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Abstract 

Researches in the fields in science and statistics often go beyond the two-variable cause-

and-effect relationship, and also try to understand what connects the causal relationship and what 

changes the magnitude or direction of the causal relationship between two variables, predictor     

( T ) and outcome ( Y ).  

A mediator ( Z ) is a third variable that links a cause and an effect, whereby T causes the 

Z and Z causes Y.  In general, a given variable may be said to function as a mediator to the extent 

that it accounts for the relation between the predictor and the outcome (Baron and Kenny, 1986).  

The initial question regards the appropriate characterization of a mediation effect.  Most 

studies, when comparing one or more treatments focus on an average mediating effect.  This 

average mediating effect can be misleading when the mediating effects vary from subject to 

subject in the population. The primary focus of this research is to investigate individual 

mediating effects in a population, and to define a variance of these individual mediating effects. 

A concept called subject-mediator (treatment) interaction is presented and its role in evaluating a 

mediator’s behavior on a population of units is studied. This is done using a framework 

sometimes called a counterfactual model. Some common experimental designs that provide 

different knowledge about this interaction term are studied. The subgroup analysis is the most 

common analytic approach for examining heterogeneity of mediating effects.  

In mediation analysis, situations can arise where Z and Y cannot both be measured on an 

individual unit. We refer to such data as terminal measures data. We show a design where a 

mediating effect cannot be estimated in terminal measures data and another one where it can be, 

with an assumption. The assumption is linked to the idea of pseudo-replication. These ideas are 

discussed and a simulation study illustrates the issues involved when analyzing terminal 

measures data. We know of no methods that are currently available that specifically address 

terminal measures data. 
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Abstract 

Researches in the fields in science and statistics often go beyond the two-variable cause-

and-effect relationship, and also try to understand what connects the causal relationship and what 

changes the magnitude or direction of the causal relationship between two variables, 

predictor(T ) and outcome (Y ).  

A mediator (Z ) is a third variable that links a cause and an effect, whereby T  causes the 

Z  and Z  causesY .  In general, a given variable may be said to function as a mediator to the 

extent that it accounts for the relation between the predictor and the outcome (Baron and Kenny, 

1986). 

The initial question regards the appropriate characterization of a mediation effect.  Most 

studies, when comparing one or more treatments focus on an average mediating effect.  This 

average mediating effect can be misleading when the mediating effects vary from subject to 

subject in the population. The primary focus of this research is to investigate individual 

mediating effects of a population, and to define a variance of these individual mediating effects. 

A concept called subject-mediator (treatment) interaction is presented and its role in evaluating a 

mediator’s behavior on a population of units is studied. This is done using a framework 

sometimes called a counterfactual model. Some common experimental designs that provide 

different knowledge about this interaction term are studied. The subgroup analysis is the most 

common analytic approach for examining heterogeneity of mediating effects.  

In mediation analysis, situations can arise where Z  and Y  cannot both be measured on 

an individual unit. We refer to such data as terminal measures data. We show a design where a 

mediating effect cannot be estimated in terminal measures data and another one where it can be, 

with an assumption. The assumption is linked to the idea of pseudo-replication. These ideas are 

discussed and a simulation study illustrates the issues involved when analyzing terminal 

measures data. We know of no methods that are currently available that specifically address 

terminal measures data. 
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Chapter 1 - Introduction 

 

The cause-and-effect relationship between two variables, predictor (T ) and outcome (Y ), 

has been a focus of much research in fields of science and statistics.  The top panel of Figure 1.1 

graphically illustrates the causal effect of T  on .Y  Testing causal hypotheses not only verifies 

researchers’ substantive theories around a phenomenon but also answers practical questions 

about whether an intervention or treatment program has the expected effect if a causal relation 

exists (Wu et al. 2008). Researches in this field often go beyond the two-variable cause-and-

effect relationship and also try to understand what connects the causal relationship and what 

changes the magnitude or direction of the causal relationship between two variables, T  and Y . 

There are several tools that engage with these puzzles.  

Mediation in its simplest form represents the addition of a third variable, Z , to this 

YT →  relation whereby T  causes the mediator, Z , and Z  causes Y , so YZT →→ . A 

mediator is a third variable that links a cause and an effect. In general, a given variable may be 

said to function as a mediator to the extent that it accounts for the relation between the predictor 

and the outcome (Baron and Kenny, 1986). 

 

 

 

 

 

 

 

 

Figure 1.1  Top panel: The Causal Effect of  T  on .Y  Bottom panel: Mediated Relationship 

among the variables (T  = Predictor, Z  = Mediator, Y  = Outcome)   

 

The primary focus of this research is to investigate individual effects of mediation that 

explains the process of ‘‘why’’ and ‘‘how’’ a cause-and-effect happens (Baron and Kenny 1986; 

Frazier et al. 2004). Hence, a mediation analysis attempts to ‘‘identify the intermediary process 

Z  

Y  T  

Y  T  
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that leads from the independent variable to the dependent variable’’ (Muller et al. 2005, 852-

863). In other words, in a simple mediation model, the independent variable is presumed to cause 

the mediator, and in turn, the mediator causes the dependent variable. For this reason, a 

mediation effect is also termed an indirect effect, surrogate effect, intermediate effect, or 

intervening effect (MacKinnon et al. 2002). Figure 1.1 shows the mediated relationship among 

the variables and possible indirect and direct effects. 

 

 1.1 Research Examples Involving Potential Mediating Variables  

Example (1): The Job Search Intervention Study (JOBS II) 

JOBS II is a randomized field experiment that investigates the efficacy of a job training 

intervention on unemployed workers. The program is designed not only to increase 

reemployment among the unemployed but also to enhance the mental health of the job seekers. 

In the experiment, unemployed workers received a prescreening questionnaire and were 

then randomly assigned to treatment and control groups. Those in the treatment group 

participated in job skills workshops in which participants learned job search skills and coping 

strategies for dealing with setbacks in the job search process. Those in the control condition 

received a booklet describing job search tips. In follow-up interviews, two key outcome variables 

were measured: a continuous measure of depressive symptoms based on the Hopkins Symptom 

Checklist and a binary variable, representing whether the respondent had become employed. 

Researchers who originally analyzed this experiment hypothesized that workshop attendance 

leads to better mental health and employment outcomes by enhancing participants’ confidence in 

their ability to search for a job. In the JOBS II data, a continuous measure of job search self-

efficacy represents this key mediating variable. The data also include baseline covariates 

measured before administering the treatment. The most important of these is the pretreatment 

level of depression, which is measured with the same methods as the continuous outcome 

variable. (Imai et al. 2010). 

:T  Those in the “treatment group” participated in job skills workshops in which participants  

learned job search skills and coping strategies for dealing with setbacks in the job search  

process. Those in the “control condition” received a booklet describing job search tips. 
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:Z   Job search self-efficacy, a continuous variable. 

:1Y   measure of depressive symptoms based on the Hopkins Symptom Checklist, a continuous  

variable. 

:2Y  whether the respondent had become employed, a binary variable. 

 

Example (2): A study of nursing interventions for postoperative pain 

 
This problem is an example about multiple treatments and multiple mediators. The 

primary objective of this trial was to compare four randomized interventions (‘music’, 

‘teaching’, ‘combination’, and ‘control’) on the reduction of pain after surgery. Patients assigned 

to the music intervention were provided with a music tape; the teaching intervention involved a 

tape of instructions for the use of intravenous patient-controlled opioid analgesia; the 

combination involved the joint use of music and teaching; and patients assigned to control 

received standard care. Among the primary response variables was level of ‘sensation’, the 

patient’s report of their sensation of pain at the site of the surgery, using a 100-point visual 

analog scale. Assessments were made at the beginning and end of five 20-min ‘pre–post’ tests 

during the first two days following surgery. Intermediate variables, measured during each pre–

post test period, included level of patient-controlled analgesia (‘pca’), and whether or not the 

patient was asleep at the time the nurse came in for the post-experiment assessment (‘sleep’) 

(Albert, 2008). Mediation analysis via potential outcomes models. Statistics in Medicine, 27, 

1282–1304). 

In our usual notation, 

:T   ‘music’, ‘teaching’, ‘combination’, and ‘control’  

:1Z  level of patient-controlled analgesia (‘pca’), a continuous variable. 

:2Z  whether or not the patient was asleep (‘sleep’), a binary variable. 

:Y   level of ‘sensation’, the patient’s report of their sensation of pain. 
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 1.2 Motivation of Research   

This research was motivated in part by Gadbury et al. (2001) who stressed that an 

evaluation of the effect of treatment relative to a control often focuses on estimating a mean 

treatment effect; however, the mean treatment effect may be misleading when the effect of the 

treatment varies widely across subjects.  In their paper they proposed methods for evaluating 

treatment heterogeneity, which was called subject-treatment interaction. It was shown that 

estimators for subject-treatment interaction are sensitive to an inestimable correlation parameter. 

In addition to papers by Gadbury and colleagues on subject-treatment interaction, I  happened to 

read two important papers which are related to causal mediation analysis. One paper was titled 

“The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual,  

Strategic, and Statistical Considerations” (Baron and Kenny, 1986). This paper introduced what 

is possibly the most popular approach of evaluating mediating effect and is often referred to as 

the “Baron & Kenny Approach”. The other paper is “Mediation analysis via potential outcomes 

models” (Albert, 2008). This paper defined a mediating effects using a potential outcomes 

framework which has become a popular methodology for causal inference.  More discussion of 

potential outcomes is in chapter 2. Relating mediation analysis to the concepts of subject 

treatment interaction led to the core ideas in my research topic. 

 

 1.3 Outline of the Dissertation 

An important issue is the assessment of differences in mediating effects among 

individuals. Clearly, a necessary condition for a variable Z to be a mediator of the effect of T on 

Y is that Z precedes the outcome Y.  Gadbury et al. (2010) had discussed the subject-treatment 

interaction or individual treatment variation. We extend this discussion to when a mediator is 

present. That is, the individual treatment effect that includes mediation will be discussed and 

explored using mediation plots. Some completed work from the preliminary exam will be 

presented in chapter 3.  

Chapter 3 presents individual mediating effects and defines subject-mediator (treatment) 

interaction, S-M(T). In chapter 6, the terminal measures are described in detailed and the 
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methods of handling terminal measures are discussed further. Then a simulation study discusses 

topics such as pseudoreplication that plays a role when analyzing terminal measures data.  

In chapter 5, the methods of estimating the variance of individual indirect effects for a 

two sample completely randomized block design with s-disjoint blocks and n-individuals for 

each block are discussed. The estimates of the variability of individual indirect effects are 

present.  Evaluating treatment effects within subsets of patients plays a major part of the analysis 

of many major clinical trials.  In order for the conclusion to be broad based, and to achieve 

reasonable sample sizes, the study design often includes a number of patient subsets, 

corresponding to different clinical centers or to patient subsets defined by prognostic factors. As 

a result, some variation in the estimates of treatment effect among subsets is expected. In chapter 

6, we explain the subset analysis concept to evaluate heterogeneity of mediating effects and 

extend Gail and Simon (1985) test for qualitative interaction(QI) on treatment effects to QI on 

mediating effects. Chapter 7, summarizes  the research  and discusses possible future work. 
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Chapter 2 - Literature Review 

When we search the phrase “mediation analysis”, there are more than 500 papers in web 

of science search engine. When we use the word “mediating effects”, there are more than 1,000 

research papers in many different areas. These researches have used various designs to analyze 

mediating effects.  

Although several design frameworks for studying mediation effects have been proposed 

to date, the classic works by Kenny and colleagues (Baron and Kenny 1986; Judd and Kenny 

1981; Kenny et al. 1998) appear to remain the most popular approaches.  

 

 2.1 Baron & Kenny Approach 

Perhaps the most popular approach to mediation analysis is the causal steps approach. 

Although the method can be traced in some form back to the 1950s, it was made popular in 

1980s by a very influential article by Reuben Baron and David Kenny published in the Journal 

of Personality and Social Psychology. For this reason, the causal steps approach has come to be 

known as the Baron and Kenny method. Historically, the vast majority of published mediation 

analyses are based on the logic of the causal steps approach, and this approach remains widely 

used today.  Baron and Kenny (1986) proposed a multi step approach in which several regression 

analyses are conducted and significance of the coefficients is examined at each step. In their 

article, Baron and Kenny presented a simple, regression-based method requiring no specialized 

software, which has had a huge impact, i.e., to date it has been cited over 19,000 times (Web of 

Science). However, there are theoretical and empirical reasons for concern about the application 

of this method of assessing mediation. The 1986 article focused on the distinction between 

moderation and mediation and did not include extensive discussions about the complexities of 

path modeling and structural equation modeling (SEM), of which mediation analysis can be 

considered a special case.  

Figure 2.1 shows a case in which T  causes Y  both directly and indirectly (throughZ ). In 

more complex models of such relations (e.g., with baseline covariates for Z  or Y ), the paths 

between T , Z , and Y are not estimated by the same simple and partial regression coefficients 
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depicted, but in every case there are coefficients that correspond to  γγβα ′and,, , so we use 

this notation to represent either case. Because of the linear model framework and resulting 

algebraic relations among regression coefficients (Wright, 1934), γαβγ ′+= . If a model such 

as that depicted in Figure 2.1 is true, the empirical coefficients describe causal effects as follows: 

γ ′  describes the direct effect of T  on Y , not acting through Z , and αβ  describes the indirect 

effect of T  on Y  through Z . The total effect of T  on Y is defined as the sum of the direct and 

indirect effects; γ  describes the total effect of T  on Y ( Lois, 2009 ).  

 

 

 

Figure 2.1  The path diagram of the single mediation model. 

 

The Baron & Kenny (1986) regression equations are as follows: 

)(
)3(

)2(

)()1(

ModelMediation

EffectTotal

YiiYi

ZiZi

YiYi

ZTcY

TcZ

TcY





′++′+′=
++=
++=

εβγ
εα
εγ

 

where the 'c s are the intercepts; the epsilons are the model errors, and the γγβα ′and,,  terms 

are the regression coefficients capturing the relationships between the three focal variables. The 

T 

Independent 

Variable 

Y 

Outcome 

Variable 
(1)  Total  Effect,γ  

T  

Independent 

Variable 

Y 

Outcome 

Variable 

Z 

Mediator 

Variable 

 Direct Effect,γ ′  

(3) Indirect Effect, β  (2) Indirect Effect,α  
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parametersγ  and γ ′  relate the independent variable to the outcome variable, but γ ′  is a partial 

effect adjusted for the effect of the mediator, Z . The parameterα  relates the independent 

variable to the mediating variable, and β   relates the mediator to the dependent variable adjusted 

for the effects of the independent variable. 

 Baron and Kenny (1986) described mediation analysis in four steps. Step 1 involves 

testing the significance of γ  to determine that there is a relation to be mediated. If significant, 

one tests the significance of α  (step 2) to demonstrate a relation between T andZ . In step 3, a 

significant β  shows that there is a relation between Z  and Y  not accounted for by T . Once 

steps 2 and 3 are passed, evidence consistent with a nonzero indirect effect has been obtained; 

the model is consistent with either partial mediation, complete mediation, or suppression.  In the 

first part of Step 4, the observed values of γ  and γ ′ are compared; if γ ′  is smaller than γ , the 

data are consistent with mediation; if γ ′  is larger than γ , the data are consistent with 

suppression. No significance test is necessary for this step. If the data suggest that either 

mediation or suppression is present, one examines the significance of γ ′ to determine if the data 

are consistent with partial versus complete mediation (the second part of  step 4); if γ ′ is smaller 

than γ  but significantly different from 0, the data are consistent with partial mediation. If γ ′ is 

smaller than γ  but not significantly different from 0, the data are consistent with complete 

mediation.  

MacKinnon et al. (2002) assembled, from a variety of disciplines, 14 methods for testing 

a mediating effect of an intermediate variable. They organized these approaches into three 

categories: ‘causal steps’, difference in coefficients, γγ ′− , and product of coefficients, αβ . 

While MacKinnon et al. made some recommendations based on their simulation study of 

coverage and power, they noted that the ‘diversity of methods . . . indicates that there is no firm 

consensus across disciplines as to the definition of an intervening variable effect’. (Albert, 2008, 

1282–1304). 

Among the methods assembled in MacKinnon et al. (2002), there are two popular ways 

of calculating the mediated effect; the difference in coefficients & the product of coefficients.  
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Difference in Coefficients: Mediating Effect = γγ ′− ; reflects how much of the relation between 

the independent variable and the dependent variable is explained by the mediation.  

Product of Coefficients:  Mediating Effect =αβ ; reflects how much a one unit change in 

T affects Y indirectly throughZ . By solving the equations )3(and)2(),1( , a mediating effect can 

be estimated.  

One of the assumptions of the mediation equations described above is that the relation 

from the mediator to the dependent variable is the same across levels of the independent variable, 

that is, the Z  to Y relation does not differ across levels of T .  A nonzero ZT  interaction effect 

suggests that the independent variable alters the relation between the mediator and the dependent 

variable. Under the assumption of no interaction between the independent variable, T , and the 

mediator, Z , γγαβ ′−= . The existence of the interaction also means that the relation of the 

independent variable to the dependent variable differs across levels of the mediator. If the ZT  

interaction is statistically significant, it is important to explore the source of the significant 

interaction with contrasts including simple effects and plots. If the ZT interaction is statistically 

significant, the mediating effect is different from αβ , and this will be  discussed later.  

The standard errors of estimated mediating effects were estimated using Goodman’s 

(1960) unbiased solution that seeks to estimate .222222

βαββ σσσβσα −+
 
Let  a, b, c and c′ be the 

estimators of γγβα ′and,,  respectively. The estimated mediating effect would be ab  (or 

cc ′− ) and the estimated standard error of estimates would be 222222
baab SSSbSa −+  

(McKinnon et al., 2002 ), where 2aS and 2
bS  are the estimated variances of parameter estimates 

a and b respectively. 

The above equations )3(and)2(),1(  can be modified when a single baseline 

covariate,X , is present as follows:  
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The formula for the mediating effect does not change, but the value of the mediating effect may 

change when a single baseline covariate is present (Imai, 2010).  

The appeal of this Baron & Kenny approach is that it clearly lays out the intuitive, 

structural relationships among treatment, mediator, and outcome, and can be applied with 

straightforward regression analyses. What has not always been clear, nor explicitly stated, is 

whether traditional mediation analyses lead to causal interpretations of mediation parameters.  

With certain assumptions the traditional approach to mediation can lead to causal interpretations 

(Imai et al. 2010), but these assumptions are quite stringent.  In light of these assumptions, 

MacKinnon (2008) commented on traditional mediation analysis: "In many situations, the results 

of a mediation analysis are descriptive rather than implying causal relations" (p. 67). Over the 

last 20 years there has been a parallel line of work on mediation in the biostatistical and 

epidemiological literatures that is firmly rooted within Rubin’s causal model framework (Rubin, 

1974), including principal stratification (Gallop et al. 2009) and structural mean model, SMM 

(Robins & Greenland, 1992). Moreover, Pearl (2001) has made notable contributions to causal 

graphs and the identifiability of direct and indirect effects. Notably, these alternative approaches 

provide alternative estimation methods that relax key assumptions necessary for the traditional 

approach, while at the same time introducing their own set of assumptions.  This study uses the 

traditional approach of Kenny and colleagues using Rubin's potential outcomes (i.e., 

counterfactual framework), which is widely used in the statistical literature and is described 

below.  

 

 2.2 Potential Outcomes Framework  

Based on the early work on experimental design by Neyman (1923), Rubin (1974, 1986) 

formalized the counterfactual model for causal analysis of data from randomized experiments 

and observational studies. In statistics, the model is often referred to as the potential outcomes 

framework which is now commonly used in statistics for causal inference as well as in the fields 

of epidemiology, sociology, psychology and political science. The potential outcomes 

framework is sometimes called the ‘Rubin Causal Model’ (RCM) (Holland, 1986), but it has 

roots in the context of randomized experiments with randomization-based inference in the work 

of Neyman (1923) and Fisher (1925) (Rubin, 2004 ). Causal inference using potential outcomes 

is sometimes called causal inference involving counterfactuals. 
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 The core of the counterfactual model is as follows. Suppose that each individual in a 

population of interest can be exposed to two alternative treatments which are referred to as 

treatment and control. The key assumption of the counterfactual framework is that each 

individual in the population of interest has a potential outcome under each treatment state, even 

though each individual can be observed in only one treatment state at any one particular point in 

time. These outcomes are termed counterfactuals because only one outcome can be observed for 

a given individual.  

As formalized by Rubin (1974), in the potential outcomes framework, the effect of some 

treatment, 1=iT  (vs. a control, 0=iT ) on an outcome, iY or an individual can be expressed as 

the difference between two potential outcomes, )0()1(
ii YY −  where )1(

iY  is the value of the 

outcome the individual would experience if exposed to the treatment, and )0(
iY is the outcome the 

individual would experience if exposed to the control. The fundamental problem of causal 

inference (Holland, 1986) is that only one potential outcome can be observed for each person at a 

given time.   

Because only either  )1()0( or ii YY  is observable, even randomized experiments cannot 

identify this individual-level causal effect. Thus, researchers often focus on the identification and 

estimation of the average causal effect (ACE), which is defined as )( )0()1(
ii YYE − , where the 

expectation is taken with respect  to the random sampling of units from a target population. If the 

treatment is randomized, then iT  is statistically independent of potential outcomes; formally, we 

write (1) (0),i i iY Y T⊥ . When this is true, the average causal effect can be estimated by the 

observed mean difference between the treatment and control groups, 

),0()1()( )0()1()0()1( =−==− iiiiii TYETYEYYE which is the familiar result that the difference- in-

means estimator is unbiased for the average causal effect in randomized experiments ( Imai, 

2010).  
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2.3 The Extension of Causal Effects to Causal Mediation Effects 

In this section, the counterfactual framework of causal inference, which is widely used in 

the statistical literature, is explained for the mediation analysis.  Although there are many 

situations where the treatment, mediator and the response can be either binary or continuous, we 

use a dichotomous treatment variable ( 1,0=T ), a continuous mediator (Z ), and a continuous 

response (Y ) throughout this study.   

Most of the published research in causal inference focuses on relationships between two 

variables, T  (Treatment) and Y (response), and much has been written about two-variable 

relations, including conditions under which T  can be considered a possible cause of Y . These 

conditions include randomization of units to values of  T  and independence of units across and  

within values of T . Mediation represents the addition of a third variable to this YT →  relation 

as shown in Figure 2.1.  

The counterfactual framework and notation have been extended to define causal 

mediation effects (Albert, 2008). We use iZ  to denote the observed level of a mediating variable. 

There exists two potential values, )0(
iZ  and )1(

iZ , only one of which will be observed. In causal 

inference, the potential outcomes were only a function of the treatment, but in causal mediation 

analysis the potential outcomes depend on the mediators as well as the treatment variable. 

Therefore, we use )())(,( )()( tt
i ZYtzZtTY === to denote the potential outcome that would 

result if the treatment and mediating variables equal , ( )T t Z z t= =  respectively. The observable 

potential outcome is either )1()1( (ZY ) or )( )0()0( ZY  which would be realized under treatment or 

control conditions, respectively. There are two unobservable potential outcomes, )( )1()0( ZY , 

which refer to the potential outcome for individual i who is assigned to the control condition but 

takes on a value of the mediator that would be realized under the treatment condition and 

)( )0()1( ZY , which refer to the potential outcome for individual i who is assigned to the treatment 

condition but takes on a value of the mediator that would be realized under the control condition. 

  We now define the individual level causal mediation effect as 

.1,0for)()( )0()()1()( =− tZYZY tt   Thus, the causal mediation effect represents the indirect effect 

of the treatment on the outcome through the mediating variable. The average causal mediation 
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effect (ACME) can be defined as 1,0for])()([( )0()()1()( =− tZYZYE i

t

ii

t

i (Imai K, 2010 ).  The 

potential outcomes framework makes it clear that this quantity involves counterfactual outcomes 

that can never be observed such as )( )0()1( ZY .  

Some assumptions are needed when estimating mediation effects. 

(1)   Stable Unit Treatment Value Assumption (SUTVA)  

A common assumption for causal inference is Rubin’s stable unit treatment value  

assumption (SUTVA), which includes two sub-assumptions: a) “non-interference” which 

means that one unit’s  intervention will not affect other units potential outcomes, and b) 

“no treatment variation” which means there are not multiple versions of the same 

treatment. Thus, there is only one set of potential outcomes for each unit (Rubin, 2005).  

 

(2) Sequential Ignorability 

The second assumption needed is the randomization assumption (or ignorability 

assumption in an observational study). This assumption means that the observed 

intervention assignment is independent of the potential mediator defined by different 

levels of intervention and all potential outcomes defined by different levels of 

intervention and mediator.  The ignorability version of this assumption assumes 

conditional independence given baseline covariates (X).  

Based on the potential outcomes we describe the total, direct and indirect effects and their 

relationships.  

 

 2.4 Total, Direct and Indirect Effects 

Robins and Greenland (1992) used the terminology "pure" and "total" for direct and 

indirect effects because there are different ways of decomposing an overall effect into direct and 

indirect effect components. Albert (2008) used the concepts of a potential outcome framework to 

develop a causal or manipulation model framework for mediation analysis.  Using this 

framework, he provided new definitions and measures of mediation for multiple treatments and 

mediators based on the concepts of "pure" and "total" effects though he did not specifically use 

those terms. Effects of manipulations are modeled via the linear structural model. The methods 
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were applied to data from a study of nursing interventions for postoperative pain. They have 

discussed the cases of more than two treatment groups, and an interaction among mediators. But, 

they have not considered the interactions between treatment and the mediator or individual and 

the mediator. 

It is challenging to understand the concepts behind the relationship among direct, indirect 

and total effects without a valid decomposition technique. My research being presented here was 

helped by a paper published by VanderWeele (2011) who defined the total, direct and indirect 

effects and decomposed total effect into direct and indirect effect and also identified the 

important characteristics of those effects. In our usual notation, total effect of T on Y can be 

defined as )()( )0()0()1()1( ZYZYTE −= . Direct effects: that part of the exposure effect which is 

not mediated by a given set of potential mediators.  

The natural direct effects can be defined as 

Total Direct Effect, )()( )1()0()1()1( ZYZYTDE −=   

Pure Direct Effect, )()( )0()0()0()1( ZYZYPDE −=  

Indirect / mediated effects: that part of the exposure effect which is mediated by a given set of 

potential mediators.  

The natural indirect effects can be defined as  

Total Indirect Effect, )()( )0()1()1()1( ZYZYTIE −=   

Pure Indirect Effect, )()( )0()0()1()0( ZYZYPIE −= . 

If there is no interaction between the treatment and the mediator then we can show that 

PIETIEPDETDE == and   whereas if there is an interaction then 

PIETIEPDETDE ≠≠ and . 

Decomposing the total effect into indirect effects and the direct effects gives,  

[ ] [ ]
PDETIE

ZYZYZYZY

ZYZYZYZYZYZYTE

+=
++−=

++−=−=

)()()()(

)()()()()()(
)0()0()0()1()0()1()1()1(

)0()0()0()1()0()1()1()1()0()0()1()1(
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Alternatively, 

[ ] [ ]
PIETDE

ZYZYZYZY

ZYZYZYZYZYZYTE

+=
++−=

++−=−=

)()()()(

)()()()()()(
)0()0()1()0()1()0()1()1(

)0()0()1()0()1()0()1()1()0()0()1()1(

 

Regardless of whether a ZT ×  interaction term is present or not,  

.PIETDEPDETIETE +=+=  

 

 2.5 Mediation Plot 

The mediation plot is used to present diagrams which show the structural relationship 

between the independent, mediator, and dependent variables.  Here we discuss  how to construct 

plots of the mediated effect for a study with a dichotomous treatment variable (e.g., random 

assignment to a treatment and control group), a continuous mediator, and a continuous outcome 

variable.  

The data are plotted with Y on the vertical axis and Z  on the horizontal axis, as shown in 

Figure 2.2.  Next, Equation (1) is plotted for the values of  T  (i.e., 0 and 1), such that a 

horizontal line (black colored) is placed at YcY = , corresponding to 0=T , and a second 

horizontal line is placed at γ+= YcY , corresponding to 1=T . The distance between the 

horizontal lines represents the total effect of  T on Y , γ . Then, Equation (2) is plotted for both 

values of T , resulting in a vertical line (blue colored) at ZcZ =  and a second vertical line at 

α+= ZcZ . The distance between the two vertical lines represents the treatment effect on the 

mediator and is equal to α . Finally, Equation (3) is plotted at both values of T . The slopes of 

these parallel simple regression lines (red colored) are equal to β .   Thus, the mean indirect 

effect can be written as ).( )0()1( ZZ
µµβαβ −=   Plots of the mediated effect may be useful to 

investigate the distributions of data for outliers and to improve understanding of relations among 

variables in the mediation model (Fritz et al, 2010).  Fritz et. al (2010) had discussed how to 

draw a mediation plot when the treatment variable is continuous and when the interaction term is 

present.  
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Figure 2.1  Plot of the mediating effect for a dichotomous treatment variable. The open 

circles in the plot represent means for which no data are available to directly estimate, and 

the closed circles do have such data observable.  

 2.6 Individual Mediating Effects 

The published research on heterogeneity of mediating effects seems rare and we did not 

find any that discuss the concepts in this dissertation.  Before we discuss heterogeneity of 

mediating effects, the past work done on the heterogeneity of treatment effects should be 

recalled. Gadbury, Allison, and Albert have past work focused on defining true individual effects 

of a treatment an estimating quantities describing the variability of a treatment’s effect across 

individuals in a population.  

)11( =+= TforEquationcY Y γ

)01( == TforEquationcY Y

)12( =+= TforEquationcZ Z α)02( == TforEquationcZ Z

Z

Y
EffectTotalγ EffectIndirectγγαβ ′−=

EffectDirectγ ′

α
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)03(____
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2.6.1 Treatment Heterogeneity 

When we compare a treatment, 1=T , and a control, 0=T , under a two sample 

completely randomized design, the value of an outcome variable,Y , is measured at a particular 

point in time. This outcome may be quantitative or dichotomous (i.e., success or failure) and 

assume that the outcome variable s a quantitative one. For a subject receiving treatment T = 1, 

)1(Y  is observable, and for a subject receiving control, 0=T , the outcome )0(Y  is observable. At 

a particular time, only one of two potential outcomes (Rubin, 1974) in the bivariate pair 

),( )0()1( YY is observable because of the “fundamental problem of causal inference”(Holland, 

1986). 

Figure 2.3 shows the potential outcomes for N subjects in a study and the observed 

outcomes post treatment assignment. 
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Figure 2.1  Potential outcomes and the observed outcomes for N  subjects for two sample 

completely randomized design. 

The set of N potential outcomes has the form given in Figure 2.3 (left) that, after 

treatment assignment produces observed outcomes of the form shown (right), and where the “?” 

represents an unobserved potential outcomes. 

The true individual treatment effect is defined as  )0()1( YYD −=  which cannot be 

observed for any subject. If evaluating k treatment levels, the potential outcomes would be a 

vector containing k outcomes (rather than two), and only one of the k outcomes would be 

observable for a given subject at a particular time. It is the average treatment effect, )(DE , 

which is usually of interest. But, we are interested in the variance, )(DVar , that quantifies the 

degree of variability of individual treatment effects. 
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If the 0)(2 >= DVarDσ then the individual treatment heterogeneity is present Gadbury 

(2001). This is also called Subject-Treatment Interaction which cannot be directly estimated 

because )0()1()0()1()0()1( 2222

YYYYYYD ρσσσσσ −+=  and there is no available information about )0()1( YY
ρ  in 

observable data; that is, it is nonestimable. 

Though 2

Dσ  cannot be directly estimated using observed data, bounds for it can be 

derived, and these can be estimated. Observed pretreatment moderating variables can be used to 

tighten bounds or to impute missing potential outcomes, thereby providing naïve estimates of 

individual effects. Gadbury and Iyer (2000) and Gadbury et al., (2001) considered a two sample 

completely randomized design with covariates, Gadbury et al., (2004) considered a matched-

pairs design, and Albert et al. (2005) used a blocked design to estimate or bound individual 

treatment heterogeneity parameters in randomized trials. Gadbury (2010) also presented the 

framework and some initial results for a two period cross-over design where, conceptually, there 

were two individual treatment effect variables, D  as defined above, one for each time period. 

Poulson et al., (2012) added results comparing individual treatment heterogeneity to subset 

interaction, cross-over designs, and overlap of marginal density curves.  

In chapter 3, we extend the concepts of treatment heterogeneity to mediating 

heterogeneity when the intermediate variable is present in the causal relation. This is a main 

objective of my research. There is another aspect of mediation that was also considered as a part 

of this work. 

 2.7 Terminal Measures  

Situations can arise where Z  and Y  cannot both be measured on an individual unit. 

Mouse and plant experiments are two examples where measurement of Z  requires terminating 

the animal or plant and Y  is to be measured at a later time. We refer to such data as terminal 

measures data. Another situation may be where one experiment focused on measurement of Z , 

and the second on measurement of Y , and interest is in combining the data sets to evaluate the 

mediating effect of Z  on Y . 

In chapter 4, the Terminal Measures are described in detail and the methods of handling 

Terminal Measures are discussed further. Then the simulation study discusses the issues such as 

pseudoreplication involved in analyzing terminal measures data. The term pseudoreplication was 
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coined by Hurlbert (1984, 190-191) to refer to "the use of inferential statistics to test for 

treatment effects with data from experiments where either treatments are not replicated (though 

samples may be) or replicates are not statistically independent." The context of his paper was 

ecological field experiments, but pseudoreplication can occur in other contexts as well. 

When we search the term “terminal measures” or “terminal data” in mediation analysis 

there was only one paper published by Makowsky et al (2011). They have mentioned “In 

psychiatric research, the costs of measuring the putative mediator or the outcome can be 

prohibitive. The illustrated some extreme sampling designs as methods for reducing study costs 

by increasing power per subject measured on the more expensive variable when assessing 

bivariate relationships. However, these designs did require that the mediator and outcome 

variable be jointly observable on at least some subjects in the study. In terminal measures data 

discussed herein, the mediator and outcome variable are never observable on the same unit in the 

study.  
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Chapter 3 - Defining Heterogeneity of Individual Indirect Effects 

Although both individual and average causal effects are defined in the potential outcomes 

framework, most papers focus on learning about the average causal effects. As mentioned in the 

literature review, Gadbury, Allison, and Albert have past work focused on defining true 

individual effects of a treatment and estimating quantities describing the variability of a 

treatment’s effect across individuals in a population. In 2005, Steyer analyzed individual and 

average causal effects via structural equation models. 

But when we review the literature on individual causal mediating effects, although both 

individual and average causal mediation effects are defined in Rubin’s framework to causality, 

almost no efforts deal with developing designs and models to learn about variability of individual 

mediating effects. In fact, it is not clear how to conceptualize heterogeneity in individual 

mediating effects. 

This study takes a first step in this direction. In the first and general part, Gadbury et al ’s 

concept of individual causal effects is extended, replacing causal effects by causal mediating 

effects. Based on this extension, in the second and main part, the designs, assumptions and 

models are introduced which can allow identification of (1) the variance of the individual causal 

mediating effects, (2) the nonestimable quantities in the variance formula and (3) in some cases 

the bounds for the variance of the individual causal mediating effects.  

According to Gadbury et al. (2010), that the effect of a treatment will vary among 

subjects is not surprising, nor is it a recent concept. Subject-treatment (S-T) interaction is, as the 

term implies, an interaction of specific subjects with applied treatment(s). The result of such 

interaction is a variability of “individual treatment effects” or “individual treatment 

heterogeneity” in a population of interest.  Similarly, we can describe subject-mediator 

(treatment) (S-M(T)) interaction as heterogeneity of mediated ( or indirect ) effects of a treatment 

across individuals in a population.  

Before we discuss the S-M(T) interaction, an important relationship between the 

mediating effects obtained by the Baron and Kenny approach and the individual indirect effects 

based on potential outcomes should be derived. 
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 3.1 Individual Mediation Plot  

The individual mediation plot is used to present the structural relationship between the 

independent, mediator, and dependent variables for an individual in a potential outcomes 

framework. Again we consider a dichotomous treatment variable (e.g., random assignment to a 

treatment and control group), a continuous mediator, and a continuous outcome variable.  

 
Figure 3.1  Individual Mediation Plot. 

 

Figure 3.1 shows the mediation plot for an individual i  with the independent variable,T , 

the mediatorZ  on the horizontal axis, and the dependent variable Y  on the vertical axis. The 

four points are the potential outcomes and two of them are potentially observable and the other 

two will never be observed for an individual. Among the observable outcomes, only one is 

actually observed at a given time for an individual. Each individual has a particular slope and 

intercept as shown in the plot. When we consider the individual plots, the slopes and the 

intercepts are considered to be random variables with a probability distribution. 
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 3.2 The Relationship Between the Average Mediating Effects Obtained by 

the Baron & Kenny Approach and the Average Indirect Effect defined for 

Potential Outcomes 

Now consider a structural relationship between the independent, mediator, and dependent 

variables for an individual in potential outcomes framework.  For an individual i 

)1(

1

)1()1( )( iiiii ZBAZY +=  where ),(~ 2/

1 1AYi cA σγ ′+ , ),(~ 2

BiB σβ  and ii BA ⊥1  

)0(

0

)0()0( )( iiiii ZBAZY +=  where ),(~ 2/

0 0AYi cA σ , ),(~ 2

BiB σβ  and ii BA ⊥0  

)0(

1

)0()1( )( iiiii ZBAZY +=  where ),(~ 2/

1 1AYi cA σγ ′+ , ),(~ 2

BiB σβ  and ii BA ⊥1  

)1(

0

)1()0( )( iiiii ZBAZY +=  where ),(~ 2/

0 0AYi cA σ , ),(~ 2

BiB σβ  and   ii BA ⊥0  

Based on this set up, the averages of individual potential outcomes can be derived. 

)1()1()1(

1

)1()1()1()1( )()()()())(( iYiiiiiiii ZcZZBEAEZYEZYE βγ +′+′=+==  

)0()0()0(
1

)0()1()0()1( )()()()())(( iYiiiiiiii ZcZZBEAEZYEZYE βγ +′+′=+==  

)0()0()0(

0

)0()0()0()0( )()()())(( iYiiiiiiii ZcZZBEAEZYEZYE β+′=+==  

)1()1()1(

0

)1()0()1()0( )()()())(( iYiiiiiiii ZcZZBEAEZYEZYE β+′=+==  

Note that the above expectations were taken conditional on Z  as is typically done in a 

regression setting. In doing this, the above four equations represent the expectation of individual 

potential outcomes that are then the same as the equations obtained from equation (3) in Chapter 

2 for the Baron and Kenny approach under the treatment conditions, 0, 1T T= = , and where 

there expectations were taken with respect to the distribution of a random error term in a 

regression model. Thus the approach used here agrees with past approaches as far as means are 

concerned. The above framework, however, allows flexibility in modeling sources of 

heterogeneity in mediating effects, namely because Z  is not a covariate but an outcome affected 

by treatment.   
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For each individual, the relationship among the individual total effect (ITE), individual 

indirect effect (IIE) and the individual direct effect (IDE)  can be written in terms of potential 

outcomes as follows: 

[ ] [ ]
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where B  is the “slope” random variable and the G′  is the difference between the two intercepts, 

which is the individual direct effect. The individual indirect effect is )( )0()1( ZZB −  and the mean 

of an individual indirect effect would be (1) (0)( )
Z Z

β µ µ− , which is the effect shown in Figure 2.2 

that illustrates a mean effect.  

 3.3 Plots for Illustrating the Variability of Total  Effect of Individuals  

As in section 3.2, in terms of potential outcomes the Individual Total Effect (ITE) can be 

decomposed into the Individual Indirect Effect (IIE) and the Individual Direct Effect (IDE). 

Thus, the mediating effect for an individual depends on the slope )(B , the interceptsG′( =the 

difference between the intercepts) of its regression lines and the treatment effect on the mediator, 
)0()1( ZZ − . We investigate how the mediation plots can behave for different individuals as 

follows: Out of four quantities we fix two and vary one, and then observe the behavior of the 

other. Next we find the functional relationship between what we vary and observe. The following 

table gives all the cases to be considered and the roll of each parameter.  

As we are interested in observing the variation of total effect we focus only on the cases 

(1), (5) and (6). Table 3.2 shows hypothetical numerical examples of calculating total effects, 

indirect effects and direct effects for each case. 

 

 



 

24 

 

Table 3.1  All cases for mediation plot when two parameters were fixed at a time 

 Cases 

Parameters  1  2  3  4 5 6 

Slopes fix vary vary fix vary fix 

Intercepts fix fix vary vary fix vary 

Total Effect vary fix fix fix vary vary 

)0()1( ZZ −  vary vary fix vary fix fix 

 

Table 3.2  Hypothetical values for individual mediation plots for two individuals. 

 
0A  1A  1B  )0()1( ZZ −  TE  IE  DE  

Case 1 
1 2 1 8-6 = 2 3 2 1 

1 2 1 9-6 = 3 4 3 1 

Case 5 
1 2 0.5 8-6 = 2 2 1 1 

1 2 1 8-6 = 2 3 2 1 

Case 6 
1 2 1 8-6 = 2 3 2 1 

-14 -18 1 8-6 = 2 -2 2 -4 

 

In the Figure 3.2, two black colored horizontal lines represent the total effect, two blue 

colored vertical lines represent the treatment effect on the mediator, )0()1( ZZ −  and the two 

sloped red lines represent the linear relationship between Y and Z under the treatment assignment 

and the four blue colored dots are the four potential outcomes. Each row in Figure 3.2 illustrates 

cases 1, 5, and 6, respectively. The two columns represent effects for two individuals.  

In case (1);  Since  

)int()(*)()( )0()1()0()0()1()1( erceptsofdifferenceZZslopeIDEIIEZYZYITE +−=+=−= , 

the total effect is a function of )0()1( ZZ − , the treatment effect on the mediator because intercepts 

are fixed (that is direct effect is fixed ). So variability in the total effects is a due to variability in 

indirect effects, )( )0()1( ZZ*slope − , resulting from variance in )0()1( ZZ − . In case (5), 

variability in total effects is due to variability in slopes as intercepts are fixed (that is direct effect 
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is fixed) and )0()1( ZZ −  is fixed. In case (6), variability in total effects is due to variability in 

direct effects. 
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Figure 3.2  Mediation plots when the total effect was observed ( Ref: Table 3.2).  
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Each row illustrates cases 1, 5, and 6, respectively. The two columns represent effects for two 

individuals. 

Next we investigate how the mediation plots behave for different situations when three 

quantities were varied and one was fixed. The following table gives all the cases to be considered 

and the roll of each quantity.  

 

Table 3.3  All cases for a mediation plot when one parameter was fixed at a time. 

 Parameters 

Cases Slope Intercept Total Effect )0()1( ZZ −  

Case1 fix vary vary vary 

Case2 vary fix vary vary 

Case3 vary vary vary fix 

 

The Figure 3.3 shows the variability of total effect for a different individual with different 

slopes and intercepts in the regression model. Interpreting the plots: the larger the distance 

between the horizontal lines, the larger the overall effect of T on Y , the amount of change in Y  

for a one unit change in T . The larger the distance between the vertical lines, the greater the 

effect of T on Z .  The steeper the slope of the regression lines, the larger the effect, of Z  on Y , 

adjusting for T . Again, each row of figure 3.3 illustrates cases 1, 2, and 3, respectively. Each 

column represents the individual effects for a particular subject.  
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Figure 3.3  Mediation plots when the total effect was observed ( Ref: Table 3.3).  
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Each row illustrates cases 1, 2, and 3, respectively. Each column represents the individual effects 

for a particular subject.   

 3.4 The Distribution of Potential Outcomes and the Indirect Effects for an 

Individual 

The prior section used tables and figures to illustrate sources of variability in total effects, 

direct effects, and indirect effects. The distribution of individual indirect effects will be assumed 

to be of the form )),((~)( 2)0()1(
)0()1( IIEZZ

ZZB σµµβ −− , where β=)(BE  is the population mean 

of slopes that was used as the slopes of the mediation plot  in chapter 2 and 2IIEσ  is the variance 

of individual mediating effects which are of interest in this study and will be discussed in detail 

in a later section. 

Recall the following equations in section 3.2  for an individual i, 

)1(

1

)1()1( )( iiiii ZBAZY +=  where ),(~ 2/

1 1AYi cA σγ ′+ , ),(~ 2

BiB σβ  and ii BA ⊥1  

)0(

0

)0()0( )( iiiii ZBAZY +=  where ),(~ 2/

0 0AYi cA σ , ),(~ 2

BiB σβ  and ii BA ⊥0  

)0(

1

)0()1( )( iiiii ZBAZY +=  where ),(~ 2/

1 1AYi cA σγ ′+ , ),(~ 2

BiB σβ  and ii BA ⊥1  

)1(

0

)1()0( )( iiiii ZBAZY +=  where ),(~ 2/

0 0AYi cA σ , ),(~ 2

BiB σβ  and   ii BA ⊥0  

The expected values were derived in 3.2 and now the variances of individual potential outcomes 

are derived. The variances of these individual potential outcomes as follows: 
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In this study we are interested in estimating the variance of the individual indirect effects, 

))(( )0()1(2 ZZBVarIIE −=σ . 

 3.5 Individual Mediating Effects and Mediating Heterogeneity 

In this section, the individual mediating effect, the variability of individual mediating 

effect and subject-mediator (treatment) interaction are introduced. Then, we discuss the problems 

we face when estimating the variability of individual mediating effects. 

3.5.1 Defining Subject-Mediator (Treatment) Interaction 

 

Let ( ))(),(,, )0()0()1()1()0()1( ZYZYZZ  be a set of potentially observable potential outcomes 

for an individual subject in an investigation to compare the effect of treatment )1(T  with respect 

to a control treatment )0(T .  The four values are imagined to be measured at the same moment of 

time. But, in practice only the values corresponding to the treatment t, )(and )()()( ttt ZYZ , actually 

assigned can be observed for a particular subject.  The two potential outcomes for the mediator 

help to conceptualize a true treatment effect on the mediator for a subject that we define to be 

.)0()1( ZZDZ −=  The expectation and the variance of ZD  are given by the formula 

01)( ZZDZ Z
DE µµµ −==  and )0()1()0()1()0()1( 2)( 222

ZZZZZZDZ Z
DVar σσρσσσ −+== . Estimating 

ZDµ  is 

straightforward in common randomized experiments. But are interest is in estimating 2
ZDσ . There 

is a subject-treatment  interaction on the mediating variable if .02 >
ZDσ  The subject-mediator 
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(treatment) interaction is a combination of subject-treatment interaction on )( )0()1( ZZ − and the 

subject-treatment interaction on )( )0()1( YY − . In particular, we consider subject-mediator 

(treatment) interaction to be present when 2 (1) (0)( ( )) 0IIE Var B Z Zσ = − > . 

Figure 3.4 shows the potential mediators and potential outcomes for N subjects in a study 

and the observed outcomes post treatment assignment. The set of N potential mediators and the 

potential outcomes has the form given at top that, after treatment assignment produces observed 

mediators and the observed outcomes of the form shown at bottom, and where the “?” represents 

an unobservable potential outcome at a particular time. 
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Figure 3.4  Potential mediators and potential outcomes and the observed mediators and 

observed outcomes. 

Consider only the potential outcomes that are potentially observable, 

( ) ,...3,2,1,)(),(,, )0()0()1()1()0()1( =iZYZYZZ iiii , , and assume these are independent and identically 

distributed(iid) random variables from a multivariate normal distribution with mean 
/

)()(
),,,( )1()1()0()0()0()1( ZYZYZZ

µµµµ  and variance matrix 
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Figure 3.5  Variance-Covariance matrixes for the potentially observable outcomes. 

 

The parameters of this distribution, except 10010101 ,,, YZYZYYZZ ρρρρ , can be estimated 

from the marginal distributions of ( ))(),(,, )0()0()1()1()0()1( ZYZYZZ  and from the bivariate normal 

distributions of ( ))1()1( ,YZ  and ( ))0()0( ,YZ . 

Because the direct and indirect effects  are counterfactual quantities, in general we will not be 

able to compute these for any individual in the population. But under certain assumptions we can 

estimate them on average.  

We assume that there is no interaction between treatment and the mediator, the direct 

effects are independent of the indirect effects. Then the expected value and the variance of total 

effect depend on the expectation and variance of the indirect effects. So we are interested in 

variance of an indirect effect for each subject. The following are the cases to be considered: 

Case (1): (1) (0)fixed, variesB is Z Z− ,  

where 1)( == βBP  and 
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Consider the individual indirect effect, )( )0()1( ZZIIE −= β . 

Then  
ZDZZIEZZEIEE βµµµβµβ =−=⇒−= )()]([)( )0()1(

)0()1( which can be estimated from the 

observable data and )]([)( )0()1( ZZVarIEVar −= β  implies 

[ ].)1(2)(

)2(

)(
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2

IIEσ  cannot be directly estimated because  )0()1()0()1()0()1( 2222

ZZZZZZDZ
ρσσσσσ −+= and there is no 

available information about )0()1( ZZ
ρ  in observable data; that is, it is nonestimable. 

Since [ ])1(2)( )0()1()0()1()0()1(

222

ZZZZZZIIE ρσσσσβσ −+−=  , there is a variability in indirect effects 

or S-M interaction present unless )0()1( ZZ
σσ =  and  1)0()1( =

ZZ
ρ , and the former condition can be 

tested using observed data but the latter cannot. 

In practice, one will not know the true value of )0()1( ZZ
ρ  and, so, will be unable to directly 

evaluate the size of 2

IIEσ  with respect to IIEµ . Little else can be done with observable data except 

to note that letting 1)0()1( =
ZZ

ρ  and - 1 produces bounds for 2IIEσ  that can be estimated. 

If 1)0()1( =
ZZ

ρ , then [ ]222 )( )0()1( ZZIIE σσβσ −=  and if 1)0()1( −=
ZZ

ρ , then 

[ ]222 )( )0()1( ZZIE B σσσ +=  implies [ ] [ ]22222 )()( )0()1()0()1( ZZIIEZZ
σσβσσσβ +≤≤−  which are the 

estimable lower and upper bounds for the variability of mediating effects for an individual.  

 

Case (2): (1) (0)varies, fixedB Z Z− ,  

where 1))(( )0()1( ==−
ZD

ZZP µ and ),(~ 2

BNB σβ . 

Then 

( ) [ ] ( )
Z Z Z

IIED D D
E IIE E B E Bµ µ µ µ β= ⇒ = =  which is estimable as β , the expected value of the 

slope variable, can directly be estimated from the observed data using Baron & Kenny approach 

and 
ZDµ is fixed. 

][)(
ZDBVarIIEVar µ=  

22

22 )(

BD

DIIE

Z

Z
BVar

σµ
µσ

=

=
 

2

IIEσ  cannot be directly estimated because 222

BDIIE Z
σµσ =  , a special method is needed to 

estimate 2
Bσ , the variance of the slope variable, which we will discuss later. 

 

Case (3): (1) (0)varies, variesB Z Z− , 
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where ),(~ 2

BNB σβ  and 

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Consider  )( )0()1( ZZBIIE −= . 

βµµµµ
ZZZ DDDIIE BEBEBZZBEEZZBEIIEE ===−=⇒−= )()(]])([[)]([)( )0()1()0()1(  where 

ZDµ can be estimated and β  also can  be estimated from the observed data using the Baron & 

Kenny approach. 
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2

IIEσ  cannot be directly estimated because  there is no available information about )0()1( ZZ
ρ  in 

observable data and one cannot estimate 2

Bσ  without assumptions and design considerations. 

 If an estimate of 2
Bσ  were available, then if 1)0()1( =

ZZ
ρ , 

[ ]222222 )()( )0()1( ZZBBBDIIE Z
σσµσσµσ −++=  and if 1)0()1( −=

ZZ
ρ , then 

[ ]222222 )()( )0()1( ZZBBBDIIE Z
σσµσσµσ +++= implies 

[ ] [ ]22222222222 )()()()( )0()1()0()1( ZZBBBDIIEZZBBBD ZZ
σσµσσµσσσµσσµ +++≤≤−++  which would be 

estimable lower and upper bounds for the variability of mediating effects for an individual.  

 This chapter has explored variability in mediating effects and quantified them. In doing 

so, estimable and nonestimable quantities were identified. Bounds for some of these quantities 

are estimable but estimating or bounding the variance in slopes is problematic. In Chapter 6, 

some initial ideas for terminal measures data is presented that involved different designs that can 

facilitate at least a naïve estimate of 2Bσ .  First, however, the issues involved with terminal 

measures data will be discussed and two designs considered for analyzing terminal measures 
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data. One design does not work, but the other does with an assumption that may or may not be 

plausible, depending on the application.  
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Chapter 4 - Estimating Heterogeneity of Individual Indirect Effects  

In chapter 3, individual indirect effects were introduced. The mediation plot was 

extended to the individual mediating plot to describe the relationship among the individual total, 

direct, and indirect effects.  Using the individual mediation plots, sources of variability of the 

total effect across individuals was demonstrated.  The individual indirect effect was defined and 

the variability of individual indirect effects was formulated based on the estimable and non 

estimable quantities. The upper and lower bounds of the variability of individual mediating 

effects was shown for three different cases. Then the mediating heterogeneity or subject-

mediator (treatment) interaction was defined. 

In this chapter, we discuss the problems of estimating the variance of individual indirect 

effects or subject-mediator (treatment) interaction for a two sample completely randomized 

block design with s-disjoint blocks and n-individuals for each block. Following an example used 

in chapter 4 when illustrating terminal measures data, we use the term ‘strain’ for block for effect 

strains of mice as is done there. For the most general situation (that is, when both B and 

ZD vary), the variability of individual indirect effects is given by the formula:  

[ ])1(2)()()( )0()1()0()1()0()1(

22222222222

ZZZZZZBBBDDBBBDIIE ZZZ
ρσσσσµσσµσµσσµσ −+−++=++= ,   

where  :Bµ the mean of the slope variable, estimable from the observed data. 

 :2

Bσ  the variance of the slope variable, nonestimable  from the observed data. 

 :2
)1(Z

σ   the variance of the mediator when the treatment assignment, 1=T , estimable. 

 :2
)0(Z

σ   the variance of the mediator when the treatment assignment, 0=T , estimable. 

 )0()1( ZZ
ρ : the unconditional correlation between )1(Z and )0(Z , nonestimable. 

 

It is assumed that, 
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problems of estimating the variability of individual indirect effects, 2

IIEσ , are based on the 
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estimates of two terms: 2

ZDσ  which cannot be estimated because  there is no available 

information about )0()1( ZZ
ρ , and 2

Bσ  cannot be estimated because individual slopes that are not 

observable. 

 4.1 Bounds of 2

IIEσ : 

In practice, one will not know the true value of )0()1( ZZ
ρ , but little else can be done with 

observable data except to note that letting 1)0()1( =
ZZ

ρ  and 1)0()1( −=
ZZ

ρ  produces bounds for 2
ZDσ  

that can be estimated.   The two quantities,  

[ ]222222 )()( )0()1( ZZBBDIIE ZL
σσβσσµσ −++=   and [ ]222222 )()( )0()1( ZZBBDIIE ZU

σσβσσµσ +++=  would 

be the estimable lower and upper bounds for the variability of mediating effects for an 

individual, but the challenge is to estimate2Bσ  which is the variability of individual slopes. 

 We proceed by assuming there is a blocking variable, i.e., strain that groups individuals 

into ‘nearly’ homogeneous subsets. Observe that  

( ) ( ) )()()()()( 22
jBB VarEjsBEVarjsBVarEBVar

e
βσσ +==+=== , where the  

conditional expectations and variances are ‘within strain’ and the outer expectations and 

variances are across strains, meaning averages and variances across a given set of strains. Note 

that )( jVar β can be estimated by estimating the mean slope for each strain and then taking the 

variance of these estimates across strain. The within strain variance, 2

eBσ , remains a problem for 

estimation. It is proposed that, for a lower bound, homogeneity of slopes within strains is 

assumed so that 2 0
eBσ = . For an upper bound, it is assumed that )(2

jB Var
e

βσ = , it is argued that, 

for an effective blocking variable for a design investigating variability in treatment effects, the 

within subset variation should be smaller than the variation across subsets.  

 Given the above assumptions, proposed lower and upper bounds are now  

( )[ ]2222 )()()( )0()1( ZZjjDIIE VarVar
ZL

σσβββµσ −++=   and 

( )[ ]2222 )()(2)(2 )0()1( ZZjjDIIE VarVar
ZU

σσβββµσ +++=  
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4.1.1  Estimating Bounds of 2

IIEσ  : 

 Assume a balanced two sample randomized complete block design, so there are n units 

per strain for a total of ns individuals. We assume that within each strain j , 2/n units are 

randomly assigned to treatment 1=T  and the other 2/n  units assigned to 0=T  . Without loss 

of generality, assume that the first 2/n units in the jth subset receive 1=T  and the second 2/n  

receive 0=T .  Let sjniforZ ij ,...,2,1;2/,....,2,1)1( ==  be the observed mediators when a 

subject recieves 1=T   and let (0) ( / 2 1),..., ; 1,2,...,ijZ for i n n j s= + =  be the observed mediators 

when subject recieves 0=T . Let ijB  sjnifor ,...,2,1;,....,2,1 == be the individual slopes for 

each individual i (not available from the observed data). 
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∑
; sj ,...,2,1= . Further, let (1) (0)

jZ j jD Z Z= − and define 
1

ˆ
Z jD Z

j

D
s

µ = ∑ as 

a proposed estimator for the mean effect of the treatment on the mediating variable. Now define 

( )(1) (0) (1) (0)

2
2 1

ˆ ˆ ˆ ˆ( )
j jZ Z Z Z

js
σ σ σ σ + = +

  ∑ and ( )(1) (0) (1) (0)

2
2 1

ˆ ˆ ˆ ˆ( )
j jZ Z Z Z

js
σ σ σ σ − = −

  ∑ , and let 

ˆ
jβ denote the Barron and Kenny estimate of the slope parameter for a particular strain j, so that 

1ˆ ˆ
j

js
β β= ∑ becomes a population estimate of the slope parameter. For interpretability of this 

estimate, it is assumed that there is no qualitative interaction on the slope parameters for each 

strain and, similarly, on the mean treatment effect for each strain. The bounds are still valid at the 

population level even without this assumption, but the interpretability is lacking. A qualitative 

interaction on indirect effects is the subject of chapter 5. Finally, let 

∑
=

∧

−
−

=
s

j
jj s

Var
1

2)ˆˆ(
1

1
)( βββ denote the estimated between strain variance on the slope 

parameters. The proposed estimated lower and upper bounds of the variance of individual 

indirect effects is given by,   
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[ ]2222 )ˆˆ()ˆ)(()(ˆˆ )0()1( ZZjjDIIE VarVar
ZL

σσβββµσ −++=
∧∧

 and 

[ ]2222 )ˆˆ()ˆ)(2()(ˆ2ˆ )0()1( ZZjjDIIE VarVar
ZU

σσβββµσ +++=
∧∧

. 

 

 4.2 An illustration using simulated data 

The potential outcomes were generated for s-strains with n-individuals in each strain so 

that the total number of mice was ns. The observed data were generated by removing 

counterfactuals. Then from the observed data, the individual indirect effects, ZBDIIE = , were 

generated for each strain.  Thus, a two stage hierarchical approach is used to simulate data. The 

next section shows the steps and parameter setting for this simulation study. 

4.2.1 Steps of Generating Potential Outcomes, Observed Data and Individual Indirect 

Effects 

To generate potential outcomes of 'Z , we use the following steps: 

(1). Let )0(
jZ

µ and )1(
jZ

µ be the mean of )0(Z  and )1(Z  for strains in the control and 

experimental groups, respectively. The statistical model corresponding to )1(
jZ

µ  and )0(
jZ

µ  for each 

strain, sj ,...,2,1=  is:  
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 for sj ,...,2,1= . 

  Here, )0(Z
µ and )1(Z

µ represent the means of mediator across individuals in the 

populations from which control group and the experiment group were sampled. The mean 

treatment effect on the mediator for each strain,  )0()1(
jjjZ ZZD µµµ −= , is a random variable with 

respect to the superpopulation from which parameters for each strain are generated. The 

superpopulation parameters are then  (1) (0) (1) (0)( ) ( ) ( )
Z j j j

D Z Z Z Z
E E Eµ µ µ µ µ= − = −  and 

),(2)()( )0()1()1()1()0()1(

22

jjjZjZjjjZ ZZZZD CovVarVar µµσσµµµ µµ −+=−= . We set 0
)0()1(

=
ZZ

µµρ , so that 
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the strain level means are assumed to be independent across strains, and 22,17 )0()1( ==
ZZ

µµ  

and  5.4,5.4 22
)1()0( ==

jj µµ
σσ . Thus, ).9,5(~ −N

jZDµ  

(2) Let )1(

ijZ and )0(

ijZ  be the mediator variables for all individuals for all strains in the 

treatment and control groups, respectively. The statistical model corresponding to )1(

ijZ and )0(

ijZ  

for sjni ,...,2,1;,....,2,1 == is:  
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, sjnifor ,...,2,1;,....,2,1 ==  

We set 5.0)0()1( =
ZZ

ρ ,  5,4 22
)1()0( ==

ZZ
σσ . Thus,  )2.13,5(~ −ND

ijZ .   

To generate intercepts when T=0 and when T=1 for each individual, we use the following steps: 

(3) We repeat steps (1) and (2) with different parameter setting: 

Set the mean direct effects,  
01 AAjDE µµ −=  for each strain sj ,...,2,1=  and also the individual 

direct effect,  )( ,0,1 ijijij AADE −= within each strain for each individual, sjni ,...,2,1;,....,2,1 == . 

Here,  .7310
01

=−=− AA µµ  Set some specific values for correlations and the variances. We do 

not pay attention to these intercepts here as individual indirect effects, )( )0()1( ZZBIIE −= , do 

not depend on intercepts and it is IIE  is the focus here. 

To generate potential slopes for each individual, ijB ,  we use the following steps: 

(4) The distribution of the mean slopes for each strain is assumed to be ),(~ 2

µ
σββ Bj N , 

where the specified values are 16.01 2 =−=
µ

σβ B . Generate the individual slopes so that  

ijjijB εβ += , where ),0(~ 2

eBij N σε for each individual within each strain, 

sjni ,...,2,1;,....,2,1 == .  The distribution of the slopes for all individuals: ),(~ 2
Bij NB σβ , 

where .20.004.016.0,1 222 =+=+=−=
eBBB σσσβ

µ
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To generate potential outcomes of 'Y s given 'Z s we use the following steps: 

(5)  For individual i: generate )1(

1

)1()1( )( ijijijijij ZBAZY +=  , )0(

0

)0()0( )( ijijijijij ZBAZY += , 

)0(

1

)0()1( )( ijijijijij ZBAZY +=  and )1(

0

)1()0( )( ijijijijij ZBAZY +=  which are mentioned in section (3.2). 

(6)  From steps (1)-(5), potential outcomes are generated and then, removing counterfactuals, 

we generate the observed data. 

4.2.2 The distributions of  Average of Individual Indirect Effects and the Indirect 

Effects for each strain 

If we can observe 
ijZij DandB for each individual for all strains , then we would be able 

to calculate indirect effects for each individual within a strain and estimate the average indirect 

effect for the particular strain. The distributions of average of individual indirect effects for strain 
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. The average indirect effect ( which is similar to the Baron & 
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discuss the distributions of these two estimates. 
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By Substituting (A1) and (A2) in to (A), we get 

78.14)(
1

)
1

()
1

)(()( 2222222222 =++++++= βσσσσβσσµσ
µµµ eeZeZZeZZ BDDDBBDDj

nnn
IIEVar  

Thus, the distributions of average of individual indirect effects for strain j, 
jZjj DBIIE =  , and 

the average indirect effect ( which is similar to Baron & Kenny Approach) for strain  j , 

jZjj DBIE = ; sj ,...,2,1=  are nearly the same.  This means, for homogeneous strains the 

variability of individual indirect effects can be estimated using the variance of estimated 

mediating effects obtained from the Baron and Kenny approach across strains. In the simulation 

study, we obtain density plots of 
jZjj DBIIE =  and 

jZjj DBIE =  which are shown in Figure 4.1.  
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Figure 4.1  The Distributions of Average of Individual Indirect Effects and the Indirect 

Effects for each strain. 

 

4.2.3 Estimates for the bounds using simulated data. 

Based on the parameter settings in the simulation study, the true variability of the 

individual indirect effects and,  lower and upper bounds for the individual indirect effects are, 
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Now, using the observed data, the estimates of the lower and upper bounds of heterogeneity of 

mediating effects  as follows: 

[ ] [ ]222222222222 )ˆˆ()ˆˆ(ˆˆand)ˆˆ()ˆˆ(ˆˆˆ
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Figure 4.2   The estimated lower and upper bounds for the variability of individual indirect 

effects for 100 Monte Carlo simulations 

 

Figure 4.2 shows the estimated lower and upper bounds for the individual indirect effects 

which are calculated using 100 Monte Carlo simulations. For each run, the lower and upper 

bounds are calculated based on 20 strains. Most of the intervals covered the true variability of 

individual indirect effects and two of them (2%) did not cover the true variability of individual 

indirect effects. Standard errors of lower and upper bounds can be found using non parametric 

bootstrapping . 

 

4.2.4 Inverse Coefficient of Variation for the individual indirect effects : 

The coefficient of variation (CV), which is the ratio of the standard deviation to the 

mean, is a dimensionless measure of dispersion found to be very useful in many situations. 

Sometimes, it might be interpretable to work with the reciprocal of the CV, denoted ICV. The 

ICV has special applications in parametric inference problems for some important lifetime 
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distributions. The CV is often estimated by the ratio of the sample standard deviation to the 

sample mean, called the sample CV.  We calculate the Ratio (ICV) between the estimates of 

indirect effects and their bounds:   
UL IIE

IIE

IIE

IIE

σ
µ

σ
µ

ˆ

ˆ
,

ˆ

ˆ
 .  The shapes of the distributions are shown in 

the Figure 4.3 
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Figure 4.3   The Estimated ICVs 

 

Assuming without loss of generality that, 0>IIEµ , then the proportion of the population 

with an unfavorable mediating effect is given by )0( <IIEP . If  IIE  is normally distributed, we 

would be able to estimate )0( <IIEP  (Gadbury et.al.,2001). 

The estimated mean of indirect individual effects is 95.4ˆ =IIEµ  and 

7.95ˆ,52.2ˆ ==
UL IIEIIE σσ . Then the ICVs of lower and upper bounds are 2

52.2

95.4
ˆ

ˆ
≈=

LIIE

IIE

σ
µ

 

05.0
7.95

95.4
ˆ

ˆ
≈=

UIIE

IIE

σ
µ

, respectively.  That is, the estimated ICV bounds are ( 0.05, 2) and this 

implies that the true mean of individual indirect effects, IIEµ   is estimated to be less than 2 

(standard deviations) from 0. That is, heterogeneity of individual effects may be present and 

there may be qualitative interactions too.  
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Chapter 5 - Testing for Qualitative Interaction on Indirect Effects 

 

Evaluating treatment effects within subsets of patients plays a major part of the analysis 

of many major clinical trials.  In order for the conclusion to be broad based, and to achieve 

reasonable sample sizes, the study design often includes a number of patient subsets, 

corresponding to different clinical centers or to patient subsets defined by prognostic factors. As 

a result, some variation in the estimates of treatment effect among subsets is expected. 

Assessment of the variation in treatment effect among subsets is important for several reasons. 

For example, the pattern of variation may lead to specific hypotheses concerning the relationship 

between efficacy and certain patient characteristics.  

 

According to Poulson (2012, p16-17), “treatment heterogeneity is present when the effect 

of a treatment, say T, with respect to a treatment, R, varies across subsets or individuals in a 

population. At the individual level, this variability is called subject-treatment interaction 

(Gadbury 2010). A consequence of this heterogeneity is that the effect of a treatment T with 

respect to R may be in opposite directions across different individuals or subsets, with treatment 

T having higher efficacy for some and treatment R having higher efficacy for others.” 

 

 The term Qualitative Interaction (QI) has been used to describe this situation at the subset 

(or subgroup) level (Peto, 1982; Gail and Simon 1985).  Note that, as Yusuf (1991) mentioned, a 

proper subgroup is a group of patients characterized by a common set of  ‘baseline’ parameters 

and in contrast, an improper subgroup is a group of patients characterized by a variable measured 

after randomization and potentially affected by treatments. A test has been developed to detect a 

QI (Gail and Simon 1985).  A “quantitative” interaction (Peto 1982) exists when the magnitudes 

of the difference between treatment and control differ across subsets, but are in the same 

direction.  In the presence of a quantitative treatment by subset interaction, it is easy to assess 

and interpret the overall treatment effect. In the presence of qualitative treatment by subset 

interaction, however, it is even hard to define a measure of the overall treatment effect. 

 

The statistical problem of determining whether observed variability in treatment effects 

represents a qualitative interaction was addressed by Gail and Simon (1985). These authors, who 
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use the more visual terms “crossover and noncrossover” interaction for Peto’s “qualitative and 

quantitative” interaction, developed a normal theory likelihood ratio test to detect the presence of  

a qualitative interaction. Other tests followed including those of Berger (1989, Section 6), 

Zelterman (1990), the pushback tests of Ciminera et al. (1993), and the range test of Piantadosi 

and Gail (1993). Unfortunately, however, these tests perform poorly; the pushback tests can be 

liberal, and results in Piantadosi and Gail (1993) indicate that unreasonably large sample sizes 

may be needed to obtain adequate power with both the range and Gail and Simon tests.  

 

 Since we are interested in causal mediation analysis, the qualitative and quantitative 

interactions are defined as follows: qualitative interaction (QI) arises when the direction of the 

true indirect effects varies among subsets of individuals where as quantitative interactions arises 

when the magnitude, but not the direction, of the true indirect effect varies among subsets of 

individuals. This chapter adopts the work of Gail and Simon (1985) to the context of mediation 

analysis and indirect effects. 

 

 5.1 Testing QI on mediating effects across patient subsets 

 The concepts of no interactions, quantitative interactions and qualitative interactions are 

illustrated in Figure 5.1 for two patient subsets in mediation analysis.   

 Let 2,1, == i
iZDii µβδ   be the true indirect effects for two treatments in subsets 1 and 2, 

respectively. The origin represents the hypothesis of no indirect effect for either subset. The line 

21 δδ =  represents the locus of points for which there are same indirect effects (except for the 

origin) but no mediator by subset interactions. Any point which does not fall on this line defines 

a quantitative interaction. qualitative interactions consist of points only in the second                   

( 0,0 21 >< δδ ) , and forth ( 0,0 21 <> δδ )  quadrants. Non cross over interactions consist of 

those points in the first and third quadrants which do not lie on the line 21 δδ = . 
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Figure 5.1  The space of Indirect Effects for s =2 subsets 

 

5.2 Notation and Assumptions 

 

 Let 
iZDii µβδ = for si ...,,2,1= , be the true mean indirect effect in the ith subset,  where 

iβ  is true slope for the ith subset and )0()1(
iiiZ ZZD µµµ −=   is the true mean treatment effect on the 

mediator variable for the ith subset. We also assume that we have an estimate of the indirect 

effect in the i th subset, )ˆˆ(ˆˆˆˆ
)0()1(

iiiZ ZZiDii µµβµβδ −==  for si ...,,2,1= . 

 The tests for qualitative interactions assume that the }ˆ{ iβ  are independent and normally 

distributed with mean iβ  and variance 2
ˆ
iβ

σ  and }ˆ{
iZDµ  are also independent and normally 

distributed with mean 
iZDµ and variance 2

ˆ
iZDµσ . We also assume that iβ̂   and 

iZDµ̂  are 

 

 

Region of Qualitative Interaction 

NO indirect effects at 21 δδ = = 0 

2δ  

1δ  

 

 

Region of Qualitative Interaction 

Line of NO interaction: 21 δδ =  
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independent statistics. Though this later assumption may not hold in all situations, we use it here 

to begin the process of investigating a QI on indirect effects across subsets. 

 5.3 The Likelihood Ratio Tests (LRT) 

 We discuss the test for the null hypothesis of no qualitative interaction for three different 

cases.  

(1). Assume that there is no qualitative interaction on iβ  and the qualitative interaction on 

iZDii µβδ = depends on the qualitative interaction on 
iZDµ  across subsets. 

(2). Assume that there is no qualitative interaction on 
iZDµ , and the qualitative interaction on 

iZdii µβδ =  depends on the qualitatve interaction on iβ  across subsets. 

(3). Test whether there is a qualitative interaction on 
iZDii µβδ =  across subsets. 

We discuss each case as follows: 

5.3.1 Case (1): The QI on 
iZDµ  across  subsets 

 Based on the likelihood ratio test of Gail and Simon (1985), here we use it for the 

treatment effect on the mediator variable. We assume that within each subset i , 1in units are 

randomly assigned to treatment 1=T  and the other 2in  units assigned to 0=T  so that 

nnn ii =+ 21 . 

Without loss of geneality, we assume that the first 1in units in the i th subset recieves 1=T  and 

the second recieves 0=T . The treatment effect on mediator in each subset is )0()1(
iiiZ ZZD µµµ −= , 

which is estimated by )(ˆ )0()1(

iiD ZZ
iZ

−=µ , ∑
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variance of 
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


+=

21

22
ˆ

11

ii

i nniZD
σσ µ .   

 As in Gail and Simon (1985), we assume that  2
iσ  is known in order to simplify 

exposition. In order to carryout the test, 2
iσ  is replaced by a consistent estimate, that is, it is 

estimated by the sample pooled variance for each subset,  2
is  where 
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The null hypothesis of no QI is  −+ ∪∈∆ OOH :0 , where ),...,,(
21 sZZZ DDD µµµ=∆ ,  

{ } { }iOiO
iZiZ DD allfor0:andallfor0: ≤∆=≥∆= −+ µµ , +O and −O   are the positive and 

negative orthants respectively, so 0H  specifies that all 
iZDµ are positive or they are all negative. 

The Likelihood Ratio Test (LRT) of this hypothesis is based on the statistic 
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 In this denominator the maximization is unrestricted and therefore, the denomenator 

maximum occurs at 
iZiZ DD µµ ˆ= for si ,...,2,1= , and the denominator equals 1.  The likelihood 

ratio test is thus,  
( )

∑
=∪∈∆

<










 −
−

−+

s

i

DD

OO
k

iZD

iZiZ

1

2
ˆ

2

,
2

ˆ
expmax

µσ
µµ

            (1) 

where k  is chosen to ensure that the rejection region does not exceed significance level α  for 

any point in the null space, −+ ∪ OO .  Expression (1) can be further simplified. The inequality 

(1) is equivelent to the simultaneous inequalities 

( )∑
=∈∆

>−
−

s

i
DD

O
c

iZDiZiZ
1

2
ˆ

2 /ˆmin µσµµ                (2) 

and 

( )∑
=

+∈∆
>−

s

i
DDO

c
iZDiZiZ

1

2
ˆ

2 ,/ˆmin µσµµ                (3) 

where ).log(2 kc −=   Thus, one rejects the null hypothesis if )ˆ,...,ˆ,ˆ(ˆ
21 sZZZZ DDDD µµµµ =  is far 

away from both −+ OO and , with distance defined by the inverse variance metric.  The minimum 

value in (2) occurs for 
iZiZ DD µµ ˆ= if 0ˆ ≤

iZDµ  and for 0=
iZDµ  otherwise for all .,...,2,1 si =  
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Similarly, the minimum value in (3) occurs for 
iZiZ DD µµ ˆ= if 0ˆ ≥

iZDµ  and for 0=
iZDµ  

otherwise for all .,...,2,1 si =  Consequently, the likelihood ratio test of Gail and Simon (1985) 

rejects 0H   if both  

( ) cIQ
iZiZDiZ DD >>=∑− )0ˆ(.ˆ 2

ˆ
2 µσµ µ                 (4)  

and   

( ) cIQ
iZiZDiZ DD ><=∑+ )0ˆ(.ˆ 2

ˆ
2 µσµ µ ,                (5)  

where otherwise,0and0ˆif1)0ˆ( >=>
iZiZ DDI µµ and 1)0ˆ( =<

iZDI µ if 0ˆ <
iZDµ and 0 otherwise. 

The quantities +Q  and −Q   are minimum values of 2
ˆ

2 /)ˆ(
iZDiZiZ DD µσµµ −∑  over +O and −O    

respectively, and the LRT can be expressed as cQQ >−+ ),min( . The challenge is to calculate 

value of c  such that for all −+ ∪∈∆ OO ,  the probability that (4) and (5)  are both satisfied is no 

greater than the significance level, α . 

 

The critical value c , which may be obtained from Table 1 of Gail and Simon (1985), is 

chosen so that the test has level at most α  under any ∆  for which there is no crossover 

interaction.  The Table 5.1 is extracted from a table in Gail and Simon (1985) and it shows the 

values of c corresponding to significance levels  0.05 and 0.1 for the test. If Gail and Simon’s 

test rejects the null hypothesis, then no conclusion about the overall treatment effect on mediator 

difference can be made. If Gail and Simon’s test does not reject the null hypothesis, then we do 

not have strong evidence to conclude whether the subset interaction is quantitative or qualitative.  
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Table 5.1  A part of Gail and Simon (1985) table 1 ( Critical values ( c ) for the likelihood 

ratio test cQQ >−+ ),min( ) 

Number of  

groups 

Significance level 

0.1 0.05 

2 1.64 2.71 

3 2.95 4.23 

6 5.84 7.48 

10 9.02 10.99 

16 13.33 15.66 

20 16.04 18.57 

25 19.34 22.09 

30 22.55 25.50 

 

This table was constructed by solving the formula ∑
−

=

−=−=
1

1

)](1)[5.0,1;(
s

j
j cFpsnjB , 

where ),;( pnjB is the binomial probability mass function with index n and parametre p, and 

(*)jF  is the central chi-square distribution with j degrees of freedom, for the value of c such 

that, for fixed number of groups s and significance level α , the quantity 

α=−=−=∑
−

=

1

1

)](1)[5.0,1;(
s

j
j cFpsnjB  ( Gail and Simon, 1985). 

5.3.2 Case (2): The QI on iβ  across subsets 

 We assume that there is no QI on 
iZDµ . The distribution of the estimated mean slope of a 

subset, iβ̂ , is ),(~ˆ 2
ˆ
iii N

β
σββ .  Since iβ̂  satisfies all the assumptions in Gail and Simon’s test, 

we adopt Gail and Simon (1985) LRT  to check whether there is a qualitative interaction on 

mean slopes, iβ  or not.  

 Typically, as in Baron & Kenny the iβ̂  are obtained in a clinical trial by estimating the 

simple regression equation in s subsets :    
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iijiijiiij njsiforTZY ,...,2,1;,...,2,1 ==′+++= εγβα , where iβ  is the mean slope from 

the ith subset and the errors ),0(~ 2

iij N σε .  The null hypothesis of no QI is −+ ∪∈∆ OOH :0 , 

where ),...,,( 21 sβββ=∆ , { }iO i allfor0: ≥∆=+ β and  

{ }iO i allfor0: ≤∆=− β , +O and −O  are the positive and negative orthants respectively.  

 

The LRT of this hypothesis is based on the statistic  
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βλ . 

 In the denominator, the maximization is unrestricted. Consequently the denominator 

maximum occurs ii ββ ˆ=  for si ...,,2,1=  and the denominator equals 1. The likelihood ratio 

test of Gail and Simon (1985) rejects 0H   if both  

( ) cIQ ii i
>>=∑− )0ˆ(.ˆ 2

ˆ
2 βσβ

β
                                     (6)   

and  

( ) ))0ˆ(.ˆ 2
ˆ

2 cIQ ii i
><=∑+ βσβ

β
,                      (7)   

where the quantities +Q  and −Q   are minmum values of 22 /)ˆ(
iBii σββ −∑  over +O and −O    

respectively, and the LRT can be expressed as cQQ >−+ ),min( . This test and the distributional 

assumptions are similar to what  Gail and Simon discussed and therefore we use Table 5.1 to find 

c such that for all −+ ∪∈∆ OO ,  the probability that (6) and (7)  are both satisfied is no greater 

than the significance level, α . 

5.3.3 Case (3): The QI on 
iZdii µβδ =  across subsets 

 Before we construct the LRT to check whether there is a qualitative interaction on 

iZDii µβδ = , we need to establish the probability distribution of 
iZDii µβδ ˆˆˆ = . Since we assume 

that ),(~ˆ 2
ˆ

iZDiZiZ DD N µσµµ  and ),(~ˆ 2
ˆ
iii N

β
σββ are independent, the probability density function 
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of the product of  these two non-zero mean normal variables, 
iZDii µβδ ˆˆˆ = ,  is not known.  If this 

distribution was normal, we would be able to use the above LRT to test the null hypotheses that 

there is no QI on 
iZDii µβδ = .  Now, we discuss another method of testing the null hypotheses 

that there is no QI on 
iZDii µβδ = . 

 Before introducing an appropriate test, we discuss the possibilities that when and where 

the QI on 
iZDii µβδ = across subsets occurs.  If there are no QIs on both iβ  and 

iZDµ then there is 

no QI on 
iZDii µβδ = .  But no QI on 

iZDii µβδ = does not imply that there are no QIs on iβ  and 

iZDµ .  That is,  

iZ

iZ

Di
D

i
onQINo

onQINo

onQINo
µβµ

β
⇒







 but  






⇒/
iZ

iZ
D

i

Di onQINo

onQINo
onQINo µ

β
µβ . 

 Thus, instead of testing the null hypotheses that there is no QI on 
iZDi µβ we discuss the 

test for the null hypotheses that there is no QI on both iβ  and 
iZDµ .  Hence, we formulate the 

required hypotheses as follows: )()(:0 βµ onQINoonQINoH
ZD ∩  versus 

.:1 bothororeitheronQIH
ZD βµ   

  

Roy’s (1953) well-known Union-Intersection method (UIT) can be used to test the null 

hypotheses given above.  Roy’s principle of construction of tests for the case when the null 

hypothesis 0H consists of the simultaneous occurrence of several disjoint sub-hypotheses and is 

represented as I
g

i
iH

1
0

=

 is the Union-Intersection (UI) principle (Roy, 1953), where g is the 

number of individual tests. Here .2=g   Cassella and Berger (2002) have proved the following 

relationships between the overall LRT and the UIT . 

 

Consider a UIT test cHversusH 0100 :: Θ∈Θ∈ θθ , where .0 I Γ∈
Θ=Θ

γ γ  Let )(xγλ be 

the LRT statistic for testing cHversusH γγ θθ Θ∈Θ∈ :: 10  and let  )(xλ be the LRT statistic for 
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cHversusH 0100 :: Θ∈Θ∈ θθ . Define ),(inf)( xxT γγ λΓ∈=  and form the UIT with rejection 

region { } { }.)(:)(: cxTxsomeforcxx <=Γ∈< γλγ  Also consider the usual LRT with rejection 

region { }cxx <)(: γλ . Then 

.)()(. xeveryforxxTa λ>   

.)()(

,,)()(.

Θ∈≤ θθβθβ
λθβθβ

λ

λ

everyforthen

lyrespectiveandTonbasedtesttheforfunctionspowertheareandIfb

T

T

.,. testlevelaisUITthethentestlevelaisLRTtheIfc αα  

 Based on Roy’s UI principle below is the procedure of testing our null hypothesis 

)on()on(:0 βµ QINoQINoH
ZD ∩  versus both.ororeitheron:1 βµ

ZDQIH  Based on 

Gail and Simon (1985), the LRT of  
ZDD QINoH µon:0  vs 

ZDD QIH µon:1  is rejected if 

cQQ DD >−+ ),min( , where ( ) cIQ
iZiZDiZ DDD >>=∑− )0ˆ(.ˆ 2

ˆ
2 µσµ µ  and  

( ) cIQ
iZiZDiZ DDD ><=∑+ )0ˆ(.ˆ 2

ˆ
2 µσµ µ . Similarly, the LRT of  βon:0 QINoH B  vs 

βon:1 QIH B is rejected if cQQ BB >−+ ),min( , where ( ) cIQ iiB i
>>=∑− )0ˆ(.ˆ 2

ˆ
2 βσβ

β
and 

( ) cIQ iiB i
><=∑+ )0ˆ(.ˆ 2

ˆ
2 βσβ

β
. Let ),min(min

+−= DDD QQQ   and ),min(min
+−= BBB QQQ .  Thus, 

the Union-Intersection test of 10 HvsH  formed from these two LRTs is reject 0H  if cQD >min  

or cQB >min .  

 5. 4 The Simulation Study for Qualitative Interactions 

We test the null hypotheses using the generated observed data for three cases discussed in 

the previous section. Since we do not have a real data set, a data set was generated to illustrate 

the QI across subsets assuming a balanced study design with sn 2/400=  subjects per treatment 

per subset, where 20=s  is the number of disjoint subsets which consist of observed Y , Z and T.   

The first three plots in Figure 5.2 show how QI occurs on 
iZDµ  across subsets (top left), 

on iβ  cross subsets (top right)  and on 
iZDii µβδ =  across subsets(bottom left).  The plots of 20 

subgroups are represented.  
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Figure 5.2  QI on slopes, treatment effects on the mediator, indirect effect and subsets 
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To check whether there is a significant qualitative interaction we use Gail and Simon 

(1985) test for the hypotheses mentioned in the section 5.3 at the 5% level of significance.  

Results are given in the table 5.2. 

(1)   First we discuss the hypothesis test in section 5.3.1, that is  

ZDQIH µonnoisthere:0  versus  
ZDQIH µonisthere:0 .  

In our simulation study, we compute ( ) 8.31)0ˆ(.ˆ 2
ˆ

2 =>=∑−

iZiZDiZ DDD IQ µσµ µ    and  

( ) 626)0ˆ(.ˆ 2
ˆ

2 =<=∑+

iZiZDiZ DDD IQ µσµ µ , where 0ˆ1)0ˆ( >=>
iZiZ DD ifI µµ  otherwise,0and  

1)0ˆ( =<
iZDI µ 0ˆ <

iZDif µ  and 0 otherwise, and the LRT can be expressed as 

8.31),min( =−+
DD QQ . From Table 5.1, we get the critical value at 5% level of significance is 

18.57.  That is, reject the null hypotheses since 8.31),min( =−+
DD QQ  > 18.57 implies there is a 

significant qualitative interaction on 
ZDµ . 

(2)   Then we discuss the hypothesis test in section 5.3.2, that is  

      βonnoisthere:0 QIH  versus βonisthere:0 QIH .  

In our simulation study, we compute ( ) 26.9)0ˆ(.ˆ 2
ˆ

2 =>=∑− βσβ
β

IQB    and  

( ) 576)0ˆ(.ˆ 2
ˆ

2 =<=∑+ βσβ
β

IQB , where otherwise,0and0ˆ1)0ˆ( >=> ββ ifI  and 

,otherwise0and0ˆ1)0ˆ( <=< ββ ifI  and the LRT can be expressed as 26.9),min( =−+
BB QQ . 

From Table 5.1, we get the critical value at 5% level of significance is 18.57.  That is, do not 

reject the null hypotheses since 26.9),min( =−+
BB QQ < 18.57  implies there is no  significant 

qualitative interaction on β . 

(3)  The third test would be the union-intersection test,  

)()(:0 βµ onQINoonQINoH
ZD ∩  versus .:1 bothororeitheronQIH

ZD βµ   The 

LRT of  
ZDD onQINoH µ:0  vs 

ZDD onQIH µ:1  is rejected since 8.31),min( =−+
DD QQ  > 

18.57 implies there is a significant qualitative interaction on 
ZDµ . 
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Table 5.2  QI on slopes, TE on the mediator, indirect effect across subsets for 20 subsets 

Subset 
iZDµ̂  2

ˆ
iZD

sµ  2
ˆ

2ˆ
iZDiZ

sD µµ  
iβ̂  

2
ˆ
i

s
β

 2
ˆ

2ˆ
i

si β
β  

1 -0.3878 0.563 0.267 0.938 0.4314 2.038 

2 -2.0137 0.667 6.08 -1.180 0.2254 6.182 

3 2.9754 0.708 12.50 0.436 0.2526 0.754 

4 -5.4451 0.757 39.20 -3.076 0.1194 79.257 

5 -4.7614 0.956 23.70 -1.832 0.1247 26.931 

6 2.2361 0.565 8.85 0.986 0.1995 4.872 

7 -4.1573 0.596 29.00 -0.810 0.1983 3.312 

8 -7.3039 0.504 106.00 -1.991 0.0422 93.948 

9 -2.2101 0.373 13.10 -0.219 0.3542 0.136 

10 1.4775 1.419 1.54 -1.002 0.1851 5.429 

11 -5.8544 1.627 21.10 -2.026 0.0975 42.114 

12 -6.3345 0.634 63.20 -2.005 0.0463 86.771 

13 -6.2663 0.803 48.90 -0.871 0.0904 8.394 

14 -4.4055 1.026 18.90 -0.333 0.0329 3.384 

15 -6.0050 0.476 75.80 -3.094 0.0852 112.373 

16 0.0284 1.334 0.0006 -1.146 0.2867 4.579 

17 -4.9267 0.711 34.20 -1.345 0.0730 24.790 

18 2.5840 0.751 8.89 0.661 0.2731 1.600 

19 -7.4993 0.484 116.00 -1.298 0.0399 42.253 

20 -6.3374 1.319 30.50 -1.237 0.0426 35.906 

Test for QI on slopes:      =−
BQ 9.26       =+

BQ  576                  == +− ),min(min BBB QQQ  9.26  

Test for QI on TE on Z:  =−
DQ 31.8        =+

DQ  626                 == +− ),min(min DDD QQQ 31.8 
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In contrast, the LRT of  βonQINoH B :0  vs βonQIH B :1 is not rejected as 

26.9),min( =−+
BB QQ < 18.57  implies there is no  significant qualitative interaction on β . Thus, 

the Union-Intersection test of βonQInoisthereH :0  versus  βonQIisthereH :0  is 

rejected as  cQQ DD >−+ ),min( . 

 

5.4.1 Type I Error Rate 

Monte Carlo simulation was conducted 1000 times to estimate the type I error rate for the 

above UIT test under the null hypotheses, )()(:0 βµ onQINoonQINoH
ZD ∩ .  Two LRT 

tests , 
ZZ DD onQIHversusonQINoH µµ :: 10 and ββ onQIHversusonQINoH :: 10  

were conucted and found the number of times we reject the null hypotheses of UIT test. Figure 

5.3 (a) shows the test statistics for both LRT test  for 1000 Monte Carlo simulations. At 5% level 

of significance with 20 subgroups, the critical value would be 18.57 , vertical line in the figure 

5.3(a).  Type I error rate can be estimated. Since there are 14 and 40 unique LRT tests are 

rejected for 
ZZ DD onQIHversusonQINoH µµ :: 10 and  

ββ onQIHversusonQINoH :: 10 , the estimated type I error rates are 0.014 and 0.040, 

respectively. Thus, the type I error rate for the test )()(:0 βµ onQINoonQINoH
ZD ∩   

under UIT would be 0.054. 

 

5.4.2   Power of the test 

Under the alternative hypothesis the data were generated so that there is QI on 
ZDµ and β  

The signal indicating the alternative hypothesis is as sown in Figure 5.2.  Monte Carlo simulation 

was conducted 1000 times to estimate the power of the UIT test.  Two LRT tests 

,
ZZ DD onQIHversusonQINoH µµ :: 10 and  

ββ onQIHversusonQINoH :: 10 were conucted and found the number of times we reject 

the null hypotheses of UIT test.  Figure 5.3 (b) shows the test statistics for both LRT test when 

the alternative is true, for 1000 Monte Carlo simulations. At the 5% level of significance with 20 

subgroups, the critical value would be 18.57, the vertical line in the figure 5.3(b). Since there are 

607 and 460 LRT tests are rejected for 
ZZ DD onQIHversusonQINoH µµ :: 10 and  
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ββ onQIHversusonQINoH :: 10 ,  the estimated power of the tests are 0.607 and 0.460, 

respectively. But, the total number of tests that reject the null hypothesis of UIT is 645.   Thus, 

the power of the test for the test )()(:0 βµ onQINoonQINoH
ZD ∩  would be 0.645. 
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Figure 5.3  (a): LRT test statistics when the null hypothesis is true   (b): LRT test statistics 

when the alternative hypothesis is true 
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Chapter 6 - Mediating Effects for Terminal Measures  

In mediation analysis, situations can arise where the mediator,Z , and the outcome,Y , 

cannot both be measured on an individual unit. Mouse and plant experiments are two examples 

where measurement of Z requires terminating the animal or plant and Y  is to be measured at a 

later time. We refer to such data as terminal measures data. Another situation may be where one 

experiment focused on measurement of Z , and the second on measurement of Y , and interest is 

in combining the data sets to evaluate the mediating effect of Z on Y . This simulation study 

discusses the issues involved in analyzing terminal measures data.  

 

Table 6.1  The mechanism of life extension by CR. 

There are many studies exploring the mediators of 

Calorie Restriction (CR) effects on longevity (Stephen et al., 

2003). The table 6.1 (Masoro, 2009) provides a listing of 

proposed mechanisms of action of CR. Some, like reduction in 

body temperature, can be measured without harming an animal 

or person. Others, like attenuation of oxidative damage or 

attenuation of inflammation in specific tissues, typically require 

killing an animal to take the measurement in the relative tissue.  

 

This is also true of tissue-specific gene expression 

measurements and gene-methylation measurements. Hence it is 

vital to develop methods that can evaluate mediators requiring 

terminal measurements. The following are the two examples for terminal measures experiments: 

 

Example (1): (Stephen et al., 2003) 

A moderate CR regimen ; 20% reduction in calorie intake  (treatment) decreases IGF-1; Insulin-

like growth factor-1 (mediator), increases the ratio of apoptotic versus proliferating preneoplastic 

urothelial cells, and suppresses p-cresidine–induced bladder carcinogenesis (outcome) in p53-

deficient mice.  Weanling p53C mice were fed a diet containing 0.5% p-cresidine for 16 weeks 
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and then randomized to two groups: (1) ad libitum (AL) control diet plus implanted saline 

osmotic minipump; (2) CR (80% of AL diet intake) plus implanted saline osmotic minipump. 

After 4 weeks of diet treatment with implants, half of the mice were killed (to measure the 

mediator) , blood was collected, and their bladders were excised and analyzed histologically. The 

other half of the mice was used to observe the outcome.  

 

Example (2): (Water Stress in Plants:  Causes, Effects and Responses, Seyed Y. S. Lisar ) 

Water deficits in trees have an adverse effect on many of the tree’s growth processes. Plant water 

stress, often times caused by drought, can have major impacts on plant growth and development. 

Plant growth under drought is influenced by altered photosynthesis, respiration, translocation, 

ion uptake, carbohydrates, nutrient metabolism, and hormones. Photosynthesis is particularly 

sensitive to the effects of water deficiency. Photosynthesis of higher plants decreases with the 

reduction in the relative water content (RWC) and leaf water potential. Lower photosynthesis 

rate is a usual effect of water stress in plants and has been attributed primarily to stomatal 

limitation and secondarily to metabolic impairment.  

Most of the studies of mediation have presupposed the joint measurement 

( ))(,( )()()( ttt ZYZ  of mediator and outcome for all subjects, apart from limited missing data. As 

we discussed above some mediating variables cannot be assessed while the subject is alive. In 

human studies, the assessment of such a terminal measure requires waiting until the death of the 

patient.  Further, human studies preclude the possibility of obtaining the terminating data at the 

time that is most suitable for the scientific question. Animal studies have the potential to better 

answer mediating questions by allowing measurement of the mediator at a targeted time.  

The challenge raised by a design involving terminal measures is that each animal can be 

measured on either the mediator or the outcome, but not both. Figure 6.1 shows the potential 

outcomes for N subjects in a study the usual observed data and then terminal measures data. For 

convenience, we use .1,0for)( )()()( == tYZY ttt  
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Figure 6.1  Observable potential outcomes and the observed outcomes (terminal measures) 

for N  subjects for two sample completely randomized design. 

The set of N observable potential outcomes has the form given in Figure 6.1(left) that, 

after treatment assignment produces observed outcomes (centre) and then terminal measures of 

the form shown (right), and where the “?” represents an unobserved potential outcomes  for a 

particular subject at the particular time under the treatment or control condition.  

 6.1 Data 

We did not have a readily accessible terminal measures data set on which to base a 

simulation. Thus, a mice data set from two experiments, one where Z was measured and another 

where Y was measured were used to choose the parameters for the simulation study. Even 

though the diet, weight loss and the lifespan are observable outputs, we prepared this data set as 

a terminal measure data set. The description of the mouse data set is given below: 

 These mouse data sets were provided by Thomas E. Johnson & Brad A. Rikke, Institute 

for Behavioral Genetics, University of Colorado at Boulder Boulder, CO. One set of data was 

from an experiment to evaluate the effect of dietary restriction on lifespan, and a second data set 

evaluated the effect of dietary restriction on weight (as well as other variables). Two levels of 

diet were used for both experiments, DR(T=1)=dietary restriction and AL(T=0) = ad libitum, and 
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all mice from both experiments were female. After some data cleaning to eliminate documented 

atypical cases, the lifespan data set had a total of 881 mice from 42 different strains in two 

cohorts. The weight data set had 473 mice from 51 different strains in three cohorts. There were 

33 strains that overlapped between the two data sets. In the lifespan data set, we define the 

primary outcome variable, Y = Lifespan in days. In the weight data set, we defined a candidate 

mediator variable to be Z = weight in grams between 7 and 16 weeks. It may be noted that the 

effect of the diet variable on this body weight measurement was already highly significant at this 

time point. Note that for individual mice in both studies, either a value of Z or Y is observed but 

not both. If the interest is to determine the mediating effect of Z on Y, then missing values of Z 

or Y must be imputed using a valid imputation model to use individual level models for 

analyzing the indirect effect of dietary restriction on lifespan through the variable Z. The strain 

information for the 33 strains that overlap between the two data sets was evaluated as a grouping 

variable, analogous to how one could use a litter variable in study. Of the 33 strains that 

overlapped, there were 315 mice in the weight data set and 692 mice in the lifespan data set that 

were from strains common to both experiments. 

 

Within the weight data set, there was an average of 4.7 mice from each strain in each of 

the two diet groups. Within the lifespan data set, there was an average of 9.6 and 11.4 mice from 

each strain in the AL and DR diet groups, respectively. Figure 6.1 shows the distributions of the 

candidate mediator, weight, and the outcome variable, Lifespan, for each strain within the diet 

groups. One can see that the weight variable is less variable within strain than the lifespan 

variable. However, there is visual evidence that both variables differ across strains. To test this, 

analysis of variance (ANOVA) was conducted for each of the four data subsets shown in the four 

panels of Figure 6.1. These data were used as a framework for assessing parameter values in a 

simulation illustration to be described next. 

 

The percentage of the total sums of squares of the weight variable within the AL and DR 

diets that is explained by the strain variable is 68% and 79% , respectively. The percentage of the 

total sums of squares of the lifespan variable within the AL and DR diets that is explained by the 

strain variable is 38% and 45%, respectively. The analyses show that within each diet group, the 
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strain variable is a highly statistically significant blocking variable for both of the outcomes, 

weight and lifespan, with a p-value near zero.  

 

Figure 6.2  Boxplots showing the distributions of the variables weight and lifespan for Each 

strain within the diet groups, AL and DR. 

6.2 Designs of the Study 

A key challenge is to find methods suitable for a study design in which the mediating 

variables are terminal measures. In this study, we consider two experimental deigns; (1). strain as 

a blocking variable and (2) strain as an experimental unit. Here we discuss these two designs 

separately and estimate the mediating effects in a simulation. 
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6.2.1 Design 1: Mice as Experimental Units and Strains as Blocking Variable 

 (Individual-level assessment of mediation). 

 

In the simulation, the diet level (DR or AL) was assigned to mice within strain so that 

each strain contains n mice. Strains act as a blocking variable and mice act as experimental units 

(Completely Randomized Block Design). This design has n mice with s strains. We assign two 

diet levels for each strain so that the design is balanced. Each strain contains n/2 replicates for 

each diet level and there are s- strains. The total number of mice would be ns.   

                                 

 

 

 

                                     

            

Figure 6.3  Design 1: Treatment Assignment, open circles are AL (Control) and solid 

circles are DR (Treatment).  

 

6.2.2 Design 2: Strains as Experimental Units 

 (Strain-level assessment of mediation) 

 

Strains were assigned for either treatment (DR) or control (AL) so that each strain 

contains n/2 mice, s-strains for the treatment & s-strains for the control.  2s strains act as 

experimental units.  The total number of mice would be ns. This design is called a group 

randomized design. Group randomized trials are experiments in which the intervention occurs at 

the level of the group but observations are made on individuals within the groups. Group 

randomization is particularly useful when there is a high risk for contamination if group 

members are randomized as individuals. A group randomized trial is based on a multi-stage 

sampling technique. 

 

 

Strains Mice Treatment (DR) Control (AL) 

1  2  3  4   s-1  s 
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Figure 6.4  Design 2: Treatment Assignment, open circles are AL and solid circles are DR. 

 

Two-stage sampling is a common practice in many disciplines. In two-stage sampling, 

the first stage refers to the primary sampling unit which is a cluster of objects, followed by a 

second stage where individual objects, or sub-units, are sub sampled from the cluster . A cluster, 

or primary sampling unit, is a natural grouping of objects that may have similar attributes. This 

study includes mice (sub-units) in a strain (cluster). This sampling scheme is a form of multilevel 

sampling and is also referred to as hierarchical or nested sampling. This study of a completely 

randomized design has n/2  pseudoreplications (mice) per experimental unit (strain) with s 

replications. The term “pseudoreplication” was coined by Hurlbert (1984, 190-191) to refer to 

"the use of inferential statistics to test for treatment effects with data from experiments where 

either treatments are not replicated (though samples may be) or replicates are not statistically 

independent." The context of his paper was ecological field experiments, but pseudoreplication 

can occur in other contexts as well. 

Replications are having more than one experimental unit with the same treatment. That 

is, each unit with the same treatment is called a replicate. True replication permits the estimation 

of variability within a treatment. Comparing two treatments, we assign each treatment on several 

units, then we can obtain some information about the variability of each treatment.  

True replicates are often confused with repeated measures or with pseudoreplicates. The 

following illustrate some of the ways this can occur. A consequence of doing statistical inference 

using pseudoreplicates rather than true replicates is that variability will probably be 

underestimated.  

Strains             Mice 

           1           2          3                    4                2s-1   2s

Control(AL)   Treatment(DR) 
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The mice in the same strain are not independent observations, but rather are correlated. 

For example, in measuring mice weight, mice life time tends to aggregate with other mice of a 

similar age, so measuring one mouse from a strain provides information on the weights & life 

time of the other mice in the same strain. The error of ignoring that objects (mice) were sampled 

in clusters (strains) and treating the mice as a simple random sample is a form of 

pseudoreplication, specifically sacrificial pseudoreplication, which has been well documented, 

and has been a common mistake made by researchers. According to Hurlbert (1984), the major 

problem of pseudoreplication is that individual units (the mice) are treated as independent 

objects, when in fact, they are not (Susan, J., 2011). 

 

In design 1, mice were randomly assigned to the two treatments in the strain, and will be 

considered as  a design with replicates. In design 2, the strains were randomly assigned to the 

two treatments  and mice within the strain can be considered as pseudoreplicates as they are 

inter-correlated.  

6.3 Methodology 

We compare analytical methods for estimating true mediating effect for design 1 & 

design 2. The design 1 includes completely randomized balanced design within strain.  The 

complexity of design 2 is the lack of independence among the data. We assume that the strains 

contain the same numbers of mice and the number of strains per treatment level is also the same. 

The number of treatment levels (Treatment vs. Control) is fixed at 2. 

6.3.1 Simulation Study 

Under each design, the potential outcomes, the observed data & the terminal measures 

are generated.  Then the estimated mediating effects & the estimated standard error of estimate 

are calculated for several cases. For each design, 1000 samples were created.  

For designs 1 & 2, the potential outcomes were generated for s-strains with n-individuals 

in each strain and 2s-strains with n/2 individuals in each strain, respectively, so that the total 

number of mice was ns. For each design, the observed data were generated by removing 

counterfactuals and then from the observed data the terminal measures were generated by 

removing Y & Z randomly within strains. Here, the missing values were replaced by observed 
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averages of Z & Y within each strain for each treatment assignment and then the missing values 

were imputed using parametric bootstrapping. Initially set the true mediating effect as 

)( )0()1( ZZ
µµβ − = (-1)(-5) = 5. 

6.3.2 Steps of Generating Potential Outcomes, Observed Data and Terminal Measures 

 

Design 1: To generate potential outcomes of 'Z s, we use the following steps: 

1. Specify 22)0( =
Z

µ , overall mean of  Z  when 0=T  and 71)1( =
Z

µ ,overall mean of  Z  

when 1=T . 
2. Specify 22 and

eZZ σσ
µ

 so that 222

0 eZZZ σσσ
µ

+=  where 5.42 =
µ

σ Z , the variance of strain 

means of  Z when 0=T  and 5.02 =
eZσ , the variance of  Z  within the strain when 0=T . 

3. Generate ).,0(~,...,, 2
21 µ

σ Zs Naaa  

4. Generate iZZ
a

i
+= )0()0( µµ ,  the mean of Z for the ith strain.  

5. Generate ijZij
i

Z εµ += )0(
)0(  , the jth  observation of Z  for the ith strain when 0=T , where 

).,0(~ 2
εσε Nij    Note that ijiZij aZ εµ ++= )0(

)0( . 

6. Generate τ+= )0()1(
ijij ZZ , the jth  observation of Z for the ith strain when 1=T , where 

)0()1( ZZ
µµτ −= . Note that the effect of T on Z confirms to an unit-treatment additive 

model. 
 

To generate potential outcomes of 'Y s given 'Z s we use the following steps: 

7. Specify 25)0( =
Y

µ , overall mean of  Y  when 0=T  and 72)1( =
Y

µ ,overall mean of  Y  

when 1=T . 
8. Specify 22 &

eYY σσ
µ

 so that 222

0 eYYY σσσ
µ

+=  where 402 =
µ

σ Y , the variance of strain means 

of  Y when 0=T  and 42 =
eYσ , the variances of  Y  within the strain when 0=T . 

9. Generate ).,0(~,...,,and),0(~,...,, 2
21

2
21 µµ

σσ YsYs NcccNbbb  

10. Generate iYY
b

i
+= )0()0( µµ ,  the mean of  Y for the ith strain when 0=T . 

Generate iYY
c

i
+= )1()1( µµ ,  the mean of  Y for the ith strain when 1=T . 

11. Generate the error terms using multivariate normal distribution with a covariance matrix. 
12. Then generate the potential outcomes of 'Y s so that 
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where β is fixed. Since there is no interaction between T and Z, the first and fourth lines have  

the same slope but different intercepts. The second line has the same slope and intercept as the  

first while the third line has the same features as the fourth. 

6.4 Results and Discussion 

In design 1 for each simulation data set, five cases were applied to the data. Cases 1 and 2 

use data that are typically observed in a study of mediation effects, and cases 3, 4, and 5 use 

terminal measures data. The five cases are: (1) apply Baron & Kenny to the observed data 

without strain in the model (design1.obs), (2) apply Baron & Kenny to the observed data with 

strain in the model (design1.obs.s), (3) apply Baron & Kenny to the observed average data (that 

is, the terminal measures are estimated using observed averages of Y & Z ) (design1.avg), (4) 

apply the Baron & Kenny to the imputed data without strains (design1.imp), and (5) apply the 

Baron & Kenny to the imputed data with strains (design1.imp.s). Figure 6.5 shows the boxplots 

for all five cases for design 1. 

The second box plot shows that the mediating effect can be estimated when the Baron & 

Kenny  approach was applied for the observed data in a model that included strains. This is, in 

fact, the correct model. The first boxplot cannot estimate the mediating effect, eventhough there 

are no terminal measures data. This is because the strain variable is a highly significant blocking 

variable and, when it is not included in the model, the model cannot detect a mediating effect. 

Boxplots 3, 4, and 5 reflect estimated mediating effects using terminal measures data (i.e., cases 

3, 4, and 5 above). As can be seen, the mediating effect cannot be estimated in any case because 

the mice are experimental units and there is no information in terminal measures data regarding 

the partial correlation between Y and Z, given strain. One can see from case 5 that the variability 

in estimates is much less using imputed data with strain in the  model, again indicating strains 

usefulness as a blocking variable even though the mediating effect cannot be identified.   
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Figure 6.5   Plots for Design 1 for Cases 1 – 5. The true mediating effect is equal to 5. 

 

Design 2:  We use the similar steps as above with some modifications to generate the potential 

outcomes, observed data & terminal measures for the design 2. In design 2 for each simulated 

data set, five analyses were applied to the data. Again the first two cases used data that are 

typically observed in a mediation analysis, and cases 3 – 5 use terminal measures data. The five 

cases are: (1) apply Baron & Kenny to the observed data without strains (design2.obs),  (2) apply 

Baron & Kenny to the observed data with strains (design2.obs.s), (3) apply Baron & Kenny to 

the strain level observed average data (that is, the terminal measures are estimated using 

observed averages of Y & Z ) (design2.tm.avg), (4) apply the Baron & Kenny to the imputed data 

without strains(design2.tm.imp), and (5) apply the Baron & Kenny to  the imputed data with 

strains (design2.tm.imp.s).  Figure 6.6 shows the boxplots for all five cases in design 2. 
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Figure 6.6   Plots for Design 2 for cases 1 – 5. The true mediating effect is equal to 5. 

 

In design 2, strain is the experimental unit and the mice are pseudoreplicates. This allows 

for estimation of the mediating effect with or without terminal measures as seen in the boxplots 

for cases 1, 3, and 4. The assumption needed is that the treatment is acting at the level of the 

group, here strain. If strain is put into the model as was done in cases 2 and 5, then the mediating 

effect cannot be estimated. In other words, the mediating effect is being explained by strain, and 

the model cannot distinguish a mediating effect from a strain effect. Still, if one can assume that 

a treatment acts on the level of a group of units, then one can proceed with mediation analysis 

using terminal measures data. This assumption may be more plausible in certain settings, such as 

applying a treatment to a pot of multiple plants, or a litter of mice.   

In  brief, for design 1 the estimation of a mediating effect does not work for terminal 

measures data regardless of whether  strain is included in the model since there was no 

information regarding partial correlation between Y & Z, given strain. But in design 2, with 

strains as experimental units, the estimation procedure works for terminal measures data. 
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Chapter 7 - Future Work 

 7.1 Summary of Dissertation 

Some background of mediation analysis was introduced in chapter 1, and some 

hypothetical examples and the motivation of the study were discussed. In chapter 2, under the 

literature review, the past work done by many researchers was discussed and more importantly, 

the most popular approach of estimating average mediating effect, that is Baron & Kenny 

approach was introduced. The main assumption made was no interaction between treatment and 

the mediator. The potential outcomes framework for the causal effects was extended to the 

mediating effects. The total, direct and indirect effects were introduced and the relationship 

among them was established, based on the potential outcomes framework.  The concept and the 

past work done on treatment heterogeneity were introduced. The mediation plot for the average 

mediating effect was described for a dichotomous treatment variable.  

In chapter 3, the completed work done for the individual mediating effects for the 

preliminary exam presented. The mediation plot was extended to the individual mediating plot to 

describe the relationship among the individual total, direct and indirect effects.  Using the 

individual mediation plots, sources of variability of the total effect across individuals was 

demonstrated. The variability of individual mediating effects, 

[ ])1(2)()( )0()1()0()1()0()1(

222222

ZZZZZZBBBDIIE Z
ρσσσσµσσµσ −+−++=  was formulated based on the 

estimable and nonestimable quantities. Upper and lower bounds of the variability of individual 

mediating effects were shown for three different cases. Then the mediating heterogeneity or 

subject-mediator (treatment) interaction was defined. In chapter 4, the completed work for 

heterogeneity of individual indirect effects was discussed and in chapter 5, testing for qualitative 

interactions was illustrated using a simulated data set. In chapter 6, a new concept which was 

called terminal measures data was introduced and a simulation study was conducted. Two 

designs were used to conduct simulation studies. Steps of generating potential outcomes, 

observed data and terminal measures data were described in detail and finally the results and 

discussion were presented.  
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 7.2 Open Questions and Future Directions  

1. Throughout this study no interaction between ZT and  for an individual was 

assumed. This cannot be directly tested at the level of the individual. However, such 

an interaction can be investigated at the population level. Is an estimated ZT ×  

interaction that is statistically significant evidence that this interaction must occur at 

the level of some individuals? 

 

2. Are there improved imputation methods for terminal measures, perhaps in cases 

where Y and Z could be observed for at least a few units? Or if one had some prior 

knowledge regarding the partial correlation between Y and Z given a covariate, could 

this knowledge then be incorporated into the imputation procedure thereby allowing 

mediation analysis at the level of an individual? 

 

3. Illustrate the size and power of Union-Intersection test, particularly, relaxing the 

assumptions that jβ̂  and 
jZDµ̂  are independent. 

 

4.  Study the distributional properties of estimated jIE  across subsets. 
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