mm)-1), LS is a combined factor for slope 

length and steepness; C is the land cover management; and P represents conservation practices (LS, 

C, and P are dimensionless; but L (slope length) is measured in cm, and S (slope steepness) is 

measured in percentages). The data used to derive the variables for the soil loss estimation are listed 

in Table 5.2. 

The model computes the amount of annual soil loss for each pixel then computes the sediment 

delivery ratio (SDR) for that pixel. The data required are listed and described below, mostly in 

raster format. The C and P factors are values that are based on LULC classes and are inputted as 

values that correspond to LULC classes in a lookup table. See https://investuserguide.readthedocs. 

io/en/latest/sdr.html for more details on the existing method. The C factor is a key component of 
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soil erosion analysis. Coupled with the fact that we are focused on one LULC category (grassland), 

there is a need to include spatially explicit and temporally variable values for the C factors for a 

more accurate estimation of soil loss. In this study, we used a modified C factor value input method 

was adapted for this study-VI-based classes and VI-related values instead of the generalized static 

value from literature. C factor values estimation is discussed in detail below, and a modified lookup 

table can be found in Appendix C3. 

 

Table 5.2: The details of datasets used for the sediment delivery model. 

Variable 

Data Spatial 

Resolution 

Source Unit 

R 

PRISM annual 

normal 

precipitation 

4 km PRISM Climate Group 

(https://prism.oregonstate.edu/recent/) 

MJ mm (ha . hr . 

yr)−1 

K 

The Soil 

Survey 

Geographic 

Database 

(SSURGO)  

1:250,000-

scale 

USDA: NCRS, UC DAVIS, and UC-ANR 

(https://websoilsurvey.sc.egov.usda.gov/App/ 

HomePage.htm) 

ton. ha . hr(MJ. 

ha . mm)-1 

LS 

The 3D 

Elevation 

Program (3D 

EP) 

 30 m USGS  

(https://viewer.nationalmap.gov/basic/) 

unitless 

C 

NDVI layers 

of the MODIS  

(MOD13Q1 

Collection 6) 

250 m NASA 

(https://urs.earthdata.nasa.gov/) 

unitless 

P 

Literature N/A Wischmeier and Smith. (1978). Predicting 

rainfall erosion losses (Vol. 537). U.S. Dep. 

of Agriculture. 

unitless 
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The rainfall erosivity factor indicates how much erosive force a typical storm has on surface soils. 

The spatially distributed rain erosivity index for the study area was determined from rainfall data, a 

4km mean monthly precipitation raster for the period between 2001 to 2017 (PRISM Climate Group, 

2019). The rainfall erosivity factor was then estimated using the power function developed by Renard 

and Freimund (1994) for the conterminous U.S.:   

R = 0.04830 × P1.610          [4]          

where:                        

P = annual mean precipitation (mm)                                                

The soil erodibility factor K value is the rate of soil loss per rainfall erosion index unit as measured 

on a standard plot and often determined using inherent soil properties (texture, grain size, 

permeability, and organic matter content (Parysow et al., 2003; Pan & Wen, 2013). The spatially 

distributed soil erodibility values were from the 1:250,000-scale U.S. Soil Survey Geographic 

Database. The soil erodibility raster covering the study area was aggregated by the California Soil 

Resource Lab at UC Davis (University of California, Davis) and UC-ANR (University of California, 

Agriculture, and Natural Resources) in collaboration with the USDA Natural Resources Conservation 

Service. 

The length-slope factor computes the effect of slope length (L) and the slope steepness (S) on erosion. 

The length-slope values were obtained from the 30-meter USGS 3D EP data Digital Elevation Model 

(DEM). The InVEST Sediment Delivery Ratio model estimates the LS factor values from DEM using 

the method developed by Desmet and Govers (1996) for a two-dimensional surface. Prior to 

estimating the erosivity, erodibility, and length-slope values, the datasets were resampled to a 250-

meter spatial resolution and reprojected to match the MODIS VI datasets. 

The cover management factor is a major component of soil erosion analysis. It indicates how crop 

management and land cover affect soil erodibility. The C factor is an index that ranges from 0 to 

1(forested to bare soil) is estimated using on-site field experiments, lookup tables based on land cover 

maps, soil-physical models, or land cover maps from regression models (Tsai et al., 2016). Erencin 

(2000) compared obtaining C factors using land cover maps backed by some field measurements, VI-

derived, and transformation indexes. The accuracy was in the order the methods were listed. The 

NDVI-derived method was the most accurate method that did not require field measurement, which 
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is favorable for large areas like the Great Plains. Ayalew et al. (2020) also compared NDVI-derived 

C factors with C factors from existing literature, and the result shows the NDVI-derived factors were 

more sensitive to actual soil erosion conditions. This study, therefore, uses the NDVI-derived C factor 

for the erosion model. This method is also spatially explicit compared to using a single literature-

derived value for all pixels in on LULC category. As discussed previously, another study used 

MODIS NDVI to account for spatiotemporal differences in grassland conditions in the calculation of 

surface runoff using the curve number approach (Muche et al., 2019). 

The equation below by Van der Knijff et al. (2000) used for the C-factor estimation has been used in 

several studies (Ayalew et al., 2020; Balabathina et al., 2020; Durigon et al., 2014). According to 

Van der Knijff et al. (2000), values 2 and 1 are the best representatives of equation parameters α and 

β for temperate regions. 

C = exp{−α × NDVI ÷ (β − NDVI)}                                         [5] 

where:  

𝛼=2 

𝛽=1 

𝛼 and 𝛽 are (dimensionless) empirical fitting parameters 

The soil conservation practices represent the level of erosion control practices such as contour 

planting, terracing, and strip cropping, put in place relative to straight row farming up and down the 

slope. Since the study area is covered by grassland and not crops, it was assumed none of the practices 

were applied; therefore, the value of P = 1 was assigned for all pixels in the study area (Kuok et al., 

2013; Yoo et al., 2014). A biophysical lookup table was created with C and P values corresponding 

to NDVI values in increments of 0.05, an input for the model (Appendix C3). The spatial distribution 

of annual soil loss or erosion obtained for grasslands in the Great Plains ecoregion by applying 

equation 3.  

The other component of the InVEST sedimentary delivery model is the estimation of annual sediment 

retention from annual soil loss. Sediment retention values from the InVEST model represent how 

much sediment is retained by the natural vegetative cover (grasslands in this situation) compared to 

an alternative scenario where the current natural vegetative cover was "removed." Basically, sediment 

retention means how much soil sediment was retained because of the presence of grasslands. This 

provides a way to present an economic valuation related to soil erosion that is not soil loss. Even 
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though these values are presented with annual soil loss, there is no established correlation between 

the two measures. The sediment retention is used for valuation, and it was estimated in 3 steps; 1. the 

sediment delivery ratio (based on Borselli et al.'s (2008) method), 2. the sediment export given by the 

summation of the soil loss values multiplied by the sediment delivery ratio for each pixel, 3. the 

sediment downslope deposition estimates the amount of sediment that was deposited on a landscape 

downstream from the source that does not reach the stream (Sharp et al., 2020). The watershed 

boundaries of the study required for the sediment retention estimation were delineated from the DEM 

(same used to calculate the length-slope factor) using ArcGIS (10.7.1). The default for required 

parameters (threshold flow accumulation, at Borselli's K and IC0 calibration parameters, and the 

maximum SDR value) were used to run the model. 

5.3.3.1 Economic valuation of soil retention 

The InVEST sediment delivery model does not model the economic value of sediment retained. Data 

for modeling economic values of soil retained was acquired from the Economic Research Service of 

the U.S. Department of Agriculture's estimates of soil conservation benefits (LeRoy & Ribaudo, 

2008). The benefit estimates are in 2000 U.S. dollars per metric ton of soil (LeRoy & Ribaudo, 2008). 

The average of the regional values covering the Great Plains ecoregion (Northern Plains, Southern 

Plains, Mountain, Corn belt, Delta States, and Lake States); and the averages values were adjusted to 

2007 U.S. dollars per metric ton of soil using the U.S. Bureau of Labor Statistic's CPI Inflation 

Calculator to match the unit of the carbon sequestration economic values. The estimated value for 

each ton of soil retained was $4.46 (2007 U.S. dollars). 

To validate the resulting ecosystem service values estimated with the modified valuation method for 

the carbon model, the value transfer method of ES valuation where values were compared to existing 

studies in the area was estimated with a different method (Brander & Crossman, 2017).  

5.4 Results  

5.3.1 Carbon model 

The spatial patterns of selected results from the InVEST carbon model analysis are shown in figure 

4. The selected maps include years that show a representative variation in spatial patterns and total 
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value (high and low) of average annual carbon stock values and net economic values of sequestered 

grassland carbon in the U.S. Great Plains. See Appendix C4 for other maps. 

 

Carbon stock  

Figure 2 shows the total and average annual carbon stock values in MgC per hectare for the grasslands 

in the U.S. Great Plains for the study period (2001 to 2017). The average carbon stock values of 

grasslands in the ecoregion increases from west to east. This implies that carbon storage is highest in 

the tallgrass prairies (an average of 220 MgC per ha) and lowest in shortgrass prairies (with an average 

of 180 MgC per ha). Average carbon stock values in the south are slightly higher than in the north 

(Figure 5.2). The total annual carbon stock of grasslands in the ecoregion; the years 2002, 2006, and 

2012 had the least total value with approximately 2.95, 2.96, and 2.93 B MgC/ha respectively, and 

2007, 2010, and 2015 had the highest total values with approximately 3.03, 3.04 and 3.05 B MgC/ha 

respectively (Figure 5.3). 

 

  

Figure 5.2: Average annual carbon stock (in Mg C/pixel) for the grasslands in the U.S. Great Plains  
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Figure 5.3: Total annual carbon stock (in MgC) for the grasslands in the U.S. Great Plains. 

 

The spatial patterns of annual carbon stock for grasslands the U.S. Great Plains are like the overall 

average (increasing from west to east) and slightly higher carbon stock values in the south than the 

north (Figure 5.4).   
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Figure 5.4: Spatial distribution of total carbon stock (in MgC) of grassland in the U.S. Great Plains 

for 2012 and 2015. 

 

Net economic ES value of sequestered grassland carbon: 

 

The net economic values of carbon sequestered by grasslands in the study area for the years 2001 to 

2017 are shown in Table 5.3 and Figure 5.5. The values are in the 2007 U.S. dollars, and values reflect 

the annual change in carbon storage in the ecoregion. The net economic values between the years 

2005 to 2006 and 2011 to 2012 were the least with approximately -1.6 and -1.9 billion 2007 U.S. 

dollars. On the other hand, the net economic values between the years 2006 to 2007 and 2012 to 2013 

were the most, with approximately +2.1 and +2.7 billion 2007 U.S. dollars, respectively. The total 

net value from 2001 to 2017 was positive. 
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Table 5.3: Total annual net economic values of carbon sequestered by grasslands in the U.S. Great 

Plains  

Time Period 

The net economic value of carbon  

sequestered in 2007 U.S. Dollars 

2001 to 2002 -869016908.7 

2002 to 2003 693812686.9 

2003 to 2004 573069435.9 

2004 to 2005 389209754.1 

2005 to 2006 -1598977703 

2006 to 2007 2122456861 

2007 to 2008 -808974007.6 

2008 to 2009 422218704.3 

2009 to 2010 509134417 

2010 to 2011 -1491038612 

2011 to 2012 -1875330605 

2012 to 2013 2681820284 

2013 to 2014 587028467.4 

2014 to 2015 588145413.1 

2015 to 2016 -328539203.8 

2016 to 2017 -765942371.2 
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Figure 5.5: Total net economic values of carbon sequestered by grasslands in the U.S. Great Plains. 

 

The spatial distribution of the net economic value of sequestered carbon (in 2007 dollars) for 

grasslands in the U.S. Great Plains is varied (figure 5.6). The net ES value of carbon between 2005 

and 2006 saw an overall decrease with eastern parts of the study area (southern North Dakota, Mid 

Nebraska and South Dakota, east Kansas, Oklahoma, and Northern Texas) with the most decrease 

(less than 400 2007-dollars per hectare). Between 2006 and 2007, there was a turnaround with mostly 

increasing ES value in the southern parts of the study area. Another sharp decline in ES value happens 

between 2011 and 2012 (Figure 5.8), with the central to Northern region of the study having average 

of $700 decline per hectare. 
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Figure 5.6: Spatial distribution of the net economic value of sequestered grassland carbon in the 

U.S. Great Plains in 2007 U.S. dollars per pixel (2006-2007, 2001-2012). 

5.3.2 Sediment delivery model 

The spatial patterns of selected results from the InVEST sediment delivery model analysis are shown 

in figures 5.7, 5.9, and 5.10. The selected maps include years that show a representative variation in 

spatial patterns of total annual potential soil loss and soil retention values (high and low) for the 

grassland areas in the U.S. Great Plains. See Appendix C5 for other maps. 

Annual soil loss   

The total annual soil loss in the study area for the years 2001 to 2017 is shown in figures 7 and 8. The 

estimated soil loss for the study period averaged 131 million tons per hectare. The total annual soil 

loss in the years 2003 and 2012 were the lowest, with approximately 92 and 83 million tons per 

hectare per year, respectively. On the other hand, the total annual soil loss in 2008, 2010, and 2011 

were the most, with approximately 160, 180, and 167 million tons per hectare per year, respectively.  
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Figure 5.7: Average soil loss values (in tons per hectare) for the grassland area in the U.S. Great 

Plains 
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Figure 5.8: Total annual soil loss and sediment retention for the grassland areas in the U.S. Great 

Plains for 2001 to 2017. 

 

The annual soil loss maps of grassland in the Great Plains Ecoregion show pixel-based biophysical 

measures of erosion prevention ES. The maps were derived using the USLE equation (Equation 3). 

Most of the ecoregion grassland areas had an annual soil loss value of 0 to 5 tons per hectare (Figure 

5.9). These low values occur in northwest Nebraska, eastern parts of South Dakota, New Mexico, 

Colorado, and southern Texas. Higher values that range from 40 to 2000 tons/hectare occurs in 

varying parts of the study area, especially in Montana and the western part of South Dakota.  
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Figure 5.9: Spatial distribution of soil loss for the grassland areas in the U.S. Great Plains for the 

years 2010 and 2012. 

 

Annual sediment retention    

The spatial distribution of annual sediment retention for the grassland areas in the U.S. Great Plains 

is shown in Figure 5.10. The maps of annual sediment retention represent how much sediment is 

retained by the natural vegetative cover (grasslands in this situation) compared to an alternative 

scenario where the current natural vegetative cover was "removed." That is, how much soil sediment 

was retained because of the presence of grasslands. This was used to estimate the economic value 

related to soil erosion.  
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The total annual sediment retention in the study area for the years 2001 to 2017 is shown in figure 8. 

The estimated annual sediment retention for the study period averaged 63 million tons per hectare. 

The total annual sediment retained in the years 2001 and 2012 were the lowest, with approximately 

44 and 33 million tons per hectare per year, respectively. On the other hand, the total annual sediment 

retained in 2007 and 2016 were the most, with approximately 79 and 85 million tons per hectare per 

year, respectively. 

  

Figure 5.10: Spatial distribution of sediment retention for the grassland areas in the U.S. Great 

Plains for the years 2012 and 2016 

. 

There is generally increasing sediment retention from west to east in the study area (Figure 10). The 

western axis has values ranging from 0 to 5 tons per hectare per year to values over 40 tons per hectare 

per year on the eastern axis.   
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5.3.3 Validation 

To validate the modified valuation method, ecosystem services values estimated from the carbon 

InVEST model were compared to estimation from another study that used a different method. The 

annual carbon stock in MgC was compared to estimation modeled by Zhu et al. (2011) for the 

grasslands in the Great Plains ecoregion. The Zhu et al. study is considered the "gold standard" 

comparison to this study because it was conducted by top-tier researchers from a reputable 

government organization. They carried out a detailed study of grasslands in the Great Plains in a 

similar study area and overlap of the period studied. Zhu et al. (2011) estimated a baseline (the 

average 2001 to 2005) carbon stock for grasslands in the Great Plains region in TgC. LULC data, 

climatic data, soil properties data including soil organic carbon (SOC) content were used to model 

baseline carbon storage. The values converted to MgC alongside values from the general inVEST 

method and the modified method of ES valuation for the same period are shown in Table 5.4.  

 

Table 5.4:  A comparison of approximate carbon stock estimates (2001-2005) produced for 

grasslands in the Great Plains ecoregion. 

 

 Zhu et al. (2011) General InVEST 

Method 

Modified Method 

C (TgC) 2,614 3,219 2,988 

% Difference with 

Zhu et al. (2011) 

-------- +18.8% +12.5% 

5.4. Discussion 

The InVEST carbon storage and sequestration and sediment delivery models were applied to evaluate 

two important grassland-related ecosystem services in the U.S. Great Plains: carbon sequestration 

and erosion control.   The temporal and spatial changes in ES values can be obtained from these 

aspects in response to changing conditions of grasslands in the study area. The method of quantifying 

ES using InVEST is highly generalizable and well documented; however, some limitations exist. The 

InVEST models used do not account for variability in carbon stock and sediment retention within 

specific LULC types (Duarte et al., 2016). This study uses improved methods that harness the 
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potential of remote sensing data to optimize spatial and temporal variability. Therefore, this research 

contributes to a literature that quantifies the value of multiple ecosystem services at a broad scale 

(Great Plains ecoregion as a whole) both spatially and temporally. It highlights the services provided 

by grasslands and how they are impacted by the changing state of grasslands (declination and 

degradation) while updating methods for biophysical and economic valuation.  

5.4.1 Carbon model 

The average carbon stock values for grasslands in the U.S. Great Plains from 2001 to 2017 varied in 

a west-east gradient, with values increasing from west to the east in the ecoregion. Values ranged 

from 180 MgC in the west to 220 MgC in the east (Figure 5.2). This distribution pattern of carbon 

stock is like the spatial distribution of prairie types that ranges from shortgrass prairies in the western 

part of the Great Plains to tallgrass prairies in the east. The main drivers of this pattern are the usual 

elevation and precipitation patterns in the Great Plains, which are also similar (Kunkel et al., 2013; 

Shafer et al., 2014). The regional precipitation has a west-east gradient, with a wetter east and a much 

drier West. The elevation gradient also runs west to east, with a higher elevation in the west that gets 

lower towards the east (Shafer et al., 2014). According to Pendall et al. (2018), grassland carbon 

balance is very sensitive to precipitation. On the other hand, there was little variation in the carbon 

stock value in the north-south axis of the ecoregion. The southern part had slightly higher carbon 

stock values than the north due to the temperature difference in these regions (Kunkel et al., 2013; 

Shafer et al., 2014).  

The spatial patterns of annual carbon stock for grasslands in the U.S. Great Plains are like the overall 

average (increasing from west to east) and slightly higher carbon stock values in the south than the 

east (Figure 5.4).   The temporal patterns of total annual grassland carbon stock also varied across the 

U.S. Great Plains. With reference to the mean total annual value (3 billion MgC), values decrease 

from 2001 to 2002, then continually increase and exceed the average total value in 2005, values the 

decreases drastically in 2006, overall increasing between 2006 and 2011 then the most decrease in 

the period in 2012. 2013 to 2015 saw the most increasing carbon storage with a slightly decreasing 

trend in 2016 and 2017 (Figure 5.3). Fitting a linear regression line of best fit through your yearly 

averages of carbon stock values for the grasslands in the U.S. Great Plains, the slope was significantly 

positive. A significant positive slope means that while the carbon uptake by grasslands in the U.S. 
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Great Plains was lower in the dry years (2002, 2012), it remained a net carbon sink in the 17 years 

studied.  

Valuation of ES has many potential uses at various time and space scales, including the use in policy 

choices/scenarios, land use planning, raising awareness, payment for ES, etc. (Costanza et al., 2014). 

Just like the carbon stock estimation, the valuation of carbon sequestration by grassland in the U.S. 

Great Plains in the time studied showed some spatio-temporal variation. The average economic value 

of grassland carbon stock in the U.S. Great Plains between 2001 and 2017 was 93 billion 2007 U.S. 

dollars. The temporal economic values of carbon are like the values of carbon stock described in the 

preceding paragraph and presented in table 5. With a focus on carbon sequestration, the net values of 

carbon (the difference of the calculated economic value of a pixel in year one and the preceding year) 

were calculated (Table 5.3).   

The net annual values of carbon decreased from 2001 to 2002, and it increased the period between 

2002 and 2005 and then there is a sharp decline in net values between 2005 to 2006. Between 2006 

to 2007, there was an increase in net values and an overall decrease in net value between 2007 to 

2012. The biggest contrasts in annual net values of carbon in the Great Plains are between 2012 in 

2013, and then we see a slight increase in value from 2014 to 2015 and the last two years decrease in 

value. The most significant temporal changes are in periods between 2005 to 2006 with a decrease, 

and then 2006 to 2007 is also show a sharp increase in net value (Figure 5.5). Another significant 

temporal change in the economic value of carbon in the Great Plains is between 2011 to 2012. This 

extreme shift in value can be observed in the carbon stock estimation, where 2012 was not a good 

year for grasslands (lowest value in the study period). These patterns are like precipitation patterns 

in the Great Plains during this time. In the Great Plains ecoregion. An example, 2012 was a drought 

year, and precipitation increased in 2013 hence that contrast. The spatial patterns of the net value vary 

from year to year (Figure 5.6), but temporally, the most increase occurred between 2012 and 2013 

and the most loss in value between 2011 and 2012. Spatially, the net economic value of carbon within 

each period varies, but the Northern axis witnessed more decline than the south overall. 
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Figure 5.11: A comparison of the spatial distribution of total carbon stock of grassland in the U.S. 

Great Plains for 2015 using the generalized and modified InVEST methods. 

Comparing Zhu et al. (2011) estimates to our estimates from the general InVEST and modified 

InVEST methods (Table 5.4), There is an 18.8% difference between the estimates of Zhu et al. (2011) 

and the general InVEST method, whereas there is a 12.5% difference between the Zhu et al. (2011) 

and the modified InVEST method. This means that there would be an overestimation of the value of 

ES using the general method. Thanks to the incorporation of remote sensing methods. Overestimation 

of C values might be detrimental to various areas that need and utilize ES values; environmental 

planning, environmental monitoring, policymaking, skewed or inaccurate contribution to the research 

area, etc. Zhang et al. (2019) study demonstrated how spatially homogenous global atmospheric CO2 

concentration values lead to overestimation, including the implications. 

5.4.2 Sediment delivery model 

Soil Loss: The patterns of annual soil loss varied across the U.S. Great Plains. Generally, there was 
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more soil loss in the northwestern parts of the ecoregion. Several factors impact soil erosion rates 

(precipitation, soil properties, topography), but the land cover and climate variability have the most 

impact (Joshi et al., 2020). Since our research was carried out on one landcover class (grasslands), 

the influence of climate will likely supersede the variation of grassland productivity (represented by 

the C factor in the sediment delivery analysis). Soil erosion might be more severe in other regions of 

the world, and there is still a huge impact on an ecosystem when soil loss rates exceed the rates of 

soil formation-soil degradation (Sala & Paruelo, 1997; Joshi et al., 2020).  

The total annual soil loss value for the grassland area in the U.S. Great Plains ranged from 0 to 5 tons 

per hectare in the time studied (Figure 5.7), but the total annual value was averaged at 131 million 

tons per hectares. According to the U.S. Department of Agriculture's (USDA) 2017 National 

Resources Inventory (2020), soil erosion rates in the U.S. have constantly decreased since the 1980s 

but have remained constant in the past decade. The USDA's USLE database includes soil loss 

measurements from selected sites in the U.S. Midwest, and values fall between the range from our 

results, on average 0.2 tons per hectare a year (USDA, 2016). Soil loss values, especially for 

grasslands in the U.S., usually fall in this low range (less than 1), and soil loss in grassland areas is 

generally lower than in areas with other land covers (Salls et al., 2018; USDA, 2020). For example, 

as of 2017, the average soil erosion rate for croplands was 11.4 tons per hectare in the U.S. (USDA, 

2020).  

The spatial patterns of soil loss in the study area did not have a lot of variation. Distinct spatial patterns 

include very low values in the northwest areas of Nebraska (the Nebraska Sandhills ecoregion) and 

the southernmost of Texas (Figure 5.7). The Nebraska Sandhills ecoregion has the largest and most 

homogenous grassland expanse in North America, and it lies in the part of the region with the close 

to median temperature and precipitation values in the Great Plains (Conant et al., 2018). The southern 

part of Texas also has very high temperature and median precipitation values (Kloesel et al., 2018). 

Both regions are extremely dry regarding surface soil moisture, and they have mostly sand and sandy 

loam soil textures hence more precipitation infiltration and less runoff that leads to erosion 

(McDonough et al., 2020). Also, in the northwestern part of the Great Plains (Montana, Wyoming, 

and the Dakotas), several areas have high soil loss values; this region has the lowest precipitation rate 

in the study area and the lowest temperatures (Conant et al., 2018). The region also has mostly clay 

and clay loamy soils textures (McDonough et al., 2020). Hence, even though there is low precipitation 
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in this region, there is a high chance of mechanical weathering from the expansion and shrinking of 

clay soil, which temperature changes, and a lower rate of precipitation infiltration that may lead to 

increased surface runoff with time. So, contrary to our initial hypothesis that climate may play a 

considerable role in soil loss values in the Great Plains ecoregion, the spatial patterns also indicate a 

huge influence of land cover (in this case, grasslands), as evident from dense grasslands regions 

having lower soil loss values and soil texture. 

The temporal patterns of annual soil loss are also varied across the U.S. Great Plains. 2003 and 2012 

include years with the lowest amount of annual soil loss; these years are associated with lower than 

usual precipitation. On the other hand, 2008, 2010, and 2011 had the highest annual soil loss; these 

years also coincide with the years that had higher than normal precipitation (EPA, n.d.). On this broad 

scale, the influence of climate and soil erosion rates is most apparent. Fitting a linear regression line 

of best fit through the annual soil loss values slope was significantly positive, meaning increasing soil 

loss in the period studied. 

Most analyses of soil loss rates in the U.S. Great Plains ecoregion were focused on croplands (Van 

Oost et al., 2006; Joshi et al., 2020). Therefore, the possibility of validating our annual soil loss values 

was minimal. Earlier, we compared our estimates to the USDA's 2017 National Resources Inventory 

values, and they were similar. We used an improved method to estimate annual soil loss values for 

grassland in the Great Plains as described in the methods section. As with the carbon stock estimation, 

soil loss estimations showed improved results using themodified methods compared to the 

generalized InVEST approach. Because we focused on one landcover class which is very variable 

and dynamic, the modified method highlights the variation in grasslands and yields more realistic, 

spatially explicit results. Figure 5.12 compares results from the generalized methods versus the 

modified method.  
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Figure 5.12: A comparison of the spatial distribution of the average annual soil loss in the grassland 

areas of the U.S. Great Plains for 2011 using the generalized and modified InVEST methods. 

 

Sediment Retention: The annual sediment retention values for grassland areas in the U.S. great plains 

is how much soil sediment was retained because of the presence of a particular land cover, in this 

case, grasslands. This measure is used to estimate the economic value related to soil erosion. 

Spatially, sediment retention in the Great Plains ecoregion increases from west to east (Figure 5.10). 

This pattern is similar to precipitation and topographic patterns in the region. Surprisingly, the areas 

in the east with more sediment retention have more precipitation and lower elevation. The less steep 

topography could be why more sediments are retained in the west, but on the other hand, the type of 

grasslands could play a considerable role ask sediment retention is a factor of the land cover. The 

western region of the Great Plains is mostly covered by tallgrass prairies characterized by more 

biomass and longer roots hence, more sediment retention. The spatial patterns of sediment retention 

indicate a huge influence of landcover type and mirror the precipitation patterns in the ecoregion. 
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One will expect the opposite for correlation, but areas with higher precipitation experienced more 

sediment retention because of the presence of tallgrass prairie. However, the temporal analysis of 

sediment retention that considers total annual sediment retained in the study area shows similar 

patterns to the temporal patterns of soil loss (Figure 5.8). So, the years with drier than usual 

precipitation (2006 and 2012) have fewer sediments retained. We estimated the economic value for 

sediment retention in the ecoregion; since it was a direct estimation, the figures are very similar to 

the total annual sediment retained values.  

One limitation that comes with the valuation of more the one ES is the possibility of overlapping. 

One ecosystem service correlating with another begs the question of overlapping estimation of their 

value. For example, Soil erosion is tied to carbon sequestration because the process of soil erosion-

detachment and transportation can lead to the release of soil carbon (Joshi et al., 2020). This paper 

combined the estimated economic value of the carbon sequestration and soil erosion ESs (Table 5.5 

and Figure 5.13 bottom). In the time studied, the average combined economic value is 93.43 billion 

(2007) U.S. dollars. The years 2002, 2006, and 2012 had the lowest combined economic value, and 

that he is 2007, 2010, and 2015 had the highest combined economic value in the 17 years studied. 

Again, fitting a linear regression line of best fit through the combined economic values slope was 

significantly positive, meaning increasing grassland ES values in the period studied.  
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Table 5.5:  The combined economic values of carbon sequestration and soil erosion ESs for 

grasslands in the Great Plains ecoregion from 2001 to 2017. 

  

Year The economic value 

of carbon storage 

(2007$) 

The economic value of 

soil retained (2007$) 

Combined economic 

value (2007$) 

2001 92686379098 193,785,419.06 92,880,164,516.78 

2002 91514705640 198,382,236.12 91,713,087,876.39 

2003 92411350916 226,295,360.47 92,637,646,276.10 

2004 93122246432 258,257,762.84 93,380,504,194.43 

2005 93586439101 302,084,204.29 93,888,523,304.99 

2006 91749823376 232,896,809.04 91,982,720,184.59 

2007 94100758155 352,050,362.78 94,452,808,517.61 

2008 93235656231 345,229,018.77 93,580,885,249.80 

2009 93672096782 291,713,016.27 93,963,809,798.34 

2010 94181442918 349,290,437.63 94,530,733,355.27 

2011 92713349887 315,625,330.49 93,028,975,217.94 

2012 90895716838 146,867,933.67 91,042,584,771.59 

2013 93416213812 339,826,724.56 93,756,040,536.28 

2014 93951683214 309,700,690.97 94,261,383,905.45 

2015 94472805825 299,171,667.30 94,771,977,492.73 

2016 94189620744 377,810,327.94 94,567,431,071.70 

2017 93547704355 259,289,834.53 93,806,994,189.30 

 

We also compared the combined economic values of the ESs to the major climate variables in the 

U.S. (the EPA's precipitation and temperature anomalies). Figure 13 shows the side-by-side 

comparison, and the curve pattern shows that precipitation had more influence than temperature on 

ecosystem services in the Great Plains in the 17 years studied. In general, climate, soil texture, and 

land cover are major factors that influence the provision of carbon sequestration and soil erosion 

ecosystem services in the grassland areas of the U.S. Great Plains ecoregion. 
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Figure 5.13: Top: Precipitation and earth surface temperature anomalies in the Contiguous 48 States, 

2001-2017. Source: EPA's Climate Change Indicators in the United States. Bottom: The combined 

economic values of carbon sequestration and soil erosion ES for grasslands in the Great Plains 

ecoregion from 2001 to 2017. 
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Impact of the improved assessment of carbon and soil loss/retention: 

Despite the constant evolution of the ecosystem services concept, there are still limitations regarding 

nomenclature, classification, and, most importantly, quantification and valuation. The use of earth 

observation in ecosystem services modeling has become the holy grail for ecosystem services 

quantification and valuation. As advances are made in remote sensing and GIS, it is expected that 

these advances will transfer into ecosystem services modeling. However, the use of earth observation 

data is yet in ES modeling is yet to see the necessary advancement. The many existing 

modeling/decision support tools that exist still have room to utilize the opportunities presented by 

earth observation data to overcome some of the limitations (Bagstad et al., 2013). Ramirez-Reyes et 

al. (2019) describe some challenges of integrating earth observation data into ecosystem services 

assessments to make it more optimal; one of the major technical challenges is moving from 

categorical to continuous conceptualizations. This means that many ecosystem modeling tools rely 

on the categorical representation of land use land cover data which is the basis of most models. A 

categorical conceptualization like this ignores the spatial heterogeneity of the ecosystem function 

being modeled, leading to inaccurate estimations and valuation. This is where our improved method 

comes in. The use of our improved methods harnesses the potential of remote sensing data to optimize 

spatial and temporal variability. As discussed in previous sections, our methods yielded results 

comparable to other studies and are more spatially heterogeneous, in essence, more realistic. So, the 

impact in our improved assessment of ecosystem services translates to more accurate estimates, 

improved valuation, and a better understanding of the provision of grassland ecosystem services in 

the Great Plains ecoregion (and likely other grassland regions). 

5.5. Conclusions 

Given the essential role of grasslands in the provision of several ES and the mitigation of several 

negative environmental processes like soil erosion and carbon sequestration, their monitoring and 

conservation still have some work to do. There is an urgent need to estimate the impact of grassland 

conditions in response to the changing climate and other anthropogenic activities through long-term 

studies. This paper estimated the biophysical and economic values of two grassland-related regulating 

ES in the U.S. Great Plains: the control of soil erosion and carbon sequestration. In addition to the 

estimation of grasslands, we developed and used an improved method that captures the spatial 
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heterogeneity of grasslands ecosystem function leading to more accurate quantification and valuation. 

Using the highly generalizable InVEST ES modeling tool, we incorporated spatially explicit and 

temporally available earth observation data to replace the categorical and static land use/land cover-

based modeling of ES. Then we used the modeled biophysical measure to costs estimation methods 

to calculate the economic value of both ES. 

 

The results show both spatial and temporal variation, and they indicate a significant influence of 

precipitation, soil texture, and land cover (in this case, grassland biomass). Our results were also 

validated using an existing study that is considered the "gold standard" because of its similarity in the 

study area, study period, and the reputation of the researchers, and our results using the improved 

methods compare to deaths. The comparison of this existing study to the generalized methods shows 

overestimation and possibly inaccuracy in results. ES quantification and valuation accuracy are 

crucial because they impact environmental planning and monitoring policymaking and contribute to 

research in related fields.  

Ecosystem services are increasingly being considered in policymaking, decision making, 

interdisciplinary research, environmental management, and conservation, and there is still room for 

a wider application (Ramirez-Reyes et al., 2019). There is a potential to improve ecosystem services 

valuation in terms of accuracy, data availability, and generalizability by harnessing the very many 

advancements of earth observation or remotely sensed data. While the incorporation of remote 

sensing methods or data dos not the perfect solution for the limitations in ES modeling, it can improve 

the representation of the spatial heterogeneity that exists in reality and better capture the temporal 

dynamics after the supply and demand of ecosystem services. 

 

Climate change (past, present, and future) influences grassland productivity and phenology with 

consequences on ecosystems and their value. Results from this study show the impact of changing 

grassland conditions based on greenness on the Great Plains ecoregion. An analysis of the carbon 

stock value over the period studied showed and overall positive trend. This agrees with findings from 

our previous work (Chapter 4) and Hufkens et al. (2016) on increased productivity of grasslands in 

the time studied. Future work is suggested to analyze the specific factors that contribute to the 

increasing productivity of grasslands in the Great Plains ecoregion and its implications on the 

ecoregion as a whole. 
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Chapter 6 – Summary and conclusions 

 

6.1 Introduction 

Grasslands show significant variability in vegetation structure, including the density, percentage of 

trees, and spatial patterns. These variations result from varying factors, including but not limited to 

climate, soils, topography, fire regimes, woody encroachment, etc. They cover a substantial portion 

of the earth's surface and provide many benefits, yet they are not adequately protected. There is a 

rapid conversion to other land cover and degradation, especially in temperate prairies in North 

America (Comer et al., 2018; Plowprint report, 2021).  

The is the need to advance our understanding of the dynamics of grasslands in the Great Plains 

ecoregion, their relationship to the global decline in ecosystem services (MEA, 2005; Comer et al., 

2018; Plowprint report, 2021), and highlight the need for the best practices for grasslands 

conservation/restoration by showing the potential impact on essential benefits grasslands provide. 

The comprehensive goal of this research was to investigate long-term grassland vegetation 

conditions using a well-known indicator (greenness) within the U.S. Great Plains for the period 

2001-2017 and assess the impact on the provision of related grasslands benefits. The following 

objectives were laid out and carried out to accomplish the research goal: 

1. Assess the long-term trends in grassland based on vegetation greenness within the U.S. Great 

Plains grasslands from 2001 to 2017.  

The temporal decomposition of a time series of vegetation indices (NDVI and EVI) data and 

the statistical analysis of the trend within the period 2001 to 2017.    

2. Assess the spatial patterns and trends of grassland phenology in the U.S. Great Plains within the 

period between 2001 to 2017.  

Filtering of a time series of vegetation indices (EVI) data, the extraction of phenology metrics, 

and the use of summary statistics to assess temporal and spatial patterns over the period 2001-

2017.  

3. Estimate the spatio-temporal changes in grassland-related ecosystem services within the U.S. 

Great Plains. 
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Improve existing ecosystem valuation methods by highlighting the spatially explicit and 

temporal elements of ecosystem services. Estimate the values (biophysical and economic) of 

two grassland-related ecosystem services to assess the impact of changing grassland 

conditions on the provision of these ecosystem services. 

 

6.2 Summary of results and key findings 

The primary results of the research are summarized below from chapters 3, 4, and 5: 

 

Chapter 3: Detection of Long-Term Grassland Vegetation Trends for the Great Plains Ecoregion 

using Temporal Decomposition and Satellite-derived Vegetation Indices 

• Most of the grasslands in the U.S. Great Plains (approximately 71%) experienced greening (a 

positive trend), and a minority (an average of 7.2%) experienced browning (a negative trend) 

between 2001 and 2017. 

• The greening areas are in the midwestern to the northern part of the study region Great Plains 

(East Colorado, Nebraska, Montana, and western South Dakota). So, there is a generalized 

north to a south gradient with greening in the northwest to the middle and more browning in 

the southeast axis of the Great Plains. 

• Comparing the NDVI and the EVI for trend analysis using BFAST results from the initial 

statistical (chi-square analysis) comparison of the two VI shows that there is a significant 

difference, and the trend results are dependent on the VI used.  

• Further pixel-difference comparison showed clusters of pixels with a shift to a more negative 

class from the NDVI to the EVI trends results in the northwestern part of the study area; there 

are clusters of pixels with a shift to a more positive class in the eastern part of the study area 

with tallgrass prairies. This distribution indicates the ability of the EVI to make up for the 

limitation of saturation of high values with NDVI. 

• The cross-tabulation and examination of the difference components (quantity, exchange, and 

shift) indicate the most difference between the trend results of the two VI's are in the stable 

class and that most pixels are interchanged between the stable class and positive class. 
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• The trend results were validated by comparing them to trend analysis using higher spatial 

resolution data, and they were similar.  

Chapter 4: Time Series Analysis of Phenometrics for the U.S. Great Plains Ecoregion using Satellite-

derived Vegetation Indices 

• The average start of growing season was day 105 and the start of season trend of grasslands 

in the Great Plains between 2001 and 2017 showed a predominant move to a later start of 

growing season. 

• The average middle of growing season was day 189 and the middle of season trend of 

grasslands in the Great Plains between 2001 and 2017 showed a predominant move to a later 

middle of growing season. 

• The average end of growing season was day 313 and the end of season trend of grasslands in 

the Great Plains between 2001 and 2017 showed a predominant move to an earlier end of 

growing season. 

• The average growing season length was 204 days and the growing season length trend of 

grasslands in the Great Plains between 2001 and 2017 showed a predominant move to a 

shorter growing season. 

• The average green-up rate was 0.04, and the green-up trend of grasslands in the Great Plains 

between 2001 and 2017 showed predominantly increasing green-up rates. 

• The average senescence was 0.03, and the senescence trend of grasslands in the Great Plains 

between 2001 and 2017 also showed predominantly increasing green-up rates. 

• The average maximum EVI value was 0.34, and the EVI trend of grasslands in the Great 

Plains between 2001 and 2017 showed a predominant increasing trend. 

• The average small integral was 1.75, and the small integral trend of grasslands in the Great 

Plains between 2001 and 2017 showed a predominant increasing trend. 

• The spatial patterns of the time-based phenometrics (SOS, EOS, MOS, and growing season 

length) reflect the influence of temperature; with an overall north-south gradient (higher 

temperature in the south- earlier SOS and later EOS days in the south, and longer growing 

season length in the south than in the north). 
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• The spatio-temporal patterns of the VI-based phenometrics (green-up rate, senescence rate, 

maximum EVI, and small integral) reflect the influence of precipitation. They all show a west-

east gradient with lower values in the west and higher values in the east. 

 

Chapter 5: Spatio-temporal Valuation of Grassland Ecosystem Services in the U.S. Great Plains 

• The average carbon stock values for grasslands in the U.S. Great Plains from 2001 to 2017 

varied in a west-east gradient, with higher carbon stock values in the east than the west. Values 

ranged from 180 MgC in the west to 220 MgC in the east.  

• The total annual carbon stock of grasslands in the ecoregion; the years 2002, 2006, and 2012 

had the least total value with approximately 2.95, 2.96, and 2.93 B MgC/ha respectively, and 

2007, 2010, and 2015 had the highest total values with approximately 3.03, 3.04 and 3.05 B 

MgC/ha respectively. 

•  The average economic value of grassland carbon stock in the U.S. Great Plains between 2001 

and 2017 was 93 billion 2007 U.S. dollars. 

• The net economic values between the years 2005 to 2006 and 2011 to 2012 were the least 

with approximately -1.6 and -1.9 billion 2007 U.S. dollars. On the other hand, the net 

economic values between the years 2006 to 2007 and 2012 to 2013 were the most, with 

approximately +2.1 and +2.7 billion 2007 U.S. dollars, respectively. 

• The estimated soil loss for the study period averaged 131 million tons per hectare. The total 

annual soil loss in the years 2003 and 2012 were the lowest, with approximately 92 and 83 

million tons per hectare per year, respectively. On the other hand, the total annual soil loss in 

2008, 2010, and 2011 were the most, with approximately 160, 180, and 167 million tons per 

hectare per year, respectively.  

• Most of the ecoregion grassland areas had an annual soil loss value of 0 to 5 tons per hectare, 

occurring in northwest Nebraska, eastern parts of South Dakota, New Mexico, Colorado, and 

southern Texas. Higher values that range from 40 to 2000 tons/hectare occurs in varying parts 

of the study area, especially in Montana and the western part of South Dakota.  

• The estimated annual sediment retention for the study period averaged 63 million tons per 

hectare, and the average economic value of sediment retained was 282 million (2007) U.S. 
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dollars. The total annual sediment retained in the years 2001 and 2012 were the lowest, with 

approximately 44 and 33 million tons per hectare per year, respectively. On the other hand, 

the total annual sediment retained in 2007 and 2016 were the most, with approximately 79 

and 85 million tons per hectare per year, respectively. 

• In the time studied, the average combined economic value is 93.43 billion (2007) U.S. dollars. 

The years 2002, 2006, and 2012 had the lowest combined economic value, and that he is 2007, 

2010, and 2015 had the highest combined economic value in the 17 years studied. 

• There is an 18.8% difference between the estimates of Zhu et al. (2011) (a comparative, 

standard study) and the general InVEST method of carbon stock estimation, whereas there is 

a 12.5% difference between the Zhu et al. (2011) and the modified InVEST method. This 

means that there would be an overestimation of the value of ES using the general method. 

 

6.3 Conclusions 

6.3.1 Detection of long-term grassland vegetation trends for the Great Plains Ecoregion using 

temporal decomposition and satellite-derived vegetation indices  

Long-term studies on a major ecosystem are critical to achieving an integrated understanding of how 

components of ecosystems interact. The use of remotely sensed VI time series for trend analysis using 

BFAST is a reliable and valuable method to characterize long-term trends in grasslands and other 

vegetation biomes. This study uses the MOD13Q1(C5) NDVI and EVI data to determine grassland 

vegetation greenness in the Great Plains over a 17-year interval. The description of both the overall 

and area-specific trends in the U.S. Great Plains can provide important information to aid decision-

making in conservation, biodiversity, and stainability-related policies.  

Overall, our results show a prevalent greening trend within the time studied, indicating that vegetation 

greenness or productivity, as implied, increased over the study period. Our study also found, by 

comparing our results to climate patterns in the region, that this period was associated with the 

increasing precipitation and temperature trends. There is a north-south temperature gradient with 

higher temperatures and the south and east-west precipitation gradient with higher precipitation in 

the east after Great Plains. The gradients of these climatic variables influence the distinct trend 

patterns in various regions after the study area, with more browning trends in the southern and 
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southeastern parts of the study area. This leads us to conclude that even though there was increasing 

precipitation, overall high temperatures in the south have more influence on vegetation patterns than 

precipitation. 

Comparing our results to similar studies conducted within the same region and within a similar time, 

there were some findings that were not similar to ours and a few that were similar to ours too, but the 

validation using higher resolution images provides confidence in interpreting the interannual trend 

results confirming the overall greening in the Great Plains (2001-2017). The comparison of our results 

to other studies with dissimilar findings can be attributed to a difference in the period of the time 

series that was analyzed. Meaning an additional or excluded couple of years can highly impact our 

trend results given that the major driver of vegetation trends – climate, is highly variable. This has 

led us to infer that climate change impacts are unpredictable; therefore, there is a need for continuous 

trend monitoring analysis (Lamchin et al., 2020). 

 

We also explored the impact of using difference VI data for the trend analysis in this region. The 

difference between the NDVI and EVI results shows the prominent limitation of the NDVI: the 

saturation of values in areas with high biomass making pixels to be classified as stable, whereas in 

the EVI trend, they were classified as positive. The impact of saturation and less variation in high 

biomass areas can affect the classification and the overall trend analysis. The EVI is thereby strongly 

recommended for long-term trend analysis in the Great Plains, especially in the tallgrass prairies. 

 

The findings of this study suggest the need for additional analyses to quantify the influence of climate 

and soils, along with critical regional anthropogenic factors such as fire, on shaping long-term 

vegetation dynamics and estimate the impact on the values or services we acquire from grasslands in 

the ecoregion. To further assess the long-term condition of grassland in the U.S. Great Plains, this 

dissertation also looks at the spatial patterns and trends of grassland phenology and how the trends 

reported in this work impact the provision of selected grassland-related ecosystem services within the 

U.S. Great Plains. 

 



205 
 

6.3.2 Time series analysis of phenometrics for the U.S. Great Plains Ecoregion using satellite-

derived vegetation indices  

Understanding long-term seasonal patterns of vegetation activity are critical to studying inter-annual 

variability, monitoring land degradation, and the impact of climate change in biomes like grasslands. 

The use of a high temporal and adequately spatial resolution remotely sensed VI data is a reliable and 

valuable method to characterize long-term trends in grasslands and other vegetation biomes. The 

characterization and evaluation of changes in vegetation grassland in the Great Plains ecoregions over 

the period of 16 growing seasons is presented in this study. The results show variation in vegetation 

phenology and productivity across the Great Plains over the last two decades. There was generally a 

start of season dates, a later middle growing season, an earlier later, or delayed end of season dates, 

resulting in shorter growing season lengths; vegetation productivity was usually increasing during 

the period. This is similar to Hufkens et al.’s (2016) findings. 

Changing climate alters vegetation phenology. The impact of climate on the grassland phenology and 

phenology trends was obvious from the comparison of our results to climate variables such as 

temperature, precipitation, and soil moisture. There was an overall rising temperature and increasing 

precipitation in the time studied. The time-based phenometrics showed patterns that indicate a 

dominant temperature influence, and the VI-based phenometrics showed patterns that imply a 

dominant precipitation influence. Overall, temperature had the most significant impact on phenology 

patterns and trends in the ecoregion. Even though the growing season periods in the Great Plains are 

becoming shorter from increasing temperatures, the combination of the trends of the climatic 

variables examined resulted in improving or increasing greeness. Temperature is projected to keep 

rising in the ecoregion as well as precipitation. But in most parts of the study region, precipitation is 

projected to decrease in the summer, which is the peak of the growing season. It would be interesting 

to see how these climatic variables come into play to impact grassland conditions in the ecoregion in 

the future. 

The results presented in this study provide important baseline information on the dynamics of 

grasslands in the Great Plains that will provide a benchmark for assessing future change in the region. 

Such information is important in aiding decision making in conservation, biodiversity, and 

sustainability-related policies for land managers; because the result of this study has significant 
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implications of long-term changes in vegetation phenology, in gross primary production and affect 

the carbon cycle, water cycle, and energy fluxes through photosynthesis and evapotranspiration (Xiao 

et al., 2009). These impacts may subsequently influence food security, water resource availability, 

and climate (Suepa et al., 2016).  

To further assess the long-term condition of grassland in the US Great Plains, this dissertation also 

looks at how the spatial patterns and trends of grassland phenology reported in this work impact the 

provision of selected grassland-related ecosystem services within the U.S. Great Plains. Future 

analyses to complement this work would be to understand the role of land-use change, climate 

change, and soils, along with other regional anthropogenic factors such as fire, in shaping long-term 

vegetation dynamics in the region. 

6.3.3 Spatio-temporal valuation of grassland ecosystem services in the U.S. Great Plains 

Given the essential role of grasslands in the provision of several ES and the mitigation of several 

negative environmental processes like soil erosion and carbon sequestration, their monitoring and 

conservation still have some work to do. There is an urgent need to estimate the impact of grassland 

conditions in response to the changing climate and other anthropogenic activities through long-term 

studies. This paper estimated the biophysical and economic values of two grassland-related regulating 

ES in the U.S. Great Plains: the control of soil erosion and carbon sequestration. In addition to the 

estimation of grasslands, we developed and used an improved method that captures the spatial 

heterogeneity of grasslands ecosystem function leading to more accurate quantification and valuation. 

Using the highly generalizable InVEST ES modeling tool, we incorporated spatially explicit and 

temporally available earth observation data to replace the categorical and static land use/land cover-

based modeling of ES. Then we used the modeled biophysical measure to costs estimation methods 

to calculate the economic value of both ES. 

 

The results show both spatial and temporal variation, and they indicate a significant influence of 

precipitation, soil texture, and land cover (in this case, grassland biomass). Our results were also 

validated using an existing study that is considered the "gold standard" because of its similarity in the 

study area, study period, and the reputation of the researchers, and our results using the improved 

methods compare two deaths. The comparison of this existing study to the generalized methods shows 
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overestimation and possibly inaccuracy in results. ES quantification and valuation accuracy is crucial 

because it impacts environmental planning and environmental monitoring policymaking and 

contribution to research in related fields.  

 

Ecosystem services are increasingly being considered in policymaking, decision making, 

interdisciplinary research, environmental management, and conservation, and there is still room for 

a wider application (Ramirez-Reyes et al., 2019). There is a potential to improve ecosystem services 

valuation in terms of accuracy, data availability, and generalizability by harnessing the very many 

advancements of earth observation or remotely sensed data. While the incorporation of remote 

sensing methods or data dos not the perfect solution for the limitations in ES modeling, it can improve 

the representation of the spatial heterogeneity that exists in reality, and better capture the temporal 

dynamics after the supply and demand of ecosystem services. 

Climate change (past, present, and future) influences grassland productivity and phenology with 

consequences on ecosystems and their value. Results from this study show the impact of changing 

grassland conditions based on greenness on the Great Plains ecoregion. An analysis of the carbon 

stock value over the period studied showed and overall positive trend. This agrees with findings from 

our previous work (Chapter 4) and Hufkens et al. (2016) on increased productivity of grasslands in 

the time studied. Future work is suggested to analyze the specific factors that contribute to the 

increasing productivity of grasslands in the Great Plains ecoregion and its implications on the 

ecoregion. 

6.4 Contributions and future research 

 With the goal of understanding investigate long-term grassland vegetation conditions within the U.S. 

Great Plains, this research yielded several important contributions. First, it highlights the impact of 

climate change and land management on ecosystem structure on a very large spatial scale. Related 

literature identifies a lack of broad-scale studies on the temporal condition of grasslands in the U.S. 

The Great Plains in the U.S. is the location of most of the U.S. grasslands, which is a hotspot for 

biodiversity, aid in carbon sequestration, provides aesthetically pleasant scenery for people, and 

provides food to support livestock farming in the region. With variation in land management practices 

in this region, providing a general picture of trends that adds to scientific knowledge in this field and 

provides a base reference for land management decisions for policymakers in this region. The 
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utilization of freely available remotely sensed data to analyze long-term regional trends provides 

detailed trend patterns of the ecoregion over the past two decades.  

This research also highlights the relationship between phenological changes and climate 

patterns/variability to understand the influence of climate change on biophysical characteristics and 

provides essential information to understand and model the effects of climate variability on grassland 

vegetation dynamics. This research highlights the influence of temperature on the timed-based 

phenology metrics and the influence of precipitation on the productivity-based phenology metrics. 

Finally, this study is relevant to global climate change studies. Grasslands are an essential component 

of the earth's biosphere that is critical to regulating ecosystems and maintaining biodiversity. The 

literature review reveals the scarcity of studies in the valuation of grassland ecosystem services and 

the dearth of studies assessing the condition of the Great Plains ecoregion. The Great Plains is one of 

the very important ecoregions in the U.S. and the world with its impact on climate regulation, 

livestock production, and biodiversity, to name a few. This research adds to the number of studies 

estimating grassland ecosystem value, especially in the Great Plains. In addition to this, an improved 

method to highlight the spatially explicit and temporally dynamic nature of grasslands was used by 

harnessing the improving availability and properties of remotely sensed data to achieve more accurate 

ecosystem valuation results. 

Future work is needed to determine the explanatory factors responsible for the spatio-temporal pattern 

in the grassland vegetation conditions within the U.S. Great Plains. In this research, results were 

compared to some climate variables like presentation and temperature, but an extensive analysis of 

the explanatory factors is required. Also, in the future, the need for the valuation of grassland 

ecosystem services should be extended beyond the analysis of results. There is a need to transfer 

results into policy and decision making. So, based on the value of grassland ES, future work should 

suggest the form and magnitude of payment mechanisms to secure private beneficiaries' interest and 

policymaking decisions.  
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Appendices  

Appendix A: Additional materials for Chapter 3 

Appendix A1: BFAST Script: 

library("zoo") 

library("sandwich") 

library("MASS") 

library("quadprog") 

library("tseries") 

library("strucchange") 

library("fracdiff") 

library("forecast") 

library("iterators") 

library("codetools") 

library("foreach") 

library("bfast") 

 

setwd("C:/Users/honuoha/Desktop") 

filename <- "tile_097_ndvi_fill.csv" 

 

inidata<-read.table(filename, header=FALSE, sep = ",", dec = ".") #use only with small files; modify if no 

labels are in the input  

mdata<-as.matrix(inidata) 

tpdata<-mdata 

vmax<-dim(mdata) 

vmax[1] 

vmax[2] 

for(count in 1:vmax[1]){ 

poly_id<-tpdata[count,1]  #highlighted number identifies field that will used to ID pixel 

ndvi<-tpdata[count,2:vmax[2]]  #highlighted number identifies first column with NDVI data 

plot(ndvi) 

tsdata<-ts(ndvi,frequency=23,start=c(2001,1)) 

dim(tsdata)<-NULL 

#rdist<-23/length(tsdata) 

fits<-bfast(tsdata,h=0.1,season="harmonic",max.iter=1) 

plot(fits) 
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fits2<-fits$Time 

ts_trend_break_time<-t(fits2[1]) 

fits3<-fits$Magnitude 

ts_trend_break_magnitude<-t(fits3[1]) 

fits4<-fits$output 

fits4a<-fits4[[1]]$Vt.bp 

fits4adata<-as.matrix(fits4a) 

fits4amax<-dim(fits4adata) 

ts_trend_nbbreak<-t(fits4amax[1]) 

results1<-ts_trend_break_time 

aLine<-t(c(poly_id,results1)) 

write.table(aLine, file=paste0(filename, "_trend_breaks_time.txt"), append=TRUE,quote=FALSE,sep=",", 

eol="\n",na="NA", dec=".",row.names=FALSE,col.names=FALSE,qmethod=c("escape","double")) 

results2<-ts_trend_break_magnitude 

aLine<-t(c(poly_id,results2)) 

write.table(aLine,file=paste0(filename, "_trend_breaks_magnitude.txt"), append=TRUE,quote=FALSE, 

sep=",",eol="\n", na="NA", dec=".",row.names=FALSE,col.names=FALSE,qmethod=c("escape","double")) 

results3<-ts_trend_nbbreak 

aLine<-t(c(poly_id,results3)) 

write.table(aLine,file=paste0(filename, "_trend_nbbreaks.txt"),append=TRUE,quote=FALSE,sep=",", 

eol="\n",na="NA", de=".", ,row.names=FALSE,col.names=FALSE,qmethod=c("escape","double")) 

fits4b<-fits4[[1]]$Tt 

results4<-fits4b 

aLine<-t(c(poly_id,results4)) 

write.table(aLine,file=paste0(filename, "_trend_bfast.txt"),append=TRUE,quote=FALSE, 

sep=",",eol="\n",na="NA",dec=".", row.names=FALSE,col.names=FALSE,qmethod=c("escape","double")) 

fits4c<-fits4[[1]]$Wt.bp 

fits4cdata<-as.matrix(fits4c) 

fits4cmax<-dim(fits4cdata) 

ts_season_nbbreak<-t(fits4cmax[1]) 

results5<-ts_season_nbbreak 

aLine<-t(c(poly_id,results5)) 

write.table(aLine,file=paste0(filename, "_season_nbbreaks.txt"),append=TRUE,quote=FALSE, 

sep=",",eol="\n", na="NA", de=".", row.names=FALSE,col.names=FALSE,qmethod=c("escape","double")) 

ts_season_breaks_time<-t(fits4cdata) 

results6<- ts_season_breaks_time 

aLine<- t(c(poly_id,results6)) 
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write.table(aLine,file=paste0(filename, "_season_breaks_time.txt"),append=TRUE,quote=FALSE,sep=",", 

eol="\n",na="NA", de=".",row.names=FALSE,col.names=FALSE,qmethod=c("escape","double")) 

fits4d<-fits4[[1]]$St 

results7<-fits4d 

aLine<-t(c(poly_id,results7)) 

write.table(aLine,file=paste0(filename, "_season_bfast.txt"),append=TRUE,quote=FALSE,sep=",",eol="\n", 

na="NA",dec=".", row.names=FALSE,col.names=FALSE,qmethod=c("escape","double"))} 

 

rm(list=ls()) 

 

 

 

Appendix B: Additional materials for Chapter 4 

Appendix B-1: A portion of TIMESAT input File list 

391 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001001_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001017_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001033_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001049_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001065_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001081_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001097_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001113_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001129_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001145_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001161_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001177_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001193_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001209_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001225_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001241_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001257_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001273_NDVI.dat 

Z:\Projects\Onuoha_Hilda\Timesat\71_NdviImagesDat\MOD13Q1.A2001289_NDVI.dat 
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Appendix B-2: A portion of the TIMESAT TSF convert to images script 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 1 23 -99 -99 sos01 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 24 46 -99 -99 sos02 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 47 69 -99 -99 sos03 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 70 92 -99 -99 sos04 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 93 115 -99 -99 sos05 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 116 138 -99 -99 sos06 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 139 161 -99 -99 sos07 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 162 184 -99 -99 sos08 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 185 207 -99 -99 sos09 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 208 230 -99 -99 sos10 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 231 253 -99 -99 sos11 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 254 276 -99 -99 sos12 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 277 299 -99 -99 sos13 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 300 322 -99 -99 sos14 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 323 345 -99 -99 sos15 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 1 346 368 -99 -99 sos16 3 

 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 1 23 -99 -99 eos01 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 24 46 -99 -99 eos02 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 47 69 -99 -99 eos03 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 70 92 -99 -99 eos04 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 93 115 -99 -99 eos05 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 116 138 -99 -99 eos06 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 139 161 -99 -99 eos07 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 162 184 -99 -99 eos08 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 185 207 -99 -99 eos09 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 208 230 -99 -99 eos10 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 231 253 -99 -99 eos11 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 254 276 -99 -99 eos12 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 277 299 -99 -99 eos13 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 300 322 -99 -99 eos14 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 323 345 -99 -99 eos15 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 2 346 368 -99 -99 eos16 3 

 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 1 23 -99 -99 gsl01 3 
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M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 24 46 -99 -99 gsl02 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 47 69 -99 -99 gsl03 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 70 92 -99 -99 gsl04 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 93 115 -99 -99 gsl05 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 116 138 -99 -99 gsl06 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 139 161 -99 -99 gsl07 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 162 184 -99 -99 gsl08 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 185 207 -99 -99 gsl09 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 208 230 -99 -99 gsl10 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 231 253 -99 -99 gsl11 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 254 276 -99 -99 gsl12 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 277 299 -99 -99 gsl13 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 300 322 -99 -99 gsl14 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 323 345 -99 -99 gsl15 3 

M:\timesat33\timesat_fortran\tools\TSF_seas2img.exe NDVIwithQuality_TS.tpa 3 346 368 -99 -99 gsl16 3 

 

 

Appendix B-3: Script to calculate TIMESAT phenometric summaries (standard deviation and 

mean using arcGIS and Python) 

 

 

# Import required modules/classes: 

import arcpy 

from arcpy import env 

 

# Define input and output workspaces 

env.workspace = "Z:/Projects/Onuoha_Hilda/Timesat/71_NdviResults/PhenoSummaries/Adjusted/" 

env.snapRaster = "Z:/Projects/Onuoha_Hilda/Timesat/NdviImages/MOD13Q1_A2001001_NDVI.tif" 

outFolder = "Z:/Projects/Onuoha_Hilda/Timesat/71_NdviResults/PhenoSummaries/" 

 

# Define local variables - only section that requires editing 

phenoCode = "sos*"           # other valid values include max, gsl, lder, sint, etc 

summaryStat = "MEAN"         # other valid values include MEAN, MEDIAN, STD 

outName = "SOS_0116_" 

 

# Check out required licenses 

arcpy.CheckOutExtension("Spatial") 
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# Create a list of all rasters 

gridList = arcpy.ListRasters(phenoCode) 

 

# Compute summary statistic and save result 

outCellStats = arcpy.sa.CellStatistics(gridList, summaryStat, "DATA") 

outCellStats.save(outFolder + outName + summaryStat + ".tif") 

arcpy.CheckInExtension("Spatial") 

 

Appendix B-4: ANOVA and Tukey HSD R Script  

library(data.table) 

setwd("Extract") 

filename <- "PhenomeansCounty1.csv" 

data <- fread(filename)  

 

data2 <- data[,c(-2, -3, -4, -6)] 

remove(data) 

data <- data2[ MAX_0116_M > -9999 ]   

pheno <- data$MAX_0116_M 

 

output1 <- lm(pheno ~ data$NAME) 

#summary(output1) 

capture.output(summary(output1), file="MAX_0116_Summary.txt") 

#anova(output1) 

capture.output(anova(output1), file="MAX_0116_ANOVA.txt") 

 

rm(list=ls()) 

 

##Run ANOVA and assess whether differences exist between phenometrics and counties 

# 

#attach(mtcars) 

# 

#var1 <- "mpg" 

#var2 <- "wt" 

# 

#output1 <- lm(var1~var2) 

#summary(output1) 
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# 

#capture.output(summary(output1), file=paste0("Summary", pheno)) 

# 

#output1 <- lm(pheno ~ data$NAME) 

#summary(output1) 

#anova(output1) 

# 

##Run the Tukey's HSD test to see where differences lie 

#a1 <- aov(pheno ~ data$County) 

#posthoc <- TukeyHSD(x=a1, "data$NAME", conf.level=0.95) 

#posthoc 

 

Appendix B-5: Script to calculate phenometric (Mann-Kendall) trends 

 

#important note: Always move the mkTrend(x) and the second return (NA) code lines one space on the rstudio interface 

 

#use devtools to install the older version of fume package (needed once), install devtools first 

require(devtools) 

install_version("fume", version = "1.0", repos ="https://cran.us.r-project.org") 

 

#import libraries 

library(fume) 

library(trend) 

library(raster) 

#dir <- setwd ("F:\\Research\\Timesat\\Phenometrics\\EVI\\LDER") 

 

#import rasters, stack them and create brick 

#r_path <-list.files(path="F:\\Research\\Timesat\\Phenometrics\\EVI\\EOS", pattern = ".tif$", full.names = TRUE) 

r_path <-list.files(path="F:\\Research\\Timesat\\Phenometrics\\EVI\\GSL", pattern = ".dat$", full.names = TRUE) 

s <- stack(r_path) 

all_brick <- brick(s) 

 

#perfom MK trentest: tau, sen slope and p_value 

p_value <- function(x) { 

    if (any(is.na(x))) { 

        return(NA) 

    }  else if (any(x != x[1])) { 
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          mkTrend(x)$`Corrected p.value`  

    }  else{ 

          return(NA) 

    } 

} 

sen <- function(x) { 

    if (any(is.na(x))) { 

        return(NA) 

    }  else if (any(x != x[1])) { 

          mkTrend(x)$`Sen's Slope` 

    }  else{ 

          return(NA) 

    } 

} 

tau <- function(x) { 

    if (any(is.na(x))) { 

        return(NA) 

    }  else if (any(x != x[1])) { 

          mkTrend(x)$tau 

    }  else{ 

          return(NA) 

    } 

} 

 

trend_pvalue <- calc(all_brick, p_value) 

trend_sen <- calc(all_brick, sen) 

trend_tau<- calc(all_brick, tau) 

 

#Save raster to tiff 

writeRaster(trend_pvalue, filename = "F:\\Research\\Timesat\\Phenometrics\\EVI\\GSL\\p-value.tif", format="GTiff", 

overwrite=TRUE) 

writeRaster(trend_sen, filename = "F:\\Research\\Timesat\\Phenometrics\\EVI\\GSL\\sen_slope.tif", format="GTiff", 

overwrite=TRUE) 

writeRaster(trend_tau, filename = "F:\\Research\\Timesat\\Phenometrics\\EVI\\GSL\\tau.tif", format="GTiff", 

overwrite=TRUE) 
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Appendix C: Additional materials for Chapter 5 

Appendix C-1: Lookup table for the updated method using InVEST carbon model. 
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  Appendix C-2: Estimation of SCC per year 
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Appendix C-3: Lookup table for the updated method using InVEST sediment delivery ratio 

model. 
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Appendix C-4: Maps showing the spatial of total carbon stock (in MgC) of grassland in the 

U.S. Great Plains for 2001 to 2017. 
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Appendix C-5: Maps showing the spatial distribution of the net economic value of sequestered 

grassland carbon in the U.S. Great Plains (2007 U.S. dollars per pixel) for 2001 to 2017. 
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Appendix C-6: Maps showing the spatial distribution of soil loss for the grassland areas in the 

U.S. Great Plains for the years 2001 to 2017. 
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Appendix C-7: Maps showing the spatial distribution of sediment retention for the grassland 

areas in the U.S. Great Plains for the years 2001 to 2017 
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