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INTRODUCTION •

.

A particularly interesting special case of the general

linear programming problem is the transportation problem. This

special problem is important from a practical as well as a

theoretical standpoint. A sizable fraction of the applications

of existing linear programming methods has been made in solving

transportation and related problems. The theoretical importance

of the transportation problem stems from the fact that many of

the computational procedures which have been developed for its

solution are, for the most part, simplifications of classical

linear programming methods.

This paper contains a detailed discussion of so-called dis-

tributive methods for obtaining a solution for any given trans-

portation problem. These methods were originally derived from

the mathematical theory of the simplex method of linear program-

ming. The transportation theory underlying these methods, how-

ever, can be developed independently of the programming theory

of the simplex method. The intent of this paper is to construct

this indepe-ndent development, and to give some indication as to

the efficacy of the various methods.

..-V,,- FORMULATION OP THE PROBLEM .. ^..
,

A statement of the transportation problem can be made as

follows: Determine a shipping schedule to "transport" a homo-

geneous product from various "origins" to various "destinations"



at a minimuin total cost. The supply at each origin, the total

requirements of each destination, and the costs to ship goods

from each origin to each destination are known.

To construct a model to solve the transportation problem

mathematically, it is necessary to make several limiting assump-

tions. Since it is desirable in all methods for obtaining a

solution, to have the costs given in terms of so much per unit,

the "proportionality" assumption is made. It is assumed that if

a cost of c dollars is involved in shipping one unit from origin

i to destination j, the cost to ship k units along the same

route will be exactly k times as much, or kc dollars. This as-

sumption leads to the assumption of the homogeneity of the pro-

duct in the statement of the problem. The proportionality

assumption requires the units of all the products to be shipped

to be the same. In other words, the product is to be homogeneous.

An analysis of the problem leads to three more restrictions

to be made, all of which may be stated as assumptions necessary

to construct the model. If the flow of goods is permitted in

only one direction, it is physically impossible to ship a nega-

tive quantity of units. This is the "nonnegativity" assumption,

requiring the number of units shipped from origin i to destina-

tion j to be nonnegative. For the practical purpose of account-

ing, it is necessary to assume that any shipment of the product

will neither create nor destroy it. Thus the total supply of

the product distributed among the origins before any of the pro-

duct is shipped will equal the sum of the amounts at the destina-

tions after shipment. This is known as the "additivity"



assumption.

Finally it is noted that the total cost of a shipping

schedule is a linear function of the number of units to be

shipped from each origin to each destination. Multiplying the

number of units to be shipped from each origin i to each destina-

tion j by the cost per unit to ship by that route, and summing

these costs for all routes used yields the total cost of the

shipping schedule. Conceivably a different method for determin-

ing the total cost could be found which would not be a linear

function of the number of units shipped from each origin to each

destination. In this paper the "linearity" of the total cost

function, or "object" function, as it is sometimes called, is

assumed. .'' ' ." • •

A mathematical statement of the problem can now be made

based on the above assumptions. Notation and terminology are

necessarily introduced at this point.

Let Oj_ denote the i origin

D. denote the j destination

m be the number of origins

n be the number of destinations

a^ be the number of units to be shipped from 0.

bj be the number of units required to be shipped

to D.

. .
x^ be the number of units to be shipped from 0.

?'
;

';,• to D.

Cj_j be the cost to ship one unit from 0. to D
J

X be a solution matrix composed of x. . for all i, j



k

X

^11 ^12

^21 ^22

^1 ^m2

XIn

^2n

Xmn

Z be the total cost associated with the solution

matrix X ?.,_,,

A be the total volume of goods to be shipped.

The matrix X represents a possible shipping schedule. If

X satisfies all of the conditions imposed by the assumptions it

v/ill be a solution in the sense that it describes a shipping

program.

Looking first at the possible values each x^ • may assume,

denote any limitation which can be placed on them as a con-

straint. The first constraint

x^ . > for all i, j

is taken from the nonnegativity assumption. Since there are a.

units to be shipped from 0^, each solution matrix X must satisfy

n.

- a. for all i

and since each Dj must receive b. units, X must also satisfy

»-.\ m .

IT x^ . = b . for all j
i=l

Any matrix X whose elements satisfy these constraints is a solu-

tion. Without further specifications, there may be many

solutions.
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The cost associated with each matrix X is given by

+ C21X21 + C22X22 + . . . + C2nX2n

•*
°-l^il

* V2^2 + • . . + <^ran\inm

ov, in more compact form,

m n '-'..
z = E r c. .X. .

i=i j=i "-J "-J

Since minimum total cost is the objective in the problem, it

is necessary to find a smallest Z, which can be stated

-

^''•-
.

' m n •

'

minimize Z = T~ ^ c. .x. .

i=i A ^j ^j

At no time has it been specified that the supply be exactly

equal to the demand, although it was implied in making the addi-

tivity assumption. It is now convenient to make this stipulation

in that it is necessary to lay the theoretical groundwork for the

various computational methods which follow. The equality of

supply and demand is not stated as a general assumption, however,

since each method can readily accept a situation in which they

are unequal. The following additional condition can thus be

introduced:

m ' n ,
'.:.- '

, ::
""

..

"

This condition can be thought of as a consistency condition

which must be satisfied if a solution is to exist.



The mathematical statement of the problem is made as follows,

Determine X

^11 ^12

X21 X22

• ^In

• ^2n

such that

and

%1 ^2

x^ • > for all i, j

n
y X,- ,• = a^. for all i

J=l
^^ ^ -

m
"^ X. 4 = b . for all j
1=1 -^J -*

m n

E Z
i=l j=l

m n

z
i=l * j=l

'Sin

"V "^ c. .X. . = Z is a minimum

ill ij

Writing out (2) and (3),

(1)

(2)

(3)

(4)

" *

,v,,r i *



X-j^-j^+X-^g"*"' •
'"^^In

^21^^22"*'' • •*"^2n

«1

82

X
11

X12

+x21

+x.22

x^l+x^2+----*-^n = ^m (^)

^1
+^2

= b-

= b.

^In +x2n ••• mn
= b

n

one observes that this is a system of m+n equations in mn un-

knowns. On writing (5) in matrix form, and using (i4.) , it is

seen that the s-um of the first m rows is equal to the siom of

the last n rows. Therefore any row can be considered a linear

combination of the remaining m+n-1 rows. Thus the system reduces

to m+n-1 equations in mn unknowns. Although this fact is

necessary in the next section, it is convenient to retain all

the equations for computational purposes. The methods to be

presented are best worked using a chart form as in Pig. 1 to

represent all the necessary data. All the information necessary

to work a transportation problem having three origins and three

destinations appears here. The left column identifies each

origin and the top row identifies each destination. The c • • in

the upper right corner of each interior square common to 0^ and

D,- is the cost coefficient corresponding to that route. Each

square, then, can be thought of as the route connecting some 0^

and some D- along which an assignment of Xj_ • units is shipped.
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Di' D2
;

^3 ; Supply

Ol
^11

°11
'

^12

C12 \ ^^13

^13
•l'

02
X21

C21

X22

C22 ^23

X23
.-^2

°3
^31

°31

X32

C32
- '[ ^33

X33
"3

Req. ^1 b2 ^3 A

•
. i

.

Fig. 1.
,

The last row and column indicate the supplies available at each

origin and the requirements of each destination. These entries

will occasionally be referred to as the "rim" conditions. The

figure in the lower right corner is the total volume of goods to

be shipped and will equal the sum of the origin capacities as

well as the sum of the destination requirements.

While it is true that transportation theory is an important

part of the more general linear programming theory and can be

developed from this theory, it is not the purpose of this paper

to show this development. It suffices to indicate that the

transportation problem is a linear programming problem and can

be worked by the simplex method. Stated in simplex form the

problem would be: Determine



X- |xiiX22 •• ^ln^21^22 ••• ^2n ^1^2 ••• ^nj

such, that

x^. > for all i, j

^21+^22+- ••+^
2n.

= 3'

^11

X'12

+x,21

+x.22

^1"^^2**'
•

• • "^^n ~ ^m

'•^^1 = ^1

^2 = b.

X

and

xn. +y^2n' '
'

ra n
z r c. .X. . = z

i=i j=i "-J ^-^

^r = ^^in n

IS a rainxinum.

The equation x-,-, + x-ip + . . . + x-, = a-, is taken as the re-

dundant one and is omitted.

•-_.. ' DEFINITIONS AND THEOREMS

In this section four fundamental theorems in transportation

theory are stated and proved. Most of the mathematics behind

the following methods will be introduced at this point, leaving

that which is applicable only to one method for consideration

when the method is presented. .. .

'

t-.'*^-^.
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Definition 1. A solution to the transportation problem is

a matrix X

X =

^11 ^12

X21 X22

^In

^2n

^1 ^2

which satisfies the constraints

m

^:n

27 Xj_. = b- for j = 1, 2, . . ., n1=1'^'^

n
^ X. . = a. for i = 1, 2, , . ., m

The physical interpretation of the variable Xj_ • has been said to

be simply a shipment of a number of goods from 0^^ to D,-. It may

also be called an allocation or assignment of some or all of the

goods at 0^ to D^

.

Definition 2. A solution variable is a variable which is

nonzero in a solution.

Definition 3. A feasible solution is a solution in which

all of the solution variables are positive.

Definition Ij.. A basic solution is a solution obtained by

setting mn-m-n+1 of the variables equal to zero and solving for

the remaining m+n-1 variables.

Definition _^. A basis is the collection, of the m+n-1 var-

iables which are not set equal to zero in the construction of a

basic solution. '• • .^
,

.•/ . -->
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Definition 6. A basic feasible solution is a feasible

solution with no more than m+n-1 of the solution variables being

po.sitive.

Definition 2- -A minimum feasible solution is a solution

which satisfies

m n
V~ y~ c- .X. . = Z isa minimum .

i^l A -J ^J

Definition Q. A nondegenerate basic feasible solution is

a basic feasible solution with exactly m+n-1 solution variables

being positive. A degenerate basic feasible solution has fewer

than ra+n-1 solution variables.

The following examples illustrate the connections between

the above definitions and the information as can be represented

in the chart form. Consider the solution as represented in chart

form in Pig. 2.

Dn D' Supply

50

20

10
60

17

k-o

ko

15 10 . 6

20 k.0

60

Req. 50 70 ., . .„, k-0 l6o

Fiff. 2.
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The solution matrix X is

X =

50 10

i^O

20 1^0

This X represents a solution which is interpreted as

^11 = ^0 X]_2 = 10 '13
=

X2]_ = X22 =4-0 X23 =

X31 = X32 = 20 X33 = ij.0

indicating this solution or program calls for a shipment of $0

units from 0^ to B^, a shipment of 10 units from 0-|_ to D2, and

so on. The cost of this program is given by

3 3

j;5i ?i^^j^^^ ,.

^ ^11-^11 "* ^12^12 "• ^13^13 "^ °21^21 "*" ^22^22

,.. + C23X23 + C3;^X3iL + C32X32 + C33X33

= 20x50 + 7xlO + i;xO + 17xO + 3xi+0

+ 6 X + 15 X + 10 X 20 + 6 X 1^0

= 1630

As seen by an inspection of the chart, the constraints

, - 3

T. ^11 = ^1 ^o^ all J = 1, 2, 3
:< ' i=l -^ - '

- 3

Y. X. . = b. for all i = 1, 2, 3
J=l ^ -^

are satisfied and thus X is a solution.

The solution variables are x-,-,, ^\2' "^22' ^'\2' ®^*^ ^"W

(""^ '
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The solution Is a feasible one since these are all positive.

The solution is also a basic feasible solution since m+n-1 =

3+3-1 = 5 and there are no more than 5 solution variables. Since

there are exactly 5 solution variables, the solution is also a

nondegenerate one.

The chart in Pig. 3 indicates a degenerate basic feasible

solution for the same problem. Notice that only 4 solution

;
D^

;
D2

;
D3

;
Supply

20 7 k
^

0, • Go
50 10

'1

02
17 3

k-o

6
k-o

15

60

10 6
60°3

Req. 50 70 ij-O 160

..
Fig. 3. ,

.

"

•

variables appear here, thus making the solution degenerate. This

degenerate solution was possible because a partial sum of the row

requirements was equal to a partial sum of the column require-

ments. In this case a2 = bo. If more than one set of partial

sums are equal, multiple degeneracy can occur. In this case a

solution with even fewer solution variables would exist.
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It is desirable, as will be seen in the next section, to

"work with problems in which only nondegenerate solutions can,

exist. Theorem 1 indicates one method of avoiding the possibil-

ity of obtaining a degenerate solution at any stage in the

algorithms to follow.

Theorem 1. For every problem in which degenerate solutions

can occur, there are equivalent problems in which degenerate

basic feasible solutions are impossible.

Proof. Degeneracy can. occur only when partial sums of row

and column requirements are equal. An adjustment which makes

this partial equality impossible also avoids any possibility of

degeneracy. The method which will be used throughout this paper

is to add <= to each column requirement and add ne. to the last

row requirement, where ^ is a positive number but smaller than

any solution variable could ever be. This £ is called a per-

turbation constant. The condition

m n . .

. Z a^ = "E b.
i=l j=l -^

is still satisfied since the addition of n^ is made to both

sides of the equation. Now a partial s\am over r of the column

requirements will contain the infinitesimal part re, and any

partial sum of the row requirements, 0€ or n£ . The only case

in which row requirements and column requirements will be equal

then, occurs when all of the rows and columns are included.

Thus a partial sum of the row requirements can never be equal to

a partial sum of the column requirements, and hence degeneracy

cannot occur. The original problem can be re-established at
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any time by allowing £ to approach zero.

Prom this point on it will be ass-umed that there is no

possibility of obtaining a degenerate basic feasible solution.

This allows much simplification in the proofs of the following

theorems.

Theorem 2. A basic feasible solution for any transporta-

tion problem always exists. In other words, a solution with at

most m + n - 1 positive solution variables can be found for

every problem. .

••

Proof. Such a solution can be obtained step by step as

follows.

. 1. Set any variable x^^ = Min(a^, bg)

.

2. If a^ > bg, then x^^ = bg, and all other x^j in this

column must necessarily be zero to satisfy the column

requirement. Delete column s from the matrix and con-

tinue in the same manner with the reduced matrix.

3. If bg > a^, then x^^ = a^, and all other x^^ . in this

row are set equal to zero. Delete row r from the

matrix and continue in the same manner with the re-

duced matrix,

i|.. This process is continued until the solution is

' complete.

The case where Bp = bg is not considered. It will only

occur when the last assignment is made, since nondegeneracy of

a solution has been assumed. The determination of each positive

x^ ^- eliminates either a row or a column one at a time with the

last assignment eliminating both a row and a column. It follows.
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then, that this solution -will have exactly m + n - 1 solution

variables. Each rim condition is satisfied and thus the solu-

tion is a nondegenerate basic feasible solution.

Theorem 3* Assuming that a basic feasible solution has

been found, a second basic feasible solution can be constructed

from the first by introducing a new variable into the solution

and removing a solution variable from it.

Proof. Suppose an initial basic feasible solution has

been obtained and represented in chart form as in Pig. I|-.

;
°i

•

•

Dg : D3
;
Supply

Ol
20

50 10

7 k
60

02
17

ko

3 6
i^o

O3
15

20

10

ko

6
• 60

Req. 50 70 ko 160

Fig. ij..

Suppose also that X2j^ will be the new variable to be put into

the program at some positive but small value 6. If 6 is added

to X2]_, it must also be subtracted from X2_2_ and X22 i^ order to

continue to satisfy the rim conditions b-^ and 82. Notice now

that the addition of 6 to x-|2 will simultaneously satisfy the
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rim conditions b2 and a-j_ which were left unsatisfied by the sub-

traction of 6 from x-|-|_ snd X22> ^^^^ that all rim conditions are

again satisfied. Figure 5 shows the new program with the intro-

duction of e in Xpn . The sequence of variables traced by the

-*! !
Do ; B3 [ Supply

20 7' k .

'

On 60-.

50 - e 10 + e

17 3 .
•

6'

02 40
e . ij.0 - e

15 .10 6
Oo ....... 60
^

' '- ' 20 il-0
•

Req. 50 70 kO 160

Pig. 5. V

additions and subtractions of 6 is called a path.

If is noi-^ increased from an initial value close to zero,

the solution variables from which 0. is being subtracted become

smaller as 6 becomes larger. If 6 is allowed to increase until

one of these variables is reduced to zero, this new solution

will contain m + n - 1 solution variables. If © became any

larger, this smallest solution variable would become negative

and the solution would no longer be a basic feasible one. This

new basic solution must always exist since any introduction of



' ^ja^g'y ; ' --"*?
' ymi *^ -•'>-••. .;:t^^ '5/-'?y«r-y~s:-v^y^-'
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e to a nonbasic variable necessitates its subtraction from at

least the two solution variables In the same row and column.

Thus at least two solution variables will be driven toward zero.

The assumption of nondegeneracy Is assurance that no two of these

decreasing variables go to zero at the same time.

In addition this new solution Is unique. The basis vari-

ables will all reach zero at some time or other with the appro-

priate increase in 6. However, as soon as the first reaches

zero, e can get no larger since this basis variable would become

negative. Thus the Introduction of 6 in a nonbasic variable will

drive out one and only one unique solution variable. Hence the

new solution is a unique derivation from the starting solution.

At this point, an Initial basic feasible solution for every

transportation problem is guaranteed to exist. . Also a new basic

feasible solution can be constructed from the first one. Indi-

cations later will be given as to what variables should be in-

troduced so as to give a better solution in the sense that the

new solution will be of lower cost.

The last theorem is by far the most Important in transpor-

tation theory. It gives a reason for dealing only with basic

feasible solutions in the previous theorems. The statement of

this theorem requires that the problem have a unique optimal

solution, although this is often not the case. A discussion of

this appears in the section dealing with alternate solutions.

Theorem h^. Given a transportation problem which has a

unique optimum, the minimal solution must be a basic feasible

solution.

^^'*-£ «— -^k*
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Proof. Assume all possible basic solutions have been found

and of these the solution in Fig. 6 is found to be of minimal

cost

.

f -

Req. 50 70 i^.0 160

Pig. 6.

A similar solution in Pig. 7 is one in which x has been

increased from zero to 6, a small positive number, to give m + n

solution variables.

The first of these solutions is seen to be a basic feasible

solution since it does contain five solution variables and all

of the rim requirements- are satisfied. Let this solution be X-,

with an associated cost of Z-^. The second solution is not a

basic solution since it has six solution variables. It will be

denoted by X2 with a cost of Z2.
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D-j_
;

Dg
;

D^
;
Supply

20 7 k
Oi 60

e 30 30

17 3 6

15.^^ 10 6

03 " ' ' 60
50 10

Req.
. ^0 70 . 40 • 160

•* ' .'
:

.

' Pig. 7. ''
. ;

The assumption, that Z2 is less than. Z-]_ is made and shown to

lead to a contradiction. If some X2 could be found such that

Z2 is less than. Z-^, this would indicate that some nonbasic solu-

tion could be better than, any basic solution; however, this will

be shown, not to be the case.

In a manner similar to the method used in the example in

Theorem 3, the path for 9 in the new solution is found. The

introduction of 9 in x^^^ necessitates its subtraction from x-,-:^

and x-^-]_ and its addition to Xoo to keep the rim requirements

satisfied. This second program is shown in. Pig. 8, If 9 is

increased from a small positive quantity, approximately zero,

to the value one, the expression c-[_-j_ - c^o + Coo - Co-i will

represent the change in the cost of the solution for the intro-

duction of one unit of x-j_-j_. This is called the opportunity cost



21

: ^1 .
D2

; ^3 ; Supply-

Ol
20

30

7

30-9
So

02
17

ko

.3 6

ko

O3
15

50 - e

10 6

10 +
60

Req. 50. 70 ko 160

Pig. 8.

of X,, and will be denoted by O-^-^' Thus

^11 = °11 - ^13 + ""33 ' ''31-

If Zg < Z-^, then O^i must necessarily be negative, with the

cost of X2 being given by

Z2 = Z2_ + e02_i C6)

Now suppose is allowed to increase until one of the old solu-

tion variables becomes zero. This new solution, Xz, will also

be a basic feasible solution. If the smallest decreasing vari-

able becomes zero at 9 = 0', the cost of this third solution is

Z3 = Zi + 9 'Oil

and Z^ <; Zi since (6) implies that the solution cost decreases

as 9 increases. However, X- is a basic feasible solution, and

therefore its cost Zo must be greater than Zi. Kence a contra-

diction has been obtained, and therefore the assumption Z2 "< Zi
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must be false.

Beginning with X-]_ again, and introducing two extra nonzero

variables into the solution matrix, the assumption that the cost

of this new solution, Xr, is less than that of X-^ is made. If

either of the extra variables is increased until an old solution

variable becomes zero, this new solution, Xt, will have m + n

solution variables. However, such a solution was just shown not

to be minimal and so the assumption that 'Z'j^ < Z-j_ is false. This

argument can be extended to any number of extra solution vari-

ables, thus proving the theorem.

Theorem I4., then, is assurance that no nonbasic solution can

exist which has a cost less than that of the optimal basic

solution.

Although the proofs of Theorems 3 and ij. are based on a

sample problem having three origins and three destinations, this

in no way affects their generality. Neither proof is dependent

upon the eize of the problem nor upon the choice of the extra

variables introduced into a solution.

INITIAL SOLUTIONS

The first step in each of the following methods for solving

a transportation problem is to obtain an initial program from

which to start. A solution matrix X must be obtained such that

it is a basic feasible solution, or, in other words, a program

is to be found in which m + n - 1 of the variables are positive.

There are various methods available to obtain this initial
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program or which five are mentioned here. The three most com-

monly used are outlined in detail and an example Tor each given.

The Northwest Corner Rule for obtaining an initial program

is probably ^he most computer orientated. No time is spent

searching for the various elements of the matrix since no atten-

tion is paid to the cost coefficients associated with each route.

This method does not usually give as good an initial solution

as can be obtained by other methods.

The scheme is as follows.
• I.

1. Let X22_ = Min(a-j_, b-]_) . ' ^ •'..

2. Reduce both a-, and b-, by x-^i •

3. Repeat steps 1 and 2 using the upper left-hand (north-

west) corner element of the matrix obtained by deleting

the row or column whose rim requirement has Just been

satisfied.

if. This process is repeated until the solution is complete.

The assignments are made by starting in the upper left-hand

corner of the given transportation matrix and exhausting each

origin capacity and satisfying each destination requirement one

at a time until the last assignment simultaneously satisfies the

requirements of the last row and column. There will be exactly

m -f n - 1 assignments made since there are n rows, m columns,

and the last assignment simultaneously satisfies both a row and

column requirement. Thus the Northwest Corner Rule yields a

ba^ic feasible solution. It happens, however, that some of the

assignments, other than the last one, satisfy the requirements

of some destination and exhaust the capacities of some origin at
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the same time. This indicates that degeneracy has occurred and

the solution obtained is degenerate. If this happens, the prob-

lem should be restated with the addition of a perturbation con-

stant to avoid any further possibility of obtaining a degenerate

solution. It is usually best to add the perturbation constant

before the problem is begun, rather than wait until degeneracy

is encountered during its solution. The time saved in not hav-

ing to begin over again is often worth the extra computations

involved in carrying along the perturbation constant.

The following example is introduced here to facilitate the

understanding of the Northwest Corner Rule. It will also be used

throughout the rest of this paper in an attempt to evaluate

somewhat the efficacy of the various methods.

Example 3. Table 1 gives all of the information for solv-

ing a transportation problem with 3 origins and 3 destinations.

Table 1.

Origin capacities Destination requirements
Cost coefficients

: D]_ : D2 : Do

Ol 60 units

02 ^0 units

03 60 units

Dl 50 units Ol

D2 80 units O2

^3 30 units O3

20 7 Ij-

17 3 6

15 10 6

The cost to ship one unit from 0^ to D,- is read from the square

common to the i^-'^ row and j^^ column in the Cost Coefficients

Table. Figure 9 is the representation of the above data in

chart form. Following the steps of the Northwest Corner Rule,



25

•

±
I

D2
; ^3 1 Supply

Ol
20 7 i^.

60

O2
.:

17
r

i^O

O3
15 10 6

60

Req. 50 " 8a .' / •• 30 160

^*f : Pig. 9.

X;, -, is set equal to

MinCa^, b;^) = min(60, 50) = 50

and is subtracted from both a^ and b-]_, leaving a-]_ = 10 and

b-,' = 0. See Pig. 10. Since b-. = 0, the first coluran is ignored

; ^1 • ^2 • ^3 •
Supply

20 7 X
Ol 10

50

02
17 3

N

6
i|.0

03
15 10 6

60

Req, 80 30

Pis;. 10.
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and the new northwest corner element is y^j_2' ^'^'^ -^12 ~

Min(a-,, bg) = min(10, 80) = 10 and is subtracted from both B-,

and 1)2, leaving a-|_ = and b2 = 70. Rather than physically de-

leting the first coluran from the matrix, it is more convenient

to leave it in, noting that the new entry of b-, = can signify

that this column will no longer be used. The chart in Pig. 11

results after making the second assignment of x-jp = 10 • ^^^Q ^®^

; D-L : 02:03; Supply

20 7 k .

Oi
^

G
50 10

17 . 3 . 602' -

k.0

Req. ' 70 30

Fig. 11.

northwest corner element now is X22^ thus X22 = Min([[.0, 70)

= i|0 and 32 = and b2 = 30. Following this assignment, Xo2 be-

comes the ne\-i northwest corner element, and hence X32 =

Min(60, 30) = 30 and 33 = 30 and b2 = 0. These last two assign-

ments are indicated in the chart in Pig. 12. At this point, i|.

assignments have been made and the only square left for consid-

eration is the one common to the third row and third column.
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It becomes the new northwest corner element and x-<^ = Min(a^, b-.)

= min(30, 30). Note that both 83 and b3 are satisfied by this

last assignment. There have been 5 assignments made satisfying

all of the rim requirements, and thus this is a basic feasible

solution.

Pilling in the original chart with all of the assignments

(see Pig. 13), indicates the complete solution is

^11 = ^0. X-L2 = 10 X13 =

X21 = X22 = 40 X23 =

X31 = X32 = 30 X33 = 30

The cost associated with this solution will be
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3 3

1=1 j=i

= °ll^ll + °12^12 + <=^13^13 + ^21^21 -^ ^22^22 + ^23X33

= 20x50 + 7xlO + J4.xO + 17xO + 3xIj.O + 6xlO

+ 15 X + 10 X 30 + 6 X 30

= 1810

A restatement of the problem with the addition of a per-

turbation constant was unnecessary for this example since all

of the assignments made were positive.

It is interesting to note that had D-, and Do been inter-

changed, the Northwest Corner Rule would have given the solution

in Pig. I4. For this solution, Z = 1300, a considerable savings

over the cost of the first solution. This solution is only one
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iteration away from the optiraal solution, whereas the first

initial solution will require 3 iterations before the optimal

solution is obtained. It is readily apparent now that the North-

weso Corner Rule is essentially the same method as was con-

structed in Theorem 2, with the added restriction, of making the

first assignment in the northwest corner square. There is no

guarantee that the solutions obtained by either of these methods

will be anywhere near the optimal solution. Their use could

conceivably give the "worst" possible solution, in the sense of

being the solution of highest cost, or even the optimal solution

with no further iterations necessary.

The next two methods take into consideration the cost co-

efficients and tend to make assignments along routes involving

the lower given costs. The first is appropriately called the
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Least Cost Rule. The cost coefficient matrix is scanned for the

smallest entry. The x^ ,• corresponding to the smallest cost co-

efficient is used for the first assigriiaent

.

The steps can he stated as follows.

1. Scan the cost matrix for the smallest Cj_-.

2. Set x^ • = Min(aj_, b-) and reduce a^ and b- both by Xj_-.

3. Repeat step 2 using the smallest element in the cost

matrix obtained by deleting the row or colum.n already

satisfied.

ij.. This process is repeated until the solution is complete.

5. In, the case of a tie for the smallest c^,- any arbitrary

rule may be used to break the tie. . .

The same problem of degeneracy occurs here also if any

assignment other than the last one satisfies both a rovj and

colurr.n requirement at the same time.

To illustrate this method with Example 3 used before, the

cost coefficients are first scanned and C22 = 3 is found to be

the smallest. So X22 = Min(a2, b2) = min(i|0, 80) = I4.O and

32 = and b2 = I4.O. The chart with this first assignment ap-

pears in Fig. 15- Row 2 is now ignored since its requirements

are m.et and the reduced cost matrix is scanned for smallest cost

coefficient which is c-^^^ = ij.. Therefore Xj_^ = Min(30, 60) = 30

and b-^ = 30 and a-|_ = 0. See Pig. I6. The requirement in column

3 is now satisfied, the column ignored, and scanning the cost

matrix finds the smallest c to be 0-^2 = ?• So x-,2 = Min(i;0, 30)

= 30 and a-[_ = and b2 = 10. Row 1 is now ignored and 0^2 = 10

is the smaller of the two remaining cost coefficients. Thus
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Fig. 16.

x^2 - Mln(60^ 10) = 10 and a-, = $0 and b-j_ = 0. The last assign-

raent is x,-[_ = 50 and the complete solution in chart form appears
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in Pig. 17. The cost of this solution is

Z = 7 X 30 + li- X 30 + 3 X 1^0 + 15 X 50 + 10 X 10 = 1300.

Five assignments were again made, so this is a basic feasible

solu"cion.

': '^1 ': ^2 I ^3 ; Supply

20 7 k
Ol 60

30 30

17 3 602-
ko

k-o

15 10 . 6
O3 ...

50 10 •

60

Req. 50 80 30 160

Fig. 17.

It is interesting to note here that a rearrangement of rows

or columns will not affect the cost obtained by the L east Cost

Rule, whereas a change did affect the Northwest Corner Rule.

None of the initial solutions thus far obtained was optimal.

The most desirable method, of course, would guarantee an optimal

solution on the first try; however, no such method is in exist-

ence yet -today. Vogel's Approximation Method (VAM) t be con-

sidered next is considered better than the two initia 1 approxi-

mation methods previously presented in the sense that its

1
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initial solution is usually "reasonably" close to the optimal

one

,

In Vogel's Approximation Method, a difference column and a

difference row, representing the differences between the cost

coefficients of the two cheapest routes for each origin and

destination are computed. Each individual difference can be

thought of as a penalty for not using the cheaper of the two

routes. The highest penalty rating is identified and the first

assignment is made to the x^ • corresponding to the smallest cost

coefficient in, that row or column.

The procedure can be stated as follows.

1. Compute the penalty ratings for each row and column,

select the largest, and identify its row or column.

2. The X- • which corresponds to the smallest cost in that

row or columin. is set equal to Min(a-, b.) and is sub-

tracted from a^ and b-. .
.

3. Recompute the penalty ratings, again choose the largest,

and repeat step 2 using the matrix obtained by deleting

ohe first row or column already satisfied.

l\.. This process is repeated until the solution is com-

plete.

5. In the case of a tie for the largest penalty coeffi-

cieni; choose the smallest c • • in the tied rows or

columns.

In looking at Example 3 again one more row and another

column are added to the chart to facilitate the computation of

the penalty ratings. The differences between the smallest two
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cost coefficients in each row and column are recorded in the

ratings row and colxiran. See Pig. l8.

Di • D2 • D3 ' Supoly • R°^
:

•

[
: ratings

20 7 i^

Ol 60

17 3 6
02 .„^,

,

ko

15 10 6
O3 Go li

Req. 50 .80 30 160

Column
ratings 2 i^

Pig. 18.

In this case there is a tie for the largest penalty rat-

ing. Both ratings in row 3 and column 2 are 14.. The smallest

c in either row 3 or column 2 is C22 = 3- Therefore X22 =

Min(a2, ^2^ - "^in(irO, 80) = I4.0 , 32 and b2 are each reduced by

k-O, the second row is ignored, and new penalty ratings are

computed. See Pig. 19. The largest penalty coefficient is 5

in column 1, c^-[_ = 15 is the smallest cost coefficient in that

column, and therefore x^-^ = Min(6o, 50) = 50. Now a 3 = 10,

b-j_ = 0, column 1 is ignored, and new penalty ratings are com-

puted. See Pig. 20. The largest penalty rating is I4. in row 3

and c^2 = 6 is the smallest cost coefficient in that row. Thus
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X33 = MlndO, 30) =10 and a^ = and b^ = 20. The chart with

the addition of this last assignment appears in Fig. 21. .

Dn • Dp • D-, • Supply Row
^ :

'
: ratings

lU.,

20 *

1
60

17 3
i|.0

15 10

03 50 10

Req. J+0 20

Column
ratings

Pig. 21. .:

At this point the column penalty ratings cannot be computed

as only one cost coefficient remiains in each column. However,

there is only one way to finish making the assignments and still

satisfy all of the rim requirements. The remaining assignments,

x-12 = ^0 sn^ ^13 ~ 20, are made and the complete solution ap-

pears in Pig. 22. This solution has a cost of 1290.

It is illustrative at this point to compare the costs of

the solutions obtained by the three m.ethods for Exam.ple 3- Por

the solution ob-cained by the Northwest Corner Rule, Z = I8IO

was the associated cost. A rearrangement of the given data pro-

duced a cost of 1300. The Least Cost Rule and VAM arrived at
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solutions with costs of 1300 and 1290 respectively. It will

soon be shown that the VAM solution is actually the optimal

solution for this example, indicating that possibly this

method is superior to the other two. '

, .

There are other methods for obtaining an initial basic

feasible solution. The Row Minimiom method assigns as much as

possible to the x^ • corresponding to the smallest cost coeffi-

cient in the first row consistent with -the rim requirements.

The appropriate row or column is deleted and the process re-

peated using the first row of the new matrix until the solution

is completed. The Column Method is similar. Other methods

seem to be little more than inspection methods with varying

degrees of organization. • •

'
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Two iterative methods for obtaining an optimal solution to

any transportation problem are presented in this section. Not

all methods are iterative, as was indicated in. Theorem h^. Any

possible solutions to Example 3, whether feasible or not, could

be found simply by designating four of the variables as non-

basic and solving for the remaining five. Doing this for all

possible combinations of four variables would yield every pos-

sible basic solution. The cost for each solution can then be

evaluated and the solution with the lowest cost would be the

optimial solution. This method has serious drawbacks as can be

seen when, considering a system with ten origins and ten destina-

tions. For this system one would have to solve 0(100,19) sets

of 8l equations in 8l unknowns. Even with the use of a high-

speed computer this problem would take several weeks. Using the

distributive m^ethods of this section and VAM for the initial

solution, a skilled operator could work the same problem by hand

in. 3 Tio if hours. Use of an IBK II4.IO computer could reduce this

time to about 25 minutes. As was indicated in the introduction,

the Simplex method, also an iterative method, could be used.

Its formulation of the problem would have 119 variables and 19

elements in each basis, and would require 30 to l\.0 minutes using

an IBM ll|.10 computer to reach an optimal solu'cion.

In the following two iterative methods for obtaining an

op-cimial solution for the transportation problem, an initial solu-

tion is first obtained. This solution is then analyzed to see
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if a better solution exists. If not, the present solution is

considered to be optimal. If by some indication the present

solution is not optimal, the method outlined in Theorem l\. is

used to obtain a solution which is better than the first. This '

solution is then checked for optimality and the process is

continued.
'

The Distribution method permits any size transportation

problem to be systematically solved with the best solution re-

sulting. Due to the special characteristics of the transporta-

tion matrix and the miathematics of the method, the final solution

is exact rather than approximate. The Distribution method is

really little more than a systematic inspection method and has

been replaced, for the m^ost part, by the Modified Distribution

metnod (MOD) . These distribution methods are best worked using

the distribution m.atrix or chart form of representing the data

rather than the simplex equation form.

For the inioial solution the arbitrary Northwest Corner

Rule will be used. In actual practice, however, almost any

initial basic feasible solution may be used. In order to deter-

mine whether or not this is an optimal solution, that is,

whether or not the solution variables included in the solution

minimize the objective function, the effects on the total cost

function of introducing one or more of the currently excluded

variables must be determined.

Consider the solution in Fig. 13 again, which is the initial

solution obtained by the Northwest Corner Rule for Example 3-

For easy reference, the squares in which assignments appear will
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be called S squares, with S . • denoting the square in which the

assignment x . . appears. Similarly, W^ • will denote the square

common to the i ^•'^ row and the j'^-'^ column and containing no

assignment. Thus each W square is considered one at a tim^e with

an assignment of one unit made in it. Of course, the introduc-

tion of one unit in ¥j_ .: necessitates the modification of some of

the existing assignments to keep the rim conditions satisfied.

Theorem ij. is assurance that this modification can be made in

only one way.

In this particular example, if one unit is shipped from O2

to D-, and introduced in W2-1 , the assignment made in S-,-, must be

reduced by one unit to satisfy the rim requirement of the first

column. Sim.ilarly, S-)2 I'lU-st be increased by one unit and Spp

decreased by one unit. The introduction of one unit in ¥22_

produces the program in Pig. 23.

The intention here is to determine whether or not an intro-

duction of X22_ in.to the programi will reduce the cost of the

present program. If it will, then Xg^ will be allowed to in-

crease until one of the current solution variables becomes zero,

resulting in a new basic solution. The proportionality assump-

tion is assurance that if the introduction of one unit in X2n

will decrease the cost by c, then k units introduced will de-

crease the cost by kc. If this introduction of one unit in ¥21

does not indicate that the cost of the program will be decreased,

then a new W square is considered.

The cost of the original solution in Fig. 13 was previously

determined to be I67O. The cost of the new program with one
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unit introduced in. ¥21 is I671. An additional cost, then, of

+1 would be incurred Tor every unit of X2-^ put into the program,

which indicates that no new assignment should be made in. Mo-i .

This additional cost of +1 is the opportunity cost for ]dr;,^ , de-

noted Op-,, and thus Op, = +1. Obviously any positive 0- ,. will

indica'i:e that an assignment in. W. . will not lead to a decrease

in the cost function Z, and a new W square should be checked.

A similar argument shows that a negative opportunity cost

associated with some W square indicates that any assignment in

that square would reduce the uotal cos-;: of the program. The

occurrence of a zero opportunity cost indicates that an assign-

ment made in that square would not change the cost of the pro-

gram at all. Thus if each O-,-, for every W- •, in a solution is

nonnegative, the solution cannot be improved and is therefore
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optimal.

A much easier way to determine O21 for W22 is the following.

For each assignment which was Increased by one unli: around the

path, Z Is Increased by Its cost coefficient, and Z was de-

creased by each cost coefficient for each assignment which was

decreased by one unit. Thus it is seen that Op-i =

Cp, - c,^ -t- c,p - Cpp = 17-20 + 7-3 = +1. Since ¥2]_ indi-

cates no possible improvement, a new ¥ square is selected for

consideration, say Won . An assignment of one unit in Wn-|^ will

necessarily reduce both S-<-, and S02 'oy o^s unit and increase 821

by one unit. Hence, O-,-, = c^-, - c-,-, + c-^p ~ ^-^o ~

15 - 20 + 7 - 10 = -8- Since Ooi is negative, this indicates

that an assignment in Won will bring- about a decrease in Z. Thus

Xo-]_ is increased until one of the current assignments on the path

becom^es zero. Since an increase in Xoi decreases x-,-1 and Xo2^

X02 will become zero ".vhen Xnn is 30. An increase of more than

thirty units would make Xnp negative. At this point, x-,-, = 20

and X23_ = iiO. This, then, is a new basic solution, derived from

the initial one, as shown in Pig. 2I4.. The cost function for this

new solution is

Z = 20 X 20 + 7 X I4.O + 15 X 30 + 6 X 30 = li|30.

Rather than recompute Z for each new solution as was Just

done, 3. much mere efficien':: method is to note that the intro-

duction of thir'^y units in x,-, reduced the cost of the original

solution by 30 x (+8) = 2ij.O. The cost of this new program then

is 1670 - 21^0 = 11^30.

The same process as was just described is now used on this
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first improved solution. Hopefully this solution will be opti-

mal which would be indicated by a nonnegative opportunity cost

evaluation for each W square. However, a check on W-i^ shows

this is not the case. If x-]_o is increased by one unit, x- -, and

x-^o are necessarily decreased by one unit, Xn-, increased by one.

and

^13 ^ ^13 " °33 + C3-L - c-L]_ = i^ - 6 + 15 - 20 = -7 .

Thus Xy^ is increased by 20 making x-^-^ = 0, X03 = 10, and

x-3-|_ - 50. xhis second improved solution has a cost

Z = li>.30 - 7 X 20 = 1290 and is shown in Pig. 2$ along with the

opportunity costs associated with its ¥ squares. Since all of

the opportunity costs are positive, this solution is optimal.

Notice that -co find Og- , if X22_ is increased by one unit,

x^^ and X22 £^e decreased by one unit, x-,2 and Xo-, are then
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increased by one unit and x-, ^ decreased by one. Thus

°21 = ^21 - ^22 + ^^12 - "^13 *" ^33 - ^31

= 17 -3 + 7-1^+6- 15 =8.

All five assignments were affected in this case, whereas only

three have been in the ¥ square evaluations considered before.

This exeraplifies the fact that there is no specific method for

establishing the path for each W square. Rules can be stated

for computational purposes; however, these are nothing more than

trial and error procedures.

Another point of interest is the number of iterations that

were necessary to reach the optimal solution. In this example

only two were necessary, and were made immediately upon finding
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a W square which indicated improvement was possible. For larger

problems in which the paths becorae much more com.plicated, this

is probably the best procedure. However, evaluating all of the

opportunity costs for each solution, and choosing the one which

will decrease Z the most, will usually cut down on the number of

iterations necessary to reach the optimal solution. For larger

problems, m.ost of the computation time is spent in searching for

the path. Once found the new solution can be obtained almost

immediately. For this reason the method used in the working of

the example is probably more efficient than evaluating each ¥

square for every new solution.

The basic parts of the Distribution method can be sum-

marized in the following steps.

1. Establish an initial solution. •
•

2. Evaluate the ¥ squares one by one until one is found

which shows, improvement

.

a. Establish a closed path from this selected ¥

square via S squares back to the same ¥ square.

Other S and ¥ squares may be skipped over.

b. Determine the improvement possibility for this

¥ square by calculating ius opportunity cost.

c. If no possible improvement is indicated repeat

step 2 with a different ¥ square.

.;,"' d. ¥hen a ¥ square is found which shows improvement

«r . possibility, assign as much as possible to this

square keeping all rim requirements satisfied and
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bringing one of the curren-c assignments to zero.

3. Repeat step 2 until no further improvement is possible.

The solution is then optimal.

Concerning the merits of this method, it can be said that

it does yield an optimal solution and dce^. work toward it in a

straightforward manner. However, it is at best little more

than a formalized inspection method. In larger problems the

method becomes tedious if worked by hand and much of the compu-

tation tim.e is spent searching for the proper path. This method

has been replaced for uhe most par-^ by the more efficient Modi-

fied Distribution method.

The Modified Distribution method is similar to the Distri-

i>utioH method in all respects except one. For each W square in

the previous meohod, a closed path through some or all of the S

squares had to be found. Then the opportunity cost of each ¥ .

square could be evaluated. Essentially the Modified Distribu-

tion m.e-choc evaluates these opportunity costs before any paths

are found. The V; square with the greatest possibility of im-

provement is loca-ced and then the corresponding path determined.

The impcr-cant thing is that in this method, only one path need

be found per iterauion.

A comple-ce set of row and column nurabers is found such that

the cost coefficient in each S square equals the s-om of its row

and column numbers. Using Exam.ple 3 again, with the initial

solution obtained by T:he Northwest Corner Rule, the program in

chart form with the addition of the extra row and column is

given in Fis;, 26.
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For each S square, numbeps R.- and K- are to be found such

that R^ "^
-^i

~
^i1" Thus the following equations result:

c.-, = R-, + K-,11 J. 1 >

• ^12 = % + K2

c 22 = R2 + ^2 (7)

Coo=Ro+Ko

Since the c's are known, this is seen to be a system of 5

equations in 6 unknowns. To evaluate the R's and K's, one of

them is arbitrarily fixed, and for computational purposes the

simplest thing to do is set R-j_ = . Pi-are 27 gives the re-

sults of solving the system of equations for the remaining R.
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and K- values,

Supply

Req. . 50 • 80 30 160

20

- Pig. 27.

With these constants evaluated, the opportunity costs for

each W square are given by 0^^ • = -(R^ -^ K--) + c,---. This is cer-

tainly not ixiunediately evident. The following argioment should

suffice, however, to indicate why it is so.

On solving (?) for all of the K's and R's, with the excep-

tion of R-^, in terr.3 of the c's and R-^, notice that R^ appears

in each equation for K ^. with a coefficient of -1, and in each

equation for R^ with a coefficient of +1. Thus adding sorae R-

and K,. together gives an expression involving only c's no matter

what value is given to R^ initially. _
'

>
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:) .
K2 = C12 - Ri .

R2 = C22 ~ ^12 "^ ^1 ^^)

K3 = C33 - C32 + 0^2 - %
In the Distribution method, the path found for W21 deter-

mined the opportunity cost; 621 = 022 - c-i-i + 0^2 ~ ^22* ^^o™

(8),

-(R2 + ^'^1) ~ "^22 "*" ^12 ~ Ri ~
"^ii + Ri

..... = -C22 + ^12 " ^11

and thus .

^21 ~ ^21 " ^-^2 "^ -^1^ ~ ^21 " ^^22 "^ ^^12 " '^ll

which is the same determination of 0-|_2 as was found using the

Distribution rr.ethod. A more rigorous argument would involve the

technical implications of the definition of opportunity cost.

The opportunity costs given by 0_- • = c^^,- - (R^^ -r K,-) for

each ¥ square are now computed.

0^3 = c
;^3

- (Ri + K3) = Ij. - (0 + 3) = 1

°21 ^ ^^21 - ^^2 + K3_) = 17 - i-k + 20) = 1

023= C23 - (Rg + K3) = 6 - (-k + 3) = 7

°31 = ^31 - ^% "* ^l) = 15 - (3 + 20) = -8

Since O^j^ is negative, this indicates that an assignment in X2-1

will decrease Tihe total cost function Just as in the Distribu-

tion method. In fact, this was the assignment made to arrive at

the first improved solution for Example 3 in. Pig. 21}. using the

Distribution method.
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Since the S squares ere no longer the same, the R's and K's

must be recalculated.

^11 z:z % T Kl

°12
= ^1 + K2

C22 = R2 -1- K2

'
' . ^

- °31 = R3 + %
.

, . "i %. .-- Cot = Ro + Ko \ ^ ^' % .

'
*

,

- '
ff ^

Setting R-j = again and solving for the other R's and K's gives

R;^ = K^ = 20 '

R2 = -li . K2 = 7

R3 = -5 K3 = 11

°13 = ^13
~ (% + K3) = ij. - (0 + 11) = -7

°21 = ^21 " ^^2 "^ %^ = 17 - (-1^ + 20) = 1

O23 = C23 - (R2 + K3) = 6 - {-li. + 11) = -1

O32 = C32 - (R3 + K2) = 10 - (-5+7) =8

Since O-j^^ = -7, the assignment is to be made in x-i-^. The appro-

priate path is found and the new solution given in Pig. 28 is

determined.

This was the optimal assignment obtained by the Distribution

method. Checking to see that it is, the R's and K's are com-

puted once more.

C-] 2 — R-] + 1^0

^13 = Ri + K3

C22 ~ ^2 "*" ^2
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Co]_ = Ro + K-|_

Again setting R-]_ = 0, and solving for the values of the rest of

the R's and K's, gives

Rl =
. K-^ = 13

R2 = -4 K2 = 7

, :
R^ = 2 K3 = Ij. . -

•

The evaluation of the W squares

°ll
= ^11 - ^^"^1 * -^1^ = 20 - (0 + 13) = 7

^21 = ^21 - (-"^2 + ^1^ = 17 - i-k + 13) = 8

O23 = C23 - (R2 + K,) = 6 - (-ij. + 1^) = 6

0^2 ^ C32 - (R3 + K2) = 10 - (2 + 7) = 1
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is identical with that obtained following the last iteration

in the Disuribution nethod.

Although for this particular exar.ple there were two itera-

tions necessary to reach the optimal solution for each of the

methods, the Modified Distribution method required the finding

of only two paths, whereas the Distribution method required the

finding of four Just to check the optimality of the last solu-

tion. On first thought, it would seem that the solving of the

equations for the R and K values would require a good ceal of

time. This is not the case, however, since setting R-|_ = imme-

diately determines some K-, which in 'uurn determines some other

R. and so on. In fact, this procedure is easily done by mere

inspection.

DEGENERACY

Although much has already been said about "chis topic, a

more complete discussion is included here to justify some of the

work done in the next sections and to describe a particularly

easy method for dealing with degenerate solutions. Example 3

was chosen to illusurate the two methods just presented because

it was known to have no possibility of degeneraue solutions.

More often than not, however, degeneracy is found to occur in

some solution when applying the previous two methods to solve

a .transportation problem.

Consider the following example in Pig. 29 in which the rim

conditions of Example 3 have been modified slightly, and the
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Ncrth-.:est Corner Rule used to obtain an initial solution. Notice

th.at only four assignments were made, one less than the required

number for a basic feasible solution. As was said before, this

indicates degeneracy has occurred. The first assignment in us-

ing the Northwest Corner Rule was made to x-i^^- -^^ assignment

of 50 to X. n simultaneously satisfied both of the recuirem.ents

of the first row and the first column, a situation which was

assumed im.possible in the construction of the algorithm.

One method to resolve degeneracy would be to modify the

algorithm. The case where an assignment, other than the last

one, simultaneously satisfies both a row and column requirement

was originally said to be impossible. An additional step such

as the following can be added which will take care of this case.

If an assignment simultaneously satisfies both a row and column
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requirement, delete either the row or the coliioin, but not both.

Looking now at the example, the assignment of Xn^i = ^0 reduces

both a-j_ and h-^ to zero. Assume now the row is ignored, Xp-, be- >

comes the new northwest corner element, and X21 = Min(a2, b-|_)

= min(50, 0) = 0. Entering this assignment as a zero will dis-

tinguish it from the other zero assignments which are simply

left blank. If the interpretation is made that this zero assign-

ment in X22 can be actually thought of as a small positive number

very close to zero, the solution will now have the required five

solution variables, making it thus a basic feasible solution.

Distinguishing a zero assignment as an S square and a blank as-

signment as a ¥ square, enables one to easily cope with the prob-

lem of degeneracy. This is a much more efficient method of

dealing with this problem than the introduction of a perturba-

tion constant when using hand computations.

The above example was a case where degeneracy occurred in

the initial solution. The method presented to resolve it may be

used at any stage in the algorithm. If in some later iteration

degeneracy occurs, it can be detected as before by noting the

lack of a sufficient number of solution variables. There are

other ways of aetecting its occurrence. In the Distribution

method, the failure to find a path for a particular ¥ square in-

dicates that not enough S squares were obtained in the last

iueration, and hence less than the correct number of assignments

was made -co obtain a basic feasible solution. In the Modified

Distribution method, a system of too few equations will result

in attempting to establish the R and K values.
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A method much mor'3 matheraatically pleasing and computer

orientated, of resolving degeneracy, is the perturbation method.

To each of the column requirements is added a small quantity £

and to the last row requirement the quantity ne . This <S is an

arbitrarily small niimber which will not affect the accuracy of

the solution. For computer use, five place accuracy might be

sufficient for the answers. If the work is done to eight place

accuracy with an c = 1.0 x 10"
, when the answers are rounded to

five places the £ has no effect. The nicest feature of this

method is that. the rim requirements can be changed at the begin-

ning of the algorithm end forgotten about. This would indicate

that perturbation is probably the best method for resolving de-

generacy when using a computer. At every point in the program

where a zero assignment should be made to make the solution a

basic one, it will appear as some multiple of G . The previous

problem has been worked completely in Pig. 30, using the North-

west Corner Rule and the Distribution method for obtaining the

optimal answer.

If £ were set equal to zero. Fig. 31 would give the same

solutions obtained by using the first method to handle degenerate

solutions. A'Ote that when £ is set equal to zero, the first

improved solution is the same as the initial solution. The

assignment of zero units to Xp-i was moved to x-;- . It is usually

the case that a degenerate solution will involve extra

iterations.
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UATEQUAL SUPPLY Al^D DSMAKD

To build up the mathematics necessary to derive algorithrr.s

to vork the transportation problem, it was necessary to add the

assumption that supply and demand were equal. This is seldom

the case, however, in a real problem. It should suffice to treat

the case where the supply is greater than the demand. Consider

Example 3 again, with the rim requirement in the third column

reduced to 15 as shovrn in Pig. 31. There are now 15 more units

Di ;
D2

; D3
;
Supply

20 7 i^

Oi 60

Pig. 31. '.

available at the origins than are required by the destinations.

A simple way oO formulate this problem as one in which the supply

is equal to the demand is to add a "dumray" des-^ination which will

receive these 1$ extra units of goods. Since th^se goods will

not ac-cually be shipped to a destination and will remain at one

or more of the origins, the cost to ship one unit of these goods
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-

fpoir. each. 0^ tc xhe dummy destination will be zero. The example

is i-jorked in ?ig. 32 using VAM for the initial solution, and the

Di^stribution rae'3hod zo obtain the optirr.al solution. Here 0-, is

left with five units unshipped and 0-. with ten.

; ^1 : D2
. ^3 1 Dummy ; Supply

°1
^c

7
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60
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17

1^0

3 6
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15 10 6
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5
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^0
J* 6

ifO

0".

15
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-

.0 6

10 60

Req. 30 80 15 15 160

Pig. 32,
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OTHER RESTRICTIONS '

. In the problems considered so far any shipping route could

be used. The previous exaF.ple, when solved, indicated the best

solution in terms of least cost included nonshipment of five

units from 0-^ and ten from 0^ . It is possible to add various

restrictions to the problem which can be handled very conven-

iently by distributive methods. The problems considered to this

point so far have minimized total cost. Hence any shipping route

involving high costs has been avoided. Consider now what would

happan if 0-^ had ^o get rid of all of its supply to assure

facilities for incoming products. The above program is no longer

workable. The clue to handling conditions such as this is to

introduce a very high cost coefficient for any route -co be

avoided. Originally -che cost to retain one unit of goods at O3

was zero. If ^his cost is raised to seme arbitrarily large num-

ber, -che optimizing techniques will tend to avoid this assign-

ment. To assure this cost is sufficiently high, it is entered

as M, defined simply as arbitrarily large enough to avoid the

assignment. For computer operation, the choice of M as at least

100 times the maximium of the other costs should suffice.

Assume now that 0^ must get .-id of all its supply. Using

VAM the solubion ±3 optimal the first time and appears in Pig. 33.

If the problem were first formiulated in this way the user would

not find out what the optim.al solution could be. Thus something

can be said for obtaining the optimal solution for the unre-

stricted problem and evaluating what changes and cos:;s are
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^*-

involved to reach, a solution compatible with the restric-;:ions.

ALTERNATE SOLUTIONS

In some cases, when an optimal solution is reached, there

exist other solutions which are also optimal. As of now nothing

has been said regarding these other possibilities. For the user

to make decisions regarding shipping program possibilities, more

information is needed. It may be the case that one of these

other optimal solutions, or even one which is not optimal but

clcse to optimal, is a better policy to follow than the one ar-

rived at. The final tableau leaves much to be desired as far as

"exora" information is concerned. It gives only the assignments

which will yield a minimum total cost and nooning more. The
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problein then is to find out what extra information, if any, can

be gleaned from the algorithm once an optimal solution has been

found.

Alternate solutions can be obtained by exactly the same pro-

cedure as used to obtain a new solution. The first step is to

make a check on the ¥ squares. This has already been done when

checking to see if the last iteration yielded an optimal solu-

tion. None of the W squares were negative, indicating the solu-

tion was optimal. However, if one or more of the opportunity

costs at this point is zero, this indicates that other solutions,

as well as the one obtained, have the same minimal cost figure,

and thus are themselves optim.al. The path is found for each of

these squares and assignments made in them. Any positive assign-

m.ent consistent with the rim requirement will then yield an opti-

mal solution as will be seen by the following example. The costs

in Example 3 have been slightly modified and the problem re-

worked. The optimal solution and the opportunity costs for the

W squares are given in Fig. 3k-- The' cost associated with this

solution is 1290. As has been said, the zero opportunity cost

for W-D2 indicates that certain assignments can be made in ¥^2

which will also yield an optimal solution. This makes sense in

that an assigrjraent in this square will neither increase nor de-

crease the -cotal cost of the program. Moving all that is pos-

sible into this allocation gives the solution in Pig. 35 having

a total cost also of 1290. Notice that any part of the ten

units that were moved could also have been the allocation made

in ¥32- Pigu.re 36 gives the solution obtained by m.aking an
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.

assignment of six units in x-^2' '^^® ^°^^ °^ ''^^^^ solution is

also 1290. .,
•

Assuming that a unit is indivisible, this means that there

are eleven optimal solutions for this paroicular problem. Al-

though it seems that making two deliveries to one location where

one would suffice would tend to raise costs somewhat, any one of

these solutions would be acceptable. The last chart in which

six allocations were made, instead of the necessary five to have

a basic feasible solution, does not violate the statement in

Theorem ij. that optimal solutions are basic fea^^ible solutions.

This simply indicates that optimal solutions can exist which are

not basic ones. Theorem Ii. only guarantees that no nonbasic so-

lution exists which is better then a basic optim.al one.

It m.ay be possible, for some reason or another, that the
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user wishes bO know about some of the near optimal solutions

which also exist. An analysis of "chese can be made in a sim^ilar

manner. Looking again at Pig. 31^, an introduction of one unit

into ¥j_2_ will increase the cost of the program by 1. Again this

is indicated by the Mj^j^ square evaluation obtained in checking

the optim.ality of the soi^uticn. This program, in Fig. 37, would

have a total cost of 1291. The introduction of one unit into

:
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3 6
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Pig. 37.

¥21 would increase the objective function to 1293. In a simiilar

manner the opportunity costs of the other ¥ squares can give

additional inform.ation. This analysis is useful in determ.ining

"next best" solutions which are near optimal. This particular

analysis would indicate that if an optimal solution is for som.e

reason unsatisfactory, an allocation in ¥-j_-j_ would be more
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beneficial than one in \l2j_-

Tiiere are other questions which can be answered based on

this optimal solution. For instance, what range in values can

c-,-, take on and still leave this solution optimal? If c-,-, is

reduced from lii to 12, the solution, is no longer optimal since

the opportunity cost for this square now becomes -1. Thus if a

cheaper way can be found to ship goods along this route the

present program should probably be re-evaluated. There vjill be

a lower limit on the cost coefficient for each Vi' square for which

the program is optimal. A similar analysis can be made of each

S square cost coefficient. Consider Co^ in the previous ex-

ample. A change in its value affects the opportunity costs of

¥-,-]_ and W-l2. If Oyj_ ^^ increased from 1$ to 17, then the oppor-

tunity cost for Y--^ becomes -1, and again indicates the program

can now be improved. A decrease in c,- only reduces the cost

of the program and makes it more "stable" in the sense that it

is nox^7 less sensitive to a change. Thus the cost coefficient in

each square has an upper limit which, if exceeded, will indicate

the solu"!:ion is no longer optimal.

Other analyses on things such an changes in rim requirements

seem interesting but are left untouched by most authors. For

instance, in the previous example, if D- decreases its order by

10 units, which origin should take up the slack? Both 0-^ and

O3 supply 10 units to D^, but 0-|^ supplies them at a greater

cost. It would seem to make sense to cut; the supply from Oj^ to

Do, rather than from Oo to Do- However, in doing this and leav-

ing 10 units at 0-j_ unassigned, the program is no longer optimal.
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A better solution is possible, namely, cutting the supply from

0-3 which will not reduce the cost as much.

CONCLUSION

Although the distributive methods for solving the transpor-

tation problem are actually little more than formalized inspec-

tion methods, they are fast, exact, and easy to use- For small

problems they are excellent. Their application to large prob-

lems usually requires the use of a computer as do nearly all

linear programming methods.

The various merits of the distributive m.ethods have been

m.entioned throughout this paper. Although they are faster than

most methods in reaching an optimal solution, they are still

very inefficient. Approximately $0 per cent of the user's com-

putational time is spent searching for the proper paths when

using the Xodified Distribution method. Even so, the distribu-

tive m.ethods seem to be the most popular linear programming

methods for solving transportation problems. , ^
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A particularly interesting special case of the general

linear programming problem is the transportation problem. This

paper contains a detailed discussion of so-called distributive

methods for obtaining a solution for any given transportation

problem. The transportation theory underlying these methods is

developed entirely independently of the programming theory of

the simplex method. The transportation problem is first stated

with the added restrictions necessary to construct a mathematical

model. Definitions are made and four fundamental theorems of

transportation theory are stated and proved.

The Distribution method, the Modified Distribution method,

and various methods for constructing initial solutions are pre-

sented in detail ana indications as zo the efficacy of these

methods and others are given. Problems concerning degeneracy,

unequal supply and demand, restricted routes, and certain added

conditions are considered and shown to be easily resolved using

dist;ributive methods.

Finally, methods are given for finding alternate solutions,

concluding wi"ch a brief discussion of the area of sensitivity

analysis.


