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Abstract

This thesis contains six chapters. In the first chapter, the continuous and the discrete

cases of p-modulus is introduced. We present properties of p-modulus and its connection to

classical quantities. We also introduce use Arne Beurling’s criterion for extremality to build

insight and intuition regarding the modulus. After building an intuitive understanding of

the p-modulus, we then proceed to switch perspectives to that of convex analysis. Using

the theory of convex analysis, the uniqueness and existence of extremal densities is shown.

We end this chapter with the introduction of the probabilistic interpretation of Modulus.

In the second chapter, we introduce the Fulkerson duality. After defining the Fulkerson

dual, we will investigate the blocking duality for different families of objects that the NODE

research group has been studying and has been established. An important result that

connects the Fulkerson dual and modulus is given at the end of this chapter. This important

theorem will be used in proving one of the main results that δp (introduced in Chapter 4)

is a metric on graphs.

The third chapter will discuss about metrics and ultrametrics on networks. Among

these metrics, effective resistance is given special attention because the proof of δp metric

also serves as a new proof that effective resistance is a metric on graphs. We define effective

resistance and give two different proves that show it is a metric, namely flows and the

Laplacian.

Two new families of metrics on graphs that arises through modulus are introduced in the

fourth chapter. We also show how the two families are related as the dp metric is viewed as a

snowflaked version of the δp metric. We end this chapter with some numerical examples that

proves this connection and also serves as a set of plentiful examples of modulus calculations.



Clutters and blockers is also another topic that is very much related to families of objects.

While it has different rules and conditions, the study of clutters and blockers can give more

insights to both modulus and clutters. We explore these relations in chapter 5. We provide

some examples of clutters and blockers and finally reveal the relationship between the blocker

and Fulkerson dual.

Finally, in chapter 6, we end the thesis by presenting some of the open questions that

we would like to explore and find answers in the future.
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Chapter 1

Introduction to Modulus

1.1 Modulus in the continuum

The theory of conformal modulus was originally developed in complex analysis, see the

comment on p. 81 in Ahlfors1. The more general theory of p-modulus grew out of the study of

quasiconformal maps, which generalize the notion of conformal maps to higher dimensional

real Euclidean spaces and, in fact, to abstract metric measure spaces. Intuitively, p-modulus

provides a method for quantifying the richness of a family of curves, in the sense that a

family with many short curves will have a larger modulus than a family with fewer and

longer curves. The parameter p tends to favor the “many curves” aspect when p is close to

1 and the “short curves” aspect as p becomes large. This phenomenon was explored more

precisely in [2] in the context of networks. The concept of discrete modulus on networks

is not new, see for instance papers by Duffin3 and Schramm4. However, recently Albin

and Poggi-Corradini have started developing the theory of p-modulus as a graph-theoretic

quantity, see [5,2], with the goal of finding applications, for instance to the study of epidemics

[6,7].

The concept of blocking duality explored in the second chapter in this thesis is an analog

of the concept of conjugate families in the continuum. As motivation for the discrete theory

1



to follow, then, let us recall the relevant definitions from the continuum theory. For now,

it is convenient to restrict attention to the 2-modulus of curves in the plane, which, as it

happens, is a conformal invariant and thus has been carefully studied in the literature.

Let Ω be a domain in C, and let E,F be two continua in Ω. Define Γ = ΓΩ(E,F ) to be

the family of all rectifiable curves connecting E to F in Ω. A density is a Borel measurable

function ρ : Ω→ [0,∞). We say that ρ is admissible for Γ and write ρ ∈ Adm(Γ), if

∫
γ

ρ ds ≥ 1 ∀γ ∈ Γ. (1.1.1)

Now, we define the modulus of Γ as

Mod2(Γ) := inf
ρ∈Adm(Γ)

∫
Ω

ρ2dA. (1.1.2)

Example 1.1.1 (The Rectangle). Consider a rectangle

Ω := {z = x+ iy ∈ C : 0 < x < L, 0 < y < H}

of height H and length L. Set E := {z ∈ Ω : Re z = 0} and F := {z ∈ Ω : Re z = L} to be

the leftmost and rightmost vertical sides respectively. If Γ = ΓΩ(E,F ) then,

Mod2(Γ) =
H

L
. (1.1.3)

To see this, assume ρ ∈ Adm(Γ). Then for all 0 < y < H, γy(t) := t+ iy is a curve in Γ, so

∫
γy

ρds =

∫ L

0

ρ(t, y)dt ≥ 1.

2



Using the Cauchy-Schwarz inequality we obtain,

1 ≤

[∫ L

0

ρ(t, y)dt

]2

≤ L

∫ L

0

ρ2(t, y)dt.

In particular, L−1 ≤
∫ L

0
ρ2(t, y)dt. Integrating over y, we get

H

L
≤
∫

Ω

ρ2dA.

So since ρ was an arbitrary admissible density, Mod2(Γ) ≥ H
L

.

In the other direction, define ρ0(z) = 1
L
1Ω(z) and observe that

∫
Ω
ρ2

0dA = HL
L2 = H

L
.

Hence, if we show that ρ0 ∈ Adm(Γ), then Mod(Γ) ≤ H
L

. To see this note that for any

γ ∈ Γ: ∫ L

0

1

L
|γ̇(t)|dt ≥ 1

L

∫ L

0

|Re γ̇(t)|dt ≥ 1

L

(
Re γ(1)− Re γ(0)

)
≥ 1.

This proves the formula (1.1.3).

A famous and very useful result in this context is the notion of a conjugate family

of a connecting family. For instance, in the case of the rectangle, the conjugate family

Γ∗ = Γ∗Ω(E,F ) for ΓΩ(E,F ) consists of all curves that “block” or intercept every curve

γ ∈ ΓΩ(E,F ). It’s clear in this case that Γ∗ is also a connecting family, namely it includes

every curve connecting the two horizontal sides of Ω. In particular, by (1.1.3), we must have

Mod2(Γ∗) = L/H. So we deduce that

Mod2(ΓΩ(E,F )) ·Mod2(Γ∗Ω(E,F )) = 1. (1.1.4)

One reason this reciprocal relation is useful is that upper-bounds for modulus are fairly

easy to obtain by choosing reasonable admissible densities and computing their energy.

However, lower-bounds are typically harder to obtain. However, when an equation like

(1.1.4) holds, then upper-bounds for the modulus of the conjugate family translate to lower-

3



bounds for the given family. We will discuss more on this topic later in chapter two.

In higher dimensions, say in R3, the conjugate family of a connecting family of curves

consists of a family of surfaces, and therefore one must consider the concept of surface

modulus, see for instance Rajala8 and references therein. It is also possible to generalize the

concept of modulus by replacing the exponent 2 in (1.1.2) with p ≥ 1 and by replacing dA

with a different measure.

In the present work, we will be using a discrete version of the above theory and the next

section will explore this idea further.

1.2 Modulus on networks

A general framework for modulus of objects on networks was developed by Albin and Poggi-

Corradini in [9]. In what follows, G = (V,E, σ) is taken to be a finite graph with vertex

set V and edge set E. The edge weights σ ∈ RE
≥0. We also assume for simplicity that G is

undirected and simple. The theory applies to any finite family of “objects” Γ for which each

γ ∈ Γ can be assigned an associated function N (γ, ·) : E → R≥0 that measures the usage

of edge e by γ. Notationally, it is convenient to consider N (γ, ·) as a row vector in RE
≥0.

Some examples of objects and their associated usage functions are the following.

� To a walk γ = x0 e1 x1 · · · en xn we can associate the traversal-counting function

N (γ, e) = number times γ traverses e. In this case N (γ, ·) ∈ ZE≥0.

� To each subset of edges T ⊂ E we can associate the indicator function N (T, e) =

1T (e) = 1 if e ∈ T and 0 otherwise. Here, N (γ, ·) ∈ {0, 1}E.

� To each flow (see 3.3) f we can associate the volume function N (f, e) = |f(e)|. There-

fore, N (γ, ·) ∈ RE
≥0.

For the purposes of the present work in this thesis, it is sufficient to restrict attention to

families of walks. In fact, if Γ is the set of all walks between two distinct vertices, then it

4



turns out that modulus can be computed by considering only simple paths (walks that do

not visit any node more than once). This is discussed later in Theorem 1.2.9.

We define a density on G to be a nonnegative function on the edge set: ρ : E → [0,∞).

The value ρ(e) can be thought of as the cost of using edge e. For an object γ ∈ Γ, we define

`ρ(γ) :=
∑
e∈E

N (γ, e)ρ(e) = (Nρ)(γ),

which represents the total usage cost for γ with the given edge costs ρ. A density ρ ∈ RE
≥0

is admissible for Γ, if

`ρ(Γ) := inf
γ∈Γ

`ρ(γ) ≥ 1.

Let

Adm(Γ) :=
{
ρ ∈ RE

≥0 : `ρ(Γ) ≥ 1
}

(1.2.1)

be the set of admissible densities.

Given an exponent p ∈ [1,∞] we define the p-energy of a density ρ as

Ep,σ(ρ) :=
∑
e∈E

σ(e)ρ(e)p if p <∞ and E∞(ρ) := lim
p→∞

(
Ep,σ(ρ)

) 1
p = max

e∈E
σ(e)ρ(e) if p =∞.

Definition 1.2.1. A non-trivial family of objects is a family that is non-empty and every

object γ ∈ Γ has at least one edge e ∈ γ such that N (γ, e) > 0.

Definition 1.2.2. Let G = (V,E, σ) be a simple finite graph and let Γ be a finite non-trivial

family of objects with usage matrix N ∈ RΓ×E. For p ∈ [1,∞], the p-modulus of Γ is

Modp,σ(Γ) := inf
ρ∈Adm(Γ)

Ep,σ(ρ)

5



Equivalently, p-modulus corresponds to the following optimization problem

minimize Ep,σ(ρ)

subject to ρ ≥ 0, Nρ ≥ 1

(1.2.2)

where each object γ ∈ Γ determines one inequality constraint.

1.2.1 Properties of the p-Modulus

Here we present the basic properties of the p-modulus of families of walks and discuss

suitable examples to lend intuition to how these properties are used.

Remark 1.2.1. If Γ is a family of walks on a finite graph G that contains a constant walk,

i.e., a walk with zero hops, then Modp Γ =∞. Indeed, if γ0 ∈ Γ is a constant walk (a walk

that does not use any edge), then `ρ(γ0) = 0 for every ρ- density. Consequently, Adm(Γ) = ∅

and infρ∈∅ Ep(ρ) =∞.

For this reason, we exclude constant walks from now on.

Proposition 1.2.3. (The modulus is an outer measure). Assume that Γj is a family

of walks in a finite graph G for each j ∈ N. Then,

1. (Empty Family): If Γ1 = ∅, the empty family, then Modp Γ1 = 0.

2. (Monotonicity): If Γ1 ⊂ Γ2, then Modp(Γ1) ≤ Modp(Γ2).

3. (Countable Subadditivity): Modp

 ∞⋃
j=1

Γj

 ≤ ∞∑
j=1

Modp Γj.

Proof. For each j ∈ N let Γj be a family of walks in a finite graph G.

1. If Γ1 = ∅, then every ρ is admissible, including ρ0 ≡ 0. Hence 0 ≤ Modp Γ ≤ Ep(ρ0) =

0.
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2. If Γ1 ⊂ Γ2 then ρ ∈ Adm(Γ2) implies that ρ ∈ Adm(Γ1), so that Adm(Γ2) ⊂ Adm(Γ1).

Therefore,

Modp Γ1 = inf
ρ∈Adm Γ1

Ep(ρ) ≤ inf
ρ∈Adm Γ2

Ep(ρ) = Modp Γ2.

3. Let Γ :=
⋃∞
j=1 Γj and fix ε > 0. For each j, choose ρj ∈ Adm(Γj) such that

Ep(ρj) ≤ Modp Γj +
ε

2j
.

Define ρ :=
(∑∞

j=1 ρ
p
j

) 1
p
. For any γ ∈ Γ, there exists k ∈ N so that γ ∈ Γk. Since

ρ ≥ ρk we have that `ρ(γ) ≥ 1. Hence, ρ ∈ Adm(Γ). Moreover,

Modp Γ ≤ Ep(ρ) =
∑
e∈E

ρ(e)p =
∑
e∈E

∞∑
j=1

ρj(e)
p =

∞∑
j=1

∑
e∈E

ρj(e)
p

=
∞∑
j=1

Ep(ρj) ≤ ε+
∞∑
j=1

Modp Γj.

We can interchange the order of summation without concern by Tonelli’s theorem. Hence,

taking ε to zero attains the desired result.

Remark 1.2.2. The following is another useful basic property to add to monotonicity and

countable subadditivity:

4. (Subordination): With the hypothesis of Proposition 1.2.3, suppose that Γ and Γ′

are families of objects on G, and suppose that for every object γ ∈ Γ there is an object

γ′ ∈ Γ′ such that N (γ′, e) ≤ N (γ, e), for all e ∈ E (we say Γ is subordinated to Γ′).

Then,

Modp,σ(Γ) ≤ Modp,σ(Γ′). (1.2.3)

Proof. Assume ρ ∈ Adm(Γ′), then for every γ ∈ Γ, there is γ′ ∈ Γ such that

∑
e∈E

N (γ, e)ρ(e) ≥
∑
e∈E

N (γ′, e)ρ(e) ≥ 1.

7



Namely, ρ is admissible for Γ as well. Hence, Adm(Γ′) ⊂ Adm(Γ).

1.2.2 Connection to classical quantities

The concept of p-modulus generalizes known several classical ways of measuring the richness

of a family of walks, see [2]. Let a and b be two nodes in V be given. We define the connecting

family Γ(a, b) to be the family of all simple paths in G that start at a and end at b. To this

family, we assign the usage function N (γ, e) to be 1 when e ∈ γ and 0 otherwise.

Theorem 1.2.4 (See2 ). Let G = (V,E, σ) be a graph with edge weights σ. Let Γ be a

nontrivial family of objects on G with usage matrix N and let σ(E) :=
∑

e∈E σ(e). Then the

function p 7→ Modp,σ(Γ) is continuous for 1 ≤ p < ∞, and the following two monotonicity

properties hold for 1 ≤ p ≤ p′ <∞.

N p
min Modp,σ(Γ) ≥ N p′

min Modp′,σ(Γ), (1.2.4)(
σ(E)−1 Modp,σ(Γ)

)1/p ≤
(
σ(E)−1 Modp′,σ(Γ)

)1/p′
. (1.2.5)

Moreover, let a 6= b in V be given and set Γ = Γ(a, b). Then,

(i) For p =∞:

lim
p→∞

Modp(Γ)
1
p = Mod∞(Γ) =

1

`(Γ)
.

(ii) For p = 1,

Mod1(Γ) = min{|∂S| : S an ab-cut} = MC(a, b).

(iii) For p = 2,

Mod2(Γ) = Ceff(a, b) = Reff(a, b)−1.

Remark 1.2.3. In other words, as p varies continuously from 1 to 2 and to ∞, the quan-

tity Modp(Γ(a, b)) recovers the classical notions of min cut - MC(a,b) (see 3.1.3), effective
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conductance - Ceff(a, b) (see 3.1.1) or the reciprocal of effective resistance - Reff(a, b), and

shortest path.

Here we give a proof for 1.2.4 since a complete proof of it is not presented in [2].

Proof. First note that the extremal density ρ∗ satisfies 0 ≤ ρ∗ ≤ N−1
min, where Nmin is defined

as

Nmin := min
γ∈Γ

min
e:N (γ,e)6=0

N (γ, e). (1.2.6)

The upper bound on ρ∗ follows from the fact that each row of N contains at least one

nonzero entry, which must be at least as large as Nmin. In the special case when N is

integer valued, the upper bound can be taken to be 1 and gives rise to an inequality of the

form 0 ≤ ρ∗ ≤ 1. Howeve, when N is not restricted to integer values, the bound on ρ∗

should be replaced by 0 ≤ ρ∗ ≤ N−1
min.

We have that 0 ≤ ρ∗Nmin ≤ 1, and since p′ > p, this imples that

∑
e∈E

σ(e)ρ∗(e)pN p
min ≥

∑
e∈E

σ(e)ρ∗(e)pN p
min

which gives,

N p
min Modp,σ(Γ) ≥ N p′

min Modp′,σ(Γ)

Example 1.2.1 (Basic Example). Let G be a graph consisting of k simple paths in parallel,

each path taking ` hops to connect a given vertex s to a given vertex t. Let Γ be the family

consisting of the k simple paths from s to t. Then `(Γ) = ` and the size of the minimum

cut is k. A straightforward computation (see 1.2.6) shows that

Modp(Γ) =
k

`p−1
for 1 ≤ p <∞, Mod∞(Γ) =

1

`
.
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Intuitively, when p ≈ 1, Modp(Γ) is more sensitive to the number of parallel paths, while

for p� 1, Modp(Γ) is more sensitive to short walks.

1.2.3 Beurling’s Criterion and Extremal Densities

We begin this section by looking at the modulus problem as a convex problem (1.2.2).

By borrowing techniques from convex analysis we derive conditions for the existence and

uniqueness of an extremal density.

Lemma 1.2.5. Given Γ and 1 ≤ p ≤ ∞, there exists an extremal density ρ∗. If 1 < p <∞,

then ρ∗ is unique.

Proof. For any 1 ≤ p < ∞, the function ρ → Ep(ρ)1/p is a norm on the m-dimensional

space of edge densities, as is the function ρ → E∞(ρ). Moreover, the set A(Γ) is closed

and convex. Thus, the modulus problem can be restated as the problem of finding a point

in a closed convex subset of Rm that is closest to the origin in a particular norm. Such a

point always exists, and is unique provided the norm is strictly convex, as it is in the cases

1 < p <∞.

As discussed earlier, since the modulus is defined as an infimum, it is easy to get upper-

bounds on the value of the modulus. Typically, it is difficult to attain non-trivial (for

instance the modulus is always non-negative) lower bounds. However, Arne Beurling’s

famous criteria for extremality is a very useful sufficient condition to test for extremality of

a density.

Theorem 1.2.6. (Beurling’s Extremality Criterion). For a fixed 1 < p <∞, a density

ρ ∈ Adm Γ is extremal if there exists Γ̃ ⊂ Γ with `ρ(γ) = 1 for all γ ∈ Γ̃ such that

∑
e∈E

h(e)ρp−1(e) ≥ 0 whenever h : E → R with `h(γ) ≥ 0 for all γ ∈ Γ̃. (1.2.7)
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Proof. Let ρ, Γ̃ be as in the hypothesis of (1.2.7) and let σ ∈ Adm Γ. Define h := σ − ρ.

Then `h(γ) ≥ 0 for all γ ∈ Γ̃. By (1.2.7) we have

∑
e∈E

σ(e)ρ(e)p−1 −
∑
e∈E

ρ(e)p =
∑
e∈E

h(e)ρp−1(e) ≥ 0,

so that

0 ≤
∑
e∈E

ρ(e)p ≤
∑
e∈E

σ(e)ρ(e)p−1 ≤

∑
e∈E

σ(e)p

 1
p
∑
e∈E

ρ(e)(p−1)q

 1
q

, where
1

p
+

1

q
= 1.

The second inequality is an application of Hölder’s Inequality. Since q = p
p−1

, the above

reads ∑
e∈E

ρ(e)p ≤

∑
e∈E

σ(e)p

 1
p
∑
e∈E

ρ(e)p

1− 1
p

.

Consequently, ∑
e∈E

ρ(e)p

 1
p

≤

∑
e∈E

σ(e)p

 1
p

.

Taking the pth power of both sides and recalling that σ is an arbitrary admissible density

shows that ρ is indeed extremal.

Definition 1.2.7. A subfamily Γ̃ that satisfies the hypothesis in Beurling’s Extremality

Criterion is called a Beurling subfamily.

Theorem 1.2.8 (Converse of Beurling’s Criterion.). If ρ ∈ Adm(Γ) is extremal, then

Γ0(ρ) := {γ ∈ Γ : `ρ(γ) = 1}. (1.2.8)

is a Buerling subfamily.

For a proof of this theorem see [5].
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Theorem 1.2.9. If Γ̃ is a Beurling subfamily of Γ, then for each 1 < p < ∞ it follows

Modp Γ̃ = Modp Γ.

Proof. Since Γ̃ is a Beurling subfamily, letting ρ0 ∈ Adm(Γ) be the extremal density for Γ,

we see that Γ̃ ⊂ Γ0(ρ0) and by hypothesis (1.2.7) holds for ρ0 with Γ̃.

By monotonicity, Modp(Γ̃) ≤ Modp(Γ). On the other hand, let ρ ∈ Adm(Γ̃). Define

h : E → R by h = ρ− ρ0. Then, for every γ ∈ Γ̃ we have `h(γ) = `ρ(γ)− `ρ0(γ) = 0 and

∑
e∈E

h(e)ρp−1
0 (e) ≥ 0,

follows as a consequence of (1.2.7). Expanding out h, yields

Ep(ρ0) ≤
∑
e∈E

ρ(e)ρp−1
0 (e) ≤

∑
e∈E

ρ(e)p

 1
p
∑
e∈E

ρ0(e)p

1− 1
p

.

The latter inequality follows by applying Hölder. Dividing over we get,

∑
e∈E

ρ0(e)p

 1
p

≤

∑
e∈E

ρ(e)p

 1
p

⇒
∑
e∈E

ρ0(e)p ≤
∑
e∈E

ρ(e)p

which implies E(ρ) ≥ E(ρ0) = Mod(Γ). Minimizing over all ρ ∈ Adm(Γ̃) we have that

Mod(Γ̃) ≥ Mod(Γ).

Example 1.2.2. Consider the House graph G as in Figure 1.1 and the connecting family

of walks Γ = ΓG({1}, {2}). If we restrict ourselves to the simple walks in Γ, denoted Γs,

then it’s straightforward to verify that Γs only contains the three paths P1 = (1, 2), P2 =

(1, 5, 2), P3 = (1, 4, 3, 2). For clarity, if e = {x, y}, we write h(e) = h(x, y). Letting Γs play

the role of the Beurling subfamily, we can verify that ρ0 defined as in the right half of Figure

12



1

5

2

34

1

5

2

34

1

1/2 1/2

1/3

1/3

1/3

Figure 1.1: Left: House Graph. Right: House graph with the values assigned to each edge
by the extremal density of the connecting family Γ({1}, {2}) for 1 < p <∞.

1.1 is extremal. Indeed, for h : E → R suppose h satisfies

`h(γ) ≥ 0 for all γ ∈ Γs. (1.2.9)

For each k = 1, 2, 3, let γk be the walk that traverses the vertices of Pk in the same order.

Since the walks γ1, γ2, and γ3 partition the edges of G and traverse each edge exactly once,

∑
e∈E

h(e)ρp−1
0 (e) =

∑
e∈γ1

h(e)ρp−1
0 (e) +

∑
e∈γ2

h(e)ρp−1
0 (e) +

∑
e∈γ3

h(e)ρp−1
0 (e).

Moreover, since ρ0 is constant on each walk γj, the above can be reduced to

∑
e∈E

ρp−1
0 (e)h(e) =

∑
e∈γ1

h(e) +

(
1

2

)p−1∑
e∈γ2

h(e) +

(
1

3

)p−1∑
e∈γ3

h(e)

= `h(γ1) + 21−p `h(γ2) + 31−p `h(γ3) ≥ 0,

due to (1.2.9). Therefore, ρ0 and Γs satisfy the hypothesis of Theorem 1.2.6 for each p > 1.

13



Consequently, ρ0 is the extremal metric for the p-modulus on the House graph G. It is a

coincidence, caused by the lack of edges shared by any walks in Γs, that the same density

ρ0 is extremal for all p.

1.3 Lagrangian Duality and the Probabilistic Interpre-

tation of Modulus

The optimization problem (1.2.2) is an ordinary convex program, in the sense of Rockafel-

lar10 Sec. 28. It involves minimizing the convex function Ep over the convex set Adm(Γ)

defined by a set of linear inequalities. It was shown in [5] that this set of inequalities can

be assumed finite.

Theorem 1.3.1 (5). Let Γ be a given family of walks on a graph. There exists a finite

subfamily Γ∗ ⊂ Γ such that Adm(Γ∗) = Adm(Γ).

Such a finite subfamily is called an essential subfamily for the modulus problem. Ensur-

ing that `ρ(γ) ≥ 1 is true for all walks in the essential subfamily is equivalent to ensuring

the inequality for the entire family. Thus, even when a described set of walks (e.g., the

connecting family Γ(a, b)) contains infinitely many members, it can be always assumed that

Γ has been replaced by a finite essential subfamily (e.g., the simple paths from a to b when

Γ = Γ(a, b). See section 7 of [5].

Existence of a minimizer follows from compactness, and uniqueness holds when 1 < p <

∞ by strict convexity of the objective function. Furthermore, it can be shown that strong

duality holds in the sense that a maximizer of the Lagrangian dual problem exists and has

dual energy equal to the modulus. The Lagrangian dual problem was derived in detail in

[2]. The Lagrangian dual was later reinterpreted in a probabilistic setting in [9].

In order to formulate the probabilistic dual, we let P(Γ) represent the set of probability

mass functions (pmfs) on the set Γ. In other words, P(Γ) contains the set of vectors µ ∈ RΓ
≥0
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with the property that µT1 = 1. Given such a µ, we can define a Γ-valued random variable

γ with distribution given by µ: Pµ
(
γ = γ

)
= µ(γ). Given an edge e ∈ E, the value N (γ, e)

is again a random variable, and we represent its expectation (depending on the pmf µ) as

Eµ
[
N (γ, e)

]
:=
∑
γ∈Γ

µ(γ)N (γ, e) = (N Tµ)(e).

The probabilistic interpretation of the Lagrangian dual can now be stated as follows.

Theorem 1.3.2. Let G = (V,E, σ) be a finite graph with edge weights σ, and let Γ be a

non-trivial finite family of objects on G with usage matrix N . Then, for any 1 < p < ∞,

letting q := p/(p− 1) be the conjugate exponent to p, we have

Modp,σ(Γ)−
1
p =

 min
µ∈P(Γ)

∑
e∈E

σ(e)−
q
pEµ

[
N (γ, e)

]q 1
q

. (1.3.1)

Moreover, any optimal measure µ∗, must satisfy

Eµ∗
[
N (γ, e)

]
=
σ(e)ρ∗(e)

p
q

Modp,σ(Γ)
∀e ∈ E,

where ρ∗ is the unique extremal density for Modp,σ(Γ).

Theorem 1.3.2 is a consequence of the theory developed by Albin and Poggi-Corradini9.

However, since it was only remarked on in [9], we provide a detailed proof here.

Proof. The optimization problem (1.2.2) is a standard convex optimization problem. Its

Lagrangian dual problem, derived in [2], is

maximize
∑
γ∈Γ

λ(γ)− (p− 1)
∑
e∈E

σ(e)

 1

pσ(e)

∑
γ∈Γ

N (γ, e)λ(γ)


p
p−1

subject to λ(γ) ≥ 0 ∀γ ∈ Γ.

(1.3.2)
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It can be readily verified that strong duality holds (i.e., that the minimum in (1.2.2) equals

the maximum in (1.3.2)) and that both extrema are attained. Moreover, if ρ∗ is the unique

minimizer of the modulus problem and λ∗ is any maximizer of the Lagrangian dual, then

the optimality conditions imply that

ρ∗(e) =

 1

pσ(e)

∑
γ∈Γ

N (γ, e)λ∗(γ)

 1
p−1

. (1.3.3)

By decomposing λ ∈ RΓ
≥0 as λ = νµ with ν ≥ 0 and µ ∈ P(Γ), we can rewrite (1.3.2) as

max
ν≥0

ν − (p− 1)

(
ν

p

)q
min
µ∈P(Γ)

∑
e∈E

σ(e)−
q
p

∑
γ∈Γ

N (γ, e)µ(γ)

q
 .

The minimum over µ can be recognized as the minimum in (1.3.1). Let α be its minimum

value. Then the maximum over ν ≥ 0 is attained at ν∗ := pα−
p
q , and strong duality implies

that

Modp,σ(Γ) = ν∗ − (p− 1)

(
ν∗

p

)q
α = α−

p
q .

Thus,

min
µ∈P(Γ)

∑
e∈E

σ(e)−
q
pEµ

[
N (γ, e)

]q
= α = Modp,σ(Γ)−

q
p ,

proving (1.3.1). The remainder of the theorem follows from (1.3.3):

ρ∗(e) =

 ν∗

pσ(e)

∑
γ∈Γ

N (γ, e)µ∗(γ)

 1
p−1

= α−1σ(e)−
q
pEµ∗

[
N (γ, e)

] q
p

Remark 1.3.1. The probabilistic interpretation is particularly informative when p = 2,

σ ≡ 1, and Γ is a collection of subsets of E, so that N is a (0, 1)-matrix defined as N (γ, e) =
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1γ(e). In this case, this duality relation can be expressed as

Mod2(Γ)−1 = min
µ∈P(Γ)

Eµ
∣∣∣γ ∩ γ′∣∣∣ ,

where γ and γ′ are two independent random variables chosen according to the pmf µ, and∣∣∣γ ∩ γ′∣∣∣ is their overlap (also a random variable). In other words, computing the 2-modulus

in this setting is equivalent to finding a pmf that minimizes the expected overlap of two iid

Γ-valued random variables.

Proof. To see the above result, first recall that Eµ(N (γ, e)) =
∑

γ µ(γ)N (γ, e). Also,

∑
e∈E

Eµ(N (γ, e))2 =
∑
e∈E

∑
γ,γ′

µ(γ)µ(γ′)N (γ, e)N (γ′, e)

=
∑
γ,γ′

µ(γ)µ(γ′)
∑
e∈E

N (γ, e)N (γ′, e)

=
∑
γ,γ′

µ(γ)µ(γ′)
∣∣γ ∩ γ′∣∣

= E
∣∣γ ∩ γ′∣∣

In the present work, we are interested in a different but closely related duality called

blocking duality which will be discussed in the next chapter.
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Chapter 2

Fulkerson duality

In this chapter, we introduce blocking duality for modulus. In order to do so, we shall focus

on the set of inequalities defining Adm(Γ).

2.1 Fulkerson’s theorem

First, we recall some general definition. Let K be the set of all closed convex sets K ⊂ RE
≥0

that are recessive, in the sense that K + RE
≥0 = K. To avoid trivial cases, we shall assume

that ∅ ( K ( RE
≥0, for K ∈ K.

Definition 2.1.1. For each K ∈ K there is an associated blocking polyhedron, or blocker,

BL(K) :=
{
η ∈ RE

≥0 : ηTρ ≥ 1, ∀ρ ∈ K
}
.

Observe that every element η in the blocker would induce an admissible ρ. We can do

this by assigning ρ = 1 for the edges in the blocker and 0 otherwise.

Definition 2.1.2. Given K ∈ K and a point x ∈ K we say that x is an extreme point of

K if x = tx1 + (1− t)x2 for some x1, x2 ∈ K and some t ∈ (0, 1), implies that x1 = x2 = x.

Moreover, we let ext(K) be the set of all extreme points of K .
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Definition 2.1.3. A set C is convex if the line segment between any two points in C lies

in C, i.e., if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have θx1 + (1− θ)x2 ∈ C.

We call a point of the form θ1x1+· · ·+θkxk, where θ1+· · ·+θk = 1 and θi ≥ 0, i = 1, . . . , k,

a convex combination of the points x1, . . . , xk.

The convex hull of a set C, denoted co(C), is the set of all convex combinations of points

in C:

co(C) = {θ1x1 + · · ·+ θkxk|xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · ·+ θk = 1}.

Definition 2.1.4. The dominant of a set P ⊂ RE
≥0 is the recessive closed convex set

Dom(P ) = co(P ) + RE
≥0.

If Γ is a finite non-trivial family of objects on a graph G, the admissible set Adm(Γ)

is determined by finitely many inequalities, in particular Adm(Γ) has finitely many faces.

However, Adm(Γ) is also determined by its finitely many extreme points, or “vertices”. In

fact, it is well-known that Adm(Γ) is the dominant of its extreme points ext(Adm(Γ)), see

Theorem 18.5 in [10].

Definition 2.1.5. Suppose G = (V,E) is a finite graph and Γ is a finite non-trivial family

of objects on G. We say that the family

Γ̂ := ext(Adm(Γ)) = {γ̂1, . . . , γ̂s} ⊂ RE
≥0,

consisting of the extreme points of Adm(Γ), is the Fulkerson blocker of Γ. Also, we define

the matrix N̂ ∈ RΓ̂×E
≥0 to be the matrix whose rows are the vectors γ̂T , for γ̂ ∈ Γ̂.

Theorem 2.1.6 (Fulkerson11). Let G = (V,E) be a graph and let Γ be a non-trivial finite

family of objects on G. We identify Γ with its edge-usage functions, hence we think of Γ as

a finite subset of RE
≥0. Let Γ̂ be the Fulkerson blocker of Γ. Then
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(1) Adm(Γ) = Dom(Γ̂) = BL(Adm(Γ̂));

(2) Adm(Γ̂) = Dom(Γ) = BL(Adm(Γ));

(3)
ˆ̂
Γ ⊂ Γ.

In words, (3) says that the extreme points of Adm(Γ̂) are a subset of Γ. Combining (1)

and (2) we get the following.

Corollary 2.1.7. Let G = (V,E) be a graph and let Γ be a nontrivial finite family of objects

on G. Identify Γ with the subset of RE
≥0 consisting of all the edge-usage functions for objects

in Γ. Then,

BL(BL(Adm(Γ))) = Adm(Γ) and BL(BL(Dom(Γ))) = Dom(Γ).

as well as

Adm(Γ) = BL
(
Dom(Γ)

)
and BL(Adm(Γ)) = Dom(Γ).

We include a proof of Theorem 2.1.6 for the reader’s convenience.

Proof. We first prove (2). Suppose η ∈ BL(Adm(Γ)). Then ηTρ ≥ 1, for every ρ ∈ Adm(Γ).

In particular, since every row of N̂ is an extreme point of Adm(Γ), we have

N̂ η ≥ 1. (2.1.1)

In other words, η ∈ Adm(Γ̂). Conversely, suppose η ∈ Adm(Γ̂), that is (2.1.1) holds. Since

Adm(Γ) = co(Γ̂) + RE
≥0,
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for every ρ ∈ Adm(Γ), there is a probability measure ν ∈ P(Γ̂) and a vector z ≥ 0 such that

ρ = N̂ Tν + z

And by (2.1.1),

ηTρ = ηT N̂ Tν + ηT z ≥ νT1 + ηT z ≥ 1.

So η ∈ BL(Adm(Γ)).

Note that η ∈ BL(Adm(Γ)) if and only if the value of the following linear program is

greater or equal 1.

minimize ηTρ

subject to Nρ ≥ 1, ρ ≥ 0,

(2.1.2)

where N is the usage matrix for Γ. The Lagrangian for this problem is

L(ρ, λ, t) := ηTρ+ λT (1−Nρ)− tTρ = λT1 + ρT (η −N Tλ− t),

with ρ ∈ RE, λ ∈ RΓ
≥0 and t ∈ RE

≥0. In particular, the dual problem is

maximize λT1

subject to N Tλ ≤ η, λ ≥ 0.

(2.1.3)

Splitting λ = sν, with s ≥ 0 and ν ∈ P(Γ), we can rewrite this problem as

maximize s

subject to sN Tν ≤ η, ν ∈ P(Γ).

(2.1.4)
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By strong duality, η ∈ BL(Adm(Γ)) if and only if there is s ≥ 1 and ν ∈ P(Γ) so that

η ≥ sN Tν.

Namely, η ∈ BL(Adm(Γ)) implies that η ≥ N Tν, so η ∈ Dom(Γ).

Conversely, if η ∈ Dom(Γ), then there is a ν ∈ P(Γ) such that η ≥ N Tν. So we have

proved (2). In particular, since
ˆ̂
Γ is the set of extreme points of Adm(Γ̂) by Definition ??,

it follows from (2) that

ˆ̂
Γ = ext(Adm(Γ̂)) = ext(Dom(Γ)).

Since any extreme point of Dom(Γ) must be present in Γ, we conclude that
ˆ̂
Γ ⊂ Γ, and

hence (3) is proved as well.

To prove (1), we apply (2) to Γ̂ and find that

BL(Adm(Γ̂)) = Adm(
ˆ̂
Γ) ⊃ Adm(Γ),

where the last inclusion follows from (3), since
ˆ̂
Γ ⊂ Γ. Also, by (3) applied to Γ̂, the extreme

points of Adm(
ˆ̂
Γ) are a subset of Γ̂ and therefore they are a subset of ext(Adm(Γ)). This

implies that Adm(
ˆ̂
Γ) ⊂ Adm(Γ). So we have BL(Adm(Γ̂)) = Adm(Γ).

Moreover, by (2) applied to Γ̂, we get that

BL(Adm(Γ̂)) = Dom(Γ̂).

So (1) is proved as well.

2.1.1 Blocking duality for p-modulus

Theorem 2.1.8. Let G = (V,E, σ) be a graph and let Γ be a nontrivial finite family of

objects on G with Fulkerson blocker Γ̂. Let the exponent 1 < p < ∞ be given, with q :=
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p/(p − 1) its conjugate exponent. For any set of weights σ ∈ RE
>0 define the dual set of

weights σ̂ as σ̂(e) := σ(e)1−q, for all e ∈ E.

Then

Modp,σ(Γ)
1
p Modq,σ̂(Γ̂)

1
q = 1. (2.1.5)

Moreover, the optimal densities ρ∗ ∈ Adm(Γ) and η∗ ∈ Adm(Γ̂) respectively for Modp,σ(Γ)

and Modq,σ̂(Γ̂) are related as follows:

η∗(e) =
σ(e)ρ∗(e)p−1

Modp,σ(Γ)
∀e ∈ E. (2.1.6)

Remark 2.1.1. The case for p = 2 is essentially contained in Lemma 2 [12], although

not stated in terms of modulus and with a different proof. However, it is worth stating it

separetely. Namely,

Mod2,σ(Γ) Mod2,σ−1(Γ̂) = 1.

And

σ(e)ρ∗(e) = Mod2,σ(Γ)η∗(e) ∀e ∈ E,

in this case.

Proof. For all ρ ∈ Adm(Γ) and η ∈ Adm(Γ̂), Hölder’s inequality implies that

1 ≤
∑
e∈E

ρ(e)η(e) =
∑
e∈E

(
σ(e)1/pρ(e)

)(
σ(e)−1/pη(e)

)

≤

∑
e∈E

σ(e)ρ(e)p

1/p∑
e∈E

σ̂(e)η(e)q

1/q

,

(2.1.7)

so

Modp,σ(Γ)1/p Modq,σ̂(Γ̂)1/q ≥ 1. (2.1.8)

Now, let α := Modq,σ̂(Γ̂)−1 and let η∗ ∈ Adm(Γ̂) be the minimizer for Modq,σ̂(Γ̂).
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Then (2.1.8) implies that

Modp,σ(Γ) ≥ α
p
q = α

1
q−1 . (2.1.9)

Define

ρ∗(e) := α

(
σ̂(e)

σ(e)
η∗(e)q

)1/p

= ασ̂(e)η∗(e)q/p. (2.1.10)

Note that

Ep,σ(ρ∗) =
∑
e∈E

σ(e)ρ∗(e)p = αp
∑
e∈E

σ̂(e)η∗(e)q = αp−1 = α
1
q−1 .

Thus, if we can show that ρ∗ ∈ Adm(Γ), then (2.1.9) is attained and ρ∗ must be extremal for

Modp,σ(Γ). In particular, (2.1.5) would follow. Moreover, (2.1.6) is another way of writing

(2.1.10).

To see that ρ∗ ∈ Adm(Γ), we will verify that
∑

e∈E ρ
∗(e)η(e) ≥ 1 for all η ∈ Adm(Γ̂).

First, consider η = η∗. In this case

∑
e∈E

ρ∗(e)η∗(e) = α
∑
e∈E

σ̂(e)η∗(e)q = 1.

Now let η ∈ Adm(Γ̂) be arbitrary. Since Adm(Γ̂) is convex, we have that (1− θ)η∗ + θη ∈

Adm(Γ̂) for all θ ∈ [0, 1]. So, using Taylor’s theorem, we have

α−1 = Eq,σ̂(η∗) ≤ Eq,σ̂((1− θ)η∗ + θη) =
∑
e∈E

σ̂(e)
[
(1− θ)η∗(e) + θη(e)

]q
= α−1 + qθ

∑
e∈E

σ̂(e)η∗(e)q−1
(
η(e)− η∗(e)

)
+O(θ2)

= α−1 + α−1qθ
∑
e∈E

ρ∗(e)
(
η(e)− η∗(e)

)
+O(θ2).

Since this inequality must hold for arbitrarily small θ > 0, it follows that

∑
e∈E

ρ∗(e)η(e) ≥
∑
e∈E

ρ∗(e)η∗(e) = 1,
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and the proof is complete.

2.1.2 The cases p = 1 and p =∞

Now we turn our attention to establishing the duality relationship in the cases p = 1 and

p =∞. Recall that by Theorem 1.2.4,

lim
p→∞

Modp,σ(Γ)
1
p = Mod∞,1(Γ) =

1

`(Γ)
,

where `(Γ) is defined to be the smallest element of the vector N1.

In order to pass to the limit in (2.1.5), we need to establish the limits for the second

term in the left-hand side product.

Lemma 2.1.9. Under the assumptions of Theorem 2.1.8,

lim
q→1

Modq,σ̂(Γ̂)
1
q = Mod1,1(Γ̂) and

lim
q→∞

Modq,σ̂(Γ̂)
1
q = Mod∞,σ−1(Γ̂),

(2.1.11)

where σ−1(e) = σ(e)−1.

Proof. Let N , N̂ ∈ RΓ×E
≥0 be the usage matrices for Γ and Γ̂ respectively. Let σ ∈ RE×E be

the diagonal matrix with entries σ(e, e) = σ(e), and define Ñ = N̂σσ, with Γ̃ its associated

family in RE
≥0. Note that η ∈ Adm(Γ̂) if and only if σ−1η ∈ Adm(Γ̃). Moreover, for every

η ∈ Adm(Γ̂),

Eq,σ̂(η) =
∑
e∈E

σ̂(e)η(e)q =
∑
e∈E

σ(e)

(
η(e)

σ(e)

)q
= Eq,σ(σ−1η),

which implies that

Modq,σ̂(Γ̂) = Modq,σ(Γ̃).
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Taking the limit as q → 1 and using Theorem 1.2.4 shows that

lim
q→1

Modq,σ̂(Γ̂)
1
q = Mod1,σ(Γ̃) = min

η∈Adm(Γ̂)

∑
e∈E

σ(e)

(
η(e)

σ(e)

)
= Mod1,1(Γ̂).

Taking the limit as q →∞ and using Theorem 1.2.4 shows that

lim
q→∞

Modq,σ̂(Γ̂)
1
q = Mod∞,1(Γ̃) = min

η∈Adm(Γ̂)
max
e∈E

(
η(e)

σ(e)

)
= Mod∞,σ−1(Γ̂).

Taking the limit as p→ 1 in Theorem 2.1.8 then gives the following theorem.

Theorem 2.1.10. Under the assumptions of Theorem 2.1.8,

Mod1,σ(Γ) Mod∞,σ−1(Γ̂) = 1. (2.1.12)

Note that taking the limit as p → ∞ simply yields the same result for the unweighted

case.

2.2 Blocking Duality for Families of Objects

We begin this section with the introduction of max flow min cut theorem which will be used

throughout the rest of this thesis.

2.2.1 Max-Flow Min-Cut

Modulus is also closely related to the Max-Flow Min-Cut Theorem [13]. There are a number

of different ways to see this; we shall focus on the connection to Ford and Fulkerson’s

original work. Let G = (V,E, σ) be a weighted, undirected graph and let s, t ∈ V be

distinct vertices. Let Γ be the family of simple paths from s to t. (Γ ⊂ Γ(s, t) is an essential
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subfamily in the sense of Theorem 1.3.1.) In the terminology of Ford and Fulkerson, the

positive edge function σ is called the capacity of the edge. A flow can be thought of as a

function λ : Γ→ [0,∞) with the property that

∑
γ∈Γ

N (γ, e)λ(γ) ≤ σ(e) ∀e ∈ E, (2.2.1)

and the value of such a flow the sum of λ(γ) over all γ ∈ Γ. Γ here is the family of paths

between two distinct points on the graph.

A disconnecting set is a subset of edges D ⊆ E with the property that each γ ∈ Γ

traverses at least one edge in D, and a (minimal) cut is a disconnecting set that contains

no other disconnecting sets as proper subsets. The value of a disconnecting set D, denoted

v(D), is defined as the sum of the capacities of all edges in D. Thus a disconnecting set of

minimal value is automatically a cut (we call this the min cut). The Max-Flow Min-Cut

Theorem (originally known as the minimal cut theorem) is stated as follows.

Theorem 2.2.1 (Max-Flow Min-Cut). The values of the maximal flow and minimal cut on

any graph are equal.

2.2.2 Duality for 1-modulus

Suppose that G = (V,E, σ) is a weighted graph, with weights σ ∈ RE
≥0, and Γ is a non-

trivial, finite family of subsets of E, where N be the corresponding usage matrix. In this

case we can equate each γ ∈ Γ with the vector 1γ ∈ RE
≥0, so we think of Γ as living in

{0, 1}E ⊂ RE
≥0. Recall that Mod1,σ(Γ) is the value of the linear program:

minimize σTρ

subject to ρ ≥ 0, Nρ ≥ 1

(2.2.2)
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Since it’s a linear program, strong duality holds, and the dual problem is

maximize λT1

subject to λ ≥ 0, N Tλ ≤ σ.

(2.2.3)

We think of (2.2.3) as a (generalized) max-flow problem, given the weights σ. That’s because

the condition N Tλ ≤ σ says that for every e ∈ E

∑
γ∈Γ
e∈γ

λ(γ) ≤ σ(e).

However, to think of (2.2.2) as a (generalized) min-cut problem, we would need to be able

to restrict the densities ρ to some given subsets of E. That’s exactly what the Fulkerson

blocker does.

By (generalised) max-flow/ min-cut problem we mean the problems discussed in sec-

tion 2.2.1 in terms of any family Γ (does not have to be the family of connecting paths

necessarily).

Proposition 2.2.2. Suppose G = (V,E, σ) is a finite graph and Γ is a family of subsets of

E with Fulkerson blocker family Γ̂. Then for any set of weights σ ∈ RE
>0,

Mod1,σ(Γ) = min
γ̂∈Γ̂

∑
e∈E

N̂ (γ̂, e)σ(e). (2.2.4)

Moreover, for every γ̂ ∈ Γ̂ there is a choice of σ ∈ RE
≥0 such that γ̂ is the unique solution of

(2.2.4).

Proof. By Theorem 2.1.6(1)

Adm(Γ) = Dom(Γ̂)

So if σ ∈ RE
>0 is a given set of weights, then, by (2.2.2), Mod1,σ(Γ) is the value of the linear
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program

minimize σTρ

subject to ρ ∈ Dom(Γ̂).

(2.2.5)

In particular, the optimal value is attained at a vertex of Dom(Γ̂), namely for an object

γ̂ ∈ Γ̂. Therefore, the optimization can be restricted to Γ̂.

2.2.3 Connecting families

Let G be an undirected graph and let Γ = Γ(a, b) be the family of all simple paths connecting

two distinct nodes a and b, i.e., the ab-paths in G. Consider the family Γcut(a, b) of all

minimal ab-cuts. See 3.1.3 for the definition of min-cut.

Note that (2.2.3) in this case is exactly the Max-Flow problem. Moreover, the Max-

Flow-Min-Cut Theorem implies that (2.2.2) is always attained by a minimal ab-cut, and

therefore Proposition 2.2.2 shows that every element of Γ̂ is a minimal ab-cut. Conversely,

if γ̂ is a minimal ab-cut, then we can define σ to be very small on γ̂ and large otherwise, so

that γ̂ is the unique solution of the Min-Cut problem. Therefore, the Fulkerson blocker of

Γ(a, b) is Γ̂(a, b) = Γcut(a, b).

Moreover, the duality

Modp,σ(Γ)
1
p Modq,σ̂(Γ̂)

1
q = 1

can be viewed as a generalization of the max-flow min-cut theorem. To see this, consider

the limiting case given by Theorem 2.1.10:

Mod1,σ(Γ) Mod∞,σ−1(Γ̂) = 1. (2.2.6)

As discussed above, Mod1,σ(Γ) takes the value of the minimum ab-cut with edge weights σ.

With a little work, the second modulus in (2.2.6), can be recognized as the reciprocal of
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the corresponding max flow problem. Using the standard trick for ∞-norms, the modulus

problem Mod∞,σ−1(Γ̂) can also be transformed into a linear program taking the form

minimize t

subject to σ(e)−1η(e) ≤ t ∀e ∈ E

η ≥ 0, N̂ η ≥ 1

The minimum must occur somewhere on the boundary of Adm(Γ̂) and, therefore, by The-

orem 2.1.6(2), must take the form

η(e) =
∑
γ∈Γ

λ(γ)1γ(e) λ(γ) ≥ 0,
∑
γ∈Γ

λ(γ) = 1.

In other words, the minimum occurs at a unit st-flow η, and the problem can be restated as

minimize t

subject to
1

t
η(e) ≤ σ(e) ∀e ∈ E

η a unit st-flow

The minimum is attained when 1
t
η is a maximum st-flow respecting edge capacities σ(e);

the value of such a flow is 1/t, recovering the max-flow min-cut theorem.

2.2.4 Fulkerson Blocker of Spanning trees

When Γ is the set of spanning trees on an unweighted, undirected graph G with N (γ, ·) =

1γ(·), the Fulkerson blocker Γ̂ can be interpreted as the set of (weighted) feasible partitions,

see [14].

Definition 2.2.3. A feasible partition P of a graph G = (V,E) is a partition of the vertex

set V into two or more subsets, {V1, . . . , VkP }, such that each of the induced subgraphs
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G(Vi) is connected. The corresponding edge set, EP , is defined to be the set of edges in G

that connect vertices belonging to different Vi’s.

The results of [14] imply the following theorem.

Theorem 2.2.4. Let G = (V,E) be a simple, connected, unweighted, undirected graph and

let Γ be the family of spanning trees on G. Then the Fulkerson blocker of Γ is the set of all

vectors
1

kP − 1
1EP .

ranging over all feasible partitions P .

This fact plays an important role in [15].

2.3 Blocking Duality and the Probabilistic Interpreta-

tion

At the end of Section 1.3 it was claimed that blocking duality was closely related to La-

grangian duality. In this section, we make this connection explicit.

Theorem 2.3.1. Let G = (V,E, σ) be a graph and Γ a finite family of objects on G with

Fulkerson blocker Γ̂. For a given 1 < p <∞, let µ∗ be an optimal pmf for the minimization

problem in (1.3.1) and let η∗ be optimal for Modq,σ̂(Γ̂). Then, in the notation of Section 1.3,

η∗(e) = Eµ∗
[
N (γ, e)

]
. (2.3.1)

Proof. Every η ∈ Adm(Γ̂) can be written as the sum of a convex combination of the vertices

of Adm(Γ̂) and a nonnegative vector. In other words, η ∈ Adm(Γ̂) if and only if there exists

µ ∈ P(Γ) and η0 ∈ RE
≥0 such that η = N Tµ+ η0. Or, in probabilistic notation,

η(e) =
∑
γ∈Γ

N (γ, e)µ(γ) + η0(e) = Eµ
[
N (γ, e)

]
+ η0(e).
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For such an η,

Eq,σ̂(η) =
∑
e∈E

σ(e)−
q
pη(e)q ≥

∑
e∈E

σ(e)−
q
pEµ

[
N (γ, e)

]q
with equality holding if and only if η0 = 0. This implies that the optimal η∗ must be of the

form η∗ = N Tµ′ = Eµ′
[
N (γ, ·)

]
for some µ′ ∈ P(Γ).

Now, let µ∗ be any optimal pmf for (1.3.1) and let η′ = N Tµ∗. As a convex combination

of the rows of N , η′ ∈ Adm(Γ̂). Moreover, by optimality of µ∗,

Eq,σ̂(η′) =
∑
e∈E

σ(e)−
q
pEµ∗

[
N (γ, e)

]q
≤
∑
e∈E

σ(e)−
q
pEµ′

[
N (γ, e)

]q
= Eq,σ̂(η∗).

But, since 1 < q < ∞, the minimizer for Modq,σ̂(Γ̂) is unique and, therefore, η′ = η∗. So

η∗ = N Tµ∗ = Eµ∗
[
N (γ, ·)

]
as claimed.
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Chapter 3

Distance metrics on networks

In this chapter we explore some of the known distance metrics on networks. We specifically

look at the effective resistance metric and give two different proofs that it is a metric. In

Chapter 4, we will present a new proof that shows effective resistance is a metric using

modulus and Fulkerson duality.

First let’s recall the definition of a metric.

3.1 Metrics and Ultrametrics

Definition 3.1.1. Let X be a set and d : X ×X → R. The function d is called a metric

on X if it satisfies the following four properties.

(i) Non-negativity: d(a, b) ≥ 0 for all a, b ∈ X.

(ii) Non-degeneracy: d(a, b) = 0 if and only if a = b.

(iii) Symmetry: d(a, b) = d(b, a) for all a, b ∈ X.

(iv) Triangle inequality: For every a, b, c ∈ X:

d(a, b) ≤ d(a, c) + d(c, b).
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Definition 3.1.2. If, instead of (iv) in the previous definition, d satisfies

(iv)’ d(a, b) ≤ max{d(a, c), d(c, b)}, for every a, b, c ∈ X, (3.1.1)

then d is called an ultrametric. Since (iv)’ implies (iv), every ultrametric is a metric.

A simple graph or simple network is an ordered pair G = (V,E) where V , the

vertex-set, is a collection of objects treated as nodes and E, the edge-set, is a collection

of pairs of elements in V . An element of the edge-set, denoted e = {v1, v2} ∈ E for v1, v2 ∈ V

means that there is an undirected link between nodes v1 and v2. Moreover, in this case, we

say that v1 and v2 are neighbors, and write v1 ∼ v2. Further, a simple graph has no self-

loops, i.e., {v, v} 6∈ E for all v ∈ V , and edges between pairs of nodes all have multiplicity

one. The above is a complete characterization of simple graphs.

A graph is called a finite graph if the vertex and edge sets are both finite. For a simple

graph, it is sufficient that the vertex set is finite, since if N denotes the number of nodes,

then there are at most
(
N
2

)
edges.

When d is a metric on V (the set of nodes of a network), d is often referred to as

a graph metric or network metric. Three known network metrics are shortest path,

effective resistance and the (reciprocal of) minimum cut. The shortest path metric between

two nodes a and b, as its name suggests, simply refers to the length of the shortest path

from a to b. The proof that this quantity is a network metric is straightforward.

3.1.1 Effective Resistance

The effective resistance metric arises from viewing the graph G as an electrical circuit

with unit resistances on each edge. The effective resistance Reff(a, b) is the voltage drop

necessary to pass 1 amp of current between a and b through the network G (see, e.g.,[16]).

Effective resistance also turns out to be a metric on V , see Corollary 10.8 [17].
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3.1.2 Effective conductance

An undirected graph G = (V,E, σ) is a model for a resistor network with edges representing

resistors with conductances σ, connected at junctions represented by the vertices. Let s

and t be distinct vertices in V . The effective conductance Ceff(s, t) (the reciprocal of the

effective resistance) between s and t can be found by minimizing the total power

Power =
∑

(x,y)∈E

σ(x, y)
(
φ(x)− φ(y)

)2

over all voltage potentials φ : V → R satisfying φ(s) = 0 and φ(t) = 1. The following

theorem shows that, for 1 < p <∞, the extremal density ρ∗ for the modulus of a connecting

family of walks can be related to a generalized voltage potential. Such a result, in the

language of extremal distance and in the special case p = 2, first appeared in the work of

Duffin3 (see also Proposition 6.2[18]). For a version in metric spaces, see Theorem 7.31 of

[19].

Theorem 3.1.3. Let G = (V,E, σ) be an undirected graph, let Γ = Γ(s, t) be the connecting

family of walks from s to t, two distinct vertices in V , and let 1 < p < ∞. Let ρ∗ be the

extremal density. Then there exists a vertex potential φ∗ : V → R such that φ∗(s) = 0,

φ∗(t) = 1, and

ρ∗(x, y) = |φ∗(x)− φ∗(y)| ∀(x, y) ∈ E. (3.1.2)

Moreover, this φ∗ solves the optimization problem

minimize
∑

(x,y)∈E

σ(x, y)|φ(x)− φ(y)|p

subject to φ(s) = 0, φ(t) = 1.

When p = 2, it follows that Mod2(Γ(s, t)) = Ceff(s, t).

Proof. Let ρ∗ ∈ A(Γ) be the extremal density. Note that `ρ∗(Γ) = 1, for, if not, the density

35



ρ′ = ρ∗/`ρ∗(Γ) is also admissible and has lower p-energy than ρ∗. Define φ∗(s) = 0 and for

x ∈ V \ {s}

φ∗(x) = min
γ∈Γ(s,x)

`ρ∗(γ).

Since Γ = Γ(s, t), φ∗(t) = 1. To see that Equation (3.1.2) holds, define ρ′(x, y) = |φ∗(x) −

φ∗(y)| for (x, y) ∈ E. For any γ = sv2v3 . . . vrt ∈ Γ,

`ρ′(γ) = |φ∗(s)− φ∗(v2)|+ |φ∗(v2)− φ∗(v3)|+ · · ·+ |φ∗(vr)− φ∗(t)| ≥ |φ∗(t)− φ∗(s)| = 1,

so ρ′ ∈ A(Γ). Let (x, y) ∈ E be an edge. Without loss of generality, φ∗(x) ≤ φ∗(y) and

y 6= s. We claim that

0 ≤ ρ′(x, y) = φ∗(y)− φ∗(x) ≤ ρ∗(x, y). (3.1.3)

The case x = s is trivial. Suppose that x 6= s and let γ ∈ Γ(s, x) be a walk such that

`ρ∗(γ) = φ∗(x). Letting γ′ ∈ Γ(s, y) be the walk obtained by first traversing γ and then

traversing the edge (x, y), we have

φ∗(y) ≤ `ρ∗(γ
′) = `ρ∗(γ) + ρ∗(x, y),

which implies Equation (3.1.3).

Equation (3.1.3) implies that Ep(ρ′) ≤ Ep(ρ∗) and, by uniqueness of the extremal density,

ρ∗ = ρ′. To see that φ∗ solves the optimization problem, let φ′ : V → R with φ′(s) = 0 and

φ′(t) = 1 and define ρ′(x, y) = |φ′(x)− φ′(y)|. As before, ρ′ ∈ A(Γ) and so

∑
(x,y)∈E

σ(x, y)|φ∗(x)− φ∗(y)|p = Ep(ρ∗) ≤ Ep(ρ′) =
∑

(x,y)∈E

σ(x, y)|φ′(x)− φ′(y)|p.
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3.1.3 Min-cut

In order to define the minimum cut metric, we recall that a subset S ⊂ V is called an ab-cut

if a ∈ S and b 6∈ S. The size of a cut is measured by |∂S|, where ∂S = {e = {x, y} ∈ E :

x ∈ S, y 6∈ S} is the edge-boundary of S. In this paper, we shall use the notation

MC(a, b) = min
{
|∂S| : S is an ab-cut

}
and dMC(a, b) =


0 if a = b,

MC(a, b)−1 if a 6= b.

That dMC is a graph metric (indeed, an ultrametric) can be seen from the following argument.

Suppose a, b and c are distinct vertices and let S be a minimum cut for MC(a, b), so that

a ∈ S and b 6∈ S. Then, either c ∈ S or c 6∈ S. If c ∈ S, then S is a cb-cut and

MC(c, b) ≤ MC(a, b), hence MC(c, b)−1 ≥ MC(a, b)−1. If c 6∈ S, then S is an ac-cut and

MC(a, c) ≤ MC(a, b), so that MC(a, c)−1 ≥ MC(a, b)−1. Since one of the two inequalities

must hold, it follows that

MC(a, b)−1 ≤ max{MC(a, c)−1,MC(c, b)−1}, (3.1.4)

showing that dMC is an ultrametric.

3.1.4 Epidemic Hitting Time

A number of other interesting metrics exist on networks. For example, [7] presents a metric

related to the spreading of epidemics in a contact network. There, the standard SI model of

infection is applied to a network with the spreading time from infected to susceptible nodes

modeled by independent exponential random variables. In this system, the time required

for an infection originating at node a to reach node b is a random variable. Its expected

value is called the Epidemic Hitting Time EHT(a, b) and was shown to be a network metric.
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3.2 The effective resistance metric

In this section, we will discuss more on the effective resistance metric. We will explore this

metric in two contexts.

� Using flows

� Using the Laplacian

3.3 Proving effective resistance is a metric using flows

Definition 3.3.1. D = (V, ~E) is an orientation of G = (V,E) if D is obtained from G by

orienting each edge x, y ∈ E as (x, y) or (y, x).

Let G be a finite simple graph and let s 6= t ∈ V be vertices so that s is the source and

t is the sink. A flow from s to t is a function f : ~E −→ R ,where ~E is the set of oriented

edges.

(a) f is antisymmetric: f(x, y) = −f(y, x).

(b) f satisfies the node law:

Divf (x) :=
∑
y∼x

f(x, y) = 0 ∀x ∈ V \ {s, t},

where the operator Divf (x) :=
∑

y∼x f(x, y) is called the divergence of the flow f at

x.

3.3.1 Value of a flow

Define the value of a flow from s to t to be

Val(f) := Divf (s).
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Note that the node law and antisymmetry lead to

Val(f) + Divf (t) = Divf (s) + Divf (t) =
∑
x∈V

Divf (x)

=
∑
x∈V

∑
y∈V

A(x, y)f(x, y) = 0.

So Divf (t) = −Val(f).

3.3.2 Energy of a flow

Given a flow from s to t and some edge-resistances r(e) > 0 for e ∈ E, let the energy of the

flow be

E(f) =
∑
e∈E

r(e)|f(e)|2.

We also define c(e) := 1/r(e) to be the conductance of the edge e.

The goal is to minimize the energy among all flows from s to t of value 1:

E∗ := min
f :Val(f)=1

E(f).

Existence and uniqueness of a minimizer f ∗ such that E(f ∗) = E∗ can be shown using

the theory of convex optimization with a similar argument that was presented in Chapter

1, proof of Lemma 1.2.5. In this context, the unique minimizer is called the unit electrical

current flow from s to t.

3.3.3 Cycle law

Lemma 3.3.2. If f ∗ is a minimizer and k is an arbitrary flow from s to t with Val(k) = 0,

then ∑
e∈E

r(e)f ∗(e)k(e) = 0.
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The proof of this lemma is deferred to the next section in lemma 3.3.3.

Define a cycle to be a walk W = x0 e1 x1 · · · en xn with x0 = xn and xj distinct . Let

kW (xi−1, xi) = 1 for i = 1, . . . , n. Then kW is a flow from s to t with value zero. Therefore,

it implies that f ∗ satisfies the following cycle law:

n∑
i=1

r(ei)f
∗(xi−1, xi) = 0 for all cycles

3.3.4 Potential and Ohm’s law

If a flow f from s to t satisfies the cycle law, then it must admit a potential, namely, a

function h : V → R such that for every edge e = {x, y}:

r(e)f(x, y) = h(y)− h(x).

The existence of a potential satisfying the above equation is referred to as Ohm’s law.

Lemma 3.3.3 (Improved-flow-stationarity). If f is a flow from s to t that admits a potential

h and k is an arbitrary flow from s to t, then

∑
e∈E

r(e)f(e)k(e) = Val(k)(h(t)− h(s)).

Now we give the proof of this lemma.

Proof. Let f be a unit flow from s to t that admits a potential h that satisfies Ohm’s law,
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and let k be an arbitrary flow from s to t. Then

∑
e∈E

r(e)f(e)k(e)

=
1

2

∑
x,y

r(x, y)f(x, y)k(x, y) =
1

2

∑
x,y

(h(y)− h(x))k(x, y)

=
1

2

∑
y

h(y)

(∑
x

k(x, y)

)
− 1

2

∑
x

h(x)

∑
y

k(x, y)


= −1

2

∑
y

h(y) Divk(y)− 1

2

∑
x

h(x) Divk(x)

= −h(s) Divk(s)− h(t) Divk(t) = (h(t)− h(s)) Val(k)

We summarize this section in the following theorem.

Theorem 3.3.4. Let G = (V,E) be a finite connected simple graph with edge-resistances

r(e) ∈ (0,∞) for every e ∈ E. Fix a source s ∈ V and a target t 6= s. Suppose f is a unit

flow from s to t. Then the following are equivalent:

1. f is an energy-minimizer (3.3.2).

2. f satisfies the cycle law (3.3.3).

3. f admits a potential that satisfies Ohm’s law (3.3.4).

3.3.5 Harmonic functions and uniqueness of current flow

The node law implies that the potential h is harmonic on V \ {s, t}, since for x 6= s, t:

Divf (x) =
∑
y∼x

f(x, y) =
∑
y∼x

c(x, y)(h(y)− h(x)) = 0.
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Hence, writing C(x) :=
∑

y∼x c(x, y), we get that the value of h at x is a weighted average

of the values of h on the neighbors of x:

h(x) =
1

C(x)

∑
y∼x

c(x, y)h(y). (3.3.1)

This is known as the Mean Value Property.

Theorem 3.3.5 (Maximum Principle). Let G = (V,E) be a finite connected simple graph

with edge-conductances c(e) ∈ (0,∞) for every e ∈ E. Fix a non-empty subset B ⊂ V , e.g.,

B = {s, t}. Suppose that h : V → R satisfies the mean value property at every x ∈ V \ B.

Then h admits its global maximum on B.

Proof. Suppose x 6∈ B and h(x) = maxy∈V h(y). The mean value property implies what

is sometime referred to as the “Lake Wobegon Effect”, namely, that h(y) = h(x) for every

neighbor y ∼ x. In fact, assume that there is one y′ ∼ x where h(y′) < h(x). Since for every

other neighbor y′′ ∼ x we have h(y′′) ≤ h(x) when we average we get

C(x)h(x) =
∑
y∼x

c(x, y)h(x) >
∑
y∼x

c(x, y)h(y) = C(x)h(x)

which is a contradiction. Therefore, if the maximum is attained at x it must also be attained

at its neighbors. By connectedness there is a walk from x to any other vertex, therefore h

must be constant.

The maximum principle can be used to prove uniqueness of the current flow. Suppose

that f1 and f2 are two unit flow from s to t that minimize the energy in (3.3.2). By Theorem

(3.3.4), let h1 and h2 be the corresponding potentials normalized as h1(s) = h2(s) = 0. By

Lemma 3.3.2 applied to the same flow, for j = 1, 2, we get

E∗ =
∑
e∈E

r(e)|fj(e)|2 = Val(fj)(hj(t)− hj(s)) = hj(t)
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Form u = h1−h2. Then u is harmonic on V \ {s, t} and u(s) = u(t) = 0. By the Maximum

Principle, u(x) ≤ 0 for x ∈ V , and likewise −u(x) ≤ 0, so u(x) ≡ 0 for all x ∈ V . Therefore,

h1 = h2 and f1 = f2.

3.3.6 Effective resistance is a metric: Proof

We are now ready to define the effective resistance using flows.

Definition 3.3.6. If f is a unit current flow from s to t with potential h, then by applying

the previous lemma 3.3.3 to itself we get

E∗ =
∑
e∈E

r(e)|f(e)|2 = h(t)− h(s)

If we replace the whole network by a single edge ê with resistance R between s and t, but

we keep the unit flow and the potential difference as before, then R would have to satisfy:

R(ê)|f(ê)|2 = R(ê) = h(t)− h(s).

We call R the effective resistance of the network from s to t and write Reff(s, t).

We will now give the proof that effective reistance is a metric.

Proof. � We first prove the non-degeneracy of the effective resistance.If a = b, then there

is no flow and the potential is constant. So Reff(a, a) = 0.

Conversely, if Reff(a, b) = 0, and a 6= b, then the electric potential satisfies h(b)−h(a) =

0. So by the Maximum Principle, h(x) ≡ h(a) for all x ∈ V . However, unit current

flow satisfies

1 = Val(f) = Divf (a) =
∑
y∼a

f(a, y).

In particular, by connectedness, there exists y ∼ a such that f(a, y) 6= 0. But by
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Ohm’s law,

f(a, y) = r(a, y)−1(h(y)− h(a)) = 0.

And this is a contradiction, so a = b

� Now we prove that it is symmetric. Suppose f is unit current flow from a to b with

potential h such that h(a) = 0. Then Reff(a, b) = h(b). Now define g = −f and

u = h(b)− h. Then

r(x, y)g(x, y) = h(x)− h(y) = u(y)− u(x).

So u is a potential for g and u(b) = 0. So Reff(b, a) = u(a) = h(b) = Reff(a, b)

� Finally, we prove the triangle inequality. Without loss of generality a 6= b 6= c 6= a.

Write fs,t for the unit current flow from s to t and write hs,t for the associated potential

normalized to be 0 at s. Then hs,t(t) = Reff(s, t) and by the maximum principle

0 ≤ hs,t(x) ≤ Reff(s, t) for every x ∈ V \ {s, t}.

Define ga,b := fa,c + fc,b. By linearity

Divga,b(x) = Divfa,c(x) + Divfc,b(x).

So for x 6= a, b, c, Divga,b(x) = 0 and for x = c, Divga,b(c) = 1−1 = 0. In particular, ga,b

is a unit flow from a to b. By the minimizing property (sometimes called Thomson’s
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Principle),

Reff(a, b) = E∗ ≤ E(ga,b)

=
∑
e∈E

r(e)
(
fa,c(e) + fc,b(e)

)2

= E(fa,c) + E(fc,b) + 2
∑
e∈E

r(e)fa,c(e)fc,b(e)

= Reff(a, c) +Reff(c, b) + 2
∑
e∈E

r(e)fa,c(e)fc,b(e)

The triangle inequality follows if we can show that
∑

e∈E r(e)fa,c(e)fc,b(e) ≤ 0. By

mimicking the proof of Lemma 3.3.3, we see that

∑
e∈E

r(e)fa,c(e)fc,b(e) = −
∑
x∈V

ha,c Divfc,b(x)

= −ha,c(c) + ha,c(b) ≤ 0

where the last inequality follows from the Maximum Principle for ha,c and the fact

that ha,c(a) = 0.
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3.4 Proving effective resistance is a metric using the

Laplacian

3.4.1 The Laplacian matrix

For a finite simple graph G = (V,E) with edge-conductances c : E → (0,∞) the Laplacian

is L : V × V → R:

L(x, y) =

 C(x) =
∑

z∼x c(x, z) if x = y

−c(x, y) if x 6= y

Writing Dc = diag(C(·)) for the diagonal matrix with the generalized degrees C(x) for

x ∈ V , and letting the generalized adjacency matrix Ac(x, y) = c(x, y)1x∼y, then

L = Dc − Ac

We now present the Maximum Principle that was discussed earlier in lemma 3.3.5 in the

language of Laplacian.

3.4.2 Maximum principle

Thinking of a function h : V → R as a vector in RN we get that

(Lh)(x) =
∑
y∈V

L(x, y)h(y) = C(x)h(x)−
∑
y∼x

c(x, y)h(y).

In particular, Lh = 0 if and only if h is harmonic at every x ∈ V .

Using Maximum Principle Theorem, we see that if h is harmonic at every x ∈ V , then h

must be constant on each connected component of G. In particular, if G is connected then

the only solution to the equation Lh = 0 are the constant functions.
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3.4.3 Gradient matrix

Assume that an orientation ~E as described in 3.3.1 has been chosen.

Define the m×N gradient matrix

B(~e, x) =


1 if ~e = (y, x) for some y.

−1 if ~e = (x, y) for some y.

0 else

Lemma 3.4.1. Let S be a diagonal m×m matrix listing all the edge-conductance S(e, e) =

c(e). Then

L = BTSB.

Proof. For simplicity, let’s assume that S is the identity matrix, namely that all the edge-

conductances are equal to 1. Then

(BTB)(x, y) =
∑
~e∈ ~E

BT (x,~e)B(~e, y) =
∑
~e∈ ~E

B(~e, x)B(~e, y)

Two cases arise. If x = y, then the sum is over edges that are incident to x:

(BTB)(x, x) =
∑
~e∈ ~E

B(~e, x)2 = deg(x).

If x 6= y, then the sum is over a single edge incident to both x and y.

(BTB)(x, x) = B(~e, x)B(~e, y) = −1.

So (BTB)(x, y) = D(x, y)− A(x, y).
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3.4.4 Current flow

If f is an s/t-flow, then it is a vector f ∈ Rm, and for x ∈ V :

BTf(x) =
∑
e∈E

BT (x, e)f(e) =
∑
e∈E

B(e, x)f(e)

=
∑

y∼x,(y,x)∈ ~E

f(y, x)−
∑

y∼x,(x,y)∈ ~E

f(x, y)

= −Divf (x).

Let δa be the N × 1 column-vector such that δa(a) = 1 and δa(x) = 0 otherwise.

We can then impose that f be a unit s/t-flow, by requiring that

BTf = δt − δs.

Define an m × m diagonal matrix R = diag(r(e)) with the edge-resistances on the

diagonal and its inverse S = R−1 with the conductances instead. Note that the energy of a

flow can be rewritten as

Er(f) =
∑
e∈E

r(e)(f(e))2 = fTRf = ‖R1/2f‖2.

The problem of finding the unit current flow from s to t is

minimize ‖R1/2f‖2 given BTf = δt − δs.

Existence and uniqueness can then be deduced from standard results in convex optimization.

If h is the potential function of the flow f , then Ohm’s law can be rewritten as:

f = SBh.
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Also, by lemma 3.4.1, the Laplacian can be written as in the continuous case as the

“divergence of the gradient”: L = BTSB. In terms of the potential we then have

Lh = BTSBh = BTf = δt − δs.

With this additional knowledge of the Laplacian, we can present a new way to prove

that effective resistance satisfies the triangle inequality.

Proof. Write fs,t for the unit current flow from s to t and write hs,t for the associated

potential normalized to be 0 at s. Then hs,t(t) = Reff(s, t).By the maximum principle

0 ≤ hs,t(x) ≤ Reff(s, t) for every x ∈ V \ {s, t}.

Define f := fa,c + fc,b. As before f is a unit flow from a to b. Also let h = ha,c + hc,b.

Then,

Lh = Lha,c + Lhc,b = (δc − δa) + (δb − δc) = δb − δa.

However, L(h− ha,b) = 0 and by the maximum principle we have, h− ha,b = C for C, some

constant. h = ha,c + hc,b = ha,b + C = ha,b + hc,b(a). Plugging b in we get

ha,b(b) ≤ ha,b(b) + hc,b(a) = h(b) = ha,c(b) + hc,b(b)

≤ ha,c(c) + hc,b(b).

We have the result since hs,t(t) = Reff(s, t)
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Chapter 4

A new family of metrics arising from

p-modulus

This chapter will introduce a new family of metrics on networks arising from p-modulus.

First, we will introduce the dp metric and later the δp metric. We will show how these two

metrics are related through concept of “antisnowflaking”. Not only would we like to present

δp as a metric, but we would like to offer it as a new proof that effective resistance is a

metric on networks.

This chapter will also present some numerical examples of calculating the modulus and

thus the dp and δp metrics on various families of graphs.

4.1 The dp metric

Reinterpreting Theorem 1.2.4 that was presented in Chapter 1, we see that Modp(Γ(a, b))−1

is a metric for p = 1, 2,∞. One might naturally wonder if this fact generalizes to all

p ∈ [1,∞]. The answer turns out to be “no.” However, we’ll see shortly that introducing a

pth root does in fact lead to a metric for all p.
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Definition 4.1.1. For 1 ≤ p ≤ ∞, let

dp(a, b) := Modp(Γ(a, b))−1/p if p <∞ and d∞(a, b) = Mod∞(Γ(a, b))−1.

Theorem 1.2.4(i) implies that dp(a, b) → d∞(a, b) as p → ∞. Moreover, the continuity

in p and (ii) imply that dp(a, b)→ d1(a, b) = MC(a, b)−1 as p→ 1.

Remark 4.1.1. For p = 2, d2(a, b) =
√
Reff(a, b). This is a known metric which appears

for instance in the context of the discrete Gaussian Free Field, see Ding et al20. It also has

the following alternative representation: if G is the pseudoinverse of the Laplacian matrix

L, then

d2(a, b) =
√
Reff(a, b) = ‖G1/2

1a − G1/2
1b‖2,

where 1x is the vector with 1 at x and 0 everywhere else. This gives two different ways of

verifying that d2 is a metric. First, given a metric d and an exponent ε ∈ (0, 1), then taking

the fractional root dε is always a metric as well. This is called snowflaking the metric (see

Section 4.2). Therefore since, it is known that effective resistance is a metric, it is immediate

that its square-root is a metric as well. The formulation in terms of G shows that d2 is the

pull-back of the Euclidean norm ‖ · ‖2 restricted to the set of indicator functions {1x}x∈V

under the linear map given by G1/2, again showing that d2 is a metric. Here we take an

alternate approach based on the theory of modulus.

The main idea in the proof of Theorem 4.1.3 below is to compare the connecting families

Γ(a, c), Γ(c, b), Γ(a, b) and the via family Γ(a, b | c)—the family of all walks beginning at a,

ending at b and passing through c along the way. A key lemma is the following.

Lemma 4.1.2. Given a density ρ : E → [0,∞), we have

`ρ(Γ(a, b | c)) = `ρ(Γ(a, c)) + `ρ(Γ(c, b)).

Proof. First, pick ρ-shortest walks γ1 for Γ(a, c) and γ2 for Γ(c, b). Then, the concatenation
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γ0 = γ1γ2, of γ1 followed by γ2, is a walk in Γ(a, b | c). So

`ρ(Γ(a, b | c)) ≤ `ρ(γ0) = `ρ(γ1) + `ρ(γ2) = `ρ(Γ(a, c)) + `ρ(Γ(c, b)). (4.1.1)

Conversely, let γ be a walk from a to b via c. Write γ as γ′ ∈ Γ(a, c) followed by γ′′ ∈ Γ(c, b).

Then

`ρ(γ) = `ρ(γ
′) + `ρ(γ

′′) ≥ `ρ(Γ(a, c)) + `ρ(Γ(c, b)).

Taking the infimum over γ ∈ Γ(a, b | c) we get that `ρ(Γ(a, b | c) ≥ `ρ(Γ(a, c)) + `ρ(Γ(c, b)).

Theorem 4.1.3. Let G = (V,E) be a simple connected graph, and let p ∈ [1,∞]. Then, dp

is a metric on V . Moreover, d1 is an ultrametric.

Proof. That d1 is an ultrametric is a consequence of Theorem 1.2.4(ii) and the fact that

the reciprocal of minimum cut is an ultrametric, while the fact that d∞ is a metric is a

consequence of Theorem 1.2.4(i).

For 1 < p <∞, we begin by verifying properties (i)-(iii) in Definition 3.1.1. Since mod-

ulus is the infimum of a non-negative energy, non-negativity holds. If a = b the connecting

family Γ(a, a) contains the constant walk, and then no density can be admissible, so the

p-modulus of Γ(a, a) is infinity and dp(a, a) = 0. Conversely, if a 6= b, consider the constant

density ρ0 ≡ 1. Then `0 := `ρ0(Γ(a, b)) is the shortest-path distance from a to b, hence

`0 < ∞ since G is connected. This implies that the density ρ1 := ρ0/`0 is admissible for

Γ(a, b). Therefore, for p ∈ [1,∞),

Modp(Γ(a, b)) ≤ Ep(ρ1) =
|E|
`p0

<∞,

and Mod∞(Γ(a, b)) ≤ `−1
0 , showing that dp(a, b) > 0. Finally, since every path from a to

b can be reversed to a path from b to a, it follows that Adm(Γ(a, b)) = Adm(Γ(b, a)), so

symmetry holds as well.
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It remains to prove the triangle inequality. Without loss of generality we can assume that

a, b, c ∈ V are distinct. Let Γ(a, b),Γ(a, c),Γ(c, b) be the corresponding families of connecting

walks and let Γ(a, b | c) be the family of walks from a to b via c. Let ρ∗ ∈ Adm(Γ(a, b | c))

be extremal for Modp(Γ(a, b | c)). Then by Lemma 4.1.2 and extremality:

1 = `ρ∗(Γ(a, b | c)) = `ρ∗(Γ(a, c)) + `ρ∗(Γ(c, b)). (4.1.2)

We now consider two possibilities. First, suppose that `ρ∗(Γ(a, c)) > 0 and `ρ∗(Γ(c, b)) >

0, and define

ρ1 :=
ρ∗

`ρ∗(Γ(a, c))
and ρ2 :=

ρ∗

`ρ∗(Γ(c, b))
.

Then ρ1 ∈ Adm(Γ(a, c)) and ρ2 ∈ Adm(Γ(c, b)). Writing Γ1 := Γ(a, c), Γ2 := Γ(c, b), and

Γ := Γ(a, b | c), in order to simplify notation, we get

dp(a, c) + dp(c, b) = Modp(Γ1)−1/p + Modp(Γ2)−1/p

≥ Ep(ρ1)−1/p + Ep(ρ2)−1/p

= Ep(ρ∗)−1/p
(
`ρ∗(Γ1) + `ρ∗(Γ2)

)
= Ep(ρ∗)−1/p = Modp(Γ)−1/p

where the second to last equality follows from (4.1.2).

On the other hand, suppose that, say, `ρ∗(Γ(a, c)) = 0. Then (4.1.2) implies that

`ρ∗(Γ(c, b)) = 1, which implies that ρ∗ ∈ Adm(Γ(c, b)). Thus,

dp(a, c) + dp(c, b) ≥ dp(c, b) = Modp(Γ2)−1/p ≥ Ep(ρ∗)−1/p = Modp(Γ)−1/p,

and similarly if `ρ∗(Γ(c, b)) = 0 and `ρ∗(Γ(a, c)) = 1.

Now we use the Γ-monotonicity of modulus. Note that Γ = Γ(a, b | c) ⊂ Γ0 := Γ(a, b).
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Thus, Modp(Γ) ≤ Modp(Γ0), hence Modp(Γ)−1/p ≥ Modp(Γ0)−1/p = dp(a, b) and the triangle

inequality holds.

4.2 Snowflaking and Antisnowflaking

As we saw in Remark 4.1.1, squaring the metric d2 yields effective resistance, which is known

to be a metric on any connected graph. Therefore, we now study the question of finding the

largest exponents one can raise each dp metric to, while maintaining the property of being

a metric on arbitrary connected graphs.

Given an arbitrary metric, snowflaking provides an interesting way to generate new

metrics on the same set. This procedure is described by the following known fact.

Fact 4.2.1. Let d be a metric on X and let 0 < ε < 1, then taking the ε fractional root of

d, dε is also a metric on X.

In other words, raising a metric to a positive fractional power always results in another

metric. This immediately leads one to ask the following question. Given some metric d on

X, is d the snowflaked version of some other metric? In other words, does there exist a

t > 1 such that dt is also a metric? When such a t exists, we shall call the resulting metric

dt an antisnowflaking of d.

For finite X, the characterization of metrics that can be antisnowflaked is straightfor-

ward. Suppose a, b and c are distinct points in X. If d(a, b) < d(a, c) + d(c, b), then the

inequality also holds with d replaced by dt for sufficiently small t > 1. We call such a triple

of points (a, b, c) a proper triangle. On the other hand, if d(a, b) = d(a, c) + d(c, b), then it

can be seen that dt violates the triangle inequality for arbitrarily small t > 1. We refer to

such a triple as a flat triangle. Since a finite set X contains a finite number of triangles, the

following theorem is evident.

Example 4.2.1. Consider the path graph on (j-i) nodes, where j > i. Now we calculate
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the dp metric for the connecting family Γ(i, j) for this graph.

dp = (Mod Γ(i, j))−1/p =

(
1

|i− j|p−1

)−1/p

= (|i− j|)
p−1
p

We observe that by antisnowflaking this metric to the power of (p/p−1) we can recover the

Euclidean metric on this graph |i− j|.

Theorem 4.2.2. Let d be a metric on a finite set X. There exists a t > 1 such that dt is a

metric on X if and only if (X, d) contains no flat triangles.

With this in mind, we make the following definition.

Definition 4.2.3. The antisnowflaking exponent of a metric d is defined as

ASFE(d) := sup{t ≥ 1 : dt is a metric}

For instance, it is clear that when d is an ultrametric, then ASFE(d) = ∞. While the

antisnowflaking exponent of a particular metric on a particular graph may be interesting

in certain contexts, here we will focus on the best antisnowflaking exponent for an entire

family of connected graphs. Writing dp = dp,G to show the dependence on the graph G, we

define

s(p) := inf
G∈G

ASFE(dp,G) (4.2.1)

where the infimum is taken over all simple connected graphs G.

Note that if we find a connected graph G, an exponent t ≥ 1, and three nodes a, b, c,

such that the triangle inequality for dtp fails for this triple, then we are guaranteed that

s(p) ≤ t. In particular, by looking at the path graph P3 on three nodes (Figure 4.1) we can

establish the following bound.
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Proposition 4.2.4. For 1 < p <∞:

s(p) ≤ p

p− 1
=: q (4.2.2)

where q is the Hölder exponent associated with p.

Moreover, the bound is attained for p = 1, 2,∞:

s(1) =∞, s(2) = 2, s(∞) = 1.

a c b

Figure 4.1: The path graph P3 on three nodes.

Proof. Consider the path graph P3 with nodes a, c, b and fix p ∈ (1,∞). It is clear that

dp(a, c) = 1, because to be admissible a density ρ must satisfy ρ(a, c) = 1, and then in order

to minimize the energy, we must also have ρ(c, b) = 0. Likewise, dp(c, b) = 1. For dp(a, b),

the energy is minimized when ρ(a, c) = ρ(c, b) = 1/2. Thus,

Modp(a, b) = (1/2)p + (1/2)p = 21−p

Hence, dp(a, b) = 2(p−1)/p = 2(1−1/p). The triangle inequality will fail for t ≥ 1 such that

dp(a, b)
t > dp(a, c)

t + dp(c, b)
t (4.2.3)

that is,

2t(1−1/p) > 1 + 1 = 2

This happens whenever t > 1/(1− 1/p). So s(p) ≤ p/(p− 1).

The bound is attained for the case p = 1 because, as shown in Theorem 4.1.3, d1 is an
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ultrametric on any connected graph, so s(1) = ∞. When p = 2, the metric d2
2 is effective

resistance Reff , which is also a metric on connected graphs. Therefore, s(2) ≥ 2, attaining

the upper bound. For the case p =∞, d∞(a, c) = d∞(c, b) = 1, while d∞(a, b) = 2, yielding

a flat triangle. Thus, s(∞) = 1.

In fact, the numerical evidence presented in Section 4.3 will further strengthen the above

proposition. We will later prove that s(p) in fact attains the bound p/(p− 1).

4.3 Examples and numerical Results

4.3.1 Erdős-Rényi graphs

As an attempt to numerically test Proposition 4.2.4, we produced 50 Erdős-Rényi graphs

on 10 nodes, with expected average degree 6 (discarding any disconnected graphs that were

generated). For each graph Gi, i = 1, 2, . . . , 50, we computed dp,Gi(1, 2), dp,Gi(2, 3), and

dp,Gi(1, 3) for a range of p values and determined the value tp,i such that

d
tp,i
p,Gi

(1, 2) = d
tp,i
p,Gi

(1, 3) + d
tp,i
p,Gi

(2, 3).

We then estimated s(p) as

s(p) ≤ t(p) = min
i=1,2,...,50

tp,i.

The resulting bound is shown in Figure 4.2 in blue. The red line in the same figure is the

antisnowflaking exponent s(p) = p
p−1

.

Observe that the blue line never goes below the red line. In other words, the worst case

scenario seems to be s(p) = p
p−1

.

In the following we compute some specific examples. When calculating modulus, we will

often just write down the extremal metric. For simple examples, verifying that a metric

ρ is extremal for p-modulus can be done using Beurling’s criterion that was discussed in
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Figure 4.2: Antisnowflaking exponent for different p values.

Theorem 1.2.5 in Chapter 1.
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4.3.2 Biconnected graphs

Next, we explore the anti-snowflaking exponent for more restrictive families of graphs. If G

is a family of connected graphs, define sG(p) := infG∈G ASFE(dp,G). Clearly s(p) ≤ sG(p).

Recall that s(p) is an infimum over all connected graphs. What happens if we restrict the

infimum to biconnected graphs?

Definition 4.3.1. A biconnected graph is a graph that remains connected after removing

any node.

Let B be the family of all biconnected simple graphs. Define sB(p) := infG∈B ASFE(dp,G).

Claim 4.3.2.

sB(p) ≤ p/(p− 1).

From Proposition 4.2.4 equation (4.2.2), we see that the family of path graphs P satisfies

s(p) ≤ sP(p) for all p′s. However, path graphs are not biconnected. So it is natural to

wonder if sB(p) < sP(p). We explore this question by looking at the simplest example of a

biconnected graph, namely the cycle graph CN . For distinct nodes a, b and c, as in Figure

4.3, consider the connecting families Γ(a, b),Γ(a, c),Γ(c, b).

1
N−1

1
N−1

a

c
b

1
N−1

1
N−1

1

1
N−1

1
N−2

1
N−2

a

c
b

1
N−2

1
N−2

1
2

1
2

Figure 4.3: The cycle graph CN and the extremal density ρ∗ for Γ(a, c) and Γ(a, b).
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The first diagram in Figure 4.3 shows the extremal density ρ∗ for the family Γ(a, c). The

subfamily Γ̃ that verifies Beurling’s criterion in this case has two simple paths, namely a c

and the path from a to c that traverses the cycle in the other direction (the long way). This

gives

Modp(Γ(a, c)) = 1 +

(
1

N − 1

)p
(N − 1) = 1 + (N − 1)1−p. (4.3.1)

By symmetry, Modp(Γ(c, b)) = 1 + (N − 1)1−p as well. We conclude that

dp(a, c) = dp(c, b) = (1 + (N − 1)1−p)−1/p.

The second diagram in Figure 4.3 shows the extremal density ρ∗ for the family Γ(a, b). The

subfamily Γ̃ that verifies Beurling’s criterion in this case has two simple paths, namely a c b

and the longer path from a to b in the other direction. As a consequence,

Modp(Γ(a, b)) = 2

(
1

2

)p
+ (N − 2)

(
1

N − 2

)p
= 21−p + (N − 2)1−p. (4.3.2)

Therefore, dp(a, b) = (21−p + (N − 2)1−p)−1/p. We will calculate the infimum of all the

exponents t ≥ 1 for which the following triangle inequality fails:

dp(a, b)
t > dp(a, c)

t + dp(c, b)
t.

We get (
21−p + (N − 2)1−p)−t/p > 2(1 + (N − 1)1−p)−t/p,

hence

2p/t <
1 + (N − 1)1−p

21−p + (N − 2)1−p .
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So the infimal exponent is

t0 := p

log2

(
1 + (N − 1)1−p

21−p + (N − 2)1−p

)−1

.

We see that as N → ∞, t0 → p
−(1−p) = p

(p−1)
= q. Therefore, we see that sB(p) ≤

p/(p− 1).

4.3.3 Complete graphs

The complete graph KN is a simple graph on N nodes, where every node is connected to

each other, see Figure 4.4.

a b

c

Figure 4.4: K6- Complete graph on 6 nodes.

Observe that, by symmetry, Modp(Γ(a, c)) = Modp(Γ(c, b) = Modp(Γ(a, b)), hence

dp(a, c) = dp(c, b) = dp(a, b). Therefore, dp is an ultrametric on complete graphs. In

particular, if K is the family of complete graphs, then sK(p) =∞ for all p.

It’s still interesting to compute dp(a, b) for an arbitrary pair of nodes. Figure 5.6 depicts

the extremal density ρ∗ for Γ(a, b) in KN .

In formulas, ρ∗(a, x) = 1/2 = ρ∗(b, x) for every x 6= a, b, and ρ∗(a, b) = 1, otherwise ρ∗ is

zero. To verify Beurling’s criterion, consider the subfamily Γ̃ of simple paths consisting of
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Figure 4.5: The complete graph KN and the extremal density ρ∗ for Γ(a, b).

a b and a x b for any x 6= a, b. We get that

Modp(Γ(a, b)) = 1 + 2(N − 2)
1

2p
and dp(a, b) =

(
1 +

N − 2

2p−1

)−1/p

.

Since s(p) ≤ sB(p) ≤ p/(p − 1) while sK(p) = ∞, what are some natural families of

graphs for which p/(p− 1) < sG(p) < ∞? For instance, what happens for the family of all

hypercubes? Recall that for an integer N ≥ 2, the hypercube HN is the graph whose nodes

are strings of 0 and 1 of length N and two such strings are connected by an edge if they

differ in exactly one position. This a question that we would like to answer in the future.

4.3.4 Graph visualization

Metrics on networks play a vital role in applications as well as in the study of intrinsic

network characteristics. For instance, there are infinitely many ways to draw a network in

two- or three-dimensional space. However, some choices of node layout are clearly better

than others for providing a meaningful visualization of the network. Take a cycle graph on

5 nodes, for example. Drawing a regular pentagon provides a much better representation of
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this graph than does placing the 5 nodes randomly in the plane. To relate this to metrics,

one need only observe that any time we draw a graph in the plane, its node set inherits

the Euclidean metric of the plane. In this sense, different drawings of the same graph G

represent different choices of metric on the vertices V and it thus seems natural that the

choice of layout should be closely related to the network structure. For a beautiful example

of deriving a network’s layout from its intrinsic structure, see Section 2.2 of [21]. Here, we

briefly discuss the relationship between graph visualization and the dp metric.

A mapping f : (X, dX)→ (Y, dY ) of one metric space into another is called an isometric

embedding or isometry if dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X. Two metric spaces are

isometric if there exists a bijective isometry between them.

Theorem 4.3.3 (Shoenberg, 1935). Given a finite metric space X = {x0, ..., xm} and an

integer n ∈ N, X embeds isometrically into Rn if and only if the matrix M ∈ Rm×m whose

entries are

d(xi, x0)2 + d(x0, xj)
2 − d(xi, xj)

2

is positive semi-definite and of rank less than or equal to n.

For convenience, we will call the matrix M the “Shoenberg matrix”. As an example,

consider the square in Figure 5.6. We fix the node a and derive the Shoenberg matrix so

we can analyze the embeddings of this graph when the nodes are endowed with modulus

metrics of the form dtp for some t > 0. By symmetry, these metrics have the property that

the distance between two neighboring nodes of the square is a constant α > 0 and the

distance between diagonally opposite nodes is some other constant β > 0.

Let the columns and rows of the matrix M represent nodes b, c, d respectively. The entry

M11 represents (b, b) and is calculated as follows:

d(a, b)2 + d(a, b)2 − d(b, b)2 = 2α2.
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a b

d c

Figure 4.6: The square graph

Note that this will be the case for (d, d) as well. On the other hand, for (c, c):

d(a, c)2 + d(a, c)2 − d(c, c)2 = 2β2

The entry M12 represents (b, c) and is calculated as follows:

d(a, b)2 + d(a, c)2 − d(b, c)2 = β2

Likewise for (c, d) we get β2 again. For (b, d) we have

d(a, b)2 + d(a, d)2 − d(b, d)2 = 2α2 − β2

Putting the above information together, we can derive a Shoenberg matrix M for these type

of metrics on the square.

M =


2α2 β2 2α2 − β2

β2 2β2 β2

2α2 − β2 β2 2α2


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Note that for the triangle inequality to hold, we also want the condition,

β ≤ 2α.

Without loss of generality, we can normalize the edge distance to be 1, setting α = 1, and

then plot how the eigenvalues of M change with β. In Figure 4.7, we have plotted the

eigenvalues of M as the normalized parameter which we still call β varies from 0 to 2. We

0.5 1.0 1.5 2.0
2

0

2

4

6

8

10

eig
en

va
lu

es
 o

f M

Figure 4.7: Eigenvalues of M as β varies, given α = 1.

observe that when β >
√

2 ≈ 1.4, the matrix M starts having negative eigenvalues and thus

fails to be positive semi-definite. For the β in (0,
√

2) the square is embeddable in R3 and

for β =
√

2 it is embeddable in R2. We describe these embeddings by fixing one edge of the

square at (1/2, 0, 0) and (−1/2, 0, 0), while the opposite edge is horizontal at some height

h > 0 and by symmetry is also centered on the vertical axis. Since all four edges have unit

length, the top horizontal edge must twist about the vertical axis by an an angle θ ≥ 0.

The relationship between h and θ is governed by the parameter β, the distance between

diagonally opposite nodes. A simple calculation shows that

h = cos
θ

2
and β =

√
1 + cos θ.
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When θ = 0, β =
√

2 and the square is in the xz-plane. But for θ ∈ (0, π), the embedding

is three-dimensional and h tends to 0 as θ tends to π. When θ = π, β = 0 and d stops being

a metric.

To connect this to our modulus metrics, note that the square is a special case of the

cycle graphs we discussed in Section 4.3.2, when N = 4. So by (4.3.1) and (4.3.2) applied

to the edge (a, b) and the diagonal (a, c) in this case, we see that

dp(a, b) = (1 + 31−p)−1/p and dp(a, c) = 21−2/p.

Therefore, the ratio β/α for the case of the dp metrics is

f(p) := 21−2/p(1 + 31−p)1/p.

2 4 6 8 10 12 14
1

1.2

1.4

1.6

1.8

p

f
(p

)

21−2/p

(1+31−p)−1/p√
2

Figure 4.8: Graph for the ratio β/α against p

As seen in Figure 4.8 f is increasing, and as p decreases to 1 the ratio β/α decreases to

f(1) = 1. Hence, the metric dp on the square graph is embeddable in R3 for 1 ≤ p ≤ p0, for
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some value p0 ≈ 3.88.

4.4 The δp metric

We end this Chapter with our main theorem that shows the dp metric is a snowflaked version

of the δp metric defined below.

Definition 4.4.1. Let G = (V,E, σ) be a weighted, connected, simple graph. Given a, b ∈

V , let Γ(a, b) be the connecting family of all paths between a and b. Fix 1 < p <∞ and let

q := p/(p− 1) be the Hölder conjugate exponent. Then we define

δp(a, b) :=


0 if a = b,

Modp,σ(Γ(a, b))−q/p if a 6= b.

Theorem 4.4.2. Suppose G = (V,E, σ) is a weighted, connected, simple graph. Then δp is

a metric on V . Moreover,

(a) limp↑∞ δp = dSP;

(b) δ2 = dER;

(c) For 1 < p < 2, Modp,σ(Γ(a, b))−1 is a metric and it tends to dMC(a, b) as p→ 1.

Finally, for every ε > 0 and every p ∈ [1,∞] there is a connected graph for which δ1+ε
p is

not a metric.

Remark 4.4.1. Note that, in light of Theorem 1.2.4, when p = 2, the proof of Theorem

4.4.2 gives an alternative modulus-based proof that effective resistance is a metric.

Remark 4.4.2. It is straightforward to show that an arbitrary positive power of an ultra-

metric is also an ultrametric, so (dMC)t is a metric for any t > 0. Using (1.2.4) and (1.2.5)
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it can be shown that as p ↓ 1, δp converges to the limit

lim
t→∞

(dMC(a, b))t =


0 if dMC(a, b) > 1,

1 if dMC(a, b) = 1,

∞ if dMC(a, b) < 1.

For unweighted graphs, this limit essentially decomposes the graph into its 2-edge-connected

components. All nodes in the same component are distance zero from one another while

nodes in different components are at distance one.

Proof. Assuming the claim that δp is a metric, the ‘Moreover’ parts (a) and (b) follow

from Theorem 1.2.4. For (c), recall that a metric d can always be raised to an exponent

0 < ε < 1 and still remain a metric. Since for 1 < p < 2, we have p/q < 1, it follows that

Modp,σ(Γ(a, b))−1 = δ
p/q
p is a metric, and the claim follows from continuity in p.

Finally, the fact that the exponent 1 is sharp for the metrics δp can be shown as follows.

Consider the (unweighted) path graph P3 with edges {a, c}, {c, b} and fix p ∈ (1,∞). First

Modp(Γ(a, c)) = 1, because any admissible density ρ must satisfy ρ(a, c) = 1, furthermore, to

minimize the energy, we also set ρ(c, b) = 0. Likewise, Modp(Γ(c, b)) = 1. For Modp(Γ(a, b)),

the energy is minimized when ρ(a, c) = ρ(c, b) = 1/2. Thus,

Modp(Γ(a, b)) = (1/2)p + (1/2)p = 21−p

Hence, δp(a, b) = 2q(p−1)/p = 2 = 1 + 1 = δp(a, c) + δp(c, b). In particular, the triangle

inequality will fail for δtp as soon as t > 1.

The proof of the main claim hinges on the dual formulation in terms of Fulkerson blocker

duality. Fix p ∈ (1,∞). Recall from Section 2.2.3, that the Fulkerson blocker family for
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Γ(a, b) is the family of all minimal ab-cuts Γ̂(a, b). By Theorem 2.1.8,

Modp,σ(Γ(a, b))−q/p = Modq,σ̂(Γ̂(a, b)),

where q := p/(p− 1) is the Hölder conjugate exponent of p and σ̂ = σ−q/p.

An important observation at this point is that the family Γcut(a, b) of all the ab-cuts is

subordinated to Γ̂(a, b), since every ab-cut contains a minimal ab-cut, see Remark 1.2.2.

Now suppose a, b, c ∈ V are distinct. Then, for every ab-cut S ∈ Γ̂(a, b), we have the

following mutually exclusive cases: either c ∈ S or c 6∈ S. Therefore,

Γ̂(a, b) ⊂ Γcut(a, c) ∪ Γcut(c, b). (4.4.1)

The triangle inequality then follows from monotonicity and subadditivity of modulus that

was discussed in Chapter 1, Preposition 1.2.3.

δp(a, b) = Modp,σ(Γ(a, b))−q/p (Definition)

= Modq,σ̂(Γ̂(a, b)) (Fulkerson duality)

≤ Modq,σ̂(Γcut(a, c) ∪ Γcut(c, b)) (by (4.4.1) and Monotonicity)

≤ Modq,σ̂(Γcut(a, c)) + Modq,σ̂(Γcut(c, b)) (Subadditivity)

≤ Modq,σ̂(Γ̂(a, c)) + Modq,σ̂(Γ̂(c, b)) (Subordination)

= δp(a, c) + δp(c, b). (Fulkerson duality)
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Chapter 5

Clutters, blockers and the Fulkerson

dual

In this section we translate some of the terms encountered when studying clutters to our

language of modulus and Fulkerson duality. We mainly refer to the article by Gérard,

Cornuéjols [22].

5.1 Clutters

A clutter C is a pair (Ω,P) where the ground set Ω is finite, P ⊂ 2Ω and Pi 6⊂ Pj for i 6= j.

In a clutter, a matching is a set of pairwise disjoint {P1, . . . , Pk} ⊂ P . Note that this is

not the same as perfect matchings. A transversal is a set of points in Ω that intersects all

P ∈ P .

Definition 5.1.1. A clutter is said to pack if the maximum cardinality of a matching

equals the minimum cardinality of a transversal.

Example 5.1.1. let s and t be distinct nodes of a graph G. Menger’s theorem states

that the maximum number of pairwise edge-disjoint st-paths in G equals the minimum
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number of edges in an st-cut. Let C be the clutter with Ω = E(G), the edge-set of G; and

P = Γsimple(s, t). Some texts call this, the clutter of st-paths of G. The transversals

of C are all the st-cuts. Therefore, Menger’s theorem states that the clutter of st-paths

packs. Similarly, we can define the clutter of st-cuts Ĉ. Its transversals are all connecting

st-subgraphs, and Ĉ packs, namely, the maximum number of pairwise disjoint st-cuts equals

the length of the shortest st-path.

We are interested in the special case when the ground set Ω = E(G) is the edge-set of a

graph G. Therefore, we will use Γ to denote a clutter. In this case, the objects are subsets

of edges and they are determined by their 0/1-usage vector:

N (γ, e) = 1γ(e) (5.1.1)

5.2 1-modulus

Recall that given a weight σ : E → (0,∞) on the edges of G, 1-modulus, Mod1,σ(Γ), is the

value of the linear program:

minimize σTρ

subject to ρ ≥ 0, Nρ ≥ 1

(5.2.1)

Since this is a feasible linear program, strong duality holds, and the dual problem is

maximize λT1

subject to λ ≥ 0, N Tλ ≤ σ.

(5.2.2)
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Recall that we think of (5.2.2) as a (generalized) max-flow problem, given the weights

(capacities) σ. That’s because the condition N Tλ ≤ σ says that for every e ∈ E

∑
γ∈Γ

λ(γ)N (γ, e) =
∑
γ∈Γ
e∈γ

λ(γ) ≤ σ(e). (5.2.3)

However, to think of (5.2.1) as a (generalized) min-cut problem, we would need to be able

to restrict the densities ρ to some given subsets of E. This is not always possible.

Proposition 5.2.1. Let Γ be a clutter, namely, a family of subsets of E such that γi 6⊂ γj

for i 6= j. Then Γ is a clutter that “packs” if and only if there are optimal ρ∗ and λ∗ for the

unweighted, σ ≡ 1, problems (5.2.1) and (5.2.2) respectively, such that

ρ∗ ∈ ZE≥0 and λ∗ ∈ ZΓ
≥0. (5.2.4)

Proof of Proposition 5.2.1. Assuming that Γ is packing as in Definition 5.1.1, let Γ̃ :=

{γ1, . . . , γk} be a maximal set of pairwise disjoint objects, and let S = {e1, . . . , ej} ⊂ E

be a minimum cardinality set such that for every γ ∈ Γ,

|γ ∩ S| ≥ 1.

Let ρ := 1S ∈ RE
≥0 and let λ = 1Γ̃ ∈ RΓ

≥0. Then:

� λ is a feasible flow for the max-flow problem (5.2.2), since

(N Tλ)(e) =
k∑
i=1

N (γi, e)λ(γi)

= N (γj, e)λ(γj) (for some j, since γi’s are mutually disjoint)

≤ 1 = σ(e) (by (5.1.1), and because λ(γj) = 1 and σ ≡ 1)
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� ρ is an admissible density for the 1-modulus problem (5.2.1), since for every γ ∈ Γ:

`ρ(γ) =
∑
e∈E

N (γ, e)ρ(e)

=
∑
e∈E

N (γ, e)1S(e)

= |γ ∩ S| ≥ 1.

Evaluating the primal and dual objectives in this case we get:

σTρ = |S| and 1Tλ = |Γ̃|

Since Γ is packing, we have |S| = |Γ̃|, and by convex duality, λ and ρ must be optimal.

Therefore, in this case we get that

ρ ∈ {0, 1}E and λ ∈ {0, 1}Γ.

Conversely, assume (5.2.4) holds. Then, since σ ≡ 1, feasibility says that, for every

e ∈ E: ∑
γ∈Γ

N (γ, e)λ∗(γ) ≤ 1.

Then, by integrality, this sum is either 0 or 1, and in the latter case,

1 =
∑

γ:λ∗(γ)>0

N (γ, e)λ∗(γ) ≥
∑

γ:λ∗(γ)≥1

N (γ, e) = |{γ ∈ Γ : λ∗(γ) ≥ 1, e ∈ γ}| (5.2.5)

So at most one γ in the support of λ∗ may contain a given edge e, which implies that the

two sums above range over exactly one object γ:

1 = N (γ, e)λ∗(γ) ≥ N (γ, e) = 1,
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and therefore, when this occurs, λ∗(γ) = 1.

Let Γ̃ = {γ1, . . . , γm} ⊂ Γ, be the set of objects with λ∗(γ) = 1. Then by (5.2.5), the

objects in Γ̃ must be mutually disjoint. So Γ̃ is a matching.

Moreover, since ρ∗ is an admissible density, for every i = 1, . . . ,m,

∑
e∈E

N (γi, e)ρ
∗(e) ≥ 1.

This implies that there is at least one edge ei ∈ E such that

N (γi, ei)ρ
∗(ei) > 0,

meaning that ei ∈ γi and ρ∗(ei) ≥ 1, since ρ∗ ∈ ZE≥0.

By strong duality and the fact that the objects in Γ̃ are pairwise disjoint,

|Γ̃| =
m∑
i=1

λ∗(γi) =
∑
e∈E

ρ∗(e) ≥
m∑
i=1

ρ∗(ei) ≥ |Γ̃|.

Hence, the last inequality must be an equality and

ρ∗(ei) = 1 ∀i = 1, . . . ,m.

Also the first inequality must be an equality, and this forces

ρ∗(e) = 0 ∀e ∈ E \ {ei}mi=1.

Define S = {ei}mi=1. Since ρ∗ is admissible for Γ, for every γ ∈ Γ:

∑
e∈E

N (γ, e)ρ∗(e) =
m∑
i=1

N (γ, ei) ≥ 1.
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So there must be at least an edge ej ∈ S, for which N (γ, ej) = 1. This implies that S is a

transversal.

In conclusion, since |Γ̃| = |S| = m, it must be the case that Γ̃ is a maximal matching and

S is a minimal transversal. To see why, note that the cardinality of a transversal is always

greater than the cardinality of a matching. Indeed, suppose M = (P1, . . . , Pk) ⊂ P ⊂ 2Ω

is a matching and suppose S is a transversal. By definition, S intersects every P ∈ P .

Therefore, |S ∩ Pj| 6= ∅, for all j = 1, . . . , k. In particular, there exist ej ∈ S ∩ Pj for each

j = 1, . . . , k. Since the Pj are mutually disjoint, the edges ej are also mutually disjoint.

Thus |S| ≥ k = |M|.

Corollary 5.2.2. If the clutter Γ packs and ρ∗ is unique, then for the unweighted, σ ≡ 1

case we have that ρ∗ is 0,1 valued.

Proof. The fact that the edge usage is integral follows from the Proposition 5.2.1. So it is

left to show that this is 0, 1 valued.

Let’s assume otherwise. That the unique ρ∗ is integer valued but not just 0,1. Now

define a new density ρ as follows.

ρ(e) =


0 if ρ∗(e) > 0,

1 if ρ∗(e) = 0,

Now observe that ρ is admissible for Γ since N , the usage matrix is 0,1 valued. Also

comparing the energies of the two densities we have that,

∑
e∈E

ρp <
∑
e∈E

ρ∗p

which is a contradiction to the fact that ρ∗ is the extremal point.

Definition 5.2.3. Let Γ be a clutter, namely, a family of subsets of E such that γi 6⊂ γj

for i 6= j. We say:
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� Γ has the packing property if and only if, for all weights σ ∈ {0, 1,∞}E, there are

optimal ρ∗ ∈ ZE≥0 and λ∗ ∈ ZΓ
≥0 for the problems (5.2.1) and (5.2.2) respectively.

� Γ has the Max Flow Min Cut property (MFMC) if and only if, for all weights

σ ∈ ZE≥0, there are optimal ρ∗ ∈ ZE≥0 and λ∗ ∈ ZΓ
≥0 for the problems (5.2.1) and (5.2.2)

respectively.

� Γ is ideal if for every σ ∈ RE
≥0, there is an optimal ρ∗ ∈ ZE≥0 for (5.2.1).

Definition 5.2.4 (semi-ideal and semi-MFMC property). Let k be a positive integer.

Clutter Γ has the 1/k -MFMC property if it is ideal and, for all nonnegative integral

vectors w, the linear program 5.2.2 has an optimal solution vector y such that ky is integral.

If the clutter has the 1/k -MFMC property for some k, we say that it has semi-MFMC

property.

When k = 1, this definition reduces to the MFMC property. If Γ has the 1/k-MFMC prop-

erty, then it also has the 1/q-MFMC property for every integer q that is a multiple of k.

The definition of the semi-idealness follows the proposition 5.2.5. Let k be a positive

integer. Clutter Γ has the 1/k -ideal property if and only if, kΓ̂ is integral. If the clutter

is 1/k -ideal for some k, we say that it has semi-ideal property.

Proposition 5.2.5. Let Γ be a family of subsets of E such that γi 6⊂ γj for i 6= j. Then, Γ

is ideal, if and only if, Γ̂ ⊂ ZE≥0. In words, if and only if, the Fulkerson dual has 0/1-valued

edge-usages.

Proof. Assume first that Γ is ideal. Each γ̂ ∈ Γ̂ is an extreme point of Adm(Γ). Hence,

there is a set of weights σ ∈ RE
≥0, such that ρ∗(·) := N (γ̂, ·) is the unique optimal solution

to (5.2.1). Therefore, γ̂ must have integer-valued edge-usages.

Conversely, for any σ ∈ RE
≥0, the set of optimal solutions for (5.2.1) always includes at

least one extreme point of Adm(Γ), which are now assumed to be integer-valued. So Γ is

ideal.
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The fact that these integer values are 0/1 follows from the fact that the extremal points

are 0/1 in order to minimize the energy. In other words, it does not makes sense for

the integer values to take anything greater than 1. See proof of Corollary 5.2.2 for an

explanation.

Remark 5.2.1. We have the following implications.

� MFMC implies the packing property, but the converse is (still?) open.

� Also MFMC implies ideal, because if Mod1,σ(Γ) admits an extremal density ρ∗ ∈ ZE≥0

whenever σ ∈ ZE≥0, then by taking common denominators in the energy, the same

holds whenever σ ∈ QE
≥0. Then by continuity of Mod1,σ(Γ) and ρ∗σ in σ, it follows that

the same holds for σ ∈ RE
≥0.

� By a result of Lehman, the packing property implies idealness.

Figure 5.1 below summarizes the above remark.

MFMC

Ideal Packing Property Clutters that pack

Figure 5.1: Summary of the implications

5.3 All-star modulus

In this section, we introduce a new family of objects called, “all-stars” along with its con-

jectured Fulkerson dual. We will then look at the family of all-stars in different graphs and

identify different characteristics of this family in the respective graphs.
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5.3.1 Connection with the unoriented Laplacian

Let G = (V,E) be a finite simple graph.

Definition 5.3.1. For x ∈ V , let the star at x be the set

Ex :=
{
{x, y} ∈ E : y ∼ x

}
.

We consider the family Γ = {Ex}x∈V of all the possible stars in G.

5.3.2 Stars in unweighted graphs

The usage matrix N is known in another context as the unoriented gradient matrix B of

the graph G. Namely, for x ∈ V and e ∈ E:

N (Ex, e) = B(x, e) := 1{x∈e}.

Then, the overlap matrix C = NN T is

C = D + A,

which is known as the unoriented Laplacian. Here, D and A are the degree and adjacency

matrices respectively.

To see this, we will note the following two cases,

x 6= y NN T (x, y) =
∑
e∈E

B(x, e)B(y, e)

= 1{x∼y}

x = y NN T (x, y) =
∑
e∈E

B(x, e)2

= deg(x).
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In particular, if Γ is minimal, then

Mod2,σ(Γ) = 1TC−11,

and

ρ∗ = N TC−11.

See section 4 of [9] for a proof of the above results.

Write

C = D(I +D−1A) = 2DP̃

where P̃ is the transition matrix for the lazy random walk. It’s known that the eigenvalues

of P̃ are contained in [0, 1] and that 0 is an eigenvalue if and only if G is bipartite. Therefore,

since Ker P̃ = KerC, we have that C is always invertible for non-bipartite graphs.

5.3.3 Stars in weighted graphs

Let the usage matrix N be defined as above. Consider the Fulkerson family Γ̂ with the

weights σ̂ = σ1−q , where q is the Hölder conjugate exponent of p. For p = 2, q = 2 we have,

σ̂ = σ−1. For this special case, the overlap matrix C is,

C = NΣ−1N T

where, Σ−1 is the |E| × |E| diagonal matrix with the diagonal elements σ(e)−1. In matrix

form, we can write this as,

C(γ1, γ2) =
∑
e∈E

1

σ(e)
N (γ1, e)N (γ2, e).

If Γ is minimal, then

Mod2,σ−1(Γ̂) = 1TC−11,
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and

ρ∗σ−1 = N TC−11.

Next, we introduce the Fulkerson dual of all-family.

5.3.4 Starcycles as Fulkerson dual

Let Γ be the family of all stars in a graph G = (V,E). A partial star is a set of edges that

share a given node x ∈ V . We are interested in studying the Fulkerson dual family Γ̂ of Γ.

A starcycle S is an edge-cover (i.e., every vertex is incident to at least one edge in S)

whose components are either partial stars or cycles of odd length. Furthermore, the usage

vector corresponding to a starcycle is defined as follows: the usage of edges in a partial star

component is 1, while the usage for edges in an odd cycle is 1/2.

Proposition 5.3.2. The Fulkerson dual family Γ̂ for the family Γ of all stars contains the

family of all starcycles with edge usage defined as above.

Proof. Suppose γ̂ is the usage vector of a starcycle S. Then, we want to show that γ̂ is

an extreme point of Adm Γ. Note first that ρ := γ̂ is an admissible density for Γ. Indeed,

assume γ is a star corresponding to node x ∈ V . Then, x is incident to at least one edge in

S. If the component of S containing this edge is an odd cycle, then exactly two edges in γ

must belong to S, so γT γ̂ = (1/2) + (1/2) = 1. If the component is a partial star, then it

must have at least one edge in common with γ and so γT γ̂ ≥ 1.

Now think of perturbing γ̂ linearly. Let ζ ∈ RE and t ∈ [−ε, ε] for some ε > 0. We

consider

ut := γ̂ + tζ.

Assume that there is ε > 0 so that ut is admissible for Γ for every t ∈ [−ε, ε], we want to

show that ζ must be zero. First note that if u0(e) = γ̂(e) = 0, then ζ(e) = 0, because

admissible densities cannot be negative. Now assume e = {x, y} is an edge in a component
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of S that happens to be a partial star s(x) with vertex x. Note that u0(e) = γ̂(e) = 1.

Without loss of generality assume also that ζ(e) > 0. Then for t < 0, ut(e) < 1. Now let γ

be the star at y. Observe that, since s(x) is a connected component of S,

γ ∩ S = γ ∩ s(x) = e.

Indeed, every other edge e′ incident at y is not incident at x and thus cannot belong to s(x).

Moreover, e′ also cannot belong to S, because otherwise it would belong to s(x), since s(x)

is a component. This shows that for t < 0, uTt γ < 1 and therefore ut is not admissible for Γ.

Finally, assume S is an odd cycle x0 e1 x1 e2 x2 · · · e2n+1 x2n+1, so that x2n+1 = x0.

Without loss of generality, consider the edge e1 = {x0, x1}. Assume that ζ(x0, x1) > 0, and

let γ be a star with vertex at x1. Then admissibility of ut for every t ∈ [−ε, ε] for some ε > 0

requires that

γTut = ut(x0, x1) + ut(x1, x2)

=
(
γ̂(x0, x1) + tζ(x0, x1)

)
+
(
γ̂(x1, x2) + tζ(x1, x2)

)
=

(
1

2
+ tζ(x0, x1)

)
+

(
1

2
+ tζ(x1, x2)

)
= 1 + t(ζ(x0, x1) + ζ(x1, x2)) ≥ 1.

This implies that

ζ(x0, x1) = −ζ(x1, x2).

By induction, using the maximal stars at xj for 2 = 1, . . . , k, we get that

ζ(xk, xk+1) = (−1)kζ(x0, x1).

In particular,

ζ(x2n, x0) = ζ(x2n, x2n+1) = ζ(x0, x1).
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However, repeating the argument above with the maximal star at x0 we also have that

ζ(x2n, x0) + ζ(x0, x1) = 0

Therefore ζ is identically zero on the cycle S. This shows that ζ = 0, and the proof is

complete.

5.3.5 Examples of star families in different clutters

In this section, we will explore clutters of star families and their characteristics. We will

prove the following.

� The family Γ of all stars of K4 does not pack, but is ideal.

� The family Γ of all stars of K3 does not pack and is not ideal.

� The star family Γ in the square packs, is ideal and has the max flow min cut property.

5.3.6 Example 1 : All-star modulus for the complete graph K4

Let G = K4 and Γ be the family of all stars {γ1, γ2, γ3, γ4}, see Figure 5.2. The edge-usage

matrix for Γ is

N =



1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


(5.3.1)

The Fulkerson dual family Γ̂ (also the minimal transversals) of all starcycles in K4 consists

of each star γj in Figure 5.2, together with the three perfect matchings given by pairs of

opposite edges of the tetrahedron and the four stars itself:
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T ={T1 = {e1, e6}, T2 = {e2, e5}, T3 = {e3, e4}, T4 = {e1, e2, e3},

T5 = {e1, e5, e4}T6 = {e4, e2, e6}, T7 = {e3, e5, e6}}.

γ1 γ2

γ3γ4

e1

e4

e6

e3

e2

e5

Figure 5.2: All stars for K4

Proposition 5.3.3. The family Γ of all stars of K4 does not pack, but is ideal.

Proof. We first show that the all-star family in K4 does not pack. Notice that, as shown in

Figure 5.2, the maximum number of disjoint objects is 1, since any two stars have non-empty

intersection. On the other hand, the minimal transversal sets are the three vertex covers

of size 2. Thus the cardinality of any minimal transversal set is at least 2. Since these two

cardinalities are not equal, this clutter does not pack.

Let M be the block matrix (call this the “constraint matrix”) which consists of the

usage matrix N and the identity matrix of dimension |E| (see 5.3.5). It is known that the

extremal points of 5.2.1 for different σ is given uniquely by the solutions of Aρ = b, where A

is a submatrix of M of dimension |E| by |E| and b is the vector of corresponding constraint

values.

Below, we have formulated the system that provides all the solutions for extremal points

with constraints given by 5.3.2 .
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Nρ ≥ 1 ρ ≥ 0 (5.3.2)



1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





ρ1

ρ2

ρ3

ρ4

ρ5

ρ6


=



1

1

1

1

0

0

0

0

0

0



(5.3.3)

Now we consider the different cases of A, submatrices of M .

Case 1: We need at least one row from N in order to have a non-trivial solution. Thus

assume that we drop one row from the identity matrix and take one row from N . This

implies that ρ ≡ 0 on five edges. Which in turn means that there exists a star with zero

weight. Thus this ρ is not admissible and this case cannot occur.

Case 2: Assume that we take 2 rows from N . Figure 5.3 below depicts the two different

cases of how this selection can be made. In both the cases we need to put 1 on either of

the edges to make all the stars to weigh 1. Also notice that in this case, they are minimal

transversals.
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1
1

1 1

Figure 5.3: case 2

Case 3: Assume that we take 3 rows from N . The three different cases that we can have

are depicted in Figure 5.4 below. In the first diagram, it is clear that we need to assign 1 to

all three edges that we picked to make every star weigh1. However if we select the second

diagram, then we only need to assign 1 on the opposite edges to make ρ admissible. The

thrid option, where the selcted edges creates a circuit will not work since this will result in

one of the stars been weight 0.

1
1

1

1 1

Figure 5.4: case 3

Case 4: Assume that we take all 4 rows from N . Now solving the system,



1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1





ρ1

ρ2

ρ3

ρ4

ρ5

ρ6


=



1

1

1

1



we get the solution,
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ρ = s



0

1

0

0

1

0


+ t



1

0

0

0

0

1


+ (1− s− t)



0

0

1

1

0

0


s and t are parameters where ρ1 = ρ6 = t and ρ2 = ρ5 = s and ρ3 = ρ4 = 1− s− t. Observe

that ρ is a convex combination of the three transversals. So we get that the extreme ponits

are the three transversals. Thus the solutions are to have s, t or (1 − s − t) = 1 at a given

time.

5.3.7 Example 2 : All-star modulus for the complete graph K3

Let Γ be the clutter consisting of family of stars in K3

The edge-usage matrix for Γ is

N =


1 1 0

0 1 1

1 0 1

 (5.3.4)

γ1 γ2

γ3

e1

e2

e3

Figure 5.5: All stars for K3

Proposition 5.3.4. The family Γ of all stars of K3 does not pack and is not ideal.
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Proof. Notice that, as shown in Figure 5.5, the maximum number of disjoint objects is 1,

since any two stars have non-empty intersection. On the other hand, the minimal transversal

sets are vertex covers with exactly 2 edges (any two edges is a transversal). Thus the

cardinality of any minimal transversal set is at least 2. Since the two cardinalities are not

equal, this clutter does not pack.

In order to show that this clutter is not ideal, we consider the case where we take all

three rows of N . This matrix has full rank and solving the linear system of equations,


1 1 0

0 1 1

1 0 1



ρ1

ρ2

ρ3

 =


1

1

1


gives us the solution ρ ≡ 0.5. Since this is not integer valued we can conclude that the

clutter of stars in the triangle is not ideal.

5.3.8 Example 3 : All-star modulus for the square

As a last example for the section we present the cultter of family of stars on the square.

The edge-usage matrix for Γ is

N =



1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1


(5.3.5)

Proposition 5.3.5. Γ, the clutter os stars on the square packs, is ideal and has the max

flow min cut property.

Proof. Notice that, as shown in Figure 5.6, the maximum number of disjoint objects is

2, namely the stars that are not on adjacent vertices. On the other hand, the minimal
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γ1 γ3

γ4γ2

e2

e3

e4

e1

Figure 5.6: All stars for the square

transversal sets are vertex covers with exactly 2 edges. Thus the cardinality of any minimal

transversal set is at least 2. Since the two cardinalities are equal, this clutter packs.

To show that it is ideal we show for all σ ∈ RE
≥0, the optimal ρ∗ ∈ ZE≥0 for (5.2.1) by the

same method that we used in the K4 example.

Case 1: We first consider the case where we pick one row from N . It is clear that there

exists a star that has weight zero in this case and thus this ρ is not admissible.

Case 2: Let’s now consider the case where we will pick two rows from N . We are forced to

assign 1 to the two edges that are non zero. These two edges are also minimum transversals

of the clutter.

Case 3: Consider the case where we will pick three rows from N . In this case, one edge

will have ρ = 0. Both of the edges adjacent to it will be forced to have a ρ value of 1

in order to have star weight exactly 1. This on the other hand will force the edge on the

opposite of the ρ = 0 edge to be zero. Thus this case reduces to the case we discussed above.

Case 4: Finally, consider the case where we take all of the four rows from our usage matrix.
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

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1





ρ1

ρ2

ρ3

ρ3


=



1

1

1

1


This matrix does not have full rank. Thus it does not define an extremal point.

Since all of the feasible submatrices with full rank produces extremal points that are

intergral, we have that this clutter is ideal.

In order to show that the clutter has MFMC property, we only need to show for all

σ ∈ ZE≥0, the optimal λ∗ ∈ ZΓ
≥0 for (5.2.2). Notice that the requirement of ρ∗ ∈ ZE≥0 has

already been satisfied through the above proof of idealness.

To show this, we will look at Karush- Kuhn-Tucker (KKT) conditions for the primal and

the dual problem defined by (5.2.1) and (5.2.2). These conditions will give us the following

inequalities to be satified by the optimal ρ and λ for the primal and the dual problems

respectively.

1. λT (1−Nρ) = 0

2. ρT (σ −N Tλ) = 0

3. ρ ≥ 0

4. λ ≥ 0

5. Nρ ≥ 1

6. N Tλ ≤ σ

Without loss of generality we will assume the following hold for the weights of the graph.

σ1 + σ3 ≤ σ2 + σ4
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σ1 ≤ σ3

σ2 ≤ σ4

We will guess the optmial solutions for ρ as ρ1 = ρ3 = 1, ρ2 = ρ4 = 0. For λ we will

guess λ1 = min{σ1, σ2}, λ2 = σ1 − λ1, λ3 = min{σ2 − λ1, σ3}, λ4 = σ3 − λ3. Notice that if

this guess works we have that λ ∈ ZΓ
≥0 . Now we will continue to show that KKT conditions

are met for this guess.

3 We will begin by checking the third condition. This is clearly met by our optimal ρ.

4 First we recongnize that λ1 ≥ 0 since both σ1, σ2 ≥ 0. From our guess we also have that

λ1 ≤ σ1 which implies that our guess λ2 ≥ 0. Similarly σ1 ≤ σ2 implies σ2 − λ1 ≥ 0,

which in turn implies λ3 ≥ 0 since σ3, σ2 − λ1 ≥ 0.

5 We have that with ρ defined as above Nρ = 1.

1 Following from [5] above we have that λT (1−Nρ) = 0.

2 For this condition, we only need to check for ρ1 and ρ2 since when ρ = 0 this condition

is trivially satisfied. We have that

(N Tλ)1 = λ1 + λ2 = λ1 + σ1 − λ1 = σ1

(N Tλ)3 = λ3 + λ4 = λ3 + σ3 − λ3 = σ3

6 We have already covered two cases above. Now we will consider the other two cases.

(N Tλ)2 = λ1 + λ3 ≤ λ1 + σ2 − λ1 = σ2

Now for the last case,

(N Tλ)4 = λ2 + λ4 = σ1 − λ1 + σ3 − λ3 = (σ1 + σ3)− (λ1 + λ3)
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We need to verify that the last expresion in the above equation is less than equal to

σ4. Equivalently we want to show that

σ4 − (σ1 + σ3) + (λ1 + λ3) ≥ (λ1 + λ3)− σ2

We need the last part of the above inequality to be greater than or equal to zero. Now

if λ1 = σ2 we are done since we get λ3 ≥ 0.

Otherwiseλ1 = σ1. This also impliws that σ1 ≤ σ2 since λ1 is the minimum of these

two quantities. Now, if λ3 = σ2−σ1 we are done since it gives us a zero. Else we have

λ1 + λ3 = σ1 + σ3, which in case implies thatλ2, λ4 = 0. Thus we have,

(N Tλ)4 = λ2 + λ4 = 0

Thus our guess seem to satisfy all the KKT conditions and we are done.

5.4 Blockers

Definition 5.4.1. The blocker b(Γ) of a clutter Γ is the clutter (E, b(Γ)), with the same

edge set E and Γ whose objects are the minimal transversals of Γ. That is, b(Γ) consists of

the minimal members of

{B ⊆ E : |B ∩ A| ≥ 1, for all A ∈ Γ}.

In other words, the rows of N (b(Γ)) are the minimal 0,1 vectors xT such that x belongs to

the polyhedron Adm Γ = {x ≥ 0 : N (Γ)x ≥ 1}.

Example 5.4.1. Let G be a graph and s, t be distinct nodes of G. If Γ is the clutter of

st-paths, then b(Γ) is the clutter of minimal st-cuts.
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Example 5.4.2. In a connected bipartite graph if Γ is the clutter of family of stars then

the blocker will be perfect matchings.

Remark 5.4.1. We know that the Fulkerson dual family N (Γ̂) of st-paths(Γ) is st-cuts. So

we observe here that, N (Γ̂) = N (b(Γ))⇒ Γ̂ = b(Γ) in this case.

Proposition 5.4.2. Let H and K be two clutters defined on the same ground set. Call P,

“objects” of C for convenience. If,

(i) every object of H contains an object of K and

(ii) every object of K contains an object of H,

then H = K.

Proof. If (i) and (ii) hold, then for all hi ∈ H there exists kl ∈ K s.t kl ⊆ hi and for every

kl there exists hj s.t hj ⊆ kl. Thus we have hj ⊆ kl ⊆ hi. Since both hi and hl are minimal

transversals this implies that hi = hj = kl . Therefore for every hi ∈ H we have that hi ∈ K.

Which implies H ⊂ K. We can argue similarly to show that K ⊂ H. Thus we have that

H = K.

Theorem 5.4.3. [Edmonds and Fulkerson] If Γ is a clutter, then b(b(Γ)) = Γ.

Proof. Let A be an object of Γ. The definition of b(Γ) implies that |A ∩ B| ≥ 1, for all

objects B ∈ b(Γ). Thus A is a transversal of b(Γ). This implies that A contains an object of

b(b(Γ)) (we cannot claim it is an object of b(b(Γ)) since minimality of A is not guaranteed).

Now let A be an object of b(b(Γ)). We claim that A contains an object of Γ. Suppose

otherwise (i.e. A does not contain any objects of Γ). Then E \A intersects all the objects of

Γ. Thus E \A is a transversal of Γ, implying that it contains an object B in b(Γ) with the

property that B∩A = ∅. However, since A is in b(b(Γ)), we also have |B∩A| ≥ 1, hence we

have reached a contradiction. Therefore, A contains an object of Γ. By Proposition 5.4.2,

we have that b(b(Γ)) = Γ.
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Definition 5.4.4. Two 0,1 matrices of the form N (Γ) and N (b(Γ)) are said to form a

blocking pair.

Theorem 5.4.5 (Lehman). For a blocking pair N1,N2 of 0,1 matrices, the polyhedron

P := Adm(Γ) defined by

N1ρ ≥ 1

ρ ≥ 0

(5.4.1)

is integral if and only if the polyhedron Q defined by

N2η ≥ 1

η ≥ 0

(5.4.2)

is integral.

We have state this theorem in a different way in 5.4.7. The proof of the theorem uses

the preposition below.

Proposition 5.4.6. (i) The rows of N2 are exactly the 0,1 extreme points of P .

(ii) If an extreme point x of P satisfies xT ≥ λTN2 where λi ≥ 0 and
∑
λi = 1, then x is

a 0,1 extreme point of P .

Proof. (i) follows from the fact that the rows of N2 are the minimal 0,1 vectors in P .

(ii) Let x be an extreme point of P with the above characteristics. Note that x is then

also an extreme point of PI = {X : XT ≥ λTN2 where λi ≥ 0 and
∑
λi = 1} =

Dom(b(Γ)) for otherwise x would be a convex combination of distinct x1, x2 ∈ PI and,

since PI ⊆ P , this would contradict the assumption that x is an extreme point of P .

Now (ii) follows by observing that the extreme points of PI are exactly the rows of

N2.
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Theorem 5.4.7. [Lehman] A clutter is ideal if and only if its blocker is.

Proof. Proof: By Theorem 5.4.3, it suffices to show that if P defined by (5.4.1) is integral,

then Q defined by (5.4.2) is also integral. Let γ̃ be an arbitrary extreme point of Q. Then

N2γ̃ ≥ 1, i.e. γ̃T γ̂ ≥ 1 is satisfied by every extreme point of P . Also we have that, γ̃ ≥ 0.

This fact combined with the minimality of the extreme points give us that γ̃Tx ≥ 1 for all

points x ∈ P .

Furthermore, it can be shown that γ̃Tx0 ≥ 1 for some x0 ∈ P (see proof of theorem

5.5.2). Now, by linear programming duality, we have,

1 = min{γ̃Tx : x ∈ P} = max{λT1 : λTN1 < γ̃T , λ ≥ 0}.

Therefore, by Proposition 5.4.6 (ii) applied to Q, γ̃ is a 0,1 extreme point of Q.

5.5 st-cuts and st-paths

In this section, we will investigate more on the st-cuts and st-paths.

Consider a digraph (V,E) with s, t ∈ V . Let C be the clutter of the family of st-paths.

Theorem 5.5.1 (Ford-Fulkerson ). The clutter C of st-paths has the MFMC property.

Proof. For any edge capacities w ∈ ZE
≥0, the Ford-Fulkerson theorem [23] states that (5.2.1)

and (5.2.2) both have optimal solutions that are integral: (5.2.1) is the min cut problem and

(5.2.2) is the max flow problem. Using the terminology introduced in Denition 5.2.3, the

Ford-Fulkerson theorem states that the clutter C of st-paths has the MFMC property.

It could also be shown that the clutter of st-cuts also has the MFMC property.
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In a network, the product of the minimum number of edges in an st-path by the minimum

number of edges in an st-cut is at most equal to the total number of edges in the network.

This width-length inequality can be generalized to any non negative edge lengths le and

widths we: the minimum length of an st-path times the minimum width of an st-cut is at

most equal to the scalar product lTw. This width-length inequality was observed by Moore

and Shannon and Duffin. A length and a width can be defined for any clutter and its

blocker. Lehman showed that the width-length inequality can be used as a characterization

of idealness.

Theorem 5.5.2 (Width-length inequality, Lehman). For a clutter Γ and its blocker b(Γ),

the following statements are equivalent.

(i) Γ and b(Γ) are ideal, i.e., Γ̂ and b̂(Γ) are 0/1.

(ii) For all w ∈ Adm(Γ), and z ∈ Adm(b(Γ)):

`w(Γ)`z(b(Γ)) ≤ wT z,

where `ρ(Γ) := minγ∈Γ

∑
e∈γ ρ(e).

Proof. Let N = M(Γ) and (bN ) = M(b(Γ)) be the blocking pair of 0,1 matrices associated

with Γ and b(Γ) respectively. First assume that Γ and b(Γ) are ideal.

It is known that Adm(Γ) = Dom(Γ̂). Thus w ∈ Adm(Γ)⇒ w ∈ Dom(Γ̂) = co(Γ̂) + RE
≥0

and we have that there exists a measure ν ∈ P(Γ̂) such that w ≥ (bN )Tν (See [Corollary

2.1.7 in Chapter 2).

Since the clutter is ideal, from proposition 5.2.5 we have that Γ̂ is integer valued. More

precisely 0,1 valued and we have b(Γ) = Γ̂.

We also have that Adm Γ̂ = Dom(Γ). Thus z ∈ Adm Γ̂⇒ z ∈ Dom(Γ) and there exists

a measure µ ∈ P(Γ) such that z ≥ N Tµ (See [Corollary 2.1.7 in Chapter 2). Let J denote

the matrix of ones. Notice that (bN )N T ≥ J since (bN )N T have at least one common edge
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(recall that rows of (bN ) consists of minimal transversals of objects in N ). Thus we have,

wT z ≥ νT (bN )N Tµ ≥ νTJµ = 1 = `w(Γ)`z(b(Γ))

Now we prove the converse. Let w ∈ Γ̂, be an extreme point for the admissible set

of Γ. In particular, we have that `w(Γ) ≥ 1 since w is admissible for Γ. Also for any

point z ∈ Adm(b(Γ)) we have that `z(b(Γ)) ≥ 1. By hypothesis it follows that, wT z ≥

`w(Γ)`z(b(Γ)) ≥ 1 for all z ∈ Adm b(Γ). In particular it can be shown that there exists at

least one z0 ∈ Adm b(Γ) such that wT z0 = 1 (this will be shown later in the proof). By the

fact that wT z ≥ 1 and that there exists a z0 such that wT z0 = 1 we have,

1 = min{wT z : z ∈ Adm b(Γ)}

Now by linear programming duality we have,

1 = min{wT z : z ∈ Adm b(Γ)} = max{µT1 : µT (bN ) ≤ wT , µ ≥ 0}.

It follows from Proposition 5.4.6 (ii) that w is a 0,1 extreme point of Adm(Γ). Therefore by

Proposition 5.2.5, Γ is ideal. By Theorem 5.4.7 , b(Γ) is also ideal.

Showing the existence of z0 ∈ Adm b(Γ) such that wT z0 = 1 and w ∈ Γ̂.

Since w ∈ Γ̂, there exists a weight set σ ∈ RE
≥0 such that w is the unique extremal

density. In other words, it is the solution for the optimization problem,

minimize σTρ

subject to ρ ≥ 0, Nρ ≥ 1

and Mod1,σ(Γ) = σTw. Thus, for all ρ ∈ Adm(Γ) which are different from w, we have that

σTρ > σTw. Now consider the weight set z0 =
(

σ
Mod1,σ(Γ)

)
. Notice that wT z0 = 1. Also
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observe that z0 ∈ Adm Γ̂(Γ̂ = b(Γ) in this context since our clutter is ideal). To see this,

assume that γ̂ ∈ Adm(Γ) \w. Then we have that σT γ̂ ≥ σTw = Mod1,σ ⇒
(

σ
Mod1,σ(Γ)

)T
γ̂ ≥

1.

We end this Chapter with the main theorem given below.

5.6 The relationship between blocker and the Fulker-

son dual of a clutter

Theorem 5.6.1. Let b(Γ) be the blocker of a clutter Γ. Then, b(Γ) ⊆ Γ̂, where Γ̂ is the

Fulkerson blocker of the clutter Γ.

Proof. Let T ∈ b(Γ) be a minimal transversal (minimal 0-1 vector). Since |T ∩ γ| ≥ 1 for

all γ ∈ Γ, the density ρ := 1T is admissible for Γ. We want to show that ρ is not a strict

convex combination of two densities ρ0 6= ρ1 that are in the admissible set of Γ. This will

imply that ρ is an extremal point of Adm Γ and therefore that ρ is in Γ̂.

Assume, by contradiction, that ρ = tρ1 +(1−t)ρ0, with t ∈ (0, 1) and ρ0 6= ρ1 ∈ Adm(Γ).

Since admissible densities are non-negative, this implies that ρ0(e), ρ1(e) = 0 for every e ∈

E \ T . Notice that if ρ0(e), ρ1(e) ≥ 1 for all e ∈ T , then t = 0 or 1, which is a contradiction

since t ∈ (0, 1). Thus, we can assume, without loss of generality, that 0 < ρ1(e′) < 1, for

some e′ ∈ T . This means that all γ ∈ Γ such that e′ ∈ γ have the property |T ∩ γ| ≥ 2,

otherwise T ∩ γ = {e′} and ρT1 γ = ρ1(e′) < 1, which contradicts admissibility of ρ1. Thus,

e′ can be removed from T without affecting the transversality property of T with respect to

Γ. This contradicts the fact that T is a minimal transversal.

97



Chapter 6

Future work

In this chapter, we will present some of the avenues related to our work that we would like

to explore in the future.

6.1 Relationship between EHT and δp metric

It was shown in [7] that

δ2(a, b) = Reff(a, b) ≤ EHT(a, b) ≤ lim
p↑∞

δp = dSP

where Reff(a, b) is the effective resistance (see 3.1.1), EHT(a, b) is epidemic hitting time (see

3.1.4)and dSP is the shortest path metric. We would like to answer the question, “is there a

relationship between the epidemic hitting time metric and δp for some p?”

In other words, “can the gap be shrunk?”
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6.2 Computing the anti-snowflaking exponent for dif-

ferent families

The example of the square graphs in Section 4.3.4 raises the following question: Is it true

that for an arbitrary simple graph G = (V,E), there is always a value p0 so that (V, dp0)

embeds isometrically in some Rn, and if so, does this imply the same is true for all p < p0?

Similar questions can be asked for other powers of dp.

In the example of the square graph in Section 4.3.4, the dp metric can be raised to an

exponent that is strictly larger than q. In fact, to find the largest possible exponent tmax in

this case it’s enough to set

dp(a, c)
t = 2dp(a, b)

t,

and solve for t. When this happen we say that the graph contains a “flat triangle”. A

calculation shows that

tmax =
1

1− 1
p

(
2− log2(1 + 31−p)

) > 1

1− 1
p

= q.

More generally, we intend to do the same computation for the cube in R3 and study whether

the anti-snowflaking exponent sH(p) can be computed for the family of hypercubesH. These

are graphs that arise in the theory of expander graphs and are considered to be very well

connected, hence, their triangles should be far from being flat.

6.3 Properties of the δp metric

We are interested in studying the properties of the δp metric. Among these properties, we

are particularly interested in the embeddings of the metric in different spaces and also the

monotonicity properties of the metric.
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6.4 Continue translation from clutters to modulus

We have tried to translate some of the terms encountered when studying clutters to our

language of modulus and Fulkerson duality. This was done in Chapter 5. However, there

is so much more that could be translated into our language which can strengthen the un-

derstanding of both clutters and modulus. It is also expected to unravel the connections

between the two concepts through these translations/analysis.
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