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Abstract

Arne Beurling first studied extremal length, namely the reciprocal of 2−Modulus, in

the plane, and then later studied it jointly with Lars Ahlfors. Beurling was interested in

extremal length because he wanted a conformal invariant to study harmonic measure. One

of the differences between R2 and RN with N ≥ 3, is that there are far fewer conformal maps

in the latter case. This naturally suggests defining a larger class of functions that distort

N -Modulus by a bounded amount. This gives rise to the notion of quasiconformal mappings,

see [1].

There have been many recent developments in the discrete theory of p-Modulus, and a

natural question is “Can the discrete theory tell us anything about the continuous theory?”

There are two ways to try and answer this question. The first is to approximate a domain

with a mesh of points and study if discrete p-Modulus of families of walks on the mesh

converges to continuous p-Modulus on the domain. This line of inquiry has been pursued in

the recent literature [10, 11, 21, 25, 12]. The second way to answer the question is to try to

come up with a dictionary of results by developing a way to pair up results for the discrete

theory and the continuous theory. This is where this thesis is developed. In [6], with Nathan

Albin, Pietro Poggi-Corradini, and Nageswari Shanmugalingam, we establish a relationship

between∞-Modulus of a family of paths connecting two points in general metric spaces and

the “essential” shortest path metric between two points. This result is inspired by a similar

relationship in the discrete setting established in [5]. In [4] N. Albin, Jason Clemens, Nethali

Fernando, and P. Poggi-Corradini show that p-Modulus, 1 ≤ p <∞, can be related to other

metrics. Using the work of Aikawa and Ohtsuka, we show that a similar modulus metric

can be defined, with some slight modification, in R2, for 2 < p < ∞. Note that, in the

continuous setting, with N -dimensional Lebesgue measure, we cannot hope to get a metric

for 1 ≤ p ≤ N because for these values the p-Modulus of the family of curves connecting



two distinct points is zero. We are currently working to adapt the argument to dimension

N ≥ 3 and in metric measure spaces (X, d, µ) where µ is a Borel regular measure.
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Introduction

The first question this thesis seeks to answer is “What is p-Modulus?” We answer this

question in each chapter in a different setting. In Chapter 1, we look at the first setting in

which p-Modulus was studied, that is, the complex plane. We compute p-Modulus in a basic

example, and consider Beurling’s criterion as an important historical remark. In Chapter 2,

we explore p-Modulus on discrete graphs with 1 ≤ p ≤ ∞, specifically Fulkerson duality and

some related results. The discrete case is simpler in many ways than the continuous setting

or more general metric measure spaces. As such, we wish to establish a sort of “dictionary”

of results as below.

Discrete Generalization

Mod∞,σ(Γ) = 1
`(Γ)

Mod∞(Γ) = 1
ess`(Γ)

limp→∞ δp(a, b) = `(Γ(a, b)) dess(x, y) = ess`(Γ(x, y))

Modp,σ(Γ)1/p Modq,σ̂(Γ̂)1/q = 1 Modp(|dΓ|)1/p Modq(|∇Σ|)1/q = 1

For every 1 < p <∞, δp is a metric. For p > 2, δp is a pseudometric on R2.

In Chapter 3, we explore the case p = ∞ in general metric measure spaces and some

corresponding background material. In Chapter 4, we discuss Aikawa-Ohtsuka duality as a

generalization of the reciprocal relationship found in Chapter 2. Finally, in Chapter 5, we

use the Aikawa-Ohtsuka duality to develop some analogous results to those found in Chapter

2 in the continuous setting.
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Chapter 1

Modulus in the Plane

The purpose of this chapter is to recall the historical case of Modulus of curves in the plane.

In this section, we will introduce Modulus of families of curves in C, and work through the

classical example of computing the Modulus of the family of curves connecting two sides of

a rectangle as well as show a proof of Beurling’s Criterion. Throughout, Ω will be an open

connected set in C. For now, a curve is simply a function γ : [a, b]→ C which is continuous

and piecewise C1([a, b]). We will also only consider non-constant curves which are rectifiable,

meaning their arc-length is finite. That is,

`(γ) :=

∫ b

a

|γ′(t)| dt <∞.

There is a reason we only consider non-constant rectifiable curves, and we will mention why

once we define Modulus. In order to define Modulus, we first define a notion of admissibility.

Definition 1.0.1. Let Γ be a family of curves in Ω. Define the admissible set of Γ as

Adm(Γ) :=

{
ρ : Ω→ [0,∞) : ρ is Borel,

∫
γ

ρ ds =

∫ b

a

ρ(γ(t))|γ′(t)| dt ≥ 1

}
.

We refer to the Borel functions ρ as densities. For γ ∈ Γ, we also say the ρ-length of γ is

`ρ(γ) =
∫
γ
ρ ds. We now define p-Modulus for 1 ≤ p <∞.
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Definition 1.0.2. If Adm(Γ) 6= ∅, then we define p-Modulus by

Modp(Γ) = inf
Adm(Γ)

∫
Ω

ρ(z)p dA, (1.0.1)

where dA is area measure, and if Adm(Γ) = ∅, then we define Modp(Γ) =∞.

Sometimes we refer to the quantity
∫

Ω
ρ(z)p dA as the p-energy of ρ, denoted Ep(ρ) or ‖ρ‖pp.

Also, historically, the case p = 2 was first because in that case, 2-Modulus is a conformal

invariant. That is, if f : Ω → Ω′ is a conformal map, then Mod2(f(Γ)) = Mod2(Γ). Recall,

a map f is conformal if it is holomorphic and one-to-one. See [1] for more details.

Now that we have defined p-Modulus, let us explain why we only consider non-constant

rectifiable curves. If Γ contains a constant function γ0, the `(γ0) = 0, and so the admissible

set is empty. Now, if Γ is the collection of all non-rectifiable curves and Ω is bounded, then

letting ρε ≡ ε ∈ Adm(Γ) for any ε > 0, and so Modp(Γ) ≤ εpA(Ω) → 0 as ε → 0. If Ω

is unbounded, then let ρ ∈ Lp(Ω) such that ρ > 0 and set ρε = ερ. Then ρε ∈ Adm(Γ)

and Modp(Γ) ≤ εp ‖ρ‖pp → 0 as ε → 0. We now move to our first nontrivial example of

p-Modulus.

W

H
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Example 1.0.3. Let Γ be the family of curves connecting the red side to the blue side in

the figure above. First we will find an upper bound for Modp(Γ) by evaluating the p-Energy

of an appropriate ρ. Let ρ ≡ 1/W . Then clearly ρ ∈ Adm(Γ) since
∫
γ
ρ ds = (1/W )`(γ) ≥ 1.

Then Modp(Γ) ≤
∫

Ω
ρ(z)p dA = (1/W )p(HW ) = H/W p−1.

Now, we will show that H/W p−1 is also a lower bound. To do so, we start with the

admissibility condition. If ρ ∈ Adm(Γ), then in particular, for the straight lines γ(t) = t+ iy

defined on [0,W ], we have

1 ≤
∫ W

0

ρ(t+ iy) · 1 dt.

Applying Hölder’s inequality, we obtain

1 ≤
(∫ W

0

ρ(t+ iy)p dt

)1/p

W 1/q,

where q is the Hölder conjugate of p, that is 1/p + 1/q = 1. Rearranging, we get W−p/q ≤∫W
0
ρ(t+ iy)p dt. Now, integrating both sides with respect to y from 0 to H, we obtain (and

using −p/q = 1− p)

HW 1−p ≤
∫ H

0

∫ W

0

ρ(t+ iy)p dt dy = ‖ρ‖pp .

Taking an infimum with respect to ρ, we obtain H/W p−1 ≤ Modp(Γ). Thus, we have

Modp(Γ) = H/W p−1.

Now, we wish to point out that the same formula applies to find the q-Modulus of the

family of curves connecting the top to the bottom (denoted Γ̂). Then we have Modq(Γ̂) =

W/Hq−1. Then, computing, we have the following

Modp(Γ)1/p Modq(Γ̂)1/q =

(
H

W p−1

)1/p(
W

Hq−1

)1/q

=
H1/p

W 1−1/p

W 1/q

H1−1/q

= H1/p+1/q−1W 1/p+1/q−1 = 1.

(1.0.2)

It turns out, (1.0.2) is a general statement. If Γ is a curve family connecting two compact
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sets E,F ⊂ Ω and Γ̂ is the family of curves γ̂ that separate E from F , then (1.0.2) holds.

We will state this later more formally (and in more generality) as Theorem 4.2.6.

We now turn our attention to a classical result known as Beurling’s Criterion. We will

show the p = 2 case, though Badger has generalized this in [9]. Note, we say ρ ∈ Adm(Γ) is

extremal if Modp(Γ) = Ep(ρ).

Theorem 1.0.4 (Beurling’s Criterion [1]). Let Γ be a curve family in Ω ⊂ C. Suppose there

exists ρ0 ∈ Adm(Γ) and Γ0 ⊂ Γ satisfying

(1)
∫
γ
ρ0 ds = 1 ∀γ ∈ Γ0

(2) ∀h : Ω→ R Borel,
∫
γ
h ds ≥ 0 ∀γ ∈ Γ0 ⇒

∫
Ω
hρ0 dA ≥ 0,

then ρ0 is extremal for Γ.

Proof. Suppose ρ ∈ Adm(Γ). Let h = ρ− ρ0. Then ∀γ ∈ Γ, we have

∫
γ

h ds =

∫
γ

ρ ds−
∫
γ

ρ ds ≥ 1− 1 = 0.

Then, by assumption (2), we must have
∫

Ω
hρ0 dA ≥ 0. Hence, we have

∫
Ω

ρ2
0 dA ≤

∫
Ω

ρρ0 dA

⇒
∫

Ω

ρ2
0 dA ≤

(∫
Ω

ρ2 dA

)1/2(∫
Ω

ρ2
0 dA

)1/2

⇒
(∫

Ω

ρ2
0 dA

)1/2

≤
(∫

Ω

ρ2

)1/2

⇒
∫

Ω

ρ2
0 dA ≤

∫
Ω

ρ2 dA.

Taking the infimum over all ρ ∈ Adm(Γ), we get that Mod2(Γ) = E2(ρ0).

Note that in Example 1.0.3, the extremal function ρ ≡ 1/W together with the family Γ0

of straight lines given by γ(t) = t + iy for t ∈ [0,W ] satisfy the conditions since for every

5



Borel function h : Ω→ R such that
∫W

0
h(t+ iy) dt ≥ 0, we have

∫
Ω

hρ0 dA =

∫ H

0

∫ W

0

h · (1/W ) dx dy = (1/W )

∫ H

0

∫ W

0

h(t+ iy) dt dy ≥ 0.
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Chapter 2

Discrete Modulus

Discrete modulus is a powerful tool that can yield information about families of “objects”

defined on a graph G. By graph, we mean a triple G = (V,E, σ) where V is a finite set

of vertices, E, a finite edge set, a subset of V × V , and σ : E → R>0 is a weight function.

Sometimes we will simply refer to a graph G = (V,E) assuming σ ≡ 1. The term object

is intentionally vague. The only property needed to define an object is the existence of an

associated “edge usage” function as described below. For example, we can talk about the

modulus of the family of spanning trees or the family of cycles on the graph. Although we

could talk about many different objects on a graph, we will focus on the case when those

objects are either walks connecting two points or cuts that separate two points. We will

follow the exposition in [4], where many different families of objects are considered. Further,

we will only work with connected graphs and throughout, p and q are assumed to be Hölder

conjugates, that is, 1/p + 1/q = 1. Our goal is establishing Fulkerson duality in Theorem

2.2.8 and constructing some metrics on graphs as in Theorem 2.3.3.

2.1 Definition of discrete modulus

Let Γ be a family of objects such that every γ ∈ Γ has an associated usage function N (γ, ·) :

E → R≥0 that measures the usage of edge e by γ. It is convenient to think of N as a matrix
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with |Γ| rows and |E| columns. We assume that 0 < |Γ| <∞ and each row has at least one

nonzero entry. Then N is a matrix with finite dimensions, and we can define the following

useful quantity:

Nmin := min
γ∈Γ

min
e:N (γ,e)6=0

N (γ, e). (2.1.1)

In words, Nmin > 0 is the smallest nonzero entry of the matrix. Next, we define the two

types of objects we are interested in.

Definition 2.1.1. A walk γ is a sequence of vertices and edges x0e1x1 . . . enxn where ei =

{xi−1, xi}. For walks, we define N (γ, e) = number of times the edge e appears in the walk

γ.

Definition 2.1.2. We say Γ is a connecting family (between two subsets A,B ⊂ V ) if Γ is a

family of walks such that x0 ∈ A and xn ∈ B.

Definition 2.1.3. Let a, b ∈ V, a 6= b. A subset S ⊂ V is called an ab-cut if a ∈ S and b /∈ S.

For ab-cuts, if e = {x, y} ∈ E, we define N (S, e) = 1 if x ∈ S and y /∈ S and N (S, e) = 0

otherwise.

Note that due to the definition of a walk, the family of walks connecting two vertices a

and b is an infinite family. However, in [7] it is shown that the modulus of the family of

walks connecting a to b is equal to the modulus of the family of simple paths connecting a

to b, which is a finite family on finite graphs. In general, we can consider |Γ| = ∞, but for

this dissertation, it is enough to consider only the case where |Γ| <∞.

Now we define modulus analogously to how we did in the plane. We first define a density

on G to be any function ρ : E → [0,∞). Since |E| is assumed finite, we can think of ρ as a

vector in |E| dimensional Euclidean space. Intuitively speaking, we should think of ρ(e) as

the cost of using edge e. We define the ρ-length of an object γ by

`ρ(γ) :=
∑
e∈E

N (γ, e)ρ(e) = (Nρ)(γ).

If ρ ≡ 1, we simply write `(γ). For a walk, `(γ) is the number of hops the walk takes and is

8



analogous to the arc-length of a curve in the plane. As in the case of the plane, we say ρ is

admissible for Γ, if for every γ ∈ Γ, we have

`ρ(γ) ≥ 1. (2.1.2)

The admissible set is defined as

Adm(Γ) =
{
ρ ∈ RE

≥0 : `ρ(γ) ≥ 1, ∀γ ∈ Γ
}
. (2.1.3)

As in the plane, given an exponent p ∈ [1,∞), we define the p-energy of a density ρ by

Ep,σ(ρ) :=
∑
e∈E

ρ(e)pσ(e),

where σ is acting as dA. For p =∞ we define the ∞-energy of ρ as

E∞,σ(ρ) := max
e∈E

ρ(e)σ(e).

Finally, we define the p-Modulus of a family of objects.

Definition 2.1.4. Given a graph G = (V,E, σ), a family of objects Γ with usage matrix

N ∈ R|Γ|×|E|, and an exponent 1 ≤ p ≤ ∞, the p-Modulus is defined by

Modp,σ(Γ) := inf
ρ∈Adm(Γ)

Ep,σ(ρ). (2.1.4)

Remark 2.1.5. For 1 < p < ∞, a unique extremal density ρ∗ always exists. When p = 1 or

∞, we lose uniqueness but still have existence. Since each row of N has a nonzero entry

that is bounded below by Nmin, we know that ρ∗ ≤ N−1
min. We reproduce Lemma 2.1 of [5]

for completeness below.

Lemma 2.1.6. Given a family of objects Γ and 1 ≤ p ≤ ∞ there exists and extremal density

ρ∗. If 1 < p <∞, then ρ∗ is unique.

9



Proof. For any 1 ≤ p <∞, the function Ep,σ(·)1/p is a norm on the |E| dimensional Euclidean

space. When p = ∞, so is E∞,σ(·). Thus, finding a minimizer for p-Modulus is equivalent

to finding a minimizer for the norm in RE. Since Adm(Γ) is a closed convex subset of RE,

such a minimizer always exists, and when 1 < p <∞, the minizer is unique.

We wish to note that, in the case of connecting families, (2.1.4) is a capacity on families

of objects. This is described in the following proposition which, for instance, can be found

in [8]. The ultra-subadditivity can be found in [6].

Proposition 2.1.7. Let G = (V,E, σ) be a graph. For p ∈ [1,∞], the following hold:

• Monotonicity: Suppose Γ and Γ′ are families of objects on G such that Γ ⊂ Γ′,

meaning that the matrix N (Γ) is the restriction of the matrix N (Γ′) to the rows from

Γ. Then

Modp,σ(Γ) ≤ Modp,σ(Γ′). (2.1.5)

• Countable Subadditivity: Suppose 1 ≤ p < ∞, and let {Γj}∞j=1 be a sequence of

families of objects on G. Then

Modp,σ

(
∞⋃
j=1

Γj

)
≤

∞∑
j=1

Modp,σ(Γj). (2.1.6)

• Ultra-Subadditivity: Let p =∞ and {Γj}∞j=1 be a sequence of families of objects on

G. Then

Mod∞,σ

(
∞⋃
j=1

Γj

)
≤ sup

j
Mod∞,σ(Γj) (2.1.7)

Proof. First, we prove monotonictiy. Let ρ ∈ Adm(Γ′). Then for each γ ∈ Γ, we have

1 ≤
∑
e∈E

N (γ, e)ρ(e)

since this holds for each row of N (Γ′). Thus Adm(Γ′) ⊂ Adm(Γ). Then we have

Modp,σ(Γ) ≤ Modp,σ(Γ′).

10



Now we consider countable subadditivity. We assume
∑∞

j=1 Modp,σ(Γj) <∞ because other-

wise the inequality is trivial. Next, fix p ∈ [1,∞) and choose ρj ∈ Adm(Γj) such that

Ep,σ(ρj) = Modp,σ(Γj).

Then we have

(
min
e∈E

σ(e)

) ∞∑
j=1

ρj(e)
p ≤

∞∑
j=1

∑
e∈E

ρj(e)
pσ(e) =

∞∑
j=1

Modp,σ(Γj) <∞.

Since σ > 0, we have that
∑∞

j=1 ρj(e)
p < ∞. Define ρ :=

(∑∞
j=1 ρ

p
j

) 1
p
. For any γ ∈ Γ :=⋃

Γj, there is a k ∈ N such that γ ∈ Γk. Since ρ ≥ ρk, we have ρ ∈ Adm(Γk). Moreover,

ρ ∈ Adm(Γ) and

Modp,σ(Γ) ≤ Ep,σ(ρ) =
∑
e∈E

ρ(e)pσ(e) =
∑
e∈E

σ(e)
∞∑
j=1

ρj(e)
p =

∞∑
j=1

∑
e∈E

ρj(e)
pσ(e)

=
∞∑
j=1

Ep,σ(ρj) =
∞∑
j=1

Modp,σ(Γj).

Now for the case p = ∞. Just as before, we choose ρj ∈ Adm(Γj) such that E∞,σ(ρj) =

Mod∞,σ(Γj). Define ρ := supj ρj. Again, for any γ ∈ Γ, there is a k ∈ N such that γ ∈ Γk.

Moreover, ρ ∈ Adm(Γ) and maxe ρ(e)σ(e) ≤ supi maxe ρi(e)σ(e). Indeed, for each e ∈ E, we

have that ρ(e) = supj ρj(e) ≤ supj maxe ρj(e)σ(e). Consequently,

Mod∞,σ(Γ) ≤ E∞,σ(ρ) = max
e∈E

ρ(e)σ(e) = max
e∈E

sup
j
ρj(e)σ(e) ≤ sup

j
max
e∈E

ρj(e)σ(e)

= sup
j

Mod∞,σ(Γj).

The concept of p-Modulus generalizes classical ways of describing graphs quantitatively.

Let G = (V,E) be a graph and two vertices a, b ∈ V be given. Define Γ(a, b) to be the family

11



of all simple paths in G that start at a and end at b. Assign the usage function N (g, e) to

be 1 when e ∈ γ and 0 otherwise. Likewise, we can define Γ(A,B) to be the family of all

simple paths that start at some vertex in A and end at some vertex in B.

We refer to a subset S ⊂ V such that a ∈ S and b /∈ S as an ab-cut. Given an ab-cut S,

we define the edge boundary as

∂S := {{x, y} ∈ E : x ∈ S, y /∈ S} .

We say an ab-cut is minimal if its edge boundary does not contain the edge boundary of any

other ab-cut as a strict subset.

Definition 2.1.8. The min cut between a and b is defined as

MC(a, b) := min{|∂S| : S is an ab-cut}

Definition 2.1.9. Thinking of G as an electrical network with edge conductances given by

σ as in [], we define the effective resistance Reff (a, b) as the voltaage drop necessary to pass

1 Amp of current between a and b through G. In this case, define the effective conductance

by Ceff (a, b) := Reff (a, b)
−1.

Definition 2.1.10. The (unweighted) shortest-path distance between a and b refers to the

length of the shortest walk from a to b, where the length of a walk γ is `(γ). Thus we write

`(Γ(a, b)) := inf
γ∈Γ(a,b)

`(γ)

for the shortest length of a family Γ(a, b).

The theorem below describes how p-Modulus generalizes the above quantities.

Theorem 2.1.11 ([5]). Let G = (V,E, σ) be a graph with edge weights σ. Let Γ bea nontrivial

family of objects on G with usage matrix N and let σ(E) :=
∑

e∈E σ(e). Then the function

p 7→ Modp,σ(Γ) is continuous for 1 ≤ p <∞, and the following two monotonictiy properties

12



hold for 1 ≤ p ≤ p′ <∞.

N p
min Modp,σ(Γ) ≥ N p′

min Modp′,σ(Γ), (2.1.8)

(
σ(E)−1 Modp,σ(Γ)

)1/p ≤
(
σ(E)−1 Modp′,σ(Γ)

)1/p′
. (2.1.9)

Moreover, let a 6= b in V be given and let Γ be the connecting family Γ(a, b). Then we have

the following.

• For p = 1, Mod1,σ(Γ) = min {|∂S| : S an ab-cut} = MC(a, b).

• For p = 2, Mod2,σ(Γ) = Ceff (a, b).

• For p =∞, Mod∞,σ(Γ) = limp→∞Modp,σ(Γ)1/p = `(Γ)−1.

Let us now consider an example that applies the above theorem.

0.5

0.
5

0.5

0.5
0.5

0.
5

0 1

2 3

4
Shortest Path

0

0

0

0

0

0
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2 3
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Min Cut

0.3077

0.
30

77

0.4
61

5

0.0909

0.3846

0.
53

85

0 1

2 3

4
Effective Conductance

Example 2.1.12. Consider the house graph above. Let σ ≡ 1 and Γ be the set of all simple

paths connecting node 0 to node 4. Then Mod1(Γ) = 2 because we need to remove at least

2 edges to separate node 0 from node 4. We also have Mod∞(Γ) = 1/2 because the length of

the shortest path from node 0 to node 4 is 2. Finally, we have Mod2(Γ) ≈ .8462. In the figure

above, highlighted in green is the shortest path on the left and a minimal cut in the middle.

Note, in the case where p = 1 or p = ∞, there may be multiple shortest paths or minimal

cuts respectively. As a result, in those cases there can be multiple extremal functions. Note

the edges have been labeled with an example extremal function.
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2.2 Blocking Duality

Having defined p-Modulus for a family of objects on a graph G, we will now describe a notion

of duality. To do so, for a non-trivial family of objects Γ on a graph G, we can think of the

objects as elements of RE
≥0 by looking at the rows of the usage matrix N (γ, ·) corresponding

to each object γ ∈ Γ. We will define duality in terms of vectors in RE
≥0. Let us recall some

of the definitions we will use.

Definition 2.2.1. Let K be the set of all closed convex sets K ⊂ RE
≥0 that are recessive,

that is K + RE
≥0 = K. We will assume ∅ 6= K ( RE

≥0 to avoid trivial cases.

Definition 2.2.2. For each K ∈ K there is an associated blocking polyhedron, or blocker,

BL(K) := {η ∈ RE
≥0 : ηTρ ≥ 1∀ρ ∈ K}.

Definition 2.2.3. Given K ∈ K and a point x ∈ K we say that x is an extreme point of

K if x = tx1 + (1 − t)x2 for some x1, x2 ∈ K and some t ∈ (0, 1), implies x1 = x2 = x.

Moreover, we let ext(K) be the set of all extreme points of K.

Definition 2.2.4. The dominant of a set P ⊂ RE
≥0 is the recessive closed convex set

Dom(P ) := co(P ) + RE
≥0,

where co(P ) is the convex hull of P .

Since we are considering finite graphs, it is easy to see that Adm(Γ) is a closed set.

Further, it is a convex set since

∑
e∈E

N (γ, e)(tρ1(e) + (1− t)ρ2(e)) = t`ρ1(γ) + (1− t)`ρ2(γ) ≥ t+ (1− t) = 1.

Thus, Adm(Γ) is the dominant of its extreme points, see Theorem 18.5 of [23].

Definition 2.2.5. Suppose G = (V,E) is a finite graph and Γ is a finite non-trivial family
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of objects on G. We define the Fulkerson blocker of Γ, denoted Γ̂, by

Γ̂ := ext(Adm(Γ)) = {γ̂1, γ̂2, . . . , γ̂s} ⊂ RE
≥0,

Define the N̂ ∈ RΓ̂×E
≥0 to be the matrix whose rows are the vectors γ̂T for γ̂ ∈ Γ̂.

We now state the main Theorem we are interested in that makes use of the above defi-

nitions.

Theorem 2.2.6 (Fulkerson [18]). Let G = (V,E) be a graph and let Γ be a non-trivial family

of objects on G. Let Γ̂ be the Fulkerson blocker of Γ. Then

(1) Adm(Γ) = Dom(Γ̂) = BL(Adm(Γ̂));

(2) Adm(Γ) = Dom(Γ) = BL(Adm(Γ));

(3)
ˆ̂
Γ ⊂ Γ.

Corollary 2.2.7 ([4]). Let G = (V,E) be a graph and let Γ be a non-trivial finite family of

objects on G. Then,

(1) BL(BL(Adm(Γ))) = Adm(Γ) and BL(BL(Dom(Γ))) = Dom(Γ)

(2) Adm(Γ) = BL(Dom(Γ)) and BL(Adm(Γ)) = Dom(Γ).

We now establish the main Blocking Duality result.

Theorem 2.2.8 ([4]). Let G = (V,E) be a graph and let Γ be a non-trivial finite family

of objects on G with Fulkerson blocker Γ̂. Let the exponent 1 < p < ∞ be given, with

q := p/(p− 1) it Hölder conjugate exponent. For any set of weights σ ∈ RE
>0, define the dual

set of weights σ̂ as σ̂ := σ(e)−q/p for all e ∈ E. Then

Modp,σ(Γ)1/p Modq,σ̂(Γ̂)1/q = 1. (2.2.1)

Moreover, the extremal ρ∗ ∈ Adm(Γ) and η∗ ∈ Adm(Γ̂) are unique and are related as follows:

η∗(e) =
ρ(e)p−1σ(e)

Modq,σ(Γ)
∀e ∈ E. (2.2.2)
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Proof. Let ρ ∈ Adm(Γ) and η ∈ Adm(Γ̂). The Hölder’s inequality implies

1 ≤
∑
e∈E

ρ(e)η(e) =
∑
e∈E

(σ(e)1/pρ(e))(σ(e)−1/pη(e))

≤

(∑
e∈E

ρ(e)pσ(e)

)1/p(∑
e∈E

η(e)qσ̂(e)

)1/q

.

(2.2.3)

Let α := Modq,σ̂(Γ̂)−1, η∗ ∈ Adm(Γ̂) be the minimizer for Modq,σ̂(Γ̂), and ρ∗ be defined by

ρ∗(e) := α

(
σ̂(e)

σ(e)
η∗(e)q

)1/p

= ασ̂(e)η∗(e)q/p. (2.2.4)

Note that (2.2.4) is another way of writing (2.2.2). Further, by (2.2.3), we have Modp,σ(Γ) ≥

αp/q = αp−1. Hence, if ρ∗ ∈ Adm(Γ), then Ep,σ(ρ∗) gives us an upper bound for Modp,σ(Γ),

and

Ep,σ(ρ∗) =
∑
e∈E

ρ(e)pσ(e) = αp
∑
e∈E

η∗(e)qσ̂(e) = αp−1,

and (2.2.1) follows.

To verify ρ∗ ∈ Adm(Γ), in light of (1) of Theorem 2.2.6, we will verify
∑

e∈E ρ
∗(e)η(e) ≥ 1

for each η ∈ Adm(Γ̂). The first case is when η∗ = η. Then we have

∑
e∈E

ρ∗(e)η∗(e) = α
∑
e∈E

η∗(e)qσ̂(e) = 1.

Now let η ∈ Adm(Γ̂) be arbitrary. Since Adm(Γ̂) is convex, we have (1−θ)η∗+θη ∈ Adm(Γ̂)

for all θ ∈ [0, 1]. Using Taylor’s theorem, we have
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α−1 = Eq,σ̂(η∗) ≤ Eq,σ̂((1− θ)η∗ + θη) =
∑
e∈E

σ̂(e)[(1− θ)η∗(e) + θη(e)]q

=
∑
e∈E

σ̂(e)η∗(e)q
[
1 + θ

(
η(e)− η∗(e)

η∗(e)

)]q
=
∑
e∈E

σ̂(e)η∗(e)q
[
1 + qθ

(
η(e)− η∗(e)

η∗(e)

)
+O(θ2)

]
= α−1 + qθ

∑
e∈E

σ̂(e)η∗(e)q−1(η(e)− η∗(e)) +O(θ2)

= α−1 + α−1qθ
∑
e∈E

ρ∗(e)(η(e)− η∗(e)) +O(θ2).

(2.2.5)

Hence, we obtain

1 =
∑
e∈E

ρ∗(e)η∗(e) ≤
∑
e∈E

ρ∗(e)η(e) +O(θ),

and letting θ → 0, we obtain the ρ∗ ∈ Adm(Γ̂).

The main example we are interested in is in the case when Γ = Γ(a, b) is the family of all

walks from a to b. In this case, the Fulkerson Blocker Γ̂ is the family of all minimal ab-cuts.

Recall, an ab-cut is minimal if its edge boundary does not contain the edge boundary of

any other ab-cut as a strict subset. For more discussion, see 4.2 of [4]. Let us now see an

example.

Example 2.2.9. Consider the Path graph P3 consisting of two edges e1 = {a, b} and e2 =

{b, c}. Let Γ be the family containing a single object, namely the simple path γ = a b c. In

this case the usage matrix is

N = [ 1 1 ]

The admissible set is

Adm(Γ) = {(ρ1, ρ2) : ρ1 + ρ2 ≥ 1} ⊂ R2
≥0.
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In particular, Adm(Γ) has two extreme points γ̂1 = (0, 1)T and γ̂2 = (1, 0)T . Therefore,

Adm(Γ̂) = {(η1, η2) : η1 ≥ 1 and η2 ≥ 1}.

a b c

Figure 2.1: The Path graph P3 with γ = a b c

γ̂1

γ̂2

Adm Γ

RE
ρ≥0

Figure 2.2: Adm(Γ) in ρ-space

γ

Adm Γ̂

RE
η≥0

Figure 2.3: Adm(Γ̂) in η-space

Thus, we can see geometrically that the extremal ρ∗ ∈ Adm(Γ) is ρ = (1/2, 1/2)T . Hence

Modp(Γ(a, c)) = (1/2)p+(1/2)p = 21−p. Further, η∗ = (1, 1)T , so Modq(Γ̂(a, c)) = 1q+1q = 2,

and we have

2
1−p
p 2

1
q = 2

1
p
−1+ 1

q = 20 = 1,

which is exactly the conclusion our Theorem yields.

We now turn to the main application we are interested in of the above duality. That is,

the establsihment of so called “Modulus Metrics.”

2.3 Modulus Metrics on Graphs

We start by recalling what a metric space is. We will then proceed to show that, given a

graph G, we can define a metric on G so that G becomes a metric space.

18



Definition 2.3.1. A metric space (X, d) is a set X equipped with a metric d. That is, d is

a function d : X ×X → R satisfying the following conditions for all x, y, z ∈ X:

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y (Non-degeneracy)

2. d(x, y) = d(y, x) (Symmetry)

3. d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality)

If instead of item 3. above we have

d(x, y) ≤ max{d(x, z), d(z, y)}, (2.3.1)

then we call d an ultrametric. Clearly, every ultrametric is a metric.

We now define our metrics.

Definition 2.3.2. LetG = (V,E, σ) be a weighted, connected, simple graph. Given a, b ∈ V ,

let Γ(a, b) be the family of all paths between a and b. Fix 1 < p <∞ and let q := p/(p− 1)

be the Hölder conjugate exponent. Then we define

δp(a, b) :=


0 if a = b

Modp,σ(Γ(a, b))−q/p if a 6= b.

(2.3.2)

Theorem 2.3.3 ([4]). Suppose G = (V,E, σ) is a weighted, connected, simple graph. Then

δp is a metric on V . Moreover,

(a) limp→∞ δp(a, b) = `(Γ(a, b));

(b) δ2(a, b) = Ceff (a, b)

(c) For 1 < p < 2, Modp,σ(Γ(a, b))−1 is a metric and it tends to MC(a, b)−1 as p→ 1.

Lastly, for every ε > 0 and every p ∈ [1,∞], there is a connected graph for which δ1+ε
p is not

a metric.
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Proof. Let us prove the ‘Moreover’ parts assuming δp is a metric on V . Parts (a) and (b)

follow from Theorem 2.1.11. For (c), since 1 < p < 2, we have p/q = p − 1 satisfies

0 < p/q < 1, and hence Modp,σ(Γ(a, b))−1 = δ
p/q
p is a metric. Then using continuity in p,

we obtain the result. Clearly δp(a, b) ≥ 0 since p-Modulus is an infimum of non-negative

quantities and since we assume G is connected, there is always at least one path from a to

b, whence Modp,σ(Γ(a, b)) > 0. Further, since the usage matrix is the same for the curves

connecting b to a as it is for connecting a to b, we have δp(a, b) = δp(b, a).

Now we show the triangle inequality. First, we note that although Γ̂(a, b) is the family

of all minimal ab-cuts, we can look at the larger set of all ab-cuts without changing the

value of the q-Modulus. To see this, consider η ∈ Adm(Γ̂). Since every ab-cut that isn’t

minimal contains a minimal ab-cut, we must have η is admissible with respect to the larger

family. So, without loss of generality, we assume Γ̂(a, b) is the family of all ab-cuts. By

Theorem 2.2.8, we have δp(a, b) = Modq,σ̂(Γ̂(a, b)). Further, if c ∈ V , then for each ab-cut

S, either c ∈ S or c /∈ S. If c ∈ S, then S is a cb-cut, and otherwise, S is an ac-cut. Thus

Γ̂(a, b) ⊂ Γ̂(a, c) ∪ Γ̂(c, b). Then we have

δp(a, b) = Modp,σ(Γ(a, b))−q/p

= Modq,σ̂(Γ̂(a, b)

≤ Modq,σ̂(Γ̂(a, c) ∪ Γ̂(c, b))

≤ Modq,σ̂(Γ̂(a, c)) + Modq,σ̂(Γ̂(c, b))

= δp(a, c) + δp(c, b).

Now we turn to the last bit of the Theorem. Consider the path graph in Example 2.2.9.

Let us fix p ∈ (1,∞). We have shown that Modp(Γ(a, c)) = 21−p. Further, it is easy to see

that Modp(Γ(a, b)) = Modp(Γ(b, c)) = 1. Computing, we have

δp(a, c) = 2
q(p−1)
p = 2 = δp(a, b) + δp(b, c).
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Thus, δp(a, c)
1+ε = 21+ε > 2 = δp(a, b)

1+ε + δp(b, c)
1+ε and δ1+ε

p does not satisfy the triangle

inequality.
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Chapter 3

Modulus in Metric Spaces

Here we will present some of the results found in [6], but first we present some of the basic

definitions and tools we use in metric spaces that can be found in, for instance, [20]. The

goal of this chapter is to establish Theorem 3.3.9 and Theorem 3.4.1.

3.1 Metric Space Preliminaries

We recall the contents of Definition 2.3.1. A metric space (X, d) is a set X equipped with a

metric d. That is, d is a function d : X ×X → R satisfying the following conditions for all

x, y, z ∈ X:

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y (Non-degeneracy)

2. d(x, y) = d(y, x) (Symmetry)

3. d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality)

A path in X is a continuous function γ : I → (X, d) for some interval I = [a, b] ⊂ R. In

general, the interval I can be closed, open, or half-open, and either bounded or unbounded.

We will assume I is closed and bounded. The length of a path γ is its total variation:

length(γ) := sup
a=t0≤t1≤...≤tN=b

N∑
k=1

d(γ(tk−1), γ(tk)) (3.1.1)
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where the supremum is taken over all possible partitions of the interval [a, b] with N arbitrary

subintervals.

The path γ is said to be rectifiable if length(γ) < ∞. If γ is a rectifiable path, we can

define the length function sγ : I → [0, length(γ)] by

sγ(t) := length(γ|It), (3.1.2)

where It := [a, t]. Clearly, sγ is weakly increasing. Also, it is easily seen that for any t, s ∈ I,

t < s, we have

d(γ(t), γ(s)) ≤ length(γ|[t,s]) = sγ(t)− sγ(s). (3.1.3)

Lemma 3.1.1 ([20]). If γ is a rectifiable path in X, then sγ is continuous.

Proof. Since sγ is increasing, it can fail to be continuous only if there is a < t0 ≤ b and δ > 0

such that

sγ(t0) > sγ(t) + δ for all a < t < t0, (3.1.4)

or a similar statement for t0 < t < b.

Since γ is continuous at t0, there is t1 < t0 so that

d(γ(t), γ(t0)) < δ/2 for every t1 < t < t0. (3.1.5)

Now, since length
(
γ |[t1,t0]

)
= sγ(t0) − sγ(t1), by (3.1.4), we can pick a partition t1 =

s0 < s1 < · · · < sN−1 < sN = t0 so that

N−1∑
j=0

d(γ(sj), γ(sj+1)) > δ (3.1.6)

and using (3.1.5) with t = sN−1, we get that

N−2∑
j=0

d(γ(sj), γ(sj+1)) > δ/2. (3.1.7)
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We now let t2 := sN−1 and repeat what we just did with t2 in place of t1, noting that both

(3.1.4) and (3.1.5) remain valid. The process can be iterated indefinitely and it gives rise to

a sequence tk such that length
(
γ |[t1,tk]

)
→∞. This contradicts rectifiability.

The length function sγ is continuous and increasing, but not necessarily strictly increas-

ing. We can define a right inverse as follows:

s−1
γ (t) = max{s : sγ(s) = t} ∀t ∈ [0, length(γ)] (3.1.8)

Then s−1
γ is increasing and right-continuous.

Definition 3.1.2. The arc-length parametrization of a rectifiable path γ : [0, 1]→ X is the

curve γs : [0, length(γ)]→ X defined by

γs(t) := γ(s−1
γ (t)).

In particular, γ(u) = γs(sγ(u)), and

length
(
γs |[t,u]

)
= length

(
γ |[s−1

γ (t),s−1
γ (u)]

)
= sγ(s

−1
γ (t))− sγ(s−1

γ (u)) = t− u. (3.1.9)

Definition 3.1.3. γ : [0, 1] → X is absolutely continuous if for all ε > 0 there exists

δ = δ(ε) > 0 such that whenever {(ai, bi)}Ni=1 are disjoint intervals in [0, 1]:

N∑
i=1

|bi − ai| < δ =⇒
N∑
i=1

d(γ(ai), γ(bi)) < ε.

Proposition 3.1.4 ([20]). Suppose γ : [0, 1]→ X is rectifiable. Then γ is absolutely contin-

uous if and only if sγ is absolutely continuous.

Proof. (⇐) This direction is clear by (3.1.3).

(⇒) Given ε > 0, find δ = δ(ε) > 0 as in Definition 3.1.3. Let {(ai, bi)}Ni=1 be disjoint
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intervals in [0, 1] with
N∑
i=1

|bi − ai| < δ.

Then, as we have seen, sγ(bi)− sγ(ai) = length
(
γ |[ai,bi]

)
<∞. By (3.1.1), there are disjoint

intervals {(aji , b
j
i )}

Ni
j=1 contained in (ai, bi) such that

Ni∑
j=1

d(γ(aji ), γ(bji )) ≥ sγ(bi)− sγ(ai)−
ε

N
.

By absolute continuity of γ, since the disjoint intervals {(aji , b
j
i )}i,j also have length adding

up to less than δ, we get

N∑
i=1

sγ(bi)− sγ(ai) ≤
N∑
i=1

Ni∑
j=1

d(γ(aji ), γ(bji )) + ε ≤ 2ε.

Next we recall Theorem 4.4.8, Proposition 5.1.8 of [20]. Here, if O is an open subset of

[a, b], then V (γ,O) is defined as follows. If O = (c, d), then V (γ,O) is the total variation

of γ over O as defined in (3.1.1), with a, b replaced with c, d, respectively. If O is a disjoint

union of open intervals Ij, then V (γ,O) =
∑

j V (γ, Ij). Further, we set

V (γ, [c, d]) = V (γ, (c, d]) = V (γ, [c, d)) = V (γ, (c, d)).

Note that using this notation, V (γ, [a, b]) = length(γ).

Theorem 3.1.5 ([20]). Let γ : [a, b]→ X be a continuous map of bounded variation. Then

we can associate a unique Radon measure νγ on [a, b] such that νγ(O) = V (γ,O) for each

open O ⊂ [a, b] and
dνγ
dm1

(t) = lim
u→t,u6=t

d(γ(t), γ(u))

|t− u|
=: |γ′(t)| (3.1.10)

for m1−a.e. t ∈ [a, b].

We refer to the limit above as the metric differential of γ. We omit the proof here because
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it is quite long and uses tools that would take us astray. However, when the variation is

equal to Lebesgue measure, we have the following corollary.

Corollary 3.1.6 ([20]). Let γ : [a, b] → X be a continuous map of bounded variation such

that V (γ, [t, u]) = u− t whenever a ≤ t ≤ u ≤ b. Then

lim
u→t,u6=t

d(γ(t), γ(u))

|t− u|
= 1 (3.1.11)

for m1 a.e. t ∈ [a, b]. Moreover, for every set E ⊂ [a, b] we have that H1(E) > 0 if

H1(γ(E)) > 0.

Combining (3.1.1) and Corollary 3.1.6, we get the following proposition.

Proposition 3.1.7 ([20]). Let γ : [0, 1] → X be a compact rectifiable path. Then, its arc-

length parametrization γs is always absolutely continuous. Indeed, γs is 1-Lipschitz and

lim
u→t,u6=t

d(γs(t), γs(u))

|t− u|
= 1 for a.e. t.

We will only be interested in rectifiable, non-constant paths because the collection of non-

rectifiable paths will be shown to be negligible in some sense. We will refer to such paths as

curves. Because the a rectifiable curve parameterized by arc length satisfies |γ′s(t)| = 1, we

make the following definition.

Definition 3.1.8. Suppose γ : [0, 1] → X is rectifiable and ρ : X → [0,∞] is Borel. Then

the line integral of ρ along γ is

∫
γ

ρ ds :=

∫ length(γ)

0

ρ(γs(t)) dt.

Also if F ⊂ X is a Borel set,

∫
γ∩F

ρ ds :=

∫ length(γ)

0

1γ−1
s (F )(t)ρ(γs(t)) dt.
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Definition 3.1.9. Suppose γ : [0, 1]→ X is a curve and F ⊂ X is a Borel set. We say that

γ spends positive time in F if

∫
γ∩F

ds =

∫ length(γ)

0

1γ−1
s (F )(t)dt = m1

(
γ−1
s (F )

)
> 0.

where m1 is the Lebesgue measure on R. We write Γ+
F for the family of all curves that spend

positive time in F .

Remark 3.1.10. If γ is absolutely continuous, then for every Borel set F ⊂ X we have

m1

(
γ−1(F )

)
= 0 =⇒ m1

(
γ−1
s (F )

)
= 0.

To see this, let f = s−1
γ . Suppose A ⊂ [0, 1] is measurable. Then for t ∈ f−1(A), we

have f(t) = s−1
γ (t) ∈ A. By definition, s−1

γ (t) is the maximal number s ∈ [0, 1] such that

sγ(s) = t. Now, s = f(sγ(s)) = f(t) ∈ A. Thus t = sγ(s) ∈ sγ(A), and so we have the

inclusion f−1(A) ⊂ sγ(A). By definition of γs, we have

γ−1
s (F ) = (γ ◦ f)−1 (F ) = f−1

(
γ−1(F )

)
By Proposition 3.1.4, sγ is absolutely continuous, and hence,

m1

(
γ−1(F )

)
= 0⇒ m1

(
sγ
(
γ−1(F )

))
= 0⇒ m1

(
f−1

(
γ−1(F )

))
= 0⇒ m1

(
γ−1
s (F )

)
= 0

So if γ spends positive time in F , then m1 (γ−1(F )) > 0.

However, if γ is not absolutely continuous, then there are examples where this fails. For

instance, consider the curve

γ(t) = (t, C(t)), t ∈ [0, 1],

where C(t) is the usual Cantor step-function. Let C be the middle-third Cantor set, D

be the dyadic rationals in [0, 1], and F = [0, 1] × ([0, 1]\D). Then γ−1(F ) = C, and so
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m1 (γ−1(F )) = 0. Now, letting E = [0, 1]×D, we have

√
2 ≤ length(γ) = m1

(
γ−1
s ([0, 1]× [0, 1])

)
= m1

(
γ−1
s (F )

)
+m1

(
γ−1
s (E)

)
A simple computation shows m1 (γ−1

s (E)) = 1, and hence, m1 (γ−1
s (F )) ≥

√
2− 1 > 0.

3.2 Supremum Modulus

Just like in the plane and on graphs, we begin defining Modulus by defining the notion of

admissible functions. In metric spaces, a Borel function ρ : X → [0,∞] is admissible if for

every γ ∈ Γ, we have

`ρ(γ) :=

∫
γ

ρ ds ≥ 1,

and we denote the set of all such Borel functions by Adm(Γ). We now define Supremum

Modulus as

Modsup(Γ) := inf
ρ∈Adm(Γ)

sup
X

(ρ),

where supX(ρ) = sup{ρ(x) : x ∈ X}.

The notion of Supremum Modulus is entirely metric in nature. We will now demonstrate

this fact by establishing

Modsup(Γ) =
1

`(Γ)
, (3.2.1)

where `(Γ) := infγ∈Γ length(γ). Let ρ0 be the constant function 1
`(Γ)

. Clearly, ρ0 is

admissible since ∫
γ

ρ0 ds =
length(γ)

`(Γ)
≥ 1.

Thus, Modsup(Γ) ≤ 1
`(Γ)

. To show the converse, suppose ρ ∈ Adm(Γ). Then we have

1 ≤
∫
γ

ρ ds ≤ sup
X
ρ(x)length(γ).
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Since γ ∈ Γ and ρ ∈ Adm(Γ) are arbitrary, taking the infimum over Γ and supremum over

Adm(Γ), we get

1 ≤ Modsup(Γ)`(Γ).

Hence, we conclude Modsup(Γ) = 1
`(Γ)

.

3.3 ∞-Exceptional Families of Curves and ∞-Modulus

A very important fact (that we will later show) about∞-Modulus1 in general metric measure

spaces is that it is an outer measure on families of curves. Namely, if Γ0 ⊂ Γ and Γ = ∪∞j=1Γj,

then

Mod∞(∅) = 0 (3.3.1)

Mod∞(Γ0) ≤ Mod∞(Γ) (3.3.2)

Mod∞(Γ) ≤
∞∑
j=1

Mod∞(Γj). (3.3.3)

Suppose further that Mod∞(Γ0) = 0. Then we would have

Mod∞(Γ) = Mod∞((Γ\Γ0) ∪ Γ0) ≤ Mod∞(Γ\Γ0) + Mod∞(Γ0) = Mod∞(Γ\Γ0).

Combining this with monotonicity, we have that Mod∞(Γ) = Mod∞(Γ\Γ0). Hence, when

defining admissibility, we really have no need for the line integral of a function to be at

least 1 for every curve, but rather for almost every curve, that is up to a family of curves of

∞-Modulus zero. This gives us a notion of weak admissibility. Thus, first we will define a

strong ∞-Modulus denoted Mod∗∞(Γ). We will then use this to define a weak ∞-Modulus.

Finally, we will show the two notions are equal.

Assume now that a regular Borel measure µ is given on (X, d). Then it makes sense to

1This holds for p-Modulus with 1 ≤ p ≤ ∞, however, in the setting of general metric spaces, we will not
show this. See [20].
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talk about the essential supremum

‖ρ‖∞ = inf{a ≥ 0 : µ({x : ρ(x) > a}) = 0}.

Given a curve family Γ, define

Mod∗∞(Γ) := inf
ρ∈Adm(Γ)

‖ρ‖∞.

Now we establish that Mod∗∞ is an outer measure.

Lemma 3.3.1 ([20]). Mod∗∞(Γ) has the following properties:

(i) If Γ′ ⊂ Γ, then Mod∗∞(Γ′) ≤ Mod∗∞(Γ) (monotone);

(ii) Mod∗∞(Γ) ≤ ‖ρ‖∞ ≤
∑∞

j=1 Mod∗∞(Γj) (subadditive);

(iii) If Γ1 ⊂ Γ2 ⊂ · · · and Γ = ∪∞j=1Γj, then limj→∞Mod∗∞(Γj) = Mod∗∞(Γ) (continuous

from below);

(iv) If for every γ ∈ Γ1 there is a subcurve σ ⊂ γ such that σ ∈ Γ2, we write Γ2 � Γ1, and

then Mod∗∞(Γ1) ≤ Mod∗∞(Γ2) (shorter walks).

Proof. (i) Suppose that Γ′ ⊂ Γ. Then Adm(Γ) ⊂ Adm(Γ′). Thus, Mod∗∞(Γ′) ≤ Mod∗∞(Γ).

(ii) Suppose that Γ = ∪∞j=1Γj. For each j, find ρj ∈ Adm(Γj) such that

‖ρj‖∞ ≤ Mod∗∞(Γj) +
ε

2j
.

Let ρ =
∑

j ρj. Then ρ ∈ Adm(Γ) and

Mod∗∞(Γ) ≤ ‖ρ‖∞ ≤
∞∑
j=1

Mod∗∞(Γj) + ε

Now let ε tend to zero.
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(iii) Let M = limj→∞Mod∗∞(Γj). For every j = 1, 2, . . . , there is ρj ∈ Adm(Γj) such that

‖ρj‖∞ ≤M + 1/j. Define

ρ(k) := sup
j≥k

ρj. (3.3.4)

For every j, there is a set Nj, with µ(Nj) = 0, such that ρj < M + 2/j outside of Nj. Then

N = ∪jNj also has measure zero, and outside of N we have ρ(k) < M + 2/k. In particular,

‖ρ(k)‖∞ ≤M + 2/k.

Now fix k = 1, 2, . . . and fix γ ∈ Γ. Then γ ∈ Γj for some j. Let i = max{j, k}. Then

since i ≥ j, we have ρi ∈ Adm(Γj) and `ρi(γ) ≥ 1. Thus, since k ≤ i, by (3.3.4), `ρ(k)(γ) ≥ 1.

So we have shown that ρ(k) ∈ Adm(Γ), which implies that Mod∗∞(Γ) ≤ M + 2/k. Letting k

tend tom infinity gives Mod∗∞(Γ) ≤M .

The other direction, Mod∗∞(Γ) ≥M , follows from monotonicity (property (i) above).

(iv) Note that Adm(Γ2) ⊂ Adm(Γ1), so the infimum is taken over a larger set.

Definition 3.3.2. A curve family Γ is ∞-exceptional, if Mod∗∞(Γ) = 0.

The next lemma is an expanded version of Lemma 5.7 in [13].

Lemma 3.3.3 ([6]). Let Γ be a curve family. The following are equivalent:

(a) Γ is ∞-exceptional

(b) There exists ρ : X → [0,∞) such that ‖ρ‖∞ <∞ and `ρ(γ) =∞ for all γ ∈ Γ.

(c) There exists ρ : X → [0,∞) such that ‖ρ‖∞ = 0 and `ρ(γ) =∞ for all γ ∈ Γ.

(d) There is a Borel set F with µ(F ) = 0 such that Γ ⊂ Γ+
F , i.e., in words: there is a set

of measure zero such that every curve in the family spends positive time in that set.

Proof. (a)⇒ (b): Assume Mod∗∞(Γ) = 0. Then for k = 1, 2, . . . there is ρk ∈ Adm(Γ) such

that ‖ρk‖∞ ≤ 2−k. Set ρ :=
∑∞

k=1 ρk. Then, ‖ρ‖∞ ≤ 1 and `ρ(γ) =∞ for all γ ∈ Γ.

(b)⇒ (c): Assume ‖ρ‖∞ ≤ 1 and `ρ(γ) =∞ for all γ ∈ Γ. For a ≥ 0, consider the level

sets

Sa(ρ) = {x : ρ(x) > a}.
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Since ‖ρ‖∞ ≤ 1, we have µ(F ) = 0, where F = S1(ρ). Define ρ̃ := ρ 1F . Then, ‖ρ̃‖∞ = 0.

Also ∫
γ

ρ̃ ds =

∫
γ∩F

ρ ds ≥
∫
γ∩F

ρ ds+

∫
γ\F

(ρ− 1) ds ≥
∫
γ

ρ ds− `(γ) ≥ ∞.

(c)⇒ (d): Assume ‖ρ‖∞ = 0 and `ρ(γ) =∞ for all γ ∈ Γ. Then µ(Sa(ρ)) = 0 for every

a > 0. Set F = S0(ρ). Then, by continuity of measures, µ(F ) = 0. However,

∞ =

∫
γ

ρ ds =

∫
γ∩F

ρ ds

implies that
∫
γ∩F ds > 0, so Γ ⊂ Γ+

F .

(d)⇒ (a): Assume µ(F ) = 0 and Γ ⊂ Γ+
F . For k = 1, 2, . . . , define

Γk =

{
γ ∈ Γ+

F :

∫
γ∩F

ds ≥ 1/k

}
.

Let ρk = k1F . Then ρk ∈ Adm(Γk) and ‖ρk‖∞ = 0, so Mod∗∞(Γk) = 0. Therefore,

Mod∗∞(Γ+
F ) = 0 by subadditivity of modulus and Mod∗∞(Γ) = 0 by monotonicity of modulus.

Remark 3.3.4. We say that a property holds for ∞-a.e. curve, if it fails only for an ∞-

exceptional set of curves. For instance, Lemma 3.3.3 says that if µ(F ) = 0, then ∞-a.e.

curve does not spend positive time in F .

We are now ready to define Mod∞(Γ) mentioned earlier.

Definition 3.3.5. We say that ρ : X → [0,∞) is weakly admissible and write ρ ∈ w-Adm(Γ),

if ∫
γ

ρ ds ≥ 1 for ∞-a.e. γ ∈ Γ.

Then, ∞-modulus of a family Γ is

Mod∞(Γ) := inf
ρ∈w-Adm(Γ)

‖ρ‖∞.

Since it is easier to be weakly admissible, Mod∞(Γ) ≤ Mod∗∞(Γ). In particular, an ∞-
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exceptional family has ∞-modulus zero.

Lemma 3.3.6 ([6]). We have

Mod∞(Γ) = Mod∗∞(Γ).

Proof. In light of the above remark, it suffices to show that Mod∞(Γ) ≥ Mod∗∞(Γ). To this

end, let ρ be weakly admissible for Γ. Then there is a family Γ0 ⊂ Γ with Mod∗∞(Γ0) = 0

such that whenever γ ∈ Γ\Γ0 we have
∫
γ
ρ ds ≥ 1. By Lemma 3.3.3 there is a Borel function

ρ0 : X → [0,∞] such that ‖ρ0‖∞ = 0 and for each γ ∈ Γ0 we have
∫
γ
ρ0 ds =∞. Note then

that h := ρ+ ρ0 belongs to Adm(Γ). Thus

Mod∗∞(Γ) ≤ ‖h‖∞ = ‖ρ+ ρ0‖∞ ≤ ‖ρ‖∞ + ‖ρ0‖∞ = ‖ρ‖∞.

Taking the infimum over all such ρ that are weakly admissible for Γ yields that

Mod∗∞(Γ) ≤ Mod∞(Γ)

as desired.

We will now show a result similar to (3.2.1) for ∞-Modulus.

Definition 3.3.7. Let Γ be a family of curves. For every a ≥ 0, let

Γ(a) := {γ ∈ Γ : `(γ) < a}. (3.3.5)

Define the essential length of Γ as

ess`(Γ) := sup {a ≥ 0 : Γ(a) is ∞-exceptional}

By definition, we always have

`(Γ) ≤ ess`(Γ).
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Remark 3.3.8. Note that for all a < ess`(Γ), we have that Γ(a) is ∞-exceptional. For

simplicity of notation, write a0 := ess`(Γ). By continuity from below of Mod∗∞, this means

that Γ(a0) is ∞-exceptional.

Theorem 3.3.9 ([6]). Let (X, d, µ) be a metric measure space with µ Borel. Let Γ be a

family of curves with ess`(Γ) > 0. Then

Mod∞(Γ) =
1

ess`(Γ)
.

Moreover, ρ0 ≡ ess`(Γ)−1 is an extremal weakly admissible density.

Proof. Assume Γ is not ∞-exceptional.

Let ρ ∈ w-Adm(Γ). Set F = {x : ρ(x) > ‖ρ‖∞}. Then µ(F ) = 0, so Γ+
F is∞-exceptional.

Also, by definition of weakly admissible, the family

Γ̃ =

{
γ ∈ Γ :

∫
γ

ρ ds < 1

}

is ∞-exceptional.

Finally, as seen in Remark 3.3.8, Γ(a0) is ∞-exceptional.

By subadditivity Γ+
F ∪ Γ̃ ∪ Γ(a0) is ∞-exceptional, and since Γ is not ∞-exceptional, we

can find at least one curve γ ∈ Γ \ (Γ+
F ∪ Γ̃ ∪ Γ(a0)). Then, for these curves, we have

1 ≤
∫
γ

ρ ds =

∫
γ∩F

ρ ds+

∫
γ\F

ρ ds =

∫
γ\F

ρ ds ≤ ‖ρ‖∞`(γ).

Since for every ε > 0, Γ(a0 + ε) is not ∞-exceptional, it is in particular non-empty. So we

find that

1 ≤ ‖ρ‖∞ess`(Γ).

But since ρ ∈ w-Adm(Γ) was arbitrary, we obtain that

Mod∞(Γ) ≥ 1

ess`(Γ)
.
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Conversely, let ρ0 ≡ ess`(Γ)−1. Then, for every γ ∈ Γ \ Γ(a0), we have `(γ) ≥ ess`(Γ).

Thus ∫
γ

ρ0 ds =
`(γ)

ess`(Γ)
≥ 1.

And by Remark 3.3.8, Γ(a0) is ∞-exceptional. So ρ0 is weakly admissible and

Mod∞(Γ) ≤ 1

ess`(Γ)
.

It now remains to consider the case that Γ is ∞-exceptional. In this case, the zero

function is weakly admissible for Γ and hence Mod∞(Γ) = 0. Furthermore, for each a > 0

we have that Γ(a) ⊂ Γ and hence Γ(a) is ∞-exceptional. Thus ess`(Γ) =∞, and the claim

follows from this.

Observe also that ess`(Γ) = ∞ if and only if Γ is ∞-exceptional (the collection of all

locally rectifiable but unrectifiable curves have ρε = ε as an admissible function for all

ε > 0).

3.4 The Essential Metric

If we choose the “connecting” families Γ(x, y) consisting of all curves connecting x to y, we

can define

dess(x, y) := Mod∞(Γ(x, y))−1 = ess`(Γ(x, y)).

Note that dess(x, y) could be infinite for some x, y ∈ X.

Theorem 3.4.1 ([2]). dess(x, y) is a pseudometric on X. Furthermore, if for each x, y ∈ X

with x 6= y we have Mod∗∞(Γ(x, y)) > 0, then dess is a metric on X.

Proof. Let x, y ∈ X with x 6= y. Then as every curve γ connecting x to y satisfies `(γ) ≥

d(x, y), it follows that dess(x, y) ≥ d(x, y) > 0. It is also clear that dess(x, y) = dess(y, x).

Note that for each a > 0 the family Γ(x, x)(a) (using the notation from (3.3.5)) con-

tains the constant curve γ(t) = x, and hence Mod∞(Γ(x, x)(a)) = ∞. It follows that

ess`(Γ(x, x)) = 0, that is, dess(x, x) = 0.
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Next, we verify the triangle inequality. Fix three distinct points a, b, c ∈ X. For simplic-

ity, let Γ1 = Γ(a, c), Γ2 = Γ(c, b) and Γ0 = Γ(a, b). Also assume that d0 = dess(a, b), d1 =

dess(a, c), d2 = dess(c, b) > 0. Let Γ = Γ(a, b; c) be the family of all curves that start at a,

end at b, and go through c. Then Γ ⊂ Γ0, and so d0 = ess`(Γ0) ≤ ess`(Γ).

If d1 + d2 = ∞, then clearly d0 ≤ d1 + d2. So it suffices to verify the triangle inequality

only in the case that both d1 <∞ and d2 <∞. Suppose that λ = d1+d2+2ε for some ε > 0.

Then Mod∗∞(Γj(dj + ε)) > 0 for j = 1, 2. Note that h = 1
d(a,b)

is admissible for computing

Mod∗∞(Γ(λ)), so Mod∗∞(Γ(λ)) < ∞. Let ρ be admissible for Γ(λ). Then for γ ∈ Γ1(d1 + ε)

and β ∈ Γ2(d2 + ε), we must have the concatenation γ + β ∈ Γ(λ) and so
∫
γ+β

ρ ds ≥ 1. For

j = 1, 2 let

`ρ(Γj(dj + ε)) := inf
γ∈Γj(dj+ε)

∫
γ

ρ ds.

Then by the above,

`ρ(Γ1(d1 + ε)) + `ρ(Γ2(d2 + ε)) ≥ 1. (3.4.1)

Moreover ρ · `ρ(Γj(dj + ε))−1 ∈ Adm(Γj(dj + ε)) for j = 1, 2. So for j = 1, 2 we have

`ρ(Γj(dj + ε)) ≤ ‖ρ‖∞
Mod∗∞(Γj(dj + ε))

.

Now by (3.4.1),

1 ≤ ‖ρ‖∞
[

1

Mod∗∞(Γ1(d1 + ε))
+

1

Mod∗∞(Γ2(d2 + ε))

]
,

and taking the infimum over all such ρ yields

1

Mod∗∞(Γ(λ))
≤
[

1

Mod∗∞(Γ1(d1 + ε))
+

1

Mod∗∞(Γ2(d2 + ε))

]
<∞,

from which we conclude that Mod∗∞(Γ(λ)) > 0.

Hence, d0 ≤ d1 + d2 + 2ε, and by letting ε tend to 0, we see that d0 ≤ d1 + d2.
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Finally, suppose that for each x, y ∈ X with x 6= y we have Mod∗∞(Γ(x, y)) > 0.

Then to show that dess is a metric on X it only remains to show that dess(x, y) < ∞

for x, y ∈ X. Note that as Mod∗∞(Γ(x, y)) = limn→∞Mod∗∞(Γ(x, y)(n)), by the hypothesis

that Mod∗∞(Γ(x, y)) > 0 we must have Mod∗∞(Γ(x, y)(n)) > 0 for some n ∈ N (since the

Mod∗∞-measure of the collection of all non-rectifiable curves is zero). Thus we must have

dess(x, y) ≤ n <∞, completing the proof.

The following definition is from [14], and is due to De Cecco and Palmieri.

Definition 3.4.2. Given a set N ⊂ X with µ(N) = 0, for x, y ∈ X with x 6= y we set

dN(x, y) = inf{`(γ) : γ connects x to y, and m1(γ−1(N)) = 0}.

Then we define d̂ : X ×X → R by d̂(x, x) = 0 and for x 6= y,

d̂(x, y) = sup{dN(x, y) : N ⊂ X with µ(N) = 0}.

As with dess, it might well be that d̂ is not finite.

It was shown in that paper that if µ is doubling and X is complete, then d̂ is biLipschitz

equivalent to the original metric d if and only if X supports an ∞-Poincaré inequality.

Proposition 3.4.3 ([6]). We always have d̂ = dess on X.

Proof. Fix x, y ∈ X with x 6= y. We will first show that d̂(x, y) ≤ dess(x, y). To this end,

note that if dess(x, y) =∞, then the above inequality holds trivially. Therefore, let us assume

that dess(x, y) < ∞. Recall that Γ := Γ(x, y) denotes the collection of all rectifiable curves

in X connecting x to y. Then for each ε > 0, if a = [1 + ε]dess(x, y), then Mod∞(Γ(a)) > 0.

So, by Lemma 3.3.3(d), whenever N ⊂ X with µ(N) = 0 there must exist a curve γ

in Γ(a) that does not spend positive time in N . In particular, m1(γ−1(N)) = 0. Hence

dN(x, y) ≤ [1 + ε]dess(x, y). Taking the supremum over all such nulls sets N gives

d̂(x, y) ≤ [1 + ε]dess(x, y).
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Letting ε→ 0 now gives the desired inequality.

We next show that dess(x, y) ≤ d̂(x, y). First suppose that dess(x, y) =∞. Then for each

a > 0 we know that Mod∞(Γ(a)) = 0, and so there is a non-negative Borel function ρ on X

with ‖ρ‖L∞(X) = 0 such that
∫
γ
ρ ds =∞ for each γ ∈ Γ(a). Let N = {x ∈ X : ρ(x) > 0}.

Then µ(N) = 0 and for every γ ∈ Γ(a), m1(γ−1(N)) > 0. Therefore d̂(x, y) ≥ dN(x, y) ≥ a.

Since this holds true for each a > 0, we have that d̂(x, y) =∞.

Now we consider the case that dess(x, y) < ∞. Then since dess(x, y) ≥ d(x, y) > 0, we

have that for 0 < ε < 1, Mod∞(Γ(a)) = 0, with a = [1 − ε]dess(x, y). Therefore, there

is some Borel function ρ : X → [0,∞] such that ‖ρ‖L∞(X) = 0 and
∫
γ
ρ ds = ∞ for each

γ ∈ Γ(a). Thus, if N = {x ∈ X : ρ(x) > 0}, we see that µ(N) = 0 and for each γ ∈ Γ(a),

H1(γ−1(N)) > 0. It follows that

d̂(x, y) ≥ dN(x, y) ≥ [1− ε]dess(x, y).

Letting ε→ 0 in the above gives d̂(x, y) ≥ dess(x, y) as desired.
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Chapter 4

Duality of Modulus in RN

Here, we turn to the case when the metric space we are interested in is RN , N ≥ 2, equipped

with the Euclidean metric and N -dimensional Lebesgue measure. We will work towards a

slightly modified version of the Corollary to Theorem 5 in [3], which is a generalization of

the duality principle stated in Chapters one and two. See Theorem 4.2.6. The work in [3] is

more general than what we need. Using the notation in [3], we will work in the setting where

the matrix A(x) is the identity matrix for each x and the function w(x) ≡ 1. Throughout,

p and q are assumed to be Hölder conjugates, that is 1/p+ 1/q = 1 and p, q ∈ (1,∞).

4.1 Definitions

4.1.1 Modulus of Measures

We begin by recalling Fuglede’s definition of modulus of a family of measures [17]. Let M

be a collection of (non-negative) Borel measures. We then define the admissible set and the

p-Energy as follows:

Adm(M) :=

{
ρ : inf

µ∈M

∫
ρ dµ ≥ 1

}
(4.1.1)

Ep(ρ) :=

∫
ρp dx, (4.1.2)
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where ρ is any Borel measurable function from an open bounded domain Ω ⊂ RN to [0,∞],

and dx denotes the standard N -dimensional Lebesgue measure. We then define the p-

Modulus as

Modp(M) := inf
ρ∈Adm(M)

Ep(ρ). (4.1.3)

In the case that Adm(M) = ∅, we define Modp(M) :=∞.

Fuglede proved several properties of p-Modulus of a system of measures in [17]. We state

those here as Lemma 4.1.1. Here, |E| denotes the Lebesgue measure of E; also µ̄ denotes

the completion of µ; and, as before, we say that a property holds for p−a.e. µ ∈ M, if it

holds for µ ∈M \M0, where Modp(M0) = 0.

Lemma 4.1.1 (Fuglede [17]). Modp(M) has the following properties:

(1) M⊂M′ ⇒ Modp(M) ≤ Modp(M′)

(2) Modp(∪∞j=1Mj) ≤
∑∞

j=1 Modp(Mj)

(3) |E| = 0⇒ µ̄(E) = 0 for p−a.e. µ ∈M.

(4) If ρ ∈ Lp(RN), then ρ is µ̄-integrable for p−a.e. µ ∈M.

(5) If ‖ρi − ρ‖p → 0, then there is a subsequence ρik such that
∫
RN |ρik − ρ| dµ̄ → 0 for

p−a.e. µ ∈M.

(6) Modp(M) = 0 ⇐⇒ ∃ρ such that ‖ρ‖p <∞,
∫
RN

ρ dµ =∞,∀µ ∈M.

(7) There exists ρ∗ such that
∫
RN ρ

∗ dµ ≥ 1 for p−a.e. µ ∈M and Modp(M) = Ep(ρ∗).

4.1.2 Modulus of Vectors of Veasures

We will now use our definition of Modp(M) to help us define p-Modulus for vector measures.

We say ν is a vector measure if it is a vector whose components are (finite) signed measures.

That is, for any Borel set E,

ν(E) = (ν1(E), ν2(E), . . . , νN(E)),
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where νi is a finite signed measure. The total variation of a vector measure ν, denoted by

|ν|, is defined by

|ν|(E) := sup
∑
j

(
N∑
i=1

νi(Ej)
2

)1/2

,

where the supremum is over all finite partitions {Ej} of E into Borel sets. The total

variation of a vector measure is a (non-negative) measure on RN . Given a function f =

(f1, f2, . . . , fN) : RN → RN such that
∫
|fi| d|νi| < ∞ for each i, we define

∫
f · dν :=∑N

i=1

∫
fi dνi. In [22], it is shown that |

∫
f · dν| ≤

∫
|f | d|ν|.

Definition 4.1.2. Let F0 be a set of vector measures ν. Let |F0| = {|ν| : ν ∈ F0}. If

Modp(|F0|) = 0, we say F0 is p-exceptional. Also, if F0 ⊂ F and some property holds for

all measures ν ∈ F\F0, then we say that property holds p-a.e. in F .

Because of a strange phenomenon that will be described below, it is necessary to use a

notion of weak admissibility when defining p-Modulus for vector measures, unlike p-Modulus

for curve families or systems of measures. First, for a Borel measurable function f : RN →

RN and a set of vector measures N , we define

Nf :=

{
ν :

∫
f · dν < 1

}
.

We define the weakly admissible set as

w-Adm(M) := {f : Modp(|Nf |) = 0} . (4.1.4)

Thus, we define p-Modulus for a set of vector measures as

Modp(N ) := inf {Ep(f) : f ∈ w-Adm(N )} , (4.1.5)

where Ep(f) :=
∫
|f |p dx.

Now we return to our discussion of the necessity of using w-Adm(N ) instead of Adm(N ).

Example 4.1.3. Consider a line segment S in R3 joining (0, 0, 0) to (1, 0, 0). Consider the
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family of vector measures N = {(H1|S, 0, 0), (−H1
S, 0, 0)}. Since

∫
f · d(H1, 0, 0) ≥ 1⇒

∫
f · d(−H1, 0, 0) ≤ −1,

we have {f : infν∈N
∫
f · dν ≥ 1} = ∅. In the case where we consider Modulus of families

of measures, we would say the Modulus is infinite. However, |N | = {H1|S} and we have

Modp(|N |) = 0 since ρ = (1, 0, 0)χS is admissible, but ‖ρ‖p = 0 since mN(S) = 0.

Now, although we need weak admissibility for general sets of vector measures, some of

the specific examples we will work with will only have the empty set as a p-exceptional set.

For these examples, we can disregard the need for weak admissibility.

Note that p-Modulus for a set of vectors of measures is increasing, as can be seen directly

from the definition. We will make use of the following proposition, which is proved similarly

to the case for p-Modulus of families of curves.

Proposition 4.1.4 ([3]). Let {Fj} be a sequence of families of vectors of measures which

satisfies Fj ⊂ Fj+1 and F = ∪jFj. Then

Modp(Fj)↗ Modp(F).

Proof. Monotonicity gives us

Modp(Fj) ≤ Modp(Fj+1) ≤ Modp(F)

and so we may assume Modp(Fj)→ α <∞. Thus, it is enough to show Modp(F) ≤ α. Let

ρj ∈ Adm(Fj) such that

Modp(Fj) ≤ ‖ρj‖pp ≤ Modp(Fj) +
1

j
(4.1.6)

for j ≥ 1. Assume j ≤ i and consider 1
2
(ρj + ρi). Then 1

2
(ρj + ρi) ∈ Adm(Fj) since

ρi ∈ Adm(Fj). Thus Modp(Fj) ≤
∥∥(1

2
(ρj + ρi)

)∥∥p
p
. If we assume p ≥ 2, then Clarkson’s
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inequality gives us

∥∥∥∥1

2
(ρi + ρj)

∥∥∥∥p
p

+

∥∥∥∥1

2
(ρi − ρj)

∥∥∥∥p
p

≤ 1

2
‖ρi‖pp +

1

2
‖ρj‖pp . (4.1.7)

Hence, using admissibility of 1
2
(ρi + ρj) with respect to Fj, we have

∥∥∥∥1

2
(ρi − ρj)

∥∥∥∥p
p

≤ 1

2

(
‖ρi‖pp + ‖ρj‖pp

)
−
∥∥∥∥1

2
(ρi + ρj)

∥∥∥∥p
p

≤ 1

2

(
‖ρi‖pp + ‖ρj‖pp

)
−Modp(Fj)

where the right side tends to zero by (4.1.6). So, we have lim supi,j→∞
∥∥1

2
(ρi − ρj)

∥∥
p
≤ 0.

Let ρ′ satisfy ‖ρi − ρ′‖p → 0. Then ‖ρ′‖pp = α. Without loss of generality (by Lemma 4.1.1

(5)), we have
∫
|ρi − ρ′| d|µ| → 0 for p-a.e. µ ∈ F , which gives us

∫
ρ′dµ =

∫
ρi dµ+

∫
(ρ′ − ρi) dµ ≥ lim inf

∫
ρidµ ≥ 1 p− a.e. µ ∈ F ,

so Modp(F) ≤ α.

For the case 1 < p < 2, we use the other Clarkson inequality

∥∥∥∥1

2
(ρi + ρj)

∥∥∥∥q
p

+

∥∥∥∥1

2
(ρi − ρj)

∥∥∥∥q
p

≤
(

1

2
(‖ρi‖pp + ‖ρj‖pp

)q/p
. (4.1.8)

Then we have

∥∥∥∥1

2
(ρi − ρj)

∥∥∥∥q
p

≤
(

1

2
(‖ρi‖pp + ‖ρj‖pp

)q/p
−
∥∥∥∥1

2
(ρi + ρj)

∥∥∥∥q
p

≤
(

1

2
(‖ρi‖pp + ‖ρj‖pp)

)q/p
−Modp(Fj)q/p,

and we proceed exactly as in the case p ≥ 2.

Now, the first family of vector measures we are interested in will be in terms of curve

families. Let K0 and K1 be disjoint compact sets that satisfy Kj ∩ Ω 6= ∅. Throughout,

we will treat Ω as a fixed bounded and connected open subset of RN . In what follows, we
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will occasionally consider open subsets of Ω. The sets K0 and K1 can be assumed to satisfy

K0 ∪K1 ⊂ Ω by taking an intersection with Ω. Define

Γ = Γ(K0, K1,Ω) = {rectifiable curves in Ω starting at K0 ∩ Ω and ending at K1 ∩ Ω}.

Since γ ∈ Γ is rectifiable, it can be parameterized by arc-length. Denote this parameter-

ization by γs(t) ∈ RN . Since this parameterization is always 1-Lipschitz (See Proposition

3.1.7), it has derivatives at a.e. point in [0, `(γ)]. Then, we have a vector of measures defined

by

γ(E) =

∫
[0,`(γ)]

γ′s(t)χE(γs(t)) dt.

For all Borel measurable functions f : RN → RN define the line integral of f along γ as

∫
f · dγ =

∫
[0,`(γ)]

f(γ(t)) · γ′s(t) dt (4.1.9)

provided that ∫
|f | d|γ| =

∫
[0,`(γ)]

|f(γs(t))||γ′s(t)| dt <∞.

Here, we are abusing notation by refering to γ as a set, a function, and a vector of measures.

Let dΓ = {dγ : γ ∈ Γ} and d|Γ| = {d|γ| : γ ∈ Γ}. Note that using this notation, for a Borel

function ρ : RN → [0,∞], we have

∫
γ

ρ ds =

∫
ρ d|γ|.

4.1.3 Gradients as Vectors of Measures

We now consider the gradients of certain classes of functions as vectors of measures. For

functions that are ‘nice enough,’ the gradients will also be functions. Although the work

in [3] is more general, we will work in the case where Ω is a bounded and connected open

subset of RN .

Definition 4.1.5. Let u be a non-negative continuous function on Ω. Then we say u is
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p-precise if u is absolutely continuous on p-a.e. curve and ∇u ∈ Lp(Ω).

Remark 4.1.6. Note that because a p-precise function u is absolutely continuous on p-a.e.

curve, it has partial derivatives on mn−1 a.e. line segment parallel to a coordinate axis. For

further details, see the discussion of Absolute Continuity on Lines on page 148 of [20].

Now, we wish to note the difference between p-precise functions and the Sobolev space

W 1,p(Ω). We recall the definition of the Sobolev space W 1,p(Ω) and the following theorem

relating p-precise functions which is Corollary 4.4.6 and Remark 4.4.1 of [22].

Definition 4.1.7. A function f is in the Sobolev space W 1,p(Ω) if f is in Lp(Ω) and the

weak partial derivatives of f are in Lp(Ω).

Theorem 4.1.8 ([22]). Every function f of the Sobolev space W 1,p(Ω) is equal a.e. to

a p-precise function f0 in Ω such that the distributional derivatives of f are equal to the

derivatives of f0. Further, every p-precise function in Lp(Ω) belongs to W 1,p(Ω).

Definition 4.1.9. We define the following:

D∗ (K0, K1,Ω) := {u : u is p-precise on Ω, u = 0 on K0, u = 1 on K1}

D (K0, K1,Ω) := {u : u is p-precise on Ω, lim
x
γ−→K0

u = 0, lim
x
γ−→K1

u = 1, for p-a.e. γ}

∇D∗ := ∇D∗(K0, K1,Ω) := {∇u : u ∈ D∗}

∇D = ∇D(K0, K1,Ω) := {∇u : u ∈ D}

Remark 4.1.10. For the families ∇D∗ and ∇D, we have if Modq(F) = 0 (that is, if F is

q-exceptional), then F = ∅. Indeed, suppose F is a q-exceptional subfamily of either of

the above mentioned families. Then, by property 6 of Lemma 4.1.1, there is a ρ satisfying∫
ρ |∇u| dx =∞ for every |∇u| ∈ F and ‖ρ‖q <∞. However, applying Hölder’s inequality,

we have ∫
Ω

ρ|∇u| dx ≤ ‖∇u‖p ‖ρ‖q ,
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giving us a contradiction if F 6= ∅, since the right hand side must be finite for all |∇u|.

Consequently, for ∇D∗ and ∇D, weak admissibility is equivalent to requiring
∫
f ·∇u dx ≥ 1

for every u.

Definition 4.1.11. Define the total variation norm for functions of bounded variation as

‖u‖BV = sup

{∫
Ω

u div ξdx : ξ ∈ C∞0 (Ω, X), ‖ξ‖2 ≤ 1

}

Definition 4.1.12. Define the perimeter of E relative to Ω as

PΩ(E) := ‖χE∩Ω‖BV

Let S = S(K0, K1,Ω) be the family of functions u ∈ BV (Ω) such that u = 0 on some

neighborhood of K0, u = 1 on some neighborhood of K1. Let Σ = Σ(K0, K1,Ω) be a family

of characteristic functions, χE, where E ⊂ Ω with PΩ(E) < ∞ and E = U ∩ Ω, U open in

RN , K0 ∩ U = ∅, K1 ⊂ U . Define ∇S, |∇S|, ∇Σ, and |∇Σ| as follows:

∇S = ∇S(K0, K1,Ω) = {∇u : u ∈ S(K0, K1,Ω)}

|∇S| = |∇S(K0, K1,Ω)| = {|∇u| : u ∈ S(K0, K1,Ω)}

∇Σ = ∇Σ(K0, K1,Ω) = {∇χE : χE ∈ Σ(K0, K1,Ω)}

|∇Σ| = |∇Σ(K0, K1,Ω)| = {|∇χE| : χE ∈ Σ(K0, K1,Ω)}

Definition 4.1.13. Define the following capacities:

Cp(K0,K1,Ω) := inf
u∈D

∫
Ω

|∇u|pdx

C*
p(K0,K1,Ω) := inf

u∈D∗

∫
Ω

|∇u|pdx.
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Note that since D∗ ⊂ D, we have

Cp(K0,K1,Ω) ≤ C*
p(K0,K1,Ω) (4.1.10)

The other inequality is Theorem 5 of [3], see Theorem (4.2.9) below.

4.2 Aikawa-Ohtsuka duality

4.2.1 Approximation by C∞

Typically when we are interested in approximating f ∈ W 1,p(G) or f ∈ BV (G) for some

domain G, we use a convolution of f with a certain function ψε that we call a mollifier. The

standard mollifier is defined as

ψ(x) =


Ce1/(|x|2−1) if |x| < 1

0 if |x| ≥ 1,

(4.2.1)

where

C :=
1∫

|x|<1
e1/(|x|2−1) dx

,

so that
∫
ψ dx = 1 and ψ ∈ C∞0 (RN). Let ε > 0, and define ψε(x) = 1

εN
ψ(x

ε
). Let

Gε := {x ∈ G : dist(x, ∂G) > ε}. Then to approximate f , for x ∈ Gε we define

f ε(x) :=

∫
U

ψε(x− y)f(y) dy. (4.2.2)

Much is known about such approximations. For a more detailed discussion, see Chapters 4

and 5 of [15]. For our purposes, we desire a way of approximating p-precise functions on the

whole domain G, rather than the subset Gε. To that end, we come up with a homeomorphism

Ty,r : G→ G by using a “nice” function α.

Lemma 4.2.1 ([3]). There exists α ∈ C∞(G) such that
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(1) 0 < α ≤ 1,

(2) |∇α| ≤ 1
2
,

(3) α(x) ≤ 1
2

dist(x, ∂G).

The following lemma explains how to use α to define a homeomorphism that we can use

to build an approximation to a p-precise function.

Lemma 4.2.2 ([3]). Let |y| ≤ 1 and 0 < r < 1. Then the mapping Ty,r : x 7→ x + rα(x)y

gives a C∞ homeomorphism of G onto itself.

Now we define our approximation. Let f ∈ L1
loc(G). Define

(f)r(x) :=

∫
|y|<1

f(x+ rα(x)y)ψ(y) dy =
1

(rα(x))N

∫
RN
f(y)ψ

(
y − x
rα(x)

)
dy. (4.2.3)

We observe that (f)r ∈ C∞, (f)r → f as r → 0 and |(f)r(x)| ≤ cMf(x) for a.e. x ∈ G.

Applying the dominated convergence theorem yields the following proposition.

Proposition 4.2.3 ([3]). Let f ∈ Lp(G). Then ‖(f)r − f‖p → 0 as r → 0.

Further, we obtain convergence of the derivatives by the following proposition.

Proposition 4.2.4 ([3],[22]). Let f ∈ Lp(G). Then ‖∇(f)r −∇f‖p → 0 as r → 0 for all

p-precise functions f on G.

Suppose u ∈ D∗. Then for sufficiently small r > 0, (u)r ∈ D∗. Letting G = Ω and

applying Proposition 4.2.4 to C*
p(K0,K1,Ω) and truncating, we obtain

Proposition 4.2.5 ([3]).

C*
p(K0,K1,Ω) = inf

u∈D∗∩C∞(Ω)
0≤u≤1

∫
Ω

|∇u|p dx.
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4.2.2 Statements

As stated above, our goal is to first understand Theorem 5 and its Corollary in [3]. To

that end, from [3], we state Theorem 1 as Theorem 4.2.10, Theorem 2 as Theorem as 4.2.7,

Theorem 3 as Theorem 4.2.8, Theorem 4 as Theorem 4.2.11, Theorem 5 as Theorem 4.2.9,

and its corollary as Theorem 4.2.6.

Our main interest is in the following duality result, which is reminiscent of Theorem

2.2.8. On one hand |dΓ| can be thought as a family of curves connecting two compact sets,

and on the other hand, |∇Σ| is a family of separating surfaces.

Theorem 4.2.6 ([3]). If Modp(|dΓ|) = 0, then Modq(|∇Σ|) =∞; if Modp(|dΓ|) > 0, then

Modp(|dΓ|)1/p Modq(|∇Σ|)1/q = 1. (4.2.4)

To prove this, the authors in [3] prove a chain of statements. First, they establish a

duality statement for ∇D∗ and the capacity related to it.

Theorem 4.2.7 ([3]). C*
p(K0,K1,Ω) and Modq(∇D∗) satisfy the following:

(1) C*
p(K0,K1,Ω) = 0⇒ Modq(∇D∗) =∞

(2) C*
p(K0,K1,Ω) > 0⇒ C*

p(K0,K1,Ω)
1/p

Modq(∇D∗)1/q = 1.

In particular, Modq(∇D∗) > 0.

Then, they relate Modq(∇D∗) to Modq(|∇Σ|), by going through the family ∇S, which

contains both of ∇D∗ and ∇Σ.

Theorem 4.2.8 ([3]). We have the chain of equalities

Modq(∇S) = Modq(∇Σ) = Modq(|∇S|) = Modq(|∇Σ|) = Modq(∇D∗) > 0

This takes care of one term in the duality (4.2.4). To deal with Modp(|dΓ|), they first

show that the inequality in (4.1.10) is an equality.
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Theorem 4.2.9 ([3]). We have the equality

Cp(K0,K1,Ω) = C*
p(K0,K1,Ω) (4.2.5)

Moreover, suppose Ω is bounded. If ModP (dΓ) = 0, then Modq(∇Σ) =∞; if Modq(dΓ) > 0,

then

Modp(dΓ)1/p Modq(∇Σ)1/q = 1.

Finally, they relate Modp(|dΓ|) to the capacity Cp(K0,K1,Ω), which is a fairly standard

fact in the theory of modulus.

Theorem 4.2.10 ([3]). We have the equality

Cp(K0,K1,Ω) = Modp(|dΓ|) <∞

In proving the equality in (4.2.5), the authors also need to establish the following technical

convergence result.

Theorem 4.2.11 ([3]). Let Kj
0 and Kj

1 be sequences of compact sets such that K0
0 ∩K0

1 = ∅,

Kj
0 ⊂ intKj−1

0 , Kj
1 ⊂ intKj−1

1 , K0 = ∩∞j=0K
j
0, K1 = ∩∞j=0K

j
1. If Γj = Γ(Kj

0 , K
j
1 ,Ω), then

Modp(|dΓj|) ↓ Modp(|dΓ|)

4.2.3 Proofs

We will proceed by repeating the proofs in the same order as in [3]. We begin by establishing

Theorem 4.2.10, which is a common result in the theory of modulus, see for instance [19,

Theorem 7.31].

Proof of Theorem 4.2.10. Clearly D 6= ∅, so that Cp(K0,K1,Ω) <∞. Let u ∈ D. Then

1 =

∫
γ

∇u dx ≤
∫
γ

|∇u| ds.
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So that |∇u| ∈ Adm(|dΓ|). Thus,

Modp(|dΓ|) ≤
∫
|∇u|pdx.

Taking the infimum over all u ∈ D, we have Modp(|dΓ|) ≤ Cp(K0,K1,Ω).

Conversely, fix ρ ∈ Lp(Ω) ∩ Adm(|dΓ|), for each x ∈ Ω, let Γx0 be the family of curves

starting in K0 and ending at x, and define

u(x) = inf
γ∈Γx0

∫
γ

ρ ds

Claim:

(1) u is p-precise in Ω.

(2) for a.e. x ∈ Ω, |∇u(x)| ≤ ρ(x).

(3) u(x)→ 0 as x→ K0 along p-a.e. curve γ ∈ Γ.

(4) lim inf u(x) ≥ 1 as x→ K1 along p-a.e. curve γ ∈ Γ.

Since ρ ∈ Lp(Ω), we have
∫
γ
ρ ds <∞ for p-a.e. curve γ ∈ Ω, and so for p-a.e. curve γ

|u(b)− u(a)| ≤
∫
ãb

ρ ds for all a, b ∈ γ, (4.2.6)

where ãb is the arc on γ connecting a to b. By Lemma 6.3.1 of [20], u is absolutely continuous

for p-a.e. curve γ. Hence, u is ACL, and so has partial derivatives a.e. in Ω. Moreover, by

(4.2.6), |∂u/∂xi| ≤ ρ a.e. in Ω, and ∇u ∈ Lp(Ω).

For (2), fix a ∈ Ω such that ∇u(a) exists, and let {ξj} be a countable dense subset of

{|v| = 1} such that (4.2.6) holds, that is

|u(a+ hξj)− u(a)| ≤
∫ h

0

ρ(a+ tξj)dt.
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Dividing by h and letting h→ 0, we obtain

|ξj · ∇u(a)| ≤ ρ(a)

for a.e. a ∈ Ω. Letting ξj → ∇u(a)/|∇u(a)|, we get |∇u(a)| ≤ ρ(a) and (2) is proved.

Since u(a) = 0 for all a ∈ K0 and u is p-precise in Ω, (3) follows. Similarly, by definition,

u(b) ≥ 1 for all b ∈ Ω, and since u is p-precise in Ω, (4) follows.

Letting ũ = min{u, 1}, we have ũ ∈ D(K0, K1,Ω). Hence,

Cp(K0,K1,Ω) ≤
∫
|∇ũ|pdx ≤

∫
|∇u|pdx ≤

∫
ρpdx.

Taking the infimum over ρ ∈ Adm(|dΓ|), we obtain the result.

Now we show the first duality result for Modq(∇D∗) and the corresponding capacity.

Proof of Theorem 4.2.7. We repeat the statement of the Theorem here for convenience.

C*
p(K0,K1,Ω) and Modq(∇D∗) satisfy the following:

(1) C*
p(K0,K1,Ω) = 0⇒ Modq(∇D∗) =∞

(2) C*
p(K0,K1,Ω) > 0⇒ C*

p(K0,K1,Ω)
1/p

Modq(∇D∗)1/q = 1.

In particular, Modq(∇D∗) > 0.

First, observe that D∗ is a convex set. Indeed, if u1, u2 ∈ D∗(K0, K1,Ω), then for λ ∈

[0, 1], we have λu1(x) + (1−λ)u2(x) is p-precise on Ω, λu1(x) + (1−λ)u2(x) = 0 on K0, and

λu1(x) + (1− λ)u2(x) = λ + (1− λ) = 1 on K1. Second, observe that Bq := {η : ‖η‖q ≤ 1}

is weakly compact and convex and

Φ(u, η) := −
∫

Ω

∇u · η dx

is a bilinear functional on D∗ × Bq such that Φ(u, ·) is continuous with respect to the weak
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topology of Bq. Hence the minimax theorem [16] yields

inf
u∈D∗

sup
η∈Bq

Φ(u, η) = sup
η∈Bq

inf
u∈D∗

Φ(u, η). (4.2.7)

Now, supη∈Bq
∫

Ω
∇u · η dx = ‖∇u‖p as can be seen by applying Hölder’s inequality. For

η ∈ Bq, we have ∫
Ω

∇u · η dx ≤ ‖∇u‖p ‖η‖q ≤ ‖∇u‖p .

If ‖∇u‖p 6= 0, then letting η be defined by

η =
|∇u|p−2∇u
‖∇u‖p−1

p

,

we have ‖η‖q = 1 and

∫
∇u · η dx =

∫
|∇u|p

‖∇u‖p−1
p

dx =
‖∇u‖pp
‖∇u‖p−1

p

= ‖∇u‖p .

If ‖∇u‖p = 0, choose η ≡ 0 ∈ RN . Notice that the left hand side of (4.2.7) then be-

comes C*
p(K0,K1,Ω)

1/p
. We will now work towards showing the right hand side is equal to

Modq(∇D∗)−1/q.

Suppose C*
p(K0,K1,Ω) = 0. Then the right hand side of (4.2.7) is zero, and so

infu∈D∗
∫

Ω
∇u · η dx = 0 for every η ∈ Bq. Since the only q-exceptional subfamily of D∗ is

the empty family (see Remark 4.1.10), there can be no admissible η satisfying ‖η‖q < ∞.

Hence, Modq(∇D∗) =∞.

Now, suppose C*
p(K0,K1,Ω) > 0. We will establish that

sup
η∈Bq

inf
u∈D∗

∫
Ω

∇u · η dx = sup

{
‖η‖−1

q : inf
u∈D∗

∫
Ω

∇u · η dx ≥ 1

}
. (4.2.8)

Let α = supη∈Bq infu∈D∗
∫

Ω
∇u · η dx. Then ‖η‖q ≤ 1 implies infu∈D∗

∫
∇u · η dx ≤ α.

Equivalently, if infu∈D∗
∫
∇u · η̃ dx > 1, then ‖η̃‖q > 1/α. To see this, it is enough to
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consider the contrapositive and replace η with α η̃. This is enough for us to conclude that

sup

{
‖η‖−1

q : inf
u∈D∗

∫
Ω

∇u · η dx ≥ 1

}
≤ α.

Conversely, let β = sup
{
‖η‖−1

q : infu∈D∗
∫

Ω
∇u · η dx ≥ 1

}
. Then infu∈D∗

∫
Ω
∇u·η dx ≥ 1

implies ‖η‖−1
q ≤ β. Again, the contrapositive is ‖η‖−1

q > β implies infu∈D∗
∫

Ω
∇u · η dx < 1.

Hence, ‖η̃‖−1
q > 1 implies infu∈D∗

∫
Ω
∇u · η̃ dx < β. Again, we see this via the substitution

β η = η̃. From this, we conclude α ≤ β, and so we have established (4.2.8).

By definition of Modq(∇D∗), we have

β =

(
inf

{
‖η‖q : inf

u∈D∗

∫
Ω

∇u · η dx ≥ 1

})−1

= Modq(∇D∗)−1/q.

From above, we have C*
p(K0,K1,Ω)

1/p
= α, and so we conclude

Cp(K0,K1,Ω)1/p = Modq(∇D∗)−1/q. (4.2.9)

Next, we will proceed to prove Theorem 4.2.8 by breaking it’s contents into several

lemmas. The first is a basic estimate that we will use for several of the families of vectors of

measures we are interested in.

Lemma 4.2.12. Let A be one of the families of functions D,D∗, S, or Σ. Then we have

Modq(∇A) ≥ Modq(|∇A|).

Proof. For every f : Ω → RN satisfying
∫

Ω
f · du ≥ 1, we have

∫
Ω
|f | d|u| ≥ 1. Thus for

every f ∈ w-Adm(∇A), we have |f | ∈ w-Adm(|∇A|), and ‖f‖q = ‖|f |‖q . Hence, the set of

numbers we take the infimum over for Modq(∇A) is a subset of the numbers we take the

infimum over for Modq(|∇A|), and so we obtain Modq(∇A) ≥ Modq(|∇A|). Note, we have

been careful to use du and d|u|. If u ∈ D or u ∈ D∗, then du = ∇udx and d|u| = |∇u|dx. If
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u ∈ S or u ∈ Σ, then du is a vector of measures and d|u| is its total variation measure.

The following is Lemma 5.1 of [3]. It will establish the bulk of the inequalities in Theorem

4.2.8.

Lemma 4.2.13 ([3]).

Modq(∇S) ≥ Modq(|∇S|) ≥ Modq(|∇Σ|) (4.2.10)

Modq(∇S) ≥ Modq(∇Σ) ≥ Modq(|∇Σ|) (4.2.11)

Proof. The first inequality of (4.2.10) and second inequality of (4.2.11) are taken care of by

Lemma 4.2.12. The other two inequalities follow from the fact that Σ ⊂ S.

The next Lemma we wish to discuss makes use of Sard’s Theorem, which we state here

for convenience. It also makes use of Proposition 5 of [3].

Theorem 4.2.14 ([24]). Let f : RM → RN be an n times differentiable mapping. Let X be

the set of critical points of f , that is the set where the Jacobian matrix of f has rank less

than M . Then

(1) If M ≤ N and n ≥ 1, the image f(X) is a set of M-dimensional Lebesgue measure 0.

(2) If M > N and n ≥ M − N + 1, the image f(X) is a set of N-dimensional Lebesgue

measure 0.

The next Lemma relates |∇Σ| and ∇D∗. The proof makes use of the duality established

by Theorem 4.2.7.

Lemma 4.2.15 ([3]).

Modq(|∇Σ|) ≥ Modq(∇D∗) > 0

Proof. Without loss of generality, we may assume Modq(|∇Σ|) < ∞. By Theorem 4.2.7, it

is equivalent to show C*
p(K0,K1,Ω) > 0 and

C*
p(K0,K1,Ω)

1/p
Modq(|∇Σ|)1/q ≥ 1. (4.2.12)
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Indeed, if C*
p(K0,K1,Ω) > 0, then Modq(∇D∗) = 1/C*

p(K0,K1,Ω)
q/p

, and we have Modq(|∇Σ|)

≥ Modq(∇D∗) if and only if Modq(|∇Σ|) ≥ 1/C*
p(K0,K1,Ω)

q/p
. In light of Proposition 4.2.5,

let u ∈ D∗ ∩ C∞(Ω) and 0 ≤ u ≤ 1. Let Nt = {x ∈ Ω : u(x) > t}. We will now show

χNt ∈ Σ for a.e. t such that 0 < t < 1. By part (2) of Sard’s theorem, {x : u(x) = t} is

smooth for a.e. t ∈ (0, 1). For these t, the divergence theorem gives us

∫
Nt

divϕdx = −
∫
u=t

ϕ · n dS (4.2.13)

for ϕ ∈ C∞0 (Ω;RN), |ϕ| ≤ 1, where n is the unit normal vector directed into Nt. Thus we

have ∣∣∣∣∫ χNt divϕdx

∣∣∣∣ ≤ ∣∣∣∣∫
u=t

ϕ · n dS
∣∣∣∣ ≤ HN−1(∂Nt). (4.2.14)

Integrating and applying Proposition 2 of 3.4.4 of [15], we get

∫ 1

0

‖χNt‖BV dt ≤
∫ 1

0

HN−1(∂Nt) dt =

∫
Ω

|∇u| dx <∞. (4.2.15)

Hence, ‖χNt‖BV <∞ for a.e. t.

Since Modq(|∇Σ|) < ∞, there is a ρ ∈ w-Adm(|∇Σ|) with ‖ρ‖p < ∞. Thus, applying

the Proposition 3 of 3.4.4 of [15], we have

1 ≤
∫ 1

0

∫
u=t

ρ |n| dS dt =

∫ 1

0

∫
u=t

ρ |∇u|
|∇u|

dS =

∫
Ω

ρ |∇u| dx ≤ ‖∇u‖p ‖ρ‖q . (4.2.16)

Taking the infimum over ρ and u, we get C*
p(K0,K1,Ω) > 0 and (4.2.12) holds.

All that remains of Theorem 4.2.8 is to show Modq(∇D∗) ≥ Modq(∇S). This is the

hardest part to prove, as ∇D∗ ⊂ ∇S. We will require four more lemmas in order to

prove this. They are Lemmas 5.4, 5.5, 5.6, and 5.7 in [3]. Until now, we have abbre-

viated ∇D∗(K0, K1,Ω) as ∇D∗, and likewise for ∇S and ∇Σ. However, now we will be

comparing q-Modulus of these families with differing sets K0, K1 and Ω.
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Lemma 4.2.16 ([3]). Let Ω1 be an open subset of Ω such that K0, K1 ⊂ Ω. Then

Modq(∇D∗(K0, K1,Ω1)) ≥ Modq(∇D∗(K0, K1,Ω)). (4.2.17)

Proof. Without loss of generality, assume Modq(∇D∗(K0, K1,Ω1) <∞. Let

f ∈ w-Adm(∇D∗(K0, K1,Ω1)) and let f = f χΩ1 be an extension of f to all of Ω. Then

clearly f ∈ w-Adm(∇D∗(K0, K1,Ω)) since

∫
Ω

f · ∇u dx =

∫
Ω1

f · ∇u|Ω1 dx ≥ 1,

and u ∈ D∗(K0, K1,Ω)⇒ u|Ω1 ∈ D∗(K0, K1,Ω1). Thus,

‖f‖qq =
∥∥f∥∥q

q
≥ Modq(∇D∗(K0, K1,Ω1)),

and so taking the infimum over all such f , we obtain the desired inequality.

In light of the above monotonicity, we make the following definition.

Definition 4.2.17. Let K0, K1 ⊂ Ω. We say that Ω can be approximated from inside with

respect to Modq(∇D∗(K0, K1,Ω)) if for each ε > 0, there exists an open set Ω′ such that

K0, K1,⊂ Ω′ ⊂ Ω′ ⊂ Ω and

Modq(∇D∗(K0, K1,Ω)) ≤ Modq(∇D∗(K0, K1,Ω
′)) ≤ Modq(∇D∗(K0, K1,Ω)) + ε. (4.2.18)

The next Lemma says that given an open set and a compactly contained open subset, we

can always find an open subset between the two with the above approximation preoperty.

Lemma 4.2.18 ([3]). Let K0, K1 ⊂ Ω1 ⊂ Ω1 ⊂ Ω as in definition 4.2.17. Suppose that

Modq(∇D∗(K0, K1,Ω1)) < ∞. Then there exists Ω2 satisfying Ω1 ⊂ Ω2 ⊂ Ω and Ω2 can be

approximated from inside with respect to Modq(∇D∗(K0, K1,Ω2)).
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Proof. For small r > 0, define

Ω(r) := {x ∈ Ω : dist(x, ∂Ω) > r}.

Take note that Ω(r) ↗ Ω(0) = Ω as r ↘ 0. Let r1 > 0 satisfy r1 < dist(∂Ω1, ∂Ω). Then

Ω1 ⊂ Ω(r1). Let ϕ(r) := Modq(∇D∗(K0, K1,Ω(r))). By Lemma 4.2.16, ϕ is nondecreasing,

and we have 0 < ϕ(r) ≤ ϕ(r1) ≤ Modq(∇D∗(K0, K1,Ω1)) < ∞ for 0 < r < r1. Thus, ϕ

is continuous from the right outside of a countable set. Hence, there exists r2 such that

0 < r2 < r1 and

lim
r↘r2

ϕ(r) = ϕ(r2).

In other words, as r decreases to r2,

Modq(∇D∗(K0, K1,Ω(r)))↘ ∇Modq(∇D∗(K0, K1,Ω(r2))).

Letting Ω2 = Ω(r2), we see that Ω1 ⊂ Ω2 ⊂ Ω and Ω2 can be approximated from inside with

respect to Modq(∇D∗(K0, K1,Ω2)).

Next, we state a simple application of the continuity of p-Modulus in 4.1.4.

Lemma 4.2.19 ([3]). Let K0, K1 ⊂ Ω and let {Kj
0} and {Kj

1} be decreasing sequences of

compact sets such that Kj
i ⊂ Ω for all j, i = 0, 1 and ∩∞j=1K

j
i = Ki for i = 0, 1. Then

Modq(∇S(Kj
0 , K

j
1 ,Ω))↗ Modq(∇S(K0, K1,Ω)).

Proof. We claim that
∞⋃
j=1

∇S(Kj
0 , K

j
1 ,Ω) = ∇S(K0, K1,Ω).

If u ∈ S(Kj
0 , K

j
1 ,Ω) for some j, then we have u ∈ BV (Ω), u = 0 on some neighborhood U0

of Kj
0 , and u = 1 on some neighborhood U1 of Kj

1 . Since Ki ⊂ Kj
i ⊂ Ui for i = 0, 1, we have

u ∈ S(K0, K1,Ω).
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If u ∈ S(K0, K1,Ω), then u ∈ BV (Ω), u = 0 on some neighborhood U0 of K0, and

u = 1 on some neighborhood U1 of K1. Since {Kj
i } is a decreasing sequence satisfying

∩∞j=1K
j
i = Ki for i = 0, 1, we must have some j0, j1 such that Ki ⊂ Kji

i ⊂ Ui for i = 0, 1.

Let j∗ = max{j0, j1}. Then we have that u ∈ S(Kj∗

0 , K
j∗

1 ,Ω) ⊂ ∪∞j=1S(Kj
0 , K

j
1 ,Ω). Applying

Proposition 4.1.4, we obtain the result.

Next, we show a special case of the desired inequality Modq(∇S) ≤ Modq(∇D∗).

Lemma 4.2.20 ([3]). Let K0, K1 ⊂ Ω and suppose Ω can be approximated from inside with

respect to Modq(∇D∗(K0, K1,Ω)). Then

Modq(∇S(K0, K1,Ω)) ≤ Modq(∇D∗(K0, K1,Ω)).

Proof. Let ε > 0. By assumption, there exists Ω1 such that K0, K1,⊂ Ω1 ⊂ Ω1 ⊂ Ω such

that

Modq(∇D∗(K0, K1,Ω1)) ≤ Modq(∇D∗(K0, K1,Ω)) + ε. (4.2.19)

By Lemma 4.2.19, we can find compact sets K1
0 and K1

1 such that Ki ⊂ intK1
i ⊂ Ω for

i = 0, 1 and

Modq(∇S(K0, K1,Ω)) ≤ Modq(∇S(K1
0 , K

1
1 ,Ω)) + ε. (4.2.20)

We claim that

Modq(∇S(K1
0 , K

1
1 ,Ω)) ≤ Modq(∇D∗(K0, K1,Ω1)). (4.2.21)

Then combining equations (4.2.19), (4.2.20), and (4.2.21), we have

Modq(∇S(K0, K1,Ω)) ≤ Modq(∇S(K1
0 , K

1
1 ,Ω)) + ε

≤ Modq(∇D∗(K0, K1,Ω1)) + ε

≤ Modq(∇D∗(K0, K1,Ω)) + 2ε,

(4.2.22)

and letting ε→ 0, we obtain the result.

To prove (4.2.21), assume without loss of generality that Modq(∇D∗(K0, K1,Ω1)) < ∞,
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and let f ∈ Adm(∇D∗(K0, K1,Ω1)). Let f be an extension to Ω by defining f(x) = f(x) on

Ω1 and f(x) = 0. Let ψ(x) be the standard mollifier so that
∫
ψ dx = 1 and ψ ∈ C∞0 (RN).

Let Ω2 be defined by

Ω2 = {x ∈ Ω : dist(x, ∂Ω) >
1

2
dist(Ω1, ∂Ω)},

and

r0 := min{dist(K0, ∂K
1
0), dist(K1, ∂K

1
1),

1

2
dist(Ω1, ∂Ω)} > 0.

Then for 0 < r < r0, x ∈ Ω2, |y| < 1, we have x+ ry ∈ Ω, and we can define

fr(x) :=

∫
|y|<1

f(x+ ry)ψ(y) dy.

We have fr ∈ C∞0 (Ω2). Further, fr ∈ Adm(∇D∗(K1
0 , K

1
1 ,Ω)) because for u ∈ D∗(K1

0 , K
1
1 ,Ω)

∫
Ω

fr · ∇u dx =

∫
|y|<1

ψ(y)

∫
Ω

f(x+ ry) · ∇u(x) dx dy

=

∫
|y|<1

ψ(y)

∫
Ω1

f(x+ ry) · ∇u(x) dx dy

=

∫
|y|<1

ψ(y)

∫
Ω1

f(x) · ∇u(x− ry) dx dy

≥
∫
|y|<1

ψ(y) dy = 1,

(4.2.23)

where we have used the fact that u(x− ry) ∈ D∗(K1
0 , K

1
1 ,Ω).

Now we will show that fr ∈ w-Adm(∇S(K1
0 , K

1
1 ,Ω)). We will use the approximation

given by Theorems 2 and 3 of section 5.2.2 of [15]. Namely, if u ∈ S(K1
0 , K

1
1 ,Ω), then there

exists uj ∈ C∞(Ω) such that uj = i on a neigborhood of Ki
0 for i = 0, 1, uj → u in L1(Ω),

‖uj‖BV → ‖u‖BV , and ∇uj → ∇u weakly. Note that because u ∈ S(K1
0 , K

1
1 ,Ω), ∇u may not

be absolutely continuous with respect to Lebesgue measure. Since ‖∇uj‖p may be infinite,

we will truncate uj with a function g ∈ C∞0 (Ω) such that 0 ≤ g ≤ 1 on Ω and g = 1 on Ω2.
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Then we see that guj ∈ C∞0 (Ω), and so guj ∈ D∗(K1
0 , K

1
1 ,Ω). Thus we have

1 ≤
∫

Ω

fr · ∇(guj) dx =

∫
Ω

fr · ∇uj dx→
∫

Ω

fr · ∇u,

where the inequality follows from (4.2.23) and the equality follows since fr ∈ C∞0 (Ω2) and

g = 1 on Ω2. Hence fr ∈ w-Adm(∇S(K1
0 , K

1
1 ,Ω)).

Now, since fr ∈ w-Adm(∇S(K1
0 , K

1
1 ,Ω)), we have

Modq(∇S(K1
0 , K

1
1 ,Ω)) ≤

∫
Ω

|fr|q dx→
∫

Ω

|f |q dx

as r → 0, and thus, taking an infimum over f ∈ Adm(∇D∗(K0, K1,Ω1)), we obtain (4.2.21).

We are now prepared to show the last part needed to prove Theorem 4.2.8. Note the

Lemma below does not have the added constraints that Lemma 4.2.20 has. We will also be

returning to our abbreviations ∇D∗ and ∇S.

Lemma 4.2.21 ([3]).

Modq(∇D∗) ≥ Modq(∇S).

Proof. Without loss of generality, assume Modq(∇D∗) <∞. Recall, we assume K0, K1 ⊂ Ω.

Let {Kj
0} and {Kj

1} be compact sets satisfying Kj+1
i ⊂ intKj

i ⊂ Ω for all j and Ki = ∩∞j=1K
j
i

for i = 0, 1. Further, let Ωj = Ω ∪ (intKj
0) ∪ (intKj

1). We claim

∇S(Kj
0 , K

j
1 ,Ω

j)↗ ∇S(K0, K1,Ω). (4.2.24)

Let u ∈ S(Kj
0 , K

j
1 ,Ω

j). We will denote the distributional derivative of u over Ωj by ∇Ωju.

Clearly, since ∇Ωju ≡ 0 on open neighborhoods of Kj
0 and Kj

1 , we have ∇Ωju is supported in

Ωj\(Kj
0∪K

j
1) ⊂ Ω and ∇Ωju = ∇Ωj+1(u|Ωj+1) = ∇Ω(u|Ω). Thus, ∇S(Kj

0 , K
j
1 ,Ω) is increasing

and ∪∇S(Kj
0 , K

j
1 ,Ω

j) ⊂ ∇S(K0, K1,Ω).

Now we show the other containment. Let u ∈ S(K0, K1,Ω). Then, for i = 0, 1, there are
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open sets Ui such that u = i on Ui and Ki ⊂ Ui. Thus, there exist j such that Kj
i ⊂ Ui for

both i = 0 and i = 1 (taking the minimum of two j if necessary). Now we extend u to Ωj

by defining

u :=


u on Ω,

0 on intKj
0 ,

1 on intKj
1 ,

and hence, u ∈ S(Kj
0 , K

j
1 ,Ω

j). Further, ∇Ωju is supported on Ω\(Kj
0∪K

j
1) and∇Ωju = ∇Ωu.

Thus ∇u ∈ ∇S(Kj
0 , K

j
1 ,Ω

j) and we have established (4.2.24).

Applying Proposition 4.1.4 to (4.2.24), we get

Modq(∇S(Kj
0 , K

j
1 ,Ω

j)↗ Modq(∇S). (4.2.25)

Since Ω ⊂ Ωj we can apply Lemma 4.2.16 to get

Modq(∇D∗(K0, K1,Ω
j)) ≤ Modq(∇D∗(K0, K1,Ω)) <∞.

Using Lemma 4.2.18, we can modify Kj
0 , K

j
1 , and Ωj so that Ωj can be approximated

from inside with respect to Modq(∇D∗(K0, K1,Ω
j)). Further, we have S(Kj

0 , K
j
1 ,Ω

j) ⊂

S(K0, K1,Ω
j), and so Modq(∇S(Kj

0 , K
j
1 ,Ω

j)) ≤ Modq(∇S(K0, K1,Ω
j)). Applying (4.2.25),

Lemma 4.2.19, and Lemma 4.2.20, we have

Modq(∇S(K0, K1,Ω)) = lim Modq(∇S(Kj
0 , K

j
1 ,Ω

j)) ≤ Modq(∇S(K0, K1,Ω
j))

≤ lim Modq(∇D∗(K0, K1,Ω
j)) ≤ Modq(∇D∗(K0, K1,Ω)).

Combining Lemmas 4.2.13, 4.2.15, 4.2.21, we obtain Theorem 4.2.8.

We will now proceed to prove Theorem 4.2.11. We will require only one lemma to do so.

Lemma 4.2.22 ([22]). Let ρ ∈ Lp(RN) be a positive lower semicontinuous function which
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is continuous on Ω\(K0 ∪ K1). Let Kj
0 and Kj

1 be sequences of compact sets such that

Kj+1
i ⊂ intKj

i for all j and Ki = ∩∞j=1K
j
i for i = 0, 1. Then for each ε > 0 we can construct

a function ρ′ on Ω, ρ′ ≥ ρ such that

(1)
∫

Ω
ρ′p dx ≤

∫
Ω
ρp dx+ ε,

(2) Suppose for each j, there is γj ∈ Γj := Γ(Kj
0 , K

j
1 ,Ω) such that

∫
γj
ρ′ ds ≤ α. Then

there exists γ̃ ∈ Γ(K0, K1,Ω) such that
∫
γ̃
ρ ds ≤ α + ε.

Proof. Let ε > 0, Kj := Kj
0 ∪ K

j
1 , W j := Kj−1\ intKj, and dj := dist(∂Kj−1, ∂Kj) > 0.

Since ρ > 0 and continuous on Ω\(K0 ∪K1), we have infW j∩Ω ρ(x) ≥ minW j ρ(x) > 0. Thus,

we can find εj ↘ 0 such that
∞∑
j=1

(1 + ε−1
j )pεp+1

j < ε, (4.2.26)

αεj < dj inf
W j∩Ω

ρ. (4.2.27)

Since ρ ∈ Lp(RN), we can find an increasing sequence of compact subsets Ωj ⊂ Ω such that

∪Ωj = Ω and ∫
Ω\Ωj

ρp dx < εp+1
j .

Let V j = (Ω\Ωj) ∩W j and

ρ′(x) =


(1 + ε−1

j )ρ(x) if x ∈ V j

ρ(x) if x ∈ Ω\ ∪ V j.

(4.2.28)

Computing, we have

∫
Ω

ρ′p dx =
∑
j

∫
V j

[(1 + ε−1
j )ρ]p dx+

∫
Ω\∪V j

ρp dx

≤
∑
j

(1 + ε−1
j )pεp+1

j +

∫
Ω

ρp dx < ε+

∫
Ω

ρp dx,

(4.2.29)

and (1) holds.
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Now we will prove (2). Fix j ≥ 1. By definition, γk ∈ Γj for k ≥ j since {Kj
i } are

decreasing for i = 0, 1. Consequently, γk has subarcs γ′k and γ′′k such that γ′k connects ∂Kj
0

and ∂Kj−1
0 , γ′′k connects ∂Kj

1 and ∂Kj−1
1 . We can see that γ′k is not a subset of V j, because

otherwise

α ≥
∫
γk

ρ′ds ≥
∫
γ′k

ρ′ds ≥ ε−1
j

∫
γ′k

ρds ≥ ε−1
j dj inf

W j∩Ω
ρ > α,

a contradiction. Similarly, γ′′k is not a subset of V j. Thus, γk ∩ (Ωj ∩ (Kj−1
i \ intKj

i ) 6= ∅ for

i = 0, 1. Since Ωj and Kj−1
i \ intKj

i are both compact, so is Ωj ∩ (Kj−1
i \ intKj

i ). Thus, since

j ≥ 1 is fixed, we can define a sequence of points {ak}∞k=j by letting ak be any point of γk.

Then there must be a subsequence that converges to, say, xj0 ∈ Ωj ∩Kj−1
0 \Kj

0 . If we place

a small closed ball Bj
0 ⊂ Ω centered at xj0, then we may assume that the the corresponding

subsequence of curves γjk eventually intersects Bj
0. Since ρ is continuous at xj0, we can choose

Bj
0 small enough so that

∫
`

ρ ds ≤ ε

2j+3
for any line segment ` ⊂ Bj

0. (4.2.30)

Likewise, choose a small ball Bj
1 ⊂ Ω with center xj1 ∈ Ωj ∩ (Kj−1

1 \ intKj
1) so that γjk

intersects Bj
1 and choose subsequences {γjk}k inductively such that γjk intersects Bj

0 and Bj
1.

Consider the diagonal γkk . Then γkk intersects Bj
0 and Bj

1. To γkk we add two suitable radii

of Bj
i for each i = 0, 1 and for 1 ≤ j ≤ k so that we have a connected curve γ̃k ∈ Γ(Kk

0 , K
K
1 ,Ω)

going through xj0 and xj1. By (4.2.30), we have

∫
γ̃k

ρ ds ≤
∫
γkk

ρ ds+ 2
k∑
j=1

ε

2j+3
≤ α +

ε

4
.

Let Γ0 be the family of all curves in Ω\(K0 ∪K1) connecting x1
0 and x1

1. For i = 0, 1, let Γji

be the family of all curves in Ω\(K0 ∪K1) connecting xji and xj+1
i . Then

inf
γ∈Γ0

∫
γ

ρ ds+
k∑
j=1

inf
γ∈Γj0

∫
γ

ρ ds+
k∑
j=1

inf
γ∈Γj1

∫
γ

ρ ds ≤
∫
γ̃k

ρ ds ≤ α +
ε

4
.
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Thus, we can choose C0 ∈ Γ0 and Cj
i ∈ Γji such that

∫
C0

ρ ds < inf
γ∈Γ0

∫
γ

ρ ds+
ε

2
,

∫
Cji

ρ ds < inf

∫
γ

ρ ds+
ε

2j+3
.

Let γ̃ = · · · + C1
0 + C0 + C1

1 + . . . be the concatenation of the curves C0 and Cj
i . Then

γ̃ ∈ Γ(K0, K1,Ω) and

∫
γ̃

ρ ds ≤ α +
ε

4
+
ε

2
+ 2

∞∑
j=1

ε

2j+3
= α + ε.

Proof of 4.2.11. Here, we restate the Theorem for convenience.

Let Kj
0 and Kj

1 be sequences of compact sets such that K0
0 ∩ K0

1 = ∅, Kj
0 ⊂ intKj−1

0 ,

Kj
1 ⊂ intKj−1

1 , K0 = ∩∞j=0K
j
0 , K1 = ∩∞j=0K

j
1 . If Γj = Γ(Kj

0 , K
j
1 ,Ω), then

Modp(|dΓj|) ↓ Modp(|dΓ|)

By the majorization principle (see (5.2.5) of [20]), it is clear that Modp(|dΓ|) ≤ limj→∞Modp(|dΓj|).

Let M := Modp(|dΓ|) < ∞, 0 < ε < 1/2, and ρ̃ ∈ Adm(|dΓ|) such that ‖ρ̃‖pp < M + ε. By

the Vitali-Carathéodory Theorem (see p. 108 of [20]), we may assume ρ̃ is lower semicon-

tinuous, and we can further assume ρ̃ is strictly positive (by adding a strictly positive lower

semicontinuous function with small p-norm if necessary). Now, we wish to apply Lemma

4.2.22, so we need to come up with a continuous function that approximates ρ̃. Define

(ρ̃)r(x) =

∫
|y|<1

ρ̃(x+ rα(x)y)ψ(y) dy

as in 4.2.3 with G = Ω\(K0 ∪K1). Note that (ρ̃)r ∈ C∞(G) and ‖(ρ̃)r − ρ̃‖p → 0 as r → 0,

and so if r is sufficiently small, then ‖(ρ̃)r‖pp < M + ε.
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Note that for fixed y with |y| < 1, we have that Ty,r(x) = x+ rα(x)y is a C∞ homeomor-

phism of G onto itself, and since α(x) → 0 as x → ∂G, we can continuously extend Ty,r(x)

to the boundary by Ty,r(x) = x for x ∈ ∂G. In view of this, if γ ∈ Γ, then so is Ty,r(γ).

Then we have

∫
γ

(ρ̃)r ds =

∫
|y|<1

ψ(y)

∫
γ

ρ̃(x+ rα(x)y) dsdy

=

∫
|y|<1

ψ(y)

∫
Ty,r(γ)

ρ̃(z)
1

1 + r∇α · y
ds dy

≥ 1

1 + r/2

∫
|y|<1

ψ(y)

∫
Ty,r(γ)

ρ̃(z) ds dy

≥ 1

1 + r/2
.

(4.2.31)

Thus (1 + r/2)(ρ̃)r ∈ Adm(|dΓ|). Let ρ = (1 + r/2)(ρ̃)r. Then, we also have

‖ρ‖pp < (1 + r/2)p(M + ε).

Let ρ′ be as in Lemma 4.2.22. Then, for sufficiently large j, we have

∫
γ

ρ′ ds > 1− 2ε,

because otherwise there would be a sequence {jk} and curves γk ∈ Γjk such that

∫
γk

ρ′ ds ≤ 1− 2ε.

Then by Lemma 4.2.22, there would exist γ̃ ∈ Γ such that

∫
γ̃

ρ ds ≤ 1− 2ε+ ε = 1− ε,

contradicting the admissibility of ρ.

Then, for sufficiently large j, we have
∫
γ
(1 − 2ε)−1ρ′ ds ≥ 1 for γ ∈ Γj. Thus, for
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sufficiently large j,

Modp(|dΓj|) ≤
∥∥(1− 2ε)−1ρ′

∥∥p
p
≤ (1− 2ε)−p(‖ρ‖pp + ε)

< (1− 2ε)−p((1 + r/2)p(M + ε) + ε),

(4.2.32)

and we obtain the result by letting j →∞, r → 0, and ε→ 0.

We now turn our attention to 4.2.9. For its proof, we need two lemmas that can be found

in Chapter 4 of [22]. In those two lemmas, we will make use of the following definition.

Definition 4.2.23. Given a set X ⊂ Ω, we say X is p-exceptional if Modp(ΓX) = 0 where

ΓX is the family of curves in Ω which terminate at X. We say a property holds p-a.e. if the

set of points where the property fails is p-exceptional.

Lemma 4.2.24 ([22]). Let u be a p-precise function in Ω and let Γ be a family of curves

in Ω whose end poins lie in Ω. Then u tends to the value of u at the end point along p-a.e.

curve of Γ.

Lemma 4.2.25 ([22]). Let u be a p-precise function in Ω. Then any function equal to u

p-a.e. in Ω is p-precise in Ω.

Proof of 4.2.9. We state the Theorem again for convenience.

We have the equality

Cp(K0,K1,Ω) = C*
p(K0,K1,Ω)

Moreover, suppose Ω is bounded. If ModP (dΓ) = 0, then Modq(∇Σ) =∞; if Modq(dΓ) > 0,

then

Modp(dΓ)1/p Modq(∇Σ)1/q = 1.

67



Let Kj
0 and Kj

1 be as in Theorem 4.2.11. Let u ∈ D(Kj
0 , K

j
1 ,Ω) and set

u =


0 on Kj

0 ∩ Ω,

1 on Kj
1 ∩ Ω,

u on Ω\(Kj
0 ∪K

j
1).

By definition of D(Kj
0 , K

j
1 ,Ω) and Lemma 4.2.24, we have u = 0 p-a.e. on Kj

0 ∩Ω and u = 1

p-a.e. on Kj
1 ∩ Ω, and so u = u p-a.e. in Ω. Thus, by Lemma 4.2.25, u ∈ D∗(K0, K1,Ω).

Thus C*
p(K0,K1,Ω) ≤ ‖u‖pp = ‖u‖pp. Taking the infimum over u, we C*

p(K0,K1,Ω) ≤

Cp(Kj
0,K

j
1,Ω). By Theorem 4.2.10, we have Cp(Kj

0,K
j
1,Ω) = Modp(|dΓ(Kj

0 , K
j
1 ,Ω)|) and

Cp(K0,K1,Ω) = Modp(|dΓ|). By Theorem 4.2.11, we have Cp(Kj
0,K

j
1,Ω) → Cp(K0,K1,Ω)

as j → ∞, and thus C*
p(K0,K1,Ω) ≤ Cp(K0,K1,Ω). As was stated earlier, since D∗ ⊂ D,

we have Cp(K0,K1,Ω) ≤ C*
p(K0,K1,Ω), and hence

Cp(K0,K1,Ω) = C*
p(K0,K1,Ω) . (4.2.33)

By Theorem 4.2.7, we have

(1) C*
p(K0,K1,Ω) = 0⇒ Modq(∇D∗) =∞

(2) C*
p(K0,K1,Ω) > 0⇒ C*

p(K0,K1,Ω)
1/p

Modq(∇D∗)1/q = 1.

Applying Theorem 4.2.10 and (4.2.33), we have

(1) Modp(dΓ) = 0⇒ Modq(∇Σ) =∞

(2) Modp(dΓ) > 0⇒ Modp(dΓ)1/p Modq(∇Σ)1/q = 1.

Theorem 4.2.6 is proved by directly applying Theorems 4.2.10 and 4.2.8 to Theorem

4.2.9.
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Chapter 5

Modulus Metrics in RN

In this chapter, we will use Aikawa-Ohtsuka duality to construct a metric like we did with

Fulkerson Duality on graphs in Theorem 2.3.3 of chapter 2. The main Theorem we wish to

establish is below.

Theorem 5.0.1. Let Ω be a domain in R2. Given two points x, y ∈ Ω, let Γ = Γ(x, y) be

the family of curves connecting x to y, and for p > 2, define δp(x, y) as follows:

δp(x, y) :=


0 if x = y

Modp(|dΓ|)−q/p if x 6= y.

Then δp is a pseudometric on Ω.

We also make the following conjecture.

Conjecture 5.0.2. Let Ω be a domain in RN . Given two points x, y ∈ Ω, let Γ = Γ(x, y) be

the family of curves connecting x to y, and for p > N , define δp(x, y) as follows:

δp(x, y) :=


0 if x = y

Modp(|dΓ|)−q/p if x 6= y.

Then δp is a pseudometric on Ω.
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Before we go into the proof, we will establish a few lemmas to aid us. Many of these

lemmas are common and can be found in, for instance, [20]. Our first lemma gives us a

relation of the p-Modulus of a family of curves that is majorized by another. We say that

Γ1 majorizes Γ2 if every curve γ1 ∈ Γ1 has a subcurve γ2 ∈ Γ2.

Lemma 5.0.3 ([20]). If Γ1 majorizes Γ2, then Modp(|dΓ1|) ≤ Modp(|dΓ2|).

Proof. Let ρ ∈ Adm(|dΓ2|). Then ρ ∈ Adm(|dΓ1|) since for each γ1 ∈ Γ1, there is a γ2 ∈ Γ2

such that γ2 is a subcurve of γ1. Thus, we have Modp(|dΓ1|) ≤
∫

Ω
ρp dx. Taking the infimum

over all ρ gives us the desired inequality.

Our next lemma is a standard example, see for instance [20]. For any r such that

0 < r < ∞, let Br(x) be the open ball centered at x ∈ Ω of radius r and Br = Br(0).

Further, for N ≥ 2, let ωN−1 := HN−1(∂B1).

Lemma 5.0.4 ([20]). Let 0 < r < R <∞ and Γ = Γ(∂Br, ∂BR,RN). Then

Modp(|dΓ|) =


|N−p
p−1
|p−1ωN−1

∣∣r(p−N)/(p−1) −R(p−N)/(p−1)
∣∣1−p , if p 6= N,

ωN−1

(
log R

r

)1−N
, if p = N,

ωN−1r
N−1, if p = 1.

Proof. First we shall show the above are lower bounds. If ρ ∈ Adm(|dΓ|), then for the curves

γ = {tω : t ∈ [r, R], ω ∈ ∂B1}, we have
∫
ρ d|γ| ≥ 1. Multiplying and dividing by t(N−1)/p

and applying Hölder’s inequality, for p 6= 1 we have

1 ≤
(∫ R

r

ρ(tω)p tN−1 dt

)1/p(∫ R

r

t−(N−1)q/p dt

)1/q

.

Now, the second integral is of the form
∫ R
r
tα dt which is 1

α+1
(Rα+1 − rα+1) if α 6= −1 and

log(R/r) if α = −1. With α = −(N − 1)q/p, α = −1 if p = N . Further, −(N − 1)q/p =
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−(N − 1)/(p− 1) so that α + 1 = (p−N)/(p− 1). Hence, if p 6= N , we have

1 ≤
(∫ R

r

ρ(tω)p tN−1 dt

)1/p(
p− 1

|N − p|
∣∣R(p−N)/(p−1) − r(p−N)/(p−1)

∣∣)1/q

.

Here, we have used absolute values to combine the two distinct cases 1 < p < N and N < p.

If instead p = N , then we have

1 ≤
(∫ R

r

ρ(tω)p tN−1 dt

)1/p

(log(R/r))1/q .

Dividing both sides in the two above inequalities by the second term on the right, raising

to the p-th power, then integrating over ∂B1 (that is, with respect to ω), we get the desired

lower bounds in the case 1 < p and p 6= N .

If p = 1, then Hölder’s inequality instead yields

1 ≤
(∫ R

r

ρ(tω) tN−1 dt

)∥∥t−(N−1)|∥∥
∞ ,

where
∥∥t−(N−1)|

∥∥
∞ = r1−N . Again, dividing, and then integrating over ∂B1, we get the

desired lower bound.

To see that these estimates are also upper bounds, for p > 1, let ρ be defined by

ρ(x) :=

(∫ R

r

t−(N−1)q/p dt

)−q/p
|x|−(N−1)q/pχBR\Br(x),

and for the case p = 1, let ρj be defined by

ρj(x) := jχBr+1/j\Br(x)

and let j → ∞. These functions are defined so that
∫
ρ d|γ| ≥ 1, and evaluating

∫
Ω
ρp dx

gives the desired result.

Our next lemma is obtained from combining the two previous lemmas.
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Lemma 5.0.5 ([20]). If Γx is the family of curves going through a point in x ∈ RN , then

for 1 ≤ p ≤ N , Modp(|dΓ|) = 0.

Proof. Fix ε > 0. Let Γr,R be as in Lemma 5.0.4. Without loss of generality, let x = 0. We

want to find r and R such that 0 < r < R < ε and Modp(|dΓr,R|) < ε. If we can do so, then

each curve that passes through 0 has a subcurve in Γr,R and so the majorization principle

gives us Modp(|dΓ0|) ≤ Modp(|dΓr,R|) < ε. The result then follows by taking ε→ 0.

If 1 ≤ p < N , let r = R/2. Then by Lemma 5.0.4, Modp(|dΓr,R|) = CRN−p, and

so taking R sufficiently small, we are done. If p = N , let r = R2. Then by Lemma

5.0.4, Modp(|dΓr,R|) = C log(1/R)1−N , and again, taking R sufficiently small, we obtain the

result.

The next theorem is due to Fuglede and is very similar to Lemma 5.0.5, except instead

of curves, we have k-dimensional surfaces, and instead of 1 ≤ p ≤ N , we have p ≤ n/k. We

refer the reader to [17] for the proof.

Theorem 5.0.6 ([17]). Fix x ∈ Ω. Let Lx be the collection of surface measures of k-

dimensional Lipschitz surfaces which pass through x. Then Modp(Lx) = 0 if and only if

p ≤ n/k.

We wish to now note that Lemma 5.0.3 holds when we consider p-Modulus of families of

measure and is proved the same way. If M and N are two families of Borel measures such

that every measure µ ∈M has a measure ν ∈ N such that µ(B) = ν(B) for all B ⊂ supp(ν).

Then whenever
∫
ρ dν ≥ 1, we also have

∫
ρ dµ ≥ 1, and so Modp(M) ≤ Modp(N ). We use

this to provide a corollary to the Theorem 5.0.6.

Corollary 5.0.7 ([17]). For fixed z ∈ Ω, let Lz be the collection of all (n − 1)-dimensional

surface measures of surfaces containing z that are Lipschitz in a neighborhood of z. Then

Modq(Lz) = 0 where q satisfies 1 ≤ q ≤ n/(n− 1).

Proof. Without loss of generality, assume z = 0. If we let Lr0 be the collection of surface

measures in L0 that are Lipschitz when restricted to Br, then Theorem 5.0.6 and majorization
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tell us Modq(L
r
0) = 0. Now, for every surface that is Lipschitz in a neighborhood of 0, there

is n large enough such that for r = 1/n the surface is Lipschitz on Br. By majorization,

Thus L0 ⊂ ∪nL1/n
0 , and by subadditivity, we have

Modq(L0) ≤
∞∑
n=0

Modq(L
1/n
0 ) = 0.

In general, finding a formula for δp, even in the case Ω = RN has proven difficult. In this

section, we give two estimates, one upper and one lower. For the first estimate, we use the

majorization principle.

Lemma 5.0.8. Let p > N , Γ = Γ(x, y,Ω), ΓR = Γ(x, ∂BR(x),RN) where R = |x−y|. Then

δp(x, y) ≥ Modp(ΓR)−q/p = ( p−1
p−N )ω

1/(1−p)
N−1 R(p−N)/(p−1)

Proof. We have that Γ majorizes ΓR, so Modp(|dΓ|) ≤ Modp(|dΓR|). Raising both sides to

the −q/p power gives the result.

We note that Modp(|dΓR|) is given by Lemma 5.0.4 and letting r → 0. We are now ready

to prove Theorem 5.0.1.

With this estimate, we are now ready to prove Theorem 5.0.1.

Proof of Theorem 5.0.1. Let x, y, z ∈ Ω be distinct. Then by Lemma 5.0.8, δp(x, y) > 0.

Symmetry is obvious since Γ(x, y) = Γ(y, x). Let Σz be the collection of characteristic

functions of sets of finite perimeter A such that A = U ∩Ω for some open set U ⊂ R2 where

x /∈ U , y ∈ U , and z ∈ ∂U . The triangle inequality follows from Theorem 4.2.6. Computing,

we have

δp(x, y) = Modp(|dΓ|)−q/p

= Modq(|∇Σ(x, y,Ω)|)

≤ Modq(|∇Σ(x, z,Ω)|) + Modq(|∇Σ(z, y,Ω)|) + Modq(|∇Σz|)

= δp(x, z) + δp(z, y) + Modq(|∇Σz|).
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Now, since N = 2, we have that the sets A such that χA ∈ Σ have boundaries which

are broken curves that pass through a point, so Modq(|∇Σz|) = 0 by Lemma 5.0.5 since

1 < q < 2. Thus the triangle inequality follows.
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