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Abstract

With the increase in development of safety and security critical systems, it is important

to have more sophisticated methods for engineering such systems. It can be difficult to

understand and verify critical properties of these systems because of their ever growing

size and complexity. Even a small error in a complex system may result in casualty or

significant monetary loss. Consequently, there is a rise in the demand for scalable and

accurate techniques to enable faster development and verification of high assurance systems.

This thesis focuses on discovering dependencies between various parts of a system and

leveraging that knowledge to infer information flow properties and to verify security policies

specified for the system. The primary contribution of this thesis is a technique to build

dependence graphs for languages which feature abstraction and refinement. Inter-procedural

slicing and inter-procedural chopping are the techniques used to analyze the properties of

the system statically.

The approach outlined in this thesis provides a domain-specific language to query the

information flow properties and to specify security policies for a critical system. The spec-

ified policies can then be verified using existing static analysis techniques. All the above

contributions are integrated with a development environment used to develop the critical

system. The resulting software development tool helps programmers develop, infer, and

verify safety and security systems in a single unified environment.
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Chapter 1

Introduction

1.1 Context

Computers today have become an integral part of our life. We have started relying on

computers for security and safety critical systems such as medical care, various kinds of

transportation and national security. It is challenging to engineer such systems, since failure

can mean huge losses and the magnitude of such loss sets them apart from the less critical

systems.

Examples of safety critical programs are avionics programs, systems employed in auto-

mobile brakes, railway signals, medical equipment, etc. Failure in any of these systems may

lead to loss of life or a considerable amount of property damage.

Examples of security critical programs are systems that handle communication and

data management of highly confidential data, military support systems, etc. Failure in such

systems could lead to a compromise in national security or a bank theft.

Both safety and security critical systems are designed with great care along with spe-

cialized hardware support. The integrity of the entire system relies on the correctness of the

software. Programs are said to be correct when it matches the expected behavior defined

in its requirement documentation. In other words, a program functions exactly according

to the specification, nothing more, nothing less. Both safety critical and security critical

systems can be collectively addressed as high assurance systems.
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High assurance systems are those that require convincing evidence that the system ad-

equately addresses critical properties such as security and safety5. These type of systems

requires a high level of rigor in both analysis and design. Multiple Independent Levels of

Security and Safety (MILS) is an approach used to design, construct, integrat, and evaluate

high assurance embedded systems. There are two steps in MILS approach: first, a security

policy architecture is developed in which the interacting components are separated in such

a manner so that the trusted components are as simple as possible; second, the components

of the policy architecture are allocated to securely shared resources13.

Rockwell Collins, a pioneer company in the field of aerospace and defense, has developed

a high assurance solution called SecureOne Cross Domain Technologies. It is a family of

high assurance technologies for military tactical systems, which enable increased situational

awareness through trusted multi-classification information sharing. It is designed and built

according to the MILS architecture1.

1.2 Problem

Our goal is to implement a security policy verification tool. The precise interpretation of

security for a given system is called its ‘security policy’13. Defining and verifying the system

against its security policy is a challenging task in a MILS approach.

1.2.1 Information Flow

In order to perform security analysis the first step is to analyze the information flow of the

system. Analyzing individual functionality is much simpler than analyzing the entire system.

‘spark’ is a programing language used to develop high assurance systems. Computing the

information flow manually is tedious and error prone. Inferring of information flow is difficult

when it is not presented in a concise manner.
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1.2.2 Visualization of Information flow

A developer needs a thorough understanding of the information flow in order to write better

security policies. one of the best ways to present information flow to the developer is a visual

representation. To implement this requirement various factors like scalability, precision of

the result and robustness of the tool are to be considered.

1.2.3 Policy Language

There are very few existing policy languages to specify the security policies for an embedded

system. A domain specific language is required to efficiently specify security policies. De-

veloping a new language in a relatively unexplored domain requires a considerable amount

of research.

1.2.4 Integrated Development Environment

Incorporating the security policy verification tool in an Integrated Development Environ-

ment (IDE) requires considerable effort to customize the tools according the IDE require-

ments. An IDE helps in visualizing the information flow and also to indicate the program

points on which the security policy fails. Development, verification and specifying policies

in a single environment saves considerable amount of engineering time.

1.3 Thesis

This thesis provides a technique to infer and check the information flow properties of Spark

programs. This thesis is organized to complete these goals in the order listed.

• Introduce the spark ada language and its applications

• Information flow analysis for Spark language

• Architecture of the policy language verification tool

3



• System dependent graph for a spark language program

• Slicing techniques with example

• Chopping techniques with example

• Formal representation of policy language syntax

• Verification technique of the security policy

1.4 Solution

This thesis presents a number of solutions:

• The system wide information flow analysis in Spark language

• A domain specific language to specify security policy

• Verifying the policy against the system

• Integrations of the above in a development environment

This thesis addresses the information flow annotations of the Spark language. The spark

examiner’s information flow analyses are procedural-level analysis and it only captures flow

from return values to input values in a procedure. However, the information flow technique

presented in this thesis is capable of performing system-level analysis. It can also compute

information flow from any statement from the entire system.

This thesis presents a policy language to specify the security policies of the system.Unlike

existing policy languages which have targeted a specific programming language, this policy

language is completely independent of spark.An Eclipse IDE has been developed to help

in engineering the system according to the specified security policies, and to verify the

correctness.

4



Many of the contributions originated from Dr. John Hatcliff, Dr. Robby and Dr. Tor-

ben Amtoft. Dr. Hatcliff and Dr. Robby provided the initial information flow analysis

framework based on which the above-mentioned tools are built.
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Chapter 2

Literature Review

This chapter presents all the background and relevant works to this thesis. As the tool

described in this thesis is for Spark language. the spark language features are discussed

under section 2.1. The dependence analyses described in this thesis is built on various other

analyses, and the existing intra-procedural analysis is improved to inter-procedural analysis,

the existing analysis are presented under section 2.2. There are few related works in the

research community, these are presented under section 2.3.

2.1 Spark Language

2.1.1 Spark Introduction

Ada language is used heavily in the safety and security critical systems. It is more suitable

because of the separation of specification from the implementation and the parameter carry

an extra qualification to specify the mode of use in the procedure. However, ada includes

features which make static analysis difficult. Spark is a subset of ada language, which

removes all the features of Ada that cause ambiguity in performing static analysis. Spark

also includes interface specification language which allows the developer to specify contract,

loop invariants, information flow, etc. The interface specification language is written as

annotation within Ada comments block which allows spark programs to be compiler using

existing Ada compilers.

6



Figure 2.1: Relationship between Ada and Spark10

The figure 2.1 shows how spark language shares the kernel of Ada language and the

additional features of spark. Spark uses only a portion of Ada which is considered safe and

ignores features like recursive calls, statements that cause side effects, exceptions, generics,

access types, and goto statements. Despite these omissions, the kernel language contains

rich language features like package, private types, type extension, unconstrained array and

functions returning composite types. With these features, powerful and safe programs can

be developed.

2.1.2 Spark Interface Specification Language

Spark annotations are part of the specifications and the contract between subprograms. It is

typically written before the actual implementation. Spark annotations are in two categories.

The first category is flow analysis and visibility control, which comprises the core language

and annotation. The second concerns formal proofs using additional optional annotations.

Spark allows two levels of analysis: data flow analysis which just checks the direction

of the data flow, and information flow analysis, which considers the interaction between

variables. The information flow analysis is optional. These analysis can be verified by the

7



Spark examiner developed by Praxis.

2.1.3 Features

1 package math i s
2 procedure power (m: in I n t eg e r ; n : in I n t eg e r ; r e s u l t : out I n t eg e r ) ;
3 −−# der i v e s r e s u l t from m , n ;
4 end math ;
5 package body math i s
6 procedure power (m: in I n t eg e r ; n : in I n t eg e r ; r e s u l t : out I n t eg e r )
7 i s
8 loopvar : I n t eg e r ;
9 begin
10 r e s u l t := 1 ;
11 loopvar := n ;
12 while ( loopvar >= 1) loop
13 r e s u l t := r e s u l t ∗ m;
14 loopvar := loopvar −1;
15 end loop ;
16 end power ;
17 end math ;

Figure 2.2: Spark program to compute power

Figure 2.2 shows a Spark program which computes integer being raised to power. We can

see two parts in the program, specification and implementation. The implementation part

consists of a package encapsulating a procedure. In Spark, there can be multiple packages

in a system and also multiple procedures and functions in a package. The parameters for

the procedure carry an extra qualification specifying the direction of the information flow.

Parameters which are qualified as ’in’ can only be read from while the ‘out’ parameter should

be written, a parameter with ‘in out’ mode should be read and written inside the procedure.

We can also see that the specification part is an abstraction of the implementation. In

Spark there are two kinds of abstraction: abstraction by parameterization and abstraction

by specification. In abstraction by parametrization the actual data being used is hidden.

In the abstraction by specification the actual computation is hidden. The program show in

2.2 is an example of abstraction by specification, and the program in 4.1 is an example of

8



abstraction by parametrization.

The line 4 of the program described in figure 2.2 shows an annotation, which specifies

‘result’ get information only from ‘m’ and ‘n’. This annotation is in the specification part

of the program as there is no parameterized abstraction in the program 2.2.

1 procedure Add(X : in I n t e g e r ) ;
2 −−# g l o b a l in out Tota l ;
3 −−# d e r i v e s Tota l from Total , X;

Figure 2.3: Spark global clause10

Spark requires a global annotation to be used whenever the global variables are used

inside a procedure. The example in the figure 2.3 shows the use of a global variable ‘Total’

where the flow is captured using derives clause.

1 procedure Inc ;
2 −−# g l o b a l in out Tota l ;
3 −−# d e r i v e s Tota l from Tota l ;
4 −−# pos t Tota l = Tota l ˜ + 1;

Figure 2.4: Spark post clause10

In the Figure 2.4, the post clause specifies the new value of ‘Total’ should be old value of

‘Total’ plus one, thus capturing the flow of information. The ‘̃’ symbol refers to the pre-state

value of total.

2.2 Intra-procedural Analysis

Intra-procedural analyses are the analyses with their scope of operation limited to a single

procedure. In other words, this analyses cannot perform when there is a procedure call,

where the information flows from one procedure to another. The remaining of this section

provides the basic definition and example for Control Dependence Graph, Reaching Defini-

tion, Data Dependence Graph, Program Dependence Graph and Intra-procedural slicing.
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2.2.1 Graph Definitions

The intra-procedural analysis is performed on a graph, that is built to represent the given

program. To understand the analysis, it is important to know the properties of a flow graph.

Flow graph are directed graph, in which nodes represents the statements of a program and

edges represents the a property that connects the two nodes.

Flow Graph

A flow graph G = {N, E, s, e} consists of a set N of statement nodes, a set E of directed

control-flow edges, a unique start node s with no incoming arcs, and unique end node with

no outgoing arcs, such that all nodes in N are reachable from s, and e is reachable from all

nodes in N8.

Flow Graph Path

A flow graph path π is a sequence of nodes n1n2..nk. Path π is said to be non-empty if

it contains at least one node, and non-trivial if it contains at least two nodes. when the

meaning is clear from the context, we will use π to denote the set of nodes contained in π .

For example, we write n ∈ π when n occurs in the sequence π 8.

Node Domination

Node n dominates m in G (written dom(n, m)) if every path from the start node s to m

passes through n (note that this makes the dominates relation reflexive). Node n strictly

dominates node m in G if dom(n, m) and n 6= m8.

Node Post-domination

Node n post-dominates node m in G (written post-dom(n, m)) if every path from node m to

the end node e passes through n. Node n strictly post-dominates node m in G if post-dom(n,

m) and n 6= m8.
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2.2.2 Control Flow Graph (CFG)

Figure 2.5: Control Flow Graph for power program

Control flow is the sequence of instructions in a program, ignoring the data values in register

and memory, and the arithmetic calculations. A CFG is a graph with a separate node n for

each assignment and jump in a given program p8.

Figure 2.5 shows the CFG for the power program in figure 2.2. The node power is the

start node and Final result is the end node. The while node contains two outgoing edges

related to the two possible results from evaluating the loop conditional.
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2.2.3 Reaching Definition

Definition

An assignment (called a definition in the classical literature) of the form [x := a]l may

reach a certain program point (typically the entry or exit of an elementary block) if there is

an execution of the program where x was last assigned a value at l when the program point

is reached.

KillRD : Blocks∗ → P(Var∗ × Lab?∗)
12

The KillRD function produces a set of pairs, where each pair consists of a variable and

a label. For variable that are uninitialized we use the special label ‘?’ and we set Lab?
∗ =

Lab∗ ∪ {?}. Each pair belongs to an assignments that is destroyed by the current block.

An assignment is destroyed if the block assigns a new value to the variable.

genRD : Blocks∗ → P(Var∗ × Lab?∗)
12

The genRD function produces a set of pairs of variables and labels of assignment generated

by the block. Only assignments generate definitions.

l KillRD(l) genRD(l)
12 {(result,?), (result, 12), (result, 15)} {(result, 12)}
13 {(loopvar, ?), (loopvar, 13), (loopvar, 16)} {(loopvar, 13)}
14 ø ø
15 {(result,?), (result, 12), (result, 15)} {(result, 15)}
16 {(loopvar, ?), (loopvar, 13), (loopvar, 16)} {(loopvar, 16)}

Table 2.1: Reaching Definition analysis Gen and Kill for power program

Figure 2.1 shows the Kill and gen sets for the power program in figure 2.2. We consider

the line numbers of program as the labels as in the I column. At line number [12] the result

is assigned to the value one. This assignment destroys all other assignments of result. So

the Kill set for the label [12] consists of result associated with labels [?], [12 and [15] . The
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l RDentry(l) RDexit(l)
12 {(n,*), (m,*), (result,?), (loopvar,?)} {(n,*), (m,*),(result,12), (loopvar,?)}
13 {(n,*), (m,*), (result,12), (loopvar,?)} {(n,*), (m,*), (result,12), (loopvar,13)}
14 {(n,*), (m,*),, (result,12), (result,15), {(n,*), (m,*), (result,12), (result,15),

(loopvar,13), (loopvar,16)} (loopvar,13), (loopvar,16)}
15 {(n,*), (m,*), (result,12), (result,15), {(n,*), (m,*), (result,15), (loopvar,13),

(loopvar,13), (loopvar,16)} (loopvar,16)}
16 {(n,*), (m,*), (result,15), (loopvar,13), {(n,*), (m,*), (result,15), (loopvar,16)}

(loopvar,16)}
Final {(n,*), (m,*), (result,12), (result,15), {(n,*), (m,*), (result,12), (result,15),
result (loopvar,13), (loopvar,16)} (loopvar,13), (loopvar,16)}

Table 2.2: Reaching Definition analysis: Entry and Exit set for power program

gen is comprised of only the assignments made in this block which is the result assigned to

one. Similarly Kill and ten are calculated for all the other statements in the power program.

The analysis is defined by the pair of functions RDentry and RDexit which map labels to

a set of pairs of variables and labels of assignment blocks.

RDentry, RDexit : Lab∗ → P(Var∗ × Lab?∗)

The RDentry and RDexit are defined as

RDentry(l) =

{
{(x, ?)‖x ∈ FV (S∗)} if l = init(S∗)
∪{RDexit(l

′) | (l′, l) ∈ flow(S∗)} otherwise

RDexit(l) =
(RDentry(l) \KillRD(Bl)) ∪ genRD(Bl)
whereBl ∈ blocks(S∗)

12

Figure 2.2 shows the entry and exit set computed for the power program. At the entry of

the node [12], The m and n are parameters so the label is marked as ‘*’ and other other

variables are not defined at this point. In the exit set of [12] The result is defined at [12]

is represented as (result,12). Similarly the extra and exist set are computed for the other

labels.
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2.2.4 Data Dependence Graph

A node n is data-dependent on node m if, for a variable v referenced at n, a definition of v at

m reaches n. Thus, node n depends on node m because the assignment at m can influence

a value computed at n.

Definition

Node n is data-dependent on m in program p (written m dd−→ n – the arrow pointing in the

direction of the flow from m to n) if there is a variable v such that

1. there exists a non-trivial path π in p’s CFG from m to n such that for every node

m′ ∈ π - {m,n}, v /∈ def(m′), and

2. v ∈ def(m) ∩ ref(n)8.

Figure 2.6: Data Dependence Graph for power program

In the power program of figure 2.2, result at [15] is data-dependent on [12] because the

definition of result at [12] reaches the use of result at line [15]. This is denoted by the edge

connecting from result := 1 to result := result *m in the figure 2.6.

2.2.5 Control Dependence Graph

For a node to be control-dependent on m, m must have at least two immediate successors

in the CFG, and there must be two paths that connect m with the unique end node such

that one contains n and the other does not.
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Figure 2.7: Control Dependence Graph for power program

Definition

Node n is control-dependent on m in program p (written m cd−→ n) if

1. there exists a non-trivial path π from m to n in p’s CFG such that every node

m′ ∈ π – { m, n} is post-dominated by n, and

2. m is not strictly post-dominated by n8.

In the power program 2.2, the statements [15] and [16] with respect to Figure 2.7 are

control-dependent on the loop statement in the line [14]. The Final result is not control

dependent on statement [14] since it post-dominates [14].

2.2.6 Program Dependence Graph

Given a program p,we define the relation→ d with respect to p to be the union of the CDG

and the DDG with respect to p. The PDG P of p consists of nodes of the CFG G for p with

edges formed by the relation → d 8.

PDG = CDG ∪ DDG
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Figure 2.8: Program Dependence Graph for power program

Figure 2.8 shows the PDG of the power program. The node labeled result := result *m is

control-dependent to the loop statement and it is data-dependent on the initial value of m

and result.

2.2.7 Intra-procedural Slicing

Definition

The slice of a program with respect to program point p and variable x consists of all state-

ments and predicates of the program that might affect the value of x at point p.

A slicing criterion is a pair <p, V>, where p is a program point and V is a subset of the

program’s variable.

The intra-procedural slice problem is simply a vertex reachability problem on a program

dependence graph. Thus a slice of a program may be computed in linear time.

Slicing the power program with Final result as the slicing criterion will lead to the sliced

program as seen in Figure 2.9. The form of slicing discussed thus far is termed a backward

slice.
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Figure 2.9: Backward Slice of Power Program

In figure 2.9 we can observe that a backward slice from Final result contains both the ‘in’

parameters m and n. For this program the slice from Final result is same as the original

program as the Final result depends on all the nodes. The similar analysis is performed

in the spark examiner by verifying the derives clauses. The only difference from the spark

examiner is that this analysis provides a freedom of specifying the slicing criterion at any

node within the procedure. This help the developer to infer the information flow than to

verify the information flow contract. There is another variant of slicing called forward slicing

which is used to compute the node that are receiving the information from the node under

observation.

The forward slice on the power program with init n as the slicing criterion is shown in figure

2.10. The sliced set includes the Final result, which shows that the information flowing from

init n reaches Final result.
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Figure 2.10: Forward Slice of Power Program

2.3 Information Flow Policy Language

2.3.1 JFlow

JFlow is an extension to the Java language that adds the ability to specify information flow

annotations which can be statically checked. Features of JFlow include a decentralized label

model, label polymorphism, run-time label checking, and automatic label inference. JFlow

also supports many language features including objects, subclassing, dynamic type tests,

access control, and exceptions.

In the decentralized label model, data values are labeled with security policies. A label

is a set of security policies that restrict how a data value can flow through a program. Each

policy in a label has an owner O, a set of readers which are principals that O allows to

observe the data. A single principal may be the owner of multiple policies and may appear

in multiple reader sets.

JFlow has access control that is both dynamically and statically checked. A method exe-

cutes with a granted classification level. The authority is used to declassify some principal’s

data and also used to build more complex access control mechanisms. The expression de-
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classify(e, L) relabels the result of an expression e with the label L. Declassication is checked

statically, using the static authority at the point where the declassication is applied11.

2.3.2 Java Information Flow

Java Information Flow(JIF) is a security-typed programming language that extends Java

with support for information flow control and access control, enforced at both compile time

and run time. Static information flow control can protect the confidentiality and integrity

of information manipulated by computing systems. The compiler tracks the correspondence

between information the policies that restrict its use, enforcing security properties end-

to-end within the system. After checking information flow within JIF programs, the JIF

compiler translates them to Java programs and uses an ordinary Java compiler to produce

secure executable programs.

JIF extends Java by adding labels that express restrictions on how information may be

used. For example, the following variable declaration declares not only that the variable x

is an int, but also that the information in x is governed by a security policy:

1 \begin{ c en te r }
2 i n t {Al i c e → Bob} x ;
3 \end{ c en te r }

In this case, the security policy says that the information in x is controlled by the principal

Alice, and that Alice permits this information to be seen by the principal Bob. The policy

{Alice ← Bob} means that information is owned by Alice, and that Alice permits it to be

affected by Bob. Based on label annotations like these, the JIF compiler analyzes infor-

mation flows within programs, to determine whether they enforce the confidentiality and

integrity of information2.

2.3.3 Information Flow Analysis of SPARK Examiner Tool

This tool was developed to improve the analysis provided by the Spark examiner. It provides

features to mark state variables in package with different levels of security, which are specified
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as constants variables. An example of such a classification can be seen in Figure 2.11

1 package C l a s s i f y i s
2 UNCLASSIFIED : constant := 0 ;
3 RESTRICTED : constant := 1 ;
4 CONFIDENTIAL : constant := 2 ;
5 SECRET : constant := 3 ;
6 TOPSECRET : constant := 4 ;
7 end C a l s s i f y ;

Figure 2.11: Specification of Security Classification

This tool uses the Bell-LaPadula model of computer security, which enforces two prop-

erties.

1. no process may read data from a higher security level; and

2. no process may write data to a lower security level.

The verification of the security classification must agree on the above two properties.

Consider an example system with a KeyStore to store and manage a symmetric encryp-

tion key SymmetricKey, designed to mutate after every encryption according to the rotation

parameter RotorValue. The variables are marked with security classification as follows.

The program in the figure 2.12 shows the SymmetricKey being classified as SECRET

and the RotorValue classified as RESTRICTED. Thus the data from SymmetricKey cannot

leak into RotorValue. The derives clause explicitly specifies the information flow of the

program. The program can be checked using the information flow such that the integrity

level of exported variable is no less than the integrity level of the import variable.

In the Rotate procedure the derives clause specifies SymmetricKey is derived from Ro-

torValue and SymmetricKey. There is no leak in the program as the integrity level of

SymmetricKey in export is equal or greater than the imports. The information flow at a

procedure call is computed by substituting the actual parameters for formal parameters and

checking for integrity flow4.
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1 −−# i n h e r i t C l a s s i f y ;
2 package KeyStore
3 −−# own SymmetricKey ( I n t e g r i t y => C l a s s i f y .SECRET) ;
4 −−# RotorValue ( I n t e g r i t y => C l a s s i f y .RESTRICTED) ;
5 i s
6 procedure Rotate ;
7 −−# g l o b a l in RotorValue ;
8 −−# in out SymmetricKey ;
9 −−# d e r i v e s SymmetricKey from

10 −−# Symmetrickey , RotorValue ;
11
12 procedure Encrypt ( c : in MessageBlock ;
13 E : out MessageBlock ) ;
14 −−# g l o b a l in SymmetricKey ;
15 −−# d e r i v e s E from C, SymmetricKey ;

Figure 2.12: KeyStore Example to Show Information Flow Analysis4
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Chapter 3

Tool Architecture

This chapter presents an overall architecture of the information flow analysis tool. This tool

is integrated to Eclipse, so a brief architecture of eclipse is presented under the section 3.1.

This tool is built as a part of Sireum framework, the section 5.2 presents the architecture

of Sireum.

3.1 Eclipse Architecute

Figure 3.1: Eclipse Platform Architecture9
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The Eclipse platform is designed for building integrated development environments

(IDEs) that can be used to create applications targeting a wide range of domains. A plug-in

is the smallest unit of the Eclipse Platform that can be developed and delivered separately.

The Eclipse Platform itself is partitioned using the plug-in mechanism as shown in Figure

3.1, separate plug-ins provide the workspace, the workbench, and so on. Even the platform

runtime itself has its own plug-in. A plug-in may declare any number of named extension

points, and any number of extensions to one or more extension points declared in other

plug-ins. A plug-ins extension point can be extended by other plug-ins. Also, any plug-in

is free to define new extension points and to provide a new API for other plug-ins to use.

Plug-ins are executed lazily, while executing a plug-in Eclipse uses the ‘plug-in registry’ to

discover and access the extensions associated to it. The Eclipse Platform runs by a single

invocation of a standard Java virtual machine. Each plug-in is assigned its own Java class

loader that is solely responsible for loading its classes.

3.2 Sireum Architecture

Sireum is a software analysis platform developed at SAnToS Lab, Kansas State University. It

incorporates various static analysis techniques such as data-flow framework, model checking,

symbolic execution, abstract interpretation, and deductive reasoning techniques. It can be

used to build various kinds of static analyzers aimed at various properties. Sireum means

“ants” in the real Java language, i.e., Javanese.

3.2.1 Sireum Base

Base is the Sireum tooling framework. It provides a staged, parallel pipeline software com-

ponent architecture, messaging system, as well as commonly used utility components.

Figure 3.2 shows the pipeline architecture of Sireum. It consists of a number of modules

and clients. A client can be either a test suite or an Eclipse plug-in. For the client to
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Figure 3.2: Sireum Pipeline Architecture

perform a specific analysis, the client passes a configuration file and input data to Sireum.

The configuration file consists of the list of modules needed to perform the intended analysis.

A module performs a specific analysis on the input and stores the result in the result map.

This result map can be accessed by the next module in the pipeline. The modules can be

executed in a serial or parallel manner based on a flag in the configuration file. At the end

of the analysis, the client can access the result from the result map.

3.2.2 Pilar

Pilar is the Sireum modeling language. It serves as the single representation which all

Sireum static analysis frameworks work on. It’s extensible to allows modeling of a variety

of system descriptions at different abstraction levels. The Spark program given as input is

compiled to pilar before performing any kind of analyses.

3.2.3 Alir

Alir is the Sireum data-flow framework. It provides various configurable intra-procedural and

inter-procedural analyses. The intra-procedural analyses are control flow analysis, reaching
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definition analysis and data dependence analysis. These where the analyses provided by Alir

before the implementation of the techniques discussed in this thesis. The inter-procedural

analysis in Alir includes building, System dependence graph (SDG), slicing and chopping on

SDG. Inter-procedural analysis is the contribution of this thesis, inter-procedural analyses

are build on top of intra-procedural analyses framework.

Figure 3.3: Alir and Policy Language Architecture

3.2.4 Policy Language

The verification of the policy language is a layer built on top of Alir. It interprets the policy,

and then accesses Alir to compute the various slice and chop on the program as specified
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in the policy. With the results from Alir, Sireum can then perform the verification of the

policy against the program. The result of the policy language are displayed in a view as

show in Figure 3.4, which is a part of the Eclipse plug-in for information flow analysis on

Spark programs.

Figure 3.4: Screen shot of policy view
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Chapter 4

System Dependence Graph

System Dependence Graph (SDG) is an extension of the program dependence graph defined

in section 2.2.6 on page 15. SDG is union of multiple procedure’s PDG and are linked by

procedure calls.

A SDG includes PDGs, which represent the system’s procedures, and some additional

edges. The additional edges are of two types:

1. Edges that represent direct dependence between a call site and the called procedure,

and

2. Edges that represent transitive dependence due to calls.

Extending the definition of dependence graphs to handle procedure calls requires represent-

ing the passing of values between procedures. In designing the representation of parameter

passing, we have the following three goals

1. It should be possible to build an individual procedure’s PDG with minimal knowledge

of other system components.

2. The SDG should consist of a straightforward connection of the program dependence

graphs.

3. It should be possible to extract a precise inter-procedural slice efficiently by traversing

the graph.
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The remainder of this chapter is organized as section 4.1 presents the parameter-in and

parameter-out edges, there are the edges that connects two procedures to gather to form

SDG. The section 4.2 presents summary edges, which are useful to get the information

of a procedure call without entering in to the procedure. This is useful in slicing and

chopping. The section 4.3 presents a technique to extend the SDG to support abstraction

and refinement feature of Spark.

4.1 Parameter In - Parameter Out Edges

To meet the above goals, we follow a two-stage mechanism for runtime parameter passing.

Consider procedures P and Q of a system. when P calls Q, values are transferred from P to

Q by means of intermediate temporary variables, one for each parameter. The return values

are transferred from Q to P using a different set of variables.

At the call site, procedure P copies the values of the actual parameters into the temporary

variables, then procedure Q initializes its local variables from these temporary variables.

Upon returning, procedure Q copies any return values into a set of temporary variable

which are passed back to P. This model of parameter passing is represented in PDGs.

The PDGs are modified to contains 5 new vertices, A call site is represented using a

call-site vertex. On the calling side, the information is transferred using actual-in vertices

and received using actual-out vertices. These vertices are control dependent on the call-

site vertex. The actual-in vertex contains an assignment statement that assigns the actual

parameter to the temporary variable. Similarly the actual-out vertex contains an assignment

from return temporary variables to the actual out parameters.

In the called procedure side, the information is received using formal-in vertex and trans-

ferred out using formal-out vertex. These vertices are control dependent on the procedure’s

entry vertex. Similar to the actual-in and actual-out vertices, formal-in and formal-out

vertices contains assignment statements to transfer information to and from the temporary

variables.
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1 package p s imp l e c a l l
2−−# own AbsOwn , G;
3−−# i n i t i a l i z e s AbsOwn , G;
4 i s
5 procedure R1(Q: in I n t eg e r ; R: in out I n t eg e r ) ;
6 −−# g l o b a l in AbsOwn ; out G;
7 −−# der i v e s R from AbsOwn , R
8 −−# & G from Q;
9
10 procedure Q1(A: in I n t eg e r ; B: in out I n t eg e r ; C: out I n t eg e r ) ;
11 −−# g l o b a l in AbsOwn ; out G;
12 −−# der i v e s B from AbsOwn , B
13 −−# & C from AbsOwn , B
14 −−# & G from A;
15 private
16 G: In t eg e r := 0 ;
17 end p s imp l e c a l l ;
18
19 package body p s imp l e c a l l
20−−# own AbsOwn i s X,Y;
21 i s
22 X: In t eg e r ;
23 Y: In t eg e r ;
24
25 procedure R1(Q: in I n t eg e r ; R: in out I n t eg e r )
26 −−# g l o b a l in Y; out G;
27 −−# der i v e s R from Y, R
28 −−# & G from Q;
29 i s
30 begin
31 R := Y + R;
32 G := Q;
33 end R1 ;
34
35 procedure Q1(A: in I n t eg e r ; B: in out I n t eg e r ; C: out I n t eg e r )
36 −−# g l o b a l in X, Y; out G;
37 −−# der i v e s B from Y, B
38 −−# & C from X, Y, B
39 −−# & G from A;
40 i s
41 begin
42 C := X + Y;
43 R1(A,B) ;
44 C := C + B;
45 end Q1;
46 begin
47 X := 1 ;
48 Y := 0 ;
49 end p s imp l e c a l l ;

Figure 4.1: Spark program to illustrate procedure call
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The parameter-in edge is the edge connecting actual-in to formal-in vertices. The

parameter-out edge is the edge connecting formal-out to actual-out vertices.

Figure 4.2: Program Dependence Graph of procedure R

4.2 Summary Edges

From the Spark derives clause it is easy to compute the dependency between formal-out

vertices and formal-in vertices. From the parameter-in edge and parameter-out edge, given

a formal-in vertex computing the corresponding actual-in vertex is simply the source of

the parameter-in edge, similarly for a formal-out vertex, the target of the corresponding

parameter-out edge which is a actual-out vertex. The dependencies between the formal-out

and formal-in are extended to the corresponding actual-out and actual-out vertices. The

edge connecting actual-out vertex to actual-in vertex are called summary edges.
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Figure 4.3: Program Dependence Graph of procedure Q

The program in figure 4.1 is a simple Spark program with procedure calls. On line

number [43], we can notice the procedure Q1 calls R1, by passing A and B as arguments.

This program also contains X, Y, and G as global variables. In SDG, in addition to the

arguments, global variables are explicitly passed between procedures

Figure 4.4 shows the SDG of the program seen in 4.1. We can notice a parameter-in

edge between a in := A and Q := a in,parameter-out edge between b out := R and B :=

b out, and summary edge between b in := B and B := b out. Similarly all the actual-in

and actual-out are connected to the corresponding formal-in and formal-out vertices. In

this way all the parameters are linked and the two procedures are combined to form a single

directed graph.
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Figure 4.4: System Dependence Graph
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4.3 Abstraction and Refinement

Spark’s abstraction and refinement features has been incorporated in the SDG so that we

can perform system level information flow analysis. To achieve this we introduce two new

edges named abs and ref. The ref edge connects the initial parameters of specification and

implementation. Any abstract parameter in the specification are refined to the correspond-

ing initial parameters in the implementation. The abs edge connects the final parameters

of implementation to the final parameters of the specification. The refined parameters are

connected to the corresponding abstract parameters in the specification.

The figure 4.6 and 4.5 shows the PDGs of procedure Q1 and R1 with the abstract and

refinement edges.

Figure 4.5: PDG of Procedure Q1 with Abstraction and Refinement

33



Figure 4.6: PDG of Procedure R1 with Abstraction and Refinement

4.3.1 Call Procedure Decision

Now for every procedure we have two PDGs. The PDG corresponding to the specification

and the PDG corresponding to the implementation. Upon a call from a method Q to a

method R, the determination of whether the information flows to the specification or the

implementation depends on the location of R. If R is in the same package as that of Q then

the actual-in and actual-out nodes are connected to the formal-in and formal-out nodes of

the implementation. If R is not in the same package as Q then the actual-in and actual-out

nodes are connected to the formal-in and formal-out nodes of the specification. By this we

will follow the Spark examiners visibility rules.

In the figure 4.7 the SDG of program 4.1 is shown. In this graph the call to the procedure

R1 is connected to the implementation of the R1 because both procedures belong to the

same package. If they belonged to different packages then, the call to R1 would be conned

to the specification of R1, Likewise the parameter-in and parameter-out edges would be

connected to the formal parameters in the specification.
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Figure 4.7: SDG with Abstraction and Refinement
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Chapter 5

Inter-Procedural Slicing

Inter-procedural slicing is performed by traversing the SDG. The difficulty in inter-procedural

slicing is keeping track of the calling context when a slice ”descends” into a called procedure.

The summary edges are the key element in solving this problem of tracing the call context.

These edges represents data dependence from actual-in vertices to actual-out vertices due

to procedure calls. These edges help us to slice without having to descend into a call. This

remainder of this chapter is organizes as, section 5.1 presents a few basic definitions related

to slicing. The section 5.2 and 5.3 presents backward and forward slicing.

5.1 Definitions

This section presents definition of slicing criterion, which is the input to perform slice oper-

ation. The slice set is the result of the slice operation. The slicing criterion is always part

of the slice set.

5.1.1 Slicing Criterion

Slicing criteria is a set nodes based on which the information flow is computed. A slicing

criterion C for a program p is a non-empty set of nodes

{ n1, .... , nk}

where each ni is a node in p’s statement flow-graph8.
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5.1.2 Slice Set

Let C be a slicing criterion for program p and P be the graph for p. Then the slice set SC

of p with respect to C is defined as follows:

SC = { m | ∃n . n ∈ C and m d−→* n }8.

5.2 Backward Slicing

The slicing of the SDGs are performed in two phases. The traversal in the first phase follows

control dependent edges, data dependent edges, parameter-in edges, but not parameter-out

edges. The traversal in phase two follows control dependent edges, data dependent edges,

and parameter-out edges, but not parameter-in edges.

5.2.1 Phase I and Phase II

Consider a SDG G and a vertex s in procedure P, s being the slicing criterion. In order to

slice on G with respect to s, in Phase I we identify vertices that can reach s, and are either

in P itself or in a procedure that calls P. The procedure called by P are not in the slice

because in Phase I, parameter-out edges are not followed. The summary edges are helpful

in ignoring the called procedure by following the actual-in from the actual-out variables6.

Phase II identifies vertices that can reach s from procedures called by P or from proce-

dures called by procedures that call P. The phase II does not ascend into calling procedure

because the parameter-in edges are not followed in phase II6 .

5.2.2 Algorithm

The algorithm presented in Figure 5.1 consists of two phases. The slicing is performed in

two phase because, the slice performed in single phase is imprecise. This algorithm will

result in a precise backward slice for the given SDG and slicing criterion.
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1 procedure MarkVert i cesOfS l i ce (G, S)
2 de c l a r e
3 G: a system dependence graph
4 S , S ’ : s e t s o f v e r t i c e s in G
5 begin
6 /∗ Phase 1 : S l i c e without de fend ing in to c a l l procedures ∗/
7 MarkReachingVertices (G, S , {def−order , parameter−out })
8 /∗ Phase 2 : S l i c e c a l l procedure without ascending to c a l l s i t e s ∗/
9 S ’ := a l l marked v e r t i c e s in G

10 MarkReachingVertices (G, S ’ , {def−order , parameter−in , c a l l })
11 end
12 procedure MarkReachingVertices (G, V, Kinds )
13 de c l a r e
14 G: a system dependence graph
15 V: a s e t o f v e r t i c e s in G
16 Kinds : a s e t o f k inds o f edges
17 v , w: v e r t i c e s in G
18 WorkList : a s e t o f v e r t i c e s in G
19 begin
20 WorkList :=V
21 whi le WorkList 6= φ do
22 s e l e c t and remove a ver tex v from WorkList
23 Mark v
24 f o r each unmarked ver tex w such that the re i s an edge w → v
25 whose kind i s not in Kinds do
26 I n s e r t w in to WorkList
27 od
28 od
29 end

Figure 5.1: Two Phase Backward Slicing Algorithm6

5.2.3 Example

The backward slice on SDG 4.4 is show in Figures 5.2 and 5.3 using the algorithm described

in Figure 5.1 with slicing criterion C := C + B.

In the Figure 5.2, the node “B := b out” is obtained by traversing the SDG from the

slicing criterion “C := C + B”. From the node “B := b out”, “b out := Final R” is not

reached because in Phase I out edges are not followed. It reaches the “y in := Y” by

following the summary edge, thus the rest of the slice is performed.
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Figure 5.2: Backward Slice Phase I of p simpl call Program

Figure 5.3: Backward Slice Phase II of p simpl call Program

5.3 Forward Slicing

5.3.1 Definition

The forward slice of a program with respect to a program point p and variable x consists

of all statements and predicates of the program that might be affected by the value of x at

point p.
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Similar to the backward slicing, forward slicing is also performed in two phases. Phase

I follows control dependent edges, data dependent edges, and parameter-out edges, but

does not follow parameter-in edges. The traversal in phase I does not descend into called

procedures because the parameter-in edges are not followed. The traversal in phase II follows

control dependent edges, data dependent edges, and parameter-in edges, but not parameter-

out edges. The traversal of Phase II does not ascend into calling procedures because the

parameter-out edges are not followed.

5.3.2 Algorithm

1 procedure MarkVert icesOfForwardSl ice (G, S)
2 de c l a r e
3 G: a system dependence graph
4 S , S ’ : s e t s o f v e r t i c e s in G
5 begin
6 /∗ Phase 1 : S l i c e forward without de fend ing in to c a l l e d procedures ∗/
7 MarkVerticesReached (G, S , {def−order , parameter−in , c a l l })
8 /∗ Phase 2 : S l i c e forward in to c a l l e d procedure
9 without ascending to c a l l s i t e s ∗/

10 S ’ := a l l marked v e r t i c e s in G
11 MarkVerticesReached (G, S ’ , {def−order , parameter−out })
12 end
13 procedure MarkVerticesReached (G, V, Kinds )
14 de c l a r e
15 G: a system dependence graph
16 V: a s e t o f v e r t i c e s in G
17 Kinds : a s e t o f k inds o f edges
18 v , w: v e r t i c e s in G
19 WorkList : a s e t o f v e r t i c e s in G
20 begin
21 WorkList :=V
22 whi le WorkList 6= φ do
23 s e l e c t and remove a ver tex v from WorkList
24 Mark v
25 f o r each unmarked ver tex w such that the re i s an edge v → w
26 whose kind i s not in Kinds do
27 I n s e r t w in to WorkList
28 od
29 od
30 end

Figure 5.4: Two Phase Forward Slicing Algorithm6
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5.3.3 Example

Figure 5.5: Forward Slice Phase I of p simpl call Program

Figure 5.6: Forward Slice Phase II of p simpl call Program

The forward slice on SDG 4.4 is show in figures 5.5 and 5.7 using the algorithm described

in Figure 5.1 with the slicing criterion Init A.
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5.3.4 Screen Shot

The Figure 5.7 is the screen shot of the tool, when a backward slice is performed with slicing

criterion as “C := C + B”.

Figure 5.7: Screen shot of backward slice
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Chapter 6

Inter-Procedural Chopping

Jackson and Rollings introduced a related operation to slicing called program chopping,

which can be considered as a “filtered ” slice. Chopping answers questions of the form

“What are all the program elements v that serve to transmit effects from a given source

element s to a given target element t?” Compered to slicing, chopping provides a more

focused way of obtaining information about the transmission of effects through a program.

An intra-procedural chop of a program from s to t is simply the intersection of forward slice

from s and backward slice from t, provided s and t are in the same procedure.

chop (s,t) = forward slice(s) ∩ backward slice(t)

Inter-procedural chopping involves generating a chop of an entire program, where the chop-

ping is performed across procedure calls. By performing a chop on Add as seen in Figure

6 from the source “s = A : in out Integer” and target “t = B := B + 5”, using the above

definition, we get {x : in out Integer, x := x + y, s, t}. We can clearly see that there is no

information flow between A and B, a precise chop would result in an empty set {φ}.

This chapter presents a precise Inter-procedural chopping technique to overcome the

errors involved with procedure calls. The remainder of this chapter is organized as follows,

section 6.1 presents definitions, terminologies and notations. Section 6.2 presents the Inter-

procedural chopping problems. Section 6.3 describes how to solve these chopping problem

precisely. Section 6.4 presents Inter-procedural chopping algorithm with examples.
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1 package Example i s
2 procedure add ( x : in out I n t eg e r ; y : in I n t eg e r ) ;
3 −−# der i v e s x from x , y ;
4 procedure f oo ( A : in out I n t eg e r ; B : in out I n t eg e r ) ;
5 −−# der i v e s A from A
6 −−# & B from B;
7 end example ;
8
9 package body example i s
10 procedure add (x : in out I n t eg e r ; y : in I n t eg e r )
11 i s
12 begin
13 x := x + y ;
14 end add ;
15 procedure f oo (A : in out I n t eg e r ; B : in out I n t eg e r )
16 i s
17 M : In t eg e r ;
18 begin
19 M := 3 ;
20 add (A,M) ;
21 add (B, 5 ) ;
22 A := A + 2 ;
23 B := B + 5 ;
24 end f oo ;
25 end example ;

Figure 6.1: Example program to illustrate chopping

Figure 6.2: System Dependence Graph for Chopping Program in 6.1
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6.1 Realizable Paths

Let each call vertex in SDG G be given a unique index from 1 to CSites, where CSites

is the total number of call sites in the program. For each call site ci, label the outgoing

parameter-in edges and the incoming parameter-out edges with the symbols “(i” and “)i”.

Label all the other edges in G with the symbol e.

6.1.1 Same-level realizable path

A path in G is a same level realizable path if and only if the sequence of symbols labeling

edges in the path is a string in the language generated from nonterminalmatched by the

following context-free grammar:

matched → matched matched

| (i matched )i for1 ≤ i ≤ CSites

| e

| ε

A same-level realizable path from node v to node w represents the transmission of an

effect from v to w, where v and w are in the same procedure. A traversal of path from source

to target, during which the call stack can temporarily grow deeper because of calls but never

shallower than its original depth before eventually returning to its original depth7.

6.1.2 Realizable Path

A path G is a realizable path if and only if the sequence of symbols labeling the edges in

the path is a string in the language generated from nonterminal realizable by the following

context-free grammar:
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unbalanced-right → unbalanced-right )i matched for 1 ≤ i ≤ CSites

| matched

unbalanced-left → unbalanced-left (i matched for 1 ≤ i ≤ CSites

| matched

realizable → unbalanced-right unbalanced-left

A realizable path from v to w represents the transmission of an effect from v to w,

where v and w are not required to be in same procedure. The “unbalanced-right” part of

a realizable path represents an execution sequence that may leave the call stack shallower

than it was originally, the “unbalanced-left” part represents an execution sequence that may

leave the call stack deeper than it was originally7.

Figure 6.3: Same-level Realizable Path for Chopping Program in 6.1
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Figure 6.4: Realizable Path for Chopping Program in 6.1

6.1.3 Notations

The following notations are used in rest of this chapter:

p = u→∗ w :p is a path from u to w

v ∈ p :v is one of the vertices of path p

u→∗m w :matched

u→∗unbr w :unbalanced− right

u→∗unbl w :unbalanced− left

u→∗r w :realizable
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6.2 Inter-procedural Chopping Problems

There four types of inter-procedural chopping :

In each of the following clauses, an SDG G is chopped with respect to given source vertex

s and target vertex t.

unrestricted inter-procedural chop

consists of set of vertices given by :

{ v | ∃p such that p = s→∗r t and v ∈ p}

This will perform a complete chop on all the cases i.e. source and target in same level and

source and target in different levels.

Truncated unrestricted inter-procedural chop

consists of the set of vertices given by :

{v | ∃ w such that s →∗unbr v →∗unbr w →∗unbl t}

∪{v | ∃ w such that s →∗unbr w →unbl v →unbl t}

This is a truncated chap in the sense it leaves out few edges corresponding the parameter

call. Thus end up in an incomplete chop.

(non-truncated) same-level inter procedural chop

consists of the set of vertices given by:

{v | ∃ p such that p = s →∗m t and v ∈ p}

This provide a complete chop between the source and target, provided the source and target

should be in sam level.
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Truncated same-level inter-procedural chop

consists of set of vertices given by:

{v | s→∗m v →∗m t}

This provides a truncated chop, when the source and target are in same level.

6.3 Precise Inter-procedural Chopping

In this section, we describe how to solve inter-procedural chopping problems precisely up to

realizable paths. The summary edges of the SDG are defined as mentioned in the section 4.2.

Once all the summary edges have been found it is easy to follow matched, unbalanced-right

and unbalanced-left paths in the SDG.

fm(S) =df {v | ∃s ∈ S such that s →∗m v}

funbr(S) =df {v | ∃s ∈ S such that s →∗unbr v}

funbl(S) =df {v | ∃s ∈ S such that s →∗unbl v}

bm(T ) =df {v | ∃t ∈ T such that v →∗m t}

bunbr(T ) =df {v | ∃t ∈ T such that v →∗unbr t}

bunbl(T ) =df {v | ∃t ∈ T such that v →∗unbl t}

Operations f unbr, f unbl, bunbr and bunbl correspond to the individual “slicing passes”. All

the six operations can be implemented by simple reachability computations on a SDG aug-

mented with summary edges:

i The operation f m(S) can be implemented as a reachability algorithm as follows: start-

ing at members of S, the breadth-first search traverses control-dependence edges, flow-

dependence edges, and summary edges, but not call edges, parameter-in edges, or

parameter-out edges, and return all vertices encountered.
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ii Operation f unbr(S) can be implemented as a reachability algorithm that starts at mem-

bers of S and traverses control-dependence edges, flow-dependence edges, summary

edges, and parameter-out edges, but not call edges or parameter-in edges.

iii The operation bunbl(T) can be implemented as a backwards reachability algorithm:

starting at members of T, it traverses control-dependence edges, flow-dependence

edges, call edges, summary edges, and parameter-in edges, but not parameter-out

edges.

The other three operations are implemented similarly.

6.4 Algorithm

6.4.1 Truncated Same level Chop

1 function TruncatedSameLevelChop ( s , t ) r e tu rn s ver tex s e t
2 begin
3 return f m({s}) ∩ b m({t})
4 end

Figure 6.5: Algorithm for Truncated Same-level Chop7

Truncated same-level chop is applied when the source and target are in the same procedure.

In the algorithm shown in Figure 6.5 the f m({s}) is calculated by a forward slice from the

source without following parameter-in edges, parameter-out edge and call edges. Similarly

the bm({t}) is computer by a backward slice on the target without following parameter-in

edges, parameter-out edge and call edges. The intersection of the two fm({s}) and bm({t})

gives the result.

For example, Consider source s = InitDef A and target t = A := A + 2. The Truncated

same-level chop will result in {InitDef A, x in := A, A := x out, A:= A +2}.

6.4.2 Same levelChop
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Consider the same Source and target as s = InitDef A and t = A := A + 2. After performing

Truncated same-level chop there exists a summary edge from x in := A to A := x out in

the result. In the same-level chop Aux the formal-in and formal-out related to the summary

edge are considered to be source and target. With this new source and target, Truncated

same-level chop is performed and the results are aggregated. Thus the truncated same-level

chop is performed for all the summary edge appear in the result. By this technique all the

procedures involved in the information flow between source and target are explored and the

completed chopped is obtained, provided the source and target are in same level.

6.4.3 Truncated Chop

The Figure 6.9 shows the result of “W” referred in algorithm 6.8 by the intersection

of forward unbalanced right and backward unbalanced left on source x:=x in and target

B:= B+5. Note that the source and target are in different different procedures. From the

computed W, the vertices to the right of W are computed by intersecting forward unbalanced

right of the source and backward unbalanced right of W. Similarly the vertices to the left of

W are computed by intersecting forward unbalanced left with W and backward unbalanced

left with target. The truncated chop is obtained by the union of right side vertices and left

side vertices.

6.4.4 Non-truncated Chop

A non-truncated chop is computed by first performing a truncated chop in order to balance

the source and target. If there are any summary edges in the result of Truncated Chop, the

Same-level Chop Aux is performed to explore all other procedures calls present in the result.

The procedures called by the source or target are not fully explored by a truncated chop.
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1 function SameLevelChop ( s , t ) r e tu rn s ver tex s e t
2 declare
3 S : ver tex s e t
4 WorkList : s e t of summary edges
5 begin
6 S := TruncatedSameLevelChop ( s , t )
7 WorkList := {(x , y ) ∈ SummaryEdges | x , y ∈ S}
8 return SameLevelChopAux (S , WorkList )
9 end

Figure 6.6: Algorithm for Same-level Chop7

1 function SameLevelChopAux (Answer , WorkList ) r e tu rn s ver tex s e t
2 parameters
3 Answer : ver tex s e t
4 WorkList : s e t of summary edges
5 declare
6 S : ver tex s e t
7 begin
8 Remove a l l marks on { formal−in , en te r} formal−out pa i r s
9 while workList 6= φ do

10 select and remove a summary edge (v , w) from WorkList
11 l e t v ’ = the formal−in or ente r ver tex that corresponds to v and
12 w’ = the formal−out ver tex that corresponds to actua l−out w
13 in
14 i f (v ’ , w’ ) i s unmarked then
15 Mark(v ’ , w’ )
16 S := TruncatedSameLevelChop (v ’ , w’ )
17 Answer := Answer ∪ S
18 WorkList := WorkList ∪ {(x , y ) ∈ SummaryEdges | s , y ∈ S}
19 f i
20 n i
21 od
22 return Answer
23 end

Figure 6.7: Algorithm for Same-level Chop Aux7

1 function TruncatedChop ( s , t ) r e tu rn s ver tex s e t
2 declare
3 W, VR, VL: ver tex s e t
4 begin
5 W := f unbr ({s}) ∩ bunbl ({t})
6 VR := f unbr ({s}) ∩ bunbr ({W})
7 VL := f unbl ({W}) ∩ bunbl ({t})
8 return VR ∪ VL
9 end

Figure 6.8: Algorithm for Truncated Chop7

52



Figure 6.9: W for Chopping Program in 6

Figure 6.10: Truncated Chop for Chopping Program in 6
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1 function Chop( s , t ) r e tu rn s ver tex s e t
2 declare
3 W, VR, VL: ver tex s e t
4 WorkList : s e t of summary edges
5 begin
6 /∗Perform a TruncatedChop∗/
7 W := f unbr ({s}) ∩ bunbl ({t})
8 VR := f unbr ({s}) ∩ bunbr ({W})
9 VL := f unbl ({W}) ∩ bunbl ({t})

10 /∗ Invoke SameLevelChopAux with a l l summary edges on
11 ∗ unbalanced−r i g h t paths from s to W or unbalanced− l e f t
12 ∗ paths from W to t ∗/
13 WorkList := {(x , y ) ∈ SummaryEdges | x , y ∈ VR}
14 ∪ {(x , y ) ∈ SummaryEdges | x , y ∈ VL}
15 return SameLevelChopAux (VR ∪ VL, WorkList )
16 end

Figure 6.11: Algorithm for Non-truncated Chop7

A non-truncated chop completely explores every path that can contribute information from

source to target.
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Chapter 7

Policy Language

This chapter presents a language that represents the policy language. We use this language

to infer information flow propertiesand to specify and verify security policies. The section

7.1 presents the grammar of the policy language and explains the features with examples.

Section7.2 provides the verification technique used check the security policies.

7.1 Grammar

The Grammar of the policy language is classified into four blocks: query block, assert block,

policy block and check block.

Compilation : := query b lock
| a s s e r t b l o c k
| po l i c y b l o c k
| check b lock

7.1.1 Policy Block

po l i c y b l o c k : := po l i c y ID :
po l i cy E ;

po l i cy E : := domain dom set
( order dom order )?

dom set : := {ID∗}

dom order : := ID ( <= ID )∗
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The policy block is used to specify the security classification domain and the partial ordering

between various domains. If the order is not provided between some domains, then they are

treated as disjoint domain.
Policy Language Example

po l i c y Secu r i ty :
domain { s e c r e t , c l a s s i f i e d , pub l i c }
order pub l i c <= c l a s s i f i e d <= s e c r e t ;

In the above policy, secret, classified and public are the domains and the partial ordering

indicated that public has the lowest priority and secret has the highest priority.

7.1.2 query block

query b lock : := query ID :
E;

E : := E1 union E2
| E1 i n t e r s e c t i o n E2
| E1 minus E2
| s l i c e e x p
| chop exp
| ( E )
| qry name
| b o o l l i t e r a l
| emp ty l i t r a l
| l i t r a l s e t

s l i c e e x p : := s l i c e ( forward | backward )? with E

chop exp : := chop ( f a s t | truncated | same leve l | f u l l )? from E1 to E2

b o o l l i t r a l : := true | f a l s e

emp ty l i t r a l : := empty

l i t r a l s e t : := { args ∗}

args : := l a b e l
| proc name

l a b e l : := <<ID>>

proc name : := ( proc type )? path ( param∗ )
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proc type : := spec | body

path : := ID ( . ID)∗

param : := param type ( path | ID)

param type : := in | out

Query block is used to infer the information flow properties. The result of each query block

is a set of nodes, which are extracted from Spark Ada programs by slicing or chopping on

procedure parameters or specifying the label to identify a particular statement. The query

name acts as a variable to hold the result, which can be used in later blocks.

query chopping :
chop f u l l from {math . add ( in y )} to {math . add ( out x )} ;

The above query performs a chop from the Init y to Final x in add procedure and storers

the result in the variable chopping.

query s l i c i n g :
s l i c e backward with chopping ;

This query performs a backward slice with the result of the previous query as the slicing

criterion.

7.1.3 Check block

check b lock : := check ID :
check E ;

check E : := check ID with provided node c l a s s+ requ i r ed node c l a s s+

node c l a s s : := E : ID

Check block is used to verify the specified security policy. If no error is found during

verification then it returns true and an empty set. If the verification fails it returns false

and the chop of the path contributing to the information leakage, which is a set of nodes.

check case1 :
check Secur i ty with provided s l i c i n g : pub l i c r equ i r ed chopping : s e c r e t ;
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This verify the policy Security with the slicing and chopping sets. The slicing is classified

to public and the chopping is classified to secret.

7.1.4 Assert Block

a s s e r t b l o c k : := a s s e r t ID :
a s s e r t E ;

a s s e r t E : := a s s e r t (E1 (= | /= | sub s e t o f | s up e r s e t o f | d i s j o i n t o f ) E2)

Assert block is used to compare the two information flows. It also provides set comparison

operators like subset, superset and disjoint. The result of assert block is always a boolean.

a s s e r t notEmpty :
a s s e r t ( s l i c i n g /= empty ) ;

Figure 7.1: Screen shot of query results

7.2 Policy Verification

Using the features of Policy Language we can specify information flow control policies. In

this section we will discuss the verification technique used to check a specified policy against

Spark Ada programs.

7.2.1 Security level

The theoretical models of information flow control utilize a lattice L = (L, t, u) of security

levels, the simplest consisting of two security levels High and Low. This approach of verifying
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the security policy is based on dependence graphs. If there is no SDG path from a to b, it

is guaranteed that there is no information flow between a and b.

The security level of a statement with SDG node x is written S(x), and confidentiality

requires that an information receiver must have at least the same security level of any

sender. In SDG, this implies ∀y ∈ pred(x): S(x) ≥ S(y) which ensures S(y) ; S(x). The

dual condition for integrity is ∀y ∈ pred(x): S(x) ≤ S(y). However, this assumes that every

statement representation node has a security level specified, which is not true in reality.

We want to specify provided and required security levels for only certain nodes that we are

interested in and not for all nodes.

The provided security level specifies that a statement sends information from a particular

security level and the required security level specifies that only information with a lower

security level may reach that statement. The provided security levels are defined by a

partial function P: N → L, where N is the set of nodes representing statements of the

programs. Thus, l = P(s) specifies the statement’s security level.

The required security levels are defined similarly as a partial function R: N → L. Thus,

P(s) specifies the security level of the information generated at s and R(s) specifies the max-

imal allowed security level l of the information that can be reached through the dependence

graph. Thus a program represented as a dependence graph does not violate confidentiality,

if and only if

∀a ∈ dom(R) : ∀ x ∈ BS(a) ∩ dom(P) : P(x) ≤ R(a)

That is, the backward slice from a node a with a required security level R(a) must not

contain a node x that has a higher security level P(x). Usually, the number of nodes that

have a specified security level is low, e.g. points of output. Therefore, the above criterion

can easily be transformed into an algorithm that checks a program for confidentiality.

7.2.2 SDG-based Confidentiality Check

To check an information flow, the following property must hold. For every node in the

dependence graph that has a required security level specified, compute the backward slice,
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and check that no node in the slice has a higher provided security level specified.

Checking each node separately allows a simple yet powerful diagnosis in the case of a

security violation: If a node x in the backward slice BS(a) has a provided security level that

is too large (P(x) > R(a)), the responsible nodes can be computed by chop(x, a). The chop

computes all nodes that are part of the path from node x to node a, thus it contains all nodes

that may be involved in the propagation from x’s security level to a. If there is no ordering

between the provided and the required security levels, the dom(R) and dom(P) should be

treated as disjoint sets. Any information flow between these two domains is considered to

be information leak.

7.2.3 Example

1 package Prog i s
2 p r o c e d u r e Q1(A: in I n t eg e r ; B: in out I n t eg e r ; C: out I n t eg e r ) ;
3 −−# der i v e s B from A, B
4 −−# & C from A,B
5
6 end P;
7
8 package body Prog i s
9 p r o c e d u r e Q1(A: in I n t eg e r ; B: in out I n t eg e r ; C: out I n t eg e r ) i s
10 m : In t eg e r
11 b e g i n
12 m = A + B ∗2 ;
13 B = m + A
14 C = A + B;
15 e n d Q1 ;
16 end P;

Figure 7.2: Example program to illustrate chopping

Policy

Pol i cy ex1 :
Domain {high , low} ;
Order low <= high ;
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Query

Check case1 :
check ex1 with provided {Prog .Q1( in A)} : low , {Prog .Q1( in B)} : high

r equ i r ed {Prog .Q1(out C)} : high ;

Using the above policy on the program in the Figure 8.4, we are able to specify that there

are two domains low and high with the ordering that the domains i.e the domain low is less

secure than the domain high. By the above query, we can specify that Init A of procedure

Q1 provides information that are classified as low and the Init B of procedure Q1 provides

information classification as high. Also we say that to be a valid information flow, the

information received by the node Final C of procedure Q1 should be of level of no greater

than high.

This is verified using the technique discussed under 7.2.2. A backward slice is computed

from the node with required security level, which could be Final C in this example. The

resultant of the slice contains two nodes Init A and Init B with provided security level.

The provided security level is compared with the required security level based on the order

specified in the policy. The provided level of Init A and Init B are less than or equal to the

required level of Final C. There for this query results in boolean true and an empty set to

mention that the verification of the query is success and there is non path contributing to

information leakage.

Figure 7.3: System Dependence graph for the program in 8.4
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Figure 7.4: Backward slice on SDG in 7.3

Figure 7.5: Comparing the first provided and required classification level

Figure 7.6: Comparing the provided and required classification level
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Query

Check case2 :
check ex1 with provided {Prog .Q1( in A)} : low ,

{Prog .Q1( in B)} : high
r equ i r ed {Prog .Q1(out C)} : Low ;

Verifying the above query to the program in 8.4. The figure 7.7 shows the SDG generated

with respect to this query. There are two provided nodes Init A and Init B with classification

as low and high respectively. There is a required node Final C with classification low.

Figure 7.7: SDG for the program in 7.3

The backward slice on the SDG in Figure 7.3 with respect to Final C is shown in Figure

7.8. There are two nodes with the provided classification. Comparing the first node Init A

with Final C, both the security levels are equal, so it is valid.

Figure 7.8: Comparing the provided and required classification level
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Figure 7.9: Comparing the provided and required classification level

When comparing the Final C with next node in the provided domain, the provided level

is higher than the required node level. This is shown in figure 7.9. The path contributing to

the leak is computed by performing a chop with the respective nodes, the Figure 7.10 show

the chop from Final C and Init B.

Figure 7.10: Chop of failure verification
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Chapter 8

MILS - Mailbox

In this chapter we provide a Multiple Independent Levels of Security (MILS) Example to

illustrate the information flow control technique discussed in this thesis.

8.1 Mailbox Example

Figure 8.1: Simple MILS - mailbox3

Figure 8.1 illustrates the MILS component used by Rockwell Collins engineer to demon-

strate information flow issues in MILS component. The “Mailbox” component is a mediator
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between two clients running in two different partitions of a separation kernel. To send some

data from Client 0 to Client 1, Client 0 writes the data into the memory segment Input 0.

The Input 0 is shared between Client 0 and the mailbox. Then Client 0 sets the Input 0

Ready flag, to inform the mailbox that new input is placed in the Input 0 memory segment.

The mailbox process polls its ready flags to check the data is allowed to transfer from one

end to another. Client 0 can communicate with Client 1 only when Input 0 Ready is set

and the Output 1 Ready is cleared. Then the mailbox transfers the data from Input 0 to

Output 1, clears the Input 0 Ready flag and sets the Output 1 Ready flag. The Output 1

Ready flag is set to inform the Client 1 that new data is placed in Output 1. When Client

1 consumes the data, it clears the Output 1 Ready flag. The communication from Client 1

to Client 0 follow a symmetric set of steps.

8.2 Machine Step Procedure Analyses

Figure 8.2 is a fragment of mailbox implementation, full program is provided in appendix

??, it captures the core process discussed in section 8.1. The derives clause captures the

information flow of this procedure. The Output 1 is derived from Input 0, Input 0 Ready,

Output 1 Ready and Output 1. Similarly the Output 0 is derived from Input 1, Output

0 Ready, Input 1 Ready and Output 0. We need to verify that there are two separate

information channels in the mailbox and there is no interference between them.

We can capture the Input 0, Input 1, Output 0 and Output 1 in the policy language by

the queries described in figure 8.3.

The information policy is specified in the figure 8.4, note that there is no order between

A and B, which means A and B are disjoint. Therefore should be no information flow

between the path A and path B.
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1 procedure MACHINE STEP ;
2 −−# g l o b a l in out INTEGER INPUT 0 READY,
3 −−# INTEGER INPUT 1 READY,
4 −−# INTEGER OUTPUT 0 READY,
5 −−# INTEGER OUTPUT 1 READY,
6 −−# INTEGER OUTPUT 0 DATA,
7 −−# INTEGER OUTPUT 1 DATA;
8 −−# in INTEGER INPUT 0 DATA,
9 −−# INTEGER INPUT 1 DATA;

10 −−# der i v e s INTEGER OUTPUT 0 DATA from INTEGER INPUT 1 DATA,
11 −−# INTEGER OUTPUT 0 READY,
12 −−# INTEGER OUTPUT 0 DATA,
13 −−# INTEGER INPUT 1 READY &
14 −−# INTEGER OUTPUT 1 DATA from INTEGER INPUT 0 DATA,
15 −−# INTEGER INPUT 0 READY,
16 −−# INTEGER OUTPUT 1 DATA,
17 −−# INTEGER OUTPUT 1 READY &
18 −−# INTEGER INPUT 0 READY from INTEGER INPUT 0 READY,
19 −−# INTEGER OUTPUT 1 READY &
20 −−# INTEGER INPUT 1 READY from INTEGER INPUT 1 READY,
21 −−# INTEGER OUTPUT 0 READY &
22 −−# INTEGER OUTPUT 0 READY from INTEGER OUTPUT 0 READY,
23 −−# INTEGER INPUT 1 READY &
24 −−# INTEGER OUTPUT 1 READY from INTEGER OUTPUT 1 READY,
25 −−# INTEGER INPUT 0 READY;
26
27 procedure Main ;
28
29 procedure MACHINE STEP
30 i s
31 DATA 0 : INTEGER;
32 DATA 1 : INTEGER;
33 begin
34 i f INPUT 0 READY and OUTPUT 1 CONSUMED then
35 DATA 0 := READ INPUT 0 ;
36 NOTIFY INPUT 0 CONSUMED;
37 WRITE OUTPUT 1(DATA 0) ;
38 NOTIFY OUTPUT 1 READY;
39 end i f ;
40 i f INPUT 1 READY and OUTPUT 0 CONSUMED then
41 DATA 1 := READ INPUT 1 ;
42 NOTIFY INPUT 1 CONSUMED;
43 WRITE OUTPUT 0(DATA 1) ;
44 NOTIFY OUTPUT 0 READY;
45 end i f ;
46 end MACHINE STEP;

Figure 8.2: Mailbox code fragment : Machine Step Procedure
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query Input 0 :
{Mailbox .MACHINE STEP( in Mailbox . INTEGER INPUT 0 DATA) } ;

query Input 1 :
{Mailbox .MACHINE STEP( in Mailbox . INTEGER INPUT 1 DATA) } ;

query Output 0 :
{Mailbox .MACHINE STEP(out Mailbox .INTEGER OUTPUT 0 DATA) } ;

query Output 1 :
{Mailbox .MACHINE STEP(out Mailbox .INTEGER OUTPUT 1 DATA) } ;

Figure 8.3: Queries to capture Input and Output

po l i c y path :
domain {A, B}

Figure 8.4: Security policy

Output 0 to Input 1

The query pathA specifies that Input 1 and Output 0 belongs to classification A. As both

are equal, the information flow between them is valid, which is indicated by the result ‘true’.

check pathA :
check path with provided Input 1 : A requ i r ed Output 0 : A;

Result :−
pathA :

InitDef$Mailbox$@@INTEGER INPUT 1 DATA −>
FinalUse$Mailbox$@@INTEGER OUTPUT 0 DATA : true

Figure 8.5: Verification of Path A

Output 1 to Input 0

The pathB is verified similar to pathA.
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check pathB :
check path with provided Input 0 : B requ i r ed Output 1 : B;

Result :−
pathA :

InitDef$Mailbox$@@INTEGER INPUT 0 DATA −>
FinalUse$Mailbox$@@INTEGER OUTPUT 1 DATA : true

Figure 8.6: Verification of Path B

No Interference

To make sure that there is no interference of data between the path A and path B, we verify

them together to with appropriate security domains.

check Both A and B :
check path with

provided
{Mailbox .MACHINE STEP( in Mailbox . INTEGER INPUT 0 DATA)} : B,
{Mailbox .MACHINE STEP( in Mailbox . INTEGER INPUT 1 DATA)} : A

r equ i r ed
{Mailbox .MACHINE STEP(out Mailbox .INTEGER OUTPUT 1 DATA)} : B,
{Mailbox .MACHINE STEP(out Mailbox .INTEGER OUTPUT 0 DATA)} : A ;

Result :−
Both A and B :

InitDef$Mailbox$@@INTEGER INPUT 0 DATA −>
FinalUse$Mailbox$@@INTEGER OUTPUT 1 DATA : true
InitDef$Mailbox$@@INTEGER INPUT 1 DATA −>
FinalUse$Mailbox$@@INTEGER OUTPUT 0 DATA : true

Figure 8.7: Checking for Interference

Failure Case

Suppose we assume that the Output 1 belongs to the path A but the Input 0 belongs to

path B. Then there is a flow between the Input 0 to Output 1 which is not valid.
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check Both A and B bad :
check path with

provided
{Mailbox .MACHINE STEP( in Mailbox . INTEGER INPUT 0 DATA)} : B,
{Mailbox .MACHINE STEP( in Mailbox . INTEGER INPUT 1 DATA)} : A

r equ i r ed
{Mailbox .MACHINE STEP( out Mailbox .INTEGER OUTPUT 1 DATA)} : A,
{Mailbox .MACHINE STEP( out Mailbox .INTEGER OUTPUT 0 DATA)} : A ;

Result :−
Both A and B bad :

InitDef$Mailbox$@@INTEGER INPUT 1 DATA −>
FinalUse$Mailbox$@@INTEGER OUTPUT 0 DATA : true
InitDef$Mailbox$@@INTEGER INPUT 0 DATA −>
FinalUse$Mailbox$@@INTEGER OUTPUT 1 DATA : f a l s e
( cont inued with l i s t o f nodes con t r i bu t i ng the l eak )

Figure 8.8: Checking for Interference - Failure
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Chapter 9

Conclusion

This thesis offers a technique to perform system level information flow analysis for spark

language. This is information analysis framework is integrated into an Eclipse plug-in. The

Eclipse plug-in offers better presentation and interactive usability.

The policy language is expressive enough to perform pretty complex information flow

analysis and also to effectively specify and verify security policies. This tool helps the

developer to analyze and verify MILS standard embedded system.

9.1 Future Work

1. Conditional information flow - The present tool captures the information flow property

in the system irrespective of the condition implied in the information flow. This looses

precession, where conditional information flow is required. This could be remedied

by including path condition generators and capturing the conditional aspect of the

information flow.

2. The present verification tool supports not the classification of the information but not

de-classification. With out the de-classification feature it is impossible to use it in

real world as every system needs to be de-classified at user interaction points. This

will be considered as the next crucial step of improvement in the policy language

and verification tool. This has to be combined with the conditional information flow
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analyses to classify and de-classify under certain condition.

3. The policy language need to be improved to accommodate the conditional information

flow and declassification. The editor for policy language in Eclipse plug-in is left for

future work. The results of the policy language is represented as a tabular view in

Eclipse. This view needs to be upgrade to display specified policies and verification

results with different color scheme for different information flow channels.

There are more interesting stuff that are possible with the policy language, one of which is

the capability to specify higher level policies and refining and verifying the policy at various

level until actual implementation is verified against the policy. This feature will be help the

developer to stick with specification throughout the engineering process.

72



Bibliography

[1] Rockwell Collins Secure One, http://www.rockwellcollins.com/sitecore/

content/Data/Products/Information_Assurance/Cross_Domain_Solutions/

SecureOne_Cross_Domain_Technologies.aspx.

[2] L. Zhebg and S. Sdanewic. A. C. Myers, N. Nystrom. Java information flow. http:

//www.cornell.edu/jif.

[3] Torben Amtoft, John Hatcliff, Edwin Rodrguez, Robby, Jonathan Hoag, and David

Greve. Specification and checking of software contracts for conditional information

flow, 2007.

[4] Roderick Chapman and Adrian Hilton. Enforcing security and safety models with an

information flow analysis tool. Proceedings of the 2004 Annual ACM SIGAda Inter-

national Conference on Ada: The Engineering of Correct and Reliable Software for

Real-Time Distributed Systems using Ada and Related Technologies 2004, pages 39–46,

2004.

[5] M. P. Heimdahl and C. L. Heitmeyer. Formal methods for developing high assurance

computer systems. Working group report. in Proceedings, Second IEEE Workshop on

Industrial-Strength Formal Techniques (WIFT’98), 1998.

[6] Susan Horwitz Thomas Reps and David Binkley. Interprocedural slicing using depen-

dence graphs. In Proceedings of the ACM SIGPLAN 88 Conference on Programming

Language Design and Implementation, pages 35–46, 1988.

[7] Thomas Reps and Genevieve Rosay. Precise interprocedural chopping. In SIGSOFT

’95: Proceedings of the Third ACM SIGSOFT Symposium on the Foundations of Soft-

ware Engineering, pages 41–52, 1995.

73

http://www.rockwellcollins.com/sitecore/content/Data/Products/Information_Assurance/Cross_Domain_Solutions/SecureOne_Cross_Domain_Technologies.aspx
http://www.rockwellcollins.com/sitecore/content/Data/Products/Information_Assurance/Cross_Domain_Solutions/SecureOne_Cross_Domain_Technologies.aspx
http://www.rockwellcollins.com/sitecore/content/Data/Products/Information_Assurance/Cross_Domain_Solutions/SecureOne_Cross_Domain_Technologies.aspx
 http://www.cornell.edu/jif
 http://www.cornell.edu/jif


[8] John Hatcliff Matthew B. Dwyer and Hongjun Zheng. Slicing software for model con-

struction. Journal of Higher-order and Symbolic Computation, 13(4):315–353, 2000.

[9] J. Des Rivières and J. Wiegand. Eclipse: a platform for integrating development tools.

IBM Systems Journal, pages 371–383, 2004.

[10] Barnes. J. High Integrity Software: The SPARK Approach to Safety and Security,

volume 1st Ed. Addison-Wesley Longman Publishing Co. Inc. ISBN 0-321-13616-0,

2003.

[11] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In Proc.

26th ACM Symp. on Principles of Programming Languages (POPL), pages 228–241,

1999.

[12] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Anal-

ysis, volume 2nd Ed. Springer-Verlag, 2005.

[13] John Rushby. Separation and integration in mils. The MILS Constitution, 2008.

74



Appendix A

Mailbox Program

The complete Mailbox program is provided in this section.

1 −− This i s a SPARK−Ada ver s i on o f the s imple C mai lbox example
2 −− prov ided by Rockwel l Co l l i n s . The example i s enr iched wi th
3 −− SPARK annota t ions . The purpose o f t h i s s imple program i s to
4 −− t ransmi t data from one e n t i t y to another through a mediator
5 −− ( the mai lbox ) .
6 −− @author Edwin Rodrgues
7
8 package Mailbox
9 −−# own INTEGER INPUT 0 READY, INTEGER INPUT 0 DATA,

10 −−# INTEGER OUTPUT 0 READY, INTEGER OUTPUT 0 DATA,
11 −−# INTEGER INPUT 1 READY, INTEGER INPUT 1 DATA,
12 −−# INTEGER OUTPUT 1 READY, INTEGER OUTPUT 1 DATA;
13 −−# i n i t i a l i z e s INTEGER INPUT 0 READY, INTEGER INPUT 0 DATA,
14 −−# INTEGER OUTPUT 0 READY, INTEGER OUTPUT 0 DATA,
15 −−# INTEGER INPUT 1 READY, INTEGER INPUT 1 DATA,
16 −−# INTEGER OUTPUT 1 READY, INTEGER OUTPUT 1 DATA;
17 i s
18
19 INTEGER INPUT 0 READY : BOOLEAN := TRUE;
20 INTEGER INPUT 0 DATA : INTEGER := −1;
21 INTEGER OUTPUT 0 READY : BOOLEAN := TRUE;
22 INTEGER OUTPUT 0 DATA : INTEGER := −1;
23
24 INTEGER INPUT 1 READY : BOOLEAN := TRUE;
25 INTEGER INPUT 1 DATA : INTEGER := −1;
26 INTEGER OUTPUT 1 READY : BOOLEAN := TRUE;
27 INTEGER OUTPUT 1 DATA : INTEGER := −1;
28
29 function INPUT 0 CONSUMED return BOOLEAN;
30 −−# g l o b a l in INTEGER INPUT 0 READY;

Figure A.1: MILS - Mailbox Program
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31 function INPUT 0 READY return BOOLEAN;
32 −−# g l o b a l in INTEGER INPUT 0 READY;
33
34 function OUTPUT 0 CONSUMED return BOOLEAN;
35 −−# g l o b a l in INTEGER OUTPUT 0 READY;
36
37 function OUTPUT 0 READY return BOOLEAN;
38 −−# g l o b a l in INTEGER OUTPUT 0 READY;
39
40 function INPUT 1 CONSUMED return BOOLEAN;
41 −−# g l o b a l in INTEGER INPUT 1 READY;
42
43 function INPUT 1 READY return BOOLEAN;
44 −−# g l o b a l in INTEGER INPUT 1 READY;
45
46 function OUTPUT 1 CONSUMED return BOOLEAN;
47 −−# g l o b a l in INTEGER OUTPUT 1 READY;
48
49 function OUTPUT 1 READY return BOOLEAN;
50 −−# g l o b a l in INTEGER OUTPUT 1 READY;
51
52 procedure NOTIFY INPUT 0 CONSUMED;
53 −−# g l o b a l out INTEGER INPUT 0 READY;
54 −−# der i v e s INTEGER INPUT 0 READY from ;
55
56 procedure NOTIFY INPUT 0 READY;
57 −−# g l o b a l out INTEGER INPUT 0 READY;
58 −−# der i v e s INTEGER INPUT 0 READY from ;
59
60 procedure NOTIFY OUTPUT 0 CONSUMED;
61 −−# g l o b a l out INTEGER OUTPUT 0 READY;
62 −−# der i v e s INTEGER OUTPUT 0 READY from ;
63
64 procedure NOTIFY OUTPUT 0 READY;
65 −−# g l o b a l out INTEGER OUTPUT 0 READY;
66 −−# der i v e s INTEGER OUTPUT 0 READY from ;
67
68 procedure NOTIFY INPUT 1 CONSUMED;
69 −−# g l o b a l out INTEGER INPUT 1 READY;
70 −−# der i v e s INTEGER INPUT 1 READY from ;
71
72 procedure NOTIFY INPUT 1 READY;
73 −−# g l o b a l out INTEGER INPUT 1 READY;
74 −−# der i v e s INTEGER INPUT 1 READY from ;
75
76 procedure NOTIFY OUTPUT 1 CONSUMED;
77 −−# g l o b a l out INTEGER OUTPUT 1 READY;
78 −−# der i v e s INTEGER OUTPUT 1 READY from ;

Figure A.2: MILS - Mailbox Program continued
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79 procedure NOTIFY OUTPUT 1 READY;
80 −−# g l o b a l out INTEGER OUTPUT 1 READY;
81 −−# der i v e s INTEGER OUTPUT 1 READY from ;
82
83 function READ INPUT 0 return INTEGER;
84 −−# g l o b a l in INTEGER INPUT 0 DATA;
85
86 function READ OUTPUT 0 return INTEGER;
87 −−# g l o b a l in INTEGER OUTPUT 0 DATA;
88
89 function READ INPUT 1 return INTEGER;
90 −−# g l o b a l in INTEGER INPUT 1 DATA;
91
92 function READ OUTPUT 1 return INTEGER;
93 −−# g l o b a l in INTEGER OUTPUT 1 DATA;
94
95 procedure WRITE INPUT 0(Data : in INTEGER) ;
96 −−# g l o b a l out INTEGER INPUT 0 DATA;
97 −−# der i v e s INTEGER INPUT 0 DATA from Data ;
98
99 procedure WRITE OUTPUT 0(Data : in INTEGER) ;
100 −−# g l o b a l out INTEGER OUTPUT 0 DATA;
101 −−# der i v e s INTEGER OUTPUT 0 DATA from Data ;
102
103 procedure WRITE INPUT 1(Data : in INTEGER) ;
104 −−# g l o b a l out INTEGER INPUT 1 DATA;
105 −−# der i v e s INTEGER INPUT 1 DATA from Data ;
106
107 procedure WRITE OUTPUT 1(Data : in INTEGER) ;
108 −−# g l o b a l out INTEGER OUTPUT 1 DATA;
109 −−# der i v e s INTEGER OUTPUT 1 DATA from Data ;

Figure A.3: MILS - Mailbox Program continued
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110 procedure MACHINE STEP ;
111 −−# g l o b a l in out INTEGER INPUT 0 READY, INTEGER INPUT 1 READY,
112 −−# INTEGER OUTPUT 0 READY, INTEGER OUTPUT 1 READY,
113 −−# INTEGER OUTPUT 0 DATA, INTEGER OUTPUT 1 DATA;
114 −−# in INTEGER INPUT 0 DATA, INTEGER INPUT 1 DATA;
115 −−# der i v e s INTEGER OUTPUT 0 DATA from INTEGER INPUT 1 DATA,
116 −−# INTEGER OUTPUT 0 READY,
117 −−# INTEGER OUTPUT 0 DATA,
118 −−# INTEGER INPUT 1 READY &
119 −−# INTEGER OUTPUT 1 DATA from INTEGER INPUT 0 DATA,
120 −−# INTEGER INPUT 0 READY,
121 −−# INTEGER OUTPUT 1 DATA,
122 −−# INTEGER OUTPUT 1 READY &
123 −−# INTEGER INPUT 0 READY from INTEGER INPUT 0 READY,
124 −−# INTEGER OUTPUT 1 READY &
125 −−# INTEGER INPUT 1 READY from INTEGER INPUT 1 READY,
126 −−# INTEGER OUTPUT 0 READY &
127 −−# INTEGER OUTPUT 0 READY from INTEGER OUTPUT 0 READY,
128 −−# INTEGER INPUT 1 READY &
129 −−# INTEGER OUTPUT 1 READY from INTEGER OUTPUT 1 READY,
130 −−# INTEGER INPUT 0 READY;
131 procedure Main ;
132 −−# g l o b a l in out INTEGER INPUT 0 READY, INTEGER INPUT 1 READY,
133 −−# INTEGER OUTPUT 0 READY, INTEGER OUTPUT 1 READY,
134 −−# INTEGER OUTPUT 0 DATA, INTEGER OUTPUT 1 DATA;
135 −−# in INTEGER INPUT 0 DATA, INTEGER INPUT 1 DATA;
136 −−# der i v e s INTEGER OUTPUT 0 DATA from INTEGER INPUT 1 DATA,
137 −−# INTEGER OUTPUT 0 READY,
138 −−# INTEGER OUTPUT 0 DATA,
139 −−# INTEGER INPUT 1 READY &
140 −−# INTEGER OUTPUT 1 DATA from INTEGER INPUT 0 DATA,
141 −−# INTEGER INPUT 0 READY,
142 −−# INTEGER OUTPUT 1 DATA,
143 −−# INTEGER OUTPUT 1 READY &
144 −−# INTEGER INPUT 0 READY from INTEGER INPUT 0 READY,
145 −−# INTEGER OUTPUT 1 READY &
146 −−# INTEGER INPUT 1 READY from INTEGER INPUT 1 READY,
147 −−# INTEGER OUTPUT 0 READY &
148 −−# INTEGER OUTPUT 0 READY from INTEGER OUTPUT 0 READY,
149 −−# INTEGER INPUT 1 READY &
150 −−# INTEGER OUTPUT 1 READY from INTEGER OUTPUT 1 READY,
151 −−# INTEGER INPUT 0 READY;
152 end Mailbox ;

Figure A.4: MILS - Mailbox Program continued
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153 package body Mailbox
154 i s
155 function INPUT 0 CONSUMED return BOOLEAN i s
156 begin
157 return not INTEGER INPUT 0 READY;
158 end INPUT 0 CONSUMED;
159
160 function INPUT 0 READY return BOOLEAN i s
161 begin
162 return INTEGER INPUT 0 READY;
163 end INPUT 0 READY;
164
165 function OUTPUT 0 CONSUMED return BOOLEAN i s
166 begin
167 return not INTEGER OUTPUT 0 READY;
168 end OUTPUT 0 CONSUMED;
169
170 function OUTPUT 0 READY return BOOLEAN i s
171 begin
172 return INTEGER OUTPUT 0 READY;
173 end OUTPUT 0 READY;
174 function INPUT 1 CONSUMED return BOOLEAN i s
175 begin
176 return not INTEGER INPUT 1 READY;
177 end INPUT 1 CONSUMED;
178
179 function INPUT 1 READY return BOOLEAN i s
180 begin
181 return INTEGER INPUT 1 READY;
182 end INPUT 1 READY;
183
184 function OUTPUT 1 CONSUMED return BOOLEAN i s
185 begin
186 return not INTEGER OUTPUT 1 READY;
187 end OUTPUT 1 CONSUMED;
188
189 function OUTPUT 1 READY return BOOLEAN i s
190 begin
191 return INTEGER OUTPUT 1 READY;
192 end OUTPUT 1 READY;
193
194 procedure NOTIFY INPUT 0 CONSUMED i s
195 begin
196 INTEGER INPUT 0 READY := FALSE;
197 end NOTIFY INPUT 0 CONSUMED;
198
199 procedure NOTIFY INPUT 0 READY i s
200 begin
201 INTEGER INPUT 0 READY := TRUE;
202 end NOTIFY INPUT 0 READY;

Figure A.5: MILS - Mailbox Program continued
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203 procedure NOTIFY OUTPUT 0 CONSUMED i s
204 begin
205 INTEGER OUTPUT 0 READY := FALSE;
206 end NOTIFY OUTPUT 0 CONSUMED;
207
208 procedure NOTIFY OUTPUT 0 READY i s
209 begin
210 INTEGER OUTPUT 0 READY := TRUE;
211 end NOTIFY OUTPUT 0 READY;
212
213 procedure NOTIFY INPUT 1 CONSUMED i s
214 begin
215 INTEGER INPUT 1 READY := FALSE;
216 end NOTIFY INPUT 1 CONSUMED;
217
218 procedure NOTIFY INPUT 1 READY i s
219 begin
220 INTEGER INPUT 1 READY := TRUE;
221 end NOTIFY INPUT 1 READY;
222 procedure NOTIFY OUTPUT 1 CONSUMED i s
223 begin
224 INTEGER OUTPUT 1 READY := FALSE;
225 end NOTIFY OUTPUT 1 CONSUMED;
226
227 procedure NOTIFY OUTPUT 1 READY i s
228 begin
229 INTEGER OUTPUT 1 READY := TRUE;
230 end NOTIFY OUTPUT 1 READY;
231
232 function READ INPUT 0 return INTEGER i s
233 begin
234 return INTEGER INPUT 0 DATA;
235 end READ INPUT 0 ;
236
237 function READ OUTPUT 0 return INTEGER i s
238 begin
239 return INTEGER OUTPUT 0 DATA;
240 end READ OUTPUT 0;
241
242 function READ INPUT 1 return INTEGER i s
243 begin
244 return INTEGER INPUT 1 DATA;
245 end READ INPUT 1 ;
246
247 function READ OUTPUT 1 return INTEGER i s
248 begin
249 <<tag>>return INTEGER OUTPUT 1 DATA;
250 end READ OUTPUT 1;

Figure A.6: MILS - Mailbox Program continued
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251 procedure WRITE INPUT 0(Data : in INTEGER) i s
252 begin
253 INTEGER INPUT 0 DATA := Data ;
254 end WRITE INPUT 0 ;
255
256 procedure WRITE OUTPUT 0(Data : in INTEGER) i s
257 begin
258 <<t e s t>>INTEGER OUTPUT 0 DATA := Data ;
259 end WRITE OUTPUT 0;
260
261 procedure WRITE INPUT 1(Data : in INTEGER) i s
262 begin
263 INTEGER INPUT 1 DATA := Data ;
264 end WRITE INPUT 1 ;
265
266 procedure WRITE OUTPUT 1(Data : in INTEGER) i s
267 begin
268 INTEGER OUTPUT 1 DATA := Data ;
269 end WRITE OUTPUT 1;
270 procedure MACHINE STEP
271 i s
272 DATA 0 : INTEGER;
273 DATA 1 : INTEGER;
274 begin
275 i f INPUT 0 READY and OUTPUT 1 CONSUMED then
276 DATA 0 := READ INPUT 0 ;
277 NOTIFY INPUT 0 CONSUMED;
278 WRITE OUTPUT 1(DATA 0) ;
279 NOTIFY OUTPUT 1 READY;
280 end i f ;
281 i f INPUT 1 READY and OUTPUT 0 CONSUMED then
282 DATA 1 := READ INPUT 1 ;
283 NOTIFY INPUT 1 CONSUMED;
284 WRITE OUTPUT 0(DATA 1) ;
285 NOTIFY OUTPUT 0 READY;
286 end i f ;
287 end MACHINE STEP;
288
289 procedure Main
290 i s
291 begin
292 for J in I n t eg e r range 1 . . 1 0 loop
293 MACHINE STEP;
294 end loop ;
295 end Main ;
296 end Mailbox ;

Figure A.7: MILS - Mailbox Program continued
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Appendix B

Data From SDG Construction
Experiment

The collected data are from the regression test suit built to test the SDG.

Program Average Time
in Seconds

Nodes in
SDG

Edges in
SDG

MILS - MMR 5.32 1502 2202
MILS - Guard 40.14 722 1026
Mailbox 3.01 526 466
Simple call three 1.56 172 152
ArraySet 1.95 85 106
Inter-Package dependency 1.56 77 68
Router-Guard 1.5 129 118
Alir Dependence Test 1 2.16 410 319
Alir Dependence Test 2 3.94 1520 1635
Simple Function 1.15 89 68
Package Demo 1.45 42 31
Stack-praxis 1.10 62 49
Refinement Test 1.17 72 59
Array Two Dimensional 1.5 76 64

Table B.1: Experimental Data for construction of SDG

The MILS- Guard example consumes more time than it is expected because, of multi

dimensional array and various inter package information flows. Around 70% of the execution

time is spent on computing the reaching definitions.
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