
ANALYZING "C" PROGRAMS FOR COMMON ERRORS

by

Dennis M. Frederick

B.S., University of Missouri, 1970

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

COMPUTER SCIENCE

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Dr. Gustafson

i_t>

A11E0& 201512

CHAPTER 1

cmsc

F1S introduction
C 2_

The cost of error detection and correction can be a significant contributor to

the life cycle cost of software. Some researchers estimate that 40% of the life

cycle cost of a software system is in the testing phase [WOLV84]. Clearly,

detecting as many errors as possible as early as possible will lower the overall

cost of a software development project.

The focus of this investigation is the development of an error detection tool lor

the C Programming Language which will contribute to a decrease in those costs

for projects coded in C. This tool will detect errors involving logical and

semantic errors in statements that are syntactically and semantically acceptable

to the C compiler.

The C Programming Language has a number of pitfalls which can lead to

errors. C is a powerful, high-level language with a rich repertoire of operators,

data types and control flow constructs. However, the very richness that makes

it attractive also results in a complexity that can be troublesome to both

beginning and expert programmers alike. In my experience teaching C

Language and consulting on C Language projects. I have noted several errors

made frequently by beginners and occasionally by experienced programmers.

These errors could be detected by the proposed tool.

1-1

There are already several types of tools available for error detection each

embodying a slightly different approach to the problem. These include

Dynamic Trace tools. Core Dump Analysis tools, Static Analysis tools, and

Goal Analysis tools. An example of each of these types is explained in some

detail in the paragraphs that follow.

Dynamic Trace tools like "ctrace" [UN 1X84] allow step by step execution of C

programs with outputs to show the values of important variables along the way.

Ctrace takes the program source file as input. It inserts statements which will

print the text of all executable statements and the values of all referenced

variables. The output is then directed to standard output which is normally

redirected to a temporary file. The C compiler is then invoked and the newly

inserted print statements are compiled as part of the program. Upon execution,

the text of each executable statement is printed as it is executed. The values of

any variables referenced by the statement being executed are also printed.

When ctrace detects loops in a program, the loop is traced once, then tracing is

stopped until the loop is exited or a different sequence of statements within the

loop is executed. A warning message is printed every 1000 times through a

loop to help detect infinite loops. Tools of this type arc particularly useful for

uncovering problems with control flow.

Core Dump Analysis tools like "sdb" [KATS81] are useful for examining "core

1-2

image" files produced by aborted program executions. Sdb (currently

implemented for C and Fortran 77) has a variety of features and capabilities

which make it valuable. When using sdb with a C program, one must compile

the source with the "-g" option. Sdb can then be invoked after program

execution has aborted and produced a "core dump". It will reveal the

procedure name and line number in which the error occurred. Upon request

sdb will also output a stack trace that consists of a list of the called procedures

which led to the error. Included in that listing are the values of the input

parameters at the time of the error. Sdb also has extensive capabilities for

displaying variables of the program. Values of the variables can be displayed in

a variety of user-selected formats and variable addresses are readily available

upon request. Another useful feature of sdb is its ability to do breakpoint

debugging. Once sdb is invoked, breakpoints can be set at any point in the

program. Execution is initiated and continues until just before the breakpoint

is reached. Sdb then halts the program and gives access to the core image

examination capabilities already mentioned. Rounding out sdb's capabilities is

the ability to single step the program and examine the core image after each

statement. All these features together make sdb a very useful debugging tool.

Static Analysis tools like "lint" [JOHN81| examine program source files for a

variety of possible misuses of the language. Lint pursues many types of errors

which may lead to improper execution even though the program may compile

1-3

with no errors. Several of these are discussed below. Lint will issue warnings

about variables and functions which are declared but never again referred to in

the program. While these variables are usually left over from previous versions

of the program and are probably harmless, they are flagged in the interest of

encouraging good programming practice. Also, lint attempts to detect variables

which are used in a program before being assigned a value. Lint also attempts

to analyze the control flow of a program. It will complain about portions of a

program which are apparently unreachable and loops which cannot be entered

from the top or exited from the bottom. Finally, lint discourages older forms

of the compound assignment operators as well as what are referred to as

"strange constructions" such as tests that can never succeed (or fail) and

statements that have no effect whatsoever.

Goal Analysis tools like "Proust" [SOLL85] (a debugging aid for Pascal) are

useful in a teaching environment where specific programming assignments are

given and the student's trial solution is analyzed for its effectiveness in solving

the problem. Proust uses an interesting strategy for uncovering bugs in the

proposed solution. First, it retrieves a description of the particular problem

assignment from a library of such descriptions written in Proust's own

problem-description language. The problem description is a paraphrase of the

English language problem assignment given to the student. The problem

description contains descriptions of each of the sub-problems or tasks that must

1-4

be performed successfully for the overall problem to be solved. Next, Proust

draws from a library of valid solutions to each task, attempting to find a match

with the student's approach to that task. If a match is found, Proust infers that

the task is implemented correctly. If a match is not found, Proust checks a

database of possible bugs to see if it can explain the discrepancies. It then

reports an English language description of the bug and will sometimes go so far

as to suggest input data that will demonstrate the presence of the bug.

Processing continues in this manner until all the tasks of the problem have been

analyzed.

All these tools are valuable members of the family of software development

tools. However, none of them addresses the particular errors I have targeted

for this investigation.

Errors of this class occur in statements that are syntactically and scmantically

correct. The errors escape detection by the C compiler and can be very

difficult to find. Nonetheless, they are usually abuses of the language resulting

in statements that probably do not accurately reflect the programmers

intentions and will almost always cause execution errors. In limited cases these

"errors of intent" do not cause execution errors, but reflect such bad

programming practice and make a program so vulnerable to failure over its life

cycle that they should be reported as errors. The specific errors under

1-5

consideration in this investigation involve misuse of the assignment and

comparison operators, unintentional use of the null statement, errors of

omission in switch/case statements, improper parameter specification in scanf()

function calls and the use of uninitialized pointers. There may be other errors

of this class equally worthy of detection effort.

1-6

CHAPTER 2

REQUIREMENTS

In order to find these "errors of intent" the tool must have several general

capabilities. It must be able to identify those constructs which have the

potential for harboring the errors being sought. Also, it must be able to filter

out and discard statements not of interest to the tool. The tool needs the

ability to make judgments concerning the appropriateness of constructs used in

the suspect statements. These judgments will vary depending on the particular

type of error being pursued at any given time. Finally it must be able to report

the errors detected and the line numbers on which they were found.

The following paragraphs contain descriptions of the particular errors targeted

by this tool along with more information concerning the capabilities required

for the detection of each error.

ASSIGNMENT VS COMPARISON

One of the most common errors arises from confusion over the assignment and

equality comparison operators. Some high level languages (notably Pascal and

Ada) use := for assignment and = for comparison, whereas, C Language uses

2-1

= for assignment and = = for comparison. This inevitably leads to misuse of

these operators by programmers already familiar with the other languages.

Even programmers not already familiar with using the equal sign for

comparison, find it a natural choice for that use. Furthermore, from my

experience in the classroom, this error is very difficult for individuals to detect

in their own programs.

For example, if a programmer has momentarily forgotten the operator

definitions, a construct like:

iff z = 4)

while (x = y)

{ •

}'

can appear so reasonable and correct that programmers will almost always look

elsewhere for an error. One can conceive of instances where a programmer

might intentionally control a while loop with the assignment of one variable to

another knowing the result will eventually be zero (false) thereby causing the

loop to terminate. However, this is considered bad programming practice and

2-2

will be reported as a possible error by the proposed tool.

There are, of course, some legitimate uses of the assignment operator within

control flow constructs. For example:

while ((c - getcharO) != EOF)

{ •

}'

which is a very useful technique for assigning a character from standard input

to a variable and then comparing it with the end of file marker in the same

statement. This tool will not flag legitimate constructs such as this as errors.

Inappropriate use of the assignment operator is likely to occur within the

test/comparison portion of the control flow constructs (if, while, for, do-while)

therefore, my tool will analyze those statements for this class of errors. The

tool must have the ability to distinguish between appropriate and inappropriate

assignments and issue warnings only after encountering the latter.

THE NULL STATEMENT (;)

Another very frequent error is the unintentional termination of a control flow

construct with the null statement (;). Most lines of code in a C Language

program end with a semicolon. However, the control flow constructs (if, while.

2-3

and for) do not. If one places a semicolon after one of these constructs the

behavior of the program can be altered significantly. For instance:

for(i = 0;i< 10;i+ +)

{

name[i] = tempname[i];

}

will copy the first ten elements of the tempname array to the name array,

whereas:

for(i = 0;i < 10; I+ +);

{

namefi] = tempname[ij;

}

will execute the null statement ten times, then copy the eleventh element of the

tempname array to the name array.

There are legitimate uses of the null statement following control constructs as

while ((c = getcharO) <= ' '1:

which is a good technique for skipping over white space in an input line.

However, a less confusing way to code this would be:

2-4

while ((c = getcharO) <= ' ')

!

which shows more explicitly that the null statement is intended as the object of

the while statement.

This tool will check for a new line between the control flow construct and the

null statement and issue a warning if one does not appear.

OMISSION OF BREAK STATEMENTS

Another common error involves the omission of break statements in the cases

of a switch statement. C handles this type of control flow construct differently

from other languages in that execution proceeds from one case to the next until

a break statement or the end of the switch is encountered. Programmers

familiar with other languages will often forget to include break statements

where they are needed, thereby producing a control flow different from that

intended.

Consider the following code fragment for processing command line options and

setting flags based on the options received. Assume the -h option has been

entered on the command line. The statements associated with case 'h' will be

executed.

2-5

while (argc > 1 && (*+ +argv)[OJ = = '-')
{

for(s = argv[0]+l; *s != ' ';s+ +){

switch (*s) {

case 'h':

help = TRUE; /* provide usage info */

break;

case T:
file = TRUE; /* log output in a file */

break;

default:

priiilfl Invalid Option %c0, *s);

argc = 0;

break;

argc--;

}

If the break statement in case 'h' is omitted, execution will continue with the

statements of case T. Therefore, both the file and help flags will be set

whenever the -h option is selected on the command line.

There are times when omission of break statements is intentional and the

manner in which C handles cases becomes a convenient way to accomplish a

logical ORing of case matches. This is illustrated in the following example.

switch! x)
{

case 'a':

case V:
case V:
case V:
case 'u':

vowel+ +

;

break;

default:

consonant + •

break:

}

2-6

This code fragment increments the vowel counter when either an a, e, i, o, or

u is contained in x. My error checker will not issue warnings about constructs

like this. It will assume the programmer intentionally omitted the break

statements in order to create a logical OR structure in the switch. All other

occurrences of missing break statements will be flagged as errors.

SCANF() FUNCTION CALLS

Yet another common error is improper specification of the input parameters in

scanfO function calls. The scant'O function assumes that each of its input

parameters is a valid address for storage of the information being scanned in.

However, there arc many ways to specify an address in C Language.

Therefore, it is not surprising that confusion over the proper usage often leads

to syntactically correct but numerically erroneous address specifications.

Consider the following example.

main()

{

char first[15];

char lasl| 15);

char job[7];

char *p;

float sal:

p = last;

scanf("%s %s %c %d '.first, p, &job[0), &sal);

}

2-7

In this example, first, p, &job[0], and &sal, are all valid address references.

However, in the slightly modified version below, first[0], p, job, and sal are all

syntactically acceptable while only the reference to job would produce the

intended result.

maim)

{

char first[15];

charlast[15];

char job[7);

char *p;

float sal;

p = last:

scanf('%s %s %c %d",first[0], *p, job, sal);

To uncover problems of this nature the tool must produce a symbol table of all

names used in the program. The table contains an indication of whether the

name is an array, a pointer, or a single-element variable. Then all scanf()

function calls are analyzed to determine whether the parameters are specified

correctly. And, of course, the tool issues a warning message upon

encountering an erroneous specification.

2-8

POINTERS

Another error that is frequently made in C Language involves the use of

pointers which have not been initialized or which have been initialized

incorrectly. In the following example the pointer p has been declared but never

initialized so its use in the scanf() function call will produce unpredictable

results.

mainO

{

char aircraft! 10J;

char *p;

scanf("%s", p);

And in the example below the pointer p has been initialized improperly (i.e.

initialization should be p = &x:).

main!)

{

int x;

int *p;

P = x;

scanf("%d", p);

My tool checks to see that each pointer declared is assigned a valid address

before it is used in the program.

These then are the errors the debugging tool will attempt to uncover. The

statements containing them are syntactically and semantically acceptable to the

2-9

compiler. Therefore, it must go beyond the level of checking for illegal syntax

and semantics. It must be capable of assessing and making judgments about

the programmers intentions, and issuing warnings if the constructs in question

are suspected of harboring errors. And like all tools of this type it must be

careful to complain only when there is a high probability that an error has

actually occurred, lest it gain a reputation for issuing unnecessary warnings.

2-10

CHAPTER 3

DESIGN

The tool I propose to uncover these errors is called dust. To identify these

errors, dust must scan the source code, extract information about variables,

ignore correct statements, and further investigate suspect statements. To

accomplish this, dust consists of a preprocessor, a controller, a lexical analvzer.

a symbol table handler, and a separate module for each error tvpe beina

detected. The modules directly involved in error detection are: the if_whilc

handler, the for handler, the condition handler, the null handler, the case

handler, the scanf() handler, and the pointer handler. Overall organization of

the program is shown in the hierarchy chart in Figure 3-1.

THE PREPROCESSOR

The purpose of this module is to strip out # include statements and comments

from the source file and to perform the substitutions called for by the user's

#define statements. The reason for deleting the #include statements is to limit

the scope of the code being diagnosed to the source file.

The preprocessor works in the following manner. First, it takes the source file

as input and executes a system command that removes the # includes.

3-1

Figure 3-1: Module Hierarchy

3-2

placing the output in a temporary file called "file.c.x". Next, it invokes the C

preprocessor which draws its input from the temporary file, performs the

define substitutions and strips out the comments. The output is placed in

another file called "file.c.p" and the temporary file "file.c.x" is removed. At

this point the file "file.c.p" is ready for input to the lexical analyzer.

THE CONTROLLER

The next module invoked is the controller. This module directs the activities of

all the other modules. It reads tokens from the input delivered by the lexical

analyzer until it detects a token of interest to one of the other modules. If the

token indicates the beginning of a statement related to one of the error types,

control is passed to the appropriate error detection module. If the token

indicates a declaration, control is passed to the symbol table handler. When

control is passed to one of the modules below the controller, that module

assumes the task of calling the lexical analyzer to obtain additional tokens as

needed. When the task performed by the error detection module or symbol

handler is completed, control is returned to the controller.

One special purpose task is built into the controller to handle the special

problem presented by do-while statements. The closing while of a do-while

statement is always terminated by a semicolon. If special steps were not taken.

3-3

this could cause the tool to produce erroneous null statement error messages.

Therefore, the controller keeps track of any do-while statements which have

been opened by a do statement, but not as yet closed off by the corresponding

while statement. This information is made available to other modules through

a global variable. In this way, if a semicolon-terminated while statement is

encountered, the null handler will know whether it is a null statement error, or

merely the expected closing while of a do-while statement.

The tool, because of it modularity, is easy to expand. Additional error checks

could be very easily incorporated into the tool by adding more error detection

modules under the controller.

THE LEXICAL ANALYZER

This module has two very simple responsibilities. Its primary task is to break

the source code into tokens. A secondary task is to keep track of the current

line number.

It obtains input from "file.c.p" produced by the preprocessor. Output consists

of a numeric token and a type indicator (i.e. keyword, constant, identifier or

operator) for each call to the module.

3-4

THE SYMBOL TABLE HANDLER

This module builds a symbol table and answers queries from the other modules

about entries in the table. Symbol table entries for each identifier will include

the name, an assigned identifier number, variable type (i.e. array, structure,

single-element, pointer, etc.) and, in the case of pointers, an indication of

whether is has been assigned a value. The formation of this table is crucial to

the operation of the error detection modules which rely on information about

the identifiers.

THE IF_WHILE HANDLER

This module handles the error checking of if and while statements. Execution

is triggered when the controller detects the presence of an if or while keyword.

The module then brings in additional tokens from the lexical analvzer to

complete the statement. Then it breaks the statement into its component parts:

namely, the keyword segment, the conditional (e.g. (x = = y). (a < = b),

((c= getchar()) != EOF)) and the object statement of the construct (if, and

only if, it appears on the same line). Then it passes the conditional segment to

the condition handler, and the object statement to the null handler. Also, if

this module detects the presence of a scanf() function call, it calls the scant!

)

handler. The scanfQ handler performs its error checking and then returns

3-5

control to the if_while handler to continue analyzing the statement. In

addition, if it detects a pointer it calls the pointer handler which performs its

error check and returns control to the if_while handler.

Input to this module consists of tokens from the lexical analyzer. Output is in

the form of pointers to the conditional and object segments of the statement.

THE FOR HANDLER

This module handles the error checking of for statements. Execution is

triggered when the controller detects the presence of a for keyword. The

module then brings in additional tokens from the lexical analyzer to complete

the statement. Like the if_while handler, it then breaks the statement into its

component parts: namely, the keyword segment, the conditional (e.g. (x = =

y). (a < = b), ((c=getchar()) != EOF)) and the object statement of the

construct (if, and only if, it appears on the same line). Then it passes the

conditional segment to the condition handler, and the object statement to the

null handler. Like the if_while handler it calls the scanf() handler when it

detects a scanf() function call, and the pointer handler when it finds a pointer.

Input to this module consists of tokens from the lexical analyzer. Output is in

the form of pointers to the conditional and object segments of the statement.

3-6

THE CONDITION HANDLER

This module detects assignment operators appearing in the conditional

construct that were really intended to be relational operators. As a by-product

of this error checking, the module will also have some knowledge of possible

operator precedence errors. Since it is convenient, these errors will be reported

in addition to misuses of the assignment operator.

The condition handler performs a series of steps in pursuit of errors. First, it

does a quick scan through the conditional construct to see if there are anv

assignment or relational operators present. If there are no assignment operators

and no relational operators, error message 3 will be issued. If there is an

assignment operator but no relational operator, the module assumes the

assignment operator was intended to be a relational operator (most likely the

equality relation) and, therefore, issues error message 1. If a relational

operator is found, an additional check is performed. Specifically, the module

checks to make sure the assignment operator has been forced to a lower

precedence than the relational operator by the proper use of parentheses. If it

has not, error message 2 is issued.

Input to this module is a pointer to the conditional segment of the control

construct. Output is in the form of three possible error messages generated

under the conditions described above. They are:

3-7

Error message 1: "line #: - Misuse of assignment operator (=) in "if" (while,

for) - try (= =)".

Error message 2: "line #: - Operator precedence error involving assignment in

"if" (while, for)".

Error message 3: "line #: - No relational operators in "if" (while, for)".

THE NULL HANDLER

This module determines whether a control construct has been terminated with a

null statement on the same line of code. It receives as input the character

string beginning with the first character after the closing parenthesis of the

conditional construct and ending with the new line character. If it finds only a

semicolon (possibly surrounded by spaces or tabs) followed by a new line, an

error message will be output warning that a possible misuse of the null

statement has occurred. A non-null statement followed by a semicolon will be

considered acceptable on the same line of code, although to the purist this

might also be considered bad programming practice.

Input to this module is a pointer to the object statement associated with the

conditional. Output, in the event of an error, is the warning: "line #: - Null

statement (;) after "if" (while, for)".

3-8

THE SCANF() HANDLER

This module is responsible for analyzing the arguments to scanf() function calls

to determine whether they provide valid address specifications. It will acquire

the variable type from the symbol table for each identifier in the function call.

Then it will decide whether the syntax used in the argument list is appropriate,

[f the syntax is not appropriate it will issue a warning message.

This module receives as input a pointer to the beginning of the scanf()

argument list. Output upon detection of an error is the warning: "line #: -

Incorrect address specification for "variable" in scanfQ".

THE CASE HANDLER

This module reviews the statements associated with the case labels of

switch/case statements to insure that a break statement is among them. If one

or more cases do not contain breaks the module will issue a warning message.

An exception to this case is when two or more case labels appear sequentiallv

with no statements in between. This is a convenient way to form an "or"

construct in this language and will not be flagged as an error. However, the

last case in the sequence is still required to have a break statement associated

with it.

3-9

Input to this module is a pointer to the first case label in the switch statement.

Output on detection of an error is the message: "line #: - No break at end of

THE POINTER HANDLER

This module keeps track of pointer initializations, and "first uses" of each

pointer. The pointer handler will update the symbol table when a pointer is

first initialized. Then later in the program when the pointer appears again, it

will check to verify that it has been initialized. If the pointer is used without

first being assigned a value, the module issues an error message. Input to the

module is the identity of the pointer variable in question. Output in the event

of an error is the message: "line #: - Possible uninitialized pointer - "variable".

THE USER INTERFACE

This section describes how the user executes the tool, how options are

specified, and how certain features of the tool will help a novice user. The

name of the error detection tool is "dust". The simplest form of the command

line calling for the application of dust to a source file would consist of the name

dust followed by the source file specification.

3-10

Example:

$ dust program.

c

By default all error checks are activated. The user can selectively suppress any

of the checks by selecting the appropriate command line option. The options

and their meanings are described below.

Options:

-h HELP! Print usage information.

-a Suppress check for inappropriate assignment.

-b Suppress check for break statements

-n Suppress check for null statements.

•p Suppress check for uninitialized pointers.

-s Suppress check of scanf() function arguments.

Multiple options can be placed behind a single dash or each can be given its

own dash prefix. Furthermore, the order in which the options appear on the

command line is unimportant as long as all options appear before the source file

is specified. In the following examples the "-a" and "-n" options are selected to

suppress the checks for inappropriate assignments and unintentional null

statements. They are all equivalent usages.

Examples:

$ dust -an program.

c

$ dust -na program.

c

$ dust -a -n program.

c

$ dust -n -a program.

c

3-11

Selecting the "-h" option will cause a short help message to be printed on the

terminal. The help message includes a description of the tool along with a list

of all the available options and their meanings.

The user interface will issue error messages about invalid options, no source file

specification, or a source file specification that does not end in ".c".

3-12

CHAPTER 4

IMPLEMENTATION

Dust was implemented using approximately 1600 lines of C - Language code.

Each of the error checks is performed by a separate function called from the

mainline program, or in some cases called from another error checking routine.

Details of the code can be found in the appendices.

Several of the author's C programs were run through dust with very

encouraging results. In some cases, errors were deliberately planted in the

programs to test the tool's effectiveness. Dust consistently detected and

reported all the errors it was designed to uncover and did not report errors

where none existed.

Average CPU times were computed for programs of various sizes. Overall,

dust consumed 1.92 seconds per 100 lines-of-code processed running on a

Digital Equipment Corporation VAX 11/780. Large programs tended to have a

lower time to lines-of-code ratio than small ones.

Several example runs of dust appear below. The sample program used here

was constructed specifically to demonstrate some of the error checking

capabilities of dust - it performs no real computing function. Some features of

the user interface are also demonstrated by intentional omission or faulty entry

4-1

of command line arguments.

$ pr til tt'St.'.C

1 mainO
2 {

3 int x = 2, y = 3;

4 if (x = y);
5 while (x

I y)

6
;

7 while (x >= y);

» for (x = 0; x = y;x+ +

Sdust
You must specify a source file to be checked!

For help use: dust -h

$ dust -h

This command searches C Language programs for a variety of errors.

It assumes your program has compiled successfully, but is not running properly.

By default, all the error checks are activated. To selectively

suppress any of the checks, use the appropriate command line option(s).

OPTIONS:

-h HELP!
-a Suppress check for inappropriate assignments.

-b Suppress check for breaks in switch/case statements.

-n Suppress check for unintentional null statements.

-p Suppress check for uninitialized pointers.

-s Suppress check for improper scanfO function arguments.

EXAMPLES:

$ dust program.

c

$ dust -an program.

c

$ dust test3

Source file name must end with ".c"

$ dust test5.c

Can't open testS.c " for reading.

$ dust test3.c

line 4: - Misuse of assignment operator (=) in "if" (try = =).

4-2

line 4

line 5

line 7

line 8

line 8

- Null statement (;) after "if".

- No relational operators in "while".

- Null statement (;) after "while".

- Misuse of assignment operator (=) in "for" (try < =).

- Null statement (;) after "for".

$ dust -z test3.c

Invalid Option z

For help use: dust -h

$ dust -n teslj.c

line 4

line 5

line 8

- Misuse of assignment operator (=) in "if" (try ==).

No relational operators in "while".

- Misuse of assignment operator (=) in "for" (try <=).

4-3

CHAPTER 5

CONCLUSION

The debugging tool dust is a useful addition to the family of software

development tools for C - Language. Dust finds errors in usage of the language

commonly made by beginning programmers and occasionally made by

experienced programmers. The errors it finds are typically difficult to detect

without the aid of such a tool. The tool does not report errors where none

exist, and it consistently finds all the errors it was designed to uncover.

The tool could be extended to include some additional checks not included in

this design due to time constraints. One addition could be a check of the

arguments to printf() function calls (similar to the scanf() check already

implemented). Another could be a check for the presence of nested comments

which are illegal in C, but which are detected by the compiler only indirectly.

Another useful check would be a simple check for the presence of a semicolon

at the end of each statement (ignoring, of course, those statements which

should not end in a semicolon). The absence of a semicolon where it is needed

usually generates a long list of compiler syntax errors which do not always

pinpoint the line of code where the semicolon has been omitted. An explicit

check of this kind would save time and should be fairly easy to implement.

5-1

BIBLIOGRAPHY

1. [SOLL85] "PROUST: An Automatic Debugger for Pascal Programs",

Elliot Solloway and W. Lewis Johnson, Bvte Magazine April,

1985 pgl79-190.

2. [UNIX84] "UNIX System V User Reference Manual (Release 2.0)",

AT&T Bell Laboratories, 1984.

3. [WOLV84] "Software Costing", R. W. Wolveton from Handbook of

Software Engineering edited by C. R. Vick and C. V.

Ramamoorthv: Von Nostrand Reinhold Co. Inc, New York
1984.

4. [JOHNS 1] "Lint, a C Program Checker"

for Unix Vol 1, January 1981

Inc.

S. C. Johnson from Documents
Bell Telephone Laboratories.

5. [KATS81] "SDB - A Symbolic Debugger", H. P. Katseff from Documents
for Unix Vol 1, January 1981, Bell Telephone Laboratories,

Inc.

APPENDIX A

USER'S MANUAL

DUST DUST

NAME

dust - check for common C programming errors

SYNOPSIS

dust [-habnps] file.c

DESCRIPTION

Dusi is a debugging tool for C - Language programs. It searches for

several common abuses of the language which are not detected by

the compiler. Specifically, it detects inappropriate uses of the

assignment operator and operator precedence errors in control

constructs, unintended null statements, omission of break statements

from switch/case constructs, improper address specifications in

scanf() function calls, and uninitialized pointers. It does not do the

normal syntax and semantics checking done by the compiler. In

fact, dust assumes the program being tested has already compiled

successfully, but is not operating correctly.

By default, all the error checks are activated. However, the user

can suppress checks by selecting the appropriate option(s) below.

-h HELP! Print usage information.

-a Suppress check for inappropriate assignments.

-b Suppress check for break statements.

-n Suppress check for null statements.

-p Suppress check for uninitialized pointers.

s Suppress check of scanf() function arguments.

A-l

APPENDIX B

FUNCTION DESCRIPTIONS

This appendix contains detailed descriptions of each function in the program. Descriptions

include the purpose of the function, the inputs and outputs, and an explanation of the more
important features of the code itself.

lex()

Purpose:

The lexical analyzer (lex()) reads source code from the file "file.c.p" produced by the

preprocessor and forms the characters into the tokens of the language (keywords, identifiers,

operators etc.).

The lex() function calls several subordinate functions to form tokens while some are formed

within lex() itself. Tokens consisting of a single character are formed by lex(). with the

exception of single character identifiers which are formed by key_id(). Tokens comprised of

more than one character are formed by functions subordinate to lex(). As soon as the first

character of the token is brought in by getch(), a decision is made as to which function will

process the remaining characters. If the first character is a letter or underscore, control is

passed to the key_id() function. If the first character is not a letter, control passes to the

function associated with the case matched by that character. (See the large switch/case

statement in lex()).

When the EOF is encountered, lex() takes care of closing and removing the working input file

(filname.c.p) and exiting the command. The saves all the other functions that call lex() from

the trouble of checking each time to see if EOF has been encountered.

Lex() keeps track of the value and type of the last token (in Lastok and Lastype). Also, it

keeps track of special tokens which are of interest to the case_hand function (in Lastcasetok

and Lastcasetype). Namely, the last token which was not a semicolon and not a newline. The
case_hand function uses this information when making its decision about whether a break

statement has been omitted from a case.

Input:

Characters are read in using calls to the getch() function which returns a single character from
the input file each time it is called. Characters can also be "put back" on the input stream, by

calls to the ungetch(c) function. Successive calls to getchQ will get the characters that were

"put back" before getting new characters from the file.

B-l

Output:

The external variables Token and Type are assigned values by \ex(). If the token is a keyword
or operator. Token is assigned the value given by the #define statement for that operator or
keyword. If the token is a constant. Token is given the value of the constant. (Note: lex()

does not attempt to form floating point, or character constants into single tokens. For example,
a floating point constant would be broken into three tokens. Namely, the integer part, the
decimal point, and the fractional part.) If the token is an identifier, lex() calls a hashing
function which converts the identifier character string to an integer between and 2000. That
integer is then assigned to Token. Collisions (i.e. different character strings hashing to the
same value) are handled by the symbol table handler to make sure that each identifier gets its

own entry in the table. Type is assigned one of the following values: 'o' if the token is an
operator, and V if its a constant.

Important variables:

Token integer value for token.

Type char value for type of token.

Lastok integer value for previous token.

Lastype char value for type of previous token.

Lastcasetok integer value for previous token of interest to case handler.

Lastcasetype ... char value for type of previous token of interest to case handler.

Charbuff[] char array for storage of input characters as token is being formed.

Charpos integer index into Charbufff] array.

B-2

Other internal functions called:

what_type()

key_id()

numproc()

exciamproc()

percentproc()

amperproc()

starprocQ

plusproc()

minusproc()

slashproc()

lessproc()

equalproc(

)

greatproc()

xorproc(

)

pipeproc(

)

getch()

B-3

key_id()

Purpose:

The purpose of key_id() is to determine whether the character string it processes is a keyword
or an identifier and then assign the appropriate value to Token and Type. It is called whenever
the first character of a new token is a letter or underscore. The first thing it does is bring in the
remainder of the string (all letters, digits or underscores) and put them in the Charbuff[] array.

It then ungetchQ's the last character getch()'ed (since we know it is not part of this token - i.e.

not a letter, digit, or underscore) and null terminates the string in Charbuff[]. It then resets

Charpos to point to the beginning of the string and calls findkey() to see if the token is a
keyword. If it is a keyword. Type gets the value KEYWD and' Token get the value
keytable[n].keynum (n = return value of findkey). The structure keytable is a table consisting

of character strings which are the keywords, and their corresponding numeric values (defined
by #define statements). If the token is not a keyword. Type gets the value ID and Token eets

an integer value representing the character string returned by the function pchash().

Input:

Characters are brought in by calls to getch() and placed in the character array Charbuff[|.

Output:

Type is assigned the value KEYWD if the token is a keyword. Type is assigned the value ID if

the token is an identifier. Token is assigned the value corresponding to the keyword found
(keytable[n|.keynum) or an integer value returned by pchashQ representing the identifier.

Important variables:

Token integer value for token.

Type char value for type of token.

CharbufffJ char array for storage of input characters as token is being formed.

Charpos integer index into Charbufffl array.

keytable[n].keynum integer value defined for the keyword of index n.

n holds value returned from findkey (the index into the keyword table).

Other internal functions called:

B-4

what_type()

getch()

ungetch()

findkey()

pchash()

B-5

findkeyO

Purpose:

The findkeyO function does a binary search through keytable (indirectly accessed by local

structure tab) to find the keyword (if any) which matches the string in Charbuff[J (accessed

through local variable word). This search uses the strcmp() function for string comparisons. If

the first string is lexically "less than" the second, a negative value is returned. If the first string

is lexically "greater than" the second, a positive value is returned. If the first string is "equal to"

the second, zero is returned. The search progresses by setting the high, low, and mid values

depending on the returns from strcmp(). Therefore, the stings in the lookup table must be in

ascending alphabetic order for this binary search algorithm to work.

Input:

Input parameters arc a pointer to Charbuff[] . a copy of the structure keys, and the size of the

kevtable.

Output:

Returns the value of the index into keytable for the keyword matched, or the value -1 if a

keyword match was not found (in which case the token must be an identifier).

Important variables:

Charbuff[] char array for storage of input characters as token is being formed.

low low boundary of search

mid midpoint of search

high high boundary of search

cond integer that holds return value of strcmp().

Other internal functions called:

none

B-6

getchO

Purpose:

The purpose of getch() is to bring in a single character from the file associated with the FILE
pointer inptr each time it is called (inptr points to filename.c.p). It first looks to see if there is

a character in the buffer Buf (the result of an ungetchQ), before going to the file for a

character.

Input:

A single character from filename. c.p.

Output:

Returns the character eotten.

Important variables:

Buf[] external character array to buffer input characters.

Bufp external index into the Buf[] array.

Other internal functions called:

none

B-7

ungetchO

Purpose:

The purpose of ungetch() is to "put a character back on the input stream". It actually puts the

character back into the buffer Buf[], but this is transparent (and irrelevant) to the calling

function. The next call to getch() gets the character "put back" by the previous ungetch() (if

any).

Input:

The character to be "put back" is delivered to ungetchQ as an input parameter.

Output:

One character to the buffer Buf|].

Important variables:

Buf[] external character array to buffer input characters.

Bufp external index into the Buff] array.

c temporary storage for character to be "put back".

Other internal functions called:

none

B-S

what_type()

Purpose:

The purpose of what_type is to determine whether a character is a letter (a - z, A - Z, or the

underscore) or a digit (- 9).

Input:

The character to be checked for type is input as a parameter.

Output:

Output is a return value of either LETTER or DIGIT.

Important variables:

c temporary storage for character to be "put back"

Other internal functions called:

none

B-9

numprocO

Purpose-

The purpose of numproc() is to process tokens that consist entirely of digits. It is called

whenever the first character of the token is a digit (0-9). In this case the token must be a

number since identifiers cannot begin with a digit.

Input:

Characters are read in using calls to the getch() function which returns a single character from
the input file each time it is called. Character are read into Charbuf[] until a non-digit is

found. Then the non-digit is ungetch()'ed and the string in Charbuff] is null terminated.

Output:

Type is assigned the value CONST. Token is assigned the actual numeric value of the token

(returned by atoi(Charbuff) - ascii to integer conversion).

Important variables:

Token integer value for token.

Type char value for type of token

.

Charbuff[] char array for storage of input characters as token is being formed.

Charpos integer index into Charbuff[
| array.

Other internal functions called:

getch()

ungetch()

B-10

exclamprocO percentprocf) amperprocO starprocl) plusprocO minusprocl) slashprocO
lessprocf) equalproc() greatprocO xorprocO pipeprocl)

Purpose:

The purpose of these functions is to process the operator tokens. The first character brought in

by lex() determines which function will be called (see the large switch/case statement in lex()).

The functions all consist of if/else if constructs which determine what the following characters

are and therefore what the operator is. Any unwanted characters getch()'ed (i.e. characters

which cannot be a part of any operator beginning with the first character already received) are

ungetchQ'ed immediately and the string in Charbuff[] is null terminated.

Input:

Characters are read in using calls to the getch() function which returns a single character from
the input file each time it is called. Characters are read into Charbuf[] as the token is formed.

Output:

Type is assigned the value OP. Token is assigned the value for the operator as specified in the

#define statements.

Important variables:

Token integer value for token.

Type char value for type of token.

Charbufff] char array for storage of input characters as token is being formed.

Charpos integer index into Charbuff[] array.

c temporary storage for character to be "put back".

Other internal functions called:

getch()

ungetch()

B-ll

svmhandO

Purpose:

The purpose of the symhand function is to determine the variable type (single element variable,

array, pointer, etc.) and call the make_entry() function to make the actual table entry.

Input:

Tokens are brought in using calls to the lex() function which returns a single token from the

input file each time it is called.

Output:

none

Important variables:

Token integer value for token.

token local integer value for token.

vartype type of variable

init initialize flag

Other internal functions called:

make_entry()

B-12

make_entry()

Purpose:

The purpose of the make_entry function is to make entries in the symbol table. Each entry

includes the token value, the variable name, the type of variable, the block number in which

the variable is declared, and the initialized flag (YES or NO).

Input:

vartype, token, name, and init from calling function

Output:

Important variables:

token local integer for token value

vartype type of variable

name name of variable

init local initialize flag

Symtable[].newtoken Symbol table entry for token value

Symtable[].id .. Symbol table entry for variable name

Symtable[]. block Symbol table entry for code block

Symtable[|. vartype Symbol table entry for variable type

Symtable[].init Symbol table entry for init flag

Other internal functions called:

none

B-13

find_entry()

Purpose:

The purpose of the find_entry function is to find entries in the symbol table. Information

drawn from the symbol table on the "searched for" variable includes the token value, the

variable name, the type of variable, the block number in which the variable is declared, and the

initialized flag (YES or NO).

Input:

token from calling function

Output:

Passes back information on variable to calling function.

Important variables:

token local integer for token value

vartype type of variable

name name of variable

init local initialize flag

Symtable[].newtokcn Symbol table entry for token value

Symtable[].id .. Symbol table entry for variable name

Symtable[]. block Symbol table entry for code block

Symtable[). vartype Symbol table entry for variable type

Symtable[].init Symbol table entry for init flag

Other internal functions called:

none

B-14

if_while_hand()

Purpose:

The purpose of the if_while_hand is to process statements that begin with the if, while, or do
keywords. Processing for do statements consists of pushing the do onto a stack (Dostack) to be

popped later by the corresponding while of the do/while. This is to prevent the closing while's

of do/while statements from being mistakenly flagged as "null statement following while" errors.

Processing of if and while statements consists of stripping out the conditional segment of the

statement (the test between the outermost parentheses) and placing the tokens in the local

buffer tokbuf[] and typebufTJ for the token values and types respectively. The function expects

the next character after the if or while to be an open parenthesis. When it encounters this it

increments parencnt. then enters a while loop which brings in the rest of the characters out to

and including the closing parenthesis of the conditional. This is accomplished by incrementing

parencnt for every open parenthesis and decrementing it for every close parenthesis. When
parencnt reaches zero we have found the closing parenthesis of the conditional. It then calls

cond_hand() to evaluate the conditional and null_hand to look for null statement errors (if the

appropriate flags are turned on).

Input:

Tokens are brought in using calls to the lex() function which returns a single token from the

input file each time it is called. Token values and types are read into the local buffers tokbuf[|

and typebuf)]. Conditional type (if, while, do) is received as an input parameter to the

function.

Output:

tokbufj], typebuf[], and condtype are passed to the cond_hand() function, condtype is passed

to the nulLhand function.

Important variables:

condtype type of conditional (if, while, do).

tokbuf[] local buffer for tokens in conditional segment.

typebuf]] local buffer for token types in conditional segment.

Dostack stack for do's and ('s - popped by while's and }'s.

Doptr index into Dostack

parencnt counter for open and close parentheses.

B-15

Token integer value for token.

Type char value for type of token.

Assignments ... flag for activating check for misused assignments (cond^hand).

Null_stmnts flag for activating check for null statements after if/while.

keytable[] to retrieve name corresponding to condtype

Other internal functions called:

Iex()

cond_hand(

)

null_hand()

B-16

for_hand()

Purpose:

The purpose of the for_handler is to process statements that begin with the for keyword.

Processing consists of stripping out the conditional segment of the for (the test between the

semicolons) and placing the tokens in the local buffers tokbuf[] and typebuf[] for for token

values and token types respectively. The for_hand function brings in tokens after the for until

it encounters the first semicolon and puts an open parenthesis into the token buffer in place of

the it. Then it gets all tokens up to the next semicolon and puts them in the buffer. A closing

parenthesis is then put in the buffer in place of the semicolon. The semicolons are replaced by

open and close parenthesis so that the string delivered to cond_hand will look the same whether

it came from an if. while, or for.

Input:

Tokens are brought in using calls to the lex() function which returns a single token from the

input file each time it is called. Token values and types are read into the local buffers tokbur]
|

and typehuf[]. Conditional type (for) is received as an input parameter to the function.

Output:

tokbuf[], typebufl], and condtype are passed to the cond_hand() function, condtype is passed

to the null_hand function.

Important variables:

condtype type of conditional (if. while, do).

tokbuffj local buffer for tokens in conditional segment.

typebuff) local buffer for token types in conditional segment.

Token integer value for token.

Type char value for type of token.

Assignments ... flag for activating check for misused assignments (cond_hand).

Null_stmnts flag for activating check for null statements after if/while.

keytable[] to retrieve name corresponding to condtype

B-17

Other internal functions called:

lex()

cond_hand()

null_hand()

B-18

cond_hand()

Purpose:

The purpose of the cond_hand function is to analyze the conditional (test) segment of if, while,

and for statements. It first scans through the tokens in the conditional (using tokbuff] and
typebuf[] to count the number of assignment and conditional operators. (See first switch/case

statement in function). It does not count assignment operators preceded by a single quote since

these are character constants (' = '). If there are no relational operators and no assignment

operators then no test is being performed in the conditional and an error message is issued. If

there are assignment operators but no conditionals, a misuse of the assignment operator has

probably occurred (i.e. = instead of = =) and a different error message is issued. If there are

both assignments and relationals then the statement is checked for proper operator precedence

(i.e. the assignment should be forced to higher precedence than the relational by the use of

parentheses). (Refer to second switch/case in function).

If an assignment is encountered, all the tokens are read up to and including the next relational

operator. An open parentheses decrements parencnt. A close parentheses increments

parencnt. If further assignments arc encountered, assigncnt is decremented. If after the

relational operator is encountered, the parencnt is less than an or equal to zero then we did not

have an unmatched close parenthesis between the assignment and the relational operator. This

means we have an operator precedence error.

If a relational operator is encountered, all the tokens are read up to and including the next

assignment. An open parentheses increments parencnt. A close parentheses decrements
parencnt. If after the assignment operator is encountered, the parencnt is less than an or equal

to zero then we did not have an unmatched open parenthesis between the relational and the

assignment operator. This means we have an operator precedence error.

This process continues until either assigncnt or relopcnt goes to zero.

Input:

tokbuf[], typebuf[], and condtype are passed in from if_while_hand and for_hand.

Output:

Appropriate error messages if errors are detected.

Important variables:

condtype type of conditional (if, while, do).

tokbuf[] local buffer for tokens in conditional segment.

typebuf[] local buffer for token types in conditional segment.

B-19

assigncnt counter for assignment operators.

relopcnt counter for relational operators.

optype[] array for storing type of op (ASSIGN or RELOP)

Other internal functions called:

none

B-20

nuH_hand()

Purpose:

The purpose of the null_hand() function is to check for the presence of null statements on the

same line as if, while, or for constructs. A null statement appearing on the line following the

if. while, or for is acceptable. This function is called from the if_while_hand and the for_hand

functions. First null_hand checks condtype to see if the construct is a for. If it is, we must first

arrive at the closing parenthesis of the for. (If its an if or a while, we're already there).

Therefore we call lex() as long as the token is not a close parenthesis. Once we arrive at the

close parenthesis we make an additional call to lex() to move to the first token beyond the close

parenthesis of the for. We then make additional calls to lex() until we encounter either a

newline or semicolon, incrementing loopcnt each time through the loop. (A loopcnt value of

zero means no statements were encountered before the newline or semicolon). If we
encountered a newline we will increment the loopcnt. If we encountered a semicolon with no
statement since the closing parenthesis of the for. we may have a null statement error. If

condtype is while and we think we may have a null statement error, we must first check to see

if there is a do on the Dostack. If there is not a do on the Dostack. we have a null statement

error and we issue the appropriate error message. If there is a do on the Dostack then this

null-terminated while is appropriate. We simply pop the do off the Dostack and continue. If

condtype is either if or for and loopcnt is zero, we have a null statement error and we issue the

appropriate error message.

Input:

condtype (if. while, for, do) from if_while_hand or for_hand.

Output:

Appropriate error messages if errors are detected.

Important variables:

condtype type of conditional (if, while, do).

Dostack stack for do's and {'s - popped by while's and }'s.

Doptr index into Dostack

Token integer value for token.

Type char value for type of token.

loopcnt counter for statements before newline or semicolon

B-21

keytablef] to retrieve name corresponding to condtype

Other internal functions called:

Iex()

B-22

case_hand()

Purpose:

The purpose of the case_hand function is to check for missing breaks in switch/case statements.

If the last non-newline, non-semicolon token (before the case token was encountered) was
either a colon or a break or if the switchflag was on (meaning this is the first case in the switch)

then there is no error. In this case we simply turn the Switchflag off (it may already be off. but
that's okay). However, if the last non-newline, non-semicolon token was not a colon or break
and the flag was off, we have a missing break statement in the switch. The function lex() as

mentioned earlier, keeps track of the last tokens of interest to this function.

Input:

none

Output:

Appropriate error messages if errors are detected.

Important variables:

Lastok integer value for previous token.

Lastype char value for type of previous token.

Switchflag flag to indicate if this is the first case in switch.

Other internal functions called:

none

B-23

scanf_hand()

Purpose:

The purpose of the scanf_hand function is to check for incorrect address specifications in

scanf() function calls. It checks the type of the variables in the scanf() argument list, (i.e.

single variable, array, pointer, pointer array) and determines whether the syntax used to specify

the address is appropriate. If not. a warning message is issued.

Input:

Tokens are brought in using calls to the lex() function which returns a single token from the

input file each time it is called. Token values and types are read into the local buffers tokbuf[]

and typebuff].

Output:

Appropriate error messages if errors are detected.

Important variables:

Lastok integer value for previous token.

Lastype char value for type of previous token.

Charbuff character input buffer.

Token integer value for token.

Type char value for type of token.

tokbuf local token buffer

typebuf local token type buffer

vartype type of variable

name name of variable

Other internal functions called:

find_entry() is used to find variables in the symbol table.

B-24

point_hand()

Purpose:

The purpose of the point_hand function is to check for uninitialized pointers.

Input:

A token and a variable name are passed in from calling function.

Output:

Appropriate error messages if errors are detected.

Important variables:

token integer value for token.

vartype type of variable

name name of variable

init initialize flag

Other internal functions called:

find_entry()

B-25

set_init()

Purpose:

The purpose of the set_init function is to set the initialized flag associated with a pointer

whenever that pointer is initialized. This flag can then be checked whenever needed to see if

the pointer is initialized.

Input:

A token and a variable name are passed in from calling function.

Output:

none

Important variables:

token integer value for token.

name name of variable

init initialize flag

Other internal functions called:

none()

B-26

APPENDIX C

DUST SOURCE CODE LISTING

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

2(i

29

in

31

32

33

14

11

16

37

IS

J9

40
41

42

41

44

45

4ft

47

48

49

50

51

12

53

11

11

16

NAME: dust, c

PROGRAMMER: Dennis Frederick

DATE: June 7. 1987

INPUTS: filename.

c

OUTPUTS: error messages

HELP! Print usage information.

Suppress check for inappropriate assignment.

Suppress check for break statements in switch/case statements.

Suppress check for unintentional null statements.

Suppress check for uninitialized pointers.

Suppress check for improper scant!) function arguments.

DEFINES FOR C LANGUAGE KEYWORDS

#define

define

#define

define

define

#define

define

#define

#define

#definc

#define

define

define

#define

i

3

ASM
AUTO
BREAK
CASE
CHAR 4

CONTINUE 5

DEFAULT 6

DO 7

DOUBLE S

ELSE 9

ENTRY 10

ENUM 11

EXTERN 12

FLOAT 13

C-l

57 # define FOR 14

58 #define FORTRAN 15

59 #define FSCANF 16

60 #defiaeGOTO 17

61 #defioe IF 18

62 # define INT 19

63 #define LONG 20

64 #define MAIN 21

65 #define REGISTER 22

66 #define RETURN 23

67 #define SCANF 24

68 #define SHORT 25

69 #define SIZEOF 26

70 #define SSCANF 27

71 #define STATIC 28

72 #define STRUCT 29

73 #define SWITCH 30

74 #define TYPEDEF 31

75 #define UNION 32

76 #define UNSIGNED 33

77 #define VOID 34

78 #define WHILE 35

79

80

81 • DEFINES FOR INPUT TOKENS
82

83

84 #define NOT 100

85 #define NE 101

86 #definc REM 102

87 #define REMEO 103

88 #de«ne AND 104

89 #define LOGAND 105

90 #define ANDEO 106

91 #define OPENPAR 107

92 #define CAST 108

93 #de«neCLSPAR 109

94 # define STAR 110

95 #define STAREQ 111

96 #de«ne PLUS 112

97 #define PPLUS 113

98 #define PLUSEO 114

99 #de«ne COMMA 115

100 # define MINUS 116

101 #dcfine MMINUS 117

102 #define MINUSEQ 118

103 #define ARROW 119

104 #define DOT 120

105 #define SLASH 121

106 #define SLASHEQ 122

107 #define LT 123

108 #dehneSHFTL 124

109 #define SHFTLEO 125

110 #definc LE 126

111 #define EO 127

112 #define EQEQ 128

113 #defiaeGT 129

114 #defineGE 130

115 #defineSHFTR 131

116 #define SHFTREQ 132

C-2

117 define QUEST 133

IIS define OPENBRAK 134

119 define CLSBRAK 135

120 define XOR 136

121 define XOREQ 137

122 # define OR 138

123 define OREO 139

124 #define LOOOR 140

125 define TWOSCOMP 141

126 define OPENBRACE 142

127 #define CLSBRACE 143

128 define SEMI 1.44

129 #define COLON 145

130 #define DBLOT 146

131 define SNOLOT 147

132 define POUND 148

133 define BKSLASH 149

134 define NL 150

135 define OPENCOMM 151

136 define CLSCOMM 152

137 #define ATSION 153

138 #define GRAVE 154

139 define DOLLAR 155

1411

141 define OP o ' " operator token id
*'

142 define KEYWD 'k' " keyword token id */

143 define ID i'
'" identifier token id *.'

144 define CONS! 'c' 1° constant token id •/

145

146 define ASSIGN 'a' /" assignment operator id */

147 define RELOP 'r' /• relational operator id "/

148 define LOGOP '!' /' logical operator id
"'

149

150

151 define BUFSIZE 100 /• input buffer size
"

152 define HASHSIZE 2000 /• hash table size "/

153

154 define LETTER 'a' /• letter id •/

155 define DIGIT '0' /* digit id
"

156

157

define NKEYS 36 >" number of keywords *t

158 define PTR '] j' i* pointer id •/

159 define PTRARRAY 'z' I* pointer array id */

160 define ARRAY 'a' * array id
"

161 define SINGLE 's' /• single variable id */

162

163 define TRUE 1

164

165

166

167

define YES 1

define ON 1

define FALSE
define NO

168 define OFF
169

170 include <stdio.h>

171

172 /'

173 • EXTERNAL DECLARATIONS
174 V
175

176 struct keys {
" keyword lookup table '!

C-3

177 charkeyword[10|;

178 int keynuro;

179 (kr«able(NKEYS| =
|

180 era", ASM,
181 "auto", AUTO,
182 "break". BREAK.
183 case", CASE.
184 "char", CHAR,
185 "continue", CONTCNUE,
186 default", DEFAULT,
187 "do", DO,
188 "double", DOUBLE,
189 "else", ELSE,
190 "entry", ENTRY,
191 "enum". ENUM,
192 "extern", EXTERN,
193 "float". FLOAT,
194 for", FOR,
195 "fortran". FORTRAN.
196 fscanf, FSCANF.
197 "goto", GOTO.
198 "if, IF,

199 int". INT.

200 "long", LONO.
201 "main". MAIN.
202 "register , REGISTER,
203 "rerura", RETURN.
204 scant". SCANF.
205 "short", SHORT,
206 "sizeof, SIZEOF.
207 "sscanf", SSCANF.
208 "static", STATIC,
209 "struct", STRUCT.
210 switch ", SWITCH.
211 typedef, TYPEDEF,
212 "union", UNION.
213 "unsigned". UNSIGNED.
214 "void". VOID.
215 "while". WHILE
216);

217

218 char Buf[BUFSIZE|: /• input buffer •/

219 char Type; /• type of token •/

220 charCharbufflBUFSIZE]; " character input buffer •/

221

222

223

224

225

226

227

22S

229

230

231

232

233

234

235

236 int Help FALSE; /* help option flag •/

C-4

nt Bufp; /* Buf array index */

nt Charpos; /• Charbuff array index •/

ot Token; /* input token */

nt Linenura =1; f* current line number '/

t Block; /" current code block */

nt Dostack[BUFSIZE|; /' trackes do statements '/

nt Doptr; /* Dostack array index V
nt Lastok; /* previous input token *'

nt Lastype; f* type of previous token •/

nt Lastcasetok; /* previous token within case */

nt Lastcasetype; /* type of previous token within case *'

nt Switchflag = OFF; /* in switch = ON. otherwise OFF '

2.17

2.18

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

25«

257

258

259

260

201

202

263

264

265

266

267

268

269

270

271

272

2^3

274
2^5

276

277

2^8

279

280

281

282

283
28497!/'

285

286

287

288

289

290

291

292

293

294

295

296

Qt Assignments = TRUE; /* assignment option flag */

nt Break_stronts = TRUE; /• breaks io switch/case option flag */

nt *ull_stmnts = TRUE; /' unintentional null option flag '/

nt Pointer = TRUE; /* uninitialized pointer* option flag */

nt Scan_args = TRUE; /* improper scanf() args option flag */

char Command|50]

;

charWorkfile(14|;

I* "system" command buffer V
/* filename. c.p */

• SYMBOL TABLE
•/

struct tab {

charid[100|;

char dcltype;

char vartype;

int newtoken;

int block;

lot init;

I Symtab!e(HASHSIZE|. Nulltabie;

FILE 'inptr;

mam (argc. argv)

int argc;

char "argv(];

/• file input pointer */

/* argument couoter "
/* pointer? to arguments '

' fNTEGER DECLARATIONS

int x; /• holds return from lex() •/

int i; /• general index */

int token; /* value of token "/

int init; /' pointer initialized flag
"'

• CHARACTER DECLARATIONS
•/

char *s; /* scratchpad pointer *'

char vartype; /• variable type V
char name|100j; /* variable name ",

' Get desired options - set option flags

while (argc > 1 &&(* + +argv)|0| == '-')
(

for(s - argv|0]+l; -
s != M)';s++)

{

switch Cs) {

case h':

Help - TRUE:
break:

case a':

Assignments = FALSE;
break;

C-5

CMC 'b':

Break_stmots

break;

FALSE;

case 'n':

NulLstmnts =

break;

FALSE;

CMC
Pointers = FALSE;
break;

case Y:
Scan_args = FALSE;
break;

default:

fprin!f(stdout, "Invalid Option %c\n", *s)

fpnntf(stdout. "For help use: dust -h\o");

eiit(O);

}

r

argc

297

298

299

300

301

302

303

304

305

306
307

108

309

310

311

312

313

314

315

316 (

317

318 /•

319 * Does user want help? If so. print help info.

320 */

321 if (Help == TRUE) (

322 fprintf(stdout.AnThis command searches C Language programs for a variety of errorsAn");

323 fprintf(stdout.'\nlt assumes your program has compiled successfully, but is not running properly, n);

324 fpnntffstdout. "By default, most error checks are activated. To selectivelyui);

325 fprintf(stdout, 'suppress or activate checks, use the appropriate command, line optioo(s).\o\n");

326 fprintf(stdout,'OPTIONS:\Q\n");

327 fprintf(stdout.'\t-h HELP!\n");

328 fprintf(stdout.At-a Suppress check for inappropriate assignmeotsAn);

329 fprintf(stdout.'\t-b Suppress check for breaks in switch/case statementsAn ');

330 fprintf(stdout," t-n Suppress check for unintentional null statementsAn ');

331 fprintf(stdout,'M-p Suppress check for uninitialized pointers, a");

332 fprintf(stdout,'\t-s Suppress check for improper scanfQ function arguments. \n\n");

333 fpnntf(stdout."EXAMPLES:m\n");

334 fprintffstdout.AtS dust program. CnVn);

335 fprintf(stdout,'\t$ dust -an program c\n\n);

336 eiit(l);

337 >

338 /" if no source file, print error '/

339 if(argc!=2){
340 fprintf(stdout."You must specify a source file to be checkcd!\n');

341 fprintf(stdout."For help use: dust -h\n ');

342 eitit(O);

343 |

344 else (

345 for (s argv(0| + 1 ; 's I = -0'; s-t- +)

346 ;

347 /• if no .c suffix, print error •/

348 if (CO-1) !-'<:') C(s-2)! = '.'))(

349 printfC Source file name must cod with V',cV\a");

350 emt(l);

351 |

352 * if can't opeo source file, pnnt error /
353 if((inptr - fopen(argv'[0|."r")) = = NULL) (

354 fprintf(stderr. Can't open %s\" for reading. <n'.argv[0|);

355 elit(l);

356 >

C-6

357 fclose(inptr);

358 (

359 /" gather ^ncludrs in a file '/

360 sprintf(Commant.. grcp "#include' %s > %s.x", argv[0|, argv[0j);

361 system(Coraraand);

362 sprintf(Workfile.%s.x", argv(Ol);

363 if((inptr = fopcn(Workfile,"r")) == NULL) (

364 fprintf(stderr, Can't open \"%s\" for reading.Nn '.Workfile);

365 exit(l);

366 (

367 / offset Linenum by number of #includes "/

368 while ((x = getch()) != EOF)

369 if (x = = *\n') Linenura+ +

;

370 fclose(inptt);

371 /• get rid of includes •/

372 sprintf(Commaad, "grep -V "#include' %s > %s.x\ argv(0|, argv(0|);

373 systera(Corarnand);

374 /• run C preprocessor '/

375 sprintffCommand, cc -E %s.x > ^s.p". argv{0], argv(0|);

376 systera(Cornmand);

377 /• get rid of superfluous output from cc -E */

378 sprintnXoraraand. grep -v "#' %s.p > %s.x', argv|0j, argv[0]);

379 systera(Command);

380 '" move file.c.x to file.c.p "/

381 sprintf(Coraraand. rav %s.x %s.p'. argv[0|. argv(0|):

382 system(Coraraand);

383 sprintf(Workfile. %s.p' . argv[0]);

384 if((inptr " fopen(Workfile,'r")) » = NULL) (

385 fprintf(stderr. Can't open %s for reading.\n",Workfile);

386 exit(l);

387 |

388 while ((x=lex()) != EOF) |
/• input tokens until EOF •/

389 /' strip out comments */

390 if (Token = • OPENCOMM && Type = = OP) I

391 while! Token != CLSCOMM Type != OP) |

392 lex();

393 (

394)

395 /* strip out quoted strings V
396 if ((Token -- DBLOT && Type == OP) &.&
397 (Lastok !» BKSLASH Lastype I" OP)) (

398 do 1

399 lex();

400 |

401 while((Token != DBLQT Type != OP)
402 (Lastok = = BKSLASH && Lastype - - OP));

403 lex();

404)

405

406 /•

407 * Determine what action to take for this input token.

408 •/

409

410 if (Type = = OP) {

411 switch(Tokcn)
I

412 "if pending do. push brace onto Dostack V
413 case OPENBRACE:
414 if IDostack[0] I" NULL) Dostack{Doptr+ + |

• OPENBRACE;
415 break:

416 /' clear out local variables after end of block V

C-7

417 case CLSBRACE:
418 for (i = 0; i < HASHSIZE; 1+ +) (

419 if Symtable(i|. block = = Block)

420 jyratable[i] » Nulltable;

421 |

422 /* if pending do, pop brace off Dostack V
423 if (DostacklO) != NULL) Dostack[--Doptr] - NULL;
424 break;

425 f

426 (

427 else if (Type - = KEYWD) (

428 switch (Token) j

429 case INT:

430 case LONG:
431 case SHORT:
432 case UNSIGNED:
433 case CHAR:
434 case FLOAT:
435 case DOUBLE:
436 case STATIC:
437 case REGISTER:
438 symhaod();

439 /•duraptableO;"/

440 break;

441 case IF:

442 if_while_hand(IF);

443 break;

444 case WHILE:
445 if_while_hand(WHILE);

446 break;

447 case DO:
448 if_whi!e_hand(DO);

449 break;

450

451 case FOR:
452 for_hand(FOR);

453 break;

454

455

456 case SWITCH:
457 if (Break.stmnts = = TRUE)

458 Switchflag = ON;
459 break;

460

461 case CASE:
462 case DEFAULT:
463 if (Brcak.stmnts = = TRUE)

464 case_hand();

465 break:

466 case SCANF:
467 case SSCANF:
468 case FSCANF:
469 if (Scan.args = = TRUE)

470 scanLhandO;
471 break;

472

473 default:

474 continue:

475 |

476 (

C-8

477 else if (Type " ID && Pointers = • TRUE) {

478 strcpy(narae, Charbuff);

479 point_handfT -ken, name);

480 (

481 1

482 \ /' end of main */

483

484

485 /• DUMP SYMBOL TABLE - USED DURING DEVELOPMENT •/

486

487 dumptable()

488 |

489 int i;

490 printfC\nSymtablc\n\n");

491 for (i = 0; i < HASHSIZE; i+ +) {

492 if (Syratable[i].uewtoken != 0)

493 printf("%d\tid = %s\tnewtoken = %d\tvartype = %c\tblock = %d\n",

i ,Syratabie(ij.id. Syrotable[i|.newtoken. Svratable(i].varrype. Syrntable(i). block);

494 }

495)

496

497

498 /• LEXICAL ANALYZER GET INPUT TOKENS •/

499

500 lex()

501 {

502 Lastok = Token:

503 Lasrype = Type;

504 if (Tokeo != NL&& Token != SEMI) (

505 Lastcasetok = Token;

506 Lastcasetype = Type;

507 [

508

509 for (Charpos = 0; Charpos < 100; Charpos+ +)

510 Charbuff[Charpos| = 0;

511

512 Charpos = 0; /* reset Buffer index "/

513 Type = V; ." bogus initializer */

514

515 while ((Charbuff|Charpos| = getch()) = = ' ' (Charbuff[Charpos| = = V))
/• skip white space '

516 ;/• null statement */

517 if (Charbuff|Charpos| = = EOF) j

518 fclose(inptr);

519 sprintffComrnand. rra %s", Workfile);

520 system(Coraraand);

521 eiit(0);

522 (

523 if (what_type(Charbuff[Charpos|) - = LETTER)

524 keyjd();

525 else (

526 switch(Charbuff|Charposj) j

527 case 0':

528 case '1'

529 case '2'

530 case '3'

531 case '4'

532 case '5'

533 case '6'

534 case '7'

535 case '8'

C-9

536 case '9':

537 nurnproc();

538 break;

539

540 case '!':

541 exclamproc();

542 break;

543 case '%':

544 perceorproc();

545 break;

546 case '&':

547 araperprocO;

548 break;

549 case '(':

550 Type = OP;
551 Token = OPENPAR;
552 break;

553 case ')':

~54 Type = OP;
555 Token = CLSPAR;
5 56 break;

557 case '*';

558 starprocl);

559 break;

560 case "
+

";

561 plusprocl);

562 break;

563 case '.';

564 Type = OP;
565 Token - COMMA;
566 break;

567 case "-';

56* rainusprocQ;

569 break;

570 case '.':

571 Type - OP;
"2 Token - DOT;
573 break;

574 case V:

575 slashprocl);

576 break;

577 case '<':

578 tessprocl);

579 break;

580 case '=
';

581 equa!proc();

582 break;

583 case '>':

584 greatproc();

S85 break;

586 case '?':

587 Type - OP;
588 Token = QUEST;
589 break

;

590 case '[';

591 Type - OP;
592 Token • OPENBRAK
593 break:

594 case '1':

595 Type = OP;

C-10

596 Token = CLSBRAK;
597 break;

59H case '"':

599 xorproc();

OIK) break;

601 case ";

602 pipeproc();

603 break;

604 case "':

605 Type = OP;
606 Token = TWOSCOMP;
607 break;

608 case '{':

609 Type - OP;
610 Token • OPENBRACE:
611 break;

612 case '}':

613 Type - OP;

614 Token = CLSBRACE;
615 break;

616 case ';':

617 Type = OP;

618 Token SEMI;

619 break;

620 case ':':

621 Type = OP;
622 Token - COLON;
621 break;

624 case 'V":

625 Type = OP;
626 Token - DBLOT;
627 break;

62S case V:
629 Type = OP;
610 Token = SNGLQT;
631 break;

632 case '#':

633 Type - OP;
634 Token = POUND;
635 break;

636 case "A':

6 37 Type = OP;
6 IN Token = BKSLASH;
639 break;

640 case 'St
1':

641 Type = OP;
642 Token = ATSIGN;
643 break;

644 case '":

645 Type - OP;
646 Token - GRAVE;
647 break;

648 case '$':

649 Type « OP;
650 Token " DOLLAR:
651 break;

652 case ^n':

653 Type = OP;
654 Token = NL;
655 Linenum-*- +

;

C-ll

656 break;

657 default:

658 printf("Illcgal character - I quitl\n");

659 erit(-l);

660 }

661 }

662 (
/• end of lex •/

663

664

665 /•

666 * Determine whether token is a keyword or identifier.

667 •/

668

669 key.id()

670 j

671 intc, n;

672 while (what_type(c Charbuffl + + Charpos| - getchQ) = = LETTER
673 what.type(c) = = DIGIT)
674 ;

675 ungetch(c);

676 CharbufflCharposI = "V0*j

677 Charpos = 0;

678 .f ((n « findkeylCharbuff. kcytable. NKEYS)) >- 0) {

679 Type = KEYWD;
680 Token = kevtablefnj.keynum;

681 I

6!82 else {

683 Type - [D;

684 Token = pchash(Charbuff);

685 |

686 I
/' end of key.id •/

687

688 /* bring in an input digit */

689

690 nuraprocQ

691 1

692 int c;

693 while (what_rvpe(c = Charbuff[+ +Charpos| = getch()) = = DIGIT)
694 ;

695 uagetch(c);

696 CharbufflCharposI - 'NO';

697 Charpos 0;

698 Type = 'c';

699 Token - atoi(Charbuff);

700 } /• end of numproc ">

701

702

703 /"

704 • Use binary search to find keyword from table

705 •/

706

707 findkey(word, tab. n)

708 char 'word;

709 struct keys tab|NKEYS|;
710 int n;

711 1

712 int low, high, raid, cond;

713 low - 0:

714 high » o-l;
715 while (low < = high) {

C-I2

716 raid = (low + high) 1 2;

717 if ((cond strcrap(word, tab[mid|. keyword)) <)

718 high = mid - 1

;

719 else if (cond >)

720 low = raid + 1;

721 else

722 retura(mid);

723
r

724 returo(-l);

725) /• end of findkey V
726

727

728 /•

729 * get a character ftora input stream or from

730 " Buf[Burp| if availalbe.

731 •/

732

733 getch()

734
(

735 if (Bufp >)

736 return (Buf| -Bufpj);

737 else

738 return(getc(inptr));

719
}
!' end of getch

*

'

740
"41 ,'•

742 " put a character back on the shelf" in Buf[Bufp]

743 •/

744

745 ungetch(c)

716 int c;

747
{

748 if (Bufp > BUFSIZE)
749 printf("ungetch: too many characters^ ");

750 else

751 Buf(Bufp+ +
]
= c;

752 I
/* end of ungetch */

"53

754 /•

7*5 * Determine what type the token is (Letter or digit)

756 * and return appropriate indication.

757 •/

7*8

759 what_type(c)

760 int c;

761 (

762 if ((c>= V&&C <« 'z')
I

763 (c>= 'A' &&.C <= 'Z')
!|

764 (<==='-•))
765 rerura(LETTER);
766 else if (o = 0' && c < = '9')

767 return(DtGtT);

768 else

769 retum(c);

770 }
1' end of what_rype *.'

771
""2

773 /•

774 * Process exclamation mark tokens.

775 •/

C-13

776

777 exdamprocf

)

778 {

771) iatc;

7S0 if ((c = Charbuff[+ +Charpos| = getch())= = '-')

781 Type = OP;
^82 Token = NE;
783 return;

784 >^ clse{

786 Type - OP;

7*7 Token = NOT;
788 ungetch(c);

789 Charbuff[Charpos] = 'NO*;

790 return;

791 }

792 }
1' end of exclaroproc '/

793

794

795 /•

794 * Process percent sign tokens.

797 •/

798

799 percentprocf

)

800
1

801 int c:

802 if ((c = Charbuff[+ + Charpos| • («ch())-- '-')

803 Type » OP;
804 Token = REMEQ,
80S return;

80(1 1

807 else{

808 Type = OP;
809 Token = REM;
810 ungetch(c);

811 Charbuff[Charpos| = 'NO';

812 return;

813 >

814 \
1' end of percentproc "/

815

816

817 /•

818 Process ampersand tokens.

819 •/

820

821 amperproc()

822
{

823 intc;

824 if ((c = Charbuff[+ +Charpos| = getch())== '-')

825 Type = OP;
826 Token = ANDEQ;
827 return;

828
(

829 else if (c = = '&')
{

810 Type - OP;
831 Token - LOGAND;
832 1

833 else!

S34 Type - OP;
Sis Token • AND;

C-14

836 uogetch(c);

837 Charbuff|Charpos| - 'NO';

838 return;

839 1

S40 1
/* end of amperproc "/

841

S42

843 /•

844 • Process asterisk tolcens.

845 •/

846

847 starproc()

848
(

849 iot c;

830 if ((c = Charbuff[+ +Chatpos| = getch()) = • = •)!

SSI Type - OP;

832 Token - STAREO;
833 return;

834)

B53 else if (c = = V) (

856 Tvpc - OP;
8^7 Token - CLSCOMM;
838 1

S<M else |

Shi) Type = OP;
861 Token • STAR;
862 ungetch(c);

863 Charbuff(Charpos| • '\0';

S64 return;

865 1

866 (
/• end of starproc */

S67

S68

869 /•

870 • Process plus sign tokens.

871 •/

872

873 plusproci

)

S74
(

875 im c;

876 if ((c = Charbuff(+ +Charpos] = getchQ) = = '-•)(

877 Type = OP;
S7S Token - PLUSEO;
874 return;

SSI) >

SSI clseif(c= = ' + '){

SS2 Type = OP;
SSI Token PPLUS;
SS4 (

SS5 else {

SS6 Type = OP;
SS7 Token = PLUS;
SSS tragetch(c);

889 Charbuff(Charpos! = "0";

890 return;

891 (

892 I ,
* end of plusproc ".'

893

B94

893 .•

C-15

896 ' Process ramus sign tokens.

897 •;

898

899 mil!nusproc()

900 (

901 int c;

902 if((c = Charbuff|++Charpos| » getchQ) »='=•)(
903 Type « OP;
904 Token = MtNUSEQ;
905 rcrura;

906)

907 else if (c = = '-•)
(

908 Type - OP;
909 Token - MMtNUS;
910)

911 elseif(c«= '>')(

912 Type = OP;
913 Token = ARROW;
914 (

915 else
{

916 Type - OP;
917 Token = MINUS;
918 ungetch(c);

919 Charbuff|Charpos| - -0';

920 return;

921 |

922 } /* end of minusproc "/

923

924

925 /•

926 * Process slash tokens.

927 •/

928

929 slashprocQ

930 |

931 intc;

932 if ((c = Charbuff(+ + Charpos| = getchQ) =='=)!
933 Type = OP;
934 Token • SLASHEO;
935 return;

936 |

937 else if (c = = '")
(

938 Type = OP;
939 Token - OPENCOMM;
940 (

941 else {

942 Type - OP;
943 Token = SLASH;
944 ungetch(c);

945 Charbuff[Charpos| = 'NO';

946 return;

947 [

948 |
/• end of slashproc V

949

950

951

952 ' Process less than tokens.

953 •/

954

955 lessproc()

C-16

9S6 (

957 intc;

MB if ((c = Charbuff[+ +Charpos] = getch()) = - -')(

959 Type - OP;
960 Token = LE;
961 return;

962 >

96? elseif(c= = '<•)
(

964 if ((c - Charbuff[+ + Charpos] = getch()) = = '-•)

965 Type - OP;
966 Token = SHFTLEQ;
967 return;

968 1

969 else{

970 Type - OP;
971 Token = SHFTL;
97: ungetch(c);

971 Charbuff(Charpos] = A0';

97.1 return;

975
I

976
,

977 else{

97» Type = OP;
979 Token = LT;

9 HO ungetchlc);

981 Charbuff(Charpos| = "0';

982 return;

981
1

98-1 \
1* end of lessproc */

985

986

987 /*

988 * Process equal sign tokens.

989 */

990

99] equalproc()

992 {

993 mt c;

994 if ((c = Charbuff|+ +Charpos| = getchO) = = '•){
995 Type - OP;
996 Token • EQEQ;
997 return;

998 r

999 else(

iOOO Type " OP;
1001 Token EQ;
1002 ungetchlc);

1003 Charbuff[Charpos| - A0';

1004 return;

1005 1

1006 \
/* end of equatproc V

1007

1 008

1009 /"

1010 " Process greater than tokens

1011 •/

1012

101? grearprocl

)

101

4

(

1015 intc;

C-17

1016 if ((c - Charbuff(+ + Charposl = getchO) - - ''•){

1017 Type = OP;
1018 Token = LE;

1019 return;

1020 }

1021 else if (c=~ '>')(

1022 if ((c Charbuff] + + Charposl >getch())= = ' = ')

1023 Type • OP;
1024 Token = SHFTREQ;
102S return;

1026 }

1027 else)

1028 Type OP;
1029 Token = SHFTR;
1030 ungetch(c);

1031 Charbuff[Charposl = MP;

1032 return;

1033 }

1034
)

1035 else t

1036 Type = OP;

1037 Token - GT;
1038 ungetch(c);

11139 Charbuff[Charpos| = ,0';

1 040 return;

1041
)

1042 \ I* end of greatproc */

1043

1044

1043 r
1046 * Process xor tokens.

1047 •/

1048

1 049 xorproc(

)

1050 i

1 03

1

int c;

1032 if ((c = Charbuff(+ + Charposl = getchO) - - ' = ')<

10*3 Type OP;

10S4 Token >= XOREQ;
10.55 return;

1056 }

1057 else;

10*8 Type = OP;
1059 Token - XOR;
1060 ungetch(c);

1061 Charbuff[Charpos| = \0';

1062 return;

1063 I

1064 \ /* end of xorproc */

1065

1066

11167 /*

1068 * Process pipe symbol tokens.

1069 •/

1070

1071 pipeprocO

1072 {

1073 int c;

1074 if ((c = Charbuff(+ +Charpos| = getchO) = - •=')!

1075 Type OP;

C-18

107b Token OREO;
1077 return;

1078 1

1079 else if (c = = ") {

1080 Type = OP;
1081 Token = LOOOR;
1082 >

1083 else (

1084 Type - OP;
1085 Token - OR;
1086 ungetch(c);

1087 Charbuff[Charpos| = 'NO';

1088 return;

1089 1

1090 } 1* end of pipeproc */

1091

1092

1093 /'

1094 * Hashing function

1095 "/

109(,

1097 pchash(s)

1098 char *s;

1099 {

1100 int hashval;

1101 for (hashval - 0; "s '.- "0';)

no: hashval + = *s + +
;

1103 return (hashval % HASHS1ZE);
1104 !
1105

110(i r
1107 ' Handles symbol table entries

1108 •/

1109

1110 syrnhand()

1111 {

1112 char varrype;

1113 int token;

1114 charname(BUFSIZE|;
1115 int init = NO;
1116 i«();

1117 while (Token != SEMI)
1

1118 if (Token = = STAR) |

1119 lexOi

1120 token = Token;
1121 strcpy(narne, Charbuff);

1122 if (Token == STAR) j

1123 vartvpe = PTRARRAY;
1124 lex<);

1125 token = Token

;

1126 strcpy(name, Charbuff);

1127 make entrv(vartype, token, name. tnit);

1128 i

1129 else {

1130 i«0;
1131 if (Token = = OPENBRAK) (

1132 varrype = PTRARRAY:
1133 make entrv(varrype. token, name , mil):

1134
,

1135 else
j

C-19

1136 vartype = PTR;
1137 if (Token = = EQ && Type = - OP) init = YES;
1138 make_entry(vartype, token, name, init);

1139 [

1140 1

1141 (

1142 else if (Type « ID) {

1143 token = Token;

1144 strcpy(oarae, Charbuff);

1145 IcjQ;

1146 if (Token = = OPENBRAK) (

1147 vartype = ARRAY;
1148 make_entry(vartype, token, name, init);

U49 1

1151) else {

1151 vartype = SINGLE;
1152 make_entry(vartype, token, name, init);

1153 (

1154)

1155 iff Token •» SEMI)

1156 break:

1157 lei();

1158 }

1 1 59 } I* end of syrahand "

1160

1161

1162

1163 " Makes svrabol table entnes

1164 •/

1165

1166 make_entry(varrype. token, name, init)

1167 charvarrype;

1168 int token;

[169 char 'name;

1170 int init;

1171 1

1172 int search;

1173 int count = 0;

1174 search = token;

1175 while (Symtable[search+ + % HASHSIZE].newtokcn !=• && count <» HASHSIZE)
1176 ;

1 1 77 if (count > HASHSIZE) (

1178 printf("Syrabol table overflow • I quitlNn");

1179 eiit(l);

1180 |

1181 search--;

1182 Symtable[search].newtoken = search;

1183 strcpy(Sytntable[search|.id, name);

1184 Symtable(search|. block = Block;

1185 Symtablefsearch]. vartype = vartype;

1186 Symtable[search|.init = init;

1187 (
/* end of raake_entry "I

1188

1189

1190 !•

1191 * Finds svrabol table entnes

1192

1193

1194 find_cntry(varrype. token, name, init)

1195 char 'vartype;

C-20

1196 iot token;

1197 char "name;

1198 infTil;

1199 {

1200 int count;

1201 int search = token;

1202 int searchblock;

1203 if ((token = = Syratable[token].newtoken) &&
1204 (strcmp(name, Symuble[token].id) = = 0) &&
1205 (Block = = Symtablelsearch]. block))

1206 i

1207 'vartype = Syratable[search].vartype;

1208 'inn = Syratable|scarch]. nut;

1209 return(Symtable[search|.newtoken);

1210 1

1211 else(

1212 for (searchblock = Block; searchblock > = 0; searchblock--) {

1213 count = 0;

1214 search = token + 1;

1215 while (((strcmp(narae, Symtable[search % HASHSlZE].id) != 0)

1216 (Block != Syratablejsearch % HASHSIZE] block)) &&
1217 (search <« HASHSIZE)) (

1218 count-*- + ;

1219 search-*- +
;

1220 ,

1221 !

1222)

1223 if (strcmp(name,Syratable[search%HASHSlZE].id) = = 0) {

1224 'vartype = Syratabfe(search|.varrype;

1225 'init = Symtablefsearchj.init;

1226 |

1227 else (

1228 •init= 1;

1229 !

1230 rerurn(Symtable[search|.newtoken);

1231 }
'* end of find_entry '/

1232

1233

1234 ;•

1235 * Process if or while statement

1236 •/

1237

1238 if_while_hand(condtype)

1239 intcondtype;

1240 (

1241 inttokbuf[BUFSIZE];

1242 chartypebuf[BUFSIZE];
1243 inti;

1244 int parencnt = 0;

1245 for(i - 0; i < 100;i++)(
1246 tokbuf[i] = 0;

1247 typebuf[i] = ^0';

1248)

1249 i = 0;

1250 if (condtype = » DO)
(

1251 Dostack[Doptr+ -
|

=> DO;
1252 return;

1253 |

1254 lex();

t255 if ((typebuf|i| = Type. tokbuf(i| • Token) != OPENPAR i Type != OP)

C-21

1256 printf('line %3d: - No V'(V after if/while!\n '.Linenum);

1257 else parencnt+ +
;

1258

1259 i+ +
;

1260 while (pareacot >) {

1261 le*();

1262 typebufli] - Type;

1263 tokbuf[i+ + |
= Token;

1264 il (Type m - OP)

1265 switch (Token) {

1266 case OPENPAR:
1267 parencnt+ +

;

1268 break;

1269 case CLSPAR:
1270 parencnt--;

1271 break;

1272 |

1273 |

1274 if (Assignments = = TRUE)
1275 cond_hand(tokbuf. typebuf. coodtype);

1276 if (NulLstmnts = = TRUE)
1277 null_hand(condtype);

1278 I
/* end of if_while_hand */

1279

1280

1281

1282

1283 * Process for statement

1284 •/

1285

1 286 for_hand(condtype)

1287 int condtype;

1288 {

1289 inttokbuf[BUFSlZE|;

1290 chartypebuf[BUFSIZE|;

1291 inti;

1292 for(i = 0;i < 100; i+ +) {

1293 tokbuf[i| = 0;

1294 rvpebuf[i] = "\0';

1295 |

1296 i = 0;

1297 while (Token I- SEMI Type != OP)
(

1298 le*();

1299 |

1300 typebuf(i| - OP;

1301 tokbuf|i+ +
|
= OPENPAR;

1302 Token = NULL;
1303 while (Token != SEMI

|
Type != OP) (

1304 lex();

1305 typebufti| Type;

1306 tokbuf(i+ +
|
= Token;

1307 |

1308 typebuf[i] = OP;
1309 tokbuf|i+ +

]
- CLSPAR;

1310 if (Assignments == TRUE)
1311 cond_hand(tokbuf. typebuf. condrvpe);

1312 if (NulLstmnts == TRUE)
1313 nulLhand(condrype);

1314) /* end of for_hand •/

1315

C-22

1316

1317 /"

1318 ' Process conditional part of if, while, for, do-while

1319 •/

1320

1321 cond_hand(tokbuf, typebuf, condtype)

1322 int 'tokbuf;

1323 char •typebuf;

1324 int condtype;

1325 1

1326 int i;

1327 int assigncnt = 0;

1328 int relopcnt = 0;

1329 int logopcnt = 0;

1330 int parencnt = 0;

1331 intoptype|BUFSIZE|;

1332

1333 (Br(i»0;i<- BUFSfZE; i+ +) optvpe(i] = 0;

1334

1335 fori i = 0; (tokbufIi| ! = 0) (typcbuf[i] -= CONST); i +

1336 if (typebuf|i| = = OP)
(

1337 switch(tokbuf|l|) (

1 338 case EQ:
1339 if (tokbuf[i-l| '.= SNGLOT) i

1340 assigncnt* *
;

1341 optype(i| = ASSIGN;
1342)

1343 break;

1344

1345 caseNE:

1346 case LT:

1347 case LE:

1348 case EOEQ:
1349 case GT:
1350 caseGE:
1351 relopcnt+ +

;

1352 optype|i| = RELOP;
1353 break;

1354

1355 case LOGOR:
1356 case LOGAND:
1357 logopcnt+ +

;

1358 optype[i] • LOGOP;
1359 break;

1360 (

1361 1

1362 |

1363

1364 i - 0;

1365 if (relopcnt = = && assigncnt = =)

1366 printf("line %3d: - No relational operators in v'%sV\\n". Linenum. keytable[condtype|. keyword);

1367 else if (relopcnt = = && assigncnt >) {

1368 if (strcmp(kcytablc[condtype|. keyword, "for) == 0)

1369 printff'line *^3d: Misuse of assignment operator (=) in \"%sV (try < ™), n '.

Linenum, keytable(condtypej. keyword);

1370 else

1371 printff'line %3d: - Misuse of assignment operator (
=) in \"%s\" (try = =).n',

Linenum . keytable[condtype j . keyword)

;

1372 (

1373 else if (relopcnt = = logopcnt && assigncnt >) (

C-23

1374 if (strcrap(keytablc[condtype|. keyword, "for") ==0)
1375 printf{"line %3d: - Misuse of assignment operator (=) in \"%s\" (try < =).\n",

Linenur- . kevuble|condrype | . keyword)

;

1376 else

1377 printf("line %3d: - Misuse of assignment operator (=) in \"%s\" (try = =).\n",

Linenura, keytable[condtype|. keyword);

1378)

1379 else if (relopcnt > && assigncnt >) j

1380 i - 0;

1381 while (assigncnt > && relopcnt >) {

1382 if (typebufli] == OP) j

1383 swttch(optype(i|)
(

1384 case ASSIGN:
1385 i+ + ;

1386 if (relopcnt > 0) {

1387 while (optype(i| != RELOP) {

1388 if (tokbuf(i] = = OPENPAR && typebufli] = OP) parencnt-;

1389 if (tokbufji] = CLSPAR && rypebuf|i] = OP) parencnt+ + ;

1390 if (tokbuf|i] == EO && rvpebufli] - = OP) assigncnt--;

1391 1+ + ;

1392 |

1393 if (parencnt <=)

1394 pnntff line ^3d: - Operator precedence error involving assignment in i"%a\"Aa",

Linenura . kevtahle[condrvpe| . keyword)

;

1395
|

1396 parencnt = 0;

1397 assigncnt--;

1398 relopcnt-;

1399 break;

1400

1401 case RELOP:
1402 i+ +

;

1403 if (assigncnt >) (

1404 while (oprype(i| != ASSIGN) {

1405 if (tokbuf|i| - - OPENPAR && typebuf[i| = = OP) parencnt+ +
;

1406 if (tokbufji] = « CLSPAR && typebuf[i| = = OP) parencnt--;

1407 i+ +

;

1408 |

1409 if (parencnt < =)

1410 pnntf("line %3d: - Operator precedence error involving assignment in V'%sV'.\n",

Linenum , keytablefcondrvpe | . keyword);

1411)

1412 parencnt = 0;

1413 assigncnt--;

1414 relopcnt--;

1415 break;

1416 default:

1417 i+ +
;

1418 ,

1419 (

1420 elseif(typebuf|i| -= ID)
1421 i+ + ;

/" do nothing (call pointer checker later) */

1422 else if (rypebuf|i| « » KEYWD)

1423 i+ + ;;' do nothing (call scanf checker later) '/

1424

1425 }

1426 I

1427 |

1428

1429

C-24

1430 * Look for autl statement in wrong place after if, while, for.

1431 •/

1432

1433 nulLhand(condtype)

1434 intcondtype;

1435 (

1436 int loopcnt = 0;

1437 if (condtype • » FOR) {

1438 while (Token l» CLSPAR
I

Type I- OP)
1439 lex();

1440 ,

1441 lei();

1442 while ((Token !- NL) &.&. (Token != SEMI) : Type != OP)
|

1443 loopcnt+ +

;

1444 lex();

1445)

1446 if (Token = = NL && Type = = OP) loopcnt+ + ;

1447 switch(condtype) {

1448

1449 case WHILE:
1450 if (loopcnt - = && Dostack(Doptr - 1|]*> DO)
1451 prinrff 'line %3d: - Null statement (;) after ,"%s\".\n'. Linenura. keytablef condtype I. keyword);

1452 else if (loopcnt = = && Dostack[Doptr -
1 1

= = DO)
1453 Dostack| Doptr| = NULL;
1454 break;

1455

1456 case IF:

1457 case FOR:
1458 if (loopcnt ==0)
1459 printfflinc %3d: - Null statement (;) after \"%s\".\n". Linenura, keytable[coodtype|. keyword);

1460 break;

1461 |

1462 (
/* end of null.haod V

1463

1464 /•

1465 * Look for missing break statements in case constructs.

1466 V
1467

1468 case_hand()

1469
{

1470 if (Lastcasetok = = COLON i Lastcasetok = - BREAK Switchflag = - ON)
1471 Switchflag OFF;
1472 else

1473 priotf("line %3d: - No break at end of "case*".\n". Linenura - I);

1474 } /• end of case_hand */

1475

1476

1477 /•

1478 " Process scanfQ statement

1479 •/

1480

1481 scanf_hand()

1482
|

1483 inttokbuflBUFSIZEl;

1484 int qtcnt = 0:

1485 chartypebufIBUFSIZE|;
1486 char vartype:

1487 char narae[100|;

1488 int init;

1489 int i;

C-25

1490 for(i - 0;i< 10O;i+ +)(

1491 tokbuf[i] - 0;

1492 typebuf[il = \0';

1493 (

1494 i = 0;

1495 lex();

1496 while (qtcnt < 2) (

1497 if (Token - - DBLQT && Type = = OP && Lastok ! = BKSLASH)
1498 qtcnt + +

;

1499 le*();

1500 (

1501 if (Token != COMMA) printf("Error in scanf format!\n);

1502 le«();

1503 if (Type = = ID) strcpy(name, Charbuff);

1504 while (!(Token = = CLSPAR && Type = = OP)) (

1505 while (!((Token « » COMMA && Type = OP)
|

(Token " CLSPAR && Type = = OP))) (

1506 tokbufji] = Token;
1507 typebuf[i+ +

|

= Type;

1508 lex();

1509 if (Type = = ID) strcpv(narne. CharbufO;
1510 (

1511 i = 0;

1512 while (rvpebuf|i| != ID)

1513 i+ +
;

1514 find_entry(&vartype.tokbuf[i].narae. &init);

1515 if (vartype =- SrNOLE && (tokbuf(0| != AND typebuf(0| != OP))

1516 printf("line %3d: Incorrect address specification for v%s\" in scanf\(\),\n\t\ttry \"&%sv " *a ".

Linenum. oarne. name);
1517 else if (vartype =» ARRAY && !((i == 0&& tokbuf[l| !» OPENBRAK)
1518

|
(tokbuf|0] - AND && tokbuf|2| = - OPENBRAK)

))

1519 printf("line %3d; Incorrect address specification for \"%s\" in scanf\(\),\n\t\ttry V'%s\" or \"&%s(n|\".\n
Linenum, name, name, name);

1520 else if (vartvpe = = PTR) (

1521 if(i!=0 typebuf[0| != ID)
1522 pnntf(line %3d: Incorrect address specification for \"%s\" in scanf (\),\u\t\ttry \"%s\".\n",

Linenum, oame, name);

1523 else

1524 if (Pointers = TRUE) pomt_hand(tokbuf[0|, name);
1525 (

1526 else if (vartype « PTRARRAY && !((i = = && typebuf[0| = = ID
)

1527 (i - > && tokbuf| 1 1 = = OPENBRAK)
1528 (tokbuf[0| - - STAR && typcbuf[l] « ID
1529 && tokbuf]:| != OPENBRAK)))

1530 printf("line %3d: Incorrect address specification for \"%s\" in scanf.(\),Vn\t\ttry \"%s\" or V'%s(nJV . n ',

Linenum. name. name, name);
1531 for(i = 0;i < 100; i++)

(

1532 tokbuf[i] - 0;

1533 typebuf[i| = A0';

1534 (

1535 i = 0;

1536 if (Token - = CLSPAR && Type = OP) break-

1537 le*();

1538 if (Type" ID) strcpy(name. Charbuff);

1539)

1540)

1541 /" end of scanf hand "

1542

1543 /-

1544 * Look for unitialized pointers

1545 •/

C-26

1546

1547 point_haod(token,name)

1548 int token:

1549 char 'name;

1550 {

1551 charvartype;

1552 int ioit;

1553 find_eotry(&vartype, token, name. &init);

1554 if (vartype = = PTR) {

1555 if (ioit * - NO) {

1556 lex();

1557 if (Token = = EQ) j

1558 set_init(tokeo. name);

1559 1

1560 else

1561 printf("line %3d: Possible uninitialized pointer - \"%s\" \n",Linenura, name);
1562 (

1563 |

1564 else {

1565 return;

1566 (

1567 ! ," end of point_hand "

1568

1569

1570

1571 " set initialized flag to YES
1572 •/

1573

1574 setjnit(token.name)

1575 int token;

1576 char *narne;

1577 j

1578 int count;

1579 tnt search = token;

1580 int searchblock;

1581 if ((token == Syratable[token| newtokcn) &&
1582 (strcrap(narne, Syrntable[token|.id) == 0) &.&
1583 (Block = = Svratable[search|. block))

1584 (

1585 Symtable[search|.init = YES;
1586 return! Syrotable(search|.newtoken);

1587 (

1588 else I

1589 for (searchblock = Block; searchblock > = 0; searchblock -) (

1590 count 0;

1591 search token + 1

;

1592 while (((strcmp(name. Symtable[search % HASHSIZE|.id) != 0) ||

1593 (Block I- Symublejsearch % HASHSIZE|. block)) &&
1594 (count < HASHSIZE)) (

1595 count + +
;

1596 search + +
,

1597)

1598)

1599 |

1600 Symtable|scarch|.init - YES;
1601 return! Symtable[search|newtoken I;

1602 ;
," end of setjmt *l

1603

1604 • end of program "

f*%27

ANALYZING "C" PROGRAMS FOR COMMON ERRORS

by

Dennis M. Frederick

B.S. , University of Missouri, 1970

AN ABSTRACT OF A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

COMPUTER SCIENCE

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

ANALYZING "C" PROGRAMS FOR COMMON ERRORS

ABSTRACT

Several programming errors commonly made by users of the C Programming
Language escape detection by the C compiler. These errors in usage result in

statements which are syntactically and semantically correct, but which are

usually not what the programmer intended and cause incorrect program

execution. Several debugging tools are available for C Language, but none of

them detect these commonly made errors. The focus of this investigation is the

development of a tool to analyze C programs to detect and report these errors.

Specifically, it detects inappropriate uses of the assignment operator and
operator precedence errors in control constructs, unintended null statements,

omission of break statements from switch/case constructs, improper address

specifications in scanf() function calls, and uninitialized pointers.

