
Computational models and tools for analysis, prediction, and control of

infectious diseases

by

Tanvir Ferdousi

B.S., Bangladesh University of Engineering and Technology, 2013

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Mike Wiegers Department of Electrical and Computer Engineering
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2021

Abstract

Infectious disease modeling is used to examine pathogen transmission retrospectively and

forecast outbreaks preemptively. Model results help public health authorities to optimize

disease control measures, preventing catastrophic loss of lives in humans and animals. Yet,

several fundamental challenges arise in infectious disease modeling. A critical problem in-

volves modeling new and evolving pathogens for realistic simulations and reliable predictions

of outcomes. Another concern is the lack of data related to infectious diseases. Epidemic

modelers often face data inadequacy with host networks and disease incidence. This disser-

tation proposes remedies to challenges associated with infectious disease modeling, outbreak

prediction, and host movement data.

In response to vector-borne disease modeling challenges, this dissertation first takes a

mechanistic approach. To realistically model the infection process, a novel interconnected

network model is designed for the mosquito-vectored Zika virus, which links homogeneous

vector populations with heterogeneous human contact networks. The model incorporates

seasonal variations in mosquito abundance and characterizes hosts based on age group and

gender. The aim is to develop a detailed model for an accurate representation of pathogen

dynamics while keeping it computationally tractable. An event-based simulation tool is

developed based on the non-Markovian Gillespie algorithm. This work investigates effects

of seasonal variations on outbreak size, the role of sexual transmission in sustaining the

pathogen, and relative contributions of key model parameters using a sensitivity analysis.

A framework to improve machine learning performance for predicting dengue fever cases

is developed in a data-driven approach. The goal is to fill in temporally limited human case

data from spatially adjacent populations. The method ranks and sorts time-series data from

peripheral locations around a target location as predictor variables commonly referred to as

features. Metrics are computed from windowed time-shifted cross-correlation of incidence

data, spatial distance, and historical prevalence to rank feature variables. A window detec-

tion method presented in this work analyzes incidence data to identify time intervals with

significant outbreaks. The framework achieves improved prediction performance and works

well with recurrent neural network (RNN) architectures. Performance gains are compared

using different time window allocation methods for three distinct prediction models: linear,

long short-term memory (LSTM), and gated recurrent units (GRU).

Availability of data also affects applicability of mechanistic models. In the United States,

farm animal movements are not tracked by a central authority. Lack of animal movement

data is a significant obstacle in using network models to analyze infectious outbreaks in meat-

producing industries. As an immediate solution, a novel method is presented to generate

movement networks from limited data available in the public domain. A custom configura-

tion model is developed for network generation that uses aggregate data from farm animal

movement-related surveys and the U.S. agricultural census. A hypothetical spread of the

African swine fever virus (ASFV) is simulated in a generated network to analyze how net-

work structure affects pathogen dispersal. A node centrality-based analysis is performed to

identify important farm operation types and evaluate how targeted control measures affect

outbreaks.

The experience of working with infectious disease models for the U.S. meat-producing

industry revealed fundamental problems linked to trust and business data sharing. The U.S.

beef cattle industry lacks adequate traceability, as most farm owners consider such data confi-

dential, possibly harming their businesses if exposed. Blockchains, also known as distributed

ledgers, have gained popularity in industrial supply chains because of their unique features

of data immutability and transparency. A smart contract-based supply chain framework is

designed using a private blockchain network. This system supports anonymity for users to

protect their identities and lets everyone store data locally while ensuring the blockchain

records any change in data with cryptographic proofs. The framework presented contains

functionalities to perform business transactions, transfer animal data, conduct anonymous

surveys, and trace animals.

This work has original contributions in network epidemic models, data-driven prediction

tools, network generation algorithms, and data management frameworks. It combines knowl-

edge from social network analysis, graph theory, epidemiology, machine learning, statistics,

cryptography, computer networks, and computational science to improve infectious disease

modeling, analysis, and control. The knowledge gained here is generalizable to applications

beyond specific cases presented in this dissertation.

Computational models and tools for analysis, prediction, and control of

infectious diseases

by

Tanvir Ferdousi

B.S., Bangladesh University of Engineering and Technology, 2013

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Mike Wiegers Department of Electrical and Computer Engineering
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2021

Approved by:

Major Professor
Caterina Maria Scoglio

Copyright

© Tanvir Ferdousi 2021.

Abstract

Infectious disease modeling is used to examine pathogen transmission retrospectively and

forecast outbreaks preemptively. Model results help public health authorities to optimize

disease control measures, preventing catastrophic loss of lives in humans and animals. Yet,

several fundamental challenges arise in infectious disease modeling. A critical problem in-

volves modeling new and evolving pathogens for realistic simulations and reliable predictions

of outcomes. Another concern is the lack of data related to infectious diseases. Epidemic

modelers often face data inadequacy with host networks and disease incidence. This disser-

tation proposes remedies to challenges associated with infectious disease modeling, outbreak

prediction, and host movement data.

In response to vector-borne disease modeling challenges, this dissertation first takes a

mechanistic approach. To realistically model the infection process, a novel interconnected

network model is designed for the mosquito-vectored Zika virus, which links homogeneous

vector populations with heterogeneous human contact networks. The model incorporates

seasonal variations in mosquito abundance and characterizes hosts based on age group and

gender. The aim is to develop a detailed model for an accurate representation of pathogen

dynamics while keeping it computationally tractable. An event-based simulation tool is

developed based on the non-Markovian Gillespie algorithm. This work investigates effects

of seasonal variations on outbreak size, the role of sexual transmission in sustaining the

pathogen, and relative contributions of key model parameters using a sensitivity analysis.

A framework to improve machine learning performance for predicting dengue fever cases

is developed in a data-driven approach. The goal is to fill in temporally limited human case

data from spatially adjacent populations. The method ranks and sorts time-series data from

peripheral locations around a target location as predictor variables commonly referred to as

features. Metrics are computed from windowed time-shifted cross-correlation of incidence

data, spatial distance, and historical prevalence to rank feature variables. A window detec-

tion method presented in this work analyzes incidence data to identify time intervals with

significant outbreaks. The framework achieves improved prediction performance and works

well with recurrent neural network (RNN) architectures. Performance gains are compared

using different time window allocation methods for three distinct prediction models: linear,

long short-term memory (LSTM), and gated recurrent units (GRU).

Availability of data also affects applicability of mechanistic models. In the United States,

farm animal movements are not tracked by a central authority. Lack of animal movement

data is a significant obstacle in using network models to analyze infectious outbreaks in meat-

producing industries. As an immediate solution, a novel method is presented to generate

movement networks from limited data available in the public domain. A custom configura-

tion model is developed for network generation that uses aggregate data from farm animal

movement-related surveys and the U.S. agricultural census. A hypothetical spread of the

African swine fever virus (ASFV) is simulated in a generated network to analyze how net-

work structure affects pathogen dispersal. A node centrality-based analysis is performed to

identify important farm operation types and evaluate how targeted control measures affect

outbreaks.

The experience of working with infectious disease models for the U.S. meat-producing

industry revealed fundamental problems linked to trust and business data sharing. The U.S.

beef cattle industry lacks adequate traceability, as most farm owners consider such data confi-

dential, possibly harming their businesses if exposed. Blockchains, also known as distributed

ledgers, have gained popularity in industrial supply chains because of their unique features

of data immutability and transparency. A smart contract-based supply chain framework is

designed using a private blockchain network. This system supports anonymity for users to

protect their identities and lets everyone store data locally while ensuring the blockchain

records any change in data with cryptographic proofs. The framework presented contains

functionalities to perform business transactions, transfer animal data, conduct anonymous

surveys, and trace animals.

This work has original contributions in network epidemic models, data-driven prediction

tools, network generation algorithms, and data management frameworks. It combines knowl-

edge from social network analysis, graph theory, epidemiology, machine learning, statistics,

cryptography, computer networks, and computational science to improve infectious disease

modeling, analysis, and control. The knowledge gained here is generalizable to applications

beyond specific cases presented in this dissertation.

Table of Contents

List of Figures . xiv

List of Tables . xvii

Acknowledgements . xviii

Dedication . xix

Preface . xx

1 Introduction . 1

1.1 Background . 1

1.1.1 Network models for epidemic analysis 2

1.1.2 Machine learning for time series prediction 4

1.1.3 Blockchains for distributed ledgers 7

1.2 Motivation . 8

1.3 Dissertation overview . 10

1.4 Contributions . 11

2 Understanding the survival of Zika virus in a vector interconnected sexual contact

network . 13

2.1 Background . 13

2.2 Model formulation . 16

2.2.1 Interconnected population model . 16

2.2.2 Simulation tool . 21

x

2.3 Results . 22

2.3.1 Seasonal analysis . 22

2.3.2 Survival analysis . 23

2.3.3 Sensitivity analysis . 26

2.4 Discussion . 28

2.5 Implementation details . 30

2.5.1 Host network characterization . 30

2.5.2 Vector characterization . 31

2.5.3 Non-Markovian Gillespie algorithm 31

2.5.4 Numerical simulation . 33

2.6 Code availability . 35

3 A windowed correlation based feature selection method to improve time series pre-

diction of dengue fever cases . 41

3.1 Background . 41

3.2 Preliminaries . 44

3.2.1 Definitions . 44

3.2.2 Time series prediction of outbreaks 44

3.2.3 Factors that affect dengue disease dynamics 46

3.2.4 Data collection and processing . 46

3.2.5 Sequence model specifications . 49

3.3 Methods . 51

3.3.1 Windowing incidence data . 53

3.3.2 Time-shifted cross correlation . 55

3.3.3 Distance and prevalence metrics . 58

3.4 Results . 58

3.4.1 Feature selection and analysis . 59

3.4.2 Prediction performance . 60

xi

3.5 Discussion . 69

4 Generation of swine movement network and analysis of efficient mitigation strate-

gies for African swine fever virus . 72

4.1 Background . 72

4.2 Results . 75

4.2.1 Movement network . 75

4.2.2 Outbreak dynamics . 78

4.2.3 Control measures . 80

4.3 Discussion . 82

4.4 Data and models . 85

4.4.1 US swine data . 85

4.4.2 Network terminology . 87

4.4.3 Network generation . 88

4.4.4 ASFV epidemic model . 89

5 A permissioned distributed ledger for the US beef cattle supply chain 92

5.1 Background . 92

5.2 Preliminaries . 93

5.2.1 The US cattle farm system . 93

5.2.2 Prior work and motivation . 93

5.2.3 Smart contracts and blockchain . 95

5.3 The proposed system . 96

5.3.1 Algorithmic procedures . 97

5.4 System analysis . 103

5.4.1 User privacy . 103

5.4.2 Data security . 104

5.4.3 Provenance . 104

xii

5.4.4 Secured data aggregation . 105

5.4.5 Fairness of the system . 105

5.4.6 Reliability . 105

5.4.7 Computational costs . 106

5.4.8 Integration test . 109

5.5 Discussion . 109

6 Conclusion . 116

6.1 Summary . 116

6.2 Future works . 117

Bibliography . 119

A Network Generation Algorithms . 142

B Smart Contracts . 145

B.1 Profile Manager . 145

B.2 Farm Manager . 147

B.3 Transaction Manager . 150

B.4 Trace Manager . 155

B.5 Data Aggregator . 156

C Farm Animal Database . 160

D Test System Configuration . 163

xiii

List of Figures

1.1 A diagram of a SIR epidemic spreading model on a network 3

1.2 A diagram of a long short-term memory (LSTM) unit 6

1.3 A simplified blockchain architecture . 8

2.1 Coupled population model for ZIKV. 17

2.2 Generated sexual contact network based on sexual behavior 20

2.3 Variation in mosquito vector abundance with time 21

2.4 The time series plots of a ZIKV outbreaks for three different pathogen intro-

duction months in Miami, FL . 37

2.5 The plots depicting the results of pathogen survival analysis 38

2.6 Contour plots depicting the results of the sensitivity analysis 39

2.7 Inter-event times in different stages for all of the 500 simulations during the

first 100 days and their distribution . 40

3.1 A sliding window defined for feeding of input data and extraction of output

case counts . 50

3.2 A framework depicting the method to expand trainable and testable data set

on dengue incidence . 52

3.3 Windowing methods used for data segmentation prior to computing time

shifted correlation coefficients . 54

3.4 Windowing of IC and PICk incidence data for computing time shifted cross-

correlation coefficients . 55

3.5 Heatmap of the computed time shifted cross-correlation matrix 56

xiv

3.6 A geospatial map showing an incidence center (IC) and 5 ranked peripheral

incidence centers (PIC) . 61

3.7 Time series plots of weekly dengue cases per 100,000 people for the IC and

top 5 ranked PICs . 62

3.8 Prediction performances of the Linear, LSTM, and GRU models in predicting

normalized test data for varying number of features (NPIC) 63

3.9 Predicted weekly dengue cases per 100,000 people using test data with the

recurrent models (LSTM and GRU) . 64

3.10 A comparison chart of lowest prediction error obtainable using different fixed

and detected windowing schemes . 65

3.11 A comparison chart of average improvement in accuracy with respect to per-

formance without feature enhancements (NPIC = 0) for different fixed and

detected windowing schemes . 67

3.12 A comparison chart of lowest prediction error obtainable using different fixed

and detected windowing schemes for case data aggregated across an ecoregion 68

3.13 A geospatial map showing the predicted risk of infection in an ecoregion of

Brazil . 69

4.1 Generated farm level swine movement network 76

4.2 Centrality measures of the generated network 77

4.3 Network robustness analysis by the gradual removal/isolation of farm nodes 78

4.4 Time series outbreak results for African swine fever virus 79

4.5 Outbreak analysis based on source of infection 81

4.6 Comparison of different targeted isolation schemes based on farm node cen-

trality measures . 82

4.7 Comparison of different targeted vaccination schemes based on farm node

centrality measures . 83

4.8 ASFV epidemic model . 90

xv

5.1 A block diagram of the US beef supply chain 94

5.2 A simplified block diagram of the blockchain based farm animal management

system . 98

5.3 Detailed block diagram illustrating communication steps among the system

components during a business transaction. 100

5.4 A comparative chart showing contract creation (deployment) costs for the five

proposed smart contracts . 107

5.5 A comparative chart showing costs of calling different smart contract methods

(functions) that change the state of the system 108

5.6 The logs generated when an authorized farm owner attempts to update farm

info . 112

5.7 The logs generated when an unregistered user attempts to create a business

transaction . 113

5.8 The returned outputs when the authorized admin attempts to read trace data 113

B.1 The ProfileManager contract and its associated User data structure 147

B.2 The FarmManager contract and its associated Farm and Animal data structures.151

B.3 The TransactionManager contract and its associated Transaction data struc-

ture. 154

B.4 The TraceManager contract and its associated Animal and Movement data

structures. 157

B.5 The DataAggregator contract and its associated Dataset data structures. . 159

C.1 An entity relationship diagram depicting the database tables and their rela-

tionships. 162

D.1 The prototype running system which was used for integration tests 164

xvi

List of Tables

2.1 Coupled epidemic model parameters and functions. 36

2.2 Average number of sexual partners in the last 12 months from a survey . . . 40

3.1 Data collection sources for weather and environmental variables 47

3.2 Top 5 locations of Esṕırito Santo ranked by total reported cases of dengue

during 2010-2019 . 59

3.3 Top 5 predictor PICs for Vitória . 60

4.1 Mixing matrix for swine movement network 86

4.2 Swine movement network degree centrality data 86

4.3 Pig operation type distribution. 86

4.4 Distribution of pigs in Stevens and Rice counties of Minnesota. 86

4.5 ASFV epidemic model parameters. 90

4.6 Transmission rate estimated for 9 pig herds by Guinat et al 91

5.1 Integration test procedures and results (cases 1 - 5) 110

5.2 Integration test procedures and results (cases 6 - 8) 111

5.3 Integration test procedures and results (cases 9,10) 112

D.1 Test bench configuration . 165

xvii

Acknowledgments

First and foremost, I express my gratitude to Dr. Caterina Scoglio, my research super-

visor, for her continuous support and guidance throughout this doctoral program. I have

learned a great deal from her on how to delve into academic research. She has been patient

and kind with my mistakes and has helped me grow as a researcher. She has guided me well

through challenging times with her experience and wisdom. This dissertation has thoroughly

improved from her editorial advice.

I thank Dr. Lee Cohnstaedt, who advised me for a significant part of my Ph.D. program.

His expert opinions of mosquito-vectors and vector-borne diseases were essential to this work.

I also appreciate Dr. Don Gruenbacher for his mentorship in the blockchain project. It was

a great privilege to work with Mr. Adrian Self and Dr. David Amrine and learn from their

disciplines.

I am grateful to my beloved wife, colleague, and friend, Sifat Afroj Moon, for her in-

spiration in reaching this milestone. She has stayed with me throughout this journey with

tremendous patience and support.

I acknowledge the people of the Network Science and Engineering Group: Mahbubul Huq

Riad, Qihui Yang, Aram Vajdi, and Chunlin Yi for their company and support. I also thank

all the people I met at the ECE department for making this journey a pleasant one.

Finally, I recognize the unconditional love of my parents, without whom I would not be

here.

xviii

Dedication

To the two people who make my world. My mother, Selina Nargis, and my daughter,

Aurora Ferdousi.

xix

Preface

With the title “Computational models and tools for analysis, prediction, and control of

infectious diseases,” this dissertation is submitted for the degree of Doctor of Philosophy in

the Department of Electrical and Computer Engineering at Kansas State University. The

research has been performed under the supervision of Dr. Caterina Scoglio.

This work is original to the best of my knowledge, except where acknowledgments and

references are made to previous works. Parts of this work have been published in the following

peer-reviewed journal articles.

• T. Ferdousi, L. W. Cohnstaedt, D. S. McVey, and C. M. Scoglio, “Understanding the

survival of Zika virus in a vector interconnected sexual contact network,” Scientific

Reports, 9(1), 7253, 2019.1

• T. Ferdousi, S. A. Moon, A. Self, and C. M. Scoglio, “Generation of swine movement

network and analysis of efficient mitigation strategies for African swine fever virus,”

PLOS ONE, 14(12), 2019.2

• T. Ferdousi, D. Gruenbacher, and C. M. Scoglio, “A Permissioned Distributed Ledger

for the US Beef Cattle Supply Chain,” IEEE Access, 8, 154833-154847, 2020.3

This research has been supported by the Department of the Army, U.S. Army Con-

tracting Command, Aberdeen Proving Ground, Natick Contracting Division, Fort Detrick

(DWFP Grant W911QY-19-1-0004), the NSF/NIH/USDA/BBSRC Ecology and Evolution

of Infectious Diseases (EEID) Program through USDA-NIFA Award 2015-67013-23818, the

National Science Foundation under Grant CMMI-1744812, and the Global Food Systems

Seed Grant Program, Kansas State University. The findings, conclusions, or recommenda-

tions expressed in this dissertation do not necessarily reflect the views of mentioned funding

agencies.

xx

Chapter 1

Introduction

1.1 Background

Infectious diseases have threatened human societies since the early days of civilization. De-

spite scientific breakthroughs in medical interventions throughout history, new pathogens

have emerged in almost every era, disrupting human lives and ravaging economies. We can-

not overstate the importance of characterizing infections, projecting the risk of spread, and

planning control measures. Epidemic models that aid such efforts can range from mecha-

nistic to purely data-driven. Network models combine tools and techniques developed in

social sciences, graph theory, and epidemiology to compute infection dynamics. This kind of

modeling is mechanistic with assumptions about processes governed by the laws of natural

sciences. Machine learning models learn from past examples to predict future values based

on experience. These are data-driven approaches that require a considerable number of ob-

servations on prediction targets. Selection of one approach over another usually depends on

our understanding of the pathogen, availability of infection-related data, and results we are

trying to achieve.

Regardless of approach, fundamental challenges are associated with modeling and pre-

dicting infectious diseases. A mechanistic model needs to incorporate complex behaviors and

interactions of hosts and pathogens while remaining computationally efficient. In addition to

1

that, the model parameters need to be estimated. Inadequacy of data is a common problem

with epidemic modeling. Lack of disease incidence data can significantly limit use of machine

learning models. A network model requires a host network structure to compute epidemic

processes, which may not be readily available. In the United States, host movement data

in the animal farming industry are difficult to obtain due to a lack of trust. Blockchain

is a decentralized ledger technology that can create trust, improve traceability, and secure

data in a supply chain. This dissertation adopts blockchain as a technological solution to a

business problem that affects infectious disease modeling and mitigation strategies.

1.1.1 Network models for epidemic analysis

Network models compute epidemic dynamics at the population level using individual-level

behaviors4. A network allocates contacts for an individual, which is a departure from classical

epidemic models that assume random mixing. In a real-world scenario, an individual may

not randomly interact with other people. For example, a person may only interact with

his family members, relatives, friends, and colleagues within a finite time interval. Number

of contacts will also vary from one person to another. These are some of the reasons why

network models are useful tools in modern epidemiology. Using tools and techniques of

network science5, we can identify individuals’ risky behaviors and analyze how a network

topology contributes to the spreading process. These insights can aid control measures

such as contact tracing based early interventions6–8. Using node centrality metrics9, we

can identify important nodes (e.g., hosts) and target interventions more effectively. Node

degree is one such metric that counts the number of active contacts of a node. Node degree

distribution in a network is commonly used to characterize the network. For example, studies

have concluded that sexual contact networks have scale-free structures characterized by a

degree distribution that decays according to a power law10–12.

A key ingredient of a network-based transmission model is data on the network itself,

described by nodes (hosts) and the edges (contacts) that connect them. One way to get this

ingredient is to perform surveys or observe social behaviors to record interactions among

2

hosts in a target population. Such studies have been conducted before13. However, these are

limited in quantity and pertain to small populations depending on those studies’ objectives.

A more workable method for epidemic modelers is to generate such networks using a graph

generator. There are graph generation models that can produce networks of varying charac-

teristics. Some popular models are Erdős–Rényi14 for random graphs, Barabási–Albert15 for

scale-free graphs, and Watts-Strogatz16 for small-world graphs. These graph generators have

well-defined parameters that determine output graphs’ properties (e.g., the number of nodes,

edge density). Infectious spreading networks often require further constraints depending on

hosts’ geographic locations, commute patterns, and pathogen transmission characteristics.

As a result, standard network models may not be readily usable without application-specific

modifications.

S I R

�

�
� �� �)) 	

Contact network

node i

State transitions of node i

Figure 1.1: A diagram of a network epidemic model. The circles on the left (contact
network) indicate nodes with directional links connecting them. For each node i, the model
defines three states: susceptible (S), infectious (I), and recovered (R). The curved arrows
indicate state transitions along with the transition rates. The symbols β and γ indicate the
infection and recovery rates. The indicator function 1I(xj(t)) ensures that a susceptible host
(S) can only be infected by an infectious host (I).

To demonstrate how to model infectious spreading processes on networks, an example

is shown in Figure 1.1. We start with a contact network of N host nodes. Let, A = [aij]

be an adjacency matrix of dimension N × N that describes the connections among nodes.

An element aij of the matrix indicates the presence (aij = 1) or absence (aij = 0) of an

edge/link from node j to node i. Figure 1.1 shows a network with directed edges. However,

depending on the application, edges can also be undirected (aij = aji). For this example,

we define three epidemic states for each node: susceptible (S), infectious (I), and recovered

(R). Let, xi(t) be the state of node i at time t. We define the combined state of the

3

network with N nodes as X(t) = [x1(t), x2(t), x3(t), ..., xN(t)]. For this particular example,

the networked system can have 3N different states. In the state transition diagram of the

SIR model, we define two transitions: infection (S → I) and recovery (I → R). A host i

which is susceptible (xi(t) = S) may get infected with some probability when it comes in

contact (aij = 1) with an infected host j (xj(t) = I) at time t. From a single infected host

j, the susceptible host i may get infected at a rate β. Once infected, a host i may recover

at a rate γ. The recovery process differs from the infection process as it is not affected by

host i’s neighbors (contacts) in the network. For Markovian processes, transition times are

distributed exponentially with an average duration equal to inverse transition rates. The

Gillespie17 algorithm can be used to run stochastic simulations using node transitions as

events occurring with their corresponding transition rates. The two transition probabilities

are described in the following equations,

P (xi(t+ ∆t) = I|xi(t) = S,X(t)) = β
N∑
j=1

aij1I(xj(t))∆t+ o(∆t)

P (xi(t+ ∆t) = R|xi(t) = I,X(t)) = γ∆t+ o(∆t) (1.1)

Here, ∆t is the time step, 1I(xj(t)) is an indicator function which is equal to 1 when

xj(t) = I (node j is infected at time t) and 0 otherwise. The first equation computes a

susceptible node’s probability of getting infected (S → I). The second equation computes

an infected node’s probability of recovering from the infection (I → R).

1.1.2 Machine learning for time series prediction

Machine learning (ML) models for epidemics lie on the other end of the modeling spectrum

when compared with mechanistic models (Section 1.1.1). In supervised learning, a model

learns from ‘example’ data on how to predict an output from a given input while trying to

improve prediction accuracy18, where these ‘examples’ map inputs to their corresponding

outputs. The set of examples used for model learning is known as the training data set. In

4

the ML domain, inputs and outputs are also referred to as ‘features’ and ‘labels.’ Features

are predictor variables that may have some degree of influence on output values (labels).

For example, to predict a child’s height, its age could be used as a feature. Features can be

single, few, or many depending on the application and available data. A part of ML research

is dedicated to feature selection, which aims to select a subset of relevant features to improve

learning performance while reducing processing and storage overheads19. A supervised model

learns from training data and tries to generalize input-output relationships. Alternatively,

this can be described as searching for a hypothesis h that approximates the true function

f , which is not known. Multiple hypotheses h may fit a finite training data set20. However,

the goal is to find one which can reasonably generalize beyond the training set (i.e., perform

similarly in predicting unseen examples). Inductive bias is the set of assumptions used to

choose one consistent hypothesis over others. One example of inductive bias is to choose

the simplest hypothesis consistent with training examples (known as Occam’s razor). In

practice, available example data are split into train and test data sets. Test data are used

to evaluate performance once a model is fitted with training data. When a model predicts

training data with comparatively higher accuracy than test data, it is called overfitting21

(i.e., failing to generalize). Regularization techniques are used to prevent or remedy such

situations.

Time series prediction falls in the category of ‘sequence prediction’ in machine learning.

A sequence is a set of data with some meaningful ordering among samples, where adjacent

values are related. In other words, sampled data points are not i.i.d. (independent and

identically distributed). A time series is a sequence where data points are ordered based on

time. For example, during an outbreak, infections spread from infected people to healthy

people. Depending on several factors (e.g., number of infectious people in a community),

daily new infected cases may follow a pattern such as increasing, decreasing, or remaining

unchanged. This is a temporal relationship we expect a model to learn. Conventional models

that consider each data point independent of others will not be able to capture temporal

relationships.

Artificial neurons are the building blocks (units) of neural networks that have revolution-

5

��

σ σ σ���ℎ

× +

×
×

ℎ�

����− ��

ℎ�− ℎ�

���ℎ

	�	�−

�

ℎ�−

��

ℎ�

	�

Figure 1.2: A diagram22 of a long short-term memory (LSTM) unit23;24. It contains three
gates: forget gate (ft), input gate (it), and output gate (ot), and uses two distinct activation
functions: sigmoid (σ) and hyperbolic tangent (tanh). The internal memory state (also
called cell state) at time t is indicated by Ct. Inputs and outputs of the unit at time t are xt
and ht respectively. The × and + symbols indicate point-wise multiplication and point-wise
addition respectively. This is a single LSTM unit unrolled with respect to time.

ized machine learning25. Deep neural networks consist of multiple layers of artificial neurons

with varying neural unit structures depending on the application. Some prominent appli-

cations of deep learning include image classification, speech recognition, and recommender

systems26–28. Recurrent neural networks (RNN) are special types of artificial neural net-

works (ANN) that employ recurrent neural units which can learn sequential data29. These

units have internal memory states that can store information about past inputs. Early RNN

models had a vanishing gradient problem30 that was solved with advanced architectures:

LSTM (long short-term memory) and GRU (gated recurrent units)23;24;31. A diagram of

an LSTM unit is shown in Figure 1.2. RNN units have self-loops that transfer values (for

example, memory states (Ct) and outputs (ht)) from one time-step to the next. The dia-

gram we show here is unrolled with respect to time for better representation of its sequential

nature. Gates in a recurrent unit control the flow of information using a sigmoid layer (σ)

6

and a point-wise multiplier (×). Note, we use the term point-wise as the symbols shown

in Figure 1.2 (e.g., xt, ht) are vectors. Size of these vectors depends on input data. Three

gates that regulate the internal memory state or output are called input, output, and forget

gates. The internal memory state (Ct−1) can be modified by the input gate (it) or the forget

gate (ft) before being passed to the next time step. These gates may add information to the

memory state or remove it depending on the situation. The output is a filtered version of

the internal memory state controlled by the output gate (ot). Researchers have used RNNs

successfully for machine translation, speech synthesis, handwriting recognition, and time

series prediction32–35.

1.1.3 Blockchains for distributed ledgers

Blockchains are linked-list structures where a block is linked to its previous block using cryp-

tographic hashes36. They have been widely used for cryptocurrencies such as bitcoin37, which

are digital assets under decentralized control. A simplified diagram depicting a blockchain

structure is shown in Figure 1.3. It does not show every component of a block, only the

items related to this discussion. A block consists of a header and a list of transactions. A

transaction is created when one account (e.g., user) in the blockchain network transfers some

value (e.g., bitcoin) to another account. The transactions are ordered and added to a new

block based on an agreed-upon consensus mechanism38. Using a Merkle tree39 like structure,

a hash tree is computed from all transactions in a block. The hash tree root (HTR) is stored

in the header. Bitcoin uses SHA-256 as the cryptographic hash function40. In addition to

HTR, a header contains the hash computed from the previous block’s header (for example,

Hk−1 in Block k of Figure 1.3). This ensures any change in content of any previous block

will break the chain. A modification in the content of one block would require all subsequent

blocks to be updated. This makes it difficult for a perpetrator to change any past data.

Most cryptocurrencies use a proof-of-work consensus mechanism. In proof-of-work, active

participants (also called miners) try to solve a computationally difficult problem of finding

a hash to match some predefined requirements38. Miners vary the nonce parameter(Nk) to

7

search for the desired hash. Successful miners are allowed to add new blocks, and they are

rewarded with an amount of crypto-currency. A proof of work (matching hash) is difficult

to compute but easy to verify. Blockchains operate using peer-to-peer (P2P) communication

protocols. Redundancy is created by each participating node having a copy of the chain.

��− Ν�

Tx #

Tx #

Tx #

…

Header

Transac�ons

�����−2 Ν�−1

Tx #

Tx #

Tx #

…

Header

Transac�ons

��� �� Ν�+1

Tx #

Tx #

Tx #

…

Header

Transac�ons

���

Block �Block � − 1 Block � + 1

Figure 1.3: A simplified blockchain architecture. Each block contains some header informa-
tion and a list of transactions, along with several other parameters. The header of a block
(k) contains a cryptographic hash computed from the header of the previous block (Hk−1), a
cryptographic transaction root hash (HTR) of transactions contained inside the current block
(computed using a Merkle tree), and a nonce (Nk) parameter. Each block is linked to a
previous block via hash values Hks as shown using arrows37. Note, only a subset of a block’s
components is shown here.

More advanced blockchain frameworks such as Ethereum41, and Hyperledger42 support

smart contracts. A smart contract is a block of computer code stored in the blockchain

(along with transaction data). Smart contracts have a ‘class’ like structure, commonly used

in object-oriented programming. It supports inheritance and can have constructors, member

variables, and member methods. Smart contracts can be designed to enforce business policies,

privacy practices, and access control43;44. The blockchain ensures everyone has the same

version of code and data, which creates trust.

1.2 Motivation

A general problem with classical epidemic models is their inability to capture complex dy-

namics precisely during transient stages of pathogen spread in a population. A network

model with heterogeneous mixing patterns can remedy this problem, but it may not remain

8

computationally tractable with increasingly more nodes. It is important to find a middle

ground where a model can approximate real-world dynamics with reasonable accuracy while

remaining efficient in memory and processing power. Some approaches that deal with large

populations are models that use mean-field approximations45;46 and metapopulations47;48.

The Zika virus spreading process has several modeling challenges. First, the number of

mosquito vectors is several orders of magnitude higher than the number of human hosts in

a locality. Zika viruses can also be transmitted sexually from male hosts. A hybrid model is

needed which can analyze both modes of transmission.

An alternate approach to predicting vector-borne infections is to use machine learn-

ing when data are available on disease incidence and related covariates (e.g., temperature,

rainfall). Disease surveillance programs have improved applicability of machine learning ap-

proaches. However, data quality varies across regions. Infectious disease processes are com-

plex and continuously evolving. Historical data are often not sufficient to train a machine

learning model that can predict with acceptable accuracy. However, modern surveillance

programs can provide incidence data at a much finer spatial resolution than it was possi-

ble in the past. We need a feature selection method that can take advantage of incidence

data from spatially adjacent locations to use them as features. When analyzing time series

data among pairs of locations, we also need to quantify phase relationships, geographical

distances, and historical prevalence to select the best possible features.

When working with farm animals’ infectious diseases in the United States, a significant

drawback is lack of animal movement data. No central authority records transfer of animals

that happen at the farm level. Business owners fear sharing movement data will benefit

competitors, which may cause a loss of revenue. Hence, it is difficult to predict and mitigate

the spread of infections in U.S. farm networks. We can approach this problem from two

directions. First, A network generator can be designed to use data available in the public

domain. It can use the knowledge gained from animal movement surveys and county-level

aggregate data to characterize a representative network structure. A second way is to ad-

dress the lack of trust among businesses directly. A data management framework is needed

which can meet the requirements of privacy, data ownership, and traceability while providing

9

incentives for businesses at the same time.

This dissertation deals with several open problems of infectious disease modeling, anal-

ysis, and control. The list of issues includes the network model of Zika virus transmission,

data-driven prediction of dengue outbreaks, network generation of farm animal movements,

and decentralized database management of meat-producing businesses.

1.3 Dissertation overview

To aid with analysis, prediction, and control of infectious diseases, this dissertation con-

tributes in two distinct ways: i) Chapters 2 and 3 present epidemic modeling techniques for

complex infectious processes and ii) Chapters 4 and 5 remedy problems created by missing

data that hinders outbreak analysis and mitigation strategies.

Chapter 2 introduces an interconnected model that incorporates both insect-vectored

and sexual transmission of the Zika virus. Using the interconnected model, we address

computational overhead issues by modeling vectors as homogeneously mixed populations.

The vector model incorporates seasonal variations of mosquito abundance in the form of

time-varying mosquito birth rates. This chapter also presents a method of generating sexual

contact networks from aggregate data on host behavior patterns. We implement an event-

based stochastic simulator using the non-Markovian Gillespie algorithm, which interconnects

the host and vector sub-models by updating co-dependent model parameters between events.

In the results section, we perform a seasonal analysis to understand the effect of the pathogen

introduction month on the outbreak. Later, we perform a survival analysis to investigate

the impact of crucial model parameters on the vector-free pathogen survival period. We

conclude with a sensitivity analysis to compare the relative effect of model parameters.

In Chapter 3, we take a machine learning approach to develop a time series forecast model

to predict dengue fever cases. To address the issue of sparse data at a target location, we

present a method to compute a windowed time-shifted correlation metric and combine it with

distance and prevalence metrics to rank incidence data from nearby locations as potential

predictor features. We present two techniques to allocate such windows on the time series

10

before computing correlation metrics: fixed-length windows and outbreak window detection.

We compare results generated using these techniques across three regression models: linear,

LSTM (long short-term memory), and GRU (gated recurrent units). We also compare

performance improvements when applying the models on municipality-level and ecoregion-

level data to predict Brazil’s dengue cases.

To remedy the lack of farm animal movement data in the public domain, we present

a graph generation method in Chapter 4 to synthesize directed swine movement networks

for the U.S. pork industry. Using a generated network representative of the U.S. farm

network structure, we simulate the spread of African swine fever virus. By introducing

pathogens in different farm operation types, we observe how outbreak sizes are affected. We

perform network centrality analysis to identify important node categories (farm operation

types) in the disease-spreading process. We also evaluate which centrality measures (in-

degree, out-degree, or betweenness) are more effective in controlling outbreaks under targeted

interventions of hypothetical vaccines or movement restrictions.

To directly address farm business owners’ reluctance in sharing animal movement data,

we implement a blockchain-based decentralized data management framework in Chapter 5 for

beef cattle supply chains in the United States. We design how the framework handles users,

data, and communications using five goal-specific smart contracts. The framework specifies

local data storage protocols to ensure security and ownership of data for businesses. We eval-

uate user privacy, data security, provenance tracking, reliability, and operations cost using

integration tests. The tests are performed on a prototype running system of six blockchain

nodes. The test results validate the framework’s various operational characteristics to ensure

that it runs nominally.

1.4 Contributions

Contributions of this dissertation are summarized below:

• Designed an interconnected host-vector model that links heterogeneously-mixed hosts

11

with homogeneously-mixed vectors to model insect-vectored and sexual transmission

of Zika virus.

• Implemented a simulator tool for the interconnected host-vector model using a non-

Markovian variant of the Gillespie algorithm.

• Quantified that sexual transmission alone can sustain Zika virus in a population for

up to 75 days without vectors.

• Designed and implemented a network generation algorithm for farm animal movement

networks in the United States.

• Analyzed the relative impact of node centrality-based targeted control measures and

concluded that high in-degree nodes should be treated first for efficient control of

African swine fever outbreaks.

• Conceptualized a framework for decentralized storage and management of farm ani-

mal data in the United States beef cattle industry using blockchains focusing on user

privacy, data security, and trust.

• Designed and implemented a windowed time-shifted correlation-based feature selec-

tion method to improve performance in predicting dengue fever outbreaks with neural

networks.

12

Chapter 2

Understanding the survival of Zika

virus in a vector interconnected

sexual contact network1

2.1 Background

Zika virus (ZIKV) is predominantly vector-borne, and the outbreaks are strongly dependent

on the mosquito vector density, which is influenced by the climatic conditions49. There

have been substantial evidence50 and reports51 of sexual transmission of ZIKV. Although

ZIKV epidemic models mostly focus on mosquito-vectored transmission, multiple studies

have quantified the contribution of sexual transmission52–56. Modeling analysis has helped

to determine the relative importance of different transmission mechanisms. To enhance our

understanding of how the combination of vectored and sexual transmission can help sustain

the pathogen during the vector-free seasons (e.g., winter), we develop a novel epidemic model

that interconnects a homogeneous mosquito vector population with a heterogeneous sexual

contact network.

Zika virus is a positive-sense single-stranded RNA virus of the Flaviviridae family57. It is

1This chapter is a slightly modified version of a published article1, Copyright 2019, Scientific Reports.

13

related to other flaviviruses such as dengue, yellow fever, West Nile, and Japanese encephali-

tis viruses. ZIKV infection symptoms include acute fever, maculopapular rash, arthralgia,

and conjunctivitis. However, only about 20% of infected people suffer any significant symp-

toms58. A large proportion of asymptomatic cases poses a significant problem in determining

the outbreaks to initiate early response measures. ZIKV infection in pregnant women can

result in congenital microcephaly, a severe birth defect59. The transmission of ZIKV occurs

primarily by infected mosquito vectors such as Aedes aegypti and Aedes albopictus. However,

it can also be spread via infected semen, and blood60. The first autochthonous case of Zika

in the mainland US was reported in July 2016 in Miami, Florida. As of April 2018, 5, 676

cases have been reported in the US States61. In 2016, 224 autochthonous cases were reported

where the state of Florida itself is responsible for 97% of those cases, and the remaining 3%

cases occurred in Texas61. Due to the complex nature and multiple pathways of pathogen

transmission, several epidemic parameters are still unknown.

There have been numerous attempts to model the outbreaks of ZIKV. Several models

only considered vectored transmission49;62–64 and several others considered both sexual and

vectored transmission routes52;53. Kuhlman et al. developed a hybrid agent-based model64

to simulate Zika outbreaks in the central Miami region. While the work demonstrates in-

terlinked host and vector populations, it does not address host-to-host sexual transmissions.

Vertical transmission has also been modeled in a work of Agusto et al.65. Olawoyin et al.

analyzed the effects of multiple transmission pathways and concluded that secondary trans-

mission mechanisms increase the basic reproductive number and cause the outbreaks to occur

sooner compared to the vector-only transmission66. The work of Gao et al. concluded that

sexual transmission contributes about 3.044% of the overall transmission52. Moghadas et al.

also found similar contributions from the sexual transmission, and they emphasized the im-

portance of asymptomatic transmission67. Maxian et al. concluded that this contribution is

too minor to sustain an outbreak, as they found that sexual transmission contributes about

4.8% to the basic reproductive number, R0
54. They also concluded that sexual transmission

indirectly helps the vectored transmission by increasing the pool of infectious individuals.

The relatively higher prevalence of infection in the female population than the male popu-

14

lation was analyzed by Pugliese et al.68, who concluded that females’ higher susceptibility

compared to their male counterparts in the case of sexual transmission could be the reason.

The work of Sasmal et al. estimated that sexual transmission contribution could be as high

as 15.36% for sexual risk-stratified population69. Another study concludes that existing re-

search could potentially underestimate the risk of sustained sexual transmission by an order

of magnitude70. It has been found that Zika virus can sustain in semen for a long time after

it disappears from blood71. Hence, even though it is clear that sexual transmission alone

can’t sustain an outbreak, we don’t have clear information about the persistence of the

pathogen in a human host network without vectors. Limited information on the reduction

of transmissibility for both asymptomatically infected hosts and during the extended sexual

transmission period adds to the complexity in understanding how the outcomes are affected.

In this chapter, we develop an individual-based (i.e., node-based) network model, which

is different from basic compartmental models as it features heterogeneous mixing. Each

individual (i.e., a node) is connected to a specific number of individuals, which can be very

different. In the context of real-world sexual networks, this is realistic. Using survey data72

on sexual behavior, we develop a network generator tool that can produce networks with

properties that closely match the given data. As the vector population is much larger than

the host population and vectors do not transmit between them, it is unnecessary to use node-

based models for vectors. We employ a homogeneous population model for the vectors. We

interconnect these two populations (hosts and vectors) via infection rate parameters where

the infection of one population depends on the number of infected in the other population.

There have been several works on epidemic spreading in interconnected networks73. How-

ever, due to the multi-host (one being the vector) scenario, our model is built differently

from conventional interconnected networks. Our goal is to incorporate heterogeneity in the

host population but reduce unnecessary computational overhead by interconnecting with a

homogeneous vector population. Our model also differentiates between symptomatically and

asymptomatically affected individuals by assigning them different states. We furthermore in-

corporate the extended sexual transmissibility in our model. In the host network sub-model,

each host node can be in either one of the seven states: SEIsIaJsJaR (Susceptible, Exposed,

15

Infectious (Symptomatic), Infectious (Asymptomatic), Convalescent (Symptomatic), Con-

valescent (Asymptomatic), and Recovered). The host population is also divided based on

gender, sexual orientation, and age. In the vector population sub-model, the population is

modeled into three compartments: SVEV IV (Susceptible, Exposed, and Infected). We only

use birth-death demography for the vector model, and the climatic variation is incorporated

into the vector birth rate, which is one of the variable parameters. The simulation model is

based on Gillespie’s Stochastic Simulation Algorithm (SSA)17. However, we have a few vari-

able rate parameters in our model, which prompted us to use the non-Markovian Gillespie

Algorithm (n-MGA)74 to simulate our model, which we implement using a modified version

of the GEMF75 tool.

The contributions of this chapter are threefold: i) we propose a novel interconnected

model to evaluate host-to-host and host-to-vector-to-host pathogen transmission, ii) we de-

velop a sexual contact network generator based on aggregate data, and iii) using our imple-

mentation of the non-Markovian Gillespie Algorithm (n-MGA) we examine survival of the

pathogen in the host network. We also perform sensitivity analyses on key model param-

eters to evaluate their role in disease outcomes. The interconnected model is presented in

the model formulation section, three independent approaches in evaluating model outputs

are presented in the results section, and the methods section contains the details on the

simulation model.

2.2 Model formulation

2.2.1 Interconnected population model

We propose an interconnected population model to investigate the spread of ZIKV within

the human host and the mosquito vector population during an outbreak. A basic diagram

of the model is shown in Figure 2.1. It has two major components: the vector population

marked by the cloud on top and the host contact network marked by the solid circle nodes

and the solid edges. The vector population is assumed to be in the vicinity of the host

16

population such that each mosquito vector can bite any of the hosts (indicated by dashed

lines).

Figure 2.1: Coupled population model for ZIKV. The black solid circles indicate host nodes
(individuals) and the cloud shape above indicates the vector population. The solid edges
connecting the nodes indicate the sexual contact network and the dashed edges indicate con-
tacts of the vector population with the host nodes. A host node can be in any of the seven
states (SEIsIaJsJaR) and the entire vector population is divided into three compartments
(SVEV IV).

Each host node can be in either one of the seven states: Susceptible (S), Exposed (E),

Infectious (Symptomatic) (Is), Infectious (Asymptomatic) (Ia), Convalescent (Symptomatic)

(Js), Convalescent (Asymptomatic) (Ja), and Recovered (R). The convalescent states were

used to model the extended presence of ZIKV in semen as reported by previous works71. Peo-

ple in Js or Ja states cannot transmit infections via vectors; they can only transmit sexually.

The vector population is divided into three compartments: Susceptible (SV), Exposed (EV),

and Infected (IV). The unidirectional arrows indicate transition from one state/compartment

to another. The symbol adjacent to each arrow indicates the rate of that particular transi-

tion. The set of all these symbols constitute the model parameters, and they are listed in

Table 2.1. This table also lists the nominal values and the range of values to be used for the

17

simulation experiments. Some of these values are not readily available in the literature, and

we performed calibrations to determine acceptable ranges of values to conduct the experi-

ments. We also performed sensitivity analyses with several critical parameters to evaluate

model behavior. We have also used boolean condition functions marked by the symbol,

Cx(n) as shown in Figure 2.1. The subscript ‘x’ indicates which condition a node n has to

satisfy. If a condition is met, the condition function returns True (= 1); otherwise, it returns

False (= 0). For example, CAM(i) will return 1 if node i is an adult male (AM), it will return

0 otherwise. The conditions that we have used are: AM = Adult Male, and NAM = Not

Adult Male. It should be obvious that for any i, CAM(i) is the complement of CNAM(i).

FST (i) is the multiplier component function of the force of infection for sexual transmission

from other nodes to node i. The symbols Is, Ia, Js, and Ja in the formulation of FST (i)

are host state indicators for neighbors (j) of node i. CST (i, j) is the sexual transmission

condition function. It only returns True (1) if i is an adult and j is an adult male. Here, j

is considered the transmitter, and i is considered the recipient of infection.

As indicated in Figure 2.1, a susceptible host node can get infected (S → E) via two

mechanisms: i) getting bitten by an infected mosquito (at the rate λHV) or ii) having sexual

contact with an infected or convalescent (Is, Ia, Js or, Ja) host (at the rate β). We use the

adjacency matrix representation of a graph, where A is the adjacency matrix. An element

aij ∈ A indicates the connection/link between node i and node j. If a link exists, then

aij = 1, otherwise aij = 0. The sexual transmission rate, β was computed using the formula

β = 1 − (1 − α)n, which was previously used in the work of Agusto53. Here, α is the

probability of transmission per coital act with an infected partner. As data specific to the

Zika virus is not available, we assume a range of α between 0.001 and 0.176. The exponent

n is the average number of coital acts per unit of time. Some estimated data indicate that

people have sex an average of 60 times per year72. Hence, we estimate n = 60/365 = 0.1644

per day. The range of β for the range α is 0.000164 to 0.0172. Once a human host is infected,

he/she can either develop symptoms or not show any sign of infection at all. Hence, there

are two possible transitions from the exposed (E) state: i) a proportion, τ of the people

becomes symptomatically infected (Is) and ii) a proportion, 1 − τ of the people becomes

18

asymptomatically infected (Ia). The proportion of symptomatic ZIKV infections is claimed

by previous works58 to be about 20%. However, one recent work77 claims that this proportion

could be higher, ranging from 27%− 50%. For our analysis, we take this into consideration

as shown in Table 2.1. Once someone is infected, they will stay infected for an average

duration of 1/γ1. However, once the virus disappears from blood, the adult male hosts will

go through some extended period of infectiousness which is modeled by the convalescent

states (Js and Ja). An adult male in the convalescent state may only transmit sexually and

would recover after an average duration of 1/γ2. The infectiousness of the four states (Is, Ia,

Js, and Ja) are not considered the same. The relative transmissibility of the asymptomatic

states is represented by θ. The relative transmissibility for the convalescent states is denoted

by µ. Although symptomatically infected people could be spreading less if they are seeking

medical attention, we do not reduce the transmissibility for the symptomatic cases in this

model. Historically, it has been seen that possible negligence associated with ZIKV has

contributed to sexual transmissions78. A healthy mosquito vector can get infected with

some nonzero probability only if it bites an infectious human (Is or Ia) (at the rate λV H).

The time-dependent per-capita mosquito recruitment rate is represented by F (t) where,

F (t) = (1/12)A(t). Here, 1/12 is a fixed birth rate assumed to be the same as the mortality

rate (ε). The mosquito abundance factor A(t) is the seasonality parameter that incorporates

seasonal variations into the model.

To generate a realistic sexual network, we develop a network generator tool based on

the ‘configuration model’5. Our tool takes as input data of sexual behavior, age, gender,

and produces representative random networks. Details are featured in the Methods section.

An example network generated by our tool is given in Figure 2.2. In our model, we also

intend to incorporate the temporal variations of the climate in different seasons and the

consequences of such variation on the mosquito vector population. To simplify this task,

we use a vector abundance factor (A(t)) expressed as a fraction in the range [0, 1]. This

parameter was derived from data points used in the work of Monaghan et al.82, which they

originally extracted from the works of Reiskind et al.80. For our simulations, we use vector

abundance data from Miami, Florida. The mosquito abundance factor over the course of 12

19

months is plotted in Figure 2.3. The data originally had 12 sample points (monthly values).

As the model requires the abundance factor on a daily basis, we use linear interpolations

between data points of adjacent months.

Figure 2.2: Generated sexual contact network based on sexual behavior72. The given network
has N = 1000 nodes. The Methods section contain the details on how it is generated. The
nodes are presented in two distinct colors and three distinct sizes. The males are marked as
blue and the females are marked as pink. The three node sizes correspond to Children (small),
Adults (medium), and Elderly (large) people. This particular instance of the network has an
average node degree of 0.803 whereas the 64% adult population have an average degree of
1.26. This particular instance of network has 463 male and 537 female host nodes. The edge
density of this network is 0.0008038. There are 600 connected components and the largest
one consists of 117 nodes.

20

Feb Apr Jun Aug Oct Dec

Time of the year, t

0

0.2

0.4

0.6

0.8

1

M
o
s
q
u
it
o
 a

b
u
n
d
a
n
c
e
 f
a
c
to

r,
 A

(t
)

Figure 2.3: Variation in mosquito vector abundance with time. Due to changing temper-
ature, rainfall, and other climatic factors, mosquito abundance varies throughout the year.
The squares show the data points and the dotted lines are linear interpolations. The data
represent Palm Beach, Florida where the vector abundance peaks during June-July. The
plot was constructed from data observed in Palm Beach, FL over 27 four-week periods from
2006-200880;82.

2.2.2 Simulation tool

If the transition rate parameters are constant, the overall stochastic model is a Markov

process with Poisson arrivals and exponential inter-event times. A stochastic algorithm such

as the Gillespie SSA17 can be used to perform simulations in most of these cases. The

well-developed GEMFsim75 has been used previously83 to solve such stochastic spreading

processes in the networks. However, our model requires a few changes before such simulations

can be performed.

In our model, the transition rate parameters are not constant. The mosquito birth

rate is a seasonally dependent parameter that varies according to the given vector abun-

dance input data. The vector population compartments are changing with time during

the outbreak simulation, which changes the host infection rate λHV IV . Similarly, the host

infected populations are also changing with time which modify the vector infection rate

λV HNH

∑NH

j=1[Is + θIa]j. These constitute a set of exogenously varying parameters (i.e.,

varying due to external forces/catalysts). As a consequence, the processes are no longer Pois-

21

son; rather, these are called non-homogeneous Poisson. To cope with this issue, we use the

non-Markovian generalized Gillespie Algorithm (nMGA)74 which assumes general renewal

processes (which is more generic) that allow exogenous variations of parameters. We mod-

ified the existing GEMFsim75 accordingly and added a vector compartmental model solver

on top of it. The vector compartmental solver is effectively coupled to the modified network-

based nMGA solver via the infection rate parameters (λHV IV and λV HNH

∑NH

j=1[Is + θIa]j),

where a parameter in one population depends on some quantity in the other population.

2.3 Results

The simulation tool uses the parameters listed in Table 2.1, the initial conditions, the sea-

sonal variation data, the population data, and the contact network representation. The

initial condition is a single infected vector (IV (0) = 1) while keeping the remaining vector

population and the entire host population susceptible (S). We specify the pathogen intro-

duction month (Mstart) and the max run time (Tend). For example, if we set Mstart = 5

and Tend = 100, the simulation will start from 1st of May and run up to the 2nd week of

August. A simulation can terminate before Tend if the outbreak dies out. As we are running

stochastic simulations, we smooth out our results by averaging over 500 repetitions. The

population data contains the distribution of genders, sexual orientations, and age groups

used to generate the contact network. For the survival analysis, we introduce the pathogen

in November (Mstart = 11) to indicate the start of winter. For the sensitivity analysis, we

introduce the pathogen into the population in April (Mstart = 4), which is the most likely

scenario for the 2016 Miami-Dade outbreak81.

2.3.1 Seasonal analysis

First, we explore the effect of seasonal variations on the epidemic progression. We use the

nominal parameter values defined in Table 2.1 and run the simulations for three distinct

pathogen introduction months, Mstart. Taking some cues from the seasonal patterns of

22

Miami, FL shown in the Figure 2.3, we choose to run independent scenarios starting on 1st

of April (Mstart = 4), 1st of August (Mstart = 8), and 1st of October (Mstart = 10). The

averaged results of 500 simulations are shown in Figure 2.4.

Without any intervention, we observe a large outbreak (more than 50% of the population

affected) if the pathogen is introduced on 1st of August. For the remaining two cases, the

outbreak sizes are comparatively much smaller. This can be explained using the seasonal

variations of Figure 2.3. In Miami, the mosquito abundance is high during the beginning of

August. This contributes to a boost in the infected vector population compared to the other

two dates.

We also observe some interesting behaviors in the outbreak dynamics. Despite the vector

abundance having a large positive slope during the month of April and a large negative slope

during the month of August, Miami suffers a larger outbreak in the August introduction

compared to the April introduction. Figure 2.4b shows that the infected vectors die out

soon in the April outbreak, although the upcoming summer (positive slope in abundance)

sustains healthy vectors for a long time. In the case of the August introduction, the infected

vectors rise rapidly during the first 50 days (Figure 2.4d). Although the vector population

declines rapidly after 50 days due to the upcoming winter’s unsuitable climates, the initial

surge in infected mosquitoes causes a large outbreak. The results indicate that the suitability

of the climate during pathogen introduction plays a significant role in determining the size

of the outbreak. The impacts of climatic changes in the following months are minimal.

2.3.2 Survival analysis

As a part of the survival analysis, we will be observing several measured quantities: the

epidemic/infection lengths, the pathogen survival period, and the epidemic attack rates.

Here, we define them first before discussing the results.

23

Host infection length (THL)

The host infection length is defined as,

THL = The last time instant between 0 and Tend where there is at least one infected host left

(2.1)

It is the last day on the outbreak time-line an infected host can be found. For this property,

the infected hosts who are asymptomatic or in the convalescent state are also considered

infected. In this chapter, when we use the term “epidemic length”, we imply host infection

length THL unless otherwise mentioned.

Vector infection length (TV L)

The vector infection length is defined as,

TV L = The last time instant between 0 and Tend where there is at least one infected vector left

(2.2)

It is the last day on the outbreak time-line an infected vector can be found. In typical

outbreak situations, infected vectors die out before all the infected hosts recover.

Pathogen survival period, (TPS)

The vector free pathogen survival period is defined as,

TPS = THL − TV L (2.3)

It measures how long pathogen can survive in the host population without the presence of

vectors.

24

Epidemic attack rate (AR)

The epidemic attack rate (AR) is defined as,

AR =
Number of hosts who experience infection throughout the outbreak

Total number of hosts, NH

(2.4)

The value of AR is in the range [0, 1]. We sometimes express this quantity as a percentage

instead of a fraction. For example, an AR of 0.3 means 30% of the population were infected

during the outbreak and the remaining 70% never experienced any infection.

To see how some of the above-mentioned quantities relate to sexual transmission, we vary

the sexual transmission rate, β in the range mentioned in Table 2.1. We find that varying

β does not noticeably increase or decrease the epidemic length (Figure 2.5a), which remains

between 2-4 days for the range of β in consideration. Outbreaks in most of these cases last for

about 158 days. The effect of increased sexual transmission in modifying pathogen survival

is also minor (Figure 2.5b), being within 74-78 days with an average of 76.75 days. A similar

situation arises for the attack rate (Figure 2.5c), with the mean attack rate being 15.12%. If

there is no sexual transmission (β = 0), the attack rate is 14.48%. With a sexual transmission

rate of 0.0175 (corresponding to about 10% probability of transmission per coital act), the

attack rate increases to 15.97%. This accounts for about a 10.29% increase in the epidemic

size that a high rate of sexual transmission can cause. We also have an unknown factor, the

relative sexual transmissibility (µ) when recovering hosts are in the convalescent phases. For

all other simulations, we assume the infectiousness will reduce by 50% in convalescent stages.

However, we also vary this parameter to determine how it affects the outcomes. Just like

the effects we saw for β, the epidemic lengths remain within 1-2 days of the mean of 157.6

days (Figure 2.5d). The pathogen survival also show similar characteristics as before and

stays within 73-76 days (Figure 2.5e). The effect on the epidemic size is barely noticeable

(Figure 2.5f), with minor fluctuations.

ZIKV disease outcomes are also affected by a large proportion of asymptomatic hosts.

We vary the two parameters (τ and θ) that we use to model the asymptomatically infected

25

individuals. Although in most works we found that about 20% of the cases were symp-

tomatic, one recent work estimated that this proportion could be higher77 (27% - 50%).

To evaluate the effect of such variations, we vary the symptomatic proportion parameter, τ

from 10% to 60%. The epidemic length increases gradually with τ starting from 155 days

for 10% symptomatic to 172 days for 60% symptomatic population (Figure 2.5g). A 50%

increase in the symptomatic proportion causes a 11% increase in the length of the outbreak.

The pathogen survival is affected much less compared to epidemic length. However, we find

a small fluctuating decrease followed by a gradual increase (Figure 2.5h). The vector free

pathogen survival remains within 2-3 days of the average length of 75.6 days. The epidemic

size has a clear increasing trend as shown in Figure 2.5i. This is expected because the symp-

tomatically infected individuals are subject to higher transmission rates. As an example,

the outbreaks will be about 45% larger if 50% of the people are symptomatic compared to

the usual proportion of 20%. The relative transmissibility has a significantly larger effect

on the disease outcomes, and all three properties increase (Figure 2.5 bottom row). In most

other simulations, it is assumed by default that infectiousness reduces to half (θ = 0.5) when

someone is asymptomatic. Compared to our default situation, if we make infectiousness

of both symptomatic and asymptomatic individuals the same, we see 17.5% increase in the

epidemic length (Figure 2.5j), 14.45% increase in the pathogen survival period (Figure 2.5k),

and a massive 123.5% increase in the epidemic size (Figure 2.5l).

2.3.3 Sensitivity analysis

A sensitivity analysis is performed in order to evaluate the model response with respect to

several key parameters. For a vector-borne disease such as ZIKV, the ratio of vector and

host population is expected to play a prominent role in the disease outcomes. In our previ-

ous analysis, we have also found that the proportion of asymptomatic individuals and their

relative transmission rate affect the disease outcomes. To evaluate how these parameters in-

terplay, we perform a pairwise sensitivity analysis of the three parameters: the vector-to-host

ratio (NV /NH), the proportion of asymptomatic hosts (τ), and the relative transmissibility

26

of asymptomatic hosts (θ). The results are depicted in Figure 2.6.

The epidemic length (THL) is affected by the three parameters in question. However, we

can see that the effect of symptomatic proportion depends on the relative transmissibility.

The symptomatic proportion can regulate epidemic length if relative transmissibility is low,

as seen in Figure 2.6b. If θ is above 0.4, the capability of τ is greatly reduced. The vector-

to-host ratio (NV /NH) always increases the epidemic length (Figures 2.6a and 2.6c), which

is also true for the relative transmissibility of asymptomatic individuals (θ) (Figures 2.6b

and 2.6c).

We obtain some interesting results when we analyze the sensitivity of pathogen survival,

TPS. Pathogens can survive longer for an intermediate range of host to vector ratio if the

proportion of symptomatic individuals is low, as shown in Figure 2.6d. On the other hand,

despite having some large epidemics on the upper right corner of Figure 2.6g, we see that

pathogen survival is relatively lower (as low as 67 days) (Figure 2.6d). In Figure 2.6e, we

see that depending on the value of τ , the survival can be higher for certain intermediate

values of θ. For example, When τ < 0.2 and 0.3 < θ < 0.7, there is a region where pathogen

can survive more compared to the other situations. Survival reduces for both high and low

values of asymptomatic relative transmissibility (θ). When comparing vector-to-host ratio

along with the asymptomatic relative transmissibility, we see that a thick band or a region

appears where the pathogen survival is high (Figure 2.6f). There are slight fluctuations in

that peak region; however, they are relatively minor to indicate any particular phenomena.

If we compare this plot with the attack rate plot (Figure 2.6i), we see that pathogen survival

is relatively long for intermediate values of attack rates and relatively short for small or large

attack rates. Small outbreaks naturally end sooner. Substantial outbreaks also can end soon

due to faster spreading dynamics and herd immunity of the recovered population.

The epidemic attack rate (AR), as expected, is highly sensitive to vector-to-host ratio,

NV /NH for the entire range of asymptomatic proportion, τ . For the nominal value of τ = 0.2,

doubling the NV /NH ratio increases epidemic size by 249.78% (Figure 2.6g). However, if the

asymptomatic individuals have very low transmission capabilities, it can limit the effect of

vectors on the epidemic size as seen in Figure 2.6i. The fact that most (80%) of the hosts are

27

asymptomatic in ZIKV infections indicates that they hold a critical role in spreading. The

parameters τ and θ both demonstrate the importance in determining epidemic size (Figure

2.6h), and among them, the effect of θ is more radical.

2.4 Discussion

In this study, we have proposed an individual-based interconnected network model for ZIKV

that can also be used to simulate any vector-borne disease that features contact-based direct

transmissions. We employ heterogeneous mixing based on the host contact network, which

is generated based on real-world data on human sexual behavior, sexual orientation, gender,

and age structure. We utilize the approximations of the non-Markovian Gillespie algorithm

to run stochastic simulations. In the beginning, we explore how the seasons can affect this

predominantly vector-borne disease. Later, we focus on the survival of the pathogen in

climates similar to Florida if an outbreak starts prior to the colder months. In this step,

we examine how some of the important model parameters affect the outcomes. Finally, we

perform a sensitivity analysis to evaluate our model behavior in response to changes in some

key parameters.

Our seasonal analysis results indicate that outbreak size is strongly related to the envi-

ronmental conditions during the pathogen introduction. The first few weeks are crucial in

determining how much the pathogen would spread. After that period, environmental varia-

tions have a much weaker effect in reducing or increasing the outbreak size. If the pathogen

is introduced during the peak mosquito season, there is a high probability that we will see a

large outbreak. Even if the climatic suitability of mosquito vectors declines rapidly after the

first few weeks, the vectors manage to spread the pathogen in the host population rapidly

and cause large outbreaks. This suggests that a ZIKV outbreak can spread rapidly out of

control if it is not effectively contained during the initial stage. Early interventions are crucial

even though it may be challenging to identify outbreaks due to a large asymptomatic group

of hosts. The ratio of vector to host, as expected, has shown its prominence in determining

outbreak size and the length (Figure 2.6).

28

We have analyzed how sexual transmission affects the outbreaks. Our results in Figures

2.5c and 2.5f align with the conclusions drawn by some of the earlier works52–54 that sexual

transmission is a small component in the overall force of infection, which is dominated by

the vectored-transmission. However, the pathogen still survives up to 75 days in the host

network without the help of infected vectors. This prolonged survival can be attributed to

a small amount of sexual transmission, but it is mainly due to the extended infectiousness

(convalescence) of the hosts as it is assumed that pathogen can survive up to a month in

the semen of recovering males. The use of specific birth controls (e.g., condoms) could

effectively combat pathogens’ spread during this period. These conclusions should inspire

further clinical studies in this area to test the efficacy of control measures.

A large number of asymptomatically infected individuals play an important role in out-

break dynamics. The proportion of symptomatic individuals do not affect the survival of

the pathogen noticeably. However, it is positively correlated to outbreak size. The relative

transmissibility of asymptomatic states is one of the key factors in determining disease out-

comes which can extend the vector-free pathogen survival up to 3 months. It is one of the

most important parameters that need to be properly estimated in order to obtain informative

outbreak predictions.

The conclusions drawn from our results can be useful in evaluating potential endemic

scenarios for Zika virus disease in temperate regions. Although the contribution of sexual

transmission is small, the pathogen’s ability to survive in a human sexual contact network for

extended periods can have consequences in sustaining a Zika outbreak in a region and spread-

ing to other regions due to long-distance travels. In addition to that, a large asymptomatic

proportion could be the most critical hurdle in controlling ZIKV outbreaks. Although we

provide conclusions on the relative importance of key parameters, data unavailability on some

of those warrants further estimations. This model should be applicable to other vector-borne

diseases which have the potential of being transmitted sexually. Our model is also mesoscale

(medium-sized population) in terms of hosts due to the limitations imposed by computa-

tional complexities. This work can be extended in the future by the use of activity-driven

networks (ADN), vertical transmission, and larger populations. Those studies would provide

29

more insights into the study of Zika virus epidemics.

2.5 Implementation details

2.5.1 Host network characterization

For the host population, we assume an equal number of males and females. We divide the

population into three age groups: Children (0-14), Adults (15-64), and Elderly (65+). Based

on the World Development Indicators (WDI) data published for 201784, we find that for the

USA population, the three age groups are distributed as 19% Children, 66% adults, and

15% elderly people. The adults are the only ones assumed to be capable of transmitting

the disease sexually; hence the remaining population is only affected by vectors. Based on

the data provided in a sexual behavior study72, we find that the sexual orientation of men

consisted of approximately 97.2% heterosexuals, 2.5% homosexuals, and 0.3% bisexuals. For

women, the study revealed 98.9% heterosexuals, 0.9% homosexuals, and 0.2% bisexuals. The

same work72 also compiles a population distribution based on the number of sexual partners

listed in Table 2.2. The data indicate that majority of the population has a single partner in

a period of 12 months. The average number of partners for the adult population was 1.28.

The network generator tool is designed using the configuration model5. It takes all the

above-mentioned population and sexual behavior properties as inputs and generates a graph

whose statistical properties closely match the given partner distribution of Table 2.2 and

the distribution of sexual orientation. Studies on sexual networks also indicate that sexual

contact networks have node degree distributions that follow the scale-free structure10. There

are large variations in the number of sexual partners while a small group of highly active

people forms the core10. Core groups are essential in sustaining pathogen transmission,

especially if the duration of infection is short85. To maintain these features, the network

generator is designed so that high degree nodes have higher probabilities of connecting to

low degree nodes. An example of a network generated by our generation tool is shown in

Figure 2.2.

30

2.5.2 Vector characterization

The mosquito vectors are modeled as homogeneous population and we use the classical Ross-

Macdonald approach used by Keeling et al. in their book48. We divide the vector population

into three compartments, Susceptible (SV), Exposed (EV), and Infected (IV). The transitions

between the three compartments are showed in Figure 2.1. Table 2.1 describes the different

parameters that were used for the model. The equations for disease dynamics in mosquito

vectors are given below,

ṠV = F (t)NV − λV HNH(

NH∑
j=1

[Is + θIa]j)SV − εSV

ĖV = λV HNH(

NH∑
j=1

[Is + θIa]j)SV − σEV − εEV

˙IV = σEV − εIV

(2.5)

We incorporate seasonality into this model using a time-dependent mosquito recruitment

rate, F (t). This rate depends on the time (day) of the year. The transmission parameters,

the λ’s are computed from the mosquito bite rate, r and transmission probability, T . The

formula is given in Table 2.1.

2.5.3 Non-Markovian Gillespie algorithm

The nMGA (Non-Markovian Gillespie algorithm) was proposed by Boguná et al74. The

following derivation was also described in the work of Masuda et al.86.

We first consider N renewal processes running in parallel. Let ti be The time elapsed

since the last event of the ith process. We denote ψi(τ) as the probability density function

of inter-event times for the ith process. The survival function of the ith process (i.e., the

probability that the inter-event time is larger than ti) is,

Ψi(ti) =

∫ ∞
ti

ψi(τ)dτ (2.6)

31

Now, the probability that no process generates an event for time ∆t is,

Φ(∆t|{tj}) =
N∏
j=1

Ψj(tj + ∆t)

Ψj(tj)
(2.7)

To determine the time until the next event, ∆t, we take a sample u from uniform dis-

tribution over [0, 1] and solve Φ(∆t|{tj}) = u. This step is computationally expensive when

N is large. To improve performance, we approximate this step as proposed by Boguná et

al74. This approximation is exact as N →∞. When ∆t is small (N is large), equation (2.7)

becomes86,

Φ(∆t|{tj}) ≈ exp

[
−∆t

(N∑
j=1

λj(tj)

)]
(2.8)

Now, the instantaneous (hazard) rate of the ith process, which is generally assumed to

be a function of time since the last event is determined by,

λi(ti) ≡
ψi(ti)

Ψi(ti)
(2.9)

With the above equations in hand, we can run the Non-Markovian Gillespie algorithm

as follows,

1. Initialize tj for all (1 ≤ j ≤ N).

2. Determine the time until next event from,

∆t =
− lnu∑N
j=1 λj(tj)

(2.10)

3. Select the process i that has generated the event with probability,

Πi ≡
λi(ti)∑N
j=1 λj(tj)

(2.11)

4. Update the time since the last event, tj = tj + ∆t for all j 6= i. Set ti = 0.

32

5. Repeat steps 2-4.

The original Gillespie Algorithm can be recovered from this nMGA using λi(ti) = λi.

This is the case for all the parameters that are constant.

2.5.4 Numerical simulation

We use the non-Markovian Gillespie Algorithm (nMGA) to simulate the processes related

to host nodes. The vector population is simulated using a deterministic ordinary differential

equation (ODE) solver. We combine the hosts and the vector simulations together by calling

the ODE solver at the end of each event. The GEMFsim75 tool, which already supports

the Gillespie algorithm, was modified in order to include the vector population model and

time-varying parameters. We use the variables X and Y to describe the host and vector

populations in different states/compartments, respectively. Here, X contains information

about the state of each host node, and Y contains the population count of each vector

compartment. X0 and Y0 are the initial states/compartments at the start of the simulation.

A is the host network representation. The term PARAM is used to denote the set of model

parameters listed in Table 2.1. TH and TV in the output are the host and vector indexing

arrays that contain information about the time where the data points (X and Y) were

generated. We denote xn ∈ X as the state of node n. λn(xn → j) is the transition rate

of node n from its current state xn to state j. We use M to denote the total number of

host states (= 4 in our case). For a node n, Λn denotes the sum of transition rates from its

current state to all other possible states. The V ECTSOLV ER is an ordinary differential

equation (ODE) solver that takes as input the current situation of the vector population Y

and solves them from the current instance to the time δt. The ODE equations that are being

solved are given in equation (2.5). This solver is invoked once after each event (with the

updated parameters), and the time indexing vectors are updated with respect to the global

time t. The simplified pseudo-code of the simulator is given in the next page.

As the simulation is event-based and parameters are updated following each event, the

inter-event times should be short to keep the variable parameters up to date in both popula-

33

input : X0, Y0, PARAM,Tend,A
output: X, Y, TH , TV

1 X ← X0 Y ← Y0 while t ≤ Tend do
2 for n← 1 to N do

3 Λn ←
∑M

j=1 λn(xn → j)

4 end

5 Λtot ←
∑N

n=1 Λn

6 u ∼ Uniform(0, 1) // sample a value from uniform distribution

7 δt← − ln(u)

Λtot

// sample time until the next event

8 P1(n)← Λn

Λtot

9 k ∼ P1 // sample a node from activity rate distribution

10 ik ← xk // read the current state of the selected node k

11 P2(j)←
λk(ik → j)

Λk

12 mk ∼ P2 // sample the future state of the selected node k

13 event ← (δt, k, ik,mk) // the event quartet is defined as (time until the event, participating

node, old state, new state)

14 xk ← mk

15 IH ← count the infected hosts
16 [Y, tv]← VECTSOLVER (Y, PARAM, [0, δt]) // invoke the ODE solver for vector

eqns for a duration of δt

17 tv ← tv + t t← t+ δt
18 TH ← [TH , t] TV ← [TV , tv]
19 IV ← count the infected vectors

20 end

tions. Longer inter-event times in a simulation can increase parameter discrepancy between

the host and the vector sub-models. These sub-models are coupled by inter-dependent pa-

rameters that vary with time and update after each event. Hence, it is important that

events occur at shorter intervals to keep the model outcomes accurate. Fortunately, due to

the nature of the Gillespie algorithm, it is indeed the case when a pathogen is present in

the host population. We have demonstrated this fact in Figure 2.7 that ensures parameter

accuracy. The inter-event times are also exponentially distributed, which is shown in Figure

2.7b. We have a small number of outliers that indicate long inter-event times. Most of these

occur when the infection is either very low in the population or about to die out. Hence, the

simulation results remain unaffected.

34

2.6 Code availability

The MATLAB implementation of our model, which was used to generate host networks, run

outbreak simulations, and process simulation results, is available for the interested reader at

the Network Science and Engineering (NetSE) group website87 of Kansas State University.

35

Symbol Parameter Description Range Nominal Reference
NH Total human host population - 1, 000 -
NV Total mosquito vector population 1, 000 -

10, 000
5, 000 Calibrated

λHV Vector to host pathogen transmission rate - rTHV As defined
λV H Host to vector pathogen transmission rate - rTV H As defined
β Host to host sexual transmission rate

(day−1)
0.000164 -
0.0172

0.0087 Agusto53

δ Intrinsic incubation rate in hosts (day−1) 1/2 - 1/9 1/7 Zhang49

τ Proportion of symptomatically infected in-
dividuals

0.27 - 0.5 0.2 Mitchell77

θ Relative transmissibility of asymptomatic
states

0.0 - 1.0 0.5 -

µ Relative transmissibility of convalescent
states

0.0 - 1.0 0.5 -

σ Extrinsic incubation rate in vectors
(day−1)

1/7 - 1/10 1/8 Zhang49

γ1 Host recovery rate from infectiousness
(day−1)

1/3 - 1/7 1/7 Caminade79

γ2 Host recovery rate from convalescence
(day−1)

- 1/30 Turmel71

A(t) Mosquito abundance factor 0 - 1 - Reiskind80

F (t) Mosquito birth rate (day−1vector−1) - (1/12)×
A(t)

As defined

ε Mosquito mortality rate (day−1) 1/4 - 1/35 1/12 Gao52

THV Vector to host pathogen transmission
probability

0.214 - 0.8 0.634 Castro62

TV H Host to vector pathogen transmission
probability

0.6 - 0.95 0.770 Castro62

r Mosquito bite rate (host−1vector−1day−1) - b/NH As defined
b Mosquito bite rate (vector−1day−1) 0.4 - 0.8 0.63 Castro62

CAM(i) Condition: Host i is an adult male {0, 1} - -
CNAM(i) Condition: Host i is not an adult male {0, 1} - -
CST (i, j) Condition: Host i is an adult and j is an

adult male
{0, 1} - -

Tend Simulation termination time / Max run-
time (day)

- 250 -

Mstart Simulation start month / Pathogen intro-
duction month

1-12 4 and 11 Marini81

Table 2.1: Coupled epidemic model parameters and functions.

36

Figure 2.4: The time series plots of a ZIKV outbreaks for three different pathogen in-
troduction months, Mstart in Miami, FL. The left column contains the host plots and the
right column contains the corresponding vector plots. The three rows indicate three different
pathogen introduction times: 1st of April, 1st of August, and 1st of October respectively. The
hosts in different states are expressed as fractions of the total population. The number of
vectors in different compartments are expressed in log scaled axes. Here, we present 5 out of
the 7 host states (E, Is, Ia, Js, and Ja) and the all three vector compartments (SV , EV , and
IV) which are marked with distinct colors described by the legends at the bottom. All plots
are averages of 500 independent stochastic simulations.

37

Figure 2.5: The plots depicting the results of pathogen survival analysis. The results were
obtained by varying the sexual transmission rate β (1st row), the relative transmissibility of
the convalescent states µ (2nd row), the proportion of symptomatically infected individuals
τ (3rd row), and the relative transmissibility of the asymptomatic states θ (4th row). The
plots demonstrate the host infection length THL (1st Col), the pathogen survival TPS (2nd

col), and the attack rate AR (3rd col). Each data point (blue square) in the above plots
is an average of 500 independent stochastic simulations. The shaded regions indicate 95%
confidence intervals.

38

Figure 2.6: Contour plots depicting the results of the sensitivity analysis. The parameters
varied in each plot are marked as axes labels. The quantity for which the contours are being
displayed is mentioned on top of each plot. The contours are color mapped and a color-bar
on the side of each plot indicates the range of values represented by the plot. The 1st row
shows the sensitivity of the epidemic length (THL) on the parameters, the 2nd row shows
the sensitivity of the pathogen survival (TPS) on the parameters, and the 3rd row shows the
sensitivity of the epidemic attack rate (AR) on the parameters. The parameters that were
varied here are: the vector-to-host ratio (NV /NH), the proportion of symptomatically infected
individuals (τ), and the relative transmissibility of the asymptomatic states (θ). Each data
point shown in the above plots is an average of 500 independent stochastic simulations.

39

No. of Partners % of population
0 15.7
1 71.8
2 5.5
3 2.8
4 1.6
5-9 1.5
10-19 0.4
20+ 0.2

Table 2.2: Average number of sexual partners in the last 12 months from the survey72

Figure 2.7: Inter-event times in different stages for all of the 500 simulations during the
first 100 days (left) and their distribution (truncated inter-event times > 5) (right). For
this case, the average inter-event time is 0.2074 day (95% CI [0.2056 to 0.2092]). About
96.87% of the events that occurred had intervals shorter than a day. There are a few outliers
though, which are mostly due to slowing down of the events at the end of the epidemics (when
pathogen is low in the host population or have been wiped out).

40

Chapter 3

A windowed correlation based feature

selection method to improve time

series prediction of dengue fever cases

3.1 Background

Accurate time series prediction of dengue fever outbreaks can be useful in planning mitigation

strategies for hundreds of tropical and subtropical regions around the world. Data-driven

models such as neural networks are flexible in design and can ease the difficulties of estimat-

ing unknown parameters that mechanistic models often require88. However, the prediction

accuracy of such models depends on the quality and the quantity of training data. For dengue

fever outbreaks, the availability of incidence data varies across regions. A data aggregation

center in a region may not have adequate data to achieve an acceptable level of accuracy

in out-of-sample projections. In such cases, selected incidence data from adjacent centers

in the same region could improve model performance as additional features. We propose a

framework with quantitative methodologies to rank and select nearby case data as supple-

mentary features. Our method uses windowed time-lagged cross-correlation combined with

distance and prevalence metrics to identify relevances and potential causal relationships.

41

Dengue virus is primarily spread by several species of mosquito vectors (Aedes aegypti and

Aedes albopictus), and the outbreaks infect 390 million people every year89. The viral strains

also cause about 40,000 annual deaths with hemorrhagic fever, and dengue shock syndrome90.

Dengue virus transmission is prevalent in regions where competent vector mosquitoes are

present. In those regions, the mosquito abundance varies throughout the year and depends

on factors including air temperature, precipitation, vegetation, and urbanization91–93. The

availability of extensive data on these factors makes statistical and machine learning analyses

feasible. However, researchers experience missing data, uneven reporting intervals, lack of

granularity, inadequacy, and inaccuracy with dengue case counts for many regions around the

globe. These factors limit the prediction performance of data-driven models. To complicate

the situation further, time series outbreak data for most diseases are non-stationary (e.g.,

the underlying processes evolve with time). In many regions, climatic variations affect Aedes

vector populations94. In addition to that, outbreak start times and sizes may vary because

of imported cases caused by short and long-range mobility. Co-circulation of multiple viral

strains adds to the complexity. Despite those issues, correlations exist between outbreaks

in adjacent human populations (county, municipality, district, etc.) for most communicable

diseases, including dengue95. While a correlation may not always imply causation, the use of

incidence data from adjacent regions can improve the model training because of similarities

in meteorological factors, host population density, and a high probability of mobility-based

viral transmissions.

For sequential data (e.g., multivariate time series), different methods of feature selec-

tion have been used in the past including correlation-based filters96;97, Granger causality

tests98;99, genetic algorithm100, and several other methods101;102. The applications include

forecasts of electrical energy consumption, meteorological variables, financial markets, etc.

Correlation-based methods are widely used in machine learning problems103;104. Few works

extend feature sets for disease outbreak prediction using incidence data from spatially adja-

cent locations. Such geospatial clustering techniques rely on similarity metrics to improve

model performance. A recent work105 uses pair-wise correlation to cluster location data to

train models for COVID-19 outbreak projection in Chinese provinces. Another work tar-

42

geted towards dengue also uses correlation-based similarity measures to extend the training

feature set106. However, these implementations assume an instantaneous correlation of inci-

dence data between regions and do not consider the temporal order of outbreaks (whether

one location is leading or lagging the other). There can be a considerable amount of time

delay between outbreaks occurring in adjacent regions. Time lagged cross-correlation can

help identify such phase relations107. The phase information may help quantify relationships

between outbreaks of adjacent locations. We hypothesize that if the temporal incidence dy-

namics of one outbreak lead the incidence dynamics of another, the former outbreak might

have a causal influence on the latter, given that these places lie spatially close enough to

affect one another, and the outbreaks are of a reasonable size. We weigh the available fea-

tures (incidence data) based on a combination of these factors: leading phase correlation,

distance, and prevalence. Because of the population’s dynamically changing immunity pat-

terns caused by the co-circulation of multiple dengue virus strains, the regions experiencing

large outbreaks may also evolve. A single computation of the correlation coefficient over

the entire timeline of data may mislead the analysis. Hence, splitting the time series into

multiple windows and comparing sequences at each time window for correlation and phase

analyses can provide better insights into the dengue outbreak’s seasonal patterns. A limi-

tation with some existing methods is that clustering large data sets for model training can

make the process complex and inefficient, while unrelated features may deteriorate predic-

tion performance. This phenomenon is known as the curse of dimensionality19;108. This work

aims to reach optimal model performance with the smallest subset of highly relevant features

based on their ranks. There are two broad categories of feature selection methods: filters

and wrappers109. Wrapper approaches110 are computationally expensive as the search space

for optimal feature subsets increases exponentially with the number of available features.

Our method is primarily a filter approach to rank features.

In this work, we present a framework of feature enhancement for data-driven prediction

of dengue outbreaks. To achieve that goal, this chapter details: i) a windowed time-shifted

cross-correlation method to compute correlation weights, ii) two correlation-window alloca-

tion methods, iii) a procedure of ranking feature using metrics based on correlation, distance,

43

and prevalence, and iv) analysis of prediction performance across windowing schemes, pre-

diction models, and spatial aggregations. This work’s novel contribution lies in how we

interpret and process incidence data to compute correlation metrics using our knowledge of

how outbreaks spread.

3.2 Preliminaries

3.2.1 Definitions

In supervised learning problems, we collect data on multiple variables. A target variable

(label) is the designated output of a machine learning model for prediction. A feature is an

input variable that is expected to influence the target variable. Each instance of data (e.g.,

a point in time) contains several feature values and usually a single label value. A data set

comprises many such instances. For a supervised learning problem, a data set is split into

3 subsets in order to: train, evaluate, and test the models. With the training subset fed

in batches (collection of instances), a supervised model learns to predict targets based on

features in an iterative process. It optimizes parameters by minimizing a loss function. A

neural network comprises artificial neurons (cells) in one or multiple layers. Each neural cell

is a node in the network with connections to other nodes across layers, inputs, or outputs.

The recurrent neural networks (RNN) are special neural cells that can store internal states

in their memory, which helps them predict sequence data (data points that are temporally

related) better. Model training aims to get optimal parameter values to generalize beyond

the training data and perform well with test data. Sometimes, a model can over-fit the

training data and perform poorly with unseen test examples. To prevent such scenarios, we

use regularization techniques.

3.2.2 Time series prediction of outbreaks

Time series forecasting is a popular research area because of its applicability in many dis-

ciplines, such as forecasting weather patterns, stock prices, market trends, and resource

44

allocation. In epidemiology, these methods enable the prediction of future outbreaks by

fitting models with past disease incidence data and carefully chosen covariates. Such pre-

dictions come at varying degrees of accuracy and depend on the characteristics of the target

variable, quality of sample data available for fitting, the covariates (predictors) being used,

and the models themselves. There is rarely a single model that works best for every applica-

tion. Classical forecasting methods such as exponential smoothing, autoregressive integrated

moving average (ARIMA), and seasonal autoregressive integrated moving average (seasonal

ARIMA) have been widely used to predict time series data111. The ARIMA model can handle

non-stationary data, which is an important advantage. Besides that, the seasonal ARIMA

model can incorporate repeating patterns in the data to enable forecasting of diseases that

show seasonal patterns112. However, these models have tendencies to follow the mean val-

ues of past data, and it is not easy to associate these with rapidly changing processes113.

In addition to that, many classical models require manual tuning of their parameters and

may fail to capture complex nonlinear interactions. Data-driven forecasting of vector-borne

diseases such as dengue fever is complicated due to complex interactions of several factors

with disease dynamics. A list of these factors include but is not limited to seasonally de-

pendent Aedes mosquito growth and feeding patterns114, co-circulations of multiple viral

strains115, environmental (e.g., temperature) effects on dengue virus transmission116, and

human mobility patterns117. Neural networks can automatically interpret features from ob-

servable variables and can model complex nonlinear phenomena. Hybrid methodologies that

combine neural networks with classical models (e.g., ARIMA) are also popular and have

been used for dengue outbreak forecasting118. In recent times, long-short term memory

(LSTM) networks23 (a type of recurrent neural networks), and its derivatives119;120 have

shown a considerable amount of success in predicting sequential data and has frequently

outperformed other classical and machine learning methods121. These recurrent architec-

tures have also performed well to predict disease outbreaks122–124. Hence, we consider these

viable candidates to test the performance of the proposed feature enhancement framework

in this chapter.

45

3.2.3 Factors that affect dengue disease dynamics

Dengue virus is primarily spread by female mosquito vector species: (Aedes aegypti and

Aedes albopictus). Hence, the outbreaks depend on the abundance of such vectors. The rela-

tionships between Aedes mosquitoes and environmental variables (i.e., temperature, rainfall)

are already well characterized by many researchers. Environmental temperature affects the

growth, host-seeking, blood-meal intakes of mosquitoes. Aedes aegypti cannot develop be-

low 16◦ C or above 34◦ C125. Within that range, the development from larva to adult was

found to be faster at higher temperatures (30◦ C) compared to lower temperatures (21◦

C)126. Aedes albopictus can develop in wider temperature ranges and can survive better

in lower temperatures127 compared to Aedes aegypti. The optimum flight temperature for

Aedes aegypti females was found to be 21◦ C128. Studies have observed that a large diur-

nal temperature range decreases female fecundity129. Temperature fluctuations also affect

extrinsic incubation periods (EIP) of dengue viruses. An experiment with DEN-2 strain

found that EIP was 12 days at 30◦ C and reduced to 7 days for 32◦ C and 35◦ C130. Be-

sides temperature, rainfall has a significant role in dengue outbreaks. Rainwater stuck in

different places creates breeding spaces for Aedes mosquitoes. Previous works have stud-

ied the association of dengue transmission with rainfall91;131. In this work, we use several

variables, including observed and reanalyzed temperatures, precipitations, relative humidity,

and surface-level pressure. These can directly or indirectly affect mosquito vector suitability

and dengue outbreak dynamics.

3.2.4 Data collection and processing

Data acquisition

To test the proposed framework for dengue outbreak predictions, we collect data for several

regions of Brazil. The InfoDengue project132 monitors outbreak data on over 700 munici-

palities of Brazil. Their server contains weekly dengue fever case counts with a surveillance

period starting from 2010. Besides dengue incidence data, we collect weather observation

46

data from NOAA (National Oceanic and Atmospheric Administration) ground weather sta-

tion database and reanalysis data from the NCEP /NCAR Reanalysis 1 dataset published

by the NOAA physical sciences laboratory (PSL) database (NCEP and NCAR stand for Na-

tional Centers for Environmental Prediction and National Center for Atmospheric Research,

respectively). We list all the variables in Table 3.1. We use the weekly case counts as labels

and further process the remaining variables to use those as baseline features.

Variable Name Time
Resolution

Space Resolution Source

Reported dengue fever cases Weekly Municipality level INFO Dengue132

Observed Temperatures
(min, max, and avg)

Daily Ground station de-
pendent

NCEI-NOAA

Observed Precipitation Daily Ground station de-
pendent

NCEI-NOAA

Avg surface air temperature Daily 2.5◦ × 2.5◦ NCEP/NCAR Re-
analysis 1

Avg surface relative humid-
ity

Daily 2.5◦ × 2.5◦ NCEP/NCAR Re-
analysis 1

Avg surface pressure Daily 2.5◦ × 2.5◦ NCEP/NCAR Re-
analysis 1

Avg precipitable water Daily 2.5◦ × 2.5◦ NCEP/NCAR Re-
analysis 1

Table 3.1: Data collection sources for weather and environmental variables

Re-sampling and feature engineering

The available raw data cannot be readily used in the machine learning methods. All the

features and labels are matched and aligned in both spatial and temporal dimensions. We

align data based on available labels (i.e., case data). For each municipality of Brazil (smallest

spatial unit available), we search for the nearest ground weather station to collect weather

data. We extract reanalysis data from NCEP/NCAR Reanalysis 1 data sets using each mu-

nicipality’s centroid’s coordinates. Once the spatial granularity is taken care of, we fix the

temporal dimension mismatches by converting all data to match incidence data resolution.

As incidence data are available in weekly intervals and the remaining variables are avail-

able daily, this process involves context-aware down-sampling of those remaining variables

47

(temperature, precipitation, humidity, etc.). During this process, we derive 4 additional fea-

tures from observed weather data of ground stations: average diurnal temperature range of

the week, minimum diurnal temperature range of the week, maximum diurnal temperature

range of the week, and the number of rainy days in the week. We compute these from daily

observed temperature and precipitation data. In total, we have 12 feature variables related

to weather and environment: i) 4 observed variables: temperature (average, minimum, and

maximum) and precipitation, ii) 4 derived variables based on the time interval (week): di-

urnal temperature range (average, minimum, and maximum) and the number of rainy days,

iii) 4 reanalysis variables: temperature, relative humidity, pressure, precipitable water (all

are averages and at earth surface level).

Data splitting and normalization

The complete set of data is a two-dimensional array X with features on one dimension

and time on the other. The set of features consists of: i) the variables listed in section

3.2.4, ii) dengue incidence data of the target location, and iii) dengue incidence data of

locations selected as predictors by the methods presented in this chapter. We split X along

its time dimension into three parts: training (Xtrain), validation (Xval), and test (Xtest). The

validation set is required during the training phase as we implement early stopping 133 as a

regularization mechanism. We normalize all three sets of data before model training and

evaluation. The normalization formula is the following,

µtrain = MEAN(Xtrain)

σtrain = SD(Xtrain)

ˆXtrain = (Xtrain − µtrain)/σtrain

X̂val = (Xval − µtrain)/σtrain

ˆXtest = (Xtest − µtrain)/σtrain (3.1)

48

All three data sets (training, validation, and test) are normalized using the mean and

the standard deviation computed from training data. The complete data set’s summary

statistics are not used here to prevent the machine learning models from gaining statistical

insights about validation and test data sets.

3.2.5 Sequence model specifications

Whether it is training or evaluation, the time series data are split into smaller batches and

fed into the recurrent neural network models. From a macroscopic perspective, a sliding

window moves over batches of data. Because of the sequential nature of dengue case data,

the batches are fed according to the time order without randomization. The sliding window

is configured with two integer parameters: input length (tin), and output length (tout). The

window is depicted in Figure 3.1. A trainable model would take tin time steps of feature

data as input and predict tout time steps of target/label data (e.g., dengue case counts) as

outputs every iteration. In the configurations used in this chapter, there is no temporal

overlap between input and output sequences. In this configuration, the models make single

shot projections (all the tout data points are predicted at once every iteration).

Each batch (window) of data is (tin + tout) steps long in the time dimension. A total

of 32 batches are stacked together for model training and evaluation. One batch differs

from another by a single time-step (hence, there are temporal overlaps between batches).

Each batch is further split in time and data (variable) dimensions to separate inputs (tin of

features) and outputs (tout of labels).

This work focuses on performance gains obtainable using recurrent neural network (RNN)

models due to their proven track record in predicting time series data121. A recurrent unit’s

temporal behavior is illustrated in the lower part of Figure 3.1. We can see that information

is passed through time (also called cell state), enabling the model to predict values based on

insights gained from past inputs. We use two popular recurrent neural network cell types:

LSTM (long-short term memory)23 with forget gates24 and GRU (gated recurrent unit)31.

We also test with a simple linear neural network model as a trivial baseline. Using the

49

tin+tout

1 2 3 tin

tin+1 tin+2 tin+3

…

…

… Recurrent

Unit

Input

Output

tin tout Sliding window

Figure 3.1: A sliding window defined for feeding of input data and extraction of output case
counts. The window slides along the horizontal axis and feeds tin time steps of feature data
into the model and extracts tout time steps of predictions.

TensorFlow134 package, we configure the models as described below to produce the results:

• Linear: The model consists of a single layer of artificial neurons (Dense units in

TensorFlow) without any nonlinear activation functions. The size of the layer (number

of neural units) is equal to the output prediction steps, tout.

• LSTM: The model consists of an input layer of 32 long short-term memory (LSTM)

units. The output layer consists of a layer similar to the Linear model (described

above).

• GRU: The model consists of an input layer of 32 gated recurrent units (GRU). The

output layer consists of a layer similar to the Linear model (described above).

We initialize the weight metrics of the models as zeros in the beginning. Only the

recurrent models (LSTM and GRU) can train and predict based on entire input sequences.

50

The Linear model predicts based on the last input time step. While training, we use the mean

squared error (MSE) as the loss function to optimize the model using Adam optimizer135. For

predictions, we use the mean absolute error (MAE) metric to evaluate model performance.

We regularize our training process with the early stopping133 mechanism, which monitors

loss within validation data and stops training if performance does not improve. Based on

our tests on different data sets, we configure the training to run for 120 iterations (epochs).

3.3 Methods

To describe the methodology, first, we define our spatial units. We designate the term

infection center (IC) to indicate a spatial building block of the model. An IC is a point in

the space (regional map) where observed or estimated incidence data on disease outbreaks

are available. The spatial granularity of an IC is not fixed for the model. It can be a

country, a state, a city, a suburb, or an administrative unit with some resolution in space

based on available disease incidence data. The basic structure of our proposed framework is

shown in Figure 3.2. The circles inside the shaded region are the infection centers. One of

the infection centers, marked as IC, indicates the target infection center where we intend to

make predictions of a designated label (e.g., dengue cases). The map’s remaining infection

centers are marked as peripheral infection centers (PIC). These are locations where similar

observations on the designated label of the target IC are available. The temporal resolution

of the IC and the PICs are aligned before performing any comparative analysis of the data.

Some locations may have daily, weekly, or monthly observations. Some data may need re-

sampling in the time domain before they can be compared (e.g., convert daily weather data

to weekly values).

Assuming that there are N peripheral infection centers (PIC) on the map. Once we

match the spatial and the temporal dimensions of the label data (e.g., weekly dengue cases

in a city), we use a windowed-time shifted cross-correlation analysis on each IC−PICk pair

(for all k ∈ N) and compute a correlation weight, γC(k). We also consider the cumulative

cases of each PIC and compute a prevalence weight, γP (k). Finally, the geodesic distance

51

Figure 3.2: A framework depicting the method to expand trainable and testable data set
on dengue incidence. The shaded region enclosed by dashed borders on the left depicts a
map of the region of interest. The circles inside the map indicate multiple infection centers
(IC) across the region. The target infection center is marked as IC, while the kth peripheral
infection center is PICk. Using the proposed windowed cross-correlation method (section
3.3.2), a phased cross-correlation matrix is computed (I), which is eventually reduced to a
correlation weight, γC(k) (II). We also compute a prevalence weight, γP (k), using cumulative
case data (III) and a geographic distance weight, γD(k), using location data (IV). The three
weight metrics are combined to compute (V) the predictor metric of PICk, Γ(k). The PICs
are ranked using these Γ values, and their incidence data are selected accordingly to be stacked
together with the IC feature set (VI).

of each IC − PICk pair is taken into account in the form of a distance metric, γD(k). All

three metrics are normalized and lie within the range [0, 1] for the selected region. These are

combined as following to compute a predictor strength metric for each PICk,

Γ(k) = γC(k)[γP (k) + γD(k)],∀k ∈ N (3.2)

52

3.3.1 Windowing incidence data

We compare the time series of disease incidence data (e.g., weekly cases per 100k people)

to find correlations. The comparisons are made for all IC − PICk pairs with available data

for a given region. The key intuition behind this approach is, if a PIC in the region has an

infectious outbreak at some point in time, t = t0, this may initiate or affect the course of an

outbreak for the target IC at t ≥ t0. A leading PIC outbreak may not always imply causal

influence depending on the geographic location and population behavior. Despite that, a

PIC having an outbreak will influence adjacent ICs, as it acts as an infection source. This

also assumes that a strict isolation measure is not in place and the control measures are not

100% effective due to the vector-borne nature of the infection. It is also important to note

that, despite seasonal patterns, outbreaks can occur irregularly. A PIC may lead the target

IC in one season and lag in other seasons due to complex interactions of multiple viral strains.

Hence, we divide the time series into smaller time windows. We propose two methods for

windowing incidence data: i) fixed-length window allocation and ii) variable-length window

detection. Both of these methods are depicted in Figure 3.3.

A straightforward approach is to divide the entire time series into a fixed number of

intervals, M f . If the time series is T units (day, week, or month) long in total, then a fixed

window, wfm (where m ∈ [0,M f−1]) will have T/M f units of data. While this is the simplest

way to divide the series for correlation analysis, it may not be the most efficient. Setting

the appropriate value of Mf remains an open problem, although we apply some intuitions

from the seasonality patterns of dengue outbreaks in our case. The fixed windows might not

be appropriately placed to contain the time series curve’s meaningful dynamics, and some

windows may even cover regions without an outbreak.

A second approach is to detect windows based on the time series itself. To do this, we

normalize the incidence rate of the target IC to be ranged between [0, 1]. A typical outbreak

curve has irregularities in its shape that make the analysis cumbersome. We use a Savitzky-

Golay filter136 to smooth out the irregularities while preserving the shape of the outbreaks.

Our window detection method has two parameters: the incidence threshold (iMIN) and the

53

minimum window size (∆MIN). An window is detected between two time points, tSTART

and tEND (where, 0 ≤ tSTART ≤ tEND ≤ T), if the normalized incidence rate, iN(t) > iMIN

for all tSTART ≤ t ≤ tEND and tEND − tSTART ≥ ∆MIN . A detected window, wdm will have a

length (greater than or equal to ∆MIN) that depends on the time series curve characteristics.

The number of detected windows, Md, will also vary for the same reason. Figure 3.3 shows

both methods in action using time series data for Brazil’s municipality between 2010-2015.

For the assigned value of M f = 5, we get equally sized windows, each of which is 1 year in

length. With our detection method, we find 4 windows (Md = 4) that indicate 4 separate

outbreaks (∆MIN = 10 weeks, iMIN = 0.05).

Figure 3.3: Windowing methods used for data segmentation before computing time-shifted
correlation coefficients. We present the normalized incidence data from the Cachoeiro de
Itapemirim municipality of Brazil132. The fixed windows (wfm) are marked in green, and the
detected windows (wdm) are marked in red. We set M f = 5 to get 5 fixed windows, each
comprising 1 year of data. For the detected windows, we configure ∆MIN = 10 weeks and
iMIN = 0.05. A Savitzky-Golay136 smoothing is applied to the data before window detection
takes place.

Once the windows are selected (either by assignment of fixed number or detection), the

following procedures are identical. Hence, we will ignore the superscripts (f and d) in this

chapter’s next sections for brevity. M will depict the total number of windows. wm (where

m ∈ [0,M − 1]) will depict the (m+ 1)th window.

54

3.3.2 Time-shifted cross correlation

Let i0(t) and ik(t) be the disease incidence (new cases at time step t) of the target IC

and the kth PIC respectively. We perform bivariate computations of time shifted Pearson’s

correlation coefficients137 using windowed (wm) incidence data of the target IC (iwm
0 (t)) and

the kth PIC (iwm
k (t)). The formula used to compute the coefficients is shown in Equation

3.3. This measure is also known as time lagged (or phased) cross-correlation138 in statistics

and signal processing.

Rwm
k (θ) = r(iwm

0 (t), iwm
k (t− θ)) (3.3)

Here, Rwm
k (θ) is the correlation coefficient computed for subsets of the time series i0(t)

and ik(t) selected by the time window wm when one series is shifted by an amount θ with

respect to another. The Pearson’s correlation coefficient function is indicated by r() in

Equation 3.3.

�0 �1 �2 �3 �4

Figure 3.4: Windowing of IC and PICk incidence data for computing time-shifted cross-
correlation coefficients. We allocate a fixed number of windows (M f = M = 5) for the time
range 2010-2015, making each window 1 year long (52 weeks approximately). The two curves
shown here correspond to the target IC (i0(t)) and the kth PIC (ik(t)) and these are from the
municipalities: Cachoeiro de Itapemirim and Vitória respectively132. The mth time window
is marked by the symbol wm. Note, in the first window (w0), the outbreaks of IC and PIC
are almost in phase, whereas in the second window (w1), the PIC outbreak is lagging in time
compared to the IC.

55

For the two time series curves shown in Figure 3.4, the time-lagged correlation matrix

(obtained by computing Rwm
k (θ) ∀ m ∈ [0,M −1] and θ ∈ [−8, 8]) is plotted as a heatmap in

Figure 3.5. We use the location depicted in Figure 3.3 as the target IC (i0(t)) and another

location from the same state (Espirito Santo) of Brazil as the kth PIC (ik(t)). For this

demonstration, the time series curves were split using fixed length windows (M f = M = 5).

The heatmap depicted in Figure 3.5 can be visually verified by comparing with Figure 3.4.

As expected, the two curves are almost in phase in w0 , negatively correlated in w2, IC leads

in w1, and PIC leads in w3 and w4.

Figure 3.5: Heatmap of the computed time-shifted cross-correlation matrix (Equation 3.3)
for the IC and the PIC in Figure 3.4). The vertical axis depicts the window indices (m ∈M)
and the horizontal axis depicts time shift (phase), θ that ranges from −8 to +8 weeks. The
color shades of the heatmap depict the correlation values demonstrated by the gradient bar
on the right. Higher correlation values on the left of the midpoint (θ < 0) indicate that IC is
leading in the outbreak curve (Figure 3.4) compared to the PIC. Higher correlation values
on the right of the midpoint (θ > 0) indicate the opposite (PIC leads IC).

Heatmaps like Figure 3.5 are computed for all PICk with k ∈ [1, N]. To determine if a

PICk is leading in a window (wm), we find the location (θ) of the peak correlation as shown

in Equation 3.4.

56

θwm
k = argmax

θ
Rwm
k (θ) (3.4)

We define the correlation strength Swm
k to be the mean correlation measure computed

around the peak (θwm
k), extending by the amount θE in both directions (Equation 3.5).

Swm
k =

1∑θE
θ=−θE 1

θE∑
θ=−θE

Rwm
k (θwm

k + θ) (3.5)

Equation 3.5 has an additional condition on the values θ such that Rwm
k (θwm

k + θ) exists

for the given parameters. A PICk leads the IC if the peak of correlation lies on the right

half of the heatmap shown in Figure 3.5, which translates to θwm
k > 0. We only consider if

a PICk is at least in phase with the IC and discard the cases where any PICk lags the IC.

This is how we compute the predictor probability matrix P with dimensions M × N . The

individual predictor probabilities (∀m ∈ [0,M − 1], ∀k ∈ [1, N]) are are computed as shown

in Equation 3.6.

Pm,k =

Swm
k , if θwm

k ≥ 0

0, otherwise

(3.6)

The predictor probabilities are averaged across all windows (Equation 3.7) to compute

overall predictive abilities of all PICk. For a particular region (k ∈ [1, N]), the predictive

ability metrics are normalized between [0,1]. The final measure, γC(k), is defined as the

correlation weight of PICk as shown in Equation 3.8.

ˆγC(k) =
1

M

M−1∑
m=0

Pm,k (3.7)

γC(k) =
ˆγC(k)−mink ˆγC(k)

maxk ˆγC(k)−mink ˆγC(k)
(3.8)

57

3.3.3 Distance and prevalence metrics

With increasing distance, the impact of a PIC on the target IC is likely to be reduced due

to decreased travel between the locations, increasing differences in environmental conditions

(e.g., temperature, rainfall, vegetation), etc. It is intuitive to use a metric proportional to

the inverse distance for strengthening the predictive ability measures of PICs. Let, dk be

the geodesic distance139 (shortest path on the surface of the earth, assuming earth to be an

ellipsoid) between the target IC and PICk. The normalized [0, 1] distance of a PICk in the

region is,

d̂k =
dk −mink dk

maxk dk −mink dk
(3.9)

We want the metric to be inversely proportional to the distance. Hence, the distance

metric of PICk is defined as,

γD(k) = 1− d̂k (3.10)

The outbreak history of a location is an important criterion that indicates the viral

pathogen and endemic scenarios’ persistence. For a PICk, we compute the prevalence Ik by

taking a sum of the incidence data ik(t) for the entire timeline (∀t ∈ [0, T]).

Ik =
T∑
t=0

ik(t) (3.11)

The prevalence metric is normalized [0, 1] across the region.

γP (k) =
Ik −mink Ik

maxk Ik −mink Ik
(3.12)

3.4 Results

We present here the results in several stages. The outcomes of the feature analysis are

presented first. This is followed by an analysis of prediction performance using the proposed

58

methods. The results are generated using municipality-wise weekly dengue case data between

2010-2019 from Brazil’s Esṕırito Santo state. We obtained data for 78 municipalities of

Esṕırito Santo and ranked them based on the total number of cases recorded for the entire

time period. The top 5 municipalities based on prevalence are listed in Table 3.2. The

location IDs shown in the table are the IBGE (Instituto Brasileiro de Geografia e Estat́ıstica)

codes for Brazil140.

Loc. ID Name Cases Cases per 100k
3205309 Vitória 71,348 19,501.72
3205002 Serra 58,424 11,081.10
3201209 Cachoeiro de Itapemirim 45,319 21,520.12
3205200 Vila Velha 36,743 7,329.18
3201308 Cariacica 27,103 7,059.60

Table 3.2: Top 5 locations of Esṕırito Santo ranked by total reported cases of dengue during
2010-2019132.

3.4.1 Feature selection and analysis

The PICs are sorted and ranked for each IC, based on the predictor strength metric, Γ

(Equation 3.2), which is computed from the three individual metrics: correlation weight

(γC), prevalence weight (γP), and distance weight (γD). We choose the municipality of

Vitória in Espirito Santo, Brazil, as the target IC, which had the highest total number of

cases in the state during 2010-2019, to generate the results. We compute the correlation

weight using 20 fixed-length windows (M f = M = 20) for the time range 2010-2019, making

each window approximately 26 weeks (6 months) long. The top 5 ranked PICs based on

Γ are listed in Table 3.3 with the corresponding weights. While our method prioritizes the

correlation weight more than others, PICs with relatively lower correlation weight can still

be favored because of the following factors: i) having a significant number of cases or ii) being

in proximity of the target IC. This is evident in Table 3.3 as 3201209 (PIC #1) is chosen

over 3205200 (PIC #2) and 3205101 (PIC #4) is chosen over 3200607 (PIC #5). Note,

the numbers (#) used in ‘PIC #’ indicate rank. This should not be confused with arbitrary

indices (k) used to compute metrics (PICk). This effect is also illustrated in Figure 3.6,

59

which shows the ranked PICs listed in Table 3.3. Although PIC #1 lies farthest from the

IC among the five (lowest γD), it is ranked at the top due to significantly higher values in

the other two factors (γC and γP).

Rank # Loc. ID Corr. γC Prev. γP Dist. γD Γ
1 3201209 0.912 0.812 0.614 1.301
2 3205200 1.000 0.270 1.000 1.270
3 3201308 0.956 0.260 0.996 1.202
4 3205101 0.621 0.770 0.937 1.060
5 3200607 0.772 0.524 0.809 1.029

Table 3.3: Top 5 predictor PICs for Vitória. The weights based on our defined predictability
metrics (correlation, prevalence, and distance) are shown in columns 3-5. The combined
weights (Γ) are shown in the last column.

A time series plot in Figure 3.7 shows that the top PICs are mostly correlated with

the IC, Vitória. Among the PICs displayed here, PIC #4 (3205101) shows the weakest

correlation with the IC. It will be clear in the upcoming results, the proximity and the high

incidence fraction of this location help with prediction performance. The variability of the

incidence curves prevents our method from classifying a single PIC as the optimal predictor

for all time ranges. However, the combination of top-ranked PICs will improve prediction

accuracy.

3.4.2 Prediction performance

After selecting features with the proposed methods, we train and evaluate the prediction

performances using the three models (Linear, LSTM, and GRU) described in section 3.2.5.

The time series data are split into 3 distinct sets with ratios of 50:30:20 for model training,

evaluation, and testing. A sliding window with input length (tin) of 8 and output length

(tout) 4 is used for a single shot prediction of the next 4 weeks using data of the past 8 weeks

every step.

60

Figure 3.6: A geospatial map showing an incidence center (IC) and 5 ranked peripheral
incidence centers (PIC). The circles’ radii are proportional to the total number of cases
reported during 2010-2019132. The shades of the fill color are generated from a color gradient
(green-yellow-red) which is proportional to the fraction of cases with respect to the local
population of each location (IC or PIC) during 2010-2019132. The greenish shades indicate
smaller infected fractions, while the reddish shades indicate larger fractions. Map generated
using Folium141 with OpenStreetMap142. Basemap tiles provided by CartoDB143.

Individual IC prediction

For the IC of Vitória, the PICs are added gradually according to their computed ranks

(section 3.4.1), and the models’ prediction performances are evaluated. The mean absolute

error (MAE) values on the normalized test data are plotted in Figure 3.8 for varying number

of additional features, NPIC . For both LSTM and GRU models, the addition of the first

two PICs deteriorates the model performance. However, the subsequent additions keep

improving the outcomes. The plots quickly reach their minima, after which errors increase.

The first few additions increase error due to high variability in the incidence data, as evident

in Figure 3.7. Further additions of PIC create averaging effects on the predictor data

set and cause performance improvements. The GRU model eventually reaches a minimum

61

Figure 3.7: Time series plots of weekly dengue cases per 100,000 people for the IC and
top 5 ranked PICs (Table 3.3). The plots depict cases only between 2010-2015 for improved
clarity, but the metrics were computed based on the entire series (2010-2019).

MAE value of 0.128, which is lower than the best optimal LSTM prediction (0.1415) by

about 9.54%. The Linear model reaches an optimum MAE value of 0.3384, which is nowhere

close to the recurrent models. After reaching the minima, all three error curves rise again.

This increase in MAE with larger feature sets (NPIC) can be attributed to the curse of

dimensionality19;108. LSTM and GRU models perform optimally with 4 and 6 additional

PICs, respectively. Predicting based on present input and historical context (internal states

of LSTM and GRU) of data certainly puts recurrent models ahead in performance, which

is evident even without a PIC (NPIC = 0 in Figure 3.8) in the feature set. However, the

linear model significantly benefits from feature addition as case data from PICs strengthen

inductive bias.

After determining the optimum number of features (NPIC) to be added to the predictor

data set for an IC, recurrent models are trained with the extended feature set and are used

to predict dengue cases for the test data subset of the time series. Figure 3.9 compares the

predictions with actual incidence data for both LSTM and GRU models using Vitória as the

IC and choosing the optimum number of PICs for the two models (NPIC = 4 for LSTM

and 6 for GRU).

62

Figure 3.8: Prediction performances of the Linear, LSTM, and GRU models in predicting
normalized test data for varying number of features (NPIC). PIC data are added to the
feature set based on ranks dictated by computed predictor strengths (Table 3.3), after which
models are trained and evaluated over the test data to compute the mean absolute error
(MAE) metrics (lower is better).

Effect of window selection methods

The impacts of various correlation window configurations are analyzed under the two pro-

posed windowing methods: i) fixed-length window assignment and ii) variable-length window

detection. For the first method (fixed), we vary the number of windows (M f) between 5,

10, 20, and 40. For the second method (detection), we vary the minimum window size

(∆MIN) between 5, 10, 20, and 30 weeks. In both methods, we are consequently varying

the number of windows, window lengths, and where the windows are located. In total, we

run tests under 8 different scenarios and compare the prediction performances using the 3

models (Linear, LSTM, and GRU). Instead of working with a single IC, we run the tests

over multiple locations and report the average performance metrics (e.g., mean of MAE). We

take the top 20 ICs based on total cases per 100,000 people and average the performance

metrics across ICs. Among the 20 ICs, there were 4 ICs where none of the models could

predict with reasonable accuracy (MAE < 1) with or without additional features. In those

locations, either the data were too limited or the outbreaks were too random for our models

to generalize beyond training data. We filter out these 4 locations and take the remaining

16 locations to evaluate our methods.

63

Figure 3.9: Predicted weekly dengue cases per 100,000 people using test data with the re-
current models (LSTM and GRU). These results were obtained for the IC, Vitória, with 4
and 6 additional PIC data joined with LSTM and GRU’s feature set, respectively.

For a model, predicting on a given IC, the optimal MAE is defined as the minimum

mean absolute error (MAE) obtained by varying the number of additional features (NPIC)

from the PIC ranked list produced by a given windowing method (i.e., minima of the

curves in Figure 3.8 are the optimal MAEs of three models). The average optimal MAE

(across 16 ICs) are plotted in Figure 3.10 for all 8 windowing schemes. The recurrent

models perform significantly better than the Linear model: on average, LSTM and GRU

outperform the Linear model by 60% and 61%, respectively. LSTM and GRU outperform

the best-performing linear model by 41% and 43%, respectively. We expect this kind of

advantage, given the importance of considering historical data in predicting future dengue

cases. The performances across different windowing schemes with LSTM and GRU models

are comparable (both models have an approximate standard deviation of 0.02 around their

means of 0.3569 and 0.3435, respectively), with a small trend of increasing mean error values

with windowing method configurations. In the case of linear models, there are some stark

contrasts when using window detection methods. Using the window detection method with

a large ∆MIN value increases performance sharply. For example, using a ∆MIN of 30 weeks

shows 41.9% improvement over fixed window schemes’ average performance. This indicates

that features selected with a small number of large correlation windows detected based on

64

outbreak locations in the time series are more effective than the remaining schemes that

use a relatively large number of smaller windows. A similar trend is also visible with fixed

window methods, although it is not statistically conclusive. The lower values of M f , which

translates to having a lower number of large windows, show slightly better performance over

higher values of M f .

Figure 3.10: A comparison chart of the lowest prediction error obtainable using different
fixed and detected windowing schemes. Four fixed windowing schemes with the number of
windows, M f = 5, 10, 20, and 40, along with four window detection schemes having mini-
mum window lengths, ∆MIN = 5, 10, 20, and 30 weeks are compared for three models. The
vertical axis denotes the average of the optimal MAE values. The markers denote the mean
values, with the bars representing standard errors of the mean. The results are the averages
of 16 top ICs based on prevalence.

To understand how beneficial our proposed methods are over the baseline (without fea-

ture enhancement, NPIC = 0), we analyze the improvements in prediction accuracy. The

term, improvement in accuracy is defined as the relative decrease in MAE (i.e., increase in

prediction performance) with optimum PIC selection (Figure 3.10) compared to MAE with-

65

out additional features (NPIC = 0). We compute the accuracy improvements across all 16

ICs and plot the mean improvement in accuracy as percentages in Figure 3.11. The linear

model demonstrates average improvements ranging from 18.97% to 27.13% depending on the

window selection schemes. The LSTM model improvements range from 22.13% to 33.6% and

the GRU model range from 10.79% to 31.92% depending on the window selection schemes.

We should be careful in interpreting these values; greater improvements do not translate to

better optimal performance. These values are relative to their baselines (NPIC = 0). With

some incidence centers (IC), a model can already predict with higher accuracy than other

incidence centers. Our methods help minimize those gaps and still provide some improve-

ments over the baselines (ranging from 10.79% to 33.6% depending on the model and the

scheme). Figure 3.10 demonstrates that, in general, GRU and LSTM both perform well

when we deal with average values. For individual ICs, however, a conclusive determination

of the best performing model can be done (either GRU or LSTM).

Performance on aggregated data

It is sometimes reasonable to aggregate data to larger scales based on geographic adjacency

and environmental similarities (e.g., weather). From a macroscopic point of view, predict-

ing for an ecoregion may be more meaningful for policymakers to interpret the outcomes.

According to Omernik (2004), ecoregions are defined as areas within which there is a spa-

tial coincidence in characteristics of geographical phenomena (e.g., geology, physiography,

vegetation, land use, climate, hydrology, terrestrial and aquatic fauna, etc.) associated with

differences in the quality, health, and integrity of ecosystems144. We use the terrestrial ecore-

gions defined by The Nature Conservancy(TNC) in this work145. The following analysis is

performed for Brazilian locations with available data in the Bahia Coastal Forest ecoregion.

Comparing the prediction performance on aggregated data shows that the advantages

of recurrent models compared to the Linear model (which we had for individual ICs) are

diminished. The optimal performances across prediction models become more comparable,

as shown in Figure 3.12. The mean optimal MAE values obtained for 4 fixed window schemes

66

Figure 3.11: A comparison chart of average improvement in accuracy (reduction in MAE)
with respect to performance without feature enhancements (NPIC = 0) for different fixed and
detected windowing schemes. Four fixed windowing schemes with the number of windows, M f

= 5, 10, 20, and 40, along with four window detection schemes having minimum window
lengths, ∆MIN = 5, 10, 20, and 30 weeks are compared for three models. The markers denote
the mean values, with the bars representing standard errors of the mean. The results are the
averages of 16 top ICs based on prevalence.

are 0.38, 0.40, and 0.36 when using Linear, LSTM, and GRU models, respectively. The mean

optimal MAEs for 4 window detection schemes are 0.31, 0.35, and 0.33 using the same three

models. We observe a distinct advantage of the window detection method for selecting

PICs. On average, the window detection methods improve over their baselines (NPIC = 0)

by 16.50%, 12.68%, and 10.07% for Linear, LSTM, and GRU models, respectively. Variable

window allocation based on outbreak window detection outperforms fixed window allocation

methods. In other words, windowed cross-correlation on a few important outbreak regions

performs better than comparing over the entire time series. As the target data is aggregated

67

from all PICs in the region, the optimally trained Linear models sometimes perform better

than recurrent models. One key takeaway is that cases for the entire region can be predicted

with improved accuracy while using a small subset (PICs) of data as features. For the results

shown in Figure 3.12, the optimal MAE values can be reached for NPIC values between 2

and 5. This aggregation provides a fast way to predict cases, with a small fraction of regional

outbreak data. While the accuracy achieved at the ecoregion level is not on par with the

accuracy achieved for single ICs, this prediction is useful to generate risk maps.

Figure 3.12: A comparison chart of lowest prediction error obtainable using different fixed
and detected windowing schemes for case data aggregated across an ecoregion. Four fixed
windowing schemes with the number of windows, M f = 5, 10, 20, and 40, along with four
window detection schemes having minimum window lengths, ∆MIN = 5, 10, 20, and 30 weeks
are compared for three models. The vertical axis denotes the optimum mean absolute error
(MAE). The results were obtained for the ecoregion named Bahia Coastal Forest145.

We construct a risk map for the Bahia Coastal Forest ecoregion using the predicted cases

and weights of the top-ranked PIC in Figure 3.13. The top 40 PICs are included in the

68

map, and the PICs that contribute more towards the weight (Γ) are shown as high-risk

regions (e.g., red). The aggregated prediction was done using the optimal Linear model with

∆MIN = 30 and NPIC = 4.

Figure 3.13: A geospatial map showing the predicted risk of infection in an ecoregion of
Brazil. A part of the ecoregion (Bahia Coastal Forests) shown here is marked with red borders.
The risk of infection is shown as a heatmap with color shades ranging from blue (low risk) to
red (high risk). The heatmap is constructed by combining the ranked PICs in the ecoregion,
with higher-ranked PICs contributing more to the risk. The aggregated data was predicted
using the Linear model with an optimum number of features (NPIC = 4) selected with window
detection method (∆MIN = 30). This heatmap depicts the risk on the date of 09-June-2019,
with 40 top-ranked PIC. Map generated using Folium141 with OpenStreetMap142. Basemap
tiles provided by CartoDB143.

3.5 Discussion

In this work, we develop a method to select relevant incidence data from peripheral locations

as features to improve the prediction of dengue fever outbreaks. In order to rank features, we

use windowed cross-correlation analysis on dengue case data. We propose two methods for

69

allocating correlation windows (position and size) over the time series to compute correlation

weights. For a target location (IC), peripheral locations (PIC) are ranked based on a

combination of correlation, distance, prevalence metrics. The predictive models benefit from

the ranked feature sets, as these reach model and location-specific optimal performances

with a relatively small subset of features. We tested three predictive models using dengue

case data from Brazil, showing different levels of accuracy gains.

On average, the proposed feature enhancement methods improve prediction performance

by 10.79% to 33.6% over the baseline feature set for the locations we tested, depending on

the prediction model and the window allocation scheme. For the location with the highest

total cases (2010-2019) in the Esṕırito Santo region of Brazil, we could get MAE values as

low as 0.13 (normalized case data) using the GRU model with data from just 6 locations

added to the feature set. In a test across multiple locations, both RNN models (LSTM and

GRU) performed with comparable accuracy (average MAE ranging from 0.3435 to 0.3569)

when using an optimal number of additional features. The Linear model also benefited

(18.97% to 27.13% improvement over the baseline) from windowed correlation-based feature

enhancements, although its performance never got close to recurrent models. When com-

pared with the respective optimal number of features, the best performing recurrent models

outperformed the Linear model by at least 41% in terms of prediction accuracy. The win-

dow detection methods showed performance comparable to fixed window allocation. This

can be advantageous when working with extensive sets of data, as the detected windows only

compare a subset of important time steps instead of the entire series. For municipality-level

dengue case prediction, GRU was the best performing model, closely followed by LSTM.

The performance gaps between these two models diminished after feature set optimization.

When predicting aggregated data for the entire region using a subset of constituent locations,

our methods reach optimal performance with the addition of only 2-5 locations (out of 77),

depending on the model and window selection scheme. This is especially useful for situations

where the lack of trainable data hinders forecasting. For example, dengue risk for a region

can be predicted if a small subset of data from epidemically important region locations is

available. This addresses the issue of incomplete data and eases the ‘curse of dimensionality‘

70

while improving training efficiency.

Future efforts in this area can focus on gaining further insights based on epidemiological,

environmental, and economic characteristics of locations and combining them to improve

feature ranks. While case data are indicators of the severity of an outbreak, these are not

always adequate to explain future possibilities. Machine learning models cannot generalize

beyond training data for every location with the same degree of accuracy. Complex inter-

actions of dengue viral strains and changes in host immunity patterns may evolve outbreak

characteristics over the years. Several random factors, including host travel patterns, natural

disasters, and lifestyle changes because of other infectious outbreaks (e.g., COVID-19 pan-

demic), may affect dengue outbreaks. While the metrics used in our method capture such

factors’ long-term characteristics, these do not account for randomness. While keeping the

feature sets reasonably small, our method can improve outbreak prediction. The proposed

method can be generalized and used for projecting any infectious outbreak where temporal

data at a reasonable spatial resolution are available.

71

Chapter 4

Generation of swine movement

network and analysis of efficient

mitigation strategies for African swine

fever virus1

4.1 Background

Animal movement networks are important to model disease outbreaks and identify the path-

ways of disease spread. In the US, pig farm data, including herd sizes, geolocations, and

movements between farms, are challenging to obtain due to the sensitive nature of data

and the potential economic risk of making such information public. Epidemiologists and

other researchers who need such data have to rely on models that can disaggregate available

county or state-level data. One such example is the work of Burdett et al., who devel-

oped a simulation model to quantify pig population and generate geolocation of individual

farms146. However, this model does not produce movement data. In another work by Valdes-

Donoso et al., machine learning techniques were used to predict movement networks in the

1This chapter is a slightly modified version of a published article2, Copyright 2019, PLOS ONE.

72

State of Minnesota147. Recent work uses a maximum information entropy approach to es-

timate movement probabilities among swine farms148 and suggests that the ‘small-world

phenomenon’ could make the US swine industry vulnerable to infectious disease outbreaks.

Despite several efforts, pig level networks in the US swine industry are not readily available

for simulating disease outbreaks. One way to overcome this issue is to design a network

generator that can produce synthetic swine networks given some of the available movement

network characteristics and census data.

There has been substantial work in the area of graph generation. The most basic random

graph model is the Erdös - Rényi model14 that can produce graphs with a certain edge prob-

ability between any pair of vertices. The vertex degrees of such random graphs follow the

Poisson distribution149. There are several mechanisms to generate graphs with prescribed

degree sequences. Milo et al. describes150 two mechanisms: switching algorithm151;152 and

matching algorithm149;153. In the switching algorithm, graphs are generated based on a

degree sequence, and the edges are shuffled without changing the degrees to introduce ran-

domness. The matching algorithm is also called the configuration model154 where stubs

(open-ended handles) are assigned to vertices and later joined pairwise completely at ran-

dom. Our limited movement data situation with a swine movement network presents us

with a unique challenge where we have several different vertex types with their given aver-

age in/out degrees and their range of values147. We also have the probability of having a

directed edge from one vertex type to another. Using these two sets of data, we design a net-

work generator that uses a modified version of the configuration model, and the generalized

random graph model154. Generated random graphs have been used for various purposes,

including running outbreak simulations1 and predicting the impacts of disease control8. Pig

movement networks have been analyzed and found to be useful in predicting the risk of

infectious disease outbreaks155. The effects of immunizations based on network centrality

metrics have been explored before156;157 for human diseases, and such studies can suggest

efficient strategies for disease control. In this chapter, we use several proven network metrics

to understand disease spreading phenomena in pig networks.

African swine fever (ASF) is a highly contagious infection that poses a threat for the pork

73

industry due to its high mortality and no effective vaccine or cure158. Several recent outbreaks

in Romania, Bulgaria, and Belgium have already threatened European pork producers159;160.

China, the largest pork-producing country, has an ongoing ASF outbreak and has reportedly

culled 1,170,000 hogs as of 3rd October 2019161. They reported their first outbreak in early

August 2018, and since then, there have been about 158 outbreaks in 32 provinces161. Several

major Chinese pork producers have cut their profit forecasts; some expect as much as 80%

reduction compared to 2017162. The Chinese officials have undertaken several methods to

control the outbreaks that include culling of all pigs within 3km of the infected area, pig

movement restrictions, surveillance around containment/protection zones, and destruction

of pig products163. The analysis of Herrera-Ibata et al. finds that although the US has a low

risk of ASF introduction overall, multiple states such as Iowa, Minnesota, and Wisconsin

are the ones to be more vigilant about for an ASF introduction by the legal import of live

pigs164. There have been several attempts to model ASF outbreaks. Barongo et al. used

a stochastic compartmental model to investigate the effects of control measures on ASFV

and found that early intervention can help manage the ASF epidemics165. The effects of

residue from deceased animals were included in the work of Halasa et al. to simulate the

spread of ASFV166. Using transmission experiments on the Georgia 2007/1 ASFV strain,

Guinat et al. estimated pig-to-pig transmission parameters for both within pen and between

pen infections, and they found the reproductive ratios to be 5.0 and 2.7 respectively167. On

the other hand, Gulenkin et al. estimated the basic reproductive ratio for the outbreaks

in the Russian Federation to be 8-11 within the infected farms, and 2-3 between farms168.

Barongo et al. also estimated this ratio for Uganda outbreaks to be in the range of 1.58-

3.24 depending on various estimation methods they used169. In another work, Guinat et

al. inferred transmission parameters using pig mortality data170. Recent work by Hu et al.

used Bayesian inference on previous transmission experiments167 to account for unobserved

infection times and latent periods171. Most of the ASFV research is focused on parameter

estimates, while several others investigate virus importation risk in the US mainland. Despite

the numerous studies, there is a lack of knowledge on how the swine industry in the US would

be affected in case an ASFV outbreak starts in the US.

74

The contributions of this chapter are several: i) we propose a swine movement network

generator, ii) we run ASFV epidemic simulations and compare how different farm operation

types affect the outbreak dynamics, and iii) we analyze and compare the effectiveness of

multiple centrality-based targeted control measures. In the Results section, we describe our

generated farm-level network along with the outcomes of preliminary network analyses. We

also explain the ASFV outbreak simulation results and compare different operation types as

sources of infection. Finally, we investigate the impact of different disease control strategies.

The Materials and Methods section contains detailed information on swine movement data,

network generation, analysis methods, ASFV epidemic model, and its parameters. The

pseudocodes for the algorithms are detailed in Appendix A.

4.2 Results

4.2.1 Movement network

The generated farm level movement network is shown in Figure 4.1. This directed network

contains 84 farms from two Minnesota counties (Stevens and Rice). There are five different

swine operations marked as Boar Stud (B), Farrow (F), Nursery (N), Grower (G), and Market

(M) with 3, 22, 12, 39, and 8 sites, respectively. A visual inspection of Figure 4.1 suggests

that movements of pigs start from farrow and nursery operations and end at the markets

while a large number of grower farms lie in those paths. We also analyze the node centrality

measures of the generated network, shown in Figure 4.2. As the network is generated based

on degree centrality data (Table 4.2), we expect that results, shown in Figure 4.2(Kin and

Kout) would resemble it. The market operations have significantly high in-degree centralities

(median value of 9). In contrast, the nursery operations have high out-degree centralities

(median value of 3) followed by farrow and grower operations (both with median values of 2).

The farrow operations have high betweenness values (median of 8.9167) followed by grower

operations (median of 4).

To understand how the connectivity in the farm network can be disrupted, we perform a

75

Figure 4.1: A Generated farm level swine movement network. The solid colored circles
(nodes) indicate swine operations, and the light blue arrows connecting them indicate pig
shipments with directions. The colors of the circles indicate node betweenness centrality
(values depicted by the color bar on the right). The swine operations (nodes) are labeled
according to their types: Boar Stud (B), Farrow (F), Nursery (N), Grower/Finisher (G),
and Market/Slaughterhouse (M).

robustness analysis. Based on the node centrality measures of the network, we rank the nodes

in decreasing order and create three lists (Kin, Kout, and BC). Going through those lists,

we remove (isolate) nodes one by one from the network and compute the largest connected

76

B F N G M

0

5

10

15

20

In-degree centrality (K
in

)

B F N G M

0

2

4

6

Out-degree centrality (K
out

)

B F N G M

0

20

40

60

80

Betweenness centrality (BC)

Figure 4.2: Centrality measures of the generated network. The three sets of boxplots show
three different centrality measures as marked (In-degree (Kin), Out-degree (Kout), and Be-
tweenness (BC)). The five different pig operations are marked in the horizontal axes as Boar
Stud (B), Farrow (F), Nursery (N), Grower/Finisher (G), and Market/Slaughterhouse (M).
Each boxplot shows the range between 25th and the 75th percentiles (blue box) and the median
(red line). The values outside 1.5 times the inter-quartile range are marked as outliers (+
signs).

component in every step. The results are depicted in Figure 4.3, where the relative sizes

of the largest components are plotted against three centrality-based node removal/isolation

schemes. While all three schemes decrease the component sizes, the removal of high Kin

nodes demonstrates a relatively better outcome in breaking the network. Approximately

94.1% of the farms in total can be isolated from the original network by isolating only

77

33.3% of the high in-degree farm nodes. For the other two schemes, isolation of 33.3% high

centrality (BC and Kout) farms will isolate about 38.1% of the farms in total. The in-degree

centrality-based isolation strategy shows a significant (about ∼ 2.5 times) improvement over

other options.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Removal of farms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
a
rg

e
s
t
c
o
m

p
o
n
e
n
t
s
iz

e

High BC

High Kout

High Kin

Figure 4.3: Network robustness analysis by the gradual removal/isolation of farm nodes.
The farm nodes are removed in decreasing order of different centrality measures, and the
size of the largest weakly connected component (at the farm level) is plotted. Both of the
axes are plotted as fractions of total farms in the network. For the removal of nodes, they
are separately ranked with three independent centrality measures: high betweenness centrality
(BC), high out-degree centrality (Kout), and high in-degree centrality (Kin).

4.2.2 Outbreak dynamics

In a generated swine pig level network of the two Minnesota counties, we introduce an ASFV

outbreak by choosing a pig farm uniformly at random as the seed farm. Within this selected

farm, we infect at most 10 (if there are more than 10) pigs to introduce the pathogen and

observe the progression of the disease spread. The averaged out results of 1000 independent

78

simulations are shown in Figure 4.4. We use the parameter values given in Table 4.5. For the

infection rate, β, we use the median value given in Table 4.5 along with the values 25% above

and below the median as indicated in the legends of the plots in Figure 4.4. We observe

outbreaks lasting about 378 days for the median value of β, which infects about 1.84% [95%

CI 1.65 2.03] of the pork population. For a network of 249,150 pigs, this roughly translates

to about 4,584 [95% CI 4,111 5,047] pigs dying from the outbreak. A 25% increase in β

would lengthen the outbreak duration by about 33% and affect twice as many pigs. A 25%

reduction in β shortens the outbreaks by 32% and reduces the outbreak size by 59.8%. For

β values around the median and above, outbreaks reach their peaks within 95-100 days. For

β values below the median, outbreaks do not surpass the initial fraction of infected pigs.

Figure 4.4: Simulated time series outbreak dynamics in the generated swine network. The
results shown above are the averages of 1000 independent simulations. To start each outbreak,
a herd/farm is selected uniformly at random, where we infect up to 10 randomly chosen pigs.
The simulations were run for three different β values (1.672, 1.254, and 2.090), which are
shown using different line styles and colors as indicated by the legends. The shaded regions
in the plots show 95% confidence intervals. The left plot shows the fraction of infected pigs,
and the right plot shows the fraction of removed (dead) pigs over time for the generated pig
network.

For the results of Figure 4.4, we infected about 10 pigs in a farm that was chosen uniformly

at random from all the farms. As there are five different pig operation types in our network,

we would like to evaluate how each type affects the outbreaks. We run independent sets of

simulations where we target a specific operation type (boar stud, farrow, nursery, grower,

79

and market) in each set. We select an operation of that particular type and use it to seed

the infection. It is important to note, the number of pig operations in each type/category

is different. The pig population also varies among operations. In our generated network, we

have approximately 3.82%, 28.72%, 11.73%, 44.86%, and 10.87% pigs in Boar Stud, Farrow,

Nursery, Grower, and Market operations, respectively. The outcomes are shown in Figure

4.5. Here, we define the term ‘Epidemic Attack Rate’ as,

Epidemic Attack Rate =
Number of pigs infected during the outbreak

Total number of pigs
(4.1)

We find that markets are most capable among the five types in spreading infections,

while grower and farrow farm types are the second and third most important to consider.

Although grower farms have 4.13 times the population of the market sites, the market sites

cause 1.98 times bigger outbreaks (0.0406 [95% CI 0.0398 0.0414]) compared to grower sites

(0.0205 [95% CI 0.0199 0.0212]). Despite that, the duration of the outbreaks caused by the

farrow, grower, and market sites are quite comparable (387 [95% CI 374 401], 399 [95% CI

392 409], and 423 [95% CI 416 431] days respectively). The large populations in the grower

and farrow farms have contributed to their large outbreaks. On the other hand, market sites

are potent infection spreaders due to their high connectivity (high in-degree centrality) with

remaining farm types.

4.2.3 Control measures

Due to the lack of a cure for the African swine fever virus, movement restriction remains a

key control method for policymakers. For this experiment, we use three different network

centrality measures (in-degree centrality, Kin, out-degree centrality, Kout, and betweenness

centrality, BC) for the farm nodes and sort the farms in a descending order based on these

measures. Next, we gradually place movement restrictions on an increasing number of farms

selected from the sorted lists and run outbreak simulations. The attack rates and the out-

break lengths are compared in Figure 4.6 for three network centrality measures. Placing

movement restrictions based on in-degrees (Kin) demonstrate the best performance in dis-

80

Figure 4.5: Simulated outbreak analysis based on the source of infection. The results shown
above are the averages of 10,000 independent simulations. The 95% confidence intervals are
shown in red error bars. To start each outbreak, a pig operation was chosen from a given
type (either Boar Stud, Farrow, Nursery, Grower, or Market), and up to 10 pigs from that
operation were infected. The left plot shows the epidemic attack rates as defined in Equation
4.1 and the right plot shows the duration of outbreaks.

ease control while restrictions based on betweenness centralities (BC) perform the worst.

Isolation of top 5 farms based on Kin shows about 63.04% [95% CI 61.96 64.13] reduction

in the outbreak size (attack rate) and 51.59% [95% CI 50.26 52.91] reduction in outbreak

duration compared to the situation without any control measure (Figure 4.4). For the Kout

and BC based isolation schemes, we observe 19.6% [95% CI 16.85 21.74] and 4.9% [95% CI

1.63 7.61] reductions respectively in outbreak sizes with 8.5% [95% CI 6.61 11.64] and 6.4%

[95% CI 4.5 8.47] reductions respectively in outbreak durations when we isolate 5 farms.

As there is no effective vaccine for ASF, we model hypothetical vaccines with 80% efficacy.

This efficacy value has been mentioned in other cases as a nominal requirement to make a

marketable vaccine172. For our model, it means that 80 out of 100 vaccinated pigs will be fully

immune to the invading pathogen. We use the same set of centrality-based sorting strategies

to select farms for vaccinations (in-degree Kin, out-degree Kout, and betweenness centrality,

BC measures). The results are shown in Figure 4.7. Once again, immunizing farms based

on high in-degree (Kin) is found to be the most effective strategy, while immunization based

on high betweenness centrality (BC) is found to be the least effective in disease control.

81

Figure 4.6: Comparison of different targeted isolation schemes based on farm node centrality
measures. Three different movement restriction strategies (high in-degree, Kin, high out-
degree, Kout, and high betweenness, BC) are compared. For each strategy, a different number
of farms are isolated from a centrality-based sorted descending list. The left plot shows the
epidemic attack rates, and the right plot shows the epidemic lengths. The data points are
mean values computed from 10,000 stochastic simulations, and the shaded regions show 95%
confidence intervals.

Vaccination of top 5 farms based on Kin shows about 59.78% [95% CI 58.70 60.87] reduction

in the outbreak size (attack rate) and 44.18% [95% CI 42.86 45.77] reduction in outbreak

duration compared to the situation without any control measure (Figure 4.4). For the Kout

and BC based immunization schemes, we observe 17.93% [95% CI 15.22 20.65] and 3.8%

[95% CI 0.54 7.07] reductions respectively in outbreak size with 5.56% [95% CI 2.91 7.67] and

5.03% [95% CI 2.12 7.94] reductions respectively in outbreak duration when we vaccinate 5

farms. The comparative results of the vaccination strategies resemble the results found in

the previous experiment for movement restriction measures.

4.3 Discussion

This study proposed a method to generate movement networks from available data on the

US swine industry, utilizing movement network characteristics available for two counties in

Minnesota. Using the generated farm-level movement network, we have analyzed multiple

centrality properties and performed a robustness analysis to obtain a better insight into the

82

Figure 4.7: Comparison of different targeted vaccination schemes based on farm node cen-
trality measures. Three different vaccination strategies (high in degree, Kin, high out-degree,
Kout, and high betweenness, BC) are compared. For each strategy, a different number of
farms are immunized from a centrality-based sorted descending list. The hypothetical vac-
cines are 80% effective. The left plot shows the epidemic attack rates, and the right plot
shows the epidemic lengths. The data points are mean values computed from 10,000 stochas-
tic simulations, and the shaded regions show 95% confidence intervals.

network structure. Using the generated pig-level contact network, we formulated a stochastic

SEIR model for the transmission of African swine fever. We ran outbreak simulations and

examined time-series data with different pig operation types as sources of infection and

compared the outcomes. Finally, we analyzed and compared the outcomes of centrality-

based targeted isolation and vaccination methods.

The outbreak simulations show that if ASFV is introduced in a random herd and is

allowed to spread unchecked, it may affect approximately 1.84% of the total swine population,

with a high probability for the two counties in our consideration. Among the five different

farm types, infecting the pig population in the market operations causes the most significant

outbreaks. The high connectivity of the markets with other farm types and the both-way

transmission caused by fomites (e.g., transport vehicles) are reasons behind such a high

impact of the markets. The large populations in grower and farrow farm types also make

them significant in spreading ASFV infections. Control measures can target these farm types

in the event of such outbreaks. Our preliminary farm network analysis found that the nursery

operations have high out-degrees while the market operations have high in-degrees. We also

83

find that grower operations have high betweenness centrality values. A network robustness

analysis reveals that isolating high in-degree farms disrupt the connectivity in the network

the most compared to using other centrality measures.

When we examine the impact of centrality-based targeted control measures, the outcomes

reinforce our results from the preliminary analysis. We have examined two different control

measures with outbreak simulations: movement restriction and hypothetical vaccine. In

both cases, we find that controlling farms with high in-degree proves to be beneficial in

containing the disease spread. Implementing control in high out-degree farms proves to be

slightly better than doing so in high betweenness farms, while both are inferior compared to

high in-degree based targeted control. In a separate analysis (Figure 4.5), market operations

have proven to be highly potent sources of infections, causing more significant outbreaks

than other farm types. As the market operations have very high in-degree values, our results

consistently suggest that these sites should be prioritized in the case of ASFV outbreaks.

Limited public data availability on swine movement in the US compels us to rely on prob-

abilistic network-generation methods to close analytical gaps. Available data on Stevens and

Rice counties of Minnesota aided the construction of the movement network. However, these

data may be inadequate for the extrapolation of more extensive swine-movement networks.

Despite that, our generated network has degree distributions that agree with the given data

and the real-world characteristics of the swine production industry. If additional data for

movement networks in other locations become available, our network generation algorithms

can be used with little or no modifications, depending on the data. We also made a sim-

plifying assumption of having one operation type at a single site, while in practice, there

can be multiple operation types. In addition to that, individual-based simulation models

are limited due to computational complexities caused by a large population. Metapopula-

tion models can be a viable solution when considering state-level networks. The network

generation techniques can be improved further if more data on swine production operations

is made available. Distributed databases could be used to improve traceability and data

sharing for the agriculture production supply chain. Further efforts could be made in per-

forming surveys, raising awareness, and motivating the livestock industry to participate in

84

data exchange to support research solutions that can benefit the industry operations.

4.4 Data and models

4.4.1 US swine data

We generate the swine movement network utilizing some of the network characteristics (mix-

ing matrix, in-degree, and out-degree centralities) reported in the Valdes-Donoso147 paper.

The mixing matrix is given in Table 4.1 and the centralities are shown in Table 4.2. We

define several pig operation types that include farms and markets. Using the operation type

distribution described in the same work147, we classify 5 different pig operations (Boar Stud,

Farrow, Nursery, Grower, and Market) as shown in Table 4.3. The operation types are

defined below,

• Boar Stud. These farms are used to keep male boars for breeding.

• Farrow. Sows are moved to these farrowing farms to give birth (farrow). Piglets stay

here up to 3 weeks.

• Nursery. Piglets are moved to nursery after weaning where they could stay up to 8

weeks.

• Grower. Pigs are moved from nursery to grower/finisher farms where they will gain

market weight at about six months of age.

• Market. The market type includes buying stations and/or slaughter plants.

Obtaining data from the United States Department of Agriculture - National Agricultural

Statistics Service (USDA-NASS)173, we find that two counties (Rice & Stevens) of Minnesota

have 84 farms and 249,150 pigs in total. We take the 84 farms and, as the operation types

are unknown, assign types randomly based on the distribution shown in Table 4.3.

Availability of operation type distribution data is incomplete as well; there are several

suppressed data fields. We allot pigs in those unknown fields randomly and make sure that

85

B F N G M
B 0.00 0.00 0.00 0.00 0.01
F 0.00 0.03 0.04 0.09 0.10
N 0.00 0.00 0.00 0.13 0.00
G 0.01 0.10 0.00 0.07 0.40
M 0.00 0.00 0.00 0.00 0.02

Table 4.1: Mixing matrix (probability of movement from row type to column type) for swine
movement network147. The pig operation types are abbreviated as B (Boar Stud), F (Farrow),
N (Nursery), G (Grower), and M (Market).

B F N G M
In-degree Average 0.67 0.92 0.77 1.05 11.73

SE 0.67 0.14 0.1 0.07 3.59
Max 2 5 2 5 57

Out-degree Average 1.00 2.08 3.07 1.74 0.46
SE 0 0.26 0.62 0.15 0.18

Max 1 8 12 12 3

Table 4.2: Swine movement network degree centrality data147.

Boar Stud(B) Farrow(F) Nursery(N) Grower(G) Market(M)
1.27% 27% 12.66% 51.9% 7.17%

Table 4.3: Pig operation type distribution.

the aggregate statistics are maintained. The adjusted combined statistics for Stevens and

the Rice counties are provided in Table 4.4.

Farm Size No. of Farms No. of Pigs
1 to 24 17 204
25 to 49 0 0
50 to 99 0 0

100 to 199 2 300
200 to 499 3 700
500 to 999 11 7,904

1,000+ 51 240,042
Total 84 249,150

Table 4.4: Distribution of pigs in Stevens and Rice counties of Minnesota.

While the USDA-NASS data provide the total number of farms and pigs in a size class,

it is impossible to infer the number of pigs at individual farms. Hence, we use a random

allocation mechanism to assign the number of pigs for each farm while maintaining the

86

aggregate statistics of Table 4.4. Once we generate the network edges, we assign a weight

to them to indicate the amount/rate of movement via that edge. According to the work of

Spencer R. Wayne174, the Rice and the Stevens counties experience mean shipment of 21 and

15 per year and median shipment of 10 and 7 per year, respectively. Our combined network

is estimated to have a mean shipment of 17.38 per year and a median shipment of 8.5 per

year based on those values. We use lognormal distribution and assign randomly generated

shipment rate values to network links.

4.4.2 Network terminology

We use several network structure and analysis related terminologies throughout this chapter.

These terminologies are described below,

• Network/Graph. A network (also called a graph) is a structure consisting of nodes

(also called vertices) and links (also called edges). A link connects two vertices, and it

can be either directed or undirected.

• Stub. A stub is half a link. It’s a link with a node on one end and an empty handle

on the other end. Empty handles of two stubs can be joined together to form the link

and create a connection between two nodes.

• Path, Shortest Path. A path is a sequence of links that joins a sequence of distinct

vertices. A shortest path is the minimum length path between two nodes in a network.

• Connected Component. A connected component (also referred to as a component)

is a subset of nodes with a path between every pair of nodes in that subset. Two distinct

components aren’t connected by any path. If all nodes in a component are connected

via bi-directional paths, then the component is strongly connected. Otherwise, it is

called weakly connected (path in one direction). In this chapter, we consider weakly

connected components as transmission can happen in the reverse direction of the animal

movement via fomites (e.g., transport vehicles).

87

We use several centrality measures to determine the importance of the nodes. The

centrality measure can quantitatively characterize how important a node is in the network.

• Degree Centrality. The degree (K) of a node is the number of links associated with

that node. In the case of directed networks, we define in-degree (Kin) as the number

of links going into the node and out-degree (Kout) as the number of links coming out

of the node.

• Betweenness Centrality. There is a shortest path for every pair of nodes in a

connected component. The betweenness centrality (BC) of a node is the total number

of shortest paths that pass through that node (not counting the paths starting from

or ending at that node).

4.4.3 Network generation

The swine network is synthesized using the available swine farm and movement-related data

described in the previous section. The network generation process is completed in several

stages:

1. Assign each farm node a single operation type randomly based on the farm type dis-

tribution given in Table 4.3.

2. Assign directed in and out-degree values or handles (stubs) to each farm node randomly

based on the degree distribution given in Table 4.2.

3. Connect out-handle (stub) of a farm node to in-handle (stub) of another farm node

randomly, based on the mixing matrix given in Table 4.1.

4. Assign shipment rate values to all the directed links from a lognormal distribution with

the obtained mean and the median shipment rate values.

5. Assign each farm a certain number of pigs randomly, based on the distribution given

in Table 4.4.

88

6. Generate the within-farm undirected contact links among the pigs based on the Erdös

- Rényi process with 50% probability.

7. Convert the shipment rates of farm links into probabilities and generate between-farm

undirected contact links for the pigs based on those rates.

We generate a farm-level movement network at step 4 and a pig-level contact network

at step 7. It is necessary to mention that working with a graph that has 249,149 nodes

is computationally intractable due to a large number of within-farm links among the pigs.

Hence, we scale down the pig population by a constant factor of 20, which makes the network

small enough to be computationally feasible while retaining sufficient pig nodes to maintain

connectivity properties of the farm-level network. As a consequence, most of our ASF model

results are qualitative investigations of outbreak behavior.

4.4.4 ASFV epidemic model

Our network-based epidemic model is shown in Figure 4.8. Using the farm-level movement

network, we generate a pig-level movement network. In this network, each node is an indi-

vidual pig, and the links connecting a node to other nodes indicate interactions with other

pigs (nodes). A pig has many more links to other pigs within the same farm than pigs at

other farms. The links to other farms are generated based on the movement network. In

Figure 4.8, a host node (pig) is marked using a solid circle, and the links to other nodes are

marked by the solid lines. A host (pig) can get exposed from any of its infected neighbors at

the rate of β, which is defined as the infection rate. For modeling African swine fever infec-

tion dynamics, we divide the pig population into four groups: Susceptible (S), Exposed (E),

Infected (I), and Removed/Dead (R). The healthy pigs which are free from ASF infection

are classified as Susceptibles. If such a healthy pig comes into contact with infected pigs con-

taining the virus, it may get infected at the rate βYi(t), where Yi(t) is the number of infected

neighbors of node i at the time t. If the pathogen transmission occurs, a healthy pig enters

into the Exposed group, where it stays for the incubation period. On average, this period is

denoted by 1/σ. Once it shows symptoms, it moves into the Infected group. It stays there

89

for an average time of 1/γ before it is removed. As for ASF, the mortality is assumed to

be 100%, and no pig recovers. Hence, all infected pigs die at the end of the infected period.

However, in multiple cases for our simulations, we will hypothetically vaccinate pigs. Based

on the vaccine efficacy, alive pigs may move to the removed class too.

Figure 4.8: The network-based SEIR epidemic model for African swine fever virus. The
solid black circles indicate host nodes (individual pigs), and the solid lines connecting them
indicate contacts (direct or fomites) that can act as infection pathways of ASFV. Each node
can be in any of the four states, Susceptible (S), Exposed (E), Infected (I), or Recovered (R).
The parameters indicate the rates at which a host can move from one state to another (See
Table 4.5) adjacent to corresponding arrows. Here, Yi(t) is the number of infected contacts
of node i at time t.

The model parameters are shown in Table 4.5. The last column in this table mentions

the different sources from where we obtained the parameter values. For β, we used estimated

data from170 where median transmission rate values were computed for 9 herds. These values

are listed in Table 4.6. We take the weighted median from this set of data and use that β

value in our simulations. We use the well-developed GEMFsim75 tool to run our simulations.

Symbol Definition Range Value Reference
β Transmission Rate 0.7 - 2.2 1.6719 170 171

1/σ Latent Period - 7.78 170

1/γ Infectious Period - 8.3 170

Table 4.5: ASFV epidemic model parameters.

90

Herd Size 1614 1949 1753 1833 1320 600 600 600 2145
β 2 1 2.2 0.7 1.6 2.1 1.6 2.2 0.8

Table 4.6: Transmission rate estimated for 9 pig herds by Guinat et al.170

91

Chapter 5

A permissioned distributed ledger for

the US beef cattle supply chain1

5.1 Background

The cattle industry in the US does not provide the appropriate traceability for the rapid

identification of likely infected cattle during infectious outbreaks. The United States Depart-

ment of Agriculture (USDA) mandates veterinary inspections for inter-state movements175.

However, intra-state movement data are kept private by the farm owners, making it challeng-

ing to trace animal movements. There are several projects which are addressing traceability.

CattleTrace was established in 2018 to create an infrastructure for an animal disease trace-

ability system in Kansas176. Such projects rely on the mutual trust of the participants for

keeping data secure, which can impede widespread adoption. In this chapter, we propose

a technological solution to security, privacy, and control of private and shared data using

a permissioned blockchain. Blockchain technology is designed to be immutable, transpar-

ent, and decentralized, enabling secure communications among parties without the need for

intermediate or central authorities. Cryptocurrencies37 were among the first applications

of blockchain, which expanded into multiple fields due to some valuable features of the

1This chapter is a slightly modified version of a published article3, Copyright 2020, IEEE Access.

92

blockchain architecture. The possibilities are endless with smart contracts that can execute

Turing-complete instruction sets41;42.

5.2 Preliminaries

5.2.1 The US cattle farm system

The beef supply chain consists of several components. One prior work177 divides the beef

cattle operations into four stages: ranch, stocker, feedlot, and packer. We add two more

components, distributor and retailer, to complete the chain. The diagram is shown in Figure

5.1. The cattle stay at different farm types (Ranch, Stocker, and Feedlot) based on their ages

and weights. After starting its life in a ranch, a steer or heifer moves into a Stocker when

it is 6 to 9 months old and weighs about 400 to 700 pounds. Cattle may move into Feeders

for further weight gain. Feeder cattle are aged between 12 to 24 months and weigh about

800 to 1,000 pounds. The time that cattle spend in a feeder is often called the finishing

phase. The animals are slaughtered at the Packers, where meats are prepared and packed

for distribution. We also add a Distributor stage before a Retailer, as this can be the case

in many beef cattle operations. The consumer of the products lies at the end of the supply

chain.

5.2.2 Prior work and motivation

There have been multiple blockchain-based applications for supply chains. Approximately 1.1

billion USD have been invested in blockchain technology178. IBM and the Danish shipping

company Maersk created a platform named TradeLens and experimented with blockchain

to track shipping containers around the world179. As an application in the fishing indus-

try, Provenance launched a project in Indonesia to track tuna using blockchain180. Lu et

al. explored the adaptability of blockchains for product traceability in supply chains and

discussed the technology’s strengths and limitations181. Dudder et al. described a model to

track timber by using a tamper-proof system based on blockchains182. Saberi et al. discusses

93

Figure 5.1: A block diagram of the US beef supply chain. The first three (ranch, stocker,
and feedlot) segments deal with live animal production. The packer is the manufacturing
plant. Once the beef is processed, it reaches the consumers via distributors and retailers.

different barriers of blockchain technology adoption and identifies the lack of collaboration as

one of the inter-organization barriers183. A work of Casado-Vara discusses how blockchains

can improve traditional linear supply chains into circular economies184. Another work de-

veloped a provenance knowledge framework and addressed how it can enhance assurances of

product quality in the supply chain185. Leng et al. propose a dual-chain architecture for use

in agricultural supply chains186. For traditional supply chains, adoption of this technology

would enable traceability and provenance187–190, prevent counterfeits and defects191, reduce

regulatory costs and complexities192, and even take advantage of smart transportation sys-

tems193. After a recent E. coli outbreak in Romaine lettuce, the difficulty in tracing back to

the source of infection prompted Walmart Inc. to work with IBM to use blockchains storing

data of all leafy green vegetables194. The technology was also applied in cattle industries.

One such example is the Beefchain system in Wyoming that promises the ranch owners with

opportunities to acquire the differentiating profits based on the quality of beef (e.g., premium

grass-fed)195.

Different applications have gained various advantages from this technology. Wang et al.43

proposed a decentralized system where smart contracts enable fine-grained access control.

Blockchains also made possible an anonymous reputation system for vehicular ad hoc net-

94

works (VANET)196. It has been suggested to keep raw data off-chain to deal with scalability

issues181. The security and immutability of blockchain have found popularity in electronic

health record (EHR) systems. Recent work uses an interplanetary file system (IPFS) to store

data off-chain44. In supply chains, the benefits can be numerous, including proof of product

delivery with automatic incentives197, provenance tracking198, and traceability199. While dif-

ferent applications focus on various benefits of the blockchain, none of them properly fits the

US animal farming industry requirements. We need a system that can be quickly adapted to

existing infrastructure while maintaining user anonymity, animal/product traceability, and

farm data ownership at the same time.

5.2.3 Smart contracts and blockchain

Blockchains use a linked-list type of structure where a block is linked to its previous block

via cryptographic hashes. The hashes are computed from the contents of the blocks. Hence,

any modification in the contents of the earlier blocks would require all the subsequent blocks

to be updated. This makes it difficult for a perpetrator to change any past data. A block is

confirmed in the chain via a process called consensus, where the participants in the chain (also

called miners) agree on the data contained by the block. There are several configurations

for blockchains. Bitcoin is a permissionless and public network where anyone can join and

participate. There are frameworks such as Hyperledger or Ethereum that can be deployed

in permissioned networks. These can be run in corporate or private setups where only the

permitted users can join and participate. There are multiple consensus protocols, the most

popular being Proof of Work (PoW). The miner needs to successfully solve a cryptographic

problem to mine a block in PoW. This prevents parties with malicious intents who want to

corrupt the data, as they will run out of computational resources while going against honest

miners in a practical world. However, PoW is computationally expensive and wasteful. In

permissioned systems, several other consensus protocols can be used, such as Proof of Stake

(PoS), Proof of Authority (PoA), etc. These protocols use significantly less computational

resources compared to PoW. In PoA based systems, blocks are signed by pre-approved

95

accounts called validators. A block in the chain contains a list of transactions that are

analogous to bank checks in the context of cryptocurrencies. Many blockchain frameworks

now support smart contracts, which are pieces of executable code that run when a block is

confirmed and modify the state of the system. Smart contracts can contain codes that can

enforce business policies, privacy practices, and access control. They can also store data.

The blockchain framework ensures that everyone has the same version of code and data,

which creates trust.

5.3 The proposed system

We have designed a system that ensures data immutability while preserving data ownership.

The system also supports animal traceability, user anonymity, and data aggregation. Our

proposed system model is shown in Figure 5.2. More details about the system can be found in

Appendices B and C. Our framework is designed on the Ethereum platform. The framework

supports smart contract storage and execution, which is a key to our work. The active

nodes in the network communicate as peer-to-peer (P2P), and there is no centralized server

like in the client-server model. External applications can connect to their respective nearest

P2P nodes to retrieve information, manage system operations, or generate transactions.

All transactions are stored in each of the active nodes of the network. In addition to the

transactions, smart contracts are also stored redundantly in each active node. Cryptographic

hashes are computed for both transactions and smart contracts. The hashes are stored inside

the chain data structure in multiple blocks with timestamps. The blocks are linked in a list

structure using cryptographic hashes of their contents. Hence, a modification in the data

or the code would require the system to recompute the hashes. As the blockchain data

structure is redundantly stored in all the participating nodes, all nodes must agree on the

modification (e.g., come to a consensus). We define five major smart contracts for managing

the farm animal tracking system: 1) Profile Manager, 2) Farm Manager, 3) Transaction

Manager, 4) Trace Manager, and 5) Data Aggregator as shown in Figure 5.2. The dots

in the P2P Network are Ethereum nodes (clients) (Either geth200, or parity201 with Proof

96

of Authority (PoA) configuration) where each of them contains Ethereum transaction data,

smart contract bytecodes, and the blockchain itself. The business owners can run such nodes

in their local systems. Alongside the Ethereum clients, a business owner would also run a

local database service for storing their raw farm data. The raw data contain animal data

that include inspections, vaccinations, movements, and other relevant information. Each

time a local database is updated, a cryptographic hash is computed by combining all the

raw data of that farm, and it is stored in the blockchain (via the Farm Manager contract).

This hash links the blockchain with the local database. Additional information on the local

database operation is available in Appendix C. Privacy and a sense of ownership are the two

key reasons we chose to keep the raw databases local to respective business owners. The

system is more resistant to eavesdropping, and a business owner is in control of how his/her

data are used or shared. However, to enforce data immutability and create mutual trust, we

use the blockchain to enforce that any alteration in the local data must be reported with an

updated hash. Hence, any prospective purchaser or authorized auditing entity can validate

whether, how, and when data have been modified from the original state.

5.3.1 Algorithmic procedures

The proposed blockchain-based animal farm management framework will be able to perform

a variety of tasks. We demonstrate some of the basic tasks in this section.

User profile and farm management

Several smart contracts in the system enforce user and farm policies to keep data secure and

identities anonymous. The Ethereum account that deploys a smart contract is automatically

assigned as the administrator (admin) for that contract. The admin has specific access

permissions to perform tasks related to management. Despite that, the admin and all outside

accounts are prevented from accessing and modifying user and farm data. All users of the

system (owners, managers, viewers/auditors) must be registered by an admin using the

ProfileManager contract. All the farms owned by the users must also be registered by the

97

Figure 5.2: A simplified block diagram of the blockchain based farm animal management
system. The blockchain network is shown in the bottom where the solid circles represent
blockchain nodes (clients). Each blockchain client locally stores smart contracts, associated
data, and the respective farm animal databases.

98

admin using the FarmManager before they can participate in the system.

Someone willing to join the network first contacts the network admin. The prospective

user provides the admin with a request containing the access level desired (viewer(1),

manager(2)). This is off-chain communication and is completed using traditional methods

(emails, messages, letters). Once a request is received and approved, the admin generates

a user id which is a 160-bit Ethereum address. The admin registers the user by calling

the registerUser() method. During this function call, the user ID and the access level

are sent as arguments. The ProfileManager contract validates whether the function call

is coming from an admin, and it checks if the requested user already exists in the system.

Upon validation, the Profile Manager registers the user. The admin notifies the user with the

confirmation and the user’s Ethereum address. This address is not shared with anyone else

to keep the user identity secret. Once registered, the user can access other contracts of the

system. The admin can change the user access level by calling the updateUser() method.

If a user needs to be deactivated/restricted/terminated, the admin can set the access level

to 0.

A farm owner who is willing to register his/her farm requests the network admin in an off-

chain communication. This request contains the owner’s Ethereum address that is already

registered in the system. The admin generates a farm id which is also a 160-bit Ethereum

address. The admin calls the registerFarm() method of FarmManager contract to register

the farm in the system. The FarmManager contract validates whether the function call is

coming from an admin. It also checks if the farm id already exists in the system or not.

Once registered, the FarmManager contract contains both the farm id and the owner id in

a mapped data structure. After the registration is completed, the farm owner can regularly

update farm information by calling the updateFarmInfo() method of the FarmManager

contract. During such calls, the animal count and the farm hash are updated by the farm

owner.

99

Figure 5.3: Detailed block diagram illustrating communication steps among the system
components during a business transaction.

100

Process of business transactions

A typical example of a financial transaction is shown in Figure 5.3. We create a typi-

cal scenario where two parties (farm owners) A and B exchange some animals. Creat-

ing the transaction is a two-step process where both owners need to communicate with

the TransactionManager contract (Steps 1 and 2). In the first step, one farm owner

proposes a transaction by calling the createTransaction() method. This process cre-

ates a Transaction object in the contract with several properties, including the addresses

of both owners, farm addresses, and the full list of animals being transferred. Animals

tags are stored in the list. In the second step, the other owner confirms the transac-

tion using the updateTransaction() method. When a farm owner communicates with

the TransactionManager contract, the contract validates permissions and ownership of the

farms between which the transaction would take place. These are marked as sub-steps 1.1,

1.2, 2.1, and 2.2 in Figure 5.3. Upon confirmation, the TransactionManager stores anony-

mous movement data in the TraceManager contract (step 2.3). After the confirmation,

the seller/exporter of animals (Owner A in Figure 5.3) retrieves data of the animals in the

transaction from its local database (step 3a) and transmit directly to the buyer/importer

(step 3b). The buyer/importer stores that data in his/her local database (step 3c). The

seller/exporter registers the sold animals to the new farm (step 3d). The seller also removes

the sold animal data from its current database and archives them if necessary. As both the

party had their databases modified, they will update the FarmManager contract with freshly

computed farm hashes (steps 4a and 4b). The FarmManager validates their permissions and

updates the hash values.

Animal tracing process

Our framework provides the ability to trace animals using a TraceManager contract. Trace

data are stored in the contract during a business transaction (See Figure 5.3, Step 2.3). There

can be several reasons why someone would want to trace an animal back to the origins. One

such scenario could be when a farm wants to use its reputation to gain prospective customers

101

by giving them ways to securely verify whether their animal/food product came from that

farm or not. Another scenario could be tracing the source of infection during an outbreak

to mitigate the problem rapidly. The TraceManager contract stores animal movement data

in a nested key-value map structure. Each animal is identified by its id (tag), which is used

as the key. A custom-defined data structure Animal is considered to be the value. This

structure contains another map listing all the movements, each of which is an instance of

the structure Movement. We use simple indices as keys to the movement map and keep

track of the total number of movements (hence, movement entries). The admin can call

the method getMovementCount() and provide the animal id to know the total number of

movement entries. The admin can then call the getMovementdata() method with animal

id and movement index as arguments to get the actual movement entry. A movement entry

contains the source farm address, the destination farm address, and the time when the

movement was recorded in the blockchain.

Data aggregation procedure

Sometimes the scientific community or the industry can benefit from summary data on animal

production. Examples of such data can be the average weekly growth of certain breeds, the

effect of a vaccine, or growth improvements of animals under certain diets. In situations

like these, it is needed to provide such information without jeopardizing the privacy of the

business. Hence, we implement a DataAggregator contract to help with anonymous data

collection. To handle the data collection, the admin first creates a Dataset object in the

DataAggregator contract by calling the createDataset() method. The method requires

a key and a secret as arguments. If the method succeeds, the key would be used to locate

the Dataset object, and the secret would be used to authenticate the accounts performing

read/write operations on the dataset. The admin is responsible for generating, maintaining,

and distributing this key-secret pair. Using off-chain communications, the admin can request

the farm owners to provide certain summary data. These requests contain a description of the

data requested and key-secret pair for the dataset. Upon receiving such a request, the farm

102

owners may or may not participate in the survey. A survey participant calls the addData()

method to submit data, and this method requires the actual data, the key, and the secret

as its arguments. Once the submission period ends, the admin may obtain the stored data

using the getData() method, which also requires the key and the secret. Only the farms

participating in the data sharing will be able to access the aggregated information.

5.4 System analysis

In this section we evaluate our system and explain how it handles anonymity of users, data

security.

5.4.1 User privacy

The private Ethereum blockchain users can operate in the system without providing infor-

mation that can identify them or their location. Each user is provisioned by the system

administrator when an externally owned account (EOA) in Ethereum is generated. These

accounts have several components, including private keys and Ethereum addresses. Private

keys are always securely stored by users and never revealed outside. The public keys are

derived from private keys. The addresses are derived from public keys using the Keccak-

256 hash function, where the last 20 bytes (LSB) of the hash are kept. The one-way hash

function prevents association back to the public key. Hence, even after knowing someone’s

address, one cannot derive the identity of that person.

Due to the system configuration as a private blockchain network, outsiders cannot enter

the system without proper authorization from the administrator. If someone already in the

system wants to impersonate another user, it would be automatically prevented if private

keys are not accessible by anyone other than the legitimate owner.

103

5.4.2 Data security

Each farm business may choose to store animal-related data locally on its premises. A

locally running relational database (SQL) management system would contain tables of data

as shown in Figure C.1. Each time the tables are updated, a cryptographic hash is generated

for each table using a hash function. Eventually, all the table level hashes are combined to

create a single hash which is stored in the FarmManager contract by the user. This technique

ensures that a single owner cannot alter data without updating the hash in the Ethereum

blockchain. If one needs to verify the integrity of data, he/she can do so by recalculating

the hashes from the data. To enable faster verification of data, the FarmManager contract

also stores hashes related to individual animal data in its state variables. When animals are

transferred during a transaction, animal data are sent to the new owner (steps 3a, 3b, and

3c in Figure 5.3). The new owner can check the animal hashes stored in the FarmManager

contract and verify if they match the data by recomputing hashes from the received data.

5.4.3 Provenance

The TraceManager contract stores trace data for every animal moved from one farm to

another. In addition to that, every farm owner keeps records of animals’ past movement

histories with cryptographic hashes as proofs in the blockchain system. While the crypto-

graphic hashes ensure the integrity of the data, the movement records in the TraceManager

contract provide faster tracing without requesting data from independent local databases. If

someone wants to fabricate the origin of an animal or animal product, he/she will face two

major obstacles: i) the hashes stored for the animal movement data won’t match and ii) the

trace data captured by the TraceManager would not match. As a hypothetical situation,

let’s assume the person with the intent of corrupting animal trace data forms a coalition

with all the owners involved in the animal transfer process. As the owners control their

respective local databases, they could theoretically store and exchange fabricated movement

data and make it look real. However, the TraceManager prevents such fabrication by making

the tracing process automatic. It directly captures data from the TransactionManager. For

104

that reason, the entities (owners and farms) involved in a transaction cannot fabricate their

addresses as they can only authenticate with their IDs.

5.4.4 Secured data aggregation

While surveys and collections of data are primarily beneficial, owners may still be discour-

aged from a business perspective if they fear a loss of privacy. Our system contains a smart

contract to facilitate anonymous data collection. It uses a simple key-secret pair to authenti-

cate a submitter during data collection and does not use any other identification mechanism

that others can exploit. Let’s assume a hypothetical scenario where the admin itself is cor-

rupted in its ability to protect user privacy. Although the admin has a basic idea of who a

user is due to user profile and farm ID management, it does not have access to the user’s or

farm’s data. If the admin conducted the surveys in a direct manner to collect user data, it

could identify who sent the data. However, the DataAggregator prevents this issue by not

keeping records of survey participants. The admin, who has access to aggregated data, can

only know how many entries were submitted and what was submitted.

5.4.5 Fairness of the system

The system provides comparable levels of accessibility, security, and privacy to its users.

The consensus mechanism does not differentiate among the participants. The lack of central

authority eliminates bias and gives power back to the individual entities. The local data

ownership mechanisms indicated in Figure 5.2 provide users with more control over their

private business data. The origin tracking (provenance) makes the system fair for the con-

sumers who lie at the end of the chain. Consumers can verify the authenticity of claims

about beef products produced by business entities.

5.4.6 Reliability

Traditional server-centric systems have a vulnerability commonly referred to as a single point

of failure. The redundancy introduced by the proposed framework, which takes advantage of

105

the Ethereum blockchain, can mitigate this issue. We categorize failures into two types: link

failure and node failure. A link failure is defined as the situation when a link connecting two

blockchain nodes is unable to sustain communication. On the other hand, a node failure is

defined as the scenario when a node cannot communicate with the network via any of its links

or any data stored on the node is lost. As we are dealing with a peer-to-peer (P2P) network,

link failures do not affect operations unless enough links fail to disconnect or isolate a node.

A fully connected network with n nodes has n(n − 1)/2 links (maximum number of edges

in an undirected graph). To keep the network fully operational, we need at least n− 1 links

(minimum number edges needed to maintain connectivity in an undirected graph). Hence,

up to (n − 1)(n − 2)/2 links can fail, and the system can still operate. Note, this number

depends on which links are failing. In worse cases, when all links connecting to a node fail,

that node becomes isolated. A user may still connect to the network via any alternate node

as the credentials are valid across the system. Once the failed links recover, the node can

come out of isolation and re-sync all data. A node failure has the same effect as the complete

link failure described above. If data is lost or damaged due to a node failure, the node can

re-sync once a connection is re-established. Data loss is tolerable up to n− 1 nodes as every

node contains all the blockchain-related data and smart contract bytecodes.

5.4.7 Computational costs

In Ethereum, the gas cost is a measure of how much computational resource or storage is

needed to complete a transaction or a smart contract operation. Any operation that changes

the Ethereum virtual machine (EVM) state creates a transaction and every such transaction

has an associated gas cost. Although gas costs imply spending real money in Ether when the

main Ethereum network is used, it is not the same in our case. In private chains, Ether has

no value. Nevertheless, it is an available measure of system resource usage. We demonstrate

the gas costs of contract creation in Figure 5.4 and the costs of calling some commonly used

methods in Figure 5.5. In these figures, a higher gas cost indicates that more processor

cycles, dynamic memory, or persistent storage are required to complete an operation. It is

106

Profile
Manager

Farm
Manager

Transactio
nManager

DataAggregator

TraceManager

Smart contract deployment

0

0.5

1

1.5

2
G

a
s
 c

o
s
ts

10
6

Figure 5.4: A comparative chart showing contract creation (deployment) costs for the five
proposed smart contracts. Gas cost is a measure of computational resources (processing power
and storage) needed for the operation.

important to note that read-only methods (that do not change any data in the memory or

the state of the chain) do not create transactions at all. As every node has a snapshot of the

system, such methods simply read data from the local running node.

The FarmManager and the TransactionManager contracts implement a large number of

functionalities (See Figures B.2 and B.3), hence, it is no wonder that, they cost a lot more

gas (about three times more) compared to others. The contract deployments are one-time

operations that are done at the beginning of the system setup. The operations depicted in

Figure 5.5 can occur at any arbitrary time once the system is running. These methods change

the system’s state by adding or modifying data in both memory and persistent storage.

The methods related to business transactions and movement data consume more resources,

107

A B C D E F G H I J K L

Smart contract method call

0

0.5

1

1.5

2

2.5

G
a
s
 c

o
s
ts

10
5

A: registerUser()

B: registerFarm()

C: updateFarmInfo()

D: registerAnimal()

E: updateAnimal()

F: setManager()

G: createTransaction()

H: updateTransaction(orderStatus=0,1)

I: updateTransaction(orderStatus=2)

J: createDataset()

K: addData()

L: addMovementData()

Figure 5.5: A comparative chart showing costs of calling different smart contract methods
(functions) that change the state of the system. Read only (view) methods are not included
here. Gas cost is a measure of computational resources (processing power and storage) needed
for the operation.

108

mostly due to their space complexity. They create new objects and add new information. The

updateTransaction() method has two distinct scenarios. When a transaction is confirmed

(orderStatus = 2), it stores the movement data (internally calls the addMovementData()

method). Hence, it requires significantly more gas compared to the other scenarios such as

an order being proposed (orderStatus = 1).

5.4.8 Integration test

We test several operational scenarios with a prototype running system. The configuration

of the prototype where these scenarios are simulated and tested is described in Appendix D.

Every scenario consists of doing some tasks to simulate a situation. These test scenarios along

with the outcomes are described in Tables 5.1, 5.2, and 5.3. Every case is classified as either

positive (P) or negative (N). The positive cases are those where all the communications done

with the system are expected and valid by design. The negative cases are those where one

or more operations done with the system are defined as illegal or a failure in authentication

or validation. Each entry in the ‘Test Case’ column of the three tables (5.1, 5.2, and 5.3)

contains test case number # and classification (P or N), followed by the test case name. For

example, [1P] stands for test case 1, which is positive. The system is designed to provide a

secure environment and ensure any breach of data or operational access. The logs and results

generated for few of the test cases are shown in Figures 5.6, 5.7, and 5.8. The complete

set of results can be found in the supplementary materials document. The table validates

how our proposed system is temper-proof and provides data security and traceability while

maintaining user anonymity.

5.5 Discussion

This chapter proposed a blockchain-based supply chain management framework to be used

in the US beef cattle industry. We explained in detail how this system would operate and

communicate with various entities involved. Finally, we analyzed how the framework will

109

Test Case Prerequisites Tasks Results
[1P] Authorized
farm owner at-
tempts to update
farm info

i) Admin registers the
farm owner (node 2)
with access level 2. ii)
Admin registers the
farm (farm A) and
appoints ownership
(farm A - node 2) to
the appropriate owner.

The farm owner
(node 2) calls
updateFarmInfo() to
update farm (farm A)
information.

Status code 202. The
FarmManager contract
updates the informa-
tion when the next
block is mined.

[2N] Unreg-
istered user
attempts to
update farm info

The user (node 4) is
never registered to the
system.

Unregistered user
(node 4) calls
updateFarmInfo() to
update farm (farm A)
information.

Status code 403. The
FarmManager contract
rejects the request as
the validation fails.

[3N] Registered
user attempts to
update info of a
farm that is not
owned

i) The user (node 3) is
registered with access
level 2. ii) The farm
(farm A) is never as-
signed as owned by the
user (node 3).

The user (node 3) calls
updateFarmInfo() to
update farm info for
the farm (farm A) that
is not owned by it.

Status code 403. The
FarmManager contract
rejects the request as
the validation fails.

[4P] Authorized
farm owner at-
tempts to create
a business trans-
action with an-
other authorized
owner

i) Admin registers the
users (node 2 and node
3) with access level
2. ii) Admin registers
the farms (farm A and
farm B) and appoints
ownership (node 2 -
farm A and node 3 -
farm B) to the respec-
tive users.

One farm owner
(node 2) calls
createTransaction()

to create a business
transaction of several
animals to be trans-
ferred from one farm
(farm A) to another
farm (farm B).

Status code 202. The
TransactionManager

contract accepts the
proposal upon valida-
tion and registers a
transaction when the
next block is mined.

[5N] Unreg-
istered user
attempts to
create a business
transaction

The user (node 4) is
never registered to the
system.

Unregistered user
(node 4) calls
createTransaction()

to create a business
transaction.

Status code 403. The
TransactionManager

contract rejects the re-
quest as the validation
fails.

Table 5.1: Integration test procedures and results (cases 1 - 5)

110

Test Case Prerequisites Tasks Results
[6P] Admin
attempts to
retrieve trace
data

At least one transac-
tion must be created
and confirmed. Note:
Here the transac-
tion 1581115549157
moved the animals
[1515334092888,
1515334092898]
from farm A
(0x4FB4...FA26)
to farm B
(0x4491...830C).

i) The admin calls the
getMovementCount()

method to know the
number of movements
recorded for an animal
(1515334092898). ii)
The admin calls the
getMovementData()

method to get each
row of the movement
entries for an animal
(1515334092898)

The TraceManager

contract responds to
the method calls and
returns the results.

[7N] Unau-
thorized user
attempts to
retrieve trace
data

At least a single trans-
action must be created
and confirmed. Note:
Here the transac-
tion 1581115549157
moved the animals
[1515334092888,
1515334092898]
from farm A
(0x4FB4...FA26)
to farm B
(0x4491...830C).

i) Any user who
is not an admin
(node 4) calls the
getMovementCount()

method to know the
number of movements
recorded for an ani-
mal (1515334092888).
ii) Any user who
is not an admin
(node 4) calls the
getMovementData()

method to get each
row of the movement
entries for an animal
(1515334092888),

The TraceManager

contract responds
with null value (0) as
the validations fail.

[8P] Invited user
attempts to sub-
mit survey data

i) Admin registers a
data set with a key and
a secret. (We use key:
1001, secret: 2020) ii)
The key and the se-
cret are mailed to ev-
ery survey participant.

An user who is a
participant (node 4)
calls the addData()

method to submit
some data to the data
set.

Status code 202.
The DataAggregator

contract accepts the
submission upon val-
idation and stores it
when the next block is
mined.

Table 5.2: Integration test procedures and results (cases 6 - 8)

111

Test Case Prerequisites Tasks Results
[9N] Unau-
thorized user
attempts to
submit survey
data

i) Admin registers a
data set with a key and
a secret. (We use key:
1001, secret: 2020) ii)
The test user gets the
incorrect key and se-
cret (1003, 2019).

An uninvited user
(node 3) calls
addData() method
with wrong key-secret
pair to submit some
data to the data set.

Status code 403. The
DataAggregator con-
tract rejects the sub-
mission upon valida-
tion.

[10P] Admin
attempts to re-
trieve summary
data

A data set must be
registered and at least
a single participant
must submit some
data. Note: Here the
data set with key:
1001 and secret: 2020
is used. A user (node
4) submitted some
data (0x44) in the
survey.

i) The admin calls
the getDataCount()

method to know the
number of data entries
recorded in the survey.
ii) The admin calls the
getData() method to
get each row of data
collected in the survey.

The DataAggregator

contract responds to
the method calls and
returns the results.

Table 5.3: Integration test procedures and results (cases 9,10)

Figure 5.6: The logs generated as a response by the FarmManager (with address
0x768B...3429) contract when an authorized farm owner attempts to update farm info.
This result is generated from test case 1 of Table 5.1.

112

Figure 5.7: The logs generated as a response by the TransactionManager (with address
0x51B6...3C94) contract when an unregistered user attempts to create a business transac-
tion. This result is generated from test case 5 of Table 5.1.

Figure 5.8: The returned outputs when the authorized admin attempts to read trace data
by calling the methods provided by the TraceManager contract. Here, the results indicate
an animal with id 1515334092898 was moved from farm A (0x4FB4...FA26) to farm B
(0x4491...830C). This result is generated from test case 6 of Table 5.2.

113

ensure user anonymity, improve data privacy, and ensure trace data integrity. We performed

integration tests to evaluate the system operation in various scenarios.

The proposed framework operates as a private / consortium blockchain and uses proof

of authority (PoA) for achieving consensus, eliminating the computationally expensive hash

computations. This enables us to run complex smart contract functions and store more

data on smart contracts to facilitate traceability and improve data security. The database

can be hosted on any SQL database management system by appropriately configuring the

specified schema. The smart contracts can be run on any Ethereum based clients (geth,

parity, etc.). The system requires an admin who will initiate everything and register the

users and their farm businesses. This could be a potential weak point as the admin will

know the mappings of the user and the farm addresses. Hence, despite being a trustless,

decentralized architecture dealing with supply chains, the framework requires some trust.

However, smart contracts are carefully designed to isolate private data from admins and any

unintended users. The owners do have control over who can see their data. Different designs

in the architecture may affect privacy, security, and resource requirements. This design is

optimized for the US beef cattle industry, focusing on privacy, data ownership, and security.

The system runs optimally with traditional computational resources and does not require

any special hardware. The technical knowledge on blockchains is also commonplace, given

that it is being used in varying types of industries, including cryptocurrencies. However,

blockchains do have scalability issues when it comes to storage. With time, the requirements

for persistent storage would increase. Ethereum supports light client nodes to help with such

an issue. In the future, it may also be possible for the blockchain systems to discard data

old enough to become irrelevant. Blockchains also face adaptability issues as an emerging

technology and require their users to go through a learning curve.

Our proposed system provides a technical solution to several specific issues encountered

by the US farm industry. It improves the existing knowledge of how blockchains can meet

specific industrial needs such as identity protection and data ownership while ensuring im-

mutability and product traceability. The framework can be used in other supply chains with

minor modifications. Future work can focus on improving the scalability of blockchains in

114

general. While different industries have varying requirements, most can benefit from scalable,

secured, and efficient blockchain frameworks.

115

Chapter 6

Conclusion

6.1 Summary

This dissertation aimed to solve research problems associated with infectious disease model-

ing, prediction of outbreaks, and data related to infectious diseases. It presented a network-

based host-vector spreading model, network generation algorithms, data-driven feature en-

hancement techniques for machine learning, and a blockchain-based farm animal data man-

agement system. It also presented a substantial amount of analyses on model parameters,

infectious outbreak-related data, and results produced by the tools and techniques presented.

First, the modeling problem associated with Zika virus infection was solved in Chapter 2

using an interconnected model that supports both modes of transmission (insect-vectored and

sexual) by coupling a heterogeneously mixed host population with a homogeneously mixed

vector population. I investigated effects of seasonal variations of the mosquito population,

sexual transmission, and several model parameters on Zika virus outbreak dynamics using

this model. Additionally, a sensitivity analysis compared contributions of key model param-

eters to outbreak size, outbreak duration, and vector-free pathogen survival in the network.

Another vector-borne disease, dengue fever, was modeled using a machine learning approach

in Chapter 3. A framework was presented for feature ranking and selection using nearby

incidence data, which remedied the problem of incidence data inadequacy. This framework

116

achieved improvements in prediction performance for most of the Brazilian municipalities I

tested.

The next set of problems stemmed from a culture of secrecy in U.S. farm animal busi-

nesses. One problem was the lack of data to construct farm animal movement networks. In

my first approach, this was resolved with a network generation algorithm in Chapter 4. The

algorithm can use limited available data from agricultural census and small-scale surveys to

generate and extrapolate movement networks that follow given node degree distributions. A

generated network was used to simulate spread of the African swine fever virus (ASFV) and

analyze effectiveness of two targeted control measures: movement restrictions and hypothet-

ical vaccinations. Control measures were targeted to nodes ranked using network centrality

metrics. In comparing control measures’ effectiveness, I found that farm nodes with many

incoming movements (high node in-degree) should be vaccinated or isolated first for effective

disease control. To address the data secrecy issue with farm businesses, I took a different

approach in Chapter 5 by presenting a blockchain-based decentralized database management

framework. This framework provides data security, user anonymity, and animal traceabil-

ity using a private network that allows business owners to share data without losing data

ownership. Additionally, smart contracts implement business policies, which can be adapted

based on application-specific requirements.

Overall, the contributions have provided several solutions for problems critical in infec-

tious disease modeling, analysis, and control.

6.2 Future works

Trade-offs arise between model accuracy and computational efficiency. Networks used in

Chapters 2 and 4 are static, where node interactions are averages over a time period. In

reality, host contacts change with time. An infected host can only infect its present and

future contacts depending on the duration of the infection. Thus, dynamic networks where

contacts change with time can add another degree of accuracy in exchange for computa-

tional efficiency. Improving efficiency of dynamic networks so that epidemic simulations can

117

be performed on many nodes remains an open problem. On the other hand, data-driven

dengue prediction models in Chapter 3 do not discriminate among viral strains. It can be

difficult to obtain detailed surveillance data with viral strain information. If such data are

available, predictive models should consider including that information in the set of features

(predictors). Machine learning methods can always benefit from feature selection tailored by

our knowledge of specific infectious diseases instead of using naive assumptions about data.

The feature selection method proposed in Chapter 3 is an example of one such tailoring.

As we understand a complex process more and more, the knowledge can be incorporated

into the model design, feature engineering, and feature selection. This is a shift from purely

black-box modeling, which has benefits similar to mechanistic approaches. When there are

many features, redundancies can be remedied by removing highly correlated incidence data

from selected feature sets.

The farm animal data management framework proposed in Chapter 5 can be expanded in

several ways. Additional incentives for different parties can be added to attract participation

and promote ethical practices from a business perspective. The framework assumes that

initial data entered into the system by business owners are correct. A verification step could

be added in the real world. A rating system can also be implemented to reward honesty

and punish unethical practices. Trade-offs occur between traceability and privacy from

a design perspective, depending on when trace data are collected. The system presented

records trace data when animal movement takes place. This approach may interfere with

data secrecy requirements set by some businesses. Another strategy is to request trace data

from business owners when an emergency (e.g., infectious outbreak) occurs. This approach

will give owners more control over their data. However, the process can be slow or even

obstructive, depending on individual responses to data requests. The unique properties of

blockchains open numerous possibilities for future developments in managing data related

to infectious diseases.

118

Bibliography

[1] Tanvir Ferdousi, Lee W Cohnstaedt, D Scott McVey, and Caterina M Scoglio. Under-

standing the survival of Zika virus in a vector interconnected sexual contact network.

Scientific Reports, 9(1):7253, 2019.

[2] Tanvir Ferdousi, Sifat Afroj Moon, Adrian Self, and Caterina Scoglio. Generation

of swine movement network and analysis of efficient mitigation strategies for African

swine fever virus. PLOS ONE, 14(12):e0225785, 2019.

[3] Tanvir Ferdousi, Don Gruenbacher, and Caterina M Scoglio. A Permissioned Dis-

tributed Ledger for the US Beef Cattle Supply Chain. IEEE Access, 8:154833–154847,

2020.

[4] Matt J Keeling and Ken TD Eames. Networks and epidemic models. Journal of the

Royal Society Interface, 2(4):295–307, 2005.

[5] Mark Newman. Networks. Oxford University Press, 2018.

[6] Ken TD Eames and Matt J Keeling. Contact tracing and disease control. Proceedings

of the Royal Society of London. Series B: Biological Sciences, 270(1533):2565–2571,

2003.

[7] Sifat A Moon and Caterina M Scoglio. Contact tracing evaluation for COVID-19 trans-

mission in the different movement levels of a rural college town in the usa. Scientific

Reports, 11(1):1–12, 2021.

[8] Narges Montazeri Shahtori, Tanvir Ferdousi, Caterina Scoglio, and Faryad Darabi

Sahneh. Quantifying the impact of early-stage contact tracing on controlling ebola

diffusion. Mathematical Biosciences & Engineering, 15(5):1165, 2018.

119

[9] Stephen P Borgatti and Martin G Everett. A graph-theoretic perspective on centrality.

Social networks, 28(4):466–484, 2006.

[10] Fredrik Liljeros, Christofer R Edling, Luis A Nunes Amaral, H Eugene Stanley, and

Yvonne Åberg. The web of human sexual contacts. Nature, 411(6840):907–908, 2001.

[11] Luıs A Nunes Amaral, Antonio Scala, Marc Barthelemy, and H Eugene Stanley. Classes

of small-world networks. Proceedings of the National Academy of Sciences, 97(21):

11149–11152, 2000.

[12] Albert-László Barabási and Eric Bonabeau. Scale-free networks. Scientific American,

288(5):60–69, 2003.

[13] Stephane Helleringer and Hans-Peter Kohler. Sexual network structure and the spread

of HIV in Africa: evidence from Likoma Island, Malawi. Aids, 21(17):2323–2332, 2007.

[14] P Erdös and A Rényi. On random graphs I. Publ. Math. Debrecen, 6:290–297, 1959.

[15] Albert-László Barabási and Réka Albert. Emergence of Scaling in Random Networks.

Science, 286(5439):509–512, 1999.

[16] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks.

Nature, 393(6684):440–442, 1998.

[17] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The

Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[18] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and

prospects. Science, 349(6245):255–260, 2015.

[19] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang

Tang, and Huan Liu. Feature selection: A data perspective. ACM Computing Surveys

(CSUR), 50(6):1–45, 2017.

120

[20] Stuart Russell and Peter Norvig. Artificial intelligence: A Modern Approach. Pearson,

2002.

[21] Douglas M Hawkins. The problem of overfitting. Journal of Chemical Information and

Computer Sciences, 44(1):1–12, 2004.

[22] Christopher Olah. Understanding LSTM networks, 2015, 2015. URL http://colah.

github.io/posts/2015-08-Understanding-LSTMs.

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Compu-

tation, 9(8):1735–1780, 1997.

[24] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to Forget: Continual

Prediction with LSTM. Neural Computation, 12(10):2451–2471, 2000.

[25] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1–9, 2015.

[27] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with

deep recurrent neural networks. In 2013 IEEE international conference on acoustics,

speech and signal processing, pages 6645–6649. IEEE, 2013.

[28] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to Recommender

Systems Handbook. In Recommender Systems Handbook, pages 1–35. Springer, 2011.

[29] Jerome T Connor, R Douglas Martin, and Les E Atlas. Recurrent neural networks and

robust time series prediction. IEEE transactions on neural networks, 5(2):240–254,

1994.

121

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs

[30] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. In International conference on machine learning, pages

1310–1318. PMLR, 2013.

[31] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-

tions using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. arXiv preprint arXiv:1409.3215, 2014.

[33] Gopala K Anumanchipalli, Josh Chartier, and Edward F Chang. Speech synthesis

from neural decoding of spoken sentences. Nature, 568(7753):493–498, 2019.

[34] Alex Graves, Santiago Fernández, Marcus Liwicki, Horst Bunke, and Jürgen Schmid-

huber. Unconstrained online handwriting recognition with recurrent neural networks.

In Advances in Neural Information Processing Systems 20, NIPS 2008, 2008.

[35] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural

networks for time series forecasting: Current status and future directions. International

Journal of Forecasting, 37(1):388–427, 2021.

[36] Dave Bayer, Stuart Haber, and W Scott Stornetta. Improving the efficiency and

reliability of digital time-stamping. In Sequences II, pages 329–334. Springer, 1993.

[37] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.

[38] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang. An

overview of blockchain technology: Architecture, consensus, and future trends. In 2017

IEEE international congress on big data (BigData congress), pages 557–564. IEEE,

2017.

122

[39] Ralph C Merkle. A digital signature based on a conventional encryption function. In

Conference on the theory and application of cryptographic techniques, pages 369–378.

Springer, 1987.

[40] Bitcoin Wiki. Block hashing algorithm, 2021. URL https://en.bitcoin.it/wiki/

Block_hashing_algorithm.

[41] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 151:1–32, 2014.

[42] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-

tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov

Manevich, et al. Hyperledger fabric: a distributed operating system for permissioned

blockchains. In Proceedings of the Thirteenth EuroSys Conference, page 30. ACM,

2018.

[43] Shangping Wang, Yinglong Zhang, and Yaling Zhang. A blockchain-based framework

for data sharing with fine-grained access control in decentralized storage systems. IEEE

Access, 6:38437–38450, 2018.

[44] Dinh C Nguyen, Pubudu N Pathirana, Ming Ding, and Aruna Seneviratne. Blockchain

for secure EHRs sharing of mobile cloud based e-Health systems. IEEE access, 7:

66792–66806, 2019.

[45] Faryad Darabi Sahneh, Caterina Scoglio, and Piet Van Mieghem. Generalized epi-

demic mean-field model for spreading processes over multilayer complex networks.

IEEE/ACM Transactions on Networking, 21(5):1609–1620, 2013.

[46] Sifat Afroj Moon, Faryad Darabi Sahneh, and Caterina Scoglio. Group-based general

epidemic modeling for spreading processes on networks: Groupgem. IEEE Transac-

tions on Network Science and Engineering, 2020.

[47] Ilkka Hanski. Metapopulation dynamics. Nature, 396(6706):41–49, 1998.

123

https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://en.bitcoin.it/wiki/Block_hashing_algorithm

[48] M. J. Keeling and P. Rohani. Modeling Infectious Diseases in Humans and Animals.

Princeton University Press, 2011.

[49] Qian Zhang, Kaiyuan Sun, Matteo Chinazzi, Ana Pastore y Piontti, Natalie E Dean,

Diana Patricia Rojas, Stefano Merler, Dina Mistry, Piero Poletti, Luca Rossi, et al.

Spread of Zika virus in the Americas. Proceedings of the National Academy of Sciences,

114(22):E4334–E4343, 2017.

[50] Eric D’Ortenzio, Sophie Matheron, Xavier de Lamballerie, Bruno Hubert, Géraldine

Piorkowski, Marianne Maquart, Diane Descamps, Florence Damond, Yazdan Yazdan-

panah, and Isabelle Leparc-Goffart. Evidence of Sexual Transmission of Zika Virus.

New England Journal of Medicine, 374(22):2195–2198, 2016.

[51] Didier Musso, Claudine Roche, Emilie Robin, Tuxuan Nhan, Anita Teissier, and Van-

Mai Cao-Lormeau. Potential sexual transmission of Zika virus. Emerging Infectious

Diseases, 21(2):359, 2015.

[52] Daozhou Gao, Yijun Lou, Daihai He, Travis C Porco, Yang Kuang, Gerardo Chowell,

and Shigui Ruan. Prevention and Control of Zika as a Mosquito-Borne and Sexually

Transmitted Disease: A Mathematical Modeling Analysis. Scientific Reports, 6:28070,

2016.

[53] FB Agusto, S Bewick, and WF Fagan. Mathematical model for Zika virus dynamics

with sexual transmission route. Ecological Complexity, 29:61–81, 2017.

[54] Ondrej Maxian, Anna Neufeld, Emma J Talis, Lauren M Childs, and Julie C Black-

wood. Zika virus dynamics: When does sexual transmission matter? Epidemics, 21:

48–55, 2017.

[55] CM Saad-Roy, Junling Ma, and P van den Driessche. The effect of sexual transmission

on Zika virus dynamics. Journal of mathematical biology, pages 1–25, 2018.

[56] YA Terefe, H Gaff, M Kamga, and L van der Mescht. Mathematics of a model for Zika

transmission dynamics. Theory in Biosciences, pages 1–10, 2018.

124

[57] Devika Sirohi, Zhenguo Chen, Lei Sun, Thomas Klose, Theodore C Pierson, Michael G

Rossmann, and Richard J Kuhn. The 3.8 å resolution cryo-EM structure of Zika virus.

Science, 352(6284):467–470, 2016.

[58] Veronica Sikka, Vijay Kumar Chattu, Raaj K Popli, Sagar C Galwankar, Dhanashree

Kelkar, Stanley G Sawicki, Stanislaw P Stawicki, and Thomas J Papadimos. The

emergence of Zika virus as a global health security threat: A review and a consensus

statement of the INDUSEM Joint working Group (JWG). Journal of Global Infectious

Diseases, 8(1):3, 2016.

[59] Jernej Mlakar, Misa Korva, Nataša Tul, Mara Popović, Mateja Polǰsak-Prijatelj, Jer-

ica Mraz, Marko Kolenc, Katarina Resman Rus, Tina Vesnaver Vipotnik, Vesna Fab-

jan Vodušek, et al. Zika Virus Associated with Microcephaly. New England Journal

of Medicine, 2016(374):951–958, 2016.

[60] Robert W Malone, Jane Homan, Michael V Callahan, Jill Glasspool-Malone, Lam-

bodhar Damodaran, Adriano De Bernardi Schneider, Rebecca Zimler, James Talton,

Ronald R Cobb, Ivan Ruzic, et al. Zika Virus: Medical Countermeasure Development

Challenges. PLOS Neglected Tropical Diseases, 10(3):e0004530, 2016.

[61] Zika Cases in the United States, February 2018. URL https://www.cdc.gov/zika/

reporting/case-counts.html. [Accessed: 03-May-2018].

[62] Lauren A Castro, Spencer J Fox, Xi Chen, Kai Liu, Steven E Bellan, Nedialko B

Dimitrov, Alison P Galvani, and Lauren Ancel Meyers. Assessing real-time Zika risk

in the United States. BMC Infectious Diseases, 17(1):284, 2017.

[63] Adam J Kucharski, Sebastian Funk, Rosalind M Eggo, Henri-Pierre Mallet, W John

Edmunds, and Eric J Nilles. Transmission Dynamics of Zika Virus in Island Pop-

ulations: A Modelling Analysis of the 2013–14 French Polynesia Outbreak. PLOS

Neglected Tropical Diseases, 10(5):e0004726, 2016.

125

https://www.cdc.gov/zika/reporting/case-counts.html
https://www.cdc.gov/zika/reporting/case-counts.html

[64] Chris J Kuhlman, Yihui Ren, Bryan Lewis, and James Schlitt. Hybrid Agent-based

modeling of Zika in the United States. In 2017 Winter Simulation Conference (WSC),

pages 1085–1096. IEEE, 2017.

[65] FB Agusto, S Bewick, and WF Fagan. Mathematical model of Zika virus with vertical

transmission. Infectious Disease Modelling, 2017.

[66] Omomayowa Olawoyin and Christopher Kribs. Effects of multiple transmission path-

ways on Zika dynamics. Infectious Disease Modelling, 2018.

[67] Seyed M Moghadas, Affan Shoukat, Aquino L Espindola, Rafael S Pereira, Fatima

Abdirizak, Marek Laskowski, Cecile Viboud, and Gerardo Chowell. Asymptomatic

Transmission and the Dynamics of Zika Infection. Scientific Reports, 7(1):5829, 2017.

[68] Andrea Pugliese, Abba B Gumel, Fabio A Milner, and Jorge X Velasco-Hernandez. Sex-

biased prevalence in infections with heterosexual, direct, and vector-mediated transmis-

sion: a theoretical analysis. Mathematical Biosciences & Engineering, 15(1):125–140,

2018.

[69] Sourav Kumar Sasmal, Indrajit Ghosh, Amit Huppert, and Joydev Chattopadhyay.

Modeling the Spread of Zika Virus in a Stage-Structured Population: Effect of Sexual

Transmission. Bulletin of mathematical biology, pages 1–30, 2018.

[70] Antoine Allard, Benjamin M Althouse, Laurent Hébert-Dufresne, and Samuel V

Scarpino. The risk of sustained sexual transmission of Zika is underestimated. PLOS

pathogens, 13(9):e1006633, 2017.

[71] Jean Marie Turmel, Pierre Abgueguen, Bruno Hubert, Yves Marie Vandamme, Mari-

anne Maquart, Hélène Le Guillou-Guillemette, and Isabelle Leparc-Goffart. Late sexual

transmission of Zika virus related to persistence in the semen. The Lancet, 387(10037):

2501, 2016.

[72] Tom William Smith. American Sexual Behavior: Trends, Socio-Demographic Differ-

ences, and Risk Behavior. National Opinion Research Center Chicago, 1998.

126

[73] Faryad Darabi Sahneh, Caterina Scoglio, and Fahmida N Chowdhury. Effect of cou-

pling on the epidemic threshold in interconnected complex networks: A spectral anal-

ysis. In American Control Conference (ACC), 2013, pages 2307–2312. IEEE, 2013.

[74] Marian Boguná, Luis F Lafuerza, Raúl Toral, and M Ángeles Serrano. Simulating

non-Markovian stochastic processes. Physical Review E, 90(4):042108, 2014.

[75] Faryad Darabi Sahneh, Aram Vajdi, Heman Shakeri, Futing Fan, and Caterina Scoglio.

GEMFsim: a stochastic simulator for the generalized epidemic modeling framework.

Journal of Computational Science, 22:36–44, 2017.

[76] Ronald H Gray, Maria J Wawer, Ron Brookmeyer, Nelson K Sewankambo, David

Serwadda, Fred Wabwire-Mangen, Tom Lutalo, Xianbin Li, Thomas C Quinn, et al.

Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-

1-discordant couples in Rakai, Uganda. The Lancet, 357(9263):1149–1153, 2001.

[77] Patrick K Mitchell, Luis Mier-y Teran-Romero, Brad J Biggerstaff, Mark J Delorey,

Maite Aubry, Van-Mai Cao-Lormeau, Matthew J Lozier, Simon Cauchemez, and

Michael A Johansson. Reassessing Serosurvey-Based Estimates of the Zika Symp-

tomatic Proportion. American journal of epidemiology, 2018.

[78] Zika has been sexually transmitted in Texas, CDC confirms, February 2016. URL

https://www.cnn.com/2016/02/02/health/zika-virus-sexual-contact-texas/

index.html. [Accessed: 01-November-2018].

[79] Cyril Caminade, Joanne Turner, Soeren Metelmann, Jenny C Hesson, Marcus SC

Blagrove, Tom Solomon, Andrew P Morse, and Matthew Baylis. Global risk model for

vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proceedings

of the National Academy of Sciences, 114(1):119–124, 2017.

[80] MH Reiskind and LP Lounibos. Spatial and temporal patterns of abundance of

Aedes aegypti L.(Stegomyia aegypti) and Aedes albopictus (Skuse)[Stegomyia albopic-

127

https://www.cnn.com/2016/02/02/health/zika-virus-sexual-contact-texas/index.html
https://www.cnn.com/2016/02/02/health/zika-virus-sexual-contact-texas/index.html

tus (Skuse)] in southern Florida. Medical and Veterinary Entomology, 27(4):421–429,

2013.

[81] Giovanni Marini, Giorgio Guzzetta, Roberto Rosà, and Stefano Merler. First outbreak

of Zika virus in the continental United States: a modelling analysis. Eurosurveillance,

22(37), 2017.

[82] Andrew J Monaghan, Cory W Morin, Daniel F Steinhoff, Olga Wilhelmi, Mary Hay-

den, Dale A Quattrochi, Michael Reiskind, Alun L Lloyd, Kirk Smith, Chris A Schmidt,

et al. On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito

Aedes aegypti in the Contiguous United States. PLOS Currents, 8, 2016.

[83] Sifat A Moon, Lee W Cohnstaedt, D Scott McVey, and Caterina M Scoglio. A spatio-

temporal individual-based network framework for West Nile virus in the USA: spread-

ing pattern of West Nile virus. PLOS Computational Biology, 15(3):e1006875, 2019.

[84] World Development Indicators: Population dynamics, 2017. URL http://wdi.

worldbank.org/table/2.1. [Accessed: 16-October-2018].

[85] Katy Robinson, Ted Cohen, and Caroline Colijn. The dynamics of sexual contact

networks: Effects on disease spread and control. Theoretical Population Biology, 81

(2):89–96, 2012.

[86] Naoki Masuda and Luis EC Rocha. A Gillespie Algorithm for Non-Markovian Stochas-

tic Processes. SIAM Review, 60(1):95–115, 2018.

[87] GEMFsim vector-borne, March 2019. URL https://www.ece.k-state.edu/netse/

software/.

[88] Ruth E Baker, Jose-Maria Peña, Jayaratnam Jayamohan, and Antoine Jérusalem.

Mechanistic models versus machine learning, a fight worth fighting for the biological

community? Biology letters, 14(5):20170660, 2018.

128

http://wdi.worldbank.org/table/2.1
http://wdi.worldbank.org/table/2.1
https://www.ece.k-state.edu/netse/software/
https://www.ece.k-state.edu/netse/software/

[89] Samir Bhatt, Peter W Gething, Oliver J Brady, Jane P Messina, Andrew W Farlow,

Catherine L Moyes, John M Drake, John S Brownstein, Anne G Hoen, Osman Sankoh,

et al. The global distribution and burden of dengue. Nature, 496(7446):504–507, 2013.

[90] Gregory A Roth, Degu Abate, Kalkidan Hassen Abate, Solomon M Abay, Cristiana Ab-

bafati, Nooshin Abbasi, Hedayat Abbastabar, Foad Abd-Allah, Jemal Abdela, Ahmed

Abdelalim, et al. Global, regional, and national age-sex-specific mortality for 282

causes of death in 195 countries and territories, 1980–2017: a systematic analysis for

the global burden of disease study 2017. The Lancet, 392(10159):1736–1788, 2018.

[91] Ruiyun Li, Lei Xu, Ottar N Bjørnstad, Keke Liu, Tie Song, Aifang Chen, Bing Xu,

Qiyong Liu, and Nils C Stenseth. Climate-driven variation in mosquito density pre-

dicts the spatiotemporal dynamics of dengue. Proceedings of the National Academy of

Sciences, 116(9):3624–3629, 2019.

[92] Douglas O Fuller, A Troyo, and John C Beier. El Nino Southern Oscillation and

vegetation dynamics as predictors of dengue fever cases in Costa Rica. Environmental

Research Letters, 4(1):014011, 2009.

[93] Pei-Chih Wu, Jinn-Guey Lay, How-Ran Guo, Chuan-Yao Lin, Shih-Chun Lung, and

Huey-Jen Su. Higher temperature and urbanization affect the spatial patterns of

dengue fever transmission in subtropical Taiwan. Science of the total Environment,

407(7):2224–2233, 2009.

[94] S Wongkoon, M Jaroensutasinee, and K Jaroensutasinee. Distribution, seasonal vari-

ation & dengue transmission prediction in Sisaket, Thailand. The Indian journal of

medical research, 138(3):347, 2013.

[95] Mammen P Mammen Jr, Chusak Pimgate, Constantianus JM Koenraadt, Alan L

Rothman, Jared Aldstadt, Ananda Nisalak, Richard G Jarman, James W Jones, Anon

Srikiatkhachorn, Charity Ann Ypil-Butac, et al. Spatial and temporal clustering of

dengue virus transmission in Thai villages. PLOS Med, 5(11):e205, 2008.

129

[96] Aurora González-Vidal, Victoria Moreno-Cano, Fernando Terroso-Sáenz, and Anto-

nio F Skarmeta. Towards energy efficiency smart buildings models based on intelligent

data analytics. Procedia Computer Science, 83:994–999, 2016.

[97] M Victoria Moreno, Fernando Terroso-Sáenz, Aurora González-Vidal, Mercedes

Valdés-Vela, Antonio F Skarmeta, Miguel A Zamora, and Victor Chang. Applicability

of big data techniques to smart cities deployments. IEEE Transactions on Industrial

Informatics, 13(2):800–809, 2016.

[98] Youqiang Sun, Jiuyong Li, Jixue Liu, Christopher Chow, Bingyu Sun, and Rujing

Wang. Using causal discovery for feature selection in multivariate numerical time

series. Machine Learning, 101(1-3):377–395, 2015.

[99] Youssef Hmamouche, Alain Casali, and Lotfi Lakhal. A causality based feature selec-

tion approach for multivariate time series forecasting. In DBKDA 2017, The Ninth

International Conference on Advances in Databases, Knowledge, and Data Applica-

tions, 2017.

[100] Deon Garrett, David A Peterson, Charles W Anderson, and Michael H Thaut. Com-

parison of linear, nonlinear, and feature selection methods for EEG signal classification.

IEEE Transactions on neural systems and rehabilitation engineering, 11(2):141–144,

2003.

[101] Sven F Crone and Nikolaos Kourentzes. Feature selection for time series prediction–a

combined filter and wrapper approach for neural networks. Neurocomputing, 73(10-12):

1923–1936, 2010.

[102] Lkhagvadorj Munkhdalai, Tsendsuren Munkhdalai, Kwang Ho Park, Tsatsral Amar-

bayasgalan, Erdenebileg Erdenebaatar, Hyun Woo Park, and Keun Ho Ryu. An end-

to-end adaptive input selection with dynamic weights for forecasting multivariate time

series. IEEE Access, 7:99099–99114, 2019.

130

[103] Lei Yu and Huan Liu. Feature selection for high-dimensional data: A fast correlation-

based filter solution. In Proceedings of the 20th international conference on machine

learning (ICML-03), pages 856–863, 2003.

[104] Mark Andrew Hall. Correlation-based feature selection for machine learning. PhD

Dissertation, 1999.

[105] Dianbo Liu, Leonardo Clemente, Canelle Poirier, Xiyu Ding, Matteo Chinazzi, Jessica

Davis, Alessandro Vespignani, and Mauricio Santillana. Real-time forecasting of the

COVID-19 outbreak in Chinese provinces: Machine learning approach using novel

digital data and estimates from mechanistic models. J Med Internet Res, 22(8):e20285,

2020.

[106] Elisa Mussumeci and Flávio Codeço Coelho. Large-scale multivariate forecasting mod-

els for dengue-LSTM versus random forest regression. Spatial and Spatio-temporal

Epidemiology, 35:100372, 2020.

[107] Désirée Schoenherr, Jane Paulick, Bernhard M Strauss, Anne-Katharina Deisenhofer,

Brian Schwartz, Julian A Rubel, Wolfgang Lutz, Ulrich Stangier, and Uwe Altmann.

Identification of movement synchrony: Validation of windowed cross-lagged correlation

and-regression with peak-picking algorithm. PLOS ONE, 14(2):e0211494, 2019.

[108] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical

learning: data mining, inference, and prediction. Springer Science & Business Media,

2009.

[109] Yvan Saeys, Inaki Inza, and Pedro Larranaga. A review of feature selection techniques

in bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

[110] Fernando Jimenez, Jose Palma, Gracia Sanchez, David Marin, MD Francisco Palacios,

and MD Lućıa López. Feature selection based multivariate time series forecasting:

An application to antibiotic resistance outbreaks prediction. Artificial Intelligence in

Medicine, 104:101818, 2020.

131

[111] George EP Box, Gwilym M Jenkins, and Gregory C Reinsel. Time series analysis:

forecasting and control, volume 734. John Wiley & Sons, 2011.

[112] Adhistya Erna Permanasari, Indriana Hidayah, and Isna Alfi Bustoni. Sarima (seasonal

arima) implementation on time series to forecast the number of malaria incidence. In

2013 International Conference on Information Technology and Electrical Engineering

(ICITEE), pages 203–207. IEEE, 2013.

[113] Wei-Chiang Hong. Application of seasonal SVR with chaotic immune algorithm in

traffic flow forecasting. Neural Computing and Applications, 21(3):583–593, 2012.

[114] Thomas W Scott, Esther Chow, Daniel Strickman, Pattamaporn Kittayapong,

Robert A Wirtz, Leslie H Lorenz, and John D Edman. Blood-feeding patterns of

Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. Journal of medi-

cal entomology, 30(5):922–927, 1993.

[115] Shubham Shrivastava, Divya Tiraki, Arundhati Diwan, Sanjay K Lalwani, Meera

Modak, Akhilesh Chandra Mishra, and Vidya A Arankalle. Co-circulation of all the

four dengue virus serotypes and detection of a novel clade of DENV-4 (genotype I)

virus in Pune, India during 2016 season. PLOS ONE, 13(2):e0192672, 2018.

[116] John H Huber, Marissa L Childs, Jamie M Caldwell, and Erin A Mordecai. Seasonal

temperature variation influences climate suitability for dengue, chikungunya, and Zika

transmission. PLOS neglected tropical diseases, 12(5):e0006451, 2018.

[117] Amy Wesolowski, Taimur Qureshi, Maciej F Boni, P̊al Roe Sundsøy, Michael A Jo-

hansson, Syed Basit Rasheed, Kenth Engø-Monsen, and Caroline O Buckee. Impact

of human mobility on the emergence of dengue epidemics in Pakistan. Proceedings of

the National Academy of Sciences, 112(38):11887–11892, 2015.

[118] Tanujit Chakraborty, Swarup Chattopadhyay, and Indrajit Ghosh. Forecasting dengue

epidemics using a hybrid methodology. Physica A: Statistical Mechanics and its Ap-

plications, 527:121266, 2019.

132

[119] Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek Smyl. Time-series extreme

event forecasting with neural networks at Uber. In International Conference on Ma-

chine Learning, volume 34, pages 1–5, 2017.

[120] Yuxiu Hua, Zhifeng Zhao, Rongpeng Li, Xianfu Chen, Zhiming Liu, and Honggang

Zhang. Deep learning with long short-term memory for time series prediction. IEEE

Communications Magazine, 57(6):114–119, 2019.

[121] Lingxue Zhu and Nikolay Laptev. Deep and confident prediction for time series at

Uber. In 2017 IEEE International Conference on Data Mining Workshops (ICDMW),

pages 103–110. IEEE, 2017.

[122] Jiangyan Gu, Lizhong Liang, Hongquan Song, Yunfeng Kong, Rui Ma, Yane Hou,

Jinyu Zhao, Junjie Liu, Nan He, and Yang Zhang. A method for hand-foot-mouth

disease prediction using GeoDetector and LSTM model in Guangxi, China. Scientific

Reports, 9(1):1–10, 2019.

[123] Farah Shahid, Aneela Zameer, and Muhammad Muneeb. Predictions for COVID-19

with deep learning models of LSTM, GRU and Bi-LSTM. Chaos, Solitons & Fractals,

page 110212, 2020.

[124] Jiucheng Xu, Keqiang Xu, Zhichao Li, Fengxia Meng, Taotian Tu, Lei Xu, and Qiyong

Liu. Forecast of dengue cases in 20 chinese cities based on the deep learning method.

International journal of environmental research and public health, 17(2):453, 2020.

[125] Samuel Rickard Christophers. Aedes aegypti: the yellow fever mosquito. CUP Archive,

1960.

[126] Jannelle Couret, Ellen Dotson, and Mark Q Benedict. Temperature, larval diet, and

density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae).

PLOS ONE, 9(2):e87468, 2014.

[127] Hélène Delatte, Geoffrey Gimonneau, Aurélie Triboire, and Didier Fontenille. In-

fluence of temperature on immature development, survival, longevity, fecundity, and

133

gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian

Ocean. Journal of medical entomology, 46(1):33–41, 2009.

[128] Wayne A Rowley and Charles L Graham. The effect of temperature and relative hu-

midity on the flight performance of female Aedes aegypti. Journal of Insect Physiology,

14(9):1251–1257, 1968.

[129] Lauren B Carrington, Stephanie N Seifert, Neil H Willits, Louis Lambrechts, and

Thomas W Scott. Large diurnal temperature fluctuations negatively influence Aedes

aegypti (Diptera: Culicidae) life-history traits. Journal of medical entomology, 50(1):

43–51, 2013.

[130] Douglas M Watts, Donald S Burke, Bruce A Harrison, Richard E Whitmire, and

Ananda Nisalak. Effect of temperature on the vector efficiency of Aedes aegypti for

dengue 2 virus. The American journal of tropical medicine and hygiene, 36(1):143–152,

1987.

[131] Michael A Johansson, Francesca Dominici, and Gregory E Glass. Local and global

effects of climate on dengue transmission in Puerto Rico. PLOS Negl Trop Dis, 3(2):

e382, 2009.

[132] INFO Dengue. Info dengue surveillance project, 2021. URL https://info.dengue.

mat.br/.

[133] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade,

pages 55–69. Springer, 1998.

[134] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

A system for large-scale machine learning. In 12th USENIX symposium on operating

systems design and implementation (OSDI ’16), pages 265–283, 2016.

[135] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

134

https://info.dengue.mat.br/
https://info.dengue.mat.br/

[136] Abraham Savitzky and Marcel JE Golay. Smoothing and differentiation of data by

simplified least squares procedures. Analytical chemistry, 36(8):1627–1639, 1964.

[137] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation

coefficient. In Noise reduction in speech processing, pages 1–4. Springer, 2009.

[138] Cross correlation, 2021. URL https://en.wikipedia.org/wiki/

Cross-correlation.

[139] Charles FF Karney. Algorithms for geodesics. Journal of Geodesy, 87(1):43–55, 2013.

[140] Instituto Brasileiro de Geografia e Estat́ıstica, 2021. URL https://www.ibge.gov.

br/.

[141] Python-Visualization. Folium, 2021. URL https://python-visualization.github.

io/folium/.

[142] OpenStreetMap Foundation. OpenStreetMap, 2021. URL https://www.

openstreetmap.org.

[143] CartoDB Inc. CartoDB Positron, 2021. URL https://carto.com/.

[144] James M Omernik. Perspectives on the nature and definition of ecological regions.

Environmental Management, 34(1):S27–S38, 2004.

[145] David M Olson and Eric Dinerstein. The global 200: Priority ecoregions for global

conservation. Annals of the Missouri Botanical garden, pages 199–224, 2002.

[146] Christopher L Burdett, Brian R Kraus, Sarah J Garza, Ryan S Miller, and Kathe E

Bjork. Simulating the distribution of individual livestock farms and their populations

in the United States: An example using domestic swine (Sus scrofa domesticus) farms.

PLOS ONE, 10(11):e0140338, 2015.

[147] Pablo Valdes-Donoso, Kimberly VanderWaal, Lovell S Jarvis, Spencer R Wayne, and

Andres M Perez. Using machine learning to predict swine movements within a regional

135

https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Cross-correlation
https://www.ibge.gov.br/
https://www.ibge.gov.br/
https://python-visualization.github.io/folium/
https://python-visualization.github.io/folium/
https://www.openstreetmap.org
https://www.openstreetmap.org
https://carto.com/

program to improve control of infectious diseases in the US. Frontiers in Veterinary

Science, 4:2, 2017.

[148] Sifat A Moon, Tanvir Ferdousi, Adrian Self, and Caterina M Scoglio. Estimation of

swine movement network at farm level in the US from the census of agriculture data.

Scientific Reports, 9(1):6237, 2019.

[149] Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. Random graphs with

arbitrary degree distributions and their applications. Physical Review E, 64(2):026118,

2001.

[150] Ron Milo, Nadav Kashtan, Shalev Itzkovitz, Mark EJ Newman, and Uri Alon. On the

uniform generation of random graphs with prescribed degree sequences. arXiv preprint

cond-mat/0312028, 2003.

[151] A Ramachandra Rao, Rabindranath Jana, and Suraj Bandyopadhyay. A Markov

chain Monte Carlo method for generating random (0, 1)-matrices with given marginals.

Sankhyā: The Indian Journal of Statistics, Series A, pages 225–242, 1996.

[152] John M Roberts Jr. Simple methods for simulating sociomatrices with given marginal

totals. Social Networks, 22(3):273–283, 2000.

[153] Michael Molloy and Bruce Reed. A critical point for random graphs with a given

degree sequence. Random Structures & Algorithms, 6(2-3):161–180, 1995.

[154] Tom Britton, Maria Deijfen, and Anders Martin-Löf. Generating simple random graphs

with prescribed degree distribution. Journal of Statistical Physics, 124(6):1377–1397,

2006.

[155] Hartmut HK Lentz, Andreas Koher, Philipp Hövel, Jörn Gethmann, Carola Sauter-

Louis, Thomas Selhorst, and Franz J Conraths. Disease spread through animal move-

ments: a static and temporal network analysis of pig trade in Germany. PLOS ONE,

11(5):e0155196, 2016.

136

[156] Romualdo Pastor-Satorras and Alessandro Vespignani. Immunization of complex net-

works. Physical Review E, 65(3):036104, 2002.

[157] Caterina Scoglio, Walter Schumm, Phillip Schumm, Todd Easton, Sohini Roy Chowd-

hury, Ali Sydney, and Mina Youssef. Efficient mitigation strategies for epidemics in

rural regions. PLOS ONE, 5(7):e11569, 2010.

[158] S Costard, L Mur, J Lubroth, JM Sanchez-Vizcaino, and DU Pfeiffer. Epidemiology

of African swine fever virus. Virus Research, 173(1):191–197, 2013.

[159] Tsvetelia Tsolova. Bulgaria reports its first outbreak of African swine fever, August

2018. URL https://reut.rs/2NzcCM9. [Accessed: 25-Sep-2018].

[160] Alistair Driver. 4,000 pigs to be culled to control African swine fever

in Belgium, September 2018. URL http://www.pig-world.co.uk/news/

4000-pigs-to-be-culled-to-control-african-swine-fever-in-belgium.html.

[Accessed: 25-Sep-2018].

[161] ASF situation in Asia update, January 2019. URL http://www.fao.org/ag/againfo/

programmes/en/empres/ASF/situation_update.html. [Accessed: 29-Jan-2019].

[162] Hallie Gu and Dominique Patton. China’s top pig farmers see sharp fall in profits

amid disease epidemic, January 2019. URL https://reut.rs/2Vz8TCD. [Accessed:

8-Jan-2019].

[163] Tao Wang, Yuan Sun, and Hua-Ji Qiu. African swine fever: an unprecedented disaster

and challenge to China. Infectious Diseases of Poverty, 7(1):111, 2018.

[164] Diana Maŕıa Herrera-Ibatá, Beatriz Mart́ınez-López, Darla Quijada, Kenneth Burton,

and Lina Mur. Quantitative approach for the risk assessment of African swine fever

and Classical swine fever introduction into the United States through legal imports of

pigs and swine products. PLOS ONE, 12(8):e0182850, 2017.

137

https://reut.rs/2NzcCM9
http://www.pig-world.co.uk/news/4000-pigs-to-be-culled-to-control-african-swine-fever-in-belgium.html
http://www.pig-world.co.uk/news/4000-pigs-to-be-culled-to-control-african-swine-fever-in-belgium.html
http://www.fao.org/ag/againfo/programmes/en/empres/ASF/situation_update.html
http://www.fao.org/ag/againfo/programmes/en/empres/ASF/situation_update.html
https://reut.rs/2Vz8TCD

[165] Mike B Barongo, Richard P Bishop, Eric M Fèvre, Darryn L Knobel, and Amos

Ssematimba. A mathematical model that simulates control options for African swine

fever virus (ASFV). PLOS ONE, 11(7):e0158658, 2016.

[166] Tariq Halasa, Anette Boklund, Anette Bøtner, Nils Toft, and Hans-Hermann Thulke.

Simulation of spread of African swine fever, including the effects of residues from dead

animals. Frontiers in veterinary science, 3:6, 2016.

[167] C Guinat, S Gubbins, T Vergne, JL Gonzales, L Dixon, and DU Pfeiffer. Experimental

pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain–

CORRIGENDUM. Epidemiology & Infection, 144(16):3564–3566, 2016.

[168] VM Gulenkin, FI Korennoy, AK Karaulov, and SA Dudnikov. Cartographical analysis

of African swine fever outbreaks in the territory of the Russian Federation and com-

puter modeling of the basic reproduction ratio. Preventive Veterinary Medicine, 102

(3):167–174, 2011.

[169] Mike B Barongo, Karl St̊ahl, Bernard Bett, Richard P Bishop, Eric M Fèvre, Tony

Aliro, Edward Okoth, Charles Masembe, Darryn Knobel, and Amos Ssematimba. Es-

timating the basic reproductive number (R0) for African swine fever virus (ASFV)

transmission between pig herds in Uganda. PLOS ONE, 10(5):e0125842, 2015.

[170] C Guinat, T Porphyre, A Gogin, L Dixon, DU Pfeiffer, and S Gubbins. Inferring

within-herd transmission parameters for African swine fever virus using mortality data

from outbreaks in the Russian Federation. Transboundary and Emerging Diseases, 65

(2):e264–e271, 2018.

[171] Ben Hu, Jose L Gonzales, and Simon Gubbins. Bayesian inference of epidemiological

parameters from transmission experiments. Scientific Reports, 7(1):16774, 2017.

[172] Roxann Motroni, John Neilan, Max Rasmussen, Chungwon Chung, Michael Puck-

ette, David Brake, and Barbara Kamicker. Development of next-generation vac-

cines and diagnostics for transboundary animal disease preparedness, 2017. URL

138

http://www.oie.int/eng/BIOTHREAT2017/posters/22_MOTRONI-poster.pdf. [Ac-

cessed: 30-Jan-2019].

[173] 2012 Census of Agriculture, May 2014. URL https://www.nass.usda.gov/

Publications/AgCensus/2012/Full_Report/Volume_1,_Chapter_2_US_State_

Level/st99_2_012_012.pdf. [Accessed: 15-Jun-2018].

[174] Spencer R Wayne. Assessment of the demographics and network structure of swine

populations in relation to regional disease transmission and control. 2011. URL http:

//hdl.handle.net/11299/112785.

[175] Animal Disease Traceability, 2019. URL https://www.aphis.usda.gov.

[176] What is CattleTrace, 2018. URL https://www.cattletrace.org.

[177] Qihui Yang, Don Gruenbacher, Jessica L Heier Stamm, Gary L Brase, Scott A De-

Loach, David E Amrine, and Caterina Scoglio. Developing an agent-based model to

simulate the beef cattle production and transportation in southwest Kansas. Physica

A: Statistical Mechanics and its Applications, 526:120856, 2019.

[178] A Banerjee. Integrating Blockchain with ERP for a transparent supply chain, 2018.

[179] TradeLens, 2020. URL https://www.tradelens.com/.

[180] Provenance tuna tracking, 2019. URL https://www.provenance.org/

tracking-tuna-on-the-blockchain.

[181] Qinghua Lu and Xiwei Xu. Adaptable blockchain-based systems: A case study for

product traceability. IEEE Software, 34(6):21–27, 2017.

[182] Boris Düdder and Omri Ross. Timber tracking: Reducing complexity of due diligence

by using blockchain technology. Available at SSRN 3015219, 2017.

[183] Sara Saberi, Mahtab Kouhizadeh, Joseph Sarkis, and Lejia Shen. Blockchain tech-

nology and its relationships to sustainable supply chain management. International

Journal of Production Research, 57(7):2117–2135, 2019.

139

http://www.oie.int/eng/BIOTHREAT2017/posters/22_MOTRONI-poster.pdf
https://www.nass.usda.gov/Publications/AgCensus/2012/Full_Report/Volume_1,_Chapter_2_US_State_Level/st99_2_012_012.pdf
https://www.nass.usda.gov/Publications/AgCensus/2012/Full_Report/Volume_1,_Chapter_2_US_State_Level/st99_2_012_012.pdf
https://www.nass.usda.gov/Publications/AgCensus/2012/Full_Report/Volume_1,_Chapter_2_US_State_Level/st99_2_012_012.pdf
http://hdl.handle.net/11299/112785
http://hdl.handle.net/11299/112785
https://www.aphis.usda.gov
https://www.cattletrace.org
https://www.tradelens.com/
https://www.provenance.org/tracking-tuna-on-the-blockchain
https://www.provenance.org/tracking-tuna-on-the-blockchain

[184] Roberto Casado-Vara, Javier Prieto, Fernando De la Prieta, and Juan M Corchado.

How blockchain improves the supply chain: Case study alimentary supply chain. Pro-

cedia computer science, 134:393–398, 2018.

[185] Matteo Montecchi, Kirk Plangger, and Michael Etter. It’s real, trust me! establishing

supply chain provenance using blockchain. Business Horizons, 62(3):283–293, 2019.

[186] Kaijun Leng, Ya Bi, Linbo Jing, Han-Chi Fu, and Inneke Van Nieuwenhuyse. Research

on agricultural supply chain system with double chain architecture based on blockchain

technology. Future Generation Computer Systems, 86:641–649, 2018.

[187] Henry M Kim and Marek Laskowski. Toward an ontology-driven blockchain design for

supply-chain provenance. Intelligent Systems in Accounting, Finance and Management,

25(1):18–27, 2018.

[188] Feng Tian. A supply chain traceability system for food safety based on HACCP,

blockchain & internet of things. In 2017 International Conference on Service Systems

and Service Management, pages 1–6. IEEE, 2017.

[189] Martin Westerkamp, Friedhelm Victor, and Axel Küpper. Blockchain-based supply

chain traceability: Token recipes model manufacturing processes. arXiv preprint

arXiv:1810.09843, 2018.

[190] Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kamhoua, Kevin Kwiat, and Lau-

rent Njilla. Provchain: A blockchain-based data provenance architecture in cloud envi-

ronment with enhanced privacy and availability. In Proceedings of the 17th IEEE/ACM

international symposium on cluster, cloud and grid computing, pages 468–477. IEEE

Press, 2017.

[191] Kentaroh Toyoda, P Takis Mathiopoulos, Iwao Sasase, and Tomoaki Ohtsuki. A novel

blockchain-based product ownership management system (POMS) for anti-counterfeits

in the post supply chain. IEEE Access, 5:17465–17477, 2017.

140

[192] Hokey Min. Blockchain technology for enhancing supply chain resilience. Business

Horizons, 62(1):35–45, 2019.

[193] Yong Yuan and Fei-Yue Wang. Towards blockchain-based intelligent transportation

systems. In 2016 IEEE 19th International Conference on Intelligent Transportation

Systems (ITSC), pages 2663–2668. IEEE, 2016.

[194] Ron Miller. Walmart is betting on the blockchain to improve

food safety, 2018. URL https://techcrunch.com/2018/09/24/

walmart-is-betting-on-the-blockchain-to-improve-food-safety/.

[195] Wyoming Beefchain, 2019. URL https://beefchain.com/.

[196] Zhaojun Lu, Wenchao Liu, Qian Wang, Gang Qu, and Zhenglin Liu. A privacy-

preserving trust model based on blockchain for VANETs. IEEE Access, 6:45655–45664,

2018.

[197] Haya R Hasan and Khaled Salah. Blockchain-based proof of delivery of physical assets

with single and multiple transporters. IEEE Access, 6:46781–46793, 2018.

[198] Khaled Salah, Nishara Nizamuddin, Raja Jayaraman, and Mohammad Omar.

Blockchain-based soybean traceability in agricultural supply chain. IEEE Access, 7:

73295–73305, 2019.

[199] Qijun Lin, Huaizhen Wang, Xiaofu Pei, and Junyu Wang. Food safety traceability

system based on blockchain and EPCIS. IEEE Access, 7:20698–20707, 2019.

[200] Go Ethereum, 2020. URL https://geth.ethereum.org/.

[201] Parity Ethereum, 2020. URL https://www.parity.io/ethereum/.

[202] Remix, 2020. URL http://remix.ethereum.org/.

[203] Solidity, 2020. URL https://solidity.readthedocs.io.

[204] Web3, 2020. URL https://web3js.readthedocs.io.

141

https://techcrunch.com/2018/09/24/walmart-is-betting-on-the-blockchain-to-improve-food-safety/
https://techcrunch.com/2018/09/24/walmart-is-betting-on-the-blockchain-to-improve-food-safety/
https://beefchain.com/
https://geth.ethereum.org/
https://www.parity.io/ethereum/
http://remix.ethereum.org/
https://solidity.readthedocs.io
https://web3js.readthedocs.io

Appendix A

Network Generation Algorithms

The basic outline of network generation is described in Algorithm 1.

input : NF , P IG DAT, SF, P, F DIST,M MIX,K DAT, SHP DAT
output: GF , GP

// Assigns different operation types to individual farms uniformly at random.

1 F TY PE ← F TY PE GEN(F DIST,NF);
// Generates a directed farm graph with weighted (shipment rate) links.

2 GF ← F GRAPH GEN(M MIX,F TY PE,NF , K DAT, SHP DAT);
// Assigns pigs to different operations based on data obtained from NASS. Scales the population

by a factor SF .

3 PIG LIST ← PIG ALLOT (PIG DAT,NF , SF);
// Generates a pig level graph.

4 GP ← P GRAPH GEN(GF , NF , P IG LIST, P);

Algorithm 1: Basic outline of graph generation

In the above box, NF is the number of farms, PIG DAT is the pig distribution data

given in Table 4.4, SF is the scaling factor used to scale the pig level graph in order to

make it computationally feasible in our model, P is the probability of within farm contacts

between pigs, F DIST is the farm type distribution shown in Table 4.3, M MIX is the

mixing matrix shown in Table 4.1, K DAT contains the degree centrality data from Table

4.2, and SHP DAT contains the mean and median shipment data. The farm level and pig

level graphs are represented by GF and GP , respectively. We describe the F GRAPH GEN

function in more detail in Algorithm 2.

142

input : M MIX,F TY PE,NF , K DAT, SHP DAT
output: GF

// Allocates in and out-degrees based on production types.

1 DEG ALLOC ← DEG GEN(F TY PE,K DAT);
2 for SRC NODE ← 1 to NF do

// Get the allocated (max) out-degree of source node.

3 MAX KOUT = DEG ALLOC[SRC NODE,OUTDEG];
4 for k ← 1 to MAX KOUT do

// Randomly sample the destination type from the mixing matrix distribution.

5 DST TY PE ∼M MIX[F TY PE[SRC NODE]];
// Find all the nodes of the given type.

6 DST NODES ← {n : n ∈ [1, NF] and F TY PE(n) = DST TY PE};
// Pick the destination node which has the largest in-degree gap (max in-degree - current

in-degree) to cover up.

7 DST NODE ← n ∈ DST NODES that maximizes
(KIN(n,MAX)−KIN(n,CUR));

// generate shipment data from log-normal distribution with mean and median shipment

values given in SHP DAT .

8 SHP RATE ∼ Lognormal(SHP DAT);
// Create the link with generated shipment rate as weight.

9 GF ← GF + EDGE(SRC NODE,DST NODE, SHP RATE);

10 end

11 end

Algorithm 2: F GRAPH GEN

We also describe another key component of the graph generator, P GRAPH GEN in

Algorithm 3, which generates the pig level network.

143

input : GF , NF , P IG LIST, P
output: GP

1 for f ← 1 to NF do
// List of pigs in the farm f .

2 PIG NODES ← PIG LIST (f);
// Generate Erdos-Renyi graph for list of pig nodes with edge probability P .

3 EDGES = ERDOS RENY I(PIG NODES, P);
// Add the generated edges to the pig level graph.

4 GP ← GP + EDGES;

5 end
// Normalize the edge weights to be used as probabilities.

6 GNORM
F ← GF/MAX(GF);

7 for each (F1, F2) pair where F1, F2 ∈ GF and F1! = F2 do
// Probability of movement from farm F1 to any other farms.

8 PFROM ← GNORM
F (F1, ALL);

// Probability of movement from any farm to farm F2.

9 PTO ← GNORM
F (ALL, F2);

10 for each P1 ∈ PIG LIST (F1) do
11 for each P2 ∈ PIG LIST (F2) do
12 r ∼ Uniform(0, 1);
13 if r ≤ PFROM × PTO then
14 GP ← GP + EDGE(P1, P2);

15 end

16 end

17 end

Algorithm 3: P GRAPH GEN

144

Appendix B

Smart Contracts

Smart contracts are immutable pieces of code that run in the blockchain system. Our

system has five smart contracts, each with different objectives. In each of those, we define

variables, objects, and methods to enable different management capabilities. The methods

are designed to enforce policies regarding how to handle different aspects of the system,

including permissions, data access, etc. These contracts are loaded into the system and

configured by an administrator during the system initialization process. In response to

different method calls, we use Ethereum event logs to understand different outcomes. We

use the following HTTP style response codes in these logs: 200 (OK/success), 201 (created),

202 (accepted), 400 (bad request), 403 (forbidden), and 404 (not found).

B.1 Profile Manager

Every entity that accesses the system is managed and controlled by the Profile Manager. As

shown in Figure B.1, we define a data structure User, which has the following components:

• timeAdded is the unix timestamp when the user profile is created.

• accessLevel is the access classification for the user. There are 3 distinct access levels:

restricted (0), viewer (1), and manager (2).

145

Each entry of the User data structure is mapped through a 160 bit Ethereum address

which is the user id. The ProfileManager contract also contains several state variables:

• userCount is the number of registered users

• admin is the address of the system administrator.

• userMap is the mapping data structure that maps user id to User object.

Initially, the creator of the smart contract is automatically added as the admin by the

constructor function. Only the admin can register new user profiles, change permissions,

and change admins. Most of the methods (functions) contain code snippets that validate

the entity that invoked the call. The methods in this contract are listed below,

• registerUser() adds a new profile to the system, creates a User object and stores it

using the userMap mapping. Only an admin can call this function.

• getUserInfo() returns information about a user based on the address given in the

argument. The requesting entity must be an admin or the user itself.

• updateUser() updates the user profile. An admin can call this function to change

access permissions.

• checkAccessLevel() returns the access level of a user given its address in the argu-

ment.

• checkAdminAccess() checks whether the current contract method calling entity has

the admin level access (i.e., is the admin) or not.

• changeAdmin() assigns a new admin given the address in the argument. Only the cur-

rent admin can call this function. Once called, if the contract transaction is confirmed,

the current admin will lose its status as admin.

146

Figure B.1: The ProfileManager contract and its associated User data structure. There
can be multiple user profiles in the system, all of which must be registered via the methods of
this contract

B.2 Farm Manager

The Farm Manager contract regulates the contents of the farm databases (marked as ‘Local

Databases’ in Figure 5.2) and provides useful farm-related operational functionalities. The

contract and its associated data structures are shown in Figure B.2. To store cryptographic

proof of farm database contents, we define the Farm data structure, which has the following

components:

• ownerId is the 160 bit Ethereum address of the farm owners profile.

• animalCount is the number of animals currently registered in the farm.

• farmHash is the most recent cryptographic hash generated from the local database of

the farm.

• timeUpdated is the unix timestamp when the most recent farmHash was stored in the

chain.

147

In addition to that, we define the Animal data structure with the following components

to store cryptographic proofs of individual animal related data:

• currentFarm is the 160 bit Ethereum address of the farm that owns the animal.

• animalHash is the most recent cryptographic hash generated from the animal from its

information stored in the database.

• timeUpdated is the unix timestamp when the most recent animalHash was stored in

the chain.

Each entry of the Farm data structure is mapped through a 160 bit Ethereum address

which is the farm id. Each entry of the Animal data structure is mapped through a 48 bit

animal id number. The FarmManager contract contains several state variables:

• farmCount is the number of registered farms.

• globalAnimalCount is the total number of animals combining all the registered farms.

• admin is the 160 bit Ethereum address of the system administrator.

• PM is an object containing the address of the ProfileManager contract. The meth-

ods defined in ProfileManager can be used to validate user privileges (For example,

checking user access level).

• farmMap is the mapping data structure that maps farm id to Farm object.

• animalMap is the mapping data structure that maps animal id to Animal object.

Initially, the creator of the smart contract is automatically added as the admin by the

constructor function. The admin can register new farms, link ProfileManager contract

deployed in the chain, and change admins. However, the admin cannot access the contents

of Farm data objects; only the registered farm owners (i.e., Farm.ownerId) can do so. The

methods (functions) described below contain code snippets to enforce such access control.

The methods in this contract are listed below:

148

• registerFarm() adds a farm to the system, creates a Farm object and stores it in the

contract. Only an admin can call this function.

• getFarmInfo() returns information about a farm based on the farm id (address)

provided in the argument. Only a farm owner with proper access level can call this

function.

• updateFarmInfo() updates information about the farm. Only a farm owner with

proper access level can call this function.

• checkOwnership() validates if the owner referenced by the ownerId in the argument

or the method calling entity owns the farm referenced by the farmId in the argument.

It’s an overloaded method.

• farmExists() checks whether a given farm referenced by the farmId in the argument

exists or not.

• registerAnimal() adds an animal to the system, creates an Animal object and stores

it in the contract. If the animal is already registered, the method updates the id of the

farm that the animal is in.

• updateAnimal() updates the cryptographic hash of an animal. Only the owner of the

farm that contains the animal can call this method.

• getAnimalHash() returns the cryptographic proof of the animal data that is stored in

the contract.

• animalExists() checks whether a given animal referenced by the animalId in the

argument exists or not.

• setProfileManager() instantiates the PM (i.e., ProfileManager) object with the

Ethereum address of the Profile Manager contract deployed in the chain. Only an

admin can call this function.

149

• getProfileManager() returns the address of the Profile Manager contract which is

linked to this contract. Only an admin can call this function.

• checkAdminAccess() checks whether the current contract method calling entity has

the admin level access (i.e., is the admin) or not.

• changeAdmin() assigns a new admin given the address in the argument. Only the cur-

rent admin can call this function. Once called, if the contract transaction is confirmed,

the current admin will lose its status as admin.

B.3 Transaction Manager

This contract handles business transactions that result in transfers of animals among farms.

It provides methods for both the parties (sender and recipient) to initiate and confirm trans-

actions. It also automatically calls appropriate methods of TraceManager to store movement

data. The contract and its associated Transaction data structure are shown in Figure B.3.

The Transaction data structure has the following components:

• srcFarm is the 160 bit Ethereum address of the source farm (id).

• dstFarm is the 160 bit Ethereum address of the destination farm (id).

• srcOwner is the 160 bit Ethereum address of the owner (id) of the source farm.

• dstOwner is the 160 bit Ethereum address of the owner (id) of the destination farm.

• orderStatus is the current state of the order. It can be either of the following values:

proposed (1), confirmed (2), or canceled (3).

• animalCount is the number of animals listed in this transaction.

• animalMap is the mapping data structure that stores the tags of the animals listed in

the transaction. An auto incrementing index is used as the key which goes from 0 to

animalCount - 1.

150

Figure B.2: The FarmManager contract and its associated Farm and Animal data structures.

151

• timeUpdated is the most recent unix timestamp when the transaction was created/modified.

Each entry of the Transaction object is mapped through a 48 bit transaction id which is

the unix timestamp of when the transaction was generated by a client. The TransactionManager

contract also contains several state variables:

• transactionCount is the number of transactions handled by the manager so far.

• admin is the address of the system administrator.

• PM is an object containing the address of the ProfileManager contract. The meth-

ods defined in ProfileManager can be used to validate user privileges (For example,

checking user access level).

• FM is an object containing the address of the FarmManager contract. The methods de-

fined in FarmManager can be used to validate the ownership of the farms (For example,

checking if user A owns farm F).

• TM is an object containing the address of the TraceManager contract. The methods

defined in TraceManager can be used to store animal movement data.

• transactionMap is the mapping data structure that maps transaction id to Transaction

object.

Initially, the creator of the smart contract is automatically added as the admin by

the constructor function. The admin can link other contracts such as, ProfileManager,

FarmManager, and TraceManager deployed in the chain and change admins. However, ad-

mins cannot create, update, or access business transaction data; only the parties involved in

the transaction can do so. The methods in this contract are listed below:

• createTransaction() creates a new transaction and submits it into the system to

be processed by all the participants listed in the transaction. The method calling

entity must be an owner of one of the farms involved in the transaction with necessary

privileges.

152

• updateTransaction() updates the state of an existing transaction. The method call-

ing entity must be an owner of one of the farms involved in the transaction with

necessary privileges.

• getTransactionInfo() returns the contents of an existing transaction stored in the

contract. The method calling entity must be either the srcOwner or the dstOwner

listed in the transaction.

• getAnimalList() returns an array containing the tags of the animals listed in the

transaction. The method calling entity must be either the srcOwner or the dstOwner

listed in the transaction.

• getTransactionCount() returns the total number of transactions handled by the

TransactionManager so far.

• setManager() instantiates one of the three manager contract (PM, FM, TM) objects

with the Ethereum address of that respective contract deployed in the chain. The

argument managerType determines which manager to instantiate (ProfileManager

(1), FarmManager (2), or TraceManager (3)). Only an admin can call this function.

• getManager() returns the address of one of the manager contracts which is linked

to this contract. The argument managerType determines which manager the query is

about. Only an admin can call this function.

• checkEligibility() is a private helper method that validates the ownership of farms

(by calling a FarmManager method) and access privileges (by calling a ProfileManager

method) of users. This is used by other methods in this contract.

• checkAdminAccess() checks whether the current contract method calling entity has

the admin level access (i.e., is the admin) or not.

• changeAdmin() assigns a new admin given the address in the argument. Only the cur-

rent admin can call this function. Once called, if the contract transaction is confirmed,

the current admin will lose its status as admin.

153

Figure B.3: The TransactionManager contract and its associated Transaction data struc-
ture.

154

B.4 Trace Manager

This contract enables traceability in the supply chain. It provides methods that the admin

can use in urgent situations to trace the movements of targeted animals. The contract and

its associated data structure are shown in Figure B.4. The Animal structure contains all

the movement data encapsulated using the Movement structure, which has the following

components:

• srcFarm is the id of farm that has sold/ delivered the animal.

• dstFarm is the id of farm that has purchased/ received the animal.

• timeMoved is the unix timestamp when the transfer (transaction) was confirmed.

Each entry of the Movement object is mapped through an 8 bit auto-generated index in

the Animal object. The Animal structure contains the following components:

• movementMap is the mapping data structure that maps an unsigned integer index to

Movement object. The index is handled automatically and it is local to each Animal

object.

• movementCount is the total number of movement entries for an animal.

Each entry of the Animal object is mapped through a 48 bit animal id (tag) in the

TraceManager contract. The TraceManager contract contains the following state variables:

• animalCount is the number of animals handled by the Trace Manager so far.

• admin is the address of the system administrator.

• animalMap is the mapping data structure that maps animal id (tag) to Animal object.

Initially, the creator of the smart contract is automatically added as the admin by the

constructor function. The TransactionManager contract automatically uses methods from

this contract in order to add/update trace data. However, only the admin can inquire this

contract about movement data on a particular animal. The methods in this contract are

listed below:

155

• addMovementData() adds a single entry of movement data for a particular animal.

• getMovementCount() returns the total number of movements that were recorded for

a particular animal. Only an admin can call this method.

• getMovementData() returns a single entry of movement data for a particular animal

given the animal id and the index of the movement. Only an admin can call this

method.

• checkAdminAccess() checks whether the current contract method calling entity has

the admin level access (i.e., is the admin) or not.

• changeAdmin() assigns a new admin given the address in the argument. Only the cur-

rent admin can call this method. Once called, if the contract transaction is confirmed,

the current admin will lose its status as admin.

B.5 Data Aggregator

This contract provides data structures and methods using which the network administrator

can collect and manage anonymous survey data on the farming industry. The contract and

its associated Dataset structure are shown in Figure B.5. The Dataset structure has the

following components:

• dataMap is the mapping data structure that maps an integer index to byte data. The

index is handled automatically and it is local to each Dataset object.

• dataCount is the total number of data entries for a Dataset.

Each entry of the Dataset structure is mapped through an unsigned integer which is

regarded as the key of the data set. In addition to the Dataset structure, the data aggregator

has the following state variables:

• datasetCount is the number of data sets handled by the aggregator so far.

156

Figure B.4: The TraceManager contract and its associated Animal and Movement data
structures.

157

• admin is the address of the system administrator.

• datasetMap is the mapping data structure that maps an integer key to a Dataset

object.

• secretMap is the mapping data structure that maps an integer key to a confidential

access code / password (regarded as the secret).

Initially, the creator of the smart contract is automatically added as the admin by the

constructor method. The admin can add and configure new datasets, associate DataSet keys

with secrets, and retrieve stored data. The users can add entries in a dataset if they can

validate with the correct key-secret pair. This contract has the following methods:

• addData() adds a single entry of byte data for a particular dataset. The key and the

secret given in the argument determines the set and authenticates the entry.

• createDataset() creates and configures a new Dataset object. Can only be called

by the admin. The key and the secret provided in the arguments must match in the

future for user entries.

• getDataCount() returns the total number of entries that were recorded for a particular

data set. Only an admin can call this function.

• getData() returns a single entry of data for a particular dataset given the key, secret,

and the data index. Only an admin can call this function.

• checkAdminAccess() checks whether the current contract method calling entity has

the admin level access (i.e., is the admin) or not.

• changeAdmin() assigns a new admin given the address in the argument. Only the cur-

rent admin can call this method. Once called, if the contract transaction is confirmed,

the current admin will lose its status as admin.

158

Figure B.5: The DataAggregator contract and its associated Dataset data structures.

159

Appendix C

Farm Animal Database

The blockchain nodes store the smart contracts and the Ethereum transaction (should not be

confused with business transactions) database. Each contract has storage options in the form

of state variables (including objects and arrays of objects). Despite that, we do not store

raw farm data in the contracts as it would be computationally expensive to maintain, and

the owners will feel a loss of control with their data. Instead, we use a separate Relational

Database Management System (RDBMS) to store raw farm data. We used MySQL in our

test bench; however, any SQL-based DBMS can be used. In each premise running a local

farm RDBMS, there are two databases (db) with identical schema: present and archive. The

present db contains information about the animals currently owned/maintained by the farm.

The archive database is for storing historical data of the animals which existed in the farm

once but were sold. Once an animal is sent out to another farm, all its relevant data from

the present database is moved to the archive database. The new owners of the animal may

request data during the purchase or sometime in the future. However, the decision of how

long the data should be kept in the archive and what data could be shared is at the farm

owner’s (hence, data owner’s) discretion.

As already mentioned, both the present and the archive dbs contain the same structure

of tables. The db schema is shown in Figure C.1. The animals table is the root table. Each

animal is uniquely identified by the tag. The id fields in the table can vary and are only used

160

for indexing and linking data. The true animal id that remains unchanged throughout the

animal’s lifetime is the tag number which is also used by the contracts to identify animals

(animalId). The entries of the inspections, vaccines, and movements table are linked to

the animals table via the use of foreign key, animal id. In these 4 animal data tables, we

concatenate the key fields (excluding id, animal id fields) in each row entry and compute

a SHA3-224 hash of the concatenated string. This hash is stored in the last field of each

row entry. For a specific row entry, the hash is computed once and does not change even

if the animal undergoes a change. For example, a new movement of the animal results in

a new row entry for that animal in the movements table. The old entries (if any) remain

untouched. To store the cryptographic proofs of the data, we combine hashes and compute

a hash of the concatenated hashes. For each table, the hashes that are concatenated are

ordered by the primary key, and a SHA3-224 hash is computed for the string of hashes. The

resultant hash is called a table hash. We store the table hashes in the respective fields of

the data proofs table. Once again, the four table hashes in a row entry of the data proofs

table are concatenated, and a single hash is computed, which is called joint hash. This is

the top-level hash for a single farm database and is stored in the FarmManager contract of

the blockchain.

161

Figure C.1: An entity relationship diagram depicting the database tables and their relation-
ships.

162

Appendix D

Test System Configuration

The test simulation was run on a system whose configuration is described in Table D.1. We

use both parity201, and geth200 as the Ethereum clients as they support proof of authority

(PoA) (also called ‘clique’ in geth) as a consensus protocol. Both parity and geth can produce

similar results. The computational costs (gas cost) were computed by connecting to parity

nodes, while the integration tests were performed by creating a prototype running system

using geth. We ran 6 geth nodes in the same Linux system with separate data directory,

configuration file, keystore, and port numbers for the prototype system. We created a single

user account for each node: which would either take part in PoA consensus to validate and

sign blocks or deploy smart contracts and invoke contract methods. We configured 5 out of

the 6 nodes to participate in the PoA consensus (mining nodes), and node 6 was a basic full

node. We used the web-based remix202 IDE (integrated development environment) to write,

deploy, and test the smart contracts which are written in the Solidity203 language. Contract

deployment and method invocations were done from remix via web3204 by connecting to the

running geth nodes of the network via RPC (remote procedure call) ports. The prototype

system is illustrated in Figure D.1.

163

Figure D.1: The prototype running system which was used for integration tests. The 6 geth
nodes are shown connected in a P2P network. Each node is configured with unique ports
for RPC and RLPx communications. Each node has an associated user account with an
Ethereum address, as shown above. Five out of six nodes were configured as signers; the first
node was used as Admin. Remix IDE was used to communicate with the nodes.

164

Processor Core i5-3470 3.20 GHz x 4

Memory 8138 MB

Storage R/W 550/400 MB/s

Kernel Linux 4.15.0-96-generic

OS Ubuntu 18.04.4 LTS

Architecture x86-64

Parity version 2.7.2

Geth version 1.9.13

Remix version 0.10.1

Solidity compiler version 0.5.3

Consensus protocol Proof of Authority (PoA)

Step duration 5 seconds

No. of authorities (signers) 5

Table D.1: Test bench configuration

165

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Preface
	Introduction
	Background
	Network models for epidemic analysis
	Machine learning for time series prediction
	Blockchains for distributed ledgers

	Motivation
	Dissertation overview
	Contributions

	Understanding the survival of Zika virus in a vector interconnected sexual contact network
	Background
	Model formulation
	Interconnected population model
	Simulation tool

	Results
	Seasonal analysis
	Survival analysis
	Sensitivity analysis

	Discussion
	Implementation details
	Host network characterization
	Vector characterization
	Non-Markovian Gillespie algorithm
	Numerical simulation

	Code availability

	A windowed correlation based feature selection method to improve time series prediction of dengue fever cases
	Background
	Preliminaries
	Definitions
	Time series prediction of outbreaks
	Factors that affect dengue disease dynamics
	Data collection and processing
	Sequence model specifications

	Methods
	Windowing incidence data
	Time-shifted cross correlation
	Distance and prevalence metrics

	Results
	Feature selection and analysis
	Prediction performance

	Discussion

	Generation of swine movement network and analysis of efficient mitigation strategies for African swine fever virus
	Background
	Results
	Movement network
	Outbreak dynamics
	Control measures

	Discussion
	Data and models
	US swine data
	Network terminology
	Network generation
	ASFV epidemic model

	A permissioned distributed ledger for the US beef cattle supply chain
	Background
	Preliminaries
	The US cattle farm system
	Prior work and motivation
	Smart contracts and blockchain

	The proposed system
	Algorithmic procedures

	System analysis
	User privacy
	Data security
	Provenance
	Secured data aggregation
	Fairness of the system
	Reliability
	Computational costs
	Integration test

	Discussion

	Conclusion
	Summary
	Future works

	Bibliography
	Network Generation Algorithms
	Smart Contracts
	Profile Manager
	Farm Manager
	Transaction Manager
	Trace Manager
	Data Aggregator

	Farm Animal Database
	Test System Configuration

