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INTRODUCTION

Methods of optimum operation of power systems have been de-

fined in the literature in many different ways . Optimization

techniques, which vary from a consideration of the derivatives to

the calculus of variations, Lagrangian multipliers, linear pro-

gramming, integer programming, and dynamic programming, have been

successfully applied to the solution of electric utility system

operating and planning problems, and significant system improve-

ments have been achieved.

Minimizing the total cost of system production, yet main-

taining all the requirements such as loads, operating restric-

tions, is known as optimum economic operation. Choosing the

technique to be used depends on the problem that exists, since no

particular technique among those that are mentioned can be con-

sidered to be the best. According to this reason and the au-

thor's interest, this paper makes a study of the classical tech-

niques applying to the solution of electric power system economic

operating problems. Beginning with the relatively simple prob-

lems; i.e., all-thermal problems, the study then goes to the more

complex one; i.e., hydrothermal problems.



ALLOCATION OF THERMAL PLANTS

7Coordination Equations

In viewing the problem of determining the allocation of gen-

eration among thermal plants that are currently operating and on

the line in the area of system operation, it is necessary to rec-

ognize the different costs of fuels, the various thermodynamic

characteristics, and the losses in the transmission network. It

is desired that the total input to the system in dollars per hour

be a minimum at each instant with the restriction that the load

requirements be maintained. The method of Lagrangian multipli-

13
ers handles the solution of the problem as follows.

Let

F. = total input to system in dollars per hour

F = input to plant n in dollars per hour

P = output of plant n in megawatts

P-r
= total transmission losses to system in megawatts

P
R

= given received load in megawatts

It is desired that

F ,
= Zs F = minimum

t n n

subject to a constraint

i// = p_ + pt -Ep = o
i R L n n

Also, it must be noted that each plant has a certain minimum and

maximum rating that must be observed.



Form the function

& = P
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where

X = Lagrangian multiplier

the minimum input for a given received load is obtained when
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The terms involved in equations (l) and (2) were defined as

follows

dF
= incremental production cost of plant n indP

n
dollars per megawatt-hour

^ PL
r^~ = incremental transmission loss at plant n in
V n

megawatts per megawatt



\ = incremental cost of received power in dollars

per megawatt-hour

L = penalty facter of plant n
n

Thus it is seen that the optimum allocation of generation

among thermal plants is given "by tho solution of a sot of simul-

taneous nonlinear equations (l). This set of equations shows

that the optimum economy is obtained when, the incremental cost of

received power at the system load is the same from each source.

Note that if the incremental transmission loss at plant n is

charged at a constant race instead of A, the following set of

linear simultaneous equations results:

dF >PT

dP
8 +0 U = X -

(4)
n On

may he choosen as the average values of A, If the incremental

transmission loss of plant n is charged at a rate corresponding

to the incremental production cost of plant n, equation (l)

becomes

dF dF >PT dF / >\PT \ N_n
.

__n 0_L _ __n ^ (LL) _ X fO
d?

+
dP >P " dP r '

r
\P

/
o;

n n n n\ On/
which is called the approximate penalty-factor equation, since L

now is approximated by (l + ^PjA)P ).

o
A number of computer-control arrangements in service today

maintain, on a continuous basis, economic allocation of genera-

tion according to solution of these equations while simultaneous-

ly maintaining frequency and the desired interchange. Inter-

change is defined as the summation of flows on the transmission



lines forming the boundary of a given system.

Incremental Production Costs

The production cost of a given unit is made up of fuel cost

plus the cost of such items as labor, supplies, maintenance, and

water. Only fuel cost can be expressed accurately as a function

of output, the cost of the latter items, however, may be assumed

to be a fixed percentage of the fuel cost. In many systems, for

purposes of scheduling generation, the incremental production

cost is assumed to be equal to the incremental fuel cost. When

the fuel cost is known, the incremental fuel cost values are ob-

tained from the input-output curve of the unit without difficul-

ty .

The dF /dP must not decrease as the output increases to
n' n r

assure that F, attains a minimum value provided that F is a con-
t n

tinuous function of P . Since approximate methods may prove

helpful in solving engineering problems, the incremental fuel

cost curve can be adjusted to meet the restriction above. Of

course, there are many different shapes of such adjusted curves,

but only two types, namely smooth incremental curves including

connected straight line segments, curves and step incremental

curves, are in general use. The input-output curve that corre-

sponds to a smooth incremental curve is shown in Figure 1 and

that corresponding to a step incremental curve is shown in Figure

2. Note that both of them are continuous functions of the out-



put. The step incremental curves have been found to yield a low-

er cost schedule than the smooth incremental curve when effects

11
of valve loops are considered . The exact incremental curve

when the effects of valve loops are considered is shown in Figure

3, accompanied with its input-output curve and step incremental

curve representation.

Input

Incremental cost

nput

!
1

• Incremental cost

Figure 1 Figure 2

s

J ^-Input-output curve

Exact incremental curve

Step incremental
curve

Figure 3



Incremental Transmission Losses

In order to completo the solution of the optimization prob-

lem, one must be able to compute the function ^I\-/()£ • This is

an important interrelationship between modeling and optimization.

For this particular modeling problem, an expression for transmis-

sion losses of the system in terms of source loading and a set of

7
loss formula coefficients has been developed . It is of the fol-

lowing form:

P
L

= B
11

P
1

+ B
22

P
2

+ B
33

?
3

+' '
'

+ B
nn

P
n

2B P P + ?B P P +12V2 nn 3

+ 2B _P P, +...+ 2B P P
23 2 3 mn m n

= 2Zp B P (6)m n m ran n

where

P , P = output of plant m, n in megawatts

B = B = transmission-loss-formula coefficientsmn nm

The assumptions involved in deriving a loss formula of this

form are

1. The equivalent load current at any bus remains a con-

stant complex fraction of the total equivalent load current.

2. The voltage magnitudes and angles at all generator and

tie points remain constant. (Usually the values of the base case

load flow are used).

3. All shunt paths to neutral, line charging, and synchro-

nous condenser reactive powers are lumped with the system loads.
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4. Transformation ratios are unity around each closed loop

of the network, that is the turn-ratios of transformers do not

differ from the nominal turn ratios.

5. The ratios of source reactive power to source output,

Q ./? , remain constant, (The base case values are usually used).

In using this loss formula, nonconforming loads may he in-

cluded properly as negative sources. Also, it is sometimes de-

sirable to divide the loads at the various buses into a component

which varies with the total and a component which remains con-

stant. The constant components are treated as negative genera-

tions in the loss formula. The loss formula then includes linear

terms and a constant term in addition to the quadratic terms. It

is

pT = ZZpb p +Epb +B (7)L m n m mn n n n no oo

where

B = 2P.B .

no ^ o n3

B = P,B.. P.
oo 3 jk k

P., P, = constant megawatt components of loads

B = mutual loss-formula coefficients between con-
^3

stant components of load and generators.

B., = self and mutual loss-formula coefficients for

constant components of loads

This form of loss formula allows more flexibility in the

first assumption relating to the manner in which each individual

load varies with the total load; that is, each individual load



current is now assumed to be a linear complex fraction of the to-

tal load current.

When the flows in tie lines interconnecting the area studied

with foreign areas are considered to be independent of generation

allocation within the area studied, the incremental transmission

losses are given by

dPT.

or

iPn

bh

= £ 2P B (8)m m mn

= 2 2P B + B (9)^P m m mn no v '

However, for an area with several interconnecting ties, the

individual tie-line flow may change even though the net inter-

change out of the area remains constant. The changes in these

flows also contribute to the change in transmission loss and are

included in the expression for ^P
L
/^P as

= E 2PB +£-^2 2p B . (10)

or

^P m a mn f )\P m m mf^ n w n

r=^ = ^2PB +B

„

A +5 vp^ (?2PB . + B. ) (11)^r m m mn no f fir m m mf fo

where

b?-
= ratio of the change in tie-line flow P- to the

change in P
n

B ~ is similar to Bmf mn

B_ is similar *o B
fo no
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Figure 4 shows the tie-line flows.

Boundary of the system

>Tie lines

Figure 4

Because the system constants are absorbed into B by theJ
ran .

transformations and mathematical manipulations it is difficult to

provide revised loss formulae coincident with each major system

revision and temporary outage of lines or transformers. These

formulae still give satisfactory results as long as the power

system is operating at conditions similar to the base case. The

future development of digital computers will overcome the problem

of revisions in loss formulae and some or all of their assump-

14
tions may be eliminated •

Incremental Cost of Received Power

In Figure 5, the incremental production cost of a given
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Incremental cost of
received power

System load

Figure 5

Dlant n is measured at the plant bus and is denoted by dF /dP .
n n

Suppose that the load increases by an amount AP
R , and assume that

this load change is first taken up by plant n only by increasing

the output of plant n by AP . Then the cost of this incr int of

power at the receiver point L is given by

\ n

dF AP
n

.
n

dP
n
AP

R

which may be rewritten as

dF AP
>>

n n
n dP

n
A?

n - *PL

dP
n

AP,
1 -

AP
n

As AP becomes progressively smaller, we have

X.

dF
r- T

dP
L
n

n

which is the same as the term on the left hand side of equation
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(2) so that X is called the incremental cost of received power.

Equation (2) requires the incremental cost of the power received

from each plant to "be the same at the receiver point L.

Solutions of equation (2) (also equations (l), (4) and (5))

for different total loads are obtained by varying the magnitude

of X.

Penalty Factors

In general, the penalty factor of a given plant may be

thought of as the reciprocal of the incremental efficiency of the

transmission network with respect to supplying an increment of

system load from that plant, since the limit of AP /APR or

AP /(AP - APT ) as AP becomes progressively smaller is L . Whennniin n

the incremental efficiency of the transmission network is 100

percent or when the transmission loss of the system, P^ » is neg-

lected and does not appear in the constraint, the penalty fac-

tors, L , become unity and equation (2) becomes
n

dF

dP
n

B = X
( 12 )

The generation schedule based on equation (12) is then one

of equal incremental production cost, while the schedule based on

equation (l) is one obtained by coordinating the incremental pro-

duction costs and the incremental transmission losses. Evalu-

ating annual savings of the latter schedule over the former one
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7
can be obtained by using a load-duration curve .

UNIT COMMITMENT SCHEDULING

The generation allocation methods discussed previously have

been widely applied in the industry. However, the principle of

scheduling to equal incremental costs of received power does not

directly determine the units to be placed in operation at a given

3 7
time . Determination of the units is based upon such consider-

ation as

1. Economic evaluation,

2. Reserve requirements,

3. Stability limitations,

4. Voltage limitations.

5. Ability to pick up load quickly.

Very frequently, and in particular in widespread systems, condi-

tions 2 to 5 overrule condition 1.

The determination of the most economic combination of the

units to be placed in operation at a given time must recognize

the total costs involved; that is, in addition to incremental

costs, the no-load costs and the costs of starting and stopping

units must be included. This problem to date has been usually

solved by successive trials in which various combinations of

its are assumed, total costs evaluated, and the best of the al-

ternatives chosen. Of course, for any assumed capacity in opera-
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tion the economic allocation of generation is given by equal in-

cremental-cost loading. The digital computer offers a great ad-

vantage over the analog computer for undertaking such calcula-

tions, since neither total fuel input nor total transmission

losses are readily and economically obtainable with existing de-

signs of analog computers.

In general, in a given station the units are placed in serv-

ice in ascending order of their heat rates assuming the cost per

Btu to be the same. To determine the most economic combination

of units for a given station load it is necessary to plot total

station heat-rate curves of successive combinations and to note

the combination providing the lowest heat rate for a given sta-

tion load.

Another problem of importance is to determine the economic

advisability of taking units off the line for relatively short

periods of time, such as between the morning and evening peaks.

This determination is based upon calculating the total fuel input

in dollars to the system during this period of time with the

units in question both on and off the line. This calculation

should include cost of restoring the units under consideration

back in service and losses involved in banking the boilers.

More recently, the method of integer programming has been

•5

applied by Dr. Garver to this problem for the case in which

transmission losses may be neglected. It is necessary that the

variables denoting start-up and shutdown be either zero or one.
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In other words, whole numbers of generators are to be scheduled.

For this reason, the problem cannot be solved by the usual meth-

ods of linear programming, but requires the use of integer pro-

gramming. The application of this method to large systems may be

limited by the dimensionality of the variables.

FUEL SCHEDULING

The allocation of generation methods discussed previously is

predicated upon a known cost of fuel at each plant. This fuel

cost is related to the manner in which fuel is purchased. For

some companies a number of alternate sources of fuel are availa-

ble, and thus the scheduling of fuel purchased is subjected to

methods of optimization. Consider, for example, the complex of

9mines and stations shown in Figure 6 .

Special Purchases "C"

Mine »E»-Rail
T?uck.or_Bar£e_

;ion "I" Z&VPower Stat

Power Station "X" ^

Purchases "B"
Truck

Mine "D"
Barge .

Figure 6
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The purchase contracts establish minimum deliveries and pro-

vide for the purchase of variable amounts up to a maximum tonnage

for the quoted price. The mine costs are based on a fixed annual

charge and an incremental cost of fuel per ton between the mini-

mum and maximum straight-time production. Additional production

is available by overtime operation at an increased cost per ton.

For this problem, we desire to minimize

Z = Xc X = total cost of fuel

where

X . = shipment from mine i to station 3 >

C. . = per unit cost of X. .

Y X. . ^ (mine capacity).

4* X.. = (station requirement).

The problem can be solved by the method of linear program-

ming and, in particular, most advantageously by the transporta-

tion technique. Significant assumptions here are that the cost

function is linear and the variables are constrained by linear

equalities or inequalities.

Furthermore, there exists an economic optimization problem

in operation of the power plant under a variety of load and fuel

5
conditions . The objective is to find the operating level and

the fuel mixture ratio of each boiler-turbine-generator combina-

tion to minimize fuel costs.
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ECONOMIC OPERATION OF INTERCONNECTED AREAS7

The coordination equation (l) states that for optimum econo-

my the incremental cost of received power should be the same from

all sources. This equation would "be applicable if all of the

area3 were treated as a single area and would involve the use of

a computer representing the entire interconnected area.

Another approach would involve application of computer-

controllers to the individual areas with means of determining au-

tomatically the most economic interchange "between the areas. It

would be desirable for each area to require only a knowledge of

the plant loadings within the area and interconnection flows out

of the areas in addition to control information which would de-

termine whether the area should increase or decrease its delivery

to the interconnected areas. The coordination equation (l) then

can be extended to obtain coordination equations whose solution

results in optimum economy for the pool formed by the intercon-

nected companies. Multiple-area operation of the pool is defined

as operation for which the interchanges between the areas are di-

rectly determined and controlled. This theory is first illus-

trated for two radially interconnected areas and then extended to

three loop-interconnected areas.
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Two Radially Interconnected Areas

Rigorous coordination equations for an interconnected system

may be developed by setting the total differential of the fuel

cost equal to zero while recognizing the constraining relations

between the variables. Consider, for example, the two area sys-

tem shown in Figure 7. For this two-area system the constraining

equations may be written as

P„ + PT
J
.- P - 2 P_ =0

Ra La ea a Ga

\b = p -i-P - p -Zp
ea D C-b

=

Where P is the net interchange or excess flow out of area A.
ea

la lb

P P
"2a 2b

Area B

Figure 7

Thus

ea

Als0 P
Ra>

P
Rb

P Pr
La'

r
Lb

P P
Ga' Gb

P -:- P = - P - P
lb 2b la 2a

received load for area A and B, respectively

transmission loss in areas A and B, respective-

ly

generating plants in areas A and B, respective-

ly
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It is desired to minimize the total fuel input to this in-

terconnected system, which is given by P. = total input in dol-

lars per hour to interconnected system = F + F, . where F , F, =
a D a o

input in dollars per hour to areas A and B, respectively.

By the method of Lagrangian multipliers, we obtain the fol-

lowing equations for economic allocation of generation within the

areas and interchange between the areas:

1$
d p <

= o
Ga

O
r
Gb

()&— =

where J^= F + X \f/ + \Vh
The resulting coordination equations are

dF
a , b\, , b p.
a . \ " La \ O Lb N i-,i\

"Ga * ^Ga
dF

b v ^>
P
La

dP
Gb » i)

P- b -^ P~

^La

b ^ P
Ga

^ PLb
b o r

Gb

^Lb

xa

+ X. Tr^ + V ^ = Xv (14)
Gb

X, + X- x^ + \ vr^ = Xv (15)
ea ea

*a ^P T b >P - /v
b^ ea O ea

dF
where Tp— = incremental production cost in dollars per

Ga
mw-hr of a particular plant G o in area A

b
dF.

a

^Gb
is similar defined for area B

\ 9 }w = incremental cost of received power in area A

and B, respectively

<)
P
La. <)

P
Lb .. - . •-,

vp— vp— = ratio of change in transmission loss in area
drGa c) Ga
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A and B, respectively, to change in P
G when

delivering an increment of power from P
Q to

the hypothetical load of area A

dPLa , ()
?
Lb .. - .-p— = ratio of change in transmission loss in

d?Gb b- Gb

()
P
La . c)

P
Lb

b- ea apeea

areas A and B, respectively, to change in

P
G

, when delivering an increment of power

from Pp , to hypothetical load of area B

ar ratio of change in transmission loss in

areas A and B, respectively, to change in

net interchange P when delivering an in-
ea

crement of power from the hypothetical load

of area A to the hypothetical load of area B

The system of Figure 7 can "be transformed to be the equiva-

lent circuit shown in Figure 8. The loss formulas for each area

then express the losses in terms of generators in both areas and

the excess flow of area A,

Area A
ea

Area B

Figure 8

Equations (13) and (14) represent the form of the intra-area
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equations. The incremental cost of received power in each area

is the sum of the incremental cost of production plus the incre-

mental cost of losses in both areas. The cost of the several in-

cremental losses are priced at the cost of the received load in

the area in which the I03S03 occur.

Consider equation (13) which corresponds to the following

test:

An increment of power is sent from a particular generator in

area A to supply an increment of received load in area A. The

incremental loss in A is charged off at X . As a result of this

test, the power circulating through the parallel area will vary

and cause an incremental loss. The resulting area-B incremental

loss ^tJ()Pg is charged at X, .

Equation (15) is the interarea coordination equation and de-

fines the necessary condition for economic interchange. In ef-

fect, at the hypothetical load of area B be equal to the incre-

mental cost of power received from the generating sources of area

B. Similar to the intra-area equations, the cost includes the

effects of losses in both areas. The incremental cost of re-

ceived power in area A is analogous to a generation source.

These three coordination equations, together with the two con-

straining equations on received loads, provide the necessary con-

ditions for economic operation of the system.

Equation (15) may be thought of in terms of the following

test: An incremental of power is transferred from the hypotheti-
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cal load of area A to the hypothetical load of area B. As a con-

sequence, the incremental loss ^P,. /£)P is incurred in area A;

the incremental loss j)Pr,/j)P in area B. The incremental loss

in each area is charged at the incremental cost of received power

in that area. Equation (15) may be written in the form of equa-

tion (16) to indicate the costs at the boundary between area A

and area B:

K- \W~ =
* " bW (16)

u ea u ea

The quantity on the left-hand side of this equation corre-

sponds to the incremental cost, referred to area A, at the bound-

ary between the two areas for delivering an increment of power

from the hypothetical load of area A to the hypothetical load of

area B. Similarly, the term on the right-hand side of the equa-

tion corresponds to the incremental cost, referred to area B, at

the boundary between the two areas for delivering an increment of

power from the hypothetical load of area A to the hypothetical

load of area B. For optimum economy the boundary cost referred

to area A should be the same as the boundary cost referred to

area B.

Until now the approach to the problem of economic scheduling

has been made in terms of a single equivalent interconnection

which carries the net interchange or excess flow. It is possible

to express the coordination equations in terms of individual tie-

line flows and incremental losses, provided due recognition is
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given to the dependence of tie-line flows on system generation.

The coordination equations for the two-area sample system then

take the form shown below:

dFa_.\ ^*-+X dLTaC>Pla
+ ^

c)
L
Ta <^

P
2a

dP
Ga

' '^ P
Ga ' * £Pla C>*Ga

' a ^ P2a ^ PGa

.X c)
L
Tb c)

P
lb \ c)

L
Tb <^

P
2b \

"" b ^PlbC)PGa
"" b ^ P2b^Ga " a

dF
b \ ^L^p _ \ ^ LTb c)

P
lb \ ^Tb^2b

dPGb
""

* <)
P
Gb

" b
c)
P
lb ^PGb

+
* ^ P2b ^PGb

+ \ ^ LTa ^Pla ,\ ^Ta^2a X
^ a

c)
P
la d*Gb

'" a <)P
2a

^)P
Gb

=
b

(17)

(18)

X x f^Ta^la <>
L
Ta c)P2a \

A
a

Aa ^ d P
la

,)P
ea

+
^)P

2a dPea J

.,. X /"^Tb^lb
.,.
^Tb^2b^ _ X , j

b UP
lbc)

P
ea ' ******* J ~^ (19)

^)
L
Ta

where -r-s— ratio of change in transmission loss in area A
c)
r
Ga

to change in P
Q

when delivering an increment of

power from P
Q

to the hypothetical load of area

A, with all other variables assumed constant.

Consequently, this expression does not include

the change in loss that occurs because of a

change in tie flows.

= same as above but with respect to area B
c)
L
Tb

c)
P
Gb

C>
L
Ta

d*la
= ratio of change in transmission loss in area A

to change in tie flow P., when delivering an in-
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crement of power from bus 1 to the hypothetical

load of area A, assuming no changes in the re-

maining variables occur.

^ LTa
-t-=5— is similarly defined for P
^ P

2a
2a

^ LTb. ^ LTb
-r^
—

' vp— are similarly defined for area B
^lb o r2\>

P, , Pp = tie flows into area A measured at buses 1 and 2,

respectively

= ratio of change in tie flow into area A at bus 1

to the change in P
G

when an increment of power

is delivered from P
G

to. the hypothetical load

la

Ga

d?
of area A.

2a

^ PGa "

area A at bus 2

hi on itJOptlUO bl

Since

p
ib = - P^ and

la
P
2b = " P

2a

we may write

t>h* ^ Pla

and

^ PGa ^
P
Ga

<^
P
2b ^ P2a

^ PGa ^
P
Ga

(20)

(21)

^ Plb

Gb

to the change in Pp, when an increment of power is

Also Tp7~ = ratio of change in tie flow into area B at bus 1

delivered from Pp, to the hypothetical load of
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area B

<5
P
2b

^p— = same as above but with respect to tie flow into
O rGb

area B at bus 2

apia _ _ a»lb
^ PGb ^

P
Gb

^2a = _ ^2b
C>
P
Gb ^

P
Gb

J la

a*ea

O ea

(22)

(23)

= ratio of change in tie flow into area A at bus 1

to the change in excess flow out of area A when an

increment of power is delivered from the hypothet-

ical load of area A to the hypothetical load of

area B

c)
P
2a

^-p— = same as above but with respect to the flow into

area A at bus 2

^ Plb _ ^
P
la

(24)
u ea u ea

^ P2b <5
P
2a

dK* ' d*
(25)

ea ^ ea

Consider equation (17) and its similarity to equation (13).

An increment of power is delivered from P
fl

to the hypothetical

load of area A. An incremental loss ^L- /^P« occurs, since P
p

has changed. Also, the incremental losses (^L™ /<)P, )(()P
1 /c)^ )

and (^k„ /^P- K^P- /<)?« ^ occur because of changes in tie-flows

P. and P
2a » respectively. These incremental losses are charged

at X , and the expression
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\ ^5* \ ^Ta^!la \ <^
L
Ta <>

P
2aA

- ^Ga
*

!

"
Aa

<)
P
la c)

P
Ga

a ^ P2a^Ga
corresponds to the expression AJL()P- af(ftn ) °^ equation (13).

Also, the incremental loss (<)I'
Tb/c)

p
lb )(()prD/^

:E>

Ga ) + (&*&>/$*Zt)
X

(^Pp, /^)P
G ) occurs in area B because of the change in tie flows

and corresponds to the expression
<)
PTv/<) PGa °f equation (13) •

By evaluation of the various partial derivatives of tie-line

7
flows with respect to the remaining variables and noting equa-

tions (20) to (25), we obtain

^Pla d P
lb ^ P2a

^ PGa

^ P2a

<>
P
Gb

^Pla

^>
P
ea

^P2a

^P2b

c*
r
Ga

c)
P
2b

^ PGb

<>
P
lb

"
^ Pea

^>
P
2b

^- (26)
^ PGa ~ P

Ga

^ Pla <^
P
lb lon s

<)
P
Gb ~ " <)

P
Gb " " ^

P
Gb " ^

P
Gb " G1>

= 4,a < 28 >

AP " " dP
= " <

1+ flj (29 >

u ea y ea

Equations (17) to (19) may then be written

dF
a , n ^LTa

,
x o ( <>

L
Ta. ^ LTa

dP
Ga

a
<)
P
Ga ' ^ ^Ga U P

ia " ^
P
2a

dF
b \ f^Tb \ g I

^LTb ^>
L
Tb

dP
Gb

+ b iPGb
b Gb

\ ^ P
lb

+
^2b

z, / t)
L
Ia c)

L
Ia

a GbUpia" aw

^ Pla"

^Tb
"

^ P
lb

C>
L
Tb

" ^ P
lb

/^ L
TaX *„.(£?& -4^1- Xv ( 3i)
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;>
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lb
ea

<>
P
2b

Consider equation (30) and Figure 9. If an increment of

(32)

power is sent from plant G to the hypothetical load of area A,
3-

^aaPGa

Area A
;5Ga

AP
Ga

Figure 9

the loss ^Lm /<)P
G

occurs in area A because of the change in P
Q

only. However, as A, AP
G circulates as indicated, the incre-

mental loss £G (^L„ /^)P, - ^)L„ /()P
2

) occurs in area A and the

incremental loss /9G (- c^it/d^Vi,
"

:~ ^ LTb^P
2b^

occurs in area B -

The incremental losses in each area are charged at the A corre-

sponding to that area.

Consider equation (32) and Figure 10. This equation deter-

mines the cost of sending an increment of power from the hypo-

thetical load of area A to the hypothetical load of area B. The

AP that is sent is measured at the boundary between the areas.

The components of flows are $ AP over tie-line la andr ^ea ea
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fi AP
ea ea

(1+/3 )AP
Area A

ea
>
ea Area B

Figure 10

(1 + jS ) AP over tie-line 2b. The incremental loss ( 8 X
*ea ea i» ^ea

^L
Ta/(D

p
la ) - Cl + /3ea

)(^L
Ta

/^P
2a )j incurred in A is charged at

X • Similarly, the incremental loss ["^a^Ta^^lTs^
+ ^ + Pea)

X (^)L
T , /^Pp, )J incurred in B is charged at X. •

Note that in equation (30) (£LTa/<) pla ) - ^LTa^P
2a'

~

(^L™, /^P^., )
-:- (()!•-,./() P-. ) corresponds to the incremental loss a-

round a closed loop. If the X/R ratios are uniform, this quanti-

ty is zero. Since A, is usually small, the quantity

*a HSa V £P
^>
L
Ta ^

L
Ta\

, X /S ^ ^^ ^Tl

la ^
P
2a/ b Ga

\ ^>
P
lb d*Zb

may frequently be neglected. If the terms of this nature are as-

sumed to have negligible values, the coordination equations cor-

responding to equations (30) and (31) simplify to

dF

dP
+ x ^ = X

Ga
a<)P

Ga

V + X & B X,
dP

Gb
b^P

Gb

(33)

(34)

By use of equations (32), (33), and (34), each area requires

only a knowledge of the plant loadings within that area and the
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tie flows or boundary conditions of that area.

Three Loop-Interconnected Areas

As an example of loop-interconnected operation, consider the

three-area system shown in Figure 11. Each of the three areas

has a typical generator and each area has one tie line to each

other area. In general, there will be several ties between com-

panies; but, for simplicity of illustration only single ties be-

tween the companies are treated here.

Area B

Figure 11
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For the three-area system the three constraints (one of each

area) may be written

\L> = PD + PT -J- P - 2 P„ =0r a Ra La ea a Ga

^b P
Rb

+
hi, ~ P

ea " P
eo " ? P

Gb = °

M3 Rc ^ Lc eo " c Gc

where P and P are the net interchanges or excess flows out of
ea ec

areas A and C, respectively.

Thus

P
.ea

= P , + P
ab ac

=
ba ca

P
ec

= P + P .

ca co
=

ac be

It is desired to minimize the total fuel input to this in-

terconnected system which is given by F. =F + F. +F = total
v a o c

input in dollars per hour, where F , F, , F = input in dollars

per hour to areas A, B, and C, respectively.

By the method of Lagrangian multipliers, the following equa-

tions are obtained for economic allocation of generation within

the areas and interchange between the areas:

/P
Ga

+^^Ga
+Ab^Ga^c ^Ga "^ ™

dF
b \ 6>

P
La \ C^jLb \ dhc _ \

dP
Gb

+Aa
^ PGb >^ P

Gb
C

<)
P
Gb

=
*

X
a
A

a
->,X

b
-^A

c> =\ (33)
ea ea ea

(36)
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NT) \ "i \ T>

J ac f ec J ec

The terms in these equs tiona may be interpreted similarly to

>se i'cr the preceding two-area discussion. The first three e-

quations represent the intra—area equations and the last two are

the interarea equations. The interarea equations require that

the incremental co.^ of received interchange power at the hypo-

thetical load of area 3
S whether received iron area A or area C,

be equal to the incremental cost of received load of area B.

rhese five coordination equations, together with the three con-

s ;raining equations on received loads, provide the necessary con-

ditions for economic operation of «he three-area system.

The interarea equation (38) ^cy ^e rewritten to indicate the

ceete at the boundaries of t ;e reference area, area B:

b?; y bh
N P

ea o ^a u oa

The quo.n.;~ty on the left-hand side of this equation corre-

Dnd3 to the incremental cost at the boundary of area B referred

to area A for de .ivering an increment of power from the hypothet-

ical load of a:\c- A ~o the hypothetical load of area B. Similar-

ly, the expression ~. he right-hand -i^c of this equation corre-

sponds to the increa mtal ccv at the boundary of area B referred

to area 3 for delivering an increment of powor from the hypothet-

ical load ef ar< + A to the hypothetical load of area 3. For op-

ti um econ ay the bou dary oost referred to .rea A should be the

came as . / r; :.. referred to aroa 3. Equation (39) ~&y
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be similarly interpreted. Note that the term ^A^j /^ ) re-

presents the cost of the increment of power from area A to area

B.

The analysis presented has been made in terms of the quasi-

radial model of the loop-interconnected system shown in Figure

12. It is possible to work with the actual circuit representa-

Area B

Figure 12

tion itself, provided due recognition is given to the dependence

of tie-line flows on system generation. Equations (35) to (39)

may, therefore, be rewritten.



33

<D
L
Ta ^)

L
Ta ^ca

+ X,

x

dP^ a

^ ,

^ LTa ^Pba

<)
P
Ga £>

P
ca <5

?
Ga 3

P
ba 3 PGa

i

i>
L
Tb c)

P
ab

+
t)
L
Tb <^

P
cb

N

i Pab 6>
P
Ga ^

P
cb ^PGa /

^ LTc c)
P
ac ^LTc ^Pbc

>

£ Pac <)
P
Ga 'be ^PGa

= X

Gb

+ x.

+ x

^)
LTa^ P

ca
,

^ LTa ^Pba \

<^
P
ca 3 PGb ^

P
ba ^PGb /

c)
L
Tb ...

<^
L
Tb ^ Pab

+
^ LTb ^ Pcb

t>
P
Gb <)

P
ab <3

P
Gb ^

P
cb ^ PGb

^LTc ^Pac t>
L
Tc ^ Pbc \

c
\ <)

P
ac ^PGb 6>

P
bc <5

P
Gb

X.

dFC.+ \ / ^LTa ^Pca
+ f>

d^Ta ^ ba
dP

Gc
a V <)

P
ca

P
Gc

""

^
P
ba d

P
Go

+ X ('^Tbf^ab ,
^Tb^cb

b U Pab^P
Gc' *

P

,
\ /f^Tc ,

j^Tc^ac
c U P

Gc" ^
P AP

<5
P
cb ^PGc /

^LTc ^ Pbc

(40)

(41)

ac v Gc

^a * K (

x. r

^ LTa ^Pca

^ p ^pC ca v ea

c)
L ^,Tb ab

c)
P
Go ^

P
bo

^ LTa ^a \

5 Pba <^
P
ea /

<3
L
Tb <>

P
cb \

dPGc
X
c

(42)

*. d
P
ab t>

P
ea <>

P
cb <>

P

. X f^Tc^ac .

c)
L
ic <)

P

\ 2)
P
ao 2>

P
ea d Pbc ^ P

ea

be

ea
= X. (43)
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X + X
c a

c)
LTa^Pca <)

L
Ta <)

P
ba

,-X

v ca u ec

^LTb <i
P
ab 'Tt

ba ^ ec

b V <)
P
ab i P

A
° I Z*Z <)

p

ec

ac

ec

^ Pcb ^ Pec

^ LTc ^ Pbc '- X (44)

The incremental tie-line flows may be expressed in terms of

fi
factors as previously discussed.

a p
ca i>- ab d*bo <>

P
ac a*ba d p

ob _

<)
P
Ga~" c>

PGa~ ^ PGa
" ~

c)
P
Ga

"
"

c)
P
Ga

~
"

^>
P
Ga

^)
P
oa ^>

P
ab ^>

P
bc <>

P
ao c)

P
ba <>

P
ob

^)
PGb~ ^ PGb~ <>

P
Gb

"
"

<>
P
Gb

"
"

^ PGb
"

"
^ PGb

^>
P
ca ^ Pab ^>

P
bo <>

P
ao ^>

Pba_ ^ Pob

<)
PGo~ ^ P

Go

"
a PGo

" ~
^>
P
Go

"
"

C>
P
Go " c)

P
Go

<)
P
oa

^>
P
ea~

^Pbo

^>
Pea~

^)
P
ao

"
^Pea"

^>
P
ob

"
^
Pea~ ^ea

<>
P
ab

^ Pea

a Pba
"

c)
p
ea

= 1 + ^a

^ P
oa

^ Peo"

^>
P
ab

^Peo

^>
P
ao

"
^
Peo~

^ Pba
"

^
Peo~

Pqg

^ Pob ^ P
bo = i _ 6

£Ga

=
Gb

Go

c)
p
ec ^ pec

ec

(45)

(46)

(47)

(48)

(49)

(50)

(51)

If equations (45) to (51) are substituted into equations

(40) to (44), we get

dF

dP
Ga

£5Tc = X
ac

a (52)
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dF
1

dP~
X b LTb

Gb
b^P

Gb
^ X

a

d*Ta ^Ta

c)
P
ca

• + X

dF
c

dP X
a*Tc

Gc Op
Gc

Gc a

a*Ta

d*ca

X

<> Pba

\ t>
P
bc

^Ta\

^ LTo

b
I ^ Pab

' ^ Pob

Tb

2)
L
To

a*ac
= x. (53)

X.

^)L

aiTb 2)L
Tb

d*ab a*ob

To

d*bo d?ac
-X (54)

X. Xa(^ea^P
Ta

- (1 + /* )

<>L
Ta

ca
ea ' arba

x. (l + /9 )

d*Tb -A d*Tb
ea ^ Pab

ea
c)
P
ob

^ LTo

v\ p
il-ia

2>l
Ta

eo.JPoa <^ ba<)
P

,

+ ^o 4»
(

^Tc

^ Pbc

^ LTb

<>
P
ac

+ (l - A

= X
b (55)

Tb

•M-.*-<u>$£-4.£'

ec ^ P
cb

= x. (56)
ac

where
^Ta

^ p
Ga

€>*

t>*

Tb,

= ratio of change in transmission loss in area A to

change in P- when delivering an increment of power

from P
G

to the hypothetical load of area A, assum-

ing that no changes in tie flows occur

3*

y

Gb

Ta

'Tc

^> PGc

and C

are similarly defined with respect to areas B

a*
ratio of change in transmission loss in area A to

ca
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change in tie flow P when delivering an increment

of power from bus ac to the hypothetical load of

area A, assuming that no changes in the remaining

variables occur

<}
L
Ta

-r-p—- is similarly defined with respect to P,
v ba

Da

c)
L
Tb ^ LTb ^ LTc ^ LTc

yp— ' ^rp— ' -Tp— ' -yp— are defined in a similar manner
^ ab ^ cb v be ^ ac

^Ga
= rate of chanSe of p

ca »
p
av p

bc
with respect to P

Qa

when delivering an increment of power from a par-

ticular generator Ga in area A to the hypothetical

load of area A

Ajb = rate of change of P , P , , P, with respect to P
Q

,

when delivering an increment of power from a par-

ticular generator Gb in area B to the hypothetical

load of area B

fi~ = rate of change of P - P ,, , P. with respect to P
G

when delivering an increment of power from a par-

ticular generator Gc in area C to the hypothetical

load of area C

B - rate of change of P and P, with respect to P
'ea ° ca be ea

when delivering an increment of power from the hy-

pothetical load of area A to the hypothetical load

of area B

fi = rate of change of P and P , with respect to P
ec ca 3.0 ec

when delivering an increment of power from the hy-
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pothetical load of area C to the hypothetical load

of area B

Equation (52) determines the incremental cost of delivering

an increment of power to the hypothetical load of area A from a

particular generator in area A. The incremental loss in area A

resulting from a change in generator A only is <)LT
/<)P

G , which

is charged at A . However, as this increment is delivered, part

of the power may flow through the parallel connected areas. As

indicated in Figure 13, the amount that flows through the paral-

lel loop is Aja APG
. TJie incremental loss in A due to this flow

is /^a^Ta^ca " ^ LTa^Pba^ vhich is charSed at \* Similar-

Area B

Figure 13



38

ly, the incremental loss in 3 is ^Ga (c>LTb/c)pab " c)
LTb^Pcb^

which is charged at A, . For area C the corresponding incremental

loss is ^Ga^LTc^P
bc " ^ LTc^Pac^ which is charged at X

Q
.

Equation (55) determines the cost of sending an increment of

power from the hypothetical load at A to the hypothetical load at

B, as indicated in Figure 14. The AP that is sent is measured
ea

at the boundaries of A. The components of flow are (I* fi )AP
ea ea

over the ab line and fi AP flowing through the parallel path
ea ea

through area C. In equation (55) the incremental loss fi X
l ea

(^L
Ta

/^P
ca ) - (1 * ^ea^^LTa^PbaO incurred in area A is charged

at X . Similarly, the incremental loss f(l + ^ea)Q)LT>/£)Pab^
"

< 1+^ea^Pea

Area B

Figure 14
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(^L
T , /^)P . )] incurred in area B is charged at A, • The incre-

mental wheeling loss through the parallel interconnected area fiea

X
(c>

L
Tc/^

p
bc ~ ^)

L
Tc/i)Pac ) i3 charSed at \.

If the terms of the form

^)
L
Ta ^LTa\ \ /c)

L
Tb 6>

LTb^ \ /c) LTc <^
L
Tc

^Ga
L

aU Pca" W bUPab"^cbr AcU Pbc"^ P
ac

are considered negligible in equations (52), (53), and (54),

these equations may be written

^ +VpS =
>a (57)

dT^\^ -\ (58)dP
Gb

b
c>
P
Gb

b

dF^ NI .

B^+W" = \ (59)

Equations (55) and (56) remain unchanged. Equations (55), (56),

(57), (58), and (59) require a minimum exchange of information

between areas. The neglected terms are small, since the fi factors

are usually small, and the incremental loss around a closed loop

approaches zero as the X/R ratios become similar. When the neg-

lected terms are considered significant, they may either be car-

ried in full or approximated by representation of the dominant

terms.
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HYDROTHERMAL SCHEDULING

The problem of optimizing hydroelectric and especially hy-

drothernal systems is more complex than the all-thermal problem

previously presented. The hydro problem is difficult because of

the many independent variables involved. These include availa-

bility of water at the hydro plants, the many project and operat-

2
ing limitations, and various contractual requirements which are

to be satisfied in addition to the ordinary economy-loading re-

strictions. Por this reason, no method of optimization can ever

be considered perfect, because only some of the numerous factors

encountered can be included at a time. It is therefore recog-

nized that many contributions are still very welcome.

The methods employing the calculus of variations ' '

are among many methods developed. The major difficulty in adapt-

ing the calculus of variations approach to an existing physical

system is that all variables must be made time-dependent. For a

typical hydroelectric plant, this leads to complicated expres-

sions, subject to many nonlinear constraints. For this reason

some variational methods solve problems in a point-by-point man-

ner; i.e., finding what the contribution of each plant should be

for certain loads and transmission losses at any one time.

Since less reliable data and more uncertainties are involved

in forecasting water inflow over a long period, the short-range

problems are considered in the following. In fact, any short-
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range method can, without too much difficulty, be applied to

long-range problems, provided the input data are reliable.

Coordination Equations Neglecting Head Variations

When using desired amounts of water from the hydro plants o-

ver a given period of time, it is desired to minimize the total

system input in dollars for the operating area being studied.

The length of time to be considered as short range is restricted

to periods during which the variation in head is negligible. By

applying the calculus of variations, a set of equations whose so-

lution gives the optimum scheduling of the system is obtained.

Let

P„ = total input to system in dollars per hour

F = input to thermal plant n in dollars per hour

Po = output of thermal plant n in megawatts

^Hi
= 0U^PU^ °f hydro plant j in megawatts

P-r = total transmission losses to system in megawatts

PR
= received load in megawatts

W. = input of water to hydro plant j in cfs

K . = desired amounts of water in cubic feet from hydro
J

plant J over a fixed future interval t..

OC = number of thermal plants in the system

fi = number of all plants in the system

The problem may now be stated mathematically as
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Fm dt = minimum (60)

with the restriction that

X
W. dt = K. 3 = a. + l, 06+ 2, ..., /5

and

a /S

£ **»
+^ P« - * " »

R

Conditions (60) and (61) are satisfied when

F„ dt + s % V dt = o

(61)

(62)

where T. are constant multipliers. The foregoing equation may be
j

written next as

•t. $
(5F dt + d E TjW, dt

'0 \
^=a+1

n=l c)
P
Sn

3n
j=a+l J

t)
P
Hj

H;
>

(63)

From equation (62)

a £ &

I <5P, I SpHi - 2 h
**». - 1

<>
P

1

8p,

Solving for a particular hydro power $PH and obtaining
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1 - 6P
Hr

= - 2
n=l

Hr

1 -
<5
P

]

<)
p
Sn

5P
Sn 2

J=«*l
1 -

^>
P

i

b*Hj
<5?

HJ

By rewriting equation (63) and obtaining

n=l ^Sn n r o*Kr Hr j=«H .

J c^HJ HJ

2>
W
r

a

% ;
^)
P
H

<$?»„ = - 2
Kr i£id P̂

-»
fc - S T

i*i

Sn 3Sk 'J^ " H >
5Pu- = o

Multiply by (l - dPi/dPHr^ and obtain

1 - % SPHr
r/ '

r » PHr

^ PL
1 -

^)
p
Hr p. ^P Q

yi
Sn

n=l £> Sn
<5P,

Z)PT
/3 ^

j=otq, J ^ Hj

Substitute equation (64) into (65),

n=i

dF <

L
^>
P

1 -
^>
P

1

Sn c>
p
Hr

- 7.
d w .

O p 1 -
^

Hr £>*Sn
£P

Sn

2
j=a-:-l

7
<>
w

.

J ^)
PHi

1 -
^ P ]

Hj C)P
- 7

dw ,

Hr.
r 2>

p
1 -

Hr ^ PHo

(64)

(65)

6P
Hj

= o

(66)

The coefficient of each variation 5PQ , 5Pp . must be identi-
Sn 1 Hj

cally zero. Hence,
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> P
Sn V i>*BrJ r

^>
P
Hr V ^Sn '

^d P
HJ V d PHr/ r

^>
P
Hr V ^

P
Hd

It is to "be noted that

a Ft ^n _ ^n
2>
P
Sn

~
^ P

Sn " dP
Sn

and that

c)W dW

(67)

^ P
Hj

dP
Hd

From equation (67),

dF
n

X dW
r

1

dP^ [1 - (aPL/dPSn )]

= 7rdP^[l- CdV^HrO
dW. 1

- *y J

Then

&F ^PT
*- + X^L = X (69)dP
Sn ^PSn

dW . >\PT

Equations (69) and (70) are the scheduling equations.

Coordination Equations Including Head Variations

Let

F = hourly fuel cost



45

P
L

=

P
R

=

h

q

q =

s

- thermal output

=- hydro output

system losses

load

net head

flow

discharge (rate of flow)

surface area of reservoir

/ \ 4
(a) Derivation of Ricard's Equation . Consider the solid

lines of Figure 15 to represent drawdown of the hydroelectric

q, Flow

h, Head

P
H , Power

'1
w
2

Figure 15
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plant most economically. Then, at t-, make an excursion £PH1 and

hold it for time dt,.

Since

q = 4(h, P
H )

54 = -p ah -
!-^ 5P

(71)

H

54-,
=

£q

d*H
6P

HI (72)

Consider

Since

<$h = constant, t, < t < t~

SSh

Sh = - <$q

- 6qdt

dt

S~ 2)P
H

dt.
5P

H1 "IT (73)

If Prj is now considered along the original curve, the flow q

will be somewhat above its original curve because of £h. At t«»

make the excursion <5P
H2 , an<^ hold this excursion for a long e-

nough time dtp such that h returns to the most economic curve.

Now

r-

Jo

qdt (74)

is a fundamental requirement. Therefore, algebraically,

A + B v C =

where
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a = - iy "Hi"*
rVdt

i

J

4dt (75)

C = -

ftdt

*X**1

^)P
H /

P
H2

dt
2

rt2
+dt

2
qdt

A

(76)

(77)

c)PH
^dt-:- JE6h(t2

- t
x

) +p
H

8P
H2dt2

= o

By use of equation (73), we obtain:

d* ! / c)4 Ct
2
- t

x
) \ M—I^P^d^fi-55

s J
+ pHil

For the load to be met:

H

6P
H2

dt
2

(78)

but

If

end

P -- P - P = P

5P
R

= - 5P
H

+ 8P
S
- 6P

L

P
L

= P
L
(P

H'
P
S>

5PT =

^ PL ^PL

<5P
R

<>
PL=

^hI 1 -^ ^sl 1 -^:
whence

SP,

L
S— <5P

L
H

K



where

J

H
1 - 2,

H

so that

* psi " - L
H1

6P
H1

and

6P
S2

=
" L

H2
*PH2

We also require

a p
t
dt =

r

o

where

Therefore

F. = operating fuel cost

dF dF

d?
s!i

5Psidtl +
dP

S
SPS2dt2

. o

Using equations (79) and (80) in equation (82)
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(79)

(80)

(81)

(82)

dP,

'SI
dF

1
L
H1 ^^ +

*h JT" 6PH?dt?
2

L
H2

H2 2

Solving for SPmdtn in equations (78) and (83)

-d4| dP— £& ^t —
dP,

5P
K1dtl

<>*K
SPH2dt2

(83)

4 &P
H2
"

2

^4_
dF "31

1
L
H1



Let

Then

^ !

L
H2

^PHI2 L
S2

dF

dP~T
o 2 \ * h s /

dF

dP^S
7

^ PH
H

HI

1
L
S1

dF

dT
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and

54 ^
2

"" *1

72 "" 7i 72 d h S

7i

(84)

For t
2

- t, —> dt

d7 = 7
£q dt

7 7 €

^ dt

3
^ S

Recall the definition of 7

r
dF tf dt

w
s
h J ^ h S

<"\/
' % 67 5

P
H

L
H
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whence

*Y 5?~ lh ~ dP^
L
s " A (85)

7 =%*
^

These are used as one equation for scheduling

(86)

dP
S

L
S <>

P
H

X°

^5 dt

(87)

(b) Derivation of Kron's Equation, It is desired to mini-

mize

Pdt

With the auxiliary relation

v/here

Let

then

P + P - P = Pr
S

r
H

r
L

r
R

P
H = P

H(q, q)

- 7v(pr
- P

L - P
s
- p

h )

r 1 rl

(F + 0)dt = Fdt

=



and the extended integral to "be minimized is

T
(F + 0)dt

51

Let

J = F -:-

The Euler equation is

h J d f^ 3

For

For

But

and

while

^)x. dt^x^

x
i

= P
S

=

I- \h±-\ = o
b?s dps

Xi - q

'^ P
T, d*

"1

H

x>4 M

d*H dPH

dq b*

^l h ^l^h
dq d?E dq

^L ^L^H

Therefore

(88)
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1 - $5 +
H

dt 2)4
1 - $5 =

H

or

- ^pHy^h
+

dt '<>%& (89)

Equations (88) and (89) are the scheduling equations.

(°) Proof of identity of Kron's and Ricard's Equations .

It is understood that q = q(h, P) relating flow, head, and power

can be written

f = q - q(h, P) = (90)

Then

r-r = 1 *

Neglecting losses, Kron's equation is

=
\b* d A ^
S dh \ dt \ Jft

and Ricard's

dj ^4 dt

7 " dh s

where

7 =
X

<>p

Substituting equation (94) in (93)

(I

XM dt

M £)h S

(91)

(92)

(93)

(94)

(95)
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\dh d /\
ssrztM °

(96)

<d? v>p

Equations (90) and (91) permit the derivation of

~ dh <)P £q 1
and rr: =

Substitution of these quantities in equation (96) yields

Kron's equation.

(d) Arismunandar and Noakes's Equations . The following

derivation makes use of time-dependent variables. With a system

of one hydro plant and one thermal plant as sample system, the

object is to minimize the integral I of the total fuel cost C,

which is a function of the thermal power output Pm, over a fixed

future short-time interval T

I - C(P
T , t)dt - minimum

The problem admits two sets of restrictions, for energy and

for load requirements, respectively,

J = PK^» h
*

t ^ dt = constant B

'O

and

= 0(P, Q, h, t)



54

= P
H (Q,

h, t) + P
T
(t) - P

L
(P
H , P

T , t) - P
D
(t) =

where Prr, P-r, and P^ are hydro-plant output, loss, and load, re-

spectively. Using more suitable variables, flow F and storage S,

instead of more conventional discharge Q and head h, this trans-

formation can "be made:

dS
P
H (Q,

h, t) = P
H
(F, S, — , t)

Eliminating the uncontrollable and indeterminable alien var-

iable F, the load and hydro restraints now become

PH(S, S', t)dt = constant B

J
H

and

= P
R
(S, S», t) + P

T
(t)

- p
l (ph

(s, S», t), p
t , t) - P

D
(t) =

where the prime indicates differentiation with respect to time t.

There are, henceforth, two independent variables P„ and S,

and their derivatives. Thus, the dependent variables C, PH
and

0, together with their integrals, each are functions of P„ and S.

The general equations of the problem of minimizing I, where

1 = Hdt = (C +\P
H

+ X20)dt
Jo ^0

are given by Euler equations

JJH d J)H

Mu " dt K'
= u = 1, 2

where q are time functions.
"U
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For the one hydro plant with q,- S; q-,
1- S', the Euler equa-

tion becomes

d / 2)S

= (97)

where

s (t) pr (\ + A
2 ) - ^gjr + p;jjsr OS)

Similarly, for the thermal plant, with q 2
= P

T ; qp'* ^t'

= (99)f(t) - TT f(t)
dt dV

where

f(t) = ^ '
A2 (100)

Equations (97) and (99) can "be combined into one differen-

tial equation

^
2
H ^H

where

^p
t<
}s' " ^s^t'

+ h
i
(p

t'
s " " p

t"
s,) " °

Z 2
n

(101)

H
l

(s-:
2

2)p
t

2

i 2>

:
-;-:

(p
t

(

)

2
ds«

2

1 2)
2
h

(s»)(p
t

') ^)s^p
t

'

Differential equation (101) is of the second order. Its

general solution, known as the extremal C , hence contains two
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arbitrary constants of integration OL and /5, and two isoperimetric

constants A-, and A
?

P
T = P

T
(a, /5, X

x , V t}
\

(102)

S = S(a, 0, \, \, t)
J

° (103)

From equation (103) , S 1 = dS/dt can be found. This, togeth-

er with the water inflow F(t), will determine the scheduled

hydro-plant output

P
H

= P
H (^' &• \> \> F

'
t} (104)

(e) Comparison with Previously Developed Formulas . The

previously developed formulas involve only scheduling of genera-

tions or load allocations among plants at any one time. Such is

the case in practice, since the curve of load demand does not u-

sually follow a pattern which is presentable in the form of a

simple, continuous, and differentiable function of time. There-

fore, in order to make the comparison feasible, it is necessary

to reduce the general Euler equations into a simplified form

without considering the time variations. The thermal equation

then becomes, similar to all other formulae

1 -
&<

= (105)

and the hydro equation is

\
fh** a 2>p

.

H
\^S *" dt £)S'

(106)
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The following shows the comparison with Kron's equation.

Kron's problem is not restricted by the energy requirement, B.

Hence, the Lagrangian multiplier will vanish, and equation (106)

will reduce to

X 1 -
a*T.\d*H d

dt X 1 - =

This is to be compared with Kron's equation, which, with

changing the notations used, is given in equation (89)

(107)

i»
¥i\vh L\\f, ¥±\¥i (89)

where A is the surface area of the reservoir.

Kron's variables q and q' are related analytically by

•t

q(t) = q(0) + dt (108)

If leakage and evaporation are ignored, the inflow to a res-

ervoir equals the outflow—which includes the amount being dis-

charged q'(t) and spilled 0"(t)—plus the time rate of change of

storage. Hence

q'(t) = F(t) - CT(t) - S'(t) (109)

Since the storage at any time t can be expressed as

S(t) = S(0) +

'0

equation (108) can now be given as

q(t) = q(0) + I Fdt -

Jo

0dt - S(t) + S(0)

(no)

(111)
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By letting

•t

Fdt = T(t) +T(0) (112)

and

-t

cjdt = 7T(t) + 7T(o) (113)

'0

Kron's q(t) can be further equalized with the negative of the

storage S(t) if

7T(t) = r(t)

q(0) = - HO) + 71(0) - 3(0) (114)

The latter equation stipulates the actual practical condi-

tion that the volume of storage to start each planning period de-

pends on the integrated flow and spillage during the previous

time interval.

Substitution of equations (112) through (114) in equation

(ill) gives the desired equality

q(t) = - S(t) (115)

from which the equivalence of equations (107) and (89) can be ob-

served, with

A = -X
2

(116)

and

for a vertical-sided reservoir.
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The proof of equivalence between Kron's equation and Ric-

ard's has been made and the equation of neglecting head variation

can be observed to be the reduction form of Ricard's equation.

Therefore no further proof is required to indicate the identity

between the general tise-dependent equations and those others.

(f) Effect of Head Variations. When head variations are

significant, the coefficient T becomes a function of time. Exam-

ine the form

-t

^W. dt

^ oih
j
a
J

which takes over the function of y. for the fixed head case, ac-

cording to Ricard's equations. The quantity 2)W./2)P
Hi

is a nega-

tive number, for the required flow of water for a fixed power

output decreases as the head increases. Thus the quantity

-t

c)W dt

'o
* h

i
T
i

is negative and becomes increasingly negative with time. Conse-

quently, the quantity

t

6)W. dt

'0 ^3 3
d

1-^

decreases with time. Compared to the fixed head equations with a

fixed value y. t Ricard's equation leads to scheduling less hydro
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power early in the time period under consideration and more power

later in the period, since in general, increasing y reduces the

volume of water used; decreasing y increases the volume of water

used.

SUMMARY

Economic loading of an all-thermal system is obtained by a

method based on equal incremental cost of received power as a

necessary condition. Since a sufficient condition for a minimum

depends on the characteristics of the units in the system, the

..on-decreasing smooth characteristics and step characteristics

are used satisfactorily as the approximations of the characteris-

tics of the units. The incremental cost of received power is e-

qual to the incremental production cost of a unit times the re-

ciprocal of incremental efficiency of the transmission network,

called penalty factor, of the unit. In order to minimize the to-

tal production cost of the system, an evaluation of economic com-

bination of the units to be placed on operation at the time must

be made before load scheduling. The scheduling of fuel purchases

may be also considered.

The necessary conditions for economic operation of intercon-

nected areas are similar to those for the single area with the

additional conditions for economic interchanges. The economic

interchanges between the areas may be obtained by comparison of
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appropriate incremental costs at the boundaries of the areas.

The necessary conditions of obtaining the short-range opti-

mum economic schedule of the steam and hydroelectric plants with-

in a given area are of the following forms

n_, A^- = X (69)
iP
Sn ^ PSn

dW. N 2}2T n

7s ^" + ^^T~ = X (70)

dF
where t^— = incremental production cost of steam plant n in

dP
Sn

2>
P
Sn

dW

.

-p
1 ' = incremental water rate at hydro plant j in cfs per

a±
H;j

dollars per mw-hr

incremental transmission loss of steam plant n

a*i

megawatt

= incremental transmission loss of hydro plant j
dpHd

"X = incremental cost of received power in dollars per

mw-hr

*y. = water-conversion coefficient which converts incre-

mental rate into equivalent incremental plant cost

These equations result in the scheduling of generation only

at any one time which is the case in practice. The first condi-

tions are again similar to those for the all-thermal system. The

second conditions define the economic use of water in which 'Y.'s
j

are constant when the effect of head variations are neglected and

"V.. ' s are functions of time when hoad variations are significant.
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Additional research is required to define optimum long-range

reservoir drawdown mathematically in order to apply the short-

range method to long-range problems.
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Development of the methods employing the classical tech-

niques concerning optimum economic operation of electric power

system is studied. In the area of system operation, the problem

of determining the allocation of generation among thermal plants

that are currently operating and on the line is viewed first.

The equations resulting as a necessary condition are

dF
n f

1 \
dF

n \^{i-WJ s ^ L
°

"
(1)

which state that incremental production cost of plant n, dF /dP ,

times penalty factor for plant n accounting for effect of trans-

mission losses, L , is equal to incremental cost of received pow-

er, A, and is the same for every plant. The allocation of gener-

ation so derived is predicated upon a known cost of fuel at each

plant. The principle of scheduling to equal incremental costs of

received power does not directly determine the units to be placed

in operation at a given time. This determination to date has

been usually solved by successive trials.

The coordination equations (l) are extended to obtain coor-

dination equations whose solution results in optimum economy for

the pool formed by the interconnected companies. The intra-area

equations for each area are similar to those for the single- area

system problem.

Another problem of optimization of system operation relates

to the integration of the scheduling of hydro plants in a com-

bined hydro and thermal power system so as to obtain the minimum



fuel expenditures over the time period of interest. This problem

is more complex than the all-thermal problem, as we must now be

concerned with operation over a given period of time. We obtain

equations of the form

dP n
n

dW.

7
j dpj"

L
J

= X
(3)

where

dW.
'

' = incremental water rate of plant jdP
Hj

y. zz water conversion coefficient for plant j
j

When the effect of head variations upon the plant character-

istics may be neglected, y. ' s are constants whose values are de-
j

termined by an iterative procedure until the desired volume re-

leases are obtained. When the effect of head variation is sig-

nificant, 7.'s are functions of time and equation (3) leads to
j

scheduling less hydro power early in the time period under con-

sideration and more power later in the period.

However, the coordination equations (2) and (3) result in

the scheduling of generation only at any one time, since the var-

iables are made time-independent during the time period of inter-

est. V/hen true variational calculus procedures are pursued, all

variables must be made time-dependent. This approach solves for

whole intervals to be optimized as integral units.




