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Abstract

Researches in the fields in science and statisttes go beyond the two-variable cause-
and-effect relationship, and also try to understahdt connects the causal relationship and what
changes the magnitude or direction of the caudatioaship between two variables, predictor
(T) and outcome Y).

A mediator (Z) is a third variable that links a cause and aactffwherebyl causes the
Z andZ cause¥. In general, a given variable may be said totioncas a mediator to the extent
that it accounts for the relation between the mtediand the outcome (Baron and Kenny, 1986).

The initial question regards the appropriate charaation of a mediation effect. Most
studies, when comparing one or more treatmentssfocuan average mediating effect. This
average mediating effect can be misleading whenntbdiating effects vary from subject to
subject in the population. The primary focus ofstmiesearch is to investigate individual
mediating effects in a population, and to defineadance of these individual mediating effects.
A concept called subject-mediator (treatment) axtgon is presented and its role in evaluating a
mediator’'s behavior on a population of units isdgd. This is done using a framework
sometimes called a counterfactual model. Some camexperimental designs that provide
different knowledge about this interaction term anedied. The subgroup analysis is the most
common analytic approach for examining heteroggr#itnediating effects.

In mediation analysis, situations can arise whtendY cannot both be measured on an
individual unit. We refer to such data as termim@asures data. We show a design where a
mediating effect cannot be estimated in terminahsnees data and another one where it can be,
with an assumption. The assumption is linked toide@ of pseudo-replication. These ideas are
discussed and a simulation study illustrates tlseieis involved when analyzing terminal
measures data. We know of no methods that arerntlyrravailable that specifically address

terminal measures data.
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Chapter 1 - Introduction

The cause-and-effect relationship between two blesa predictor T) and outcomeY),
has been a focus of much research in fields ohsei@and statistics. The top panel of Figure 1.1
graphically illustrates the causal effect Dfon Y. Testing causal hypotheses not only verifies
researchers’ substantive theories around a phermmbuat also answers practical questions
about whether an intervention or treatment proghas the expected effect if a causal relation
exists (Wu et al. 2008). Researches in this fidtdnogo beyond the two-variable cause-and-
effect relationship and also try to understand wt@inects the causal relationship and what
changes the magnitude or direction of the causalisaship between two variable¥, and Y .
There are several tools that engage with thesdegnizz

Mediation in its simplest form represents the additof a third variable,Z, to this
T - Y relation wherebyT causes the mediatoZ , and Z causesY, soT - Z - Y. A
mediator is a third variable that links a cause ancffect. In general, a given variable may be
said to function as a mediator to the extent thatcounts for the relation between the predictor

and the outcome (Baron and Kenny, 1986).

/'

Figure 1.1 Top panel: The Causal Effect ofT on Y. Bottom panel: Mediated Relationship

T Y

v

among the variables T = Predictor, Z = Mediator, Y = Outcome)

The primary focus of this research is to investgadividual effects of mediation that
explains the process of “why” and “how’” a causad-effect happens (Baron and Kenny 1986;

Frazier et al. 2004). Hence, a mediation analysesrgts to “identify the intermediary process



that leads from the independent variable to theedéent variable” (Muller et al. 2005, 852-
863). In other words, in a simple mediation motted, independent variable is presumed to cause
the mediator, and in turn, the mediator causes déygendent variable. For this reason, a
mediation effect is also termed an indirect effesyrogate effect, intermediate effect, or
intervening effect (MacKinnon et al. 2002). Figurd shows the mediated relationship among

the variables and possible indirect and directotdte

1.1 Research Examples Involving Potential Mediatinyariables
Example (1): The Job Search Intervention Study @@B

JOBS Il is a randomized field experiment that inigedes the efficacy of a job training
intervention on unemployed workers. The program dissigned not only to increase

reemployment among the unemployed but also to ex@dre mental health of the job seekers.

In the experiment, unemployed workers receivedes@eening questionnaire and were
then randomly assigned to treatment and controuggo Those in the treatment group
participated in job skills workshops in which peipants learned job search skills and coping
strategies for dealing with setbacks in the jobrdegrocess. Those in the control condition
received a booklet describing job search tipsollov-up interviews, two key outcome variables
were measured: a continuous measure of depressivet@ams based on the Hopkins Symptom
Checklist and a binary variable, representing wérethe respondent had become employed.
Researchers who originally analyzed this experineygothesized that workshop attendance

leads to better mental health and employment outsdoy enhancing participants’ confidence in

their ability to search for a job. In the JOBS Hta, a continuous measure of job search self
efficacy represents this key mediating variablee Tdata also include baseline covariates
measured before administering the treatment. Thst maportant of these is the pretreatment
level of depression, which is measured with the esamethods as the continuous outcome
variable. (Imai et al. 2010).

T: Those in the “treatment group” participated in gilils workshops in which participants

learned job search skills and coping strategiesléating with setbacks in the job search

process. Those in the “control condition” receiagdooklet describing job search tips.



Z: Job search self-efficacy, a continuous variable.
Y,: measure of depressive symptoms based on the koBkimptom Checklist, a continuous
variable.

.. whether the respondent had become employed, aybiagable.

Example (2): A study of nursing interventions fasfoperative pain

This problem is an example about multiple treatmesatd multiple mediators. The
primary objective of this trial was to compare forandomized interventions (‘music’,
‘teaching’, ‘combination’, and ‘control’) on thedaction of pain after surgery. Patients assigned
to the music intervention were provided with a nusipe; the teaching intervention involved a
tape of instructions for the use of intravenousigmétcontrolled opioid analgesia; the
combination involved the joint use of music andcteag; and patients assigned to control
received standard care. Among the primary respeas@bles was level of ‘sensation’, the
patient’s report of their sensation of pain at #ite of the surgery, using a 100-point visual
analog scale. Assessments were made at the begianthend of five 20-min ‘pre—post’ tests
during the first two days following surgery. Intemliege variables, measured during each pre—
post test period, included level of patient-corédlanalgesia (‘pca’), and whether or not the
patient was asleep at the time the nurse came thégpost-experiment assessment (‘sleep’)
(Albert, 2008). Mediation analysis via potentialt@ames models. Statistics in Medicine, 27,
1282-1304).

In our usual notation,

T: ‘music’, ‘teaching’, ‘combination’, and ‘control’

Z, : level of patient-controlled analgesia (‘pca’),antinuous variable.
Z,: whether or not the patient was asleep (‘sleenary variable.
Y: level of ‘sensation’, the patient’s report ofith@nsation of pain.



1.2 Motivation of Research

This research was motivated in part by Gadburylei{2901) who stressed that an
evaluation of the effect of treatment relative t@amtrol often focuses on estimating a mean
treatment effect; however, the mean treatment effexy be misleading when the effect of the
treatment varies widely across subjects. In tpaper they proposed methods for evaluating
treatment heterogeneity, which was called subjpeettinent interaction. It was shown that
estimators for subject-treatment interaction aresigiwe to an inestimable correlation parameter.
In addition to papers by Gadbury and colleaguesulnject-treatment interaction, | happened to
read two important papers which are related to alamediation analysis. One paper was titled
“The Moderator-Mediator Variable Distinction in SalcPsychological Research: Conceptual,
Strategic, and Statistical Considerations” (Barod Kenny, 1986). This paper introduced what
is possibly the most popular approach of evaluatmggliating effect and is often referred to as

the “Baron & Kenny Approach”. The other paper isétiation analysis via potential outcomes
models” (Albert, 2008) This paper defined a mediating effects using a mi@te outcomes

framework which has become a popular methodologygdnsal inference. More discussion of
potential outcomes is in chapter 2. Relating mexhatnalysis to the concepts of subject

treatment interaction led to the core ideas in @sgarch topic.

1.3 Outline of the Dissertation

An important issue is the assessment of differencesnediating effects among
individuals. Clearly, a necessary condition foraasiableZ to be a mediator of the effect dfon
Y is thatZ precedes the outcomé& Gadbury et al. (2010) had discussed the subjeatment
interaction or individual treatment variation. Wetend this discussion to when a mediator is
present. That is, the individual treatment effégittincludes mediation will be discussed and
explored using mediation plots. Some completed wookn the preliminary exam will be

presented in chapter 3.

Chapter 3 presents individual mediating effects defihes subject-mediator (treatment)

interaction, S-M(T). In chapter 6, the terminal s@&@s are described in detailed and the



methods of handling terminal measures are discusstter. Then a simulation study discusses

topics such as pseudoreplication that plays awblen analyzing terminal measures data.

In chapter 5, the methods of estimating the vagaoicindividual indirect effects for a
two sample completely randomized block design weHtiisjoint blocks andh-individuals for
each block are discussed. The estimates of thebikiy of individual indirect effects are
present. Evaluating treatment effects within stdbeépatients plays a major part of the analysis
of many major clinical trials. In order for thenmusion to be broad based, and to achieve
reasonable sample sizes, the study design ofteludex a number of patient subsets,
corresponding to different clinical centers or &dipnt subsets defined by prognostic factors. As
a result, some variation in the estimates of treatneffect among subsets is expected. In chapter
6, we explain the subset analysis concept to etalbaterogeneity of mediating effects and
extend Gail and Simon (1985) test for qualitatiwgeiaction(Ql) on treatment effects to QI on

mediating effects. Chapter 7, summarizes the rekseand discusses possible future work.



Chapter 2 - Literature Review

When we search the phrase “mediation analysistethee more than 500 papers in web
of science search engine. When we use the wordiatiegl effects”, there are more than 1,000
research papers in many different areas. Thesarm®s have used various designs to analyze

mediating effects.

Although several design frameworks for studying ragon effects have been proposed
to date, the classic works by Kenny and colleagBason and Kenny 1986; Judd and Kenny
1981; Kenny et al. 1998) appear to remain the mogular approaches.

2.1 Baron & Kenny Approach

Perhaps the most popular approach to mediatiorysinak thecausal steps approach.
Although the method can be traced in some form hacthe 1950s, it was made popular in
1980s by a very influential article by Reuben Baamal David Kenny published in tideurnal
of Personality and Social Psychology. For this reason, the causal steps approach Imas tmbe
known as theBaron and Kenny method.Historically, the vast majority of published medbat
analyses are based on the logic of the causal afgp®ach, and this approach remains widely
used today. Baron and Kenny (1986) proposed a staft approach in which several regression
analyses are conducted and significance of theficeits is examined at each step. In their
article, Baron and Kenny presented a simple, regresbased method requiring no specialized
software, which has had a huge impact, i.e., te ddias been cited over 19,000 times (Web of
Science). However, there are theoretical and eogbireasons for concern about the application
of this method of assessing mediation. The 198@larfocused on the distinction between
moderation and mediation and did not include extendiscussions about the complexities of
path modeling and structural equation modeling ($E& which mediation analysis can be
considered a special case.

Figure 2.1 shows a case in whithcausesY both directly and indirectly (through). In
more complex models of such relations (e.g., welkdiine covariates foZ or Y), the paths

betweenT ,Z, and Y are not estimated by the same simple and partigession coefficients



depicted, but in every case there are coefficidms correspond toa,S,y andy’, so we use
this notation to represent either case. Becaustheflinear model framework and resulting
algebraic relations among regression coefficieWsidht, 1934), y =af +y'. If a model such
as that depicted in Figure 2.1 is true, the emgicoefficients describe causal effects as follows:
¥y describes the direct effect @f on Y, not acting throughZ , and a8 describes the indirect

effect of T onY throughZ. The total effect off on Y is defined as the sum of the direct and

indirect effects;y describes the total effect af on 'Y ( Lois, 2009 ).

T Y
Independent (1) Total Effect, y Outcome
Variable Variable
Z
Mediator
Variable

(2) Indirect Effect, (3) Indirect Effect, 8
T R Y
Independent Direct Effect, ' Outcome
Variable Variable

Figure 2.1 The path diagram of the single mediatio model.

The Baron & Kenny (1986) regression equations ar@lows:

Y, =c, +yT +¢&, (1) (Total Effect)

Z =c, +aT, +&, 2

Yo Sty T +BZ +g ©)

} (Mediation Model )

where thec's are the intercepts; the epsilons are the modaiserand thea, 5,y and )’ terms

are the regression coefficients capturing the imglahips between the three focal variables. The



parameterg and )/ relate the independent variable to the outcommbig; but)’ is a partial
effect adjusted for the effect of the mediat@, The parameter relates the independent
variable to the mediating variable, aptl relates the mediator to the dependent varialjlesteti

for the effects of the independent variable.

Baron and Kenny (1986) described mediation amalysifour steps. Step 1 involves
testing the significance of to determine that there is a relation to be medialesignificant,
one tests the significance af (step 2) to demonstrate a relation betw@&emndZ . In step 3, a
significant £ shows that there is a relation betwegnand Y not accounted for by . Once

steps 2 and 3 are passed, evidence consistenawitinzero indirect effect has been obtained;
the model is consistent with either partial mediaticomplete mediation, or suppression. In the

first part of Step 4, the observed valuesyofnd )/ are compared; if/ is smaller thany, the
data are consistent with mediation; ¥ is larger thany, the data are consistent with

suppression. No significance test is necessarythar step. If the data suggest that either

mediation or suppression is present, one examiresignificance ofy/ to determine if the data
are consistent with partial versus complete meatiafihe second part of step 4);)ifis smaller
than y but significantly different from 0, the data arens@stent with partial mediation. If is

smaller thany but not significantly different from 0, the dataeatconsistent with complete

mediation.

MacKinnon et al. (2002) assembled, from a varidtgisciplines, 14 methods for testing
a mediating effect of an intermediate variable. yTloeganized these approaches into three

categories: ‘causal steps’, difference in coeffitsery — ', and product of coefficientsy.

While MacKinnon et al. made some recommendationsedbeon their simulation study of
coverage and power, they noted that the ‘diveditsnethods . . . indicates that there is no firm
consensus across disciplines as to the definiti@nontervening variable effect’. (Albert, 2008,
1282-1304).

Among the methods assembled in MacKinnon et aDZ20there are two popular ways

of calculating the mediated effect; the differenceoefficients & the product of coefficients.



Difference in Coefficients. Mediating Effect ¥ — )/'; reflects how much of the relation between
the independent variable and the dependent vaiiglebeplained by the mediation.

Product of Coefficients: Mediating Effect =af3; reflects how much a one unit change in
T affectsY indirectly throughz . By solving the equation®),(2) and (3), a mediating effect can

be estimated.

One of the assumptions of the mediation equati@seribed above is that the relation
from the mediator to the dependent variable issmae across levels of the independent variable,

that is, theZ to Y relation does not differ across levels®f A nonzeroTZ interaction effect

suggests that the independent variable altersetaéan between the mediator and the dependent
variable. Under the assumption of no interactiotwben the independent variablg, and the

mediator,Z, af =y -y'. The existence of the interaction also means ttimtrelation of the
independent variable to the dependent variablemifacross levels of the mediator. If th&

interaction is statistically significant, it is iragant to explore the source of the significant

interaction with contrasts including simple effeatsd plots. If theTZ interaction is statistically

significant, the mediating effect is different fromg , and this will be discussed later.

The standard errors of estimated mediating effease estimated using Goodman’s

(1960) unbiased solution that seeks to estirq,énéa; +p%0, -o,0, . Let a, b, candc’ be the

estimators ofa,f,y andy' respectively. The estimated mediating effect wobédab (or

c-c') and the estimated standard error of estimates|dvie \/azsf +b*S? -S°S?

(McKinnon et al., 2002 ), wher&? and S? are the estimated variances of parameter estimates

aand brespectively.

The above equations()),(2) and(3) can be modified when a single baseline

covariate X , is present as follows:

Y, =c,+yT, +nX+¢, (4) (Total Effect)
Z =C +aT +nX+¢g, )

, , (Mediation Model )
Yo SC YT+ BZ +nX+e, 6)



The formula for the mediating effect does not clearimyt the value of the mediating effect may
change when a single baseline covariate is prébeat, 2010).

The appeal of this Baron & Kenny approach is thatléarly lays out the intuitive,
structural relationships among treatment, mediaémg outcome, and can be applied with
straightforward regression analyses. What has lwedys been clear, nor explicitly stated, is
whether traditional mediation analyses lead to ahurgerpretations of mediation parameters.
With certain assumptions the traditional approachmediation can lead to causal interpretations
(Imai et al. 2010), but these assumptions are aatifi@egent. In light of these assumptions,
MacKinnon (2008) commented on traditional mediatmalysis: "In many situations, the results
of a mediation analysis are descriptive rather tingplying causal relations" (p. 67). Over the
last 20 years there has been a parallel line okkvaer mediation in the biostatistical and
epidemiological literatures that is firmly rootedthin Rubin’s causal model framework (Rubin,
1974), including principal stratification (Gallopg al. 2009) and structural mean model, SMM
(Robins & Greenland, 1992). Moreover, Pearl (2003 made notable contributions to causal
graphs and the identifiability of direct and indireffects. Notably, these alternative approaches
provide alternative estimation methods that relay kssumptions necessary for the traditional
approach, while at the same time introducing tbain set of assumptions. This study uses the
traditional approach of Kenny and colleagues usiRgbin's potential outcomes (i.e.,
counterfactual framework), which is widely usedthe statistical literature and is described
below.

2.2 Potential Outcomes Framework

Based on the early work on experimental design eyman (1923), Rubin (1974, 1986)
formalized the counterfactual model for causal wsialof data from randomized experiments
and observational studies. In statistics, the malelften referred to as the potential outcomes
framework which is now commonly used in statisfmscausal inference as well as in the fields
of epidemiology, sociology, psychology and politicacience. The potential outcomes
framework is sometimes called the ‘Rubin Causal 8#/o(RCM) (Holland, 1986), but it has
roots in the context of randomized experiments watihdomization-based inference in the work
of Neyman (1923) and Fisher (1925) (Rubin, 20083gusal inference using potential outcomes

is sometimes called causal inference involving tedactuals.
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The core of the counterfactual model is as follo&sppose that each individual in a
population of interest can be exposed to two adiera treatments which are referred to as
treatment and control. The key assumption of thant®factual framework is that each
individual in the population of interest has a moi@ outcome under each treatment state, even
though each individual can be observed in only toeatment state at any one particular point in
time. These outcomes are termed counterfactuausemnly one outcome can be observed for
a given individual.

As formalized by Rubin (1974), in the potential @mes framework, the effect of some

treatment,T. = 1(vs. a control,T, = ( on an outcomey, or an individual can be expressed as
the difference between two potential outcom¥s) —Y,© where Y,© is the value of the

outcome the individual would experience if exposethe treatment, ang @ is the outcome the

individual would experience if exposed to the cohtiThe fundamental problem of causal
inference (Holland, 1986) is that only one potdrdistcome can be observed for each person at a

given time.

Because only eitherY,® or Y® is observable, even randomized experiments cannot
identify this individual-level causal effect. Thussearchers often focus on the identification and
estimation of the average causal effect (ACE), wtig defined ase(Y,"” -Y.©), where the
expectation is taken with respect to the randompdiag of units from a target population. If the
treatment is randomized, théh is statistically independent of potential outconfesmally, we
write Y, Y@ O T.. When this is true, the average causal effect lmanestimated by the
observed mean  difference  between the treatment amdntrol  groups,
E(Y,® -Y,?) = E(Y®|T, =1) - E(Y,?| T, = 0),which is the familiar result that the difference- i
means estimator is unbiased for the average cafifgait in randomized experiments ( Imai,
2010).
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2.3 The Extension of Causal Effects to Causal Mediatiokffects

In this section, the counterfactual framework aisa inference, which is widely used in
the statistical literature, is explained for thedmadéon analysis. Although there are many
situations where the treatment, mediator and thearese can be either binary or continuous, we

use a dichotomous treatment variable=0,1), a continuous mediatorZ(), and a continuous

responseY ) throughout this study.

Most of the published research in causal inferdacases on relationships between two
variables, T (Treatment) andyY (response), and much has been written about twablar
relations, including conditions under whidh can be considered a possible caus& ofThese
conditions include randomization of units to valeésT and independence of units across and
within values of T . Mediation represents the addition of a third afale to thisT - Y relation

as shown in Figure 2.1.

The counterfactual framework and notation have begtended to define causal
mediation effects (Albert, 2008)Ve useZ, to denote the observed level of a mediating véiab
There exists two potential valueg® and Z®, only one of which will be observed. In causal

inference, the potential outcomes were only a fonobdf the treatment, but in causal mediation

analysis the potential outcomes depend on the neoeslias well as the treatment variable.
Therefore, we useY, (T =t, Z =2z(t)) =YY (Z2")to denote the potential outcome that would
result if the treatment and mediating variablesaéqu=t, Z = z(t) respectively. The observable
potential outcome is eithe¥®(Z®) or Y©(Z2©) which would be realized under treatment or

control conditions, respectivelyThere are two unobservable potential outcome§,(z®),
which refer to the potential outcome for individuavho is assigned to the control condition but
takes on a value of the mediator that would beizedlunder the treatment condition and

Y® (@), which refer to the potential outcome for indivéduwho is assigned to the treatment

condition but takes on a value of the mediator wald be realized under the control condition.

We now define the individual level causal mediatio effect as
YOZP) =Y (Z?) fort =01 Thus, the causal mediation effect representsnitieect effect

of the treatment on the outcome through the medjatariable. ie average causal mediation
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effect (ACME) can be defined ag[(Y"(Z®)-Y"(Z”)]fort=01(Imai K, 2010 ). The
potential outcomes framework makes it clear thist gmantity involves counterfactual outcomes

that can never be observed suchrd{z ).

Some assumptions are needed when estimating ntedédfects.
(1) Stable Unit Treatment Value Assumption (SUTVA

A common assumption for causal inference is Rulstable unit treatment value
assumption (SUTVA), which includes two sub-assuomsi a) “non-interference” which
means that one unit’'s intervention will not affether units potential outcomes, and b)
“no treatment variation” which means there are nutltiple versions of the same

treatment. Thus, there is only one set of potentiaddomes for each unit (Rubin, 2005).

(2) Sequential Ignorability

The second assumption needed is the randomizatssumgtion (or ignorability
assumption in an observational study). This assmpmeans that the observed
intervention assignment is independent of the p@lemediator defined by different
levels of intervention and all potential outcomesfimed by different levels of
intervention and mediator. The ignorability versi@of this assumption assumes

conditional independence given baseline covari@gfes

Based on the potential outcomes we describe thé thtect and indirect effects and their
relationships.

2.4 Total, Direct and Indirect Effects

Robins and Greenland (1992) used the terminology€e’pand "total" for direct and
indirect effects because there are different wdydeoomposing an overall effect into direct and
indirect effect components. Albert (2008) useddbecepts of a potential outcome framework to
develop a causal or manipulation model framework reediation analysis. Using this
framework, he provided new definitions and measofasediation for multiple treatments and
mediators based on the concepts of "pure" andI™tettects though he did not specifically use

those terms. Effects of manipulations are modeladhe linear structural model. The methods
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were applied to data from a study of nursing intations for postoperative pain. They have
discussed the cases of more than two treatmenpgrand an interaction among mediators. But,
they have not considered the interactions betwessinhent and the mediator or individual and
the mediator.

It is challenging to understand the concepts bethirdelationship among direct, indirect
and total effects without a valid decompositiorht@que. My research being presented here was
helped by a paper published by VanderWeele (2011 @efined the total, direct and indirect
effects and decomposed total effect into direct amdirect effect and also identified the
important characteristics of those effects. In asual notation, total effect of on Y can be
defined asTE =Y®(Zz®)-Y©(z© ) Direct effects: that part of the exposure effgbich is
not mediated by a given set of potential mediators.

The natural direct effects can be defined as

Total Direct Effect TDE =Y®(Zz®)-y©@(z® )
Pure Direct EffectPDE =Y®(2©@) -y ©@(z©@)
Indirect / mediated effects: that part of the expesffect which is mediated by a given set of

potential mediators.

The natural indirect effects can be defined as
Total Indirect Effect TIE=Y®(Z®)-Y®(z®)
Pure Indirect EffectPIE =Y @ (Z2®)-Y@(z© )

If there is no interaction between the treatmeut thie mediator then we can show that

TDE = PDE and TIE = PIE whereas if there is an interaction then

TDE # PDE and TIE # PIE.
Decomposing the total effect into indirect effemtsl the direct effects gives,

TE =Y(l)(z(l)) _Y(O)(Z(O)) zy(l)(z(l)) _Y(l)(z(O)) +Y® (Z(O)) +Y(O)(2(O))
- [Y“’(Z(l)) YO (Z(O))]+ [Y‘l)(Z‘O)) +Y‘°’(Z(°))]
=TIE + PDE
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Alternatively,

TE :Y(l)(z(l)) _Y(O)(Z(O)) :Y(l)(z(l)) -Y© (Z(l)) +Y(0)(Z(1)) +Y(0)(Z(0))
- [Y(l’(z(l)) —Y‘O’(Z(l))]+[Y‘°’ z®) +Y‘°’(Z(°))]
=TDE + PIE

Regardless of whetherTax Z interaction term is present or not,
TE =TIE + PDE =TDE + PIE.

2.5 Mediation Plot

The mediation plot is used to present diagrams hvBitow the structural relationship
between the independent, mediator, and dependeables. Here we discuss how to construct
plots of the mediated effect for a study with ahdimmous treatment variable (e.g., random
assignment to a treatment and control group), draovus mediator, and a continuous outcome

variable.

The data are plotted withi on the vertical axis and on the horizontal axis, as shown in
Figure 2.2. Next, Equation (1) is plotted for thalues of T (i.e., 0 and 1), such that a
horizontal line (black colored) is placed &t=c,, corresponding tol =0, and a second
horizontal line is placed a¥ =c, +y, corresponding toT =1. The distance between the
horizontal lines represents the total effect ®on Y, y. Then, Equation (2) is plotted for both
values of T, resulting in a vertical line (blue colored) dt=c, and a second vertical line at
Z =c, +a. The distance between the two vertical lines sgmts the treatment effect on the
mediator and is equal to . Finally, Equation (3) is plotted at both valudsTo. The slopes of
these parallel simple regression lines (red coloeed equal tog. Thus, the mean indirect
effect can be written asB = B(u,., — 1,,)- Plots of the mediated effect may be useful to
investigate the distributions of data for outliarsl to improve understanding of relations among
variables in the mediation model (Fritz et al, 201®ritz et. al (2010) had discussed how to

draw a mediation plot when the treatment variableontinuous and when the interaction term is

present.
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avay =C + )T+ [BZ(Equation3for T =1)

Y=c, +)yT+[Z(Equation3for T =0)

(IUZ(O) ’ILIY(l)(Z(O)))

Y =c¢, + y(Equation 1for T :1)| \

(,uzu) ’/'Iy(l)(z(l)))

y Total Effectfy

X
la<y -y Indirect Effect|

Y =¢, (Equation1for T =0),
»

(.uzun J Y(O)(Zw)))

(:uz(l) !,uY(O)(Zu)))

|Z =c¢, (Equation 2 for T = O)b

4.0 4.5 RN

55

Z1

; |Z =c, +a(Equation 2 for T :1)|
%ﬂ’ 6.5 7.0

Figure 2.1 Plot of the mediating effect for a dichtomous treatment variable. The open

circles in the plot represent means for which no da are available to directly estimate, and

the closed circles do have such data observable.

2.6 Individual Mediating Effects

The published research on heterogeneity of medjaifects seems rare and we did not
find any that discuss the concepts in this disserta Before we discuss heterogeneity of
mediating effects, the past work done on the hgwreity of treatment effects should be
recalled. Gadbury, Allison, and Albert have pastkvocused on defining true individual effects

of a treatment an estimating quantities descrilbiveg variability of a treatment’s effect across

individuals in a population.
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2.6.1 Treatment Heterogeneity

When we compare a treatmenf,=1, and a control,T =0, under a two sample
completely randomized design, the value of an on&wariabley , is measured at a particular
point in time. This outcome may be quantitativedarhotomous (i.e., success or failure) and
assume that the outcome variable s a quantitatiee IBor a subject receiving treatment T = 1,
Y® is observable, and for a subject receiving conffot 0, the outcomeY @ is observable. At
a particular time, only one of two potential out@sn(Rubin, 1974) in the bivariate pair
(Y® Y©)is observable because of the “fundamental problémaasal inference”(Holland,
1986).

Figure 2.3 shows the potential outcomes fdisubjects in a study and the observed

outcomes post treatment assignment.

@ )
A Y@ Yl )
1 1 0)
? \A
Yz(l) YZ(O)
O TR m - | .
! ! o) (0)
® ©) ) Yna
YO v N
N !

Figure 2.1 Potential outcomes and the observed aames for N subjects for two sample

completely randomized design.

The set ofN potential outcomes has the form given in Figurg Qeft) that, after
treatment assignment produces observed outcontae ébrm shown (right), and where the “?”
represents an unobserved potential outcomes.

The true individual treatment effect is defined aB =Y® -Y©@ which cannot be
observed for any subject. If evaluatikgreatment levels, the potential outcomes wouldabe
vector containingk outcomes (rather than two), and only one of kheutcomes would be
observable for a given subject at a particular tifhas the average treatment effe&(D),
which is usually of interest. But, we are interdste the varianceVar (D), that quantifies the

degree of variability of individual treatment effec
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If the g2 =Var(D) >0then the individual treatment heterogeneity is @nesGadbury
(2001). This is also called Subject-Treatment btBon which cannot be directly estimated

2 _ 42 2
becausesy =0, + ., = 20,,0, 0L, 0

and there is no available information abgt, ¢, in

observable data; that is, it is nonestimable.

Though o2 cannot be directly estimated using observed datands for it can be

derived, and these can be estimated. Observecat®nt moderating variables can be used to
tighten bounds or to impute missing potential onotes, thereby providing naive estimates of
individual effects. Gadbury and lyer (2000) and Ray et al., (2001) considered a two sample
completely randomized design with covariates, Gaglai al., (2004) considered a matched-

pairs design, and Albert et al. (2005) used a lddcllesign to estimate or bound individual

treatment heterogeneity parameters in randomizets.trGadbury (2010) also presented the
framework and some initial results for a two peravdss-over design where, conceptually, there
were two individual treatment effect variabld3, as defined above, one for each time period.
Poulson et al., (2012) added results comparingviddal treatment heterogeneity to subset

interaction, cross-over designs, and overlap ofgmaf density curves.

In chapter 3, we extend the concepts of treatmegterbgeneity to mediating
heterogeneity when the intermediate variable isgmein the causal relation. This is a main
objective of my research. There is another aspectealiation that was also considered as a part

of this work.

2.7 Terminal Measures

Situations can arise wherg and Y cannot both be measured on an individual unit.
Mouse and plant experiments are two examples winegsurement of requires terminating
the animal or plant and is to be measured at a later time. We refer tt slata as terminal
measures data. Another situation may be where xperienent focused on measurementzof
and the second on measuremen¥ofand interest is in combining the data sets tduata the

mediating effect ofZ onY.

In chapter 4, the Terminal Measures are describetbiail and the methods of handling
Terminal Measures are discussed further. Thenithelation study discusses the issues such as

pseudoreplication involved in analyzing terminalasres data. The tenpseudoreplication was
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coined by Hurlbert (1984, 190-191) to refer to "thee of inferential statistics to test for
treatment effects with data from experiments wlestleer treatments are not replicated (though
samples may be) or replicates are not statisticatlgpendent.” The context of his paper was

ecological field experiments, but pseudoreplicattan occur in other contexts as well.

When we search the term “terminal measures” oniiieal data” in mediation analysis
there was only one paper published by Makowskylef2@11). They have mentionedn®
psychiatric research, the costs of measuring th@atipa mediator or the outcome can be
prohibitive. The illustrated some extreme sampliegigns as methods for reducing study costs
by increasing power per subject measured on thee re@pensive variable when assessing
bivariate relationships. However, these designs reguire that the mediator and outcome
variable be jointly observable on at least somgeswb in the study. In terminal measures data
discussed herein, the mediator and outcome varablaever observable on the same unit in the

study.
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Chapter 3 - Defining Heterogeneity of Individual Indirect Effects

Although both individual and average causal effacesdefined in the potential outcomes
framework, most papers focus on learning abouatlegage causal effects. As mentioned in the
literature review, Gadbury, Allison, and Albert leapast work focused on defining true
individual effects of a treatment and estimatingamjities describing the variability of a
treatment’s effect across individuals in a popolatiin 2005, Steyer analyzed individual and

average causal effects via structural equation leode

But when we review the literature on individual saumediating effects, although both
individual and average causal mediation effectsdafened in Rubin’s framework to causality,
almost no efforts deal with developing designs lsuadiels to learn about variability of individual
mediating effects. In fact, it is not clear how d¢onceptualize heterogeneity in individual
mediating effects.

This study takes a first step in this directionthe first and general part, Gadbury et al ’s
concept of individual causal effects is extendeghlacing causal effects by causal mediating
effects. Based on this extension, in the second rmaimh part, the designs, assumptions and
models are introduced which can allow identificataf (1) the variance of the individual causal
mediating effects, (2) the nonestimable quantitiethe variance formula and (3) in some cases
the bounds for the variance of the individual chusediating effects.

According to Gadbury et al. (2010), that the effetta treatment will vary among
subjects is not surprising, nor is it a recent epcSubject-treatment (S-T) interaction is, as the
term implies, an interaction of specific subjectghwapplied treatment(s). The result of such
interaction is a variability of “individual treatme effects” or “individual treatment
heterogeneity” in a population of interest. Simla we can describe subject-mediator
(treatment) (S-M(T)) interaction as heterogeneftynediated ( or indirect ) effects of a treatment

across individuals in a population.

Before we discuss the S-M(T) interaction, an imgoattrelationship between the
mediating effects obtained by the Baron and Kerppr@ach and the individual indirect effects

based on potential outcomes should be derived.
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3.1 Individual Mediation Plot

The individual mediation plot is used to preserd #tructural relationship between the

independent, mediator, and dependent variablesaforindividual in a potential outcomes

framework. Again we consider a dichotomous treatrvaniable (e.g., random assignment to a

treatment and control group), a continuous mediatod a continuous outcome variable.

—Y=a,+bZ(whenT =0)
e J|==Y=a+bZ(whenT =1)

[(z®,Y®(z")):observable

=
Y(l)(z(l)) = - - .

v

Individual Direct Effect

— L3
[Individual Total Effect Inﬁiyidual Indirect Effect|

]

Y(°)(z(0))

v

[(Z°.Y(z™)):observable] [(Z®,Y(Z%)) :unobservable]

Figure 3.1 Individual Mediation Plot.

Figure 3.1 shows the mediation plot for an indiadu with the independent variable,

the mediatoZ on the horizontal axis, and the dependent variablen the vertical axis. The

four points are the potential outcomes and twahefrt are potentially observable and the other

two will never be observed for an individual. Amotitge observable outcomes, only one is

actually observed at a given time for an individdgch individual has a particular slope and

intercept as shown in the plot. When we consider itidividual plots, the slopes and the

intercepts are considered to be random variablgsayprobability distribution.
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3.2 The Relationship Between the Average Mediatingffects Obtained by

the Baron & Kenny Approach and the Average Indirect Effect defined for
Potential Outcomes

Now consider a structural relationship betweeninlkdependent, mediator, and dependent
variables for an individual in potential outcomesniework. For an individual
YO(ZP)=A +B Z" whereA ~(c; +),0,), B ~(8,0;) and A, 0B
Y(Z?)=A, +BZ"” where A, ~(c;,0; ) B ~(B,0;) and A, OB,
YO(Z)=A +BZ” whereA ~(c; +y,0,), B ~(8,0:) andA, 0B
Y2 (z")=A, +BZ" whereA, ~(c,,0,), B ~(B,07) and A, 0B
Based on this set up, the averages of individuedrg@l outcomes can be derived.
E(VY(Z") =E(Y®|2°) =E(A) +E(BZZ®) =(c, +¥)+BZ"

E(Y,*(Z) = E(Y,%|2) = E(A) +E(BZ°|Z) = (¢, +y)+BZ]
E(Y,2(Z) =E(?[2”) = E(A) +E(BZ"[Z) =¢, +BZ"
E(Y,?(Z") =E(Y,”|2") = E(A,) +E(BZ"(Z®) =¢, +BZ"

Note that the above expectations were taken camdition Z as is typically done in a
regression setting. In doing this, the above fauations represent the expectation of individual
potential outcomes that are then the same as tegieqs obtained from equation (3) in Chapter
2 for the Baron and Kenny approach under the tremtroonditions,T =0, T =1, and where
there expectations were taken with respect to ibwiltltion of a random error term in a
regression model. Thus the approach used heresagntte past approaches as far as means are
concerned. The above framework, however, allowsidiity in modeling sources of

heterogeneity in mediating effects, namely becatigs not a covariate but an outcome affected
by treatment.
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For each individual, the relationship among thewiadial total effect (TE), individual
indirect effect [IE) and the individual direct effectl{E) can be written in terms of potential

outcomes as follows:

ITE :Y(l)(z(l)) _Y(O) (Z(O)) :Y(l)(z(l)) _Y(l)(z(O)) +Y(1)(Z(0)) _Y(O)(Z(O))
- [Y(l)(Z(l)) —Y(l)(Z(O))]+[Y(1)(Z(°)) —Y(O)(Z(O))]
=B(Z-Z%)+(A-A)

=B(ZY -Z9)+G/,
® Dy _vy®O® (0)
whereB=Y (Z (1))_Y(O)(Z ) andG' = A - A,
z z
=1IE+IDE

where B is the “slope” random variable and tk& is the difference between the two intercepts,

which is the individual direct effect. The indivialuindirect effect isB(Z® —-Z®) and the mean
of an individual indirect effect would bg(1,., = 14,,) , which is the effect shown in Figure 2.2

that illustrates a mean effect.
3.3 Plots for lllustrating the Variability of Total Effect of Individuals

As in section 3.2, in terms of potential outcontes individual Total EffectlTE) can be
decomposed into the Individual Indirect EffettH) and the Individual Direct EffectiDE).
Thus, the mediating effect for an individual depemh the slopéB), the interceptéG' =the
difference between the intercepts) of its regresBies and the treatment effect on the mediator,
Z® -7, We investigate how the mediation plots can beHawedifferent individuals as
follows: Out of four quantities we fix two and vaone, and then observe the behavior of the
other. Next we find the functional relationshipweéen what we vary and observe. The following
table gives all the cases to be considered anthef each parameter.

As we are interested in observing the variatiototd! effect we focus only on the cases
(), (5) and (6). Table 3.2 shows hypothetical nuca¢ examples of calculating total effects,
indirect effects and direct effects for each case.
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Table 3.1 All cases for mediation plot when two pameters were fixed at a time

Cases
Parameters 1 2 3 4 5 6
Slopes fix vary vary fix vary fix
Intercepts fix fix vary vary fix vary
Total Effect vary fix fix fix vary vary
VA YA vary vary fix vary fix fix

Table 3.2 Hypothetical values for individual medi&on plots for two individuals.

A A B, A A TE IE DE
1 2 1 8-6=2 3 2 1

Case 1
1 2 1 9-6=3 4 3 1
1 2 0.5 8-6=2 2 1 1

Case 5
1 2 1 8-6=2 3 2 1
1 2 1 8-6=2 3 2 1

Case 6
-14 -18 1 8-6=2 -2 2 -4

In the Figure 3.2, two black colored horizontaleknrepresent the total effect, two blue
colored vertical lines represent the treatmentceftn the mediatorZ® -Z© and the two
sloped red lines represent the linear relationbbigveeny andZ under the treatment assignment
and the four blue colored dots are the four po&otitcomes. Each row in Figure 3.2 illustrates
cases 1, 5, and 6, respectively. The two colummesent effects for two individuals.

In case (1); Since

ITE=Y®ZY)-YO@Z?) =IIE + IDE = dope* (Z¥ —Z©) + (difference of intercepts),

the total effect is a function & ® —Z @, the treatment effect on the mediator becauseciepes
are fixed (that is direct effect is fixed ). Soiadlity in the total effects is a due to variatylin
indirect effects, slope* (Z® -z @), resulting from variance inZ® -zZ©®. In case (5),

variability in total effects is due to variability slopes as intercepts are fixed (that is diréfeice
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is fixed) andZ® -7 is fixed. In case (6), variability in total effects due to variability in

direct effects.

20

15

10

Figure 3.2 Mediation plots when the total effect &s observed ( Ref: Table 3.2).
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Each row illustrates cases 1, 5, and 6, respeygtiVéle two columns represent effects for two
individuals.

Next we investigate how the mediation plots behavedifferent situations when three
guantities were varied and one was fixed. The valg table gives all the cases to be considered

and the roll of each quantity.

Table 3.3 All cases for a mediation plot when ongarameter was fixed at a time.

Parameters
Cases Slope Intercept Total Effect| z® -z©
Casel fix vary vary vary
Case?2 vary fix vary vary
Case3 vary vary vary fix

The Figure 3.3 shows the variability of total efféar a different individual with different
slopes and intercepts in the regression modelrgreagng the plots: the larger the distance
between the horizontal lines, the larger the oVeféct of T on Y, the amount of change i
for a one unit change it . The larger the distance between the verticaklitee greater the
effect of Ton Z. The steeper the slope of the regression linedathger the effect, oZ on Y,
adjusting forT . Again, each row of figure 3.3 illustrates case®,land 3, respectively. Each

column represents the individual effects for aipatar subject.
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Figure 3.3 Mediation plots when the total effect &s observed ( Ref: Table 3.3).
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Each row illustrates cases 1, 2, and 3, respeygtitch column represents the individual effects
for a particular subject.

3.4 The Distribution of Potential Outcomes and théndirect Effects for an

Individual

The prior section used tables and figures to Haistsources of variability in total effects,
direct effects, and indirect effects. The distribatof individual indirect effects will be assumed
to be of the formB(Z® - Z) ~ (B(u, ., = 4, ), 1) » Where E(B) = S is the population mean

2

¢ Is the variance

of slopes that was used as the slopes of the n@diglbt in chapter 2 and

of individual mediating effects which are of interén this study and will be discussed in detail
in a later section.

Recall the following equations in section 3.2 dorindividuali,

YO(ZP)=A +B Z" whereA ~(c; +),0,), B ~(B,0;) and A, 0B

YZ®)=A, +BZ"” where A, ~(c,,0; ) B ~(B,0;) and A, OB,

Y2 (Z?)=A +BZ? whereA, ~(c; +y,0; ) B ~(8,0;) andA, 0B

Y?(Z")= A, +BZ" whereA, ~(c;,0; ) B ~(B,0;)and A OB

The expected values were derived in 3.2 and nowdhances of individual potential outcomes

are derived. The variances of these individual pieaeoutcomes as follows:

Var (Yi(l)(Zi(l))) =Var(A)+ E(Var(Buzi(l)|Zi(l))) +Var(E(B,Zi(1)|Zi(1)))
= 0’2 + a’éE((Zi(l))z) + ,Bz\/ar (Zi(l))
= 0'2 + aé[\/ar (Zi(l)) + (E(Zi(l)))z] + ,Bz\/ar (Zi(l))

— 2 21 2 2 2,2
- 0-/31 + JB[JZ(l) + tuzm] + ,3 0'2(1).

Var (Y% (Z®)) =Var (A,) + E(Var (B Z|Z)) +Var (E(B Z"|Z"))
= 0. +02E((Z%)°) + BVar (Z)
=0, o [Var(Z2”)+(E(Z7))*] + B*Var(Z")
= O-/il + 0-;[0-;0) + tu;o)] + ,Bza-zw) :

z
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Var (Y| () (Zi(o) )) =Var (Ab| ) + E(\/ar (B| Zi(0)|zi(0) )) +Var (E(B| Zi(°)|Zi(°) ))
=0, +OLE((Z)") + fVar (Z))
= a'io + Ué[\/af (Zi(O)) + (E(Zi(o)))z] + ﬁzvar(zim))

—_ 2 2 2 2 2 2
- JAO + JB[JZ«» + :uz(0>] + ,B sz) '

Var (Yi(o) (Zi(l) )) =Var(A,) + E(Var (B Zi(1)|zi(1) )) +Var (E(B Zi(1)|Zi(1) )
=0}, +OIE((Z)") + fVar (Z°)
= a'io + U;[Vaf (Zi(l)) + (E(Zi(l)))zl + ,Bz\/ar(zi(l))

— 2 21 42 2 2,2
- JAO + UB[JZ(D +tuz<1>] +,3 0'2(1).

In this study we are interested in estimating tlaeiance of the individual indirect effects,
o: =Var(B(z" -Z29)).

3.5 Individual Mediating Effects and Mediating Heteogeneity

In this section, the individual mediating effedtgtvariability of individual mediating
effect and subject-mediator (treatment) interactiomintroduced. Then, we discuss the problems

we face when estimating the variability of indivedumediating effects.

3.5.1 Defining Subject-Mediator (Treatment) I nteraction

Let (Z ®zO ,Y(l)(Z‘l)),Y(O)(Z(O))) be a set of potentially observable potential oes
for an individual subject in an investigation tomuare the effect of treatmeft® with respect
to a control treatmerit ©. The four values are imagined to be measuredeasame moment of
time. But, in practice only the values correspogdimthe treatmentZ® andY®(zZ"), actually

assigned can be observed for a particular subj€kt two potential outcomes for the mediator

help to conceptualize a true treatment effect enntiediator for a subject that we define to be

D,=2®-z©. The expectation and the variance @&, are given by the formula

E(D,) = Uy, = Uy — Mo andVar(D,) =0, =0, +0.

7@ 7(0)

=20, 4,00,00,0 - EStimating/, is
straightforward in common randomized experimentg. &8e interest is in estimatimgéZ . There

iS a subject-treatment interaction on the medigtiariable if JSZ > 0. The subject-mediator
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(treatment) interaction is a combination of subjeeatment interaction ofZ® —Z®)and the
subject-treatment interaction ofY® =Y . )n particular, we consider subject-mediator

(treatment) interaction to be present whef =Var (B(Z® -z?)) >0.

Figure 3.4 shows the potential mediators and piatemiitcomes forN subjects in a study
and the observed outcomes post treatment assignirteniset oN potential mediators and the
potential outcomes has the form given at top thiér treatment assignment produces observed
mediators and the observed outcomes of the formwslad bottom, and where the “?” represents
an unobservable potential outcome at a particutee.t

z9 ZP NPEP) YOI YOE®)  YOzo)
z9 ZP NPEP) e YPEP)  YPe)

20 Z0 YPEE) YO e e

Treatment Assignment

@ @) [6))
z» 2 YPEd 2 2 2
0 0 0
) Z( ) ) [ ) Yz( )(Z 2( ))
(0) (0) (0)
? Z\4 ? ? ? Yoo (Zy2)-
@) 7@
z® 2 YO@z®y 2 ? ?

Figure 3.4 Potential mediators and potential outcmes and the observed mediators and
observed outcomes.

Consider only the potential outcomes that are pi@tdn observable,
(Zi @29 yOzo)y?zO )), i = 1,23..., , and assume these are independent and ideyticall

distributed{id) random variables from a multivariate normal dmittion with mean

, . .
(,uz(l), Lo M0 g0, Y(1)(2(1))) and variance matrix
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UZm ,02 oM Jz © Jz ) py @y @) JY @ Jz ) py oM JY © UZm
P 707 @) Jz © JZ o) J§<0) py W © JY ) 0’2(0) py ©) 0 JY o0
IOY w9090 IOY w090 9,0 0-5 ) IOY oy09y0%0
py © M JY © Jz ) py ©) JY © UZw) py Oy @ JY<0) a-y(l) Uj(e)

Figure 3.5 Variance-Covariance matrixes for the ptentially observable outcomes.

The parameters of this distribution, except,,,, Oywo:Prv0: Pzov1» CAN bE estimated
from the marginal distributions c(Z (1’,Z(O),Y‘”(Z‘”),Y(")(Z‘O’)) and from the bivariate normal
distributions of(Z ® ,Y(l’) and (Z Oy © )

Because the direct and indirect effects are cofatteial quantities, in general we will not be

able to compute these for any individual in theyapon. But under certain assumptions we can

estimate them on average.

We assume that there is no interaction betweennesda and the mediator, the direct
effects are independent of the indirect effectenTthe expected value and the variance of total
effect depend on the expectation and variance @firitlirect effects. So we are interested in

variance of an indirect effect for each subjecte Tt¢ilowing are the cases to be considered:

Case (1):B isfixed, Z% - zZ© varies,
hereP(B =) =1and| 2. |~ Bvn|[“=" T Prwz09 2070
where P(B =) =1 an 0 . oo i _
z© P 7070~ 70 20 70

Consider the individual indirect effedtlE = S(Z2® -Z©).
Then E(IE) =E[B(Z® -Z)] = u. = B(K, — ) = BU,, which can be estimated from the
observable data andar (IE) =Var[B(Z® -Z© hplies
o:.  =pNar(z®-2)
- o2,
=P(0%y + 00 —20,4,0 6,0, 0,0)

z®W ™ 7z

= :32 [(Uz(l) - Jz(o) )2 + 20-2(1) Uz(o) (1_ IOZ )z (0) )]
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2
JIIE

cannot be directly estimated becaus§ = o>, + 02, —20,,0,0 P,0,0and there is no

available information aboyp, ., in observable data; that is, it is nonestimable.
Since o, = ﬁzl(az(l) -0,4) +20 0, (1—,02(1)2(0))1 , there is a variability in indirect effects

or S-M interaction present unless,, =0,, and p = 1 and the former condition can be

71z ()

tested using observed data but the latter cannot.
In practice, one will not know the true value of .., and, so, will be unable to directly

evaluate the size af?

IE

with respect toy,. . Little else can be done with observable data gixce

to note that lettingo &nd - 1 produces bounds fof,_ that can be estimated.

0,0 =
If P, u,0 =1, then oy = ﬁzl(o-z(l) _Jz(o>)2J and if Pu,0 =1 then
oL =B?|(0,, +0,,)?| implies B0, —0,,)}|< 0% < B0, +0,0)?| which are the

estimable lower and upper bounds for the varigbdftmediating effects for an individual.

Case (2):B varies, Z® -7 fixec,
whereP((Z® -Z) = u_)=1and B~ N(B,0;).
Then
E(IIE) = E[ B,uDZ] = Hie = My, E(B) = ,uDZ/:’ which is estimable ag, the expected value of the
slope variable, can directly be estimated fromdbgerved data using Baron & Kenny approach
and 4, is fixed.
Var (IIE) =Var[By, ]
O = Hp,Var(B)
= Hs, 0%

2
IE

o, cannot be directly estimated becausg. =y, o, , a special method is needed to

estimater;, the variance of the slope variable, which we digicuss later.

Case (3):B varies, Z® - 7@ varie,
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2
whereB ~ N(B,0?2) and (Zm] ~ BVN ('uz(l) J 0,0 P, w,09,09,0
B 7© o )\ P, 0,009,090 U;m

Consider IIE=B(Z" -Z2© )
E(IIE) = E[B(Z" -Z“)] = u,. = E[E[B(Z" -Z")|B]] = E(Bu,,) = 4, E(B) = i1, B where
Uy, can be estimated and also can be estimated from the observed data disénBaron &

Kenny approach.
Var (IIE) =Var[B(Z® -Z)] implies
o =Var[E(B(Z® -Z)B)] +E[Var(B(Z¥ -Z)B)]
=Var[B(u, ., = H,0)]+EloVar(Z® -Z9)]
= Uy, 04 + 05, E(B7)
= W5, 0, +0,, (Var (B) +(E(B))°)
= U5, 05 + 05,05 +05, 4
= 5,04 + (05 + 13) 0,
= 43, 02 + (02 + (00— 0,0) 420,000 A= 20,0

o?. cannot be directly estimated because there iavadlable information aboup, 0 In

IE

observable data and one cannot estinggitavithout assumptions and design considerations.

- 2 - - —
If an estimate  of o} were  available, then @0 =1,

ol = ,ugz ol +(o2 + ,ué)[(azm —JZ(O))ZJ and it0, 0,0 =~ 1 then
O = 13,00 + (0 + 1E|(0,, +0,)° [implies
e, 0%+ (02 + 12)|(0,0 —0,0) | s 0% < 12,02 + (02 + 12)|(0,0 +0,)?] which would be
estimable lower and upper bounds for the varighdftmediating effects for an individual.

This chapter has explored variability in mediateféects and quantified them. In doing
so, estimable and nonestimable quantities werdtiféigh Bounds for some of these quantities

are estimable but estimating or bounding the vagan slopes is problematic. In Chapter 6,

some initial ideas for terminal measures dataesgmted that involved different designs that can
facilitate at least a naive estimate @f. First, however, the issues involved with terrhina

measures data will be discussed and two designsidsed for analyzing terminal measures
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data. One design does not work, but the other dathasan assumption that may or may not be

plausible, depending on the application.
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Chapter 4 - Estimating Heterogeneity of Individualindirect Effects

In chapter 3, individual indirect effects were oduced. The mediation plot was
extended to the individual mediating plot to deaserihe relationship among the individual total,
direct, and indirect effects. Using the individuaédiation plots, sources of variability of the
total effect across individuals was demonstratéte individual indirect effect was defined and
the variability of individual indirect effects wdsrmulated based on the estimable and non
estimable quantities. The upper and lower boundshefvariability of individual mediating
effects was shown for three different cases. THe rmediating heterogeneity or subject-
mediator (treatment) interaction was defined.

In this chapter, we discuss the problems of estirgahe variance of individual indirect
effects or subject-mediator (treatment) interactfon a two sample completely randomized
block design withs-disjoint blocks anah-individuals for each block. Following an exampked
in chapter 4 when illustrating terminal measurds,dae use the term ‘strain’ for block for effect
strains of mice as is done there. For the most rgérsgtuation (that iswhen bothB and

D, vary), the variability of individual indirect efféeis given by the formula:

2

Ol =02+ (0L )0, = 0L+ (O + (O —0,0) 420,000 A= 0,00,

where 1, :the mean of the slope variable, estimable fronothserved data.

o:: the variance of the slope variable, nonestimdhien the observed data.
022(1) . the variance of the mediator when the treatmssigament,T =1, estimable.
0’;0) . the variance of the mediator when the treatmssigament,T =0, estimable.

P, - the unconditional correlation betwe&? and Z, nonestimable.

It is assumed that,

Z(l) /'I @ 0-2(1) p (D) (0)0 (1)0- 0)
B~N(B,0%) and (Z(O)J~BVN [ =, z ST 7|, The key
M0 ,OZ ;09,090 0.0

problems of estimating the variability of individuandirect effectsg?., are based on the
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estimates of two termsop ~which cannot be estimated because there is ndablea

information aboutp and o cannot be estimated because individual slopesaiteanot

rASYASNR

observable.

4.1 Bounds ofo? :

IE *

In practice, one will not know the true value pf,_.,, but little else can be done with

observable data except to note that letymg _,, =1 and p = -1 produces bounds far;,

7z 1)z (0)

that can be estimated. The two quantities,

ot =0+ (00 + B0, ~0,,))| and of = 0%+ (02 + B)|(0,, +T,,)| would
be the estimable lower and upper bounds for thealwdity of mediating effects for an
individual, but the challenge is to estimafewhich is the variability of individual slopes.

We proceed by assuming there is a blocking vagjale., strain that groups individuals

into ‘nearly’ homogeneous subsets. Observe that

o’ =Var(B) = E(Var(B|s= j))+Var(E(B|s= j))= E(o; ) +Var(B,), where the

conditional expectations and variances are ‘witetrain’ and the outer expectations and
variances are across strains, meaning averagegaaiafices across a given set of strains. Note
that Var(3,) can be estimated by estimating the mean slopedfdn etrain and then taking the
variance of these estimates across strain. Thennsthain varianceaée, remains a problem for
estimation. It is proposed that, for a lower bouhdmogeneity of slopes within strains is
assumed so thatge =0. For an upper bound, it is assumed tbréet=Var (B; ,itis argued that,

for an effective blocking variable for a design estigating variability in treatment effects, the
within subset variation should be smaller thanuteation across subsets.

Given the above assumptions, proposed lower apdrdpunds are now
Tre = H3Nar(B) +Var(B) + B )(@,, -0,4)°| and

%, =202 Var (B) +(Var (B) + B2 )(0,0 +0,0)7]
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4.1.1 Estimating Boundsof g;, :

Assume a balanced two sample randomized completd& design, so there areunits
per strain for a total ohs individuals. We assume that within each strginn/2units are
randomly assigned to treatmeht=1 and the othen/2 units assigned td =0 . Without loss
of generality, assume that the firsf 2 units in thejth subset receiv@ =1 and the second /2

receive T=0. Let Z® fori=12...,n/2; j=12,..,s be the observed mediators when a
subject recieved =1 and letZ(® for i =(n/2+1),..n ; j=1,2,..s be the observed mediators
when subject recieve§ =0. Let B, fori=12,...,n; j=12..,sbe the individual slopes for

each individual (not available from the observed data).

N (Z(l) Z.(l))Z
Ltz =520 Z0 = 320 o, =§ " and
| (n/2) A S T e A T @i
3 (20 -7y
) 1] i B B _ . B
G =2 © i=12,..s. Further, leD, =Z® -Z@and defineir, == D, as
z{® ((n/2)-1) 1=1 Z; i i Uy, Szj: 2,

a proposed estimator for the mean effect of thatrment on the mediating variable. Now define
|:(UZ(1) +0 (0)) J Z(ﬁz(n a-zj(m)z and |:(6'Z(1) _OA-Z(O))Z} :éZ(a—Zf” _6'21_(0))2 , and let
J J
,5’]. denote the Barron and Kenny estimate of the sl@parpeter for a particular strginso that
[z’zéZ[z’i becomes a population estimate of the slope paranfebe interpretability of this
j

estimate, it is assumed that there is no qualdaitiveraction on the slope parameters for each
strain and, similarly, on the mean treatment effecceach strain. The bounds are still valid at the
population level even without this assumption, thé interpretability is lacking. A qualitative

interaction on indirect effects is the subject ofhagter 5. Finally, let

] S ~ A
Var(ﬁj):ilz (B, - B)* denote the estimated between strain variance on slope
S— n

j=1
parameters. The proposed estimated lower and uppends of the variance of individual

indirect effects is given by,
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&, = I, Var (B,)+ (Var (8,)+ B)|(@., =6,,)7| and

&7 =2/ Var(B,)+ @Var(B,)+ @ 0 + 5.0 )7 ).

4.2 Anillustration using simulated data

The potential outcomes were generatedsfstrains withn-individuals in each strain so
that the total number of mice wass. The observed data were generated by removing

counterfactuals. Then from the observed data, tividual indirect effects)IE = BD,, were

generated for each straiffhus, a two stage hierarchical approach is useiirialate data. The

next section shows the steps and parameter séttitigis simulation study.

4.2.1 Stepsof Generating Potential Outcomes, Observed Data and I ndividual I ndirect
Effects

To generate potential outcomesf we use the following steps:

(1). Let u, and p, be the mean ofz® and z® for strains in the control and
experimental groups, respectively. The statisticatlel corresponding tyr , and ¢ , for each

strain, j =12,...,s is

H,o y7 021 0
Tl=Mun | T o =12,
,UZI@ 'uz((’) 0 JHZ(O)

Here, u , and u . represent the means of mediator across individirlshe

populations from which control group and the exment group were sampled. The mean

treatment effect on the mediator for each strain, = , -4, is a random variable with
! I I
respect to the superpopulation from which paramseter each strain are generated. The

superpopulation parameters are then E(,uD) E(, (1)) E(y, (0)) Ko~ H,s and

Var(,uDzj ) :Var(,uzlm _'uzgo)) = szm +ajz® —2Cov(,uz}1), '“zgo))' We set p =0, so that

H, @) H5(0)
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the strain level means are assumed to be indepeadesss strains, angl , =17, =22

70

2 — 2
and T0 = 45, T

=45. Thus, 1, ~N(=5, 9).
(2) Let ZPand Z® be the mediator variables for all individuals falt strains in the
treatment and control groups, respectively. Théssigal model corresponding t&” and Z

for i=12...,n; j=12,...,siS:

2

{Zij(l) J - BVN 'uzj(l) ’( Jzﬂ) pzﬂ)z(o) o-z(l) 02(0) ’ for | - 1’2 ...... n: J - 1’2 ..... s
Yo,

(0) 2
i H 2 7 W7 (0) Jz o) 0‘2 © Jz<0>

We setp,,, =05, 0., =4, 0., =5.Thus, D, ~N(-5,132).

20 70
To generate intercepts wh&a0 and whe=1 for each individual, we use the following steps:
3 We repeat steps (1) and (2) with different peagter setting:

Set the mean direct effectdDE, =y, —u, for each strainj =12,...,s and also the individual
direct effect, DE, = (A, — A,;) within each strain for each individual= 12,....n; j=12...s.
Here, u, -4, =10-3= 7.Set some specific values for correlations andvéiieances. We do

not pay attention to these intercepts here as iohai¥ indirect effectd|E =B(Z® -Z©), do
not depend on intercepts and itli§ is the focus here.

To generate potential slopes for each individ@&l, we use the following steps:

4) The distribution of the mean slopes for eachistis assumed to bg, ~ N(5, aéﬂ),
where the specified values arg=-1 aéﬂ = 016. Generate the individual slopes so that
B, =8 +¢,, where & ~N(@o;)for each individual within each strain,
i=12..,n; j=12..s. The distribution of the slopes for all individual®, ~ N(8, o;),

where f=-1, 0, =0; +0; =016+ 004= 020
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To generate potential outcomesYok givenZ's we use the following steps:
(5)  For individual i: generate Y*(Z")=A, +B,Z" , Y2(Z”)=A, +BZ"

[/

YO (Z)=A, +B,Z” andY”(Z") = A, +B,Z which are mentioned in section (3.2).

1 1

(6) From steps (1)-(5), potential outcomes areeggied and then, removing counterfactuals,
we generate the observed data.

4.2.2 Thedistributionsof Average of Individual I ndirect Effects and the Indirect
Effectsfor each strain

If we can observeB; and D,, for each individual for all strains , then we wolie able

to calculate indirect effects for each individuathan a strain and estimate the average indirect

effect for the particular strain. The distributiasfsaverage of individual indirect effects for stra

j, IE; =B,D, :12 B,D, . The average indirect effect ( which is similartke Baron &
-

Kenny Approach) for straif, IE, =BD, :( ZB” j(

- ZDZJ; j=12...,s. Now, we

n i=1
discuss the distributions of these two estimates.

SinceB; ~N(B, %) and D, ~N(x,,, 0: ), andB; and D, are independent, we have
E(lE]) = E(E] 521 ) = E(EJ )E(Szl) = IBI'IDZ = (_1)(_5) =5,
Var(IE,) =Var(B,D, ) = E(B,D, )* ~|E(B, D, )| = E(B?).E(D?) - |E(B)E®D, )f

= E(B?).E(D?) - [B.s,
=var(8,) + (EB,))*var (B, ) + (E(D, )] - [B.40, |

o? o}
— 2 Be 2 2 Dz, 2
- |:0—B/, + n + B :|[0—Dzy + n + Hp, :l - [ﬂ-;uoz ]

= (0162+ 1)(923+25 —25= 1478

E(Ej):E(BU—DZU):EFiB”DZJ —E(ZB”D j ( (ZBUD |JD

= 2l i), [i)=ElB 4, )= A, =09 =5
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Var (I1E;) =Var(B,D, ) =Var E >'B,D, } = %Var(z B,D, j
! i=1 ! n i=1 !

- n_l{\/ar(E(anz B,D, |] D + E(Var(g B,D, | jjﬂ - (A

Var(E(ianj B,D, |jD =Var (N8, ) = nz[E(ﬁjﬂozj *- (e Ho, )

— 2|2 2 2,2 2 2
=n [Jsﬂa-ozﬂ +a—BuﬂDZ +IB Jozﬂ] - (A]-)

E(Var@ B, DZU|JD - [n(s,D, |)]=nE[E(E,D, |7 - [E®,D, )]
ot on, 4oL (0%, + )+ (0%, + )] - (A)

By Substituting (A1) and (A2) in to (A), we get

Var(lE)) = (02, +12,)(02, +202 )+ f2(02, +=02 )+=02, (0% + ) =1478
i H n e Zy n Ze n Ze e

Thus, the distributions of average of individuadiinect effects for straip, I1E; =B D, , and

J i
the average indirect effect ( which is similar tar8 & Kenny Approach) for strainj ,
IE, :§j 521_; j =12,...,s are nearly the same. This means, for homogenstrams the
variability of individual indirect effects can bestenated using the variance of estimated
mediating effects obtained from the Baron and Keapgroach across strains. In the simulation

study, we obtain density plots of€; =B,D, andIE, =B D, which are shown in Figure 4.1.
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Figure 4.1 The Distributions of Average of Individual Indirect Effects and the Indirect

Effects for each strain.

4.2.3 Estimatesfor the bounds using simulated data.
Based on the parameter settings in the simulattadys the true variability of the
individual indirect effects and, lower and uppeubds for the individual indirect effects are,

0% =2, 0%+ (0% + B7)0?, = (- 5F (020)+ (020+ (1353 = 21236

ol =0l + (0L + B0, —0,0)]

= (25)(020) + (020+1)[v/5 -+/4]> = 5067 and
Ol =00 B0, )
= (25)(020) + (020+1)[/5 +/4]? = 26533

Now, using the observed data, the estimates oloter and upper bounds of heterogeneity of

mediating effects as follows:

Gl = 02,65 +(0% + PG, — 0,0 ) |and o, = (2,62, +(8%, + B)6,0 + 0,0
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Lower and Upper Bounds of IIE
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Figure 4.2 The estimated lower and upper bound®f the variability of individual indirect
effects for 100 Monte Carlo simulations

Figure 4.2 shows the estimated lower and upperdmtor the individual indirect effects
which are calculated using 100 Monte Carlo simafeti For each run, the lower and upper
bounds are calculated based on 20 strains. Motfteointervals covered the true variability of
individual indirect effects and two of them (2%} diot cover the true variability of individual
indirect effects. Standard errors of lower and ugp®inds can be found using non parametric

bootstrapping .

4.2.4 |nverse Coefficient of Variation for the individual indirect effects:

The coefficient of variation (CV), which is the imtof the standard deviation to the
mean, is a dimensionless measure of dispersiondféarbe very useful in many situations.
Sometimes, it might be interpretable to work witle treciprocal of the CV, denoted ICV. The

ICV has special applications in parametric infeeerproblems for some important lifetime
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distributions. The CV is often estimated by theoraif the sample standard deviation to the
sample mean, called the sample CV. We calculaeRi#itio (ICV) between the estimates of

indirect effects and their bounds:’fli, fli . The shapes of the distributions are shown in

O—IIEL O—IIEU

the Figure 4.3
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Figure 4.3 The Estimated ICVs

Assuming without loss of generality that,. >0, then the proportion of the population
with an unfavorable mediating effect is given BYIE <0). If 1IE is normally distributed, we
would be able to estimate(l1E <0) (Gadbury et.al.,2001).

The estimated mean of indirect individual effects ik, =495 and

=957. Then the ICVs of lower and upper bounds aéIéE—:ﬂSZZ

0, =252 0
2 252

1E, IEy

JIIEL

e _ 495 005, respectively. That is, the estimated ICV bouads ( 0.05, 2) and this

G, 957

implies that the true mean of individual indiredfeets, y,. is estimated to be less than 2
(standard deviations) from 0. That is, heteroggneftindividual effects may be present and

there may be qualitative interactions too.
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Chapter 5 - Testing for Qualitative Interaction onIndirect Effects

Evaluating treatment effects within subsets ofgrdt plays a major part of the analysis
of many major clinical trials. In order for thernmusion to be broad based, and to achieve
reasonable sample sizes, the study design ofteludex a number of patient subsets,
corresponding to different clinical centers or &dipnt subsets defined by prognostic factors. As
a result, some variation in the estimates of treatmeffect among subsets is expected.
Assessment of the variation in treatment effect mgnsubsets is important for several reasons.
For example, the pattern of variation may leadgecgic hypotheses concerning the relationship

between efficacy and certain patient charactesistic

According to Poulson (2012, p16-17), “treatmenehegeneity is present when the effect
of a treatment, say, with respect to a treatmerR, varies across subsets or individuals in a
population. At the individual level, this varialyli is called subject-treatment interaction
(Gadbury 2010). A consequence of this heterogensithat the effect of a treatmemtwith
respect tdR may be in opposite directions across differenividdals or subsets, with treatment

T having higher efficacy for some and treatnieiaving higher efficacy for others.”

The term Qualitative Interaction (QI) has beendusedescribe this situation at the subset
(or subgroup) level (Peto, 1982; Gail and Simon5)98\ote that, as Yusuf (1991) mentioned, a
proper subgroup is a group of patients characrm®ea common set of ‘baseline’ parameters
and in contrast, an improper subgroup is a groygatiénts characterized by a variable measured
after randomization and potentially affected bytneents. A test has been developed to detect a
QI (Gail and Simon 1985). A “quantitative” intetimn (Peto 1982) exists when the magnitudes
of the difference between treatment and conthiffer across subsets, but are in the same
direction. In the presence of a quantitative trematt by subset interaction, it is easy to assess
and interpret the overall treatment effect. In gresence of qualitative treatment by subset

interaction, however, it is even hard to defineeasure of the overall treatment effect.

The statistical problem of determining whether obsé variability in treatment effects
represents a qualitative interaction was addrelgegail and Simon (1985). These authors, who
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use the more visual terms “crossover and noncressaveraction for Peto’s “qualitative and
guantitative” interaction, developed a normal tlyddkelinood ratio test to detect the presence of
a qualitative interaction. Other tests followed luing those of Berger (1989, Section 6),
Zelterman (1990), the pushback tests of Cimirgera. (1993), and the range test of Piantadosi
and Gail (1993). Unfortunately, however, thesestg&rform poorly; the pushback tests can be
liberal, and results in Piantadosi and Gail (19@8ljcate that unreasonably large sample sizes

may be needed to obtain adequate power with bethatiiige and Gail and Simon tests.

Since we are interested in causal mediation aisalylse qualitative and quantitative
interactions are defined as follows: qualitativeeraction (QI) arises when the direction of the
true indirect effects varies among subsets of iddials where as quantitative interactions arises
when the magnitude, but not the direction, of the tindirect effect varies among subsets of
individuals. This chapter adopts the work of Gaitlé&&imon (1985) to the context of mediation

analysis and indirect effects.

5.1 Testing QI on mediating effects across patiesubsets

The concepts of no interactions, quantitativeratBons and qualitative interactions are

illustrated in Figure 5.1 for two patient subsetsnediation analysis.

Let o = Bu,, ,i=12 be the true indirect effects for two treatmentsubsets 1 and 2,
respectively. The origin represents the hypothekiso indirect effect for either subset. The line
o, = O, represents the locus of points for which theresame indirect effects (except for the

origin) but no mediator by subset interactions. Ayt which does not fall on this line defines
a quantitative interaction. qualitative interacgomronsist of points only in the second

(90,<0,0,>0), and forth (6, >0, 5, <  quadrants. Non cross over interactions congist o

those points in the first and third quadrants wiidomot lie on the line;, =9, .
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Line of NO interaction:g; = 0,

Region of Qualitative Interaction

NO indirect effects ab; =J,=0

»
»

i

Region of Qualitative Interaction

Figure 5.1 The space of Indirect Effects fos =2 subsets

5.2 Notation and Assumptions

Let & =B u,, for i =1,2,...,s, be the true mean indirect effect in iflesubset, where
B is true slope for thé" subset angu,, = Ho = Hyo is the true mean treatment effect on the
mediator variable for thé" subset. We also assume that we have an estimate ondirect
effect in the " subset,d = 'é“&Dzi = [z’i(,[/zim ~fe) fori=12..s.

The tests for qualitative interactions assume tﬂh\a(ﬁi} are independent and normally

distributed with meang, and varianceag_ and {1, } are also independent and normally

distributed with mean/;, and variancea';Dz . We also assume tha,f?i and [, are
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independent statistics. Though this later assumptiay not hold in all situations, we use it here

to begin the process of investigating a QI on iectieffects across subsets.
5.3 The Likelihood Ratio Tests (LRT)

We discuss the test for the null hypothesis ofjunalitative interaction for three different
cases.

(1). Assume that there is no qualitative interactan S and the qualitative interaction on
o, = B 1,, depends on the qualitative interaction ap) - across subsets.

(2). Assume that there is no qualitative interactom Ho, and the qualitative interaction on
o =0 Ha, depends on the qualitatve interaction@nacross subsets.

(3). Test whether there is a qualitative interatto J, = 8 My, Across subsets.

We discuss each case as follows:

5.3.1 Case(1): TheQIl on M;, across subsets

Based on the likelihood ratio test of Gail and &m(1985), here we use it for the

treatment effect on the mediator variable. We asstimat within each subset, n units are

randomly assigned to treatmefit=1 and the othern, units assigned tol =0 so that

Without loss of geneality, we assume that the firgtnits in thei th subset recieve$ =1 and

the second recieveB = 0. The treatment effect on mediator in each sulssgti = 4 ., =, ,

k
N, = N, ke

which is estimated by, =(Z®-2), zZ" :LZZ}” , 2O -1 > ZY and the

.[IDZi

variance ofi, iso; = af(i +ij.

As in Gail and Simon (1985), we assume that’ is known in order to simplify
exposition. In order to carryout the test; is replaced by a consistent estimate, that is it

estimated by the sample pooled variance for easbesus’* where
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2 _ (ny _1)83 +(n, _1)S|22 , Where S? = Z( 70 _ i(1))2
(n,+n,-2) (n,

andS’, = Z(Z(O) Z™)? fori=12,...5s

( 1) k=njp +1

The null hypothesis of no QlidH,:A0OO" 0O, whereA = (,uDZl,,uDZ2 v, ) s

o} ={AZ/JDZ_ >0 for all i} and O :{A:,UDZ <0 for all i}, O*and O™ are the positive and
negative orthants respectively, by specifies that all;, are positive or they are all negative.

The Likelihood Ratio Test (LRT) of this hypotheEdased on the statistic

max epo{ ('UDZ' " Ho, )/202 }
Ado* 0o '[IDZi
max expi{ Vi, =t )/20% }

i=1 #Dzi

In this denominator the maximization is unresétctand therefore, the denomenator

Alits,) =

maximum occurs ay,, =, for i=12,..,s, and the denominator equals 1. The likelihood

ratio test is thus, max epo[ ('UDZi ~Ho, )/2J }< K, (1)
Hpgz;

i=1

where k is chosen to ensure that the rejection region doéexceed significance level for

any point in the null spac&” 0 O". Expression (1) can be further simplified. Theqgunality
(1) is equivelent to the simultaneous inequalities

rgggnZ(/J ~t, 107, >c @
and

rggngZ(ﬂ ~to, 1%, >c, ®)
where ¢ = -2log(k). Thus, one rejects the null hypothesisjif = (ﬂDzl,/}Dzz el ) 18 far

away from bothO*andO" , with distance defined by the inverse variane&ric. The minimum

value in (2) occurs foru, =g, if i, <0 and for g, =0 otherwise for alli =12,...,s
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Similarly, the minimum value in (3) occurs fou, =/, if j, 20 and for g, =0
otherwise for alli =12,...,s. Consequently, the likelihood ratio test of Gaida&imon (1985)

rejectsH, if both

Q =X\, oz, N, >0>c (4)
and
Q =X\, oz, Nk, <0>c, (5)

wherel (i1, >0) =1if f, >0andO0 otherwiseandl (&, <O0)=1if i, <Oand 0 otherwise.
The quantitiesQ” and Q" are minimum values ob_ (4, -, )*/o;, over O"and O

respectively, and the LRT can be expresseanagQ*,Q") >c. The challenge is to calculate

value ofc such that for alAJO" 0O, the probability that (4) and (5) are both Sagisis no

greater than the significance level,

The critical valuec, which may be obtained from Table 1 of Gail anch@& (1985), is
chosen so that the test has level at mwsunder anyA for which there is no crossover
interaction. The Table 5.1 is extracted from detab Gail and Simon (1985) and it shows the
values ofccorresponding to significance levels 0.05 andfOrlthe test. If Gail and Simon’s
test rejects the null hypothesis, then no conctusimout the overall treatment effect on mediator
difference can be made. If Gail and Simon’s testsdoot reject the null hypothesis, then we do

not have strong evidence to conclude whether theefunteraction is quantitative or qualitative.
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Table 5.1 A part of Gail and Simon (1985) table { Critical values ( ¢ ) for the likelihood

ratio test min(Q",Q7) >¢)

Number of Significance level
groups 0.1 0.05

2 1.64 2.71
3 2.95 4.23
6 5.84 7.48
10 9.02 10.99
16 13.33 15.66
20 16.04 18.57
25 19.34 22.09
30 22.55 25.50

This table was constructed by solving the formia?,(j; n=s-1 p=05)1-F((c)],

j=1
where B(j;n, p)is the binomial probability mass function with ixde and parametr@, and

F,(*) is the central chi-square distribution witldegrees of freedom, for the valuewéuch

that, for fixed number of groupss and significance level a, the quantity

SZIB(j; n=s-1 p=05)1-F(c)]=a (Gailand Simon, 1985).

j=1

5.3.2 Case(2): TheQI on B acrosssubsets

We assume that there is no QI pp, . The distribution of the estimated mean slope of a
subset,[?i , is [3’ ~N(B, agi). Since,[?’i satisfies all the assumptions in Gail and Simoest,
we adopt Gail and Simon (1985) LRT to check whethere is a qualitative interaction on
mean slopesf or not.

Typically, as in Baron & Kenny th¢§i are obtained in a clinical trial by estimating the

simple regression equationsrsubsets :
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Y, =a,+BZ +yT+e fori=12..s;j=12..n, where 5 is the mean slope from

]

theith subset and the errogg ~ N (0, 0?). The null hypothesis of no Ql id, :A00" 0O,
whereA = (B,,5,....8. ), O ={A: 8 20 for alli} and

O ={A : B <0 for all i}, O*and O~ are the positive and negative orthants respegtivel

The LRT of this hypothesis is based on the statisti

= 4

max expi{‘(’é‘ —/31)2/20; } |

In the denominator, the maximization is unrestdct Consequently the denominator

AB) =

maximum occursg, :,[3’i for i=1 2, ...,s and the denominator equals 1. The likelihood ratio

test of Gail and Simon (1985) rejedik, if both

Q =X(8/oz 15 >0)>c ®)
and
Q =Y(82/o% 15 <0)>0), @

where the quantitie®* and Q~ are minmum values OE(,[Bi -B)*10: over 0" and O~

respectively, and the LRT can be expressethagQ”,Q ) >c. This test and the distributional

assumptions are similar to what Gail and Simooudised and therefore we use Table 5.1 to find

¢ such that for allA0O* 0 O™, the probability that (6) and (7) are both daisis no greater

than the significance levefy .

533 Case(3): TheQl on & = [y, across subsets

Before we construct the LRT to check whether thierea qualitative interaction on

o, =B U, , we need to establish the probability distribut'm‘n& = ,l?i,[/D , - Since we assume

that f,, ~N(t,, , 0 3 ) and,ﬁA’i ~N(8, ng )are independent, the probability density function

Hp
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of the product of these two non-zero mean norraeibbles,& = Bi,[/D ,» Is not known. If this

distribution was normal, we would be able to usedhove LRT to test the null hypotheses that

there is no QI ond, = B, . Now, we discuss another method of testing thehypotheses
that there is no Ql o, = B 11, .

Before introducing an appropriate test, we dis¢hsspossibilities that when and where

the Ql ond, = B 1, across subsets occurs. If there are no QlIs on Botnd £, then there is
no Qlond =g u, . Butno Qlong =p u, does notimply that there are no Qls gnand

Uy, - Thatis,

No QI on fS
No QI on u,,

No QI on S

}: No QI on ,Bi,uDZi but No QI on ,Bi:UDzi :b{No Ql on x, '

Thus, instead of testing the null hypotheses titixte is no QI ong 4, we discuss the
test for the null hypotheses that there is no Qboth 5 and y, . Hence, we formulate the

required hypotheses as follows; : (No QI on 4, ) n (No QI on ) versus

H,: QI on either y, or S or both.

Roy’s (1953) well-known Union-Intersection methddlT) can be used to test the null
hypotheses given above. Roy’s principle of comston of tests for the case when the null

hypothesisH j consists of the simultaneous occurrence of sedsalint sub-hypotheses and is

9
represented aﬂ H, Iis the Union-Intersection (Ul) principle (Roy, 15 whereg is the

number of individual tests. Herg = 2. Cassella and Berger (2002) have proved the fatigw

relationships between the overall LRT and the UIT .

Consider a UIT tesH,: 800, versus H, : /00 O;, where©, = ﬂm@y. Let A, (x)be

the LRT statistic for testingd, : 00O, versus H, : 01©; and let A(x) be the LRT statistic for
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H,:000, versus H, : #00;. Define T(x) =inf . A (x), and form the UIT with rejection
region {)_( :A,(X) <c for some y0J F} ={1<:TQ<) < c}. Also consider the usual LRT with rejection
region{g 1A, (X) < c}. Then

a T(x)>A(x) for every x.

b. If £.(8) and S,(6) arethe power functions for thetest based on T and A, respectively,
then B.(6)< B, (6) for every 8010.
c. If the LRT isa level a test, then the UIT is a level a test.

Based on Roy's Ul principle below is the procedafetesting our null hypothesis

H,:(No QI on y, )n(No QI on ) versusH,:Ql oneithery, orBor bothBased on

Gail and Simon (1985), the LRT oH, : No QI on 4, vsH,, : Ql on g, isrejected if
min(Q;,Q;) >c, whereQ, :Z(ﬂgzi /0;Dzi )I(,ZIDZi >0)>c and

Q; :Z(ﬂgzi /O'EDZi )I(,[/DZi <Q0)>c. Similarly, the LRT of H,:NoQl onfg vs
H,.: Ql on B is rejected if min(Q;,Q;)>c, where Q; :Z(,é’iz/a?i)l(ﬁ’i > () >cand

Q =3(82/0% 1(B <0)>c. Let Qo =Min@p.Q5) and Qg =Min@Q3. Q). Thus,

the Union-Intersection test ¢, vs H; formed from these two LRTs is rejekl, if Q... >¢C

D min

or Q. >CcC.

5.4 The Simulation Study for Qualitative Interactions

We test the null hypotheses using the generateehodxs data for three cases discussed in
the previous section. Since we do not have a r&al set, a data set was generated to illustrate
the QI across subsets assuming a balanced stuidy deith n = 400/2s subjects per treatment
per subset, where = 20 is the number of disjoint subsets which consisilifervedy , Z andT.

The first three plots in Figure 5.2 show how Qlwrscon x4, across subsets (top left),

on S cross subsets (top right) and én= g u, across subsets(bottom left). The plots of 20

subgroups are represented.
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To check whether there is a significant qualitatineeraction we use Gail and Simon
(1985) test for the hypotheses mentioned in théised.3 at the 5% level of significance.
Results are given in the table 5.2.

(2) First we discuss the hypothesis test in eadi3.1, that is

H, :thereis no QI on y, versus H, :thereis QI on y, .
In our simulation study, we computeQ, :Z(,Z/;Zi /a;DZi )I(,Z/DZi >(0) =318 and
Q; :Z(ﬂgzi /0;DZi )I(,[/DZi <0) =626, where I(, >0)=1if i, >0 andO0 otherwise,
| (it,, <0)=1 if 4, <O and O otherwise, and the LRT can be expressed as
min(Q;,Q,) = 318. From Table 5.1, we get the critical value at 5eel of significance is
18.57. That is, reject the null hypotheses singa(Q;,Q,) =31 > B83.57 implies there is a

significant qualitative interaction op, .

(2) Then we discuss the hypothesis test in seétid.2, that is

H, : thereis no QI on S versuH, : thereis Ql on S.
In  our simulation study, we computeQ, :Z(ﬁz/a;)l([?>0) = 926 and
Qs = Z(,[?Z/a;) |(8<0)=576, where 1(3>0)=1if #>0 andO otherwise, and

I([z’ <0)=11if ,[3’< 0 and O otherwise and the LRT can be expressedmm(Q,,Q.) = 926.
From Table 5.1, we get the critical value at 5%elenf significance is 18.57. That is, do not

reject the null hypotheses sinerin(Q;,Q,) = 926< 18.57 implies there is no significant

qualitative interaction ors3.
3) The third test would be the union-intersection test,

Hy,:(No QI on 4, )n(No QI on B) versusH,: QI on either 4, or B or both. The
LRT of H,,:No QI on g, vs H,: QI on w, is rejected sincemin(Q;,Q;) =318 >

18.57 implies there is a significant qualitativeeiraction onz, .
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Table 5.2 QI on slopes, TE on the mediator, indiiet effect across subsets for 20 subsets

Sbst [ 7, | s, | i /s, B s Bfs
1 -0.3878 |  0.563 0.267 0938  0.4314 2.038
2 -2.0137 |  0.667 6.08 -1.180  0.2254 6.182
3 2.9754 0.708 12.50 0436  0.2526 0.754
4 -5.4451 | 0.757 39.20 -3.076  0.1194 79.257
5 -4.7614 |  0.956 23.70 -1.832  0.1247 26.931
6 2.2361 0.565 8.85 0.986  0.1995 4.872
7 -4.1573 | 0596 29.00 -0.810  0.1983 3.312
8 -7.3039 |  0.504 106.00 -1.991  0.0422 93.948
9 22101 | 0373 13.10 -0219  0.3542 0.136
10 1.4775 1.419 154 -1.002  0.1851 5.429
11 -5.8544 1.627 21.10 -2.026  0.0975 42.114
12 -6.3345 |  0.634 63.20 -2.005  0.0463 86.771
13 -6.2663 |  0.803 48.90 -0.871  0.0904 8.394
14 -4.4055 1.026 18.90 -0.333  0.0329 3.384
15 -6.0050 |  0.476 75.80 -3.094  0.0852 112.373
16 0.0284 1.334 0.0006 1146 0.2867 4.579
17 -4.9267 | 0711 34.20 -1.345  0.0730 24.790
18 2.5840 0.751 8.89 0661  0.2731 1.600
19 -7.4993 | 0.484 116.00 -1298  0.0399 42.253
20 -6.3374 1.319 30.50 -1237  0.0426 35.906

Test for Ql on slopes: Q; =9.26 Q; =576 Q... =min(Q,,Q;) = 9.26

Testfor Qlon TEonz:Q; =318 Q; = 626 Q... =min(Q,,Q;) =318
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In contrast, the LRT of H,,:No QI onf vs H,: Ql on S is not rejected as
min(Q,,Q;) = 926< 18.57 implies there is no significant qualitatinteraction ongs. Thus,
the Union-Intersection test oH, :there isno QI on B versus H, :thereis Ql on S is

rejected asmin(Q;,Q,) >c.

5.4.1 Typel Error Rate
Monte Carlo simulation was conducted 1000 timesstimate the type | error rate for the
above UIT test under the null hypothesek,:(No QI on z, )n(No QI on S3). Two LRT

tests , H,: No QI on 4, versus H,:Ql onx, and H,:NoQl on B versus H,: QI on 3

were conucted and found the number of times wetrépe null hypotheses of UIT test. Figure
5.3 (a) shows the test statistics for both LRT test1000 Monte Carlo simulations. At 5% level
of significance with 20 subgroups, the criticaluawould be 18.57 , vertical line in the figure
5.3(a). Type | error rate can be estimated. Stheee are 14 and 40 unique LRT tests are

rejected forH, : No QI on x4, versus H,:Ql on y, and

H,: No QI on S versus H,: QI on S, the estimated type | error rates are 0.014 and00.
respectively. Thus, the type | error rate for tiesttH,:(No QI on 4, )n (NoQl on 3)
under UIT would be 0.054.

54.2 Power of thetest

Under the alternative hypothesis the data werergéseso that there is QI qm, and g3
The signal indicating the alternative hypothesigssown in Figure 5.2. Monte Carlo simulation
was conducted 1000 times to estimate the powerhef WIT test. Two LRT tests
yH, No QI on 4, versus H,:Ql on y, and
H,: No QI on S versus H, : Ql on S were conucted and found the number of times weteje

the null hypotheses of UIT test. Figure 5.3 ()wh the test statistics for both LRT test when
the alternative is true, for 1000 Monte Carlo siatigins. At the 5% level of significance with 20
subgroups, the critical value would be 18.57, tbdiwal line in the figure 5.3(b). Since there are

607 and 460 LRT tests are rejected Fboy: No QI on y, versus H,:Ql on x4, and
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H,: No QI on Sversus H,:Ql on S, the estimated power of the tests are 0.607 a4@00

respectively. But, the total number of tests tlegect the null hypothesis of UIT is 645. Thus,
the power of the test for the teldt, : (No QI on £, ) n (No QI on A) would be 0.645.
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Figure 5.3 (a): LRT test statistics when the nulhypothesis is true (b): LRT test statistics

when the alternative hypothesis is true
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Chapter 6 - Mediating Effects for Terminal Measures

In mediation analysis, situations can arise whaee rhediatorZ , and the outcom¥,,
cannot both be measured on an individual unit. Maarsd plant experiments are two examples
where measurement & requires terminating the animal or plant avids to be measured at a
later time. We refer to such data as terminal nregsdata. Another situation may be where one
experiment focused on measuremeniqgfand the second on measuremenY ofand interest is
in combining the data sets to evaluate the medjatifiect of Zon Y. This simulation study

discusses the issues involved in analyzing ternmmedsures data.

o P Table 6.1 The mechanism of life extension by CR.
Proposed mechanism

Growth retardation There are many studies exploring the mediators of
Reduction of body fat content
Reduction of metabolic rate
Attenuation of oxidative damage  2003). The table 6.1 (Masoro, 2009) provides antstof
Enhancement of apoptosis
Inhibition of apoptosis

Enhancement of autophagy body temperature, can be measured without harntingnamal
Attenuation of inflammation

Reduction of body temperature or person. Others, like attenuation of oxidativemdge or
Elevation of physical activity
Reduction of plasma [glucose]|
Attenuation of IGF1 signaling killing an animal to take the measurement in thetike tissue.
Enhancement of IGF1 signaling

Enhancement of insulin signaling

Calorie Restriction (CR) effects on longevity (Step et al.,

proposed mechanisms of action of CR. Some, likeatazh in

attenuation of inflammation in specific tissuegictglly require

il DL I G T This is also true of tissue-specific gene expressio
Attenuation of TOR signaling
Hormesis measurements and gene-methylation measurementse hteis

vital to develop methods that can evaluate mediatequiring

terminal measurements. The following are the twangxes for terminal measures experiments:

Example (1): (Stephen et al., 2003)

A moderate CR regimen ; 20% reduction in calortake (treatment) decreases IGF-1; Insulin-
like growth factor-1 (mediator), increases theaati apoptotic versus proliferating preneoplastic
urothelial cells, and suppresses p-cresidine—irdildadder carcinogenesis (outcome) in p53-

deficient mice. Weanling p53C mice were fed a dmttaining 0.5% p-cresidine for 16 weeks
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and then randomized to two groups: (1) ad libitulsh)( control diet plus implanted saline

osmotic minipump; (2) CR (80% of AL diet intake)uplimplanted saline osmotic minipump.
After 4 weeks of diet treatment with implants, haff the mice were killed (to measure the
mediator) , blood was collected, and their bladde¥se excised and analyzed histologically. The

other half of the mice was used to observe theoookc

Example (2): (Water Stress in Plants: Causesgcisffend Responses, Seyed Y. S. Lisar )

Water deficits in trees have an adverse effect anynof the tree’s growth processes. Plant water
stress, often times caused by drought, can havernmapacts on plant growth and development.

Plant growth under drought is influenced by altepdabtosynthesis, respiration, translocation,

ion uptake, carbohydrates, nutrient metabolism, lamanmones. Photosynthesis is particularly

sensitive to the effects of water deficiency. Pegtohesis of higher plants decreases with the
reduction in the relative water content (RWC) aedflwater potential. Lower photosynthesis

rate is a usual effect of water stress in plant$ has been attributed primarily to stomatal

limitation and secondarily to metabolic impairment.

Most of the studies of mediation have presupposbd foint measurement
((22,Y9(z")) of mediator and outcome for all subjects, apannfilimited missing data. As
we discussed above some mediating variables cdimassessed while the subject is alive. In
human studies, the assessment of such a termirsaumreerequires waiting until the death of the
patient. Further, human studies preclude the piisgiof obtaining the terminating data at the
time that is most suitable for the scientific quast Animal studies have the potential to better

answer mediating questions by allowing measurewictite mediator at a targeted time.

The challenge raised by a design involving termmeahsures is that each animal can be
measured on either the mediator or the outcomenbuboth. Figure 6.1 shows the potential
outcomes forN subjects in a study the usual observed data amdténninal measures data. For

convenience, we usé“(Z") =Y" fort = 0,1.
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Figure 6.1 Observable potential outcomes and théeerved outcomes (terminal measures)

for N subjects for two sample completely randomized desn.

The set ofN observable potential outcomes has the form giveRigure 6.1(left) that,
after treatment assignment produces observed oegoentre) and then terminal measures of
the form shown (right), and where the “?” represeant unobserved potential outcomes for a

particular subject at the particular time undertteatment or control condition.

6.1 Data

We did not have a readily accessible terminal nregsdata set on which to base a
simulation. Thus, a mice data set from two expenitsiecone where Z was measured and another
where Y was measured were used to choose the paranfer the simulation study. Even
though the diet, weight loss and the lifespan &seovable outputs, we prepared this data set as

a terminal measure data set. The description afibwese data set is given below:

These mouse data sets were provided by ThomashBsdn & Brad A. Rikke, Institute
for Behavioral Genetics, University of ColoradoBaulder Boulder, CO. One set of data was
from an experiment to evaluate the effect of dietastriction on lifespan, and a second data set
evaluated the effect of dietary restriction on virti(ps well as other variables). Two levels of

diet were used for both experiments, DR(T=1)=dietastriction and AL(T=0) =ad libitum, and
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all mice from both experiments were female. Aftemg data cleaning to eliminate documented
atypical cases, the lifespan data set had a t6t88d mice from 42 different strains in two
cohorts. The weight data set had 473 mice fromiBérdnt strains in three cohorts. There were
33 strains that overlapped between the two dat $etthe lifespan data set, we define the
primary outcome variable, Y = Lifespan in daysthe weight data set, we defined a candidate
mediator variable to be Z = weight in grams betwé@eand 16 weeks. It may be noted that the
effect of the diet variable on this body weight si@@ment was already highly significant at this
time point. Note that for individual mice in bottudies, either a value of Z or Y is observed but
not both. If the interest is to determine the mdgeffect of Z on Y, then missing values of Z
or Y must be imputed using a valid imputation moteluse individual level models for
analyzing the indirect effect of dietary restriction lifespan through the variable Z. The strain
information for the 33 strains that overlap betwdentwo data sets was evaluated as a grouping
variable, analogous to how one could use a litiable in study. Of the 33 strains that
overlapped, there were 315 mice in the weight dataand 692 mice in the lifespan data set that

were from strains common to both experiments.

Within the weight data set, there was an average ©Mmice from each strain in each of
the two diet groups. Within the lifespan data t#etre was an average of 9.6 and 11.4 mice from
each strain in the AL and DR diet groups, respebtiviFigure 6.1 shows the distributions of the
candidate mediator, weight, and the outcome vagjdbfespan, for each strain within the diet
groups. One can see that the weight variable s V@siable within strain than the lifespan
variable. However, there is visual evidence thahh@riables differ across strains. To test this,
analysis of variance (ANOVA) was conducted for eatthe four data subsets shown in the four
panels of Figure 6.1. These data were used asrewWwark for assessing parameter values in a

simulation illustration to be described next.

The percentage of the total sums of squares olvdight variable within the AL and DR
diets that is explained by the strain variable8%06and 79% , respectively. The percentage of the
total sums of squares of the lifespan variable iwithe AL and DR diets that is explained by the

strain variable is 38% and 45%, respectively. Timyses show that within each diet group, the
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strain variable is a highly statistically signifitablocking variable for both of the outcomes,

weight and lifespan, with a p-value near zero.

Diet= AL

Diet=DR
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Figure 6.2 Boxplots showing the distributions oftie variables weight and lifespan for Each

strain within the diet groups, AL and DR.

6.2 Designs of the Study

A key challenge is to find methods suitable fortadg design in which the mediating
variables are terminal measures. In this studycevesider two experimental deigns; (1). strain as
a blocking variable and (2) strain as an experiadenit. Here we discuss these two designs

separately and estimate the mediating effectssimalation.
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6.2.1 Design 1: Mice as Experimental Units and Strains as Blocking Variable

(Individual-level assessment of mediation).

In the simulation, the diet level (DR or AL) wassamed to mice within strain so that
each strain containsmice. Strains act as a blocking variable and ratteas experimental units
(Completely Randomized Block Design). This desigsmice withs strains. We assign two
diet levels for each strain so that the designalarced. Each strain contain® replicates for

each diet level and there axestrains. The total number of mice wouldrise

O O O @|| O O @ O O [ @ O O
06 s ||lee’ o |lee® Sl|looe 0.6°.0 e e s
0O @ 00~ @ O @00 0 [@® ® o @0,® _O .O.OO.
AN ISAIRY XIS 0L-® |0

@ OO (©) OO O. @ ® (€] ® O @®p
Ce 0@ |[|°0 0@ ||C0 @0 ||9 @0 ®0 00 | [Fe O@
Strains Mice Control (AL) ~ Treatment (DR)

Figure 6.3 Design 1l:Treatment Assignment, open circles are AL (Control)and solid

circles are DR (Treatment).

6.2.2 Design 2: Strains as Experimental Units
(Strain-level assessment of mediation)

Strains were assigned for either treatment (DR)anmtrol (AL) so that each strain
containsn/2 mice, s-strains for the treatment &strains for the control. <strains act as
experimental units. The total number of mice wobklns. This design is called a group
randomized design. Group randomized trials are raxpats in which the intervention occurs at
the level of the group but observations are madendividuals within the groups. Group
randomization is particularly useful when thereaishigh risk for contamination if group
members are randomized as individuals. A group gamzed trial is based on a multi-stage

sampling technique.
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Figure 6.4 Design 2: Treatment Assignment, openrcles are AL and solid circles are DR.

Two-stage sampling is a common practice in mangiglises. In two-stage sampling,
the first stage refers to the primary sampling wvtiich is a cluster of objects, followed by a
second stage where individual objects, or sub-uares sub sampled from the cluster . A cluster,
or primary sampling unit, is a natural groupingotijects that may have similar attributes. This
study includes mice (sub-units) in a strain (clgstéhis sampling scheme is a form of multilevel
sampling and is also referred to as hierarchicalested samplin@his study of a completely
randomized design ha¥2 pseudoreplications (mice) per experimental usita{n) withs
replications. The term “pseudoreplication” was eairby Hurlbert (1984, 190-191) to refer to
"the use of inferential statistics to test for treant effects with data from experiments where
either treatments are not replicated (though sasnpiay be) or replicates are not statistically
independent.” The context of his paper was ecofbdield experiments, but pseudoreplication

can occur in other contexts as well.

Replications are having more than one experimamtdlwith the same treatment. That
is, each unit with the same treatment is calleepéicate. True replication permits the estimation
of variability within a treatment. Comparing twe@atments, we assign each treatment on several

units, then we can obtain some information aboeitvtiriability of each treatment.

True replicates are often confused with repeatedsores or with pseudoreplicates. The
following illustrate some of the ways this can aciconsequence of doing statistical inference
using pseudoreplicates rather than true replicatesthat variability will probably be
underestimated.
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The mice in the same strain are not independerdgreasons, but rather are correlated.
For example, in measuring mice weight, mice lifaditends to aggregate with other mice of a
similar age, so measuring one mouse from a stnawviges information on the weights & life
time of the other mice in the same strain. Theresfagnoring that objects (mice) were sampled
in clusters (strains) and treating the mice as mple random sample is a form of
pseudoreplication, specifically sacrificial psewgarcation, which has been well documented,
and has been a common mistake made by resear&lvesding to Hurlbert (1984), the major

problem of pseudoreplication is that individual ten{the mice) are treated as independent

objects, when in fact, they are f&usan, J., 2011).

In design 1, mice were randomly assigned to thetteatments in the strain, and will be
considered as a design with replicates. In de&igihe strains were randomly assigned to the
two treatments and mice within the strain can besiered as pseudoreplicates as they are

inter-correlated.
6.3 Methodology

We compare analytical methods for estimating trusdiating effect for design 1 &
design 2. The design 1 includes completely randedhizalanced design within strain. The
complexity of design 2 is the lack of independean®ng the data. We assume that the strains
contain the same numbers of mice and the numbstraifis per treatment level is also the same.

The number of treatment levels (Treatment vs. @bnis fixed at 2.

6.3.1 Simulation Study
Under each design, the potential outcomes, theroddelata & the terminal measures
are generated. Then the estimated mediating effe¢he estimated standard error of estimate

are calculated for several cases. For each deKifi®, samples were created.

For designs 1 & 2, the potential outcomes were ige@é fors-strains withn-individuals
in each strain andszstrains withn/2 individuals in each strain, respectively, sot ttiee total
number of mice wasis. For each design, the observed data were genebgtedmoving
counterfactuals and then from the observed datatdhminal measures were generated by

removingY & Z randomly within strains. Here, the missing valuese replaced by observed
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averages of & Y within each strain for each treatment assignmedtthen the missing values

were imputed using parametric bootstrapping. liytisset the true mediating effect as

B,

6.3.2

~H,0)=(-1)(-5) = 5.

Steps of Generating Potential Outcomes, Observed Data and Terminal Measures

Design 1:To generate potential outcomesf, we use the following steps:

1.

Specify p,, =22, overall mean ofZ whenT =0 and x,,, =17,overall mean ofZ

whenT =1.
Specify o7 ando;, sothato; =o0; + 0, whereo; =45, the variance of strain

means of ZwhenT =0 and ai = 05 the variance ofZ within the strain whefm =0.
Generatea,,a,,....a, ~ N(0,07)).

4. Generatey, . = /,q + &, the mean of for thei™ strain.

5. GenerateZ” =y, + €, , thej"” observation oz for thei" strain whenT =0, where

To

9.

10.

11.
12.

g ~N(0,07). Notethatz® =, +a +¢;.
GenerateZ" =Z® + 1, thej" observation ofZ for thei" strain wherl =1, where

T =W, — M,q - Note that the effect of on Z confirms to an unit-treatment additive
model.

generate potential outcomesYok givenZ's we use the following steps:
Specify 4, =25, overall mean ofY whenT =0 and x4, = 27 ,0overall mean ofY
whenT =1.

Specify oy & oy, sothatoy, =oy + o, whereo, =40, the variance of strain means
of YwhenT =0 and Ji = 4, the variances ofY within the strain whe =0.
Generateb, b,,... b, ~ N (0,07 ) and c,,C,,...c, ~ N (0,07 ).

Generate,uYi(o) = U, *+ b, the mean ofY for thei™ strain whenT = 0.

Generatey, ., = i, *+ C;, the mean ofY for thei' strain whenT =1.

Generate the error terms using multivariate nowtsfibution with a covariance matrix.
Then generate the potential outcome¥ of so that
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YOZO) = f + BEZY - ) + 6,
YO(ZO) = a0 + BEZO ~ ) +
YOEZO) = o + BEZP - ) + &,
YOZO) = 0+ BEZO = ty0) + &
where £ is fixed. Since there is no interaction betw@eandZ, the first and fourth lines have

the same slope but different intercepts. The setinadas the same slope and intercept as the
first while the third line has the same featurethasfourth.

6.4 Results and Discussion

In design 1 for each simulation data set, five sagere applied to the data. Cases 1 and 2
use data that are typically observed in a studynedliation effects, and cases 3, 4, and 5 use
terminal measures data. The five cases are: (ly d&gron & Kenny to the observed data
without strain in the model (designl.obs), (2) gopharon & Kenny to the observed data with
strain in the model (designl.obs.s), (3) apply Ba&oKenny to the observed average data (that
is, the terminal measures are estimated using wédeverages of & Z ) (designl.avg), (4)
apply the Baron & Kenny to the imputed data withstrains (designl.imp), and (5) apply the
Baron & Kenny to the imputed data with strains (ge$.imp.s). Figure 6.5 shows the boxplots
for all five cases for design 1.

The second box plot shows that the mediating effantbe estimated when the Baron &
Kenny approach was applied for the observed agatamodel that included strains. This is, in
fact, the correct model. The first boxplot cannstireate the mediating effect, eventhough there
are no terminal measures data. This is becaussrtdia variable is a highly significant blocking
variable and, when it is not included in the modet model cannot detect a mediating effect.
Boxplots 3, 4, and 5 reflect estimated mediatirfga$ using terminal measures data (i.e., cases
3, 4, and 5 above). As can be seen, the mediatiegt @annot be estimated in any case because
the mice are experimental units and there is narindtion in terminal measures data regarding
the partial correlation between Y and Z, givenistr®ne can see from case 5 that the variability
in estimates is much less using imputed data wrtinsin the model, again indicating strains
usefulness as a blocking variable even though #diating effect cannot be identified.
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Estimated Mediating Effects for Five Methods in Design 1
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Figure 6.5 Plots for Design 1 for Cases 1 — 5. @lrue mediating effect is equal to 5.

Design 2: We use the similar steps as above with some matlifics to generate the potential
outcomes, observed data & terminal measures foddisggn 2. In design 2 for each simulated
data set, five analyses were applied to the datmimAthe first two cases used data that are
typically observed in a mediation analysis, ances&é® — 5 use terminal measures data. The five
cases are: (1) apply Baron & Kenny to the obsedatd without strains (design2.obs), (2) apply
Baron & Kenny to the observed data with strainsi@®.obs.s), (3) apply Baron & Kenny to
the strain level observed average data (that is, tdiminal measures are estimated using
observed averages ¥f& Z) (design2.tm.avg), (4) apply the Baron & Kennyhe imputed data
without strains(design2.tm.imp), and (5) apply B&on & Kenny to the imputed data with

strains (design2.tm.imp.s). Figure 6.6 shows theplots for all five cases in design 2.
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Estimated Mediating Effects of Five Methods in Design 2
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Figure 6.6 Plots for Design 2 for cases 1 — 5. The true mediag) effect is equal to 5.

In design 2, strain is the experimental unit arerthice are pseudoreplicates. This allows
for estimation of the mediating effect with or wotlt terminal measures as seen in the boxplots
for cases 1, 3, and 4. The assumption needed tighthdreatment is acting at the level of the
group, here strain. If strain is put into the moaewas done in cases 2 and 5, then the mediating
effect cannot be estimated. In other words, theiatiad effect is being explained by strain, and
the model cannot distinguish a mediating effeamf strain effect. Still, if one can assume that
a treatment acts on the level of a group of utiitsn one can proceed with mediation analysis
using terminal measures data. This assumption reagdre plausible in certain settings, such as

applying a treatment to a pot of multiple plantsaditter of mice.

In brief, for design 1 the estimation of a medigtieffect does not work for terminal
measures data regardless of whether strain isidadl in the model since there was no
information regarding partial correlation betwe¥n& Z, given strain. But in design 2, with

strains as experimental units, the estimation mhaeeworks for terminal measures data.
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Chapter 7 - Future Work

7.1 Summary of Dissertation

Some background of mediation analysis was introdluoe chapter 1, and some
hypothetical examples and the motivation of thelgtwere discussed. In chapter 2, under the
literature review, the past work done by many redeas was discussed and more importantly,
the most popular approach of estimating averageiatieg effect, that is Baron & Kenny
approach was introduced. The main assumption masenw interaction between treatment and
the mediator. The potential outcomes framework the causal effects was extended to the
mediating effects. The total, direct and indireffees were introduced and the relationship
among them was established, based on the potentiedmes framework. The concept and the
past work done on treatment heterogeneity weredntted. The mediation plot for the average

mediating effect was described for a dichotomoeatinent variable.

In chapter 3, the completed work done for the iihligl mediating effects for the
preliminary exam presented. The mediation plot dended to the individual mediating plot to
describe the relationship among the individual Ifotirect and indirect effects. Using the
individual mediation plots, sources of variabiliof the total effect across individuals was
demonstrated. The variability of individual medafi effects,

Oy = 05 + (0, +,u§)[(azm —0,0) +20,,0 (- ,ozmz(o,)J was formulated based on the

estimable and nonestimable quantities. Upper angridounds of the variability of individual
mediating effects were shown for three differensesa Then the mediating heterogeneity or
subject-mediator (treatment) interaction was definen chapter 4, the completed work for
heterogeneity of individual indirect effects wasalissed and in chapter 5, testing for qualitative
interactions was illustrated using a simulated dafa In chapter 6, a new concept which was
called terminal measures data was introduced amstmalation study was conducted. Two
designs were used to conduct simulation studiespsSof generating potential outcomes,
observed data and terminal measures data wereiltkgbén detail and finally the results and

discussion were presented.
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7.2 Open Questions and Future Directions

1. Throughout this study no interaction betwe@nandZ for an individual was
assumed. This cannot be directly tested at thd t#vihe individual. However, such
an interaction can be investigated at the populatevel. Is an estimated x Z
interaction that is statistically significant evid® that this interaction must occur at
the level of some individuals?

2. Are there improved imputation methods for termima¢asures, perhaps in cases
whereY andZ could be observed for at least a few units? @né had some prior
knowledge regarding the partial correlation betw¥emdZ given a covariate, could
this knowledge then be incorporated into the impamaprocedure thereby allowing

mediation analysis at the level of an individual?

3. lllustrate the size and power of Union-Intersectiest, particularly, relaxing the

assumptions tha,f?j and /1, are independent.

4. Study the distributional properties of estindalE, across subsets.

73



References

Albert, J. M. (2008). Mediation analysis via poiahbutcomes models. Statistics in Medicine
27, 1282-1304.

Baron RM, Kenny DA. The moderator—-mediator variatitinction in social psychological
research: conceptual, strategic, and statistiaaiderations. Journal of Personality and
Social Psychology 1986; 51:1173-1182.

Berger, R.L.(1989). Uniformly more powerful tests hiypotheses concerning linear inequalities
and normal means. Journal of the American Stagisfissociation, 84, pp. 192-199.

Booil, J.(2008)Causal Inference in Randomized Experiments With ittexhal Processes
Psychological Methods, Vol. 13, No. 4, pp. 314-336

Casella, G., and Berger, R. L. (2002). StatisticiErence. Duxbury Press.

Ciminera,J.Heyse, J,Nguyen, H.Tukey, J (1993). Eatadn of Multicentre clinical trial data
sing adoptions of the Mosteller-Tukeggedure. Statistics in Medicinel12(11): 1047-61.

Dawid, AP (2000) Causal inference without counterfals. J Am Statist Assoc 95:407-424.

Frazier, P.A., Tix, A.P., Barron, K.E.(2004). Testimoderator and mediator effects in
counseling psychology research. Journal of Courgé€lsychology 51, 115-134.

Fritz M.S., McKinnon D. P. (2008) A graphical repentation of the mediated effect. Behavior
Research Methods 2008, 40 (1), 55-60.

Gadbury G. L(2010). Subject — Treatment InteractionElmcyclopedia of Biopharmaceutical
Satistics, Third Edition, Revised and Expanded. Edited bgiSiChung Chow. Informa

Healthcare, London. p. 1316 — 1321.

Gadbury, G. L., lyer, H. K., Allison, D.(2001) Ewalting subject-treatment interaction when
comparing two treatments. J. Biopharm. Stat. 31B-333.

Gail, M. and Simon, R. Testing for qualitative irgetions between treatment effects and
patient subsets. Biometrics 1988, pp. 361-372.

Gallop R, Small D, Lin J, Elliott M, Joffe M and fi¢dave T. Mediation analysis with principal
stratification. Stat Med 2009; 28: 1108-1130.

Holland, P. W. (1986), Statistics and Causal Infeee Journal of the American Statistical
Association, 81, 945-960.

74



Hurlbert S.H., (1984), Pseudoreplication and thei@eof Ecological Field Experiments
Ecological Monographs, Vol. 54, No. 2, pp. 187-211

Imai, Kosuke, Keele, Luke, & Tingley, Dustin (2018) general approach to causal mediation
analysis. Psychological Methods, 15(4), 309-334.

Lois A. Gelfand, Janell L.M., Thomas T.(2009).Mdaia Analysis: A Restropective Snapshot
of Practice and More Recent Directions, The Joush@eneral Psychology, 135:2,153-
178.

MacKinnon D.P., Lockwood C.M., Hoffman J.M., WesGS Sheets V. (2002). A comparison
of methods to test mediation and other interveneripble effects. Psychological
Methods, 7,83-104.

Masoro, E.J, Role of sirtuin proteins in life exd&m by caloric restriction. Mech Ageing Dev.
2004 Sep;125(9):591-4.

McKinnon, D. P. (2008). An introduction to mediatianalysis. Mahwah, NJ: Erlbaum

Muller, D., Judd, C.M., Yzerbyt, V.Y.(2005). Wheroderation is mediated and mediation is
moderated. Journal of Personality and Social Rdgdly, 89, 852-863.

Neyman, J. (1990). On the application of probaptliteory to agricultural experiments. Essay on
principles Section 9 translated inStatistical Scegrb, 465—-480.

Pearl, J. (2001). Direct and indirect effects. todeedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, 411-420.

Piantadosi,S., Gai, M.H. (1993). A comparisothef power of two tests for qualitative
interactions. Statistics in Medicine12(13): 1232448.

Peto R.(1982). Statistical aspects of cancer trimlslalnan KE, (ed): The Treatmnent of Cancer.

London, Chapman & Hall, pp 867-871.

Robert M, Beasley T.M, Gadbury G.L, Albert J.M,itedy R, Allison D.B. (2011). The
validity and power of extreme sampling schemesrfediation analysis. Frontiers in
Genetics: Behavioral and Psychiatric Genetics,.2:75

Robert S. Poulson, Gary L. Gadbury, David B. Alig@012). Treatment heterogeneity and
individual qualitative interaction. American Siditian, 66, 16 - 24.

Roy, S.N. (1953). On a heuristic method of teststmuttion and its use in multivariate analysis.
Annals of Mathematical Statistic&4, 220-238.

Rubin, D (1974) Estimating causal effects of tresita in randomized and nonrandomized

75



studies. J Educ Psychol 66:689.

Rubin, D (2005). Causal Inference Using PotentiaicOmes: Design, Modeling, Decisions
Journal of the American Statistical Associatid0, 469; ABI/INFORM Global, pg. 322.

Stephen, D., Jackie, A., David, B.,Susan, N., @fR003) Caloric Restriction, Aging and
Cancer PreventiarMechanisms of Action and Applicability to Humansiru. Rev.
Med. 2003. 54:131-52.

Steyer,R.(2005). Analyzing Individual and Averdgmusal Effects via Structural Equation
Models. Methodology ; Vol. 1(1),39-54.

Susan J. Picquelle, Kathryn L. M{g011), A practical guide to statistical methods for conipgr
means from two-stage sampling.

Wright, S.(1934). The method of path coefficiedtenals of Mathematical Statistics, 5,161-215.

Wu, A. D., & Zumbo, B. D. (2008). Understanding arging mediators and moderators. Social
Indicators Research, 87, 367-392.

Yusuf, S., J. Wittles, J. Probstfield, and H. A. dlgr.(1991). “Analysis and Interpretation of
Treatment Effects in Subgroups of Patients in Remded Clinical Trials.” Journal of
the American Medical Association 266 (1): 93-8.

Zelterman (1990). Tests for Qualitative InteracsioBtatistics and Probability letters, 10: 59-63.

76



