COMPARISON of DYNAMIC and UNCONFINED COMPRESSION STRENGTH for MACHINE FOOTING DESIGN

bу

JAMES J. BRENNAN
B. S., Kansas State University, 1982

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1983

Approved by:

Major Professor

All202 578034

TABLE of CONTENTS

INTRODUCTION and PURPOSE		Page 1
LITERATURE REVIEW		2
DESIGN of EXPERIMENT		17
ANALYSIS and PRESENTATION of DATA	• •	23
CONCLUSIONS		39
RECOMMENDATIONS for FURTHER RESEARCH		40
ACKNOWLEDGMENTS		41
REFERENCES	• •	42
APPENDIX A		44
APPENDIX B		57
100000000000000000000000000000000000000		

LIST of FIGURES

		Page
(1.)	Unconfined Compression Testing Machine	
(2.)	MTS Testing Machine	. 19
(3.)	Richart's Tolerable Motion Chart	. 20
(4.)	Compression vs. Strain, #2, 20' - 22'	. 27
(5.)	Compression vs. Strain, #2, 30' - 32'	. 28
(6.)	Compression vs. Strain, #3, 35' - 37'	. 29
(7.)	Compression vs. Strain, #4, 5' - 7'	. 30
(8.)	Compression vs. Strain, #9, 20' - 22'	. 31
(9.)	Compression vs. Strain, #12, 20' - 22'	. 32
(10.)	Compression vs. Strain, #13, 20' - 22'	. 33
(11.)	Compression vs. Strain, #23, 10' - 12'	. 34
(12.)	Compression vs. Strain, #26, 30' - 32'	. 35

LIST of TABLES

		Page
(1.)	Limits of Tolerance	23
(2.)	Static and Dynamic Strength Comparison	. 36
(3.)	Dynamic Strength for Different Safety Factors	. 37
(4.)	Densities and Water Contents	38

THIS BOOK CONTAINS **NUMEROUS PAGES** WITH THE ORIGINAL PRINTING BEING SKEWED DIFFERENTLY FROM THE TOP OF THE PAGE TO THE BOTTOM.

THIS IS AS RECEIVED FROM THE CUSTOMER.

INTRODUCTION and PURPOSE

In the design of machine foundations, the important factors to consider are the allowable deflections of the machines, and the natural frequency of the spil. Although there is argument as to the applicability of the present theories used to design machine foundations, the soil properties used in these theories are difficult to obtain accurately.

Since the only means of determining these soil properties necessary for the design of machine footings is with elaborate testing equipment, many soil investigation firms are excluded from machine foundation engineering. This study is designed to explore the possibility of approaching the design of machine footings by using a simplified model of field conditions and comparing these results with that obtained by a simple laboratory test. With this comparison, an allowable bearing capacity will be obtained directly.

LITERATURE REVIEW

Development of a rational approach to the design of machine foundations began with Eric Reissner and his colleagues in Germany in the 1930's. The first English translation on the subject did not appear until 1944, forming the basis of the so called elastic half-space solution (11).

The formulation of the problem was such that the stresses and displacements were sought for a rigid, massless, circular footing resting on a semi-infinite, homogeneous, isotropic, perfectly elastic soil mass. By use of Fourier-Bessel integral methods, a useful expression for the torque, T, was obtained as

$$T = \frac{16}{3}\mu r_0^3$$

where

= modulus of rigidity of the soil

r_o= radius of footing

= angle of rotation of footing (expressed in radians)

The next exhaustive work on the subject did not appear until 1955 at which time Arnold, Bycroft, and Wharburton (1) considered a "rigid circular body on a homogeneous elastic medium of infinite surface area and constant depth which could be finite or infinite (1)."

The paper considered four modes of vibration: vertical translation, torsion, horizontal translation, and rocking. The investigation revealed that the amplitude of response to the vibrations were functions of f_1 and f_2 which in themselves were comples functions of the shearing modulus and poisson's ratio of the soil.

The equations for the vertical translation of a semi-infinite medium were as follows: for the displacement of the plate in the vertical direction, w,

$$w = \frac{P_z}{\rho r_o} (f_1 \cos pt - f_2 \sin pt)$$

and the amplitude of vibration, A,

$$A = \frac{P_{z}}{\mu r_{o}} (f_{1}^{2} + f_{2}^{2})^{\frac{1}{2}}$$

where

 $\mathbf{P}_{\mathbf{Z}}^{\text{=}}$ amplitude of force in vertical direction

µ≈ modulus of rigidity

 $r_0 \approx \text{radius of footing}$

p = circular frequency of force applied to
 footing

In 1959, Bycroft (2) advanced a paper which showed that the elastic half-space theory could be applied with reasonable accuracy to out of balance machines.

In 1962, Hsieh (6) popularized the lumped mass system which proposed that a vibrating footing could be considered a mass-spring-dashpot system. The mass of the system was composed of the mass of the machine, the mass of the foundation, and the mass of a certain portion of the soil which is moving with the foundation. No suggestions were given as to how to treat the dashpot. The spring had as its constant the modulus of subgrade reaction.

The paper advanced mathematical expressions for calculating the amplitude of vibration of foundations using the lumped mass system and also expressions to determine the weight of the foundation necessary to reduce the amount of oscillations. The allowance made

THIS BOOK CONTAINS NUMEROUS PAGES WITH DIAGRAMS THAT ARE CROOKED COMPARED TO THE REST OF THE INFORMATION ON THE PAGE. THIS IS AS RECEIVED FROM CUSTOMER.

for a dynamic load was also proposed to be designated as a percentage of the static load.

The lumped mass system proved to be exact as long as the ground was considered as semi-infinite, isotropic, linearly elastic, and possessed no internal damping.

The general equation describing the amplitude of vertical vibration of a foundation was

$$A = \frac{Z}{\left[(K_{vs} - \omega^2 M)^2 + (\omega R_v)^2 \right] \cdot 5}$$

where

A = amplitude

Z = force

ω = frequency

M = mass of system

K_{vs}= spring constant

$$= \frac{4 \text{ G.r}_0}{(1 - \nu)}$$

with

G = shear modulus

ro= radius of footing

ν = Poisson's ratio

The expression for the maximum amplitude of oscillation, A_{O} , was

$$A_0 = \frac{.41 \text{ b}}{(\text{b} + 2)^{\frac{1}{2}}} \frac{\epsilon}{\text{M}}$$

where & is a constant defined by

$$z = \epsilon \omega^2$$

and b is the so called mass ratio defined by

$$b = \underline{M}$$

with p as the mass density of the soil.

The total dead weight necessary to prevent uplift with applied amplitude of vibration A_{o} is W. Noting that W = Mg then Hsieh gives the following expressions:

for
$$\mathbf{v} = \frac{1}{2}$$

$$W = \frac{0.41 \text{ b g } \mathbf{E}}{(b+2)^{\frac{1}{2}} \text{ A}_{0}}$$
for $\mathbf{v} = \frac{1}{4}$

$$W = \frac{0.52 \text{ b g}}{0.42 + (b+1)^{\frac{1}{2}} \text{ A}_{0}} \mathbf{E}$$
for $\mathbf{v} = 0$

$$W = \frac{0.61 \text{ b g}}{0.24 + (b+.5)^{\frac{1}{2}} \text{ A}_{0}} \mathbf{E}$$

g being the gravitational constant.

Fichart (12) in 1962 prepared a paper which actually presented a method of designing machine foundations; not by designing a static foundation and then checking it for dynamic loads.

In this paper, by way of introduction, he defined three waves which are induced in soil by impact loads. There are horizontal waves of volume change, designated P-waves or compression waves. The wave of distortion of constant volume is the shear or S-wave. And a surface wave exists called the Rayleigh or R-wave.

Richart also compiled the work of other researchers to form a graph of allowable amplitude of vibrations versus frequency. Richart advocated that in the absence of specific instructions from the machine manufacturer, this chart could be used to find the limit of the vibration amplitude for a particular frequency.

This paper also formally defined resonance as encountered in soil as "the condition of vibration corresponding to a large increase in amplitude."

However, the main point of this paper was the development of curves to determine the resonant frequency of the soil and the maximum

amplitude of oscillation for an idealized equivalent of the actual machine foundation. To use these curves the designer needs to know the unbalanced forces and the operating frequencies of the machine as well as approximate values of the shear modulus, poisson's ratio, and the density of the soil. The determination of the shear modulus and poisson's ratio is difficult at best, but knowing these parameters, the designer could choose the soil contact area and the necessary static weight of the footing to control resonant frequency and amplitude of oscillation.

In the following year, Hall and Richart (5) developed a machine and a complex testing procedure to determine the shear modulus of a soil. This testing equipment is not widely used and therefore limits many firm's participation in the design of machine foundations.

Lysmer and Richart (8) in 1966 developed several expressions from the elastic half-space model. For steady-state motion:

where

\$ = deflection

Q = vertical load

K = spring constant

ω = frequency

 $\begin{array}{ccc} t = time \\ \\ \text{M} = \int \end{array}$

 $M = \left(\frac{F_1^2 + F_2^2}{(1 - \frac{m\omega^2}{K} F_1)^2 + (\frac{m\omega^2}{K} F_2)^2}\right)^{\frac{1}{2}}$

with

 F_1 and F_2 = functions of f_1 and f_2

m = mass of system

For the case of uniform periodic loading:

$$S = -\frac{i s p_o e^{i\omega t}}{\omega (\rho^G)^{\frac{1}{2}}}$$

with

p = vertical load

and

$$s = \left(\frac{1-2\nu}{2(1-\nu)}\right)^{\frac{1}{2}}$$

The authors then introduced a simplified analog solution which was easier to apply but gave only limited agreement between theory and practice. The equations are as follows:

$$S = -\frac{Q_0}{m\omega^2} e^{i\omega t}$$

For resonant frequency (fr):

$$f_r = \frac{V_s}{r_0} \frac{(B - .36)^{\frac{1}{2}}}{B}$$

where

V_s = shear wave velocity

$$B = \frac{1 - \nu}{\mu}$$

and the resonant amplitude (A_r) :

$$A_r = \frac{Q_o}{K} \cdot \frac{B}{.85(B - .18)^{\frac{1}{2}}}$$

Funston and Hall (3) investigated the case of damping as applicable to the elastic half-space and the simplified lumped system methods of analysis. Damping is considered to be the loss of wave motion as the wave moves away from its point of origin. There are two types of damping; internal and geometric. Geometric damping is just the loss of wave amplitude due to distance from point of origin. Internal

damping is loss of wave amplitude due to energy losses as soil particles are required to slide past each other. It was found that the elastic half-space model could not account for geometric damping but the lumped system could due to its approximations.

In 1967, shortly after the Funston and Hall (3) investigation, Richart and Whitman (13) compared actual footing vibration tests to the elastic half-space theory. They found that there was a very rough correlation between the theory and actual field results for accelerations less than 0.5g and oscillations less than 0.1 mil.

Whitman and Richart (16), also in 1967, published a comprehensive paper on the design of dynamically loaded foundations. One of the first paragraphs of the paper analyzed the state-of-the-art elegantly:

"The design of foundations subjected to dynamic loads is a trial and error procedure. Initial dimensions are selected considering such factors as the dimensions of the equipment or structure to be supported, the space available for the foundation, and the normal static bearing stress. The trial design must be analyzed to determine its response to the design dynamic loading, and then be adjusted and reanalyzed if necessary."

Also included in the paper is a formal explanation of the effect of dynamic loading on soils as "... sustained vibratory loads or repeated impacts can cause the internal structure of soil to change, causing settlements or loss in strength."

The design criteria for machine foundations listed typical operating frequencies of 200 - 12000 cpm, (3.33 - 200 Hz), with maximum velocities of 1 inch/second and maximum accelerations of 0.5g.

The lumped system was the design technique used exclusively in this paper. The two types of damping were listed as "the loss of energy through propagation of waves away from the vicinity of the footing," i.e. geometric damping and "the internal energy loss within soil due to hysteresis and viscous effects," i.e. internal damping.

To deal with geometric damping in footing design, the mass ratio was defined as

$$b = \frac{m_0}{r_0^3}$$

for translation, with

m = mass of foundation and machinery

$$\rho$$
 = density

r = radius of footing

and for rotation

$$b' = \frac{I_0}{\rho r_0^5}$$

with I_{0} being the dynamic moment of inertia of foundation and machinery.

Equations were also given to convert a rectangular footing into an equivalent circular footing as follows:

for translation
$$r_0 = \left(\frac{B L}{\pi}\right)^{\frac{1}{2}}$$
 for rocking
$$r_0 = \left(\frac{B L}{3 \pi}\right)^{\frac{1}{4}}$$

for twisting
$$r_0 = \left(\frac{B L (B^2 + L^2)}{6 \pi}\right)^{\frac{1}{4}}$$

with B = footing width

L = footing length.

Charts were then constructed which gave geometric damping values as functions of the mass ratio.

An equation for internal damping was given as

damping =
$$4.5 \, \gamma_{xz}^{0.2} \, \sigma_{o}^{-0.5}$$

with

 $\sigma_{\rm o}$ = confining pressure

In the absence of reliable internal damping data, the total damping was to be taken as:

the geometric damping + .05

This paper departed from accepted practice in that it argued for the exclusion of the mass of soil in motion under the footing as part of the mass ratio.

The paper also listed four ways of obtaining spring constants for the lumped mass system. The first was with laboratory testing, again unreliable due to ignorance of the shear modulus and Poisson's ratio. The second was by plate bearing test, next was vibration-tests, and finally by determining the elastic subgrade modulus and using charts.

Equations were also given for the spring constants depending on the type of motion and footing configuration, as summarized below:

circular footings

motion	formula
vertical	$K_{z} = \frac{4 \text{ G r}_{0}}{1 - \nu}$
horizontal	$K_{x} = \frac{32 (1 - v) G r_{o}}{7 - 8v}$
rocking	$K = 8 G r_0^3 = \frac{3}{3 (1 - \nu)}$
torsion	$K = \frac{16}{3} G r_0^3$

rectangular footings

motion
$$K_{Z} = \frac{G}{1 - \nu} \beta_{Z} (B L)^{\frac{1}{2}}$$
horizontal
$$K_{X} = 2 (1 + \nu) G \beta_{X} (B L)^{\frac{1}{2}}$$
rocking
$$K = \frac{G}{1 - \nu} \beta_{X} B L^{2}$$

where β = a constant depending on motion type

In 1968, Karasudhi, Keer, and Lee (7) advanced a paper using Fredholm integral equations designed to prove mathematically that the motion of machine foundations was a complex function of the different properties of the soil.

McNeill (9) presented the most comprehensive work to date in 1969 at an international soil mechanics conference. The paper stated specifically that the design of machine foundations had one goal - to limit the motions of the machine. He also stated that the problems of design fell into two categories; "the response of the machine's own foundation;" and "the isolation design of another foundation which feels the first machine's motions."

He further stated:

"Many machine foundations today are designed by nonrational rules-of-thumb which are furnished by some machine manufacturers, found in many mechanical design papers and handbooks, or handed from father to son."

There are two types of load: the known load, such as from impact hammers or pistons; and the unknown load due to a machine imbalance.

The basic analytical tools necessary to analyze harmonic motion are: the natural frequency (f_n) defined by

$$f_n = \frac{1}{2\pi} \left(\frac{\text{stiffness}}{\text{inertia}} \right)^{\frac{1}{2}}$$

and the damped natural frequency f_d ;

$$f_d = f_n (1 - D^2)^{\frac{1}{2}}$$

where D is the damping factor defined by

$$D = \frac{c}{2((stiffness)(inertia))^{\frac{1}{2}}}$$

with c given by figures included in the paper. The operating frequency of the machine was designated by \mathbf{f}_{o} , and the frequency of maximum response \mathbf{f}_{fd} was

$$f_{fd} = \frac{f_n}{(1 - 2D^2)^{\frac{1}{2}}}$$

The maximum amplitude, Δ_{max} , was then

$$\Delta_{\text{max}} = \frac{R_{\text{fd}}}{2D (1 - D^2)^{\frac{1}{2}}}$$

where R_{fd} is called the machine ratio which is a function of each case of motion. The frequency of maximum response for a constant force, f_{cf} , is

$$f_{cf} = f_n (1 - 2D^2)^{\frac{1}{2}}$$

and the associated maximum response is

$$\Delta_{\text{max}} = \frac{R_{\text{cf}}}{2D \left(1 - D^2\right)^{\frac{1}{2}}}$$

with $R_{\mbox{\footnotesize cf}}$ being the machine ratio for a constant force.

For nonharmonic analysis, special figures were given, while Richart's (5) tolerable motion chart was given as a good design guideline.

The velocities for the different types of earth waves were given as:

$$c_{p} = \left(\frac{E}{\rho} \frac{1 - \nu}{(1 - 2\nu)(1 + \nu)}\right)^{\frac{1}{2}}$$

$$c_{s} = \left(\frac{C}{\rho}\right)^{\frac{1}{2}}$$

S-wave

R-wave

$$c_r = c_s f(v)$$

and finally the laboratory "soil bar" wave c,

$$c_b = ((E) (\rho)^{-1})^{\frac{1}{2}}$$

where $f(\pmb{\nu})$ simply stands for a function of Poisson's ratio.

The properties required for design of dynamic foundations are shear modulus and Poisson's ratio. The determination of these properties can be done by two laboratory techniques: the wave propagation, which is too complex and uncertain; and vibration techniques. The determination of the natural frequency \mathbf{f}_n can be accomplished in three ways.

CASE I. Both ends of sample free or fixed.

$$f_n = \frac{n}{2 L} c_w$$

CASE II. One end fixed, the other end free.

$$f_n = \frac{2n - 1}{4 L} c_w$$

CASE III. One end fixed, while the other end has a weight of ${\rm W}_{\rm m}$ with inertia of ${\rm I}_{\rm m}$ attached.

$$\left(\frac{2 \cdot r \cdot L}{c_w} \cdot f_n\right) \left(\tan \frac{2 \cdot r \cdot L}{c_w} \cdot f_n\right) = \frac{W_b}{W_m} \cdot \text{or } \frac{I_b}{I_m}$$

where

n = integer dependent upon the mode of vibration

L = length of sample

 $c_w = velocity of generated wave$

 W_{h} = weight of bar of soil

 I_b^{-} inertia of bar of soil

Field tests, such as wave propagation and model measurements, can also be used to determine a soil's dynamic properties.

Finally, the paper advocated taking internal damping equal to 5% of geometric damping in the absence of other data.

The method of design advocated in the paper was the elastic half-space model with its assumptions of a circular foundation at the ground's surface which is stiff enough to track the soil's motions sitting on elastic, homogeneous, isotropic soil.

The design analysis of the footings was to be done using the charts included in the paper. The paper stressed that for layered soil, or embedded footings, the elastic half-space solution was unapplicable. The theory could not handle coupled motions, and deep pile foundations were a last resort, but when used, the piles should be bantered.

The paper also briefly mentioned isolation design as falling into two categories: active, where a massive footing is used; and passive, where a barrier is actually created.

Finally, after a machine is in operation and the footing fails due to vibration, there are three corrective measures: to alter the foundation configuration, to alter the subgrade properties, and to alter the machine loads.

Novak (10) in 1970 promptly called the applicability of the elastic half-space theory in doubt when he compared the theory with experiments and showed that the theory led to a large underestimation of the resonant amplitudes.

Richart, Woods, and Hall (14) promptly submitted a paper tracing the history of the elastic half-space theory, defended its applicability, and extended Lysmer and Richart's (8) work to include varying force

machines as such: for the resonant frequency of a varying force (f_{mr}) ,

$$f_{mr} = \frac{V_s}{2 \pi r_o} \left(\frac{.9}{B_z - .45} \right)^{\frac{1}{2}}$$

where

$$B_{z} = \frac{1 - \nu}{\mu} \frac{m}{\rho r_{o}^{3}}$$

with

m = the mass of the footing and machine

The varying force $Q_{_{\rm O}}$ is defined as

$$Q_0 = m_e e \omega^2$$

where

e = eccentricity

The rotating force amplitude A_{zm} , was

$$A_{zm} = \frac{m_e \ e}{m}$$
 $\frac{B_z}{85 \ (B_z - .18)^{\frac{1}{2}}}$

The constant force resonant frequency (f_m) was rewritten slightly to become

$$f_{\rm m} = \frac{1}{2 \, \pi} \quad \frac{V_{\rm s}}{r_{\rm o}} \left(\frac{B_{\rm z} - .36}{B_{\rm z}} \right)^{\frac{1}{2}}$$

while the constant force amplitude (A_m) was

$$A_{\rm m} = \frac{B_{\rm z}}{.85 (B_{\rm z} - .18)^{\frac{1}{2}}} \left(\frac{Q_{\rm o} (1 - \nu)}{4 \text{ G r}_{\rm o}} \right)$$

In 1971, Weismann (15) specifically modified the half-space equations to deal with torsion.

Finally, in 1979, Gazetas (4) qualified the elastic half-space solution with the following:

"The design of machine foundations is a trial-and-error procedure involving three interrelated steps: (1) Establishment of desired foundation performance ("failure") criteria; (2) determination of magnitude and characteristics of the dynamic loading; and (3) estimation of the anticipated translational and rotational motions of the machine-foundation-soil system."

"It is concluded that if the foundation has a high mass ratio and does not operate at very low frequencies, small errors in modeling the soil are unimportant and one can safely base the design on available half-space solutions."

Gazetas then gave an equation for finding the amplitude of motion ${\bf \hat{\zeta}}_{_{\rm O}}$ of a massive machine which was infinitely long as

$$\hat{\zeta}_{o} = \frac{\zeta_{o} G}{P_{o}} \left[\frac{f_{1}^{2} + f_{2}^{2}}{(1 - b a_{o} f_{1})^{2} + (b a_{o} f_{2})^{2}} \right]^{\frac{1}{2}}$$

with

 ζ_{o} = amplitude of machine motion

P_o = force amplitude

$$a_0 = \frac{B}{V_s}$$

while a is the frequency factor. To conclude his paper, Gazetas then summarized by stating that the elastic half-space solution should be used when dealing with rotating machinery.

DESIGN of EXPERIMENT

The experimental program was designed to equate the unconfined compression test with a dynamic load test to determine how the unconfined compression test results could be used for machine foundation design. This would be of great value to consulting engineers since the unconfined compressive strength is commonly run by all commercial testing labs at low costs while vibratory tests are difficult to obtain and very expensive.

The testing program was limited at the outset to twenty-one samples of silty clay. These samples, which normally cost fourteen dollars apiece, were obtained by Midcontinent Engineering and Testing (MET) at a site in Kansas City, Missouri, at no cost to the University. The silty clay samples obtained are typical of the altered loess which covers very large areas of the Upper Midwest. Silty clay was a good material to work with since sand requires a confining pressure such as in a triaxial shear machine, and pure clay is very sensitive to changes in frequency.

The design of the experiment consisted of testing a portion of each sample by unconfined compression procedures (ASTM - D-2166-66, 72) with a machine similar to that shown in Figure 1. A remaining portion was tested by dynamic loading using an MTS Model 483.01, System 90332, see Figure 2, which has no standard ASTM test method. All samples used came from Shelby tubes, having a diameter of $2^{7}/_{8}$ inches, (7.30 cm).

For the MTS machine testing, Richart's tolerable motion chart (12) was used, see Figure 3, to select a frequency range and amount of displacement. The most delicate recording range on the machine was used since even then, for most of the frequencies, the maximum displacement was in fractions of squares on the graphing paper.

THIS BOOK
CONTAINS SEVERAL
DOCUMENTS THAT
ARE OF POOR
QUALITY DUE TO
BEING A
PHOTOCOPY OF A
PHOTO.

THIS IS AS RECEIVED FROM CUSTOMER.

Figure 1. Unconfined Compression Testing Machine

Figure 2. MTS Machine

FIG. 2.—ALLOWABLE VERTICAL VIBRATION AMPLITUDE FOR A PARTICULAR FREQUENCY OF VIBRATION

Figure 3. Richart's Tolerable Motion Chart

Using this criteria, and looking at Table 1 which was composed from Pichart's chart, 5 Hz was selected as the testing frequency since this was in the range of machine operating frequencies (3.33 - 200 Hz). This frequency also had as its maximum displacement .03", which is ten squares on the MTS graph paper using the most delicate recording setting.

Samples were loaded onto the MTS machine, adjusting the height of the head of the machine so that the testing being performed was in the range of the plotter. The machine was then zeroed and put into the run program mode using stroke control. The span was increased until the proper displacement was indicated on the plotter. This test was run an optimum number of three times per sample in order to obtain a good average of the force required to deform the sample the specified amount (.03") at 5 Hz.

A half-sine function was chosen as the loading function since this most closely resembled a footing in place. A full sine function would have been inappropriate since under the premise of this experiment such a loading function would have been a footing jumping clear of the ground and imparting an impact load.

Finally, there was concern about the length of sample being worked with would not be long enough to allow full waves to form in the sample. This length would not give any allowance for damping either.

However, it was decided that the waves that would be generated would be reflected back into the sample by the steel plates, and with the absence of damping, the testing condition would be conservative.

Thus, the condition being worked with could be likened to a machine operating at low frequencies above bedrock at a shallow depth.

A condition where the elastic half-space solution breaks down totally according to Gazetas (4).

Any variability between samples would be non-consequential since the dynamic strength of the sample was compared with its unconfined compressive strength.

By reading the force required to deform the samples the specified amount, the bearing capacity of the soil for the specified frequency-displacement characteristic was obtained.

This bearing capacity was then compared with the bearing capacity from the unconfined compression test.

TABLE 1. LIMITS of TOLERANCE

Frequency (Hz)	Displacement (inches)	cycles/minute	Squares on plotting paper *
1.67	.1	100	33.33
5	.03	300	10.0
16.67	.0095	1000	3.16
33.33	.0047	2000	1.57
50	.002	3000	.667
83.3	.0007	5000	.233
166.67	.00018	10000	.06

^{*} using the .5% plotting range

ANALYSIS and PRESENTATION of DATA

Since many of the samples available for use in this study were of only sufficient length for one test, use was made of unconfined compression data and results furnished by either Midcontinent Engineering and Testing or by the Advanced Soil Testing class, spring 1983, whenever possible. The data furnished from these sources appears on sheets marked with the MET logo. Nine unconfined compression tests are original data and are presented as such. For the information furnished by either MET or the Advanced Soils Testing class, see Appendix A.

By observing an unconfined compression test data sheet, as in Appendix B, one may follow how data is compiled.

Columns one and three are read directly during the test as according to the ASTM procedure. Column two is compiled by dividing column one by the original length of the sample being tested.

Column four is obtained by multiplying column three by .31 in this test case.

Column five is the original area of the specimen divided by the quantity of one minus column two.

Column six is column four divided by column five.

The mathematical formulas are shown on the data sheets.

Column six versus column two is then graphed, multiplying column two by one hundred for convenience. The peak of this graph is the ultimate strength, $\mathbf{q}_{\mathbf{u}}$. The graphs for nine unconfined compression tests follow this discussion.

By referring to an MTS data sheet, in Appendix C, it is seen that the data was much easier to use in this test. The horizontal axis is the displacement axis. With a machine setting of .5% on the

plotter, each small square is .003 inches (.0762 mm). The vertical axis is the load axis, again with a plotter sensitivity of .5%, each small square is 10 pounds (44.5 newtons).

During the test, the span was increased until the horizontal distance on the plotter was ten squares from the starting point. When the vertical distance had stabilized at this point, the loading was ceased. The vertical distance from the original point was then determined and multiplied by ten to give the load on the soil. This load is defined herein to be the "dynamic strength," $Q_{\rm d}$.

Table 2 was constructed as follows. A gage length of 5 inches (12.7 cm) was selected. For the required specimen deformation of .03 inches (.762 mm), the corresponding strain was .006. The length of each individual dynamic specimen was then multiplied by .006 to find the required deformation. This deformation was found on the MTS data sheet, and the corresponding load determined. This load was then divided by an area of 6.53 inches² (421 cm²) which is the original area divided by one minus the strain. Since there was an optimum number of three trials per specimen, the load which was used was an average of the three. This procedure gave Q_d, the "dynamic strength."

The corresponding static unconfined compression strength at a .006 strain level was read directly from the compression versus strain curves. This was designated as $q_{.03}$. The ultimate unconfined compression strength, q_u , is the peak of the compression versus strain curve.

The ultimate strength was divided by the dynamic strength, $\mathbf{q}_{\mathbf{u}}/\mathbf{Q}_{\mathbf{d}}$, to see what sort of a "safety factor" would be used. There proved to be a wide scatter of points with a mean of 4.32, a standard

deviation of 3.18, and a coefficient of variation of 73.6%.

The ultimate strength was then divided by the compressive strength at .006 strain, $q_u/q_{.03}$, to see if there would be a corresponding manner of scattering comparing a static test to a static test. The mean of this set of figures was 4.53, with a standard deviation of 2.15, and a coefficient of variation of 47.6%.

The dynamic strength was then divided by the static strength at .006 strain level, $Q_{\bf d}/q_{.03}$, to determine if under identical strains which type of loading showed a higher "strength." The mean of this set of figures was 1.28, the standard deviation was .74, and the coefficient of variation of 57.8%.

Table 3 is a comparison of the dynamic strength obtained by using different safety factors on the unconfined compressive strength.

An asterisk indicates the computed "dynamic strength" is less than the tested "dynamic strength." The row below the list of borings is the percent of time the "safety factor" yields a dynamic strength value below the tested value. The bottom row lists the percent increment between consecutive safety factors.

Table 4 lists the densities and water contents of the samples.

The samples which did not prove to be acceptable for a safety factor of six were checked for similarities. The depths of the samples were checked and found to be unrelated.

The densities were next compared and found to bary between 89.5 and 105.7 pounds/ft³, (1434 to 1693 kg/m³.) This was well within the acceptable range so it was discounted as a factor.

The natural water contents were next checked and found to range between 22.5 to 23.3 percent. Again this was discounted as a factor due to being well within the range of acceptable tests.

Finally, the lengths of the samples were next compared and found to have no relevance on the safety factor.

Figure 4.
Compression vs. Strain
#2, 20' - 22'
James Brennan
6/21/83

Figure 5.
Compression vs. Strain
#2, 30' - 32'
James Brennan
6/21/83

Figure 9.
Compression vs. Strain
#12, 20' - 22'
James Brennan
6/21/83

Figure 11.
Compression vs. Strain
#23, 10' - 12'
6/21/83

TABLE 2. STATIC and DYNAMIC STRENGTH COMPARISON

Qd/9.03	28.5.3.0 N. 2.4.3.88.8.3.3.0 N. 2.5.1.1.1.2.3.0 N. 2.5.2.3.5.1.1.1.2.3.0 N. 2.5.2.3.5.1.1.1.1.2.3.0 N. 2.5.2.3.0 N. 2.5.2.3.	1.28 .74 57.8%
60°b/nb	20.00. 20.00. 00. 00. 00. 00. 00. 00. 00	4.53 2.15 47.6%
9/n _p	5.2.4.9.1.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	4.32 3.18 73.6%
9 ¹⁰	2.5.2.1.1.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.	
q.03 (1)	3857588554355888558883	
(1)	22.28 22.28 22.28 22.28 22.28 22.28 22.28 23.25 25.28 26.28	
Boring #, Depth ft. (m)	22 22 24 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7	mean standard deviation coefficient of variation

(1) Values obtained at a strain of 0.6% corresponding to a 0.03 inch deformation in a 5 inch gage length.

NA - not available

All values shown are in tons/ft2.

1 foot is .3048 meters. 1 ton/ $_{\rm ft}$ 2 is 96487 newtons/ $_{\rm m}$ 2

	TABLE	3. DYNAM	IC STRENGTH	for DIFFER	DYNAMIC STRENGTH for DIFFERENT SAFETY FACTORS	FACTORS		
Boring #, Depth ft.	(m)	3.0	3.5	Safety Factors 4.0 Q _d tsf	tors $\mu.5$ tsf $(N/_{\rm m}^2)$	_	5.0	0.9
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		11. 8.88 8.45 8	5.403 4 5.41, 4.45 5.45 5.45 5.45 5.45 5.45 5.45 5.4	11 25,24,21,24,21,24,24,24,24,24,24,24,24,24,24,24,24,24,	11		1.0.1.4.2.4.8.8.1.0.2.0.0.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0	***************************************
Percent of time acceptable	52	52.3	61.9	61.9	66.7	2	71.4	81.0
Increase in percent time acceptable	of	9.6	0	<i>រ</i>	4.8	4.7	9.6	
1 foot 1s .3048 meters. 1 $ton/f_{ m t}^2$ is 96487 newt	48 meters. 96487 newtons/m ²							

* means acceptable

TABLE 4. DENSITIES and WATER CONTENTS

Boring #, Depth ft. Lent Dyna Samp (inc	ımic	Water Content %
2 20 - 22 5 1 2 30 - 32 5 5 2 32 - 34 5 3 3 5 - 7 5 1 3 10 - 12 3 3 3 35 - 37 4 1 4 10 - 12 4 1 9 10 - 12 5 1 10 - 12 5 1 20 - 22 5 1 12 20 - 22 5 1 13 20 - 22 2 5 1 13 20 - 22 2 5 1 13 20 - 22 2 5 1 13 20 - 22 4 1 13 30 - 32 4 3 16 15 - 17 6 3 16 15 - 17 6 3 17 20 - 22 4 7 18 20 - 22* 5 1 21 20 - 22 5 5 1 22 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3/8	23.3 23.6 18.2 22.2 32.2 25.9 30.9 24.1 25.1 23.8 21.7 23.0 23.5 23.3 18.7 22.8 25.7 22.8 25.7 22.8

^{*} were not acceptable with a safety factor of 6

¹ foot is .3048 meters. 1 pcf is 16.018 kg/ $_{\rm m}$ 3

¹ inch is 2.54 cm.

CONCLUSIONS

Table 2 shows that soil behaves in a similar manner as any other material in that at identical strains, soil can withstand a higher dynamic load than it can a static load.

For the testing conditions described herein, there seems to be evidence that using a safety factor of six will result in a safe allowable dynamic bearing capacity 81 percent of the time using the unconfined compression test as a standard.

The study presented herein hopefully suggests a starting point for the correlation of unconfined with dynamic strength. The work indicated that at low frequencies on a silty clay material, the minimum safety factor to be used would be six. Further research is necessary in this area before anything definitive can be stated.

RECOMMENDATIONS for FURTHER RESEARCH

A beginning has been made on the design of machine foundations using simple testing methods and not relying on sophisticated, and possibly misleading, testing procedures.

The next step of the research should try to show an actual relationship between the unconfined compressive strength and the bearing capacity actually used in the field on successful machine foundations.

This should be accompanied by extensive laboratory testing of different type material specimens at different frequencies.

Identical samples should be obtained so that a statistical analysis could be performed to determine the typical scatter from an unconfined compression test. Identical samples would also be needed so that a statistical analysis of the typical scatter from the dynamic testing could be determined.

A literature review should be done in order to ascertain the variability of the shear modulus tests now being performed.

Finally, the sensitivity of the MTS machine should be improved so that other frequencies can be tested other than 5 Hz. All this testing requires a large number of samples so that the tests will have statistical significance.

This work will allow a more precise safety factor to be used, which in turn will appreciably assist in machine foundation design.

ACKNOWLEDGMENTS

I would like to thank Dr. Cooper for willingly answering my questions when Prof. Williams was not available.

Dr. Swartz should also be recognized for his willing devotion of time to my efforts.

I would like to thank Midcontinent Engineering and Testing and the Advanced Soil Testing class, spring]983, for the use of their test data.

I would like to recognize Prof. Williams for being a constant source of inspiration.

Finally, I salute Dr. Henry Beck, who agreed to be on my committee, and carefully proofread my manuscript.

REFERENCES

- 1. Arnold, R.N., Bycroft, G.N., and Wharburton, G.B., "forced Vibrations of a Body on an Infinite Elastic Solid," <u>Journal of Applied Mechanics</u>, Transactions of the American Society of Mechanical Engineers, Vol. 77, 1955, pp. 391 401
- 2. Bycroft, G.N., "Machine Foundation Vibration," <u>Proceedings of the Institution of Mechanical Engineers</u>, Vol. 173, Number 18, 1959, pp. 469 473
- 3. Funston, N.E., and Hall, W.J., "Footing Vibrations with Nonlinear Subgrade Support," <u>Journal of the Soil Mechanics and Foundation</u>
 <u>Division</u>, ASCE, Vol. 93, SM5, Sept., 1967, pp. 191 213
- 4. Gazetas, G., and Roesset, J.M., "Vertical Vibration of Machine Foundations," <u>Journal of the Geotechnical Engineering Division</u>, ASCE, Vol. 105, GT 12, Dec., 1979, pp. 1435 1455
- 5. Hall, W.J., and Richart, F.E., Jr., "Dissipation of Elastic Wave Energy in Granular Soils," <u>Journal of the Soil Mechanics and Foundation Division</u>, ASCE, Vol. 89, SM 6, Nov., 1963, pp. 27 57
- 6. Hsieh, T.K., "Foundation Vibrations," <u>Proceedings</u>, Institution of Civil Engineers, Vol. 22, London, England, 1962, pp. 211 226
- 7. Karasudhi, P., Keer, L.M., and Lee, S.L., "Vibratory Motion of a Body on an Elastic Half Plane," <u>Journal of Applied Mechanics</u>, Vol. 35, Series E, No. 4, 1968, pp. 697 705
- 8. Lysmer, J., and Richart, F.E., Jr., "Dynamic Response of Footings to Vertical Loading," <u>Journal of the Soil Mechanics and Foundation Division</u>, ASCE, Vol. 92, SM 1, Jan., 1966, pp. 65 91
- 9. McNeill, R.L., "Machine Foundations: The State of the Art," Proceedings of Specialty Session 2, Seventh International Conference of Soil Mechanics and Foundation Engineering, Mexico City, Mexico, Aug., 1969, pp. 67 100
- 10. Novak, M., "Prediction of Footing Vibrations," <u>Journal of the Soil Mechanics and Foundation Division</u>, ASCE, Vol. 196, SM 3, May, 1970, pp. 837 861
- 11. Reissnar, E., and Sagoci, H.F., "Forced Torsional Oscillations of an Elastic Half-Space," <u>Journal of Applied Physics</u>, 1944, pp. 652 654
- 12. Richart, F.E., Jr., "Foundation Vibrations," <u>Transactions</u>, ASCE, Vol. 127, Part 1, 1962, pp. 863 898
- 13. Richart, F.E., Jr., and Whitman, R.V., "Comparison of Footing Vibration Tests with Theory," <u>Journal of the Soil Mechanics and</u> Foundation Division, ASCE, Vol. 93, SM 6, Nov., 1967, pp. 143 169

- 14. Richart, F.E., Jr., Woods, R.D., and Hall, J.R., Jr., "Theories for Vibrations of Foundation on Elastic Media," <u>Vibrations of Soils and Foundations</u>, 1st ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1970, pp. 194 212
- 15. Weissmann, G.F., "Torsional Vibrations of Circular Foundations," <u>Journal of the Soil Mechanics and Foundation Division</u>, ASCE, Vol. 96, SM 9, Sept., 1971, pp. 1293 - 1317
- 16. Whitman, R.V., and Richart, F.E. Jr., "Design Procedures for Dynamically Loaded Foundations," <u>Journal of the Soil Mechanics and Foundation Division</u>, ASCE, Vol. 93, SM 6, Nov., 1967, pp. 169 190

1.2.1.

9
STING
45
inent enginering a testing Co.
MIDCONTINENT

Proje Labor	ct Gre	Project Great Midwest	Factory Outlet Mall	AMARY Co.	SUMMARY OF SOIL TESTS Ing Co.	TESTS	100			P. D	Project No. Date March 16.	16, 1983
RING	MBER MBER	DEPTH	CLASSIFICATION	≥ %	DRY	AT	ATTERBERG LIMIȚS	9	UNCONFINED	FINED		REMARKS
108 108	INN	ELEVATION		2	PCF	1	P.	<u>a</u>	TSF	% m		
2	6	40.0"-	Weathered tan and gray shale	18,9								
М	1	0'-2'	Brown clayey silt	26.7	94.9				0,74	4,5		
М	2	5'-7'	Brown silt	32.2	92.4				121			
9	.60	10'-12'	Brown silt	25.9	8.86				1,09	3.6		
6	7	15'-17'	Light brown silt	24.2	100.0				89			
m	2	20'-22'	Brown mottled with tan clayey silt with some sand and nebbles	22.2	1				1 06	3		
m	9	25'-27'	Yellow-tan interbedded With rust-tan and gray coarse silt	25.7	92.0				0.72	1.8		
m	7	30'-32'	Tan mottled with gray silt	16.6	93.6							
m	80	35'-37'	Tan mottled with rust- tan silt with a few pebbles and sand	32.9	91.0							
m	6	40,0,,-	Rust-tan mottled with gray clayey silt with sandy silt	24.9								

-

ON	TINENT ENGINEERING	A TESTING	co.				
	Sketch of specimen after failure TIST TYPE (Check one) Controlled-stress	1.2 1.0 8 6 4 1.0 8 6 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
C	Controlled-strain	i li		75 1.5	2.25 3.0 4 SDAIN, 4	3.75	لتختك
		F 1544	d.mah.a.d	~			
273	e of specimen	Undia	ded	Test No.	Test No.	Yest No.	7est Ho.
	de of specimen		ded V _G	25.9 \$	Test No.	Test No.	
			ded V _G	25.9 \$			
	Water content		ded V _G	25.9 \$	\$		•
	Void ratio Saturation	C Remo)	ded V _G	25.9 \$	\$	4	
Initial	Void ratio Saturation Dry density, 1b/cu	□ Remo)	ded vo	25.9 \$	\$	4	•
Initial	Void ratio Saturation Dry density, 1b/cu to failure, min onlined compressive	□ Remo)	V ₀ C ₀ S ₀ T ₄	25,9 \$	\$	4	5
Tiellel	Void ratio Saturation Dry density, lb/cu se to failure, min onfined compressive ons/sq ft	© Rema) ft strongth,	ded vo s s vo s s vo s s s s s s s s s s s s s	25.9 \$ \$ 98.8 1.09	\$	4	5
Tuiciel Land	Void ratio Saturation Dry density, 1b/cu to failure, min onfined compressive ons/sq ft rained shear strengt	© Rema) ft strongth,	ded	25.9 \$ 98.8	\$	4	5
Tian Uncert	Void ratio Saturation Dry density, lb/cu e to failure, min onfined compressive ons/sq ft rained shear strengt	ft strength,	ded vo s s vo s s vo s s s s s s s s s s s s s	25.9 \$ 98.8	\$	4	
Tiestul Tiestul	Void ratio Saturation Dry density, 1b/cu to failure, min onfined compressive ons/sq ft rained shear strengt	ft strength,	ded	25.9 \$ 98.8	\$	1	5
Ties Uncert	Void ratio Saturation Dry density, la/cu to failure, min onfined compressive ons/sq ft rained shear strengt sitivity ratio	ft strength, h, tans/sq :	ded vo e s r t f s t	25.9 \$ 98.8	\$	4	
Tianul Ti	Void ratio Saturation Dry density, lb/cu e to failure, min onfined compressive ons/sq ft rained shear strengt	ft strength, h, tans/eq: silt Pi, elmes cht 5,56	ded vo e s r t f s t	25.9 \$ 98.8 1.09	s s	£	\$

.

co	NTINENT ENGINEERING	G A TESTING C	:o.			:	
	Eketch of specimen after failure TIST TYPE (Check one) Controlled-stress Controlled-stress	•2		.6 AXC	AL STATE I	2, 1.5, 1	8
1							
ועד	pe of specimen	□ Undistur	bod	Test No.	Test No.	Test No.	Test No.
	e of specimen	□ Vedistur □ Remolded	w.	Test No. 25,1 \$	Test No.	deel No.	Test No.
		□ Vedistur □ Remolded	w ₀	-			
Initial	Water content	□ Vediatur □ Remolded	٧. ٩. ٤.	25.1 \$			
	Water content Void ratio	☐ RemoJded	υ _ο α _ο 8 _ο γ _d	25,1 \$			\$
Initial	Void ratio Saturation Dry density, 1b/cu f	Remolded	Vo Go So 7d	25,1 \$ 9 99,4			\$
Initial	Void ratio Saturation Dry density, lb/cu f e to failure, min onfined compressive a ons/sq ft	Remolded	00 80 74 14	25.1 \$			\$
Tuttel	Void ratio Saturation Dry density, lb/cu f e to failure, min onfined compressive a ons/sq ft rained shear strength	Remolded	0 8 8 8 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25,1 \$ 9 99,4			\$
Tie Und	Water content Veid ratio Saturation Dry density, lb/cu for to failure, win confined compressive some failure at the confined shear strength situativity ratio	Remolded	7 d t g d d d d d d d d d d d d d d d d d	25,1 \$ 99.4 0.95	\$	£	\$
Tie Und	Water content Void ratio Saturation Dry density, lb/cu f e to failure, min onfined compressive s ons/sq ft rained shear strength sitivity ratio selfication[_ight]	Remolded Te Strength, t, tone/sq ft	7 d t g d d d d d d d d d d d d d d d d d	25.1 \$ 99.4 0.95	\$	s s	\$
Tie Unot t	Water content Void ratio Saturation Dry density, lb/cu for to failure, min onfined compressive sons/sq ft rained shear strength sitivity ratio satification[_ight]	Remolded Pt Ct Ct Crength, Lone/sq ft Crown mot	*** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** **	25.1 \$ 99.4 0.95 d with so	s s ome tan b	sprown sil	5
Und Und Sen	Water content Void ratio Saturation Dry density, lb/cu for to failure, min onlined compressive soons/eq ft rained shear strength sitivity ratio satification[.jght] cines ca. 5,00 in. Marg	Remolded Pt Cremgth, L, tons/sq ft Crown mot PL Linea es ht 5,563 in	*** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** **	25.1 \$ 99.4 0.95 d with so	s some tan b	sprown sil	5
Und Und Sen	Water content Void ratio Saturation Dry density, lb/cu for to failure, min onfined compressive sons/sq ft rained shear strength sitivity ratio satification[_ight]	Remolded Pt Cremgth, L, tons/sq ft Crown mot PL Linea es ht 5,563 in	*** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** **	25.1 \$ 99.4 0.95 d with so	s some tan b	sprown sil	5
Und Und Sen	Water content Void ratio Saturation Dry density, lb/cu for to failure, min onlined compressive soons/eq ft rained shear strength sitivity ratio satification[.jght] cines ca. 5,00 in. Marg	Remolded Pt Cremgth, L, tons/sq ft Crown mot PL Linea es ht 5,563 in	Solution A	25.1 \$ 99.4 0.95 d with so	s some tan b	rown sil	5
Und Und Sen	Water content Void ratio Saturation Dry density, lb/cu for to failure, min onlined compressive soons/eq ft rained shear strength sitivity ratio satification[.jght] cines ca. 5,00 in. Marg	Remolded Pt Cremgth, L, tons/sq ft Crown mot PL Linea es ht 5,563 in	So Fa	25.1 \$ 99.4 0.95 d with so Propose Great Mall	some tan b	srown silt so t Factor	y Outlet
Und San Cla	Water content Void ratio Saturation Dry density, lb/cu for to failure, min onlined compressive soons/eq ft rained shear strength sitivity ratio satification[.jght] cines ca. 5,00 in. Marg	Remolded Pt Cremgth, L, tons/sq ft Crown mot PL Linea es ht 5,563 in	So Fa	25.1 \$ 99.4 0.95 d with so propose Great Mall	ome tan bat Midwes	rown sil	y Outlet

-

.

<u> </u>					1			T -					1.2.17
													17
lo.						•							
oject N													
	SSION	% E				10.8		3.6	1,8				
* 4	UNCONF	TSF.		1-	*	11	2.83	1,62	0.85				
	u	ā.											100
Sect.	TERBER	P.											
TESTS	AT	3			70] -
OF SOIL	DRY	P. P.			92.0	104.7	106.7	104.9	96.5	105.7	104.1		
MARY Co.	} ≀	R	6.7	16.5	25.7	22.2	21.7	23.6	22.9	23.0	20.3	21.9	
Factory Outlet Not Engineering &	CLASSIFICATION		Rust-tan clayey sand with some pebbles	Tan-rust with yellow-tan	th			Rust and gray clay to dark gray silt	Brown-tan mottled with some gray silt	Brown-tan mottled with some gray silt	1000		
t Midwes idcontir	DEPTH	ELEVATION	35'0"-	40.0%	45 '0"-	0'-2'	5'-7'	10"-12"	15'-17'	20'-22'	0'-2'	5'-7'	
Grea	MBER MBER	ION	80	6	. 01	-	2	3	4	٠ ٧	1	2	
Projec Labor	MBER	ON BO	6	6	6	12	12	12	12	12	13	13	656573
	SUMMARY OF SOIL TESTS Testing Co. Date March 16	oject Great Midwest Factory Outlet Mall SUMMARY OF SOIL TESTS Date March 16 Date March 16	Factory Outlet Mall SUMMARY OF SOIL TESTS Testing Co. CLASSIFICATION W DRY UNIT LIMITS COMPRESSION W TERBERG UNCONFINED W DRY UNIT LIMITS COMPRESSION R PCF LL PL PL PI RI TSF % E	Date Midwest Factory Outlet Mall SUMMARY OF SOIL TESTS Date March 16 Date March	Description Middle Fractory Outlet Mall SUMMARY OF SOIL TESTS Description Middle Fractory Outlet Mall SUMMARY OF SOIL TESTS Description Depth Classification W DRY ATTERBERG UNCONFINED OR WT. LIMITS COMPRESSION OR SILEVATION W UNIT LIMITS COMPRESSION OR SILEVATION WITH some pebbles 6.7 PCF LL PL PL PL TSF % E SILEVATION SUMTH some pebbles 6.7 PCF LL PL PL PL STF % E SILEVATION SILEVATION SUMTH some pebbles 6.7 PCF LL PL PL PL PL STF % E SILEVATION SUMTH some pebbles 6.7 PCF LL PL PL PL STF % E SILEVATION SUMTH some pebbles 6.7 PCF LL PL PL PL STF % E SILEVATION SUMTH some pebbles 6.7 PCF LL PL PL PL STF % E SILEVATION SUMTH SOME SUMMARY OF SOURCE MARCH 16.5 PCF LL PL PL PL PL STF % E SILEVATION SUMMARY OF SOURCE MARCH 16.5 PCF LL PL PL PL STF % E SILEVATION SUMMARY OF SOURCE MARCH 16.5 PCF LL PL PL PL PL STF % E SILEVATION SUMMARY OF SOURCE MARCH 16.5 PCF LL PL PL PL STF % E SILEVATION SUMMARY OF SOURCE MARCH 16.5 PCF LL PL PL STF % E SILEVATION SUMMARY OF SOURCE MARCH 16.5 PCF LL PL PL PL STF % E SILEVATION SUMMARY OF SOURCE MARCH 16.5 PCF LL PL PL STF % E SILEVATION SUMMARY OF SOURCE MARCH 16.5 PCF LL PL PL STF % E SILEVATION SUMMARY OF SOURCE MARCH 16.5 PCF LL PL PL STF % E SILEVATION SUMMARY OF SOURCE MARCH 16.5 PCF LL PL PL STF % E SILEVATION SUMMARY OF SOURCE MARCH 16.5 PCF LL PL STF % E SILEVATION SUMMARY OF SOURCE MARCH 16.5 PCF MARCH 16.5	boratory Midcontinent Engineering & Testing Co. Language DEPTH Limits Limit	poratory Midcontinent Engineering & Testing Co. Solumary Midcontinent Engineering & Testing Co. Solumary Midcontinent Engineering & Testing Co. Engine	Project No. Societate Midwest Factory Outlet Mall SUMMARY OF SOIL TESTS Date March 16 Summary OF SOIL TESTS Date March 16 Date March 10 Date March 16 Date March 16	persony Midcontinent Engineering & Testing Co. Classification Limits Depth Classification W. Dry ATTERBERG UNCONFINED	Project No. State Middwest Factory Outlet Mall SUMMARY OF SOIL TESTS Date March 16	poratory Midcontinent Engineering & Testing Co. Build DEPTH CLASSFICATION CONNERSION CONNERSION CONNERSION CONNERSION CLASSFICATION CONNERSION CONNERS CONNERSION CONNERS CONNERSION CONN	portion of the property of the	STATE STAT

M MDCONTINENT ENGINEERING & TESTING CO.

MTI	NENT ENGINEERING	& TESTING CO.	•							
				9.	0.	756 T	5,4	=,		
	Sketch of specimen after failure TEST TYPE (Check one) Controlled-stress			4	10.3	F P=\(\);				
C	Controlled-strain	-004	Η,	0/	·al	L STRAIN, C		.05	<u>a</u>	7
				20.15	w onwan, t	, ,				
Typ	e of specimen	Undistur	bed	Ter	st No.	Test No.	Ι	Test No.	Test No	
	Water content		v _o	2	3.88\$	*	L	5		%
Initial	Void ratio		e o	.7	606		1			
Ini	Seturation		s _o	-	\$	5	+	*		5
	Dry density, lb/cu		7d		3.92		+			\dashv
Unc	e to failure, min	strength,	tr qu	1			+			-
	ons/sq ft		ร _{ับ}				+			-
	rained shear strengt	h, tons/sq ft	St	-			+			
-	sitivity ratio						-			-
	ssification	PL			PI		-	G _B		
		cimen c	- 11					Jeh No.		_
010	erks	.gat 1.	٦	Proje	:t					_
Lean			1							_
-	La constant de la con		11	Area .			C=-	ale No/	3	
-		-		Borin.	к. 25	-27 '		3-10-		_
_		-	-	U U	NCONFIN	ED COMPRE			Market Street, or other Persons Street, or oth	
			11				-		The same is not the owner, the same is not the	-

¢.,

-

co	NTINENT ENGINEERING	A TESTING	co.				
		1. 8 5 2 9 6 3 COPPLESIVE STARTS, 0, 10 3/54 H					
ı	X Controlled-strain	Ħ		2 402	AL STAIN, 4	, \$ 5	
		20 Undint	urbed	Alg		, s ⁵	
	pe of specimen	Undistr	ed	Test No.	Test No.	Tost No.	Yest Ho.
ועד		□ Undinto	w _o	Alg		, s ⁵	Test Ho.
	Void ratio	Ø Undistr	U _O	Test No.	Test No.	Tost No.	Test Ho.
ועד	Void ratio Saturation	⊠ Undist	w _o	Test No. 22.8 \$	Test No.	Test No.	Test Ho.
Initial 3	Void ratio Saturation Dry density, 15/cu ft	M Undisti	u _o	Test No. 22,8 \$	Test No.	Test No.	Test Ho.
Initial States	Void ratio Saturation Dry density, 15/cu ft to failure, ain onlined compressive str	Remolds	u _o u _o u _o u _o v _o v _o v _o v _o v _o v _o	Test No. 22.8 \$	Test No.	Test No.	Test Ho.
Initial Manager	be of specimen Void ratio Saturation Dry density, 1b/cu ft to failure, min onfined compressive str	C Resold	ed v ₀ 0 0 0 0 0 0 0 0 0	Test No. 22.8 \$	Test No.	Test No.	Test Ho.
Inities Inities	be of specimen Water content Void ratio Saturation Dry density, 1b/cu ft to failure, min confined compressive str cons/sq ft rained shear strength,	C Resold	ed wo o a 7d tr qu a u	Test No. 22.8 \$	Test No.	Test No.	Test Ho.
Tine Unicies und	Void ratio Saturation Dry density, 1b/cu ft to failure, min confined compressive etr ons/eq ft rained shear etrength,	Remojds	ed vo o s r t q s s s s	Tree No. 22.8 \$ 109.1	Test Mo.	Test No.	Test Ho.
Ting Und	be of specimen Water content Void ratio Saturation Dry density, lb/cu ft to failure, min confined compressive str confined compressive str called them strength, mitivity ratio medification Weather	rength, tans/sq ft	ed vo o s r t q s s s s	Test No. 22.8 \$ \$109.1 1.89	Test Mo.	Tout No.	Test Ho.
Tollife Time Und	Void ratio Saturation Dry density, 1b/cu ft se to failure, ain ons/sq ft rained shear strength, sitivity ratio	rength, tans/sq ft	o o o o o o o o o o o o o o o o o o o	22.8 \$ 22.8 \$ 109.1 1.89	feet No.	Test No.	
Tyre Und	Void ratio Saturation Dry density, 1b/cu ft se to failure, ain confined compressive str cons/sq ft rained shear strength, sattivity ratio selfication Weather Pt cines 2,850 in. Mright	rength, tans/sq ft	o o o o o o o o o o o o o o o o o o o	1.89 1-green 8	test No. \$ hale	Test No.	
Tyre Und	Void ratio Saturation Dry density, 1b/cu ft se to failure, ain ons/sq ft rained shear strength, sitivity ratio	rength, tans/sq ft	o o o o o o o o o o o o o o o o o o o	22.8 \$ 22.8 \$ 109.1 1.89	test No. \$ hale	Test No.	
Tyre Und	Void ratio Saturation Dry density, 1b/cu ft se to failure, ain confined compressive str cons/sq ft rained shear strength, sattivity ratio selfication Weather Pt cines 2,850 in. Mright	rength, tans/sq ft	00 00 00 00 00 00 00 0	1.89 1-green 8	test No. \$ hale	Test No.	
Tyre Und	Void ratio Saturation Dry density, 1b/cu ft se to failure, ain confined compressive str cons/sq ft rained shear strength, sattivity ratio selfication Weather Pt cines 2,850 in. Mright	rength, tans/sq ft		Treet No. 22.8 \$ 109.1 1.89 1-green 8 PI Walth	hale	Tost No.	y Outle
Tyre Und	Void ratio Saturation Dry density, 1b/cu ft se to failure, ain confined compressive str cons/sq ft rained shear strength, sattivity ratio selfication Weather Pt cines 2,850 in. Mright	rength, tans/sq ft		Treet No. 22.8 \$ 109.1 1.89 1-green 8 PI Walth	hale	Test No.	y Outle

•

-

cor	NTINENT ENGINEERIN	IG & TESTIN	6 CO.				
	Sketch of specimen after failure TEST TYPE (Check one) Controlled-atres	1.50 L by/sour ' . 'ssaws and sound and					
C	X Controlled-strain	• k	.2	25 .50 _{AKG}	AL STAIN, &	0 1.25 1	.5
	X Controlled-strain	© Undia	turbed	Test No.	75 1. AL SENAIN, c	Test No.	.5
		₩ Undia	turbed ded	AG	,	γ	.
2779	of specimen	₩ Undia	turbed	Test No.	Test No.	γ	Test Ho.
2779	e of specimen	₩ Undia	turbed ded	Test No.	Test No.	γ	Test Ho.
	ve of specimen Water content Void ratio	⊠ Undia □ Remgl	turbed ded V _o	Test No. 22.8 \$	Test No.	Tost No.	Test Ho.
Initial	Veid ratio Saturation Dry density, lb/cu	⊠ Undia □ Remol	turbed ded	Test Ho. 22.8 \$	Test No.	Tost No.	Test Ho.
Initial	Valor content Void ratio Saturation Dry donalty, 1b/cu	⊠ Undia □ Remol	turbed ded vo e e e e e e e e e e e e e e e e e e	Test Ho. 22.8 \$	Test No.	Tost No.	Test Ho.
Time to	Veter content Void ratio Saturation Dry density, lb/cu a to failure, min onfined compressive	Ø Undia □ Remol	sturbed ded wo so	Test No. 22.8 \$ 89.5	Test No.	Tost No.	Test Ho.
Time to	Water content Void ratio Saturation Dry density, lb/cu a to failure, min onfined compressive ons/aq ft	Ø Undia □ Remol	turbed ded	Test No. 22.8 \$ 89.5	Test No.	Tost No.	Test Ho.
Time Unds	Veter content Void ratio Saturation Dry density, la/cu a to failure, min onfined compressive ons/eq ft rained shear strengt	ED Undia Remoi	turbed ded % % % % % % % % % % % % % % % % %	Teet No. 22.8 \$ 89.5	Test No.	Test No.	Test Ho.
Time Unda	Void ratio Saturation Dry density, lb/cu a to failure, min ons/sq ft rained chear strengt	© Undia	turbed ded % % % % % % % % % % % % % % % % %	700t No. 22.8 \$ 89.5 1.38	Test No.	Test No.	Test Ho.
Time Under	Water content Veid ratio Saturation Dry density, la/cu a to failure, min onfined compressive ons/mq ft rained shear strengt sitivity ratio selfication Brown	ft atrength, h, tous/eq i	turbed ded "o	Test No. 22.8 \$ 89.5 1.38	Peat No.	Test No.	Test He.
Time to	be of specimen Water content Void ratio Saturation Dry density, lb/cu a to failure, min onfined compressive ons/sq ft rained shear strengt sitivity ratio selfication Brown Since a 2,850 in. No.	ft atrength, h, tons/eq f mottle PL class ght 5.563	turbed ded "o	Test No. 22.8 \$ 89.5 1.38 h some g	Peat No. \$ ray silt	Test No.	Test He.
Type	Water content Veid ratio Saturation Dry density, la/cu a to failure, min onfined compressive ons/mq ft rained shear strengt sitivity ratio selfication Brown	ft atrength, h, tons/eq f mottle PL class ght 5.563	turbed ded "o	Test No. 22.8 \$ 89.5 1.38	Peat No. \$ ray silt	Test No.	Test He.
Time to	be of specimen Water content Void ratio Saturation Dry density, lb/cu a to failure, min onfined compressive ons/sq ft rained shear strengt sitivity ratio selfication Brown Since a 2,850 in. No.	ft atrength, h, tons/eq f mottle PL class ght 5.563	turbed ded "o	Test No. 22.8 \$ 89.5 1.38 h some g	Peat No. \$ ray silt	Test No.	Test He.
Time Unda	be of specimen Water content Void ratio Saturation Dry density, lb/cu a to failure, min onfined compressive ons/sq ft rained shear strengt sitivity ratio selfication Brown Since a 2,850 in. No.	ft atrength, h, tons/eq f mottle PL class ght 5.563	turbed ded vo o o o o o o o o o o o o o o o o o o	Test No. 22.8 \$ 89.5 1.38 h some g	Peat No. \$ frav silt t Midwest	Test No.	Test He.
Time Unda	be of specimen Water content Void ratio Saturation Dry density, lb/cu a to failure, min onfined compressive ons/sq ft rained shear strengt sitivity ratio selfication Brown Since a 2,850 in. No.	ft atrength, h, tons/eq f mottle PL class ght 5.563	turbed ded vo so	Toot No. 22.8 \$ 89.5 1.38 h some grant Mall	ray silt	Post No.	Outlet

:

UNCONFINED COMPRESSION TEST

Description of soil			P		
Specimen No.	Location.	20-221			
Moist weight of spe	cimen	moistu	re content		9
Moist weight of spe Length of specimen Proving ring calibra	L 6 3/8	Diame	ter, D _ 276'	Area,	Ao 6.490
Proving ring calibra	tion factor: 1 d	iv. =3.			
Maria de la companya					
Specimen	Vertical	Proving	Load = Col. 3 x	Corrected area =	Stress = Col. 4
deformation	strain,	ring dial reading	calibration	254000000	Col. 5
= ΔL	$\epsilon = \frac{\Delta L}{I}$	-No. of	factor of	$A_{c} = \frac{A_{0}}{1 - \epsilon}$	
	L	small divisions	proving ring (lb)	(in ²)	(lb/in ²)
in. (1)	(2)	(3)		(5)	(6)
(1)	(2)	(3)	(4)	(3)	
.01	1001560	7/	22	6.50	3.38
- 02	.00314	144	44.6	6.51	6.85
.03	. 50471	221	68.5	6.52	10.51
	750000	289	90	6.53	13.78
, 05	,00784	369	114.4	6.54	17.49
.00	14000.	441	136.7	6.55	20.9
.07	80010.	430 520	161.2	6.56	246
-03	.01255	580	179.8	6.57	27.4
.09	.01411	681	211	6.58	321
.10	101569	732	727	6.59	34.4
.11	.01725	799	248	6,60	37.6
.12	.01882	862	367	6.61	40.4
./3	.0204	920	285	(6.63	43.0
. 14	.0220	977	303	6.64	45.6
	0235	100	329	6.65	495
16	. 0351	/141	354	Cololo	53.2
. '7	.0267	1208	374	(0.67	56.1
. <i>।</i> র	0282	1270	394	6.68	59.0
.19	.0298	1310	406	6.69	60.7
.20	-0314	1372	425	6.70	63.4

UNCONFINED COMPRESSION TEST

Description of soil					
Specimen No					
Moist weight of spe	cimen	moistu	re content		%
			ter, D _ 2 7/8"	Area,	Ao 6.400"
Proving ring calibra	tion factor: 1 di	iv. =3/_			
Specimen deformation = \Delta L	Vertical strain, $\epsilon = \frac{\Delta L}{L}$	Proving ring dial reading -No. of small	Load = Col. 3 x calibration factor of proving	Corrected area = $A_c = \frac{A_0}{1 - \epsilon}$	Stress = Col. 4 Col. 5
in.		divisions	ring (lb)	(in ²)	(lb/in²)
(1)	(2)	(3)	(4)	(5)	(6)
15.	. 0.329	1472	441	6.71	65.7
.27	.0345	1463	454	6.72	67.6
.23	-0361	1501	465	6.73	691
.24	. 0376	1530	474	(0.74	70.3
. 25	.0392	1567	486	6.75	72
. 76	.0408	1593	4.04	6.77	73
.27	.0424	1610	400	6.78	73.6
.28	.0439	1630	505	6.79	74.3
.20	.0455	1640	508	6.80	74.7
.30	.0471	1651	512	6.81	75.2
.3	.0486	1655	513	6.82	75-3

				PW-P-D-HERMANNA MARKATAN MANAGERA	

UNCONFINED COMPRESSION TEST

	ition factor: 1 d			Y	
Specimen deformation = \Delta L in. (1)	Vertical strain, $\epsilon = \frac{\Delta L}{L}$ (2)	Proving ring dial reading -No. of small divisions	Load = Col. 3 x calibration factor of proving ring (lb) (4)	Corrected area = $A_{c} = \frac{A_{0}}{1 - \epsilon}$ (in ²) (5)	Stress = <u>Col. 4</u> Col. 5 (lb/in ²) (6)
-01	16	.001860	4.96	6.50	.763
.C2	62	.00372	19.22	6.51	2.95
. 23	130	.00558	40,3	6.53	6.17
.D4	200	.00744	64.7	6.54	9.89
.05	293	.00930	90.8	6.55	13.86
* 1/2	369	.01116	114.4	6.5%	17.44
27	441	.01302	136.7	6.58	20.78
28	515	.01488	159.7	6.59	24.7
, oq	591	.01674	183.2	6.60	27.8
. Ir	672	.01860	208	6.61	31.5
-//	752	.0205	233	6.63	35.1
-12	821	.6223	255	6.64	38.4
•13	903	.0242	280	6.65	42.1
.14	962	.0360	298	6.66	44.7
.15	1011	.0279	313	6.68	46.9
1/2	1093	-0898	<u>339</u>	6.69	50.7
-17	1125	ما 33 ه	349	6 70	52.1
ाड़	1193	. 0335	370	6.71	.55.1
· 19	1263 1331	. 0353	392 413	6.74	58,2 61.3

UNCONFINED COMPRESSION TEST

Description of soil		
Specimen No. 2 Location 30	'-37 '	
Moist weight of specimen	moisture content	%
Length of specimen, L53/8''	Diameter, D 2 78"	Area, Ao 6.49"
Descripe sine calibration factor. 1 div	31	

Specimen deformation = \Delta L in.	Vertical strain, $\epsilon = \frac{\Delta L}{L}$	Proving ring dial reading —No. of small divisions	Load = Col. 3 x calibration factor of proving ring (lb)	Corrected area = $A_{c} = \frac{A_{0}}{1 - \epsilon}$ (in^{2})	Stress = <u>Col. 4</u> <u>Col. 5</u> (lb/in ²)
(1)	(2)	(3)	(4)	(5)	(6)
.21	.0391	1362	423	6.75	62.5
•52	.0409	1411	437	6.77	64.5
.23	.0428	1541	478	6.78	70.5
.24	.0447	1582	490	6.79	72.2
,25	.0465	1622	503	(0.81	73.9
.26	.0484	1672	518	6.82	76.0
2٦_	. 0.502	1705	529	6.83	77.5
.28	.0521	1741	540	6.85	78.8
. 29	. 054	1773	550	6.86	80.2
.30	. 0558	1793	556	6. 87	80.9
.31	. 0577	1811	561	6.99	81.4
.32	.0595	1822	565	6.90	81.9
.33	. 0614	1832	568	6.93	82.0
.34	.0633	1853	574	6.94	82.7
.35	. 0651	1852	574	6.96	82.5
.36	0500	1852	574	6.97	82.3

UNCONFINED COMPRESSION TEST

Description of soil				
Specimen No3	_ Location	35'-37'		
Moist weight of specim	en	moisture content		9
Length of specimen, L	55/8°	Diameter, D 278"	Area, A	6.493"

Proving ring calibration factor: 1 div. = _ .31 Load = Corrected Stress = Proving Specimen Vertical Col. 3 x area = Col. 4 ring dial deformation strain, calibration Col. 5 reading $= \Delta L$ factor of -No. of small proving (in²) (lb/in^2) divisions ring (lb) in. (1) (3) (2) (4) (6) (5) .01 0 6.50 STTIOG 4.65 6.51 0356 714 20 12.09 52 83 6.54 11700 26.7 04 125 ගපිපිත 38.8 55 172 01067 65.4 95 211 01244 242 75.0 03 287 016 320 102.0 10 364 01956 112.8 121.5 12 392 32.4 452 140.1 0249 483 149.7 508 0284 24.6 532 164.9 5050 17 541 .13 .037 167.7 0338 .19 164.3 530

UNCONFINED COMPRESSION TEST

Description of soil	
Specimen No. B-4 Location 5'-7]
	noisture content%
Length of specimen, L 5 1/2"	Diameter, D 274" Area, A ₀ (0.49"
Proving ring calibration factor: 1 div. =	31

Specimen deformation = \Delta L	Vertical strain, $\epsilon = \frac{\Delta L}{L}$	Proving ring dial reading —No. of small	Load = Col. 3 x calibration factor of proving	Corrected area = $A_{c} = \frac{A_{0}}{1 - \epsilon}$ (in^{2})	Stress = <u>Col. 4</u> <u>Col. 5</u> (lb/in ²)
in. (1)	(2)	divisions (3)	ring (lb) (4)	(in-) (5)	(6)
•01	3+43	- ଚଠାନ୍ତାର	13.33	6.50	2.05
.02	66 100	• ०० अभ	.31	6.51	4.76
.03	101 134	.00545	41.5	6.53	6.36
.04	135 198	.00727	61.4	6.54	9.39
.05	167 257	00.000	73.5	6.55	11.22
.06	281	.0109	87.1	6.56	13.28
	332	.01272	102.9	6.57	15.66
.09	372	101455	115.3	6.59	17.50
.09	409	.016310	126.8	6.60	19.21
,10	446	81810.	136.4	6.61	206
-11	470	.07	145.7	(0.62	22.0
. 12					
, 12					
.14					
.15					
.1(0					
	,				
.18					

UNCONFINED COMPRESSION TEST

Description of soil

Specimen No. D Location 20'-27'

Moist weight of specimen moisture content moisture content Area, Ao 6.40"

Proving ring calibration factor: 1 div. = 0.31

Specimen deformation = \Delta L	Vertical strain, $\epsilon = \frac{\Delta L}{L}$	Proving ring dial reading —No. of small divisions	Load = Col. 3 x calibration factor of proving ring (lb)	Corrected area = $A_{c} = \frac{A_{0}}{1 - \epsilon}$ (in^{2})	Stress = <u>Col. 4</u> <u>Col. 5</u>
(1)	(2)	(3)	(4)	(5)	(6)
•01	E5.8103.	21	.62	6.50	.095
• 07	.002667	45	13.95	6.51	2.14
.03	. 004	91	28.21	6.52	4.33
.04	.00533	142	44.02	6.52	6.75
.05	.00667	192	59.52	6.53	9.11
•0(=	800.	242	75.02	6.54	11.47
.07	.00933	311	96,41	6.55	14.72
.03	.01067	381	118.1	6.56	18.00
.09	.012	445	138	6.57	21.00
.10	.0133	503	/55.9	6.58	23.69
	01467	562	174.2	6.59	26.43
.12	٠٥١١،	631	195.6	6.60	29.6
.13	.01733	687	213	6.60	32.3
14	.01867	73-7	228	6.61	34.5
.15	-02	782	242	6.62	36.6
.//	.0213	824	255	6.63	-38.5
•17	755C.	861	267	6.64	40.2
.18	.024	885	274	6.65	41.2

Description of soil		
Specimen No. 12 Location	20'-22'	
Moist weight of specimen		%
Length of specimen, L 53/8	Diameter, D 27/8	Area, A ₀ 6.490
Proving ring calibration factor: 1 div.	=,31	

Specimen deformation = \(\Delta L \) in. (1)	Vertical strain, $\epsilon = \frac{\Delta L}{L}$ (2)	Proving ring dial reading —No. of small divisions (3)	Load = Col. 3 x calibration factor of proving ring (lb) (4)	Corrected $area = A_0$ $A_c = \frac{A_0}{1 - \epsilon}$ (in^2) (5)	Stress = <u>Col. 4</u> <u>Col. 5</u> (lb/in ²)
aL	.001860	41	17.71	6.50	1.96
500	.00372	9	28.2	6.51	4.33
.03	,00558	/38	42.8	6.53	6.55
.04	.00744	214	66.3	6.54	10.13
.05	.00.930	283	87.7	6.55	13.39
.00	01116	337	104.5	6.56	15.93
	.0302	394	122.1	6.58	18.56
.08	.01488	445	138	6.59	20.9
.09	.01674	511	158.4	6.60	24
10	.ଚାନ୍ଦ	568	176.1	6.61	26.6
	.0205	621	192.5	6.63	29.0
. 12	.0223	663	206	6.64	31.0
.13	.0242	708	219	6.65	32.9
.14	.0260	752	233	(0.66	35.0
.15	.0279	817	253	6.68	37.9
.16	.0298	892	277	6.69	41.5
.17	ما 31 م	943	292	6.70	43.6
.18	.0335	1001	310	6.71	46.2
· 19 ·20	.0353 .0372	1061 11/8	329 347	6.73	48.9 51.5

Description of soil					
Specimen No Lo	ocation	501-351			
Moist weight of specimen			nt		%
Length of specimen, L	53/8"	_ Diameter, D _	27/8"	Area, A ₀	6.49
Proving ring calibration fac	tor: 1 div =	.31			

Specimen deformation = \Delta L	Vertical strain, $\epsilon = \frac{\Delta L}{L}$	Proving ring dial reading —No. of small	Load = Col. 3 x calibration factor of proving	Corrected area = $A_c = \frac{A_0}{1 - \epsilon}$ (in^2)	Stress = <u>Col. 4</u> <u>Col. 5</u>
in.		divisions	ring (lb)		(lb/in²)
(1)	(2)	(3)	(4)	(5)	(6)
.21	.03.91	1173	364	6.75	53.9
.22	.0409	12.31	_387	6.77	56.4
. 23	.0429	1292	401	6.78	59.1
.24	.0447	1340	415	6.79	61.1
. 25	.0465	1381	428	6-81	62.8
.26	.0494	1411	437	6.87	64.1
,27	.0502	1433	444	6.83	65.0
. 28	.0521	1482	459	6.85	67.0
.29	.054	1493	463	6.86	67.5
.30	.055 €	1510	468	6.87	68.1
.31	•0577	1536	474	6.89	68.8
.32	.0595	1551	481	6.90	69.7
.33	·D/a14	1569	486	6.91	70.3
=44	.0633	1572	487	6.93	70.3
.35	.0651	1572	487	6.94	70.7
.36	.0670	1572	487	6.26	70.0
.37	8820.	1583	491	6.97	70.4
.39	,0707	1583	491	6.98	70.3
.39 .40	.0726 .0744	1579 1510	489 468	7.00 7.01	69.9

Description of soil Specimen Nol3 L			
5.		moisture content	
Length of specimen, L	53/2"	The state of the s	Area, A ₀ 6.495

Troving ring canora	·				
Specimen deformation = \Delta L in.	Vertical strain, $\epsilon = \frac{\Delta L}{L}$	Proving ring dial reading —No. of small divisions	Load = Col. 3 x calibration factor of proving ring (lb)	Corrected area = $A_{c} = \frac{A_{0}}{1 - \epsilon}$ (in^{2})	Stress = Col. 4 Col. 5 (lb/in²)
(1)	(2)	(3)	(4)	(5)	(6)
,01	1.96	. 601860	27.9	6.50	4.29
.02	fot 100	.00372	49.6	6.51	7.62
.03	128 260	0558	80.6	653	12.34
10H	236 34		105.4	6.54	16.11
C 5	376 40	.00.936	127.1	655	19.40
• 010	410 530	.01116	155	6.56	23.6
407	580	,01302	179.8	6.58	27.3
108					
.09					
.10					
-11					
. 17					
. 13					
14			W		
.15					
7					
.18	•			1 .	

UNCONFINED COMPRESSION TEST

Description of soil		
Specimen No. 13 Location.	25-27'	
Moist weight of specimen	moisture content	%
Length of specimen, Lo 45/8	Diameter, D _ 27/8"	Area, Ao 6.49in2

Length of specimen, L ₀ 4 5/8 Diameter, D 2 7/8" Area, A ₀ 6.49 in 7 Proving ring calibration factor: 1 div. =						
Costor.	tion factor: 1 di	. =				
Specimen deformation = \Delta L	Vertical strain, $\epsilon = \frac{\Delta L}{L}$	Proving ring dial reading -No. of small divisions	Load = Col. 3 x calibration factor of proving ring (lb)	Corrected area = $A_c = \frac{A_0}{1 - \epsilon}$ (in^2)	Stress = $\frac{\text{Col. 4}}{\text{Col. 5}}$	
(1)	(2)	(3)	(4)	(5)	(6)	
,01	0.0022	1.0	0-31	6.504	0.048	
.02	00043	13	403		10-62	
.03	0.0065	24	7.44	6.532	1-14	
.04	0.0086	3 5	.10-85	6.546	1.66	
.06	0.013	62	19.22	6.575	. 2.92	
.08	0.017	3 4	26.04	6.602	13.94	
-10	0-022	115	35-65	6.636	5-37	
.12	0.026	14 4	44.64	6.663	6.70	
.14	0.030	17 3	53.63	6.690	8.02	
.16	0-036	195	60-45	6.732	8-98	
.18	0.039	2\$2	65-72	6-753	9.73	
-20	0.043	224	69.44	6.782	10.24	
.24	0.052	232	71.92	6.846	10.508	
.28 40	0.060	215	66.65	6-904	9-654	
·32 320						
.36						

10					
Description of soil					
Specimen No. 23 Loca	tion/ <u>\^'</u> -	121			_
Moist weight of specimen		moisture conter	nt		%
Length of specimen, L	634	Diameter, D	27/8"	Area, Ao 6.4991	
Proving ring calibration factor					1

Specimen deformation = \Delta L	Vertical strain, $\epsilon = \frac{\Delta L}{L}$	Proving ring dial reading —No. of small	Load = Col. 3 x calibration factor of proving	Corrected area = $A_{c} = \frac{A_{0}}{1 - \epsilon}$	Stress = Col. 4 Col. 5
in.		divisions	ring (lb)	(in ²)	(lb/in²)
(1)	(2)	(3)	(4)	(5)	(6)
.01	,001481	55	17.05	6.50	2.62
.03	.00296	106	32.9	6.51	5.05
.03	.00444	156	48.4	6.52	7.42
40.	.00593	209	64.8	6.53	9.92
.05	.00741	268	83.1	6.54	12.71
•100	-00889	341	105.7	6.55	110.14
.07	.01037	402	124.6	6.56	18.99
-08	.01195	472	146.3	6.57	22.3
جور.	.01333	528	163.7	6.58	24.9
10	.51481	592	183.5	6.59	27.8
	.01630	628	104.7	6.60	29.5
- 12	87710	692	215	6.61	32.5
.13	.01926	751	333	6.62	35.2
.14	.0207	7.51	233	6.63	35 1
.15	.0322	782	342	6.64	36.4
- Ila	-0237	-811	251	6.65	377
.17	.0252	188	273	6.66	41.0
.18	.0267	957	295	6.67	44.2
19	1850.	1012	314	6.68	47.0
.20	.0296	1071	332	<i>و</i> .ه	49.6

Description of soil				_
Specimen No. 23 Location 10' - 1	2'			_
Moist weight of specimen.	_ moisture content			%
Length of specimen, L 634"	Diameter, D	27/8"	Area, Ao 6.490"	
Proving ring calibration factor: 1 div. = _	.31			

Proving ring calibration factor: 1 div. =31							
Specimen deformation = \(\Delta L \) in. (1)	Vertical strain, $\epsilon = \frac{\Delta L}{L}$ (2)	Proving ring dial readingNo. of small divisions (3)	Load = Col. 3 x calibration factor of proving ring (lb) (4)	Corrected area = $A_{c} = \frac{A_{0}}{1 - \epsilon}$ (in^{2}) (5)	Stress = $\frac{\text{Col. 4}}{\text{Col. 5}}$ (lb/in^2) (6)		
-41	.0697	1538	477	6.91	69.0		
.42	.0622	1540	477	6.92	68.9		
•43	,0,37	1548	480	6.93	69.3		
.44	.0652	1551	481	6.94	69.3		
•45	.0667	1562	484	6.95	69.6		
.46	.0681	1571	487	6.96	70.0		
.47	.0636	1562	484	6.98	69.3		
2							

1/9

Description of soil			
Moist weight of specimen.			%
Length of specimen, L(3/L	Diameter, D	27'8"	Area, Ao 6.497"
Proving ring calibration factor: 1 div.	= .31		

Proving ring calibra	ation factor: 1 d	iv. =			
Specimen deformation = \Delta L in. (1)	Vertical strain, $\epsilon = \frac{\Delta L}{L}$ (2)	Proving ring dial reading -No. of small divisions (3)	Load = Col. 3 x calibration factor of proving ring (lb) (4)	Corrected $area = A_0$ $A_c = \frac{A_0}{1 - \epsilon}$ (in^2) (5)	Stress = $\frac{\text{Col. 4}}{\text{Col. 5}}$ (lb/in^2) (6)
.21	.0311	//30	350	6.70	52.2
.23	.0336	1181	366	6.71	54.5
.23	.0341	1230	381	6.72	56.7
.24	.0356	1272	.394	6.73	58.5
.25	.0370	1310	406	6.74	60.7
.26	.03.85	1348	418	6.75	61.9
٠٢٦٠	٠٥٤	1362	422	6.76	62.4
.28	0415	1382	428	6.77	63.2
.29	.0430	1410	437	6.78	64.5
.30	.0444	1421	441	6.79	64.9
.31	,0459	1432	444	6.80	65.3
.32	.0474	1437	441	681	64.8
. 33	.0489	1451	450	6.82	6620
.34	.0504	1462	453	6.83	66.3
.35	.0519	1482	459	6.85	67.0
.36	.0533	1492	463	6.86	67.5
.37	.0548	1502	466	6.87	67.8
.38	.0563	1512	469	6.88	5.83
.39	.0578	1522	472	6.89	68.5
.40	.0593	1528	474	6.90	68.7

UNCONFINED COMPRESSION TEST

Description of soil

Specimen No. #26 Location 30-32 |

Moist weight of specimen moisture content moisture content Area, Ao 6.49 |

Length of specimen, L 6 | 5/8 | Diameter, D 2 | 7/8 | Area, Ao 6.49 | 8 |

Proving ring calibration factor: 1 div. = _ _ 3 Load = Corrected Stress = Proving Specimen Vertical Col. 3 x Col. 4 ring dial area = deformation strain, Col. 5 calibration reading factor of $= \Delta L$ -No. of proving small divisions ring (lb) (in²) (lb/in^2) in. (2) (3) (1) (4) (5) (6) 955 41 12.71 6.50 01 0015109 83 51 25.7 3 95 02 50500 52 5.75 37.5 121 00453 165 53 7.84 51.2 .54 20604 15 201 62.3 9.53 00755 71.6 55 231 10.93 2000 Co 81.5 56 12.42 263 01057 7 <u>യ.</u> ഉ 6.57 13.82 293 ROSIC 03 321 01358 90.5 58 15.12 19 10 354 (0.59) 01509 1097 371 6.60 115 7.42 01660 11 392 2.39 121.5 01811 12 . /3 425 131.8 6.62 19.91 501010 14 400 0211 142.6 6.63 21.51 475 22.18 0226 147.3 502 110 1556 6.65 23.40 0242 (0.66 23.78 511 0257 158.4 . . 7 24.7 531 0272 64.6 6.67 .19 6.68 25.5 ·0287 170.5 550 .19 26.3 569 176.1 6.69 .0302 .20

Description of soil			<u> </u>		
Specimen No. 26_ L	ocation	0-32'			
Moist weight of specimen.		moisture conter	nt		%
Length of specimen, L	65/8"	Diameter, D	27/8"	Area, A ₀	64900
Proving ring calibration fa-	ctor: 1 div. = _	.31			

	Proving ring calibration factor: 1 div. =31						
Specimen deformation = \Delta L in. (1)	Vertical strain, $\epsilon = \frac{\Delta L}{L}$ (2)	Proving ring dial reading —No. of small divisions	Load = Col. 3 x calibration factor of proving ring (lb) (4)	Corrected area = $A_{c} = \frac{A_{0}}{1 - \epsilon}$ (in^{2}) (5)	Stress = Col. 4 Col. 5 (lb/in ²)		
15.	-0317	581	180.1	6.70	26.9		
.22	.0332	593	183.8	6.71	27.4		
.73	.0347	597	/83.5	6.72	27.3		
.24	.0362	613	190.0	673	28.2		
.25	.0377	631	195.6	6.74	29.0		
. 758	.0389	609	188.8	6.75	28.0		
			- may are a first transport				
	-11						

APPENDIX C
MTS Data Sheets

.

COMPARISON of DYNAMIC and UNCONFINED COMPRESSION STRENGTH for MACHINE FOOTING DESIGN

by

JAMES J. BRENNAN

B. S., Kansas State University, 1982

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1983

ABSTRACT

A study of machine foundations bearing capacity as related to the unconfined compressive strength is presented. The purpose of the study was to determine an appropriate factor of safety to use with the unconfined compression test so that the elaborate and expensive laboratory analysis necessary in the present design of machine foundations could be avoided.

A literature review was conducted which traced the history and development of the present machine footing design procedure in vogue. Some of the information thus gathered was used to determine parameters in the laboratory research.

The results of the study showed that for a silty clay soil, supporting a machine foundation vibrating at low frequencies, the factor of safety to decrease the unconfined compressive strength by to obtain an allowable dynamic strength was 5, which was adequate 85% of the time.

This study was meant to be a beginning since extensive research is necessary relating unconfined compressive strength to dynamic bearing strength of footings already in place, and further laboratory work is necessary for different soil materials at different frequencies.