X7

DESIGN OF THE IDO FOR THE INTELLIGENT DATA
OBJECT MANAGEMENT SYSTEM (IDOMS) PROJECT

,}:
I

by
RONNA WYNNE RYKOWSKI

B. 8., Northern Illinois University. 1981

A MASTER’S REPCRT

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY

Manhattan, Kansas

1986

Approved-by:

[ _Zburges”

Major P;ﬂ%ﬁssor



All207 233029

CONTENTS
CHAPTER ONEiiwws 535 smamimemes s o ¢ uieesaees s s om ey 1
1.1 INEroBUCTLION. « vewmeennse o b s suwamseas ¢ o $amaimmme 1
1.2 Guide to the RePOIt.ieiercsnsssonsancssonrsansas 2
1.3 Literature ReVieW..cesecsenocoscscsasonnonnoee 2
1.3.1 Office AULOMALiON.c.ecinecesnccsnrnnsnns 2
1.3.1.1 What is an Officer..ceeersnses 2
1.3.1.2 What Does It Mean To Automate
Al OFE1CEY. waivmwseninins o savgmiise 3
1.3.1.3 WhY AUtOmAte?.cecuscesnonnsoes 4
1:3:2 Thtelligenteviwees s s sompmsmeas & s 3 sl 4
1.3.2.1 What Does It Mean for an
Object to Have
Intelligence? . ceseerseasswuons 4
1.3.2.2 Ceontrol Vs. “Almost” Manages
TEEEIT wnvrw 5 65 sanemuas & & § LERng 5
1.3.3 Data AbstractioNeicecececcecasssorassanes 3]
1.3.3.1 What is Data
ADStraction? . weweween & ¢ u v s 6
1.3.3.2 What is an Intelligent Data
BDStractionN?.cesseccnensnesnns 7
1.3.4 Mail SysteMSuisaceeressscasnsaoansnnsnse 7
1.3.4.1 What is an Electronic Mail
SYSELM? covnio v s v somsmioss o s 7
1.3.4.2 Types of Electronic Mail
SYSteMSeacesnernrrarssasasrnsan 8
1.3.4.3 Intelligent Data Objects and
Mail SystemSeeiesscsasassnnees =]
L1e3eD ACLOLS cinieis s s o sinisiemiesass & b & Fae Sarvieses ¢ § § 9% 9
1.3.5.1 What is an Actor?...... wie & e win 9
1.3.5.2 Relevance to Development of
an ID0c s visssssnm@ssviasisene 10
1.3.6 Forms in an Office Automation
ENVIFONMENE. ¢ ¢ covreninie s o o v sowasors s s & 5 § 4 11
1.3.6.1 What is a Forms Based Qffice
Automation System?.....ceveses 11
1.3.6.2 Why Forms in an Office
Automation Environment?.ccsees 12
1.3.6.3 High Level Form
DOEIN O e nn v w0 s u sormsmsn s s s 12
1.3.6.4 Intelligent Forms in an
Office Automation
EnNvVironment.ceeesesssscsaoasas 15
1.3.86.4.1 FieldS..eesenoncnns 15
1.3.6.4.2 Operations and
ROUEiINGsevsenevnass 17
1.3.6.4.3 Form
TemplateS..evssvesas 1B



1.3.7 Intelligent Data Object Management
System (IDOMS).sessuasnssuanssssdnesnnse
overview of IDOMS

1.3.7.1

l1.3.7.4

1.3.7.5

.
w
.

.
w
.

« =

-
i w
.

=
o o

omB R -F-3-d-
m .

MNPt WD -am

L L e

.
W W ot
[

1.3.8.3

1.3.8.4
1.3.8.5

Project......

L ]

User Interface....civieerecens

The IDD..sa..

LR R A

1+3:7+3+1 FieldS,essassensens
1.3.7.3.2 Field
OperatioNSesennsnss

«3.7.3.
3

1 7 3
1.3.7.3.4 Form
Operation8.ceeavess
1.3.7.3.5 E=xternal Names and
RoutineSeesssvaanes
1.3.7.3.6 Data In This
Instance of a
FOrMwewe v v 5 5 e
1.3.7.3.7 History of the
Routing and
Processing of a
FolMusame & 5 5 % slieems
High-Level Form Definition
LANGUAG® e arse o s saasssssavanes

Database Management
S PFacilit¥.ecieeniaan.

Form SkeletCNeeaseasa

ROUEINGa s ssosvamuvvsesosensna
Processing of the IDO....eesss
Display MeChaniSMe.eessesosnns
Form Editor...ecuees
of Project in Relation to the

P I I A

UL'€s s evecacnssssarsannsnosnananss

Review Of Gehani” s Work.eseooe
Review of Tsichritzis”’

WorKeeounonns

“ s s e P eERET TR EREPERP RS

Review of the CDIN Form
Management SySteM...cceesnsons

Review of Ellis“

WOrKeeoonneow

Review of Z100f“s Work..sesese

1.3.9 Chapter One SUMMALY:sssesssnsscsssnnans
CHAPTER TWO - REQUIREMENTS FOR THE DESIGN OF THE
IDDsmmesd & 55 sinlaionildidid 34 7 3 5 LEE0RE € 5§ R neiies § & ¥ s
2ol INErodUCEiONcicesnassnnminessransus
2.2 Interfaces with ID0.cccueessrscissssassnsasnaa
2.3 Requirements for Form Structure Data

SR CE R e cuvauieis o s 5 » siwwinimn o » = Cresnptmsaise o 8 » e eniem
2.4 Requirements for Processing Instructions Data

BELUCEREE8 v iie e i s § vaviid o 6 » a0 @i s ¥ v o wuaas
2.5 Chapter TWO SUMMAIY .t essssssstancacnsssssnanss
CHAPTER THREE ~ DESIGN OF THE IDO:iecevsnssnnnnnnse
3.1 Design OvervieW..ciietesavernrnaascsensssnnsasna

_ii_

198

19
20
21
21

21
22

23

23

23

24
24

25
25
25
26
26

26

28

29
n
31
32

33
33
34

36

38
41
51
a1



1 Overall File StruCtUr€..c..ceseessencsss
2 Initial Set-UpPevccscsrvannsnrsannosnansa
in Definition Design.ecscevrcvsnsannannanre
sl TYDE suvewisssssnsemnios s sveaiaeseias
2
3
4

3.2

0

L]
NN E PP
.

BOIGEN savmins ¢ ¢ s sieasees s g 8 5omsvssssuss

RANGE cowwnnensssasonmenssnsessnssssssss

Defallt cvicerncesnsesrenanesansnsonosnsnne
m Structure DesSigN.eceescssscccescconnssacses
Form IdentificatioN.icesececcccoracnanss
Field NaMB s sasawwmmmn o sssnamaindsss
DOmALiN NaMeB.eresvvoasasassncnnsancosssnsse
FLE1R TYDE v n » o s snimmieemion s o sonieinminains o s s
Default ValUC.eeeracrecesssncssassssosss
PersonaliZed .isivvpansiaiissuammssnena
ROLIOVEL b wmwe w v s swmaaaass s s s o s s s
LOCK c s wwsmve a o & wammne I upupa
InVisibDle.iecaceseressesocncsaancsscnssans
m Display DeSigleceserecnnnonnnsasssnsoansss
«1 Form SKeletoN.sssosinssaaasssosbsiessse
3.4.1.1 Line Number ....cceveeraccaans
3.4.1.2 Column Number ........ceeeeesse
Follode T TORE: vuwsmwmmannes ooy wwgansss
3.4.2 Field POSItiONS .icevescacicrnnvecsonse
3.4.3 Form Field POSitiONeceesesssocccccasans
3.4.3.1 Line Number........ ceseresenns
3.4.3.2 Column NUMDEr...essseacsessans
3.4.3.3 Field NaMe...voeevrnnnnasarses
3.5 Form Processing Instructions DesSigNececssesess
JuB:l FOIm DPErAtidng: :ssaeeaiand éds simdodan
J«balsl Operation Field...evsencananas

3.5.1.2 Restrictions Field...eeeeeenss
Field Check ROULINES.ceecaciosnvsnsonsn
3.5.2.1 TField NAME ceveceocosovnronans
3.5.2.2 Check ROULiING.eeevavnnrnssnava
3.5.2:3 Pre=or=-Post.cscecsisarssnninans
Error
3.5.3
3.5

3.3

.
mmqmm.thH

-bﬂwuuwwmuuu

3.4

quwuummwmwwmwwwuww
.

3.5.2 iel

3.5.3 Pror ROUE1HOE ¢ o s a5 s swaaessms s » vnieteesss
«B3.3.1 Pileld Name.:..cowceces s oo snwenos
3.2 Error ROULiNE@..eeerrransaccase

3.5.3.3 Pre—Cr-pOSt.ececcecssessancene
B SUMMALVessasae s s nesesnis ves s sesevaes s s visnied
CHAPTER FOUR - CONCLUSIONS AND EXTENSIONS.:.evoosess
4.0 INEroQUCELON. « v » sisemomman v & & & 3 @wemeamsw o § B aREE e
4.2 CONCIUSIOMNSeutsonencanssocsonsnnssnrsonssnssnnsss

4.3 EXteNSiONS.ecsessssscscasssesssssascssocnsnonses

- 1iii -

51
52
53
55
55

57
57
59
60
60
60
62
62
63
63
64
565
65
66
66
67
67
67
67
67
&8
68
689
70
70
70
71,
71
72
72
72
72
73
73
100
100
100
102



Figure
Fiqure
Figure

Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

LIST OF FIGURES

IDOMS Project Definitions....... AR T
Attributes Supported By IDOMS...ccveeacens
Definitions Of Attributes Supported By
IDOMS . s enerencsnssnsascsnnnnasassnassnrnres
Valid Operations For IDOMS....cceeeeaceanss
IDOMS APPLICATION:. :eeteesasvsacsasansanosns
IDOMS APPLICATION - FORM STRUCTURE AND
PROCESSING INSTRUCTIONS DATA

STRUCTURES . ccveressnsessscscensnsncsnssosccnscs
IDOMS APPLICATION ~ FORM STRUCTURE AND
PROCESSING INSTRUCTIONS DATA

BTRUCTURES « i« swiwivia ¢ & & 85 ewmmsni & & 5 wiesms ey s

IDOMS APPLICATION
IDOMS APPLICATION
IDOMS APPLICATION
IDOMS APPLICATION
IDOMS APPLICATION

DOMAIN DEFINTIONS.....
FORM STRUCTURE..caaau.
FORM DISPLAY......ccn.
FORM SKELETON...veaee.
FORM FIELD

POSITIONS. e eenececasssncssnencasssssssnanas

IDOMS APPLICATION

FORM PROCESSING

INSTRUCTIONS.cacastecsossssancnsassnvannns

IDOMS APPLICATION
IDOMS APPLICATION

FORM OPERATIONS.......
FORM CHECK

ROUTINES.ecevceosnrsesvsssaasssersnsosnaacss

IDOMS APPLICATION

FORM ERROR

ROUTINES . oviuerasusssnccasnrnassnsnneansas
DOMAIN DEFINTION ATTRIBUTES....vcivsneesse

FORM
FORM
FORM
FORM
FORM
FORM

STRUCTURE ATTRIBUTES..c.vescrrnsnnnnn
SKELETON ATTRIBUTES..:ecsevrsrnavanns
FIELD POSITIONS ATTRIBUTES...cceveaas
OPERATIONS ATTRIBUTES::cctssnvsacsnnn
CHECK ROUTINES ATTRIBUTES......cvvu..
ERROR ROUTINES ATTRIBUTES.....ce0ev.e

DOMAIN DATA STRUCTURE..eesssveasoensocsnas

FORM
FORM
FORM
FORM
FORM

STRUCTURE DATA STRUCTURE..:cessarsna-
SKELETON DATA STRUCTURE.....evevesensn
FIELD POSITIONS DATA STRUCTURE.......
OPERATIONS DATR STRUCTURE...seescaaes
CHECK ROUTINES DATA STRUCTURE...:e0s.4.

ERRCOR CHECK ROUTINES DATA STRUCTURE.......

42
47

48
50
74

75

76
77
78
79
80

81

82
83

B84

a5
86
87
88
89
S0
91
92
a3
94
85
86
87
98
99



1. CHAPTER ONE
1.1 Intreoducticn

This project, the Intelligent Data Object Management System
(IDOMS), studies the Intelligent Data Object approach to
routing information within a distributed computing system in
an office information environment. The project has been
restricted to the UNIX operating envirconment; it is part of
an overall plan at Kansas State University to create a
laboratory for the study of concurrency and concurrency
related problems. This piece will provide teaching and
research tools within the office automation section of this

cencurrency lapboratory.

This paper defines an office automation system in which the
objects proposed within are intelligent forms. These IDOs
or intelligent forms have the intelligence to complete their
subparts from files, databases or memory, to protect
themselves from users or classes of users, to maneuver
themselves through the network and to detect when they are

not receiving enough attention from a user.

Later chapters discuss the design of the Intelligent Data
Cbject. Specifically, the design of the data structures to
support the form structure and the form Processing

instructions are provided.



1.2 @Guide to the Report

4 review of the literature is presented in Chapter One along
with a general description of the specific problem solved.
Chapter Two contains the requirements for the design of the
data structures associated with the form structure and the
form processing instructions. Parts of the IDO system which
will interface with or access these data structures are
defined in this section. Definitions related to this
project may be found in figure 2-1 located at the end of

Chapter Two.

Logical and physical data structures are design specified in
Chapter Three. Chapter Three also describes the
implementation of these data structures within a UNIX
environment and an implementation which takes the output of
the form definition language and creates the physical data
structures. Chapter Four discusses strengths and weaknesses
of the proposed approach and suggests extensions of the

Intelligent Data Object Management System project.

1.3 Literature Review

1.3.1 Office Automation

1.3.1.1 What is an Qffice?
Before Weginning to understand the concept of office

automation, it is important to examine the entity called an



office. According to Lebensold, "an cffice is that part of
an organization into which comes information and in which
information is generated or transformed in such a way it can
be used outside the office to produce products, services and
money [Lebe82]." The major purpose of an office is to meet
the specific business needs of an organization by managing

this information.

The organizations and procedures used in an office are
common in generic respects but each office is unigue. This
characteristic of offices motivates tools which allow unique
modifications of general procedures. The design of forms

has been the focus of attention for this reason.

1.3.1.2 What Does It Mean To Automate An Office?

Automation in the office is the utilization of technology to
increase the productivity, the quality of office work
produced and the gquality of 1life for the office or
informaticon worker including middle level managers. Aan
automated office system can Dbe defined as a software-
intensive, computer-based system that attempts to support a
total office productivity. Its primary purpcose is not the
improvement of the performance efficiency of certain office
tasks but rather to improve the total office procedures
[Hamm80]. An office automation system integrates office
procedures and presents the end user with a uniform

interface.



1.3.1.3 Why Automate?

Current cost trends have made office autcomation increasingly
desirable. Declining computer costs, rising labor costs and
continually growing work loads have been propelling factors
for change in the evolution process of office automation.
In the United States, 22% of the work force is employed in
an office or administrative capacity [Zism78]. It has
become apparent that office automation is needed to improve
the ratio between the cost associated with an office and the
output of the office (the cost to benefit ratio needs to be
improved). Dffice automation can improve both the

productivity and quality of office work [Hamm80].

1.3.2 Intelligence

1.3.2.1 What Does It Mean for an Object to Have
Intelligence?

Information or data which is represented as a single unit
may be classified as a data object. An intelligent data
object is a data object that has Dbuilt-in decision making
capability and the ability to query and retrieve data which
is external to it. This data objegt has the capability to
cause computation of field values from existing fields, to
retrieve data from memory, files and a database, to lock

certain fields and to route itself within a network.

Fields may also change value depending on the time, the



current state of the system or any other wvariable within the
system. The intelligent data object does this by following
a sequence of instructicns which are stored internally to it
(at least logically!). This intelligent data object can be
thought of as an intelligent form within the office

automation environment.

The intelligent data object also contains the intelligence
to be able to determine when it is not receiving enough
attention from a user. It may be able to reroute itself or
represent itself if it is lost or delayed for a long period

of time.

1.3.2.2 Control Vs. “Almost” Manages Itself

The intelligence associated with a specific data object may
be centrally 1located, it may be distributed or the object
may carry the intelligence itself. 1In the first case where
the intelligence or control is centrally lecated, the data
object must report to a central location for processing. .
central program or group of programs provide the decision

making capability associated with the object.

When the control is decentralized, the data object must
pProceed to a specific location or station for a specific
type of processing. Distributed programs at the stations

provide the data object”s intelligence.



In the case where the data object "almost" manages itself,
the intelligence is self-contained within the object. The
contrel information is at least logically contained within

the data cbject.
1.3.3 Data Abstraction

1.3.3.1 What is Data Abstraction?

An abstract data type is a user defined set of wvalues plus
the set of operations associated with these values [Gehag3].
The definition of the data and the operations which may be
performed on the data are together in one package. The
abstract data object may be distinguished from other
abstract data objects of a different type by the operations

available on it [Lisk74].

Bn abstract data type is a data type not available as a
primitive in a programming language but built using the data
types provided by the language and other abstract data types
[GehaB2]. The user takes advantage of a concept which is
understocod at a lower level of detail. With data

abstraction one can be precise without being detailed.

The underlying representation of a data type is hidden from
the user, allowing only valid operations to be performed on
the object. The user sees a general, simplier view of the
preblem rather than seeing all of the details. A good

example of an abstract data type within programming



languages is the stack. The definition of a stack assures
that only valid operations may be performed. For example,
an abstract data cobject may defined such that a user is able
to push an item onto a stack but may Dbe restricted from

pepping an item off of a stack.

Data abstractions should be easy to program as well as
suitable for the problem area. They should include those
data elements and ocperations which are well suited to
solving the given preblem. Abstract data types should allow
for expression of relevant details while suppressing the

irrelevant details [Lisk74].

1.3.3.2 What is an Intelligent Data Abstraction?

When we combine intelligence with an abstract data type, the
result is an intelligent abstract data type. The set of
operaticns are extended within the intelligent abstract data
type and contain those operations from a class which include

decision making and the ability to query exXternal data.

1.3.4 Mail Systems

1.3.4.1 What is an Electreonic Mail System?

An electronic mail system provides & dgeneral navigational
method between stations for the transportaticn of objects
via electronic means. The major geal of an electronic mail

system is to deliver mail gquickly and without errors.



1.3.4.2 Types of Electronic Mail Systems

Basically, there are two types of mail systems, passive mail
systems and active mail systems. Passive mail systems are
very basic, allowing only for creation, sending and
receiving of objects within a system. With passive mail
systems, all that need be known is which object is to be
mailed and the destination of the cobhject. The content of
the object is not part of the addressing scheme. These mail
systems rely on the user‘s description of the routing of an
object to provide a hypothetical routing procedure or rely

on them knowing the exact name of each recipient [Tsic84].

Active mail systems can be thought of as message mahagement
systems. An active mail system is an "intelligent™ mail
system in which the mail itself knows something about the
structure of the object it is routing. Specifically, it
knows where the routing information is and how to interpret
the routing information. It "uhderstands" the message it is

sending.

Messages or objects within the active mail system are
structurally typed. The objects are intelligent, containing
routing information. Routing within the active mail system
may vary depending on results of various operations
performed. The mail system is allcocwed to manipulate the
object s content, to locate objects within the system and to

route objects [TsicB2a). Basically, the mail system manages



the information within the object and treats the cbject

according to its contents.

1.3.4.3 Intelligent Data Objects and Mail Systems

One possible extension of an active mail system is one where
the objects are intelligent data chbjects. The mail system
provides a general navigational method for 1IDOs between
stations. The system consists of objects, addresses,
persons receiving the objects and stations routing the
objects [TsicB4). The intelligent data cbjects are sent and
received between stations or nodes within the system. The
mail system provides the communicaticn mechanism between
nodes or work stations. The 1IDO contains the routing
information for the mail system .to act upon. The mail
system decides which station to route, utilizing this
routing information. It alsc updates the routing
information within the IDO based on the cutcome of

processing at the node.
1.3.5 Actors

1.3.5.1 What is an Actor?

Actors are communicating objects which have intelligence and
can communicate with each other without human intervention.
Actors may be used as the basis for an execution and
communication mechanism within a distributed computing

system.



-nlo..

Within a distributed system, actors communicate with other
actors | via messages. These actor objects execute
asynchronously driven by the sending and receiving of
messages. A1l objects within the distributed system,
including the messages, are actors. These actor objects are
highly modular and efficient with <thorpoughly defined

interfaces [Byrdl.

1.3.5.2 Relevance to Development of an IDO

An actor is an intelligent data object and is essentially an
intelligent abstract data type. Actors have the ability to
create other actor objects and they can easily modify the

actions of other actor objects.

actors may be used for programming distributed business
applications. An application is implemented as a collection
of actor objects which execute independently of one another

and communicate via messages.

An actor~based programming system was developed within the
System for Business Automation (SBA) project. This
programming system supports the creation of intelligent
objects which have a common structure and common behavior
and communicate via messages. One major objective of this
project was to allow the user to easily program these actor’
objects. This application differs from the actor formalism

by using larger actor objects which contain more



_11...

intelligence and rely less on communication between obijects

[Byrdgz].

1.3.6 Forms in an Office Automation Environment

1.3.6.1 What is a Forms Based Office Automation System?

A form is a printed cr typed document with blank spaces for
inserting required or requested information, according to
Webster’s New Collegiate Dictionary [GehaB2]. Forms allow
logically related data elements to be treated as one unit or
entity. Forms are very important to the office environment;
they are widely used scurce of information support. An
electronic form is a more powerful variety of form which may

provide many more capabilities than the paper form.

Within an office automation environment forms centain
structured data while nodes or stations are the processing
units. Forms originate in one station, proceed to another
station or stations for precessing and can terminate in
still another station [Laddso]. Forms are provided as
logical entities for the users to act upon. The user
interface for an office autcmation system may alsc be based
on forms. An office automation system based on forms will
allow for automated error checking of forms and provide a

control mechanism for authorizing access to data [GehaB2].



- 12 -

1.3.6.2 Why Forms in an Office Automation Environment?

Dealing with forms is a major part of manual office systems.
Forms are a very important component of an office and they
are extensively used for office support. A smooth
transition to an automated office system can be realized
because many of the properties of forms will be the same in
the automated environment. Forms provide a structured

approach to dealing with office cobjects [Tsich82c].

In an automated environment, forms may be automatically
routed and traced. Forms may be protected against
unauthorized use. Access to fields within a form and
operations on a form may be restricted to certain users or
classes of users. Creation and duplication of forms may

also be controlled within the automated system.

Forms can provide a more precise communications method and
eliminate most of the ambiguity within the office system
[TsicB2c]. Logically related data may be dgrouped together
to build a form or within a form to create section of a
form. Use of forms within an automated environment allows a
help facility and guide ¢to filling out or completing the

forms.

1.3.6.3 High Level Form Definition
A high level form definition language is a non-procedural

language for defining forms. This type of high level



- 13 -

language utilizes rigorously defined syntax and semantics
[Hamm?79]. A high level form definition language provides a
powerful toocl for the use of forms within the office
automation environment. It allows the user to define a form
type in terms of the operations which can be performed on
it. A major goal of a high-level form definition language
is to allow users (who are usually not programmers) to write
in the language; thus, reducing (or eliminating) the need

for program support [Ferrgz].

Many of the problems associated with office automation may
be eliminated Dby offering the user a high-level form
definition language. The primitives of a high-level form
definition language should be based on the natural
vocabulary and cobjects in the coffice environment so a user

may easily express himself [HammB80].

A powerful high-level definition language is an important
aspect of an office automation system. Every form-based
office automation system should employ a high level form

definition language for the following reasons [Geha81]:

o New forms are easy to define.

e All of the information regarding a specific form
definition is located in one place within the system.

@ Because a form definition is in cne place, it is much
easier to modify.



- 14 -

® High level form definitions are easier to read and
comprehend than coded form definitions. This makes
them easier to c¢heck for accuracy.
® Because there is no code, portability problems are
avoided. Porting from one station to another is as
easy as moving the form definition.
2 high level form definition language may be incorporated
into a programming language to provide conventional
processing of forms. A language which allows the user to
define the processing of an intelligent data object may also
be defined. 1In this case the equivalent to the programming

logic is located conceptually within the form definitien

itself.

A high level form definition language should provide many

capabilities. These capabilities include [GehaB83]:

1. Specification of the form skeleton (blank form) and
instructions for completing the form.

2. Bpecification of the attributes of the fields on the
form such as length or range.

3. Specification of the operations which are allowed on
this form type. Copy and display are exXamples of such
coperations.

4., Specification of access rights for fields, groups of
fields or for specific opsrations.

5. 8Specificaticn of pre-conditions, pre-actions, post-
conditions and post-actions associated with fields.

6. Specification of external routines and names.
7. Definitions of local data and local routines.

8. Forms processing.



- 15 =

These capabilities should be presented to the user in a way

that is easy for them to use.

The SBA form definition language provides a facility which
does not offer many of the capabilities a high-level form
definition should allow. Access rights may not be specified
for fields and operations. A limited number of field types
are provided and the operations allowed are the same for all
form types. In addition, conditions and actions may not be

separated into pre and post conditions and actions [Geha83].

1.3.6.4 Intelligent Forms in an Office Automation
Environment

An intelligent form is an intelligent data object within an
office automation environment. This intelligent form is an
abstract data type containing data, control information,
routing information and operations which are to be performed
on the forms data. They maintain the property of an
abstract data object in that implementation details are
hidden from the user. These intelligent data objects may
also include a triggering mechanism based upon internal data

conditions or exXternal stimuli, e.g., the system clock.

1.3.6.4.1 Fields
The intelligent form provides for specifying fields
associated with the form. Attributes and properties

associated with a field are indicated. Fields may be



- 15 -

modifiable, not modifiable and and to be filled at creation
time or not modifiable but can be filled later [TsichB82c].
Forme may allow for repeating groﬁps (listg) and compound
attributes (structures). Restricting attributes ¢to single
values avoids difficulties when displaying repeating groups
via a display mechanism. Forms may also be single or
multi-paged. A set of integrity constraints for each of
these data items may be specified. Fieids may automatically
be filled based on the content of other fields in the form.
Fields may change values depending on the time, the current
state of the system or the current value of a variable. &
user interface may provide consistency checks on data items
as they are entered into the form. Computation rules may

also be specified for individual fields.

Intelligent forms also allow for specification of access
rights. These access rights may be given to individual
users, classes of users or to a station or node within the
system. Access rights may be associated with a specific
form, individual fields on the form or aggregates of fields

on the form.

An electronic signature field may be used for form
authorizatiecn. Cnce a form or specified form section has

heen authorized or signed, its content may not be changed.

Form instances may have a unique identifier or key. This



- 17 =

way the system and the user may easily distinguish a form or
a form copy. The key may consists of a form type number, a
form dinstance number and a form copy number. One way of
accomplishing this is by issuing groups of unique numbers to

each station in the system [Tsich82c].

1.3.6.4.2 Operations and Routing

Qperations and routing which may be performed on a form are
also part of the intelligent form. Users of the office
automaticon system based on intelligent forms are only
permitted to interact with a form based on the operations

and routing which have been specified for that form.

Copying and sending a form are examples of operations which
are typically conducted on a form. A user may want te edit,

create or find a particular form instance.

Routing specifications indicate users (or nodes) for routing
of that instance of a form. Forms are routed between nodes
in the office automation environment. If the office
information system allows for parallel processing, the form

should specify any synchronization requirements.

Access rights may be specified for operations on forms.
Certa;n users or classes of users may be restricted from
using certain operations. For example, copying a form may
not be allowed for a given user. If this user attempts to

copy a form, the attempt will be denied. Ancther



- i8 -

possibility 4is that no user may be allowed to copy a

particular form.

The intelligent form encapsulates the information regquired
to perform one or more tasks. The data and the operations
which may be performed on the data are contained within the

form.

The intelligent form should allow for electronic signatures.
This allows proof that an office automaticn user has seen

and authorized the form instance.

1.3.6.4.3 Form Templates

A set of templates may Dbe associated with a form type
[TsichBch. Templates (or skeletons) allow for mapping form
data items onto a textual display. The user defines a

template and associates with it a form type.

To avoid problems of mapping a template instance operation
inte a form instance operations, operations are issued on a
form instance rather than the template instance [Tsich82c].
The user views operations as applying to the view of the
form he actually sees. Values and templates are stored
separately. When the user views a form they are merged

together.



_19—

1.3.7 1Intelligent Data Object Management System (IDOKS)

1.3.7.1 Overview of IDOMS Project

We are studying the Intelligent Data Object (IDO) approach
to routing information within a distributed computing system
in an office information environment. In our gystem, an
intelligent form is used as the foundation for creating the

intelligent data object.

Intelligent forms have built-in decision making capability
and the ability to query data eXternal to them. This
intelligence resides logically within the form itself.
Intelligent forms can compute fields from existing fields,
retrieve data from memory, files and databases, lock certain
fields and operations, and route .themselves within the

network.

The intelligent form consists of the form structure, the
processing instructions and the routing information.
Creation of a new intelligent form type consists of creating
these three parts. The IDO consists of the intelligent form
plus the routing and processing history and +the data
associated with a form instance. The form structure can be
thought of as a blank form which can be brought up on the
screen. Conceptually, the processing and routing
instructions are considered to reside within the IDO itself.

In this design and implementation, only the processing and



- 20 =

routing history and actual data wili be transmitted to a
station. The form processing instructions, routing
instruction and structure will be stored at each node. They
will Dbe routed to a node only in the event that the node is

unaware of this form type.

Once an IDO type is defined, instances of that IDO can be
instantiated by the user of the object. The user supplies
the required data and the object s intelligence will supply
the processing and/or routing instructions. Parts of the
IDO may be restricted to only being seen by certain stations

or by certain users or classes of users.

The processing instructions asscciated with an IDO will
allow for calculations of fields within the IDO from other
fields within the IDO and from data retrieved from other
sources including data bases. In addition, they will
provide integrity checking capability and security for

specified fields.

The sections which follow provide a high-level view of the

various aspects of the IDOMS project.

1.3.7.2 VUser Interface

A user-friendly, menu driven user interface will be provided
with IDOMS. The menus will provide a form-like structure
allowing for easy use by non-programmers. The user will be

prompted with easy to understand, unambiguous guestions and



- 2] -

will respond with short answers. The menu-driven user
interface will provide the user with access to the various

aspects of the IDOMS.

1.3.7.3 The IDO

The intelligent data cobject within IDOMS is an intelligent
form. This intelligent form consists of fields, field
operations, form operations (routing and processing), form
skeletons, external names and routines the data for a form
instance and the history of the routing and processing of a

form.

1.3.7.3.1 Fields

Fields within a form have attributes. The 1length, range,
type and deféult field attributes are defined via a domain
definition mechanism of the high-level form definition
language. Other field attributes which are supported by the
high~level form definition language include (but are not
limited to) the name of the field, whether filling of the
field by the user is optional or required, and whether the

field value is user supplied cor system supplied.

1.3.7.3.2 Field Operations
The operations which are performed on fields are part of the
IDO. The high-level form definitien language of IDOMS

allows for specification of these field operations.



- 22 -

These operations include integrity checking of field
contents and consistency checking between values on one form
and on different forms. When a value is entered or changed
on a form, the wvalue is checked against the field
attributes. Specification of these checks may indicate the
checks should be performed immediately prior +to or

immediately after filling a field.

The contents of a field may be computed from other fields on
this form, from fields on cother forms or from a system or
user defined variable. When one of the fields which is used
in calculating another field”s value changes, the calculated
field wvalue is updated (recalculated) to reflect this

change.

Users or groups of users may be restricted from accessing a
particular field (or fields) on a&a form. A user may be
restricted from viewing a field’s value or from entering or

changing a field’s value.

1.3.7.3.3 Form Skeleton

The blank form is part of the IDO. It provides the user
with the textual view of the form with the field portion
blanked out. The form skeleton is defined by the user of

IDOMS via the high-level form definition language.



- 23 =

1.3.7.3.4 Form Operations

Form operations include the processing and routing
operations which may be performed cn a form type. The IDOMS
high-level form definition language allows the user to
specify which operations are valid for this form type. It
also ailows for certain users or groups of users to have
restricted access to these operations ({on an individual
basis). Form operations may be those in the group of
standard form operations or they may be user defined
operations. The standard operations include mail, edit,
receive, update, create, destroy, archive, display, find,
copy, sStore, 1list all forms and access the forms

sequentially.

1.3.7.3.5 External Names and Routines

A form or field operation may refer to an external system
{or user) name or an external routine. The IDOMS high-level
form definition language allows for these operations to

refer to these external items.

1.3.7.3.6 Data In This Instance of a Form

The data for a form instance is logically a part of the
intelligent data object. The values associated with each
field on a form are stored locally at a node and then routed
from node to node within the system for processing of the
IDO. Values associated with a form instance may also be

sored in the IDOMS database.



- 24 -

1.3.7.3.7 History of the Routing and Processing of a Form
The history of the routing and processing of a form is
maintained. This historical informaticn is a logical part

of the Intelligent Data Object.

The history of where a form has been and what operations
have been performed con the form along the way is maintained.
Any changes to field values are tracked along with a
timestamp and 4identification of which user initiated the

change.

1.3.7.4 High-Level Form Definition Language

A high-level form definition language will be designed for
creating new IDO (form) types, for changing IDO types and
for deleting IDO types. The user will have access to the
form definition mechanism through the menu-driven user

interface system.

Definition of an IDO will be supported as discussed in the
previous section and in Chapter Two. The form definition
language is used to create intelligent form types. The user
of IDOMS will define domain definiticns, fields, field
opefations, form skeletons or masks, form operations and

external names and routines.

The IDOMS form definition language will be easy to use. The
language will allow the user to define the processing and

routing associated with an intelligent form as well as the



- 25 -~

form structure.

A form definition interpreter will populate the data
structures which define the IDO. Each IDOMS application
will have a data dictionary where tﬁe domain definitions,
form skeletons, form processing and routing operations and
form structures are stored. Each nede within the system

will have a copy of this data dictionary.

1.3.7.5 Database Management Facility

An IDOMS application will have a database where form
instances may be stored. A database management facility
will allow the user to add forms to the database, locate
forms in &a database, update forms in a database, delete
forms in a database, list forms sequentially, query data in
the database and archiving a database form. The database
management system will be accessed via the menu-driven user

interface.

1.3.7.6 Routing

A manager at each station or node within IDOMS will be
responsible for keeping track of the whereabouts of a form.
This manager will facilitate the sending, receiving and

tracing of IDOs within the system.

1.3.7.7 Processing of the IDO
A manager at each station will be responsible for mahaging

routines to process an IDO. This manager will ensure that



- 26 -

processing is performed as scheduled and in the proper

seguence.

1.3.7.8 Display Mechanism

A display mechanism will be provided which allows the user
to wview a blank form. This blank form consists of the
textual portion of a form and blank spaces for the form’s
fields. The display mechanism will be available through the
menu-driven user interface and will allow users to list the

available form types for display within IDOMS.

1.3.7.9 Form Editor

A form editor will be available wvia the menu-driven user
interface. The form editor allows for forms to be created,
modified, deleted, copied, stored in a file and located

within a file.

1.3.8 Summary of Project in Relation to the Literature

1.3.8.1 Review of Gehani‘s Work
Gehani‘s proposed electronic form is wvery similar to our
intelligent data object. Much of the IDO system is based on

Gehani‘’s work.

Within his system, forms are composed of fields, operations,
access rights and display information. An imports section
for defining external procedures and functions and a 1local

data and routines sections may also be spegified.



- 27 -

Attributes, constraints and actions may be specified for
geach field. Operations associated with each form type are
identified. Access rights are defined for fields and
operations. They specify which user or groups of users may
access specific fields or operations. Access rights are
dependent on the function or rank of a user. Access
privileges for a form may be changed dynamically to allow

for continual changes in the office structure.

A field’s value may be computed from another field or from
an external source {(i.e., a database or another form). The

value may also be calculated from more than one field.

Implementation details are also hidden from the user in
Gehani‘s system. Forms within the system are similar to
abstract data types; the underlying representation of the
form is hidden from the wuser. The form fields and form
operations are encapsulated together. The user is only
allowed to interact with the form according to the
cperaticons which have been specified by the form designer

[GehaB3].

Within Gehani“s proposed system, each node must have access
to the form definitions and the external procedures and
functions. The form definitions language is incorporated

inte a language such as Ada or Pascal.



- 28 -

At a conceptual level, our IDO system will support these

same features Gehani discusses.

1.3.8.2 Review of Tsichritzis” Work

Tsichritzis views forms as an abstraction and generalization
of business paper forms. Forms guide users in providing
needed information. He mainly views forms as functioning as
message handlers within an coffice information system. Forms
are a structured approach to handling messages. They impose
structure on communication messages similar to formatted

data impesing structure on knowledge [Tsic82b].

Forms within Tsichritzis® system cconsist of a dislay
skeleton, standard form operations, form type specific
operations and procedures which correspond to operations.
Knowledge about a form”’s content is encoded into the form’s
operations. As values are entered intec a form, side effects

may result. For example, a value entered for a field may

result in another field”s value being completed
automatically.
Form procedures specify actions to be performed

autcomatically by the system under certain conditions. They
are initiated when preccnditions are met, they perform some
actions and then they test for post conditions [Tsic8za].
Procedures check domain values, verify data integrity and

trigger actions including acticns affecting other attributes



- 29 -

and other forms. Procedures may take advantage of the
current +time, the station‘s identifier and the user’s
identifier to determine what action is to be taken. Forms
automatically £fill in certain fields or change values
depending on the time, the state of the system or the wvalue

of a variable.

Tsichritzis recommends that repeated dgroups and compound
attributes are allowed. He also suggests that old values
for fields as well as the associated time of change and
signature of the user are maintained. Anocther
recommendation is that a forms” approach to database query
is wused, providing the user with a sketch of a form as the
basis for defining a query. Global queries from a station
alloewing for specification qf stations covered by the query

is yet another suggestion.

Many of Tsichritzis’ ideas have also been incorporated into
our IDDO system. However, many of his recommendations will
not be added to the IDOMS system at this time but will be
recommended as future enhancements. Glcbal gueries,
multiple-paging forms, repeated groups as well as compound

attributes will not be supported at this time.

1.3.8.3 Review of the CDIN Form Management System
ODIN is a form management system which can be used to build

and maintain databases of forms. ODIN is a general purpose



-~ 30 -

system but was primarily designed for switching system
database administration. It has successfully been put to
use in both business and telephony applications [DiPiB3].
ODIN runs under the UNIX operating system and under a

variety of processors.

Capabilities offered by ODIN include data entry for
individual forms, data entry for groups of forms, full
screen form editing, data mapping, a relational data Dbase
manipulation language and report generation. Data mapping
capability is provided for mapping data into a format

suitable for real time databases.

ODIN is an intelligent form system. The user of ODIN is
allowed to operate on electronic forms at an abstract level.
ODIN’s major focus is on providing powerful data integrity
and data mapping facilities. This focus on error checking
is due to the differences between telephony applications and
"normal™ business applications. Switching data has a much
higher cost associated with error, data is highly complex
and integrated, and data must be logically and abstractly
presented to the user and then steored in compact, real-time

efficient data structures.

ODIN was not designed for the office automation envircnment.
Basically, it allows for interaction with a database. ODIN

does not allow for routing of forms or calculations of field



- 3] -

values.

1.3.8.4 Review of Ellis’ Work

OfficeTalk=D is an office information system prototype which
uses single-page forms and files of forms as data objects.
Communication between nodes is accomplished by
electronically passing forms among workstations. The use of
this system sees it is a desktop o©of electronic forms

[Elligz2].

Within OfficeTalk-D, a user designs a tailored set of Dblank
forms which they enter intc a database. A form editor
allows the user to add and change forms. An entity-relation
database is a central part of the system. Routing

intelligence is embedded intc the electronic forms [El1ig0].

1.3.8.5 Review of Zloof’s Work

Forms, two dimensional tables and reports are the objects
within the System for Business Automation (SBA). A user
defines objects on a two-dimensional display similar to the
way they would in a manual system. Objects are sent through
a communication system to other rnodes by specifving the

receiver’s user-id [Zloo81].

There are two major components of SBA. Query By E=xample
(QBE), a well known query language for relational database
systems, is part of SBA. Office procedures By ExXample

(OBE), is an extension of QBE adapted for office automation



- 32 -

system and is another component of SBA.

Within SBA, users may specify trigger conditions which
result in an action or several actions when activated. A
trigger expressiocn is a labeled QBE exXpression which
activates another trigger expression or an action when a

specific condition is met [Zloo81].

1.3.9 Chapter One Summary

The basic principles of an office automation system based on
forms have been discussed in Chapter One. Alsc an overview
of the Intelligent Data Object Management System and a
comparison of IDOMS to other systems has been discussed.
The next chapter discusses the requirements for the design
of an Intelligent Data Object within IDOMS. Specifically,
the requirements for the d4ata structures necessary to
support the form structure and processing instructions are

discussed.



- 33 -

2. CHAPTER TWO - REQUIREMENTS FOR THE DESIGN OF THE IDO
2.1 Introduction

An Intelligent Data Object is an object that has a built-in
decision making capability with respect to the actions which
take place cn it or in it. It makes these decisions by
using information that 4is stored internal to it and by
querying data which is stored external to it. This
intelligent data object 1is a form within a distributed

general purpose coffice automation environmant.

The operating envircnment for the development of this
prototype system is the UNIX operating environment.
Programs will be written in the Shell Command Programming

Language and C Language.

The requirements specified in this section are those for the
design of the data structures associated with the
intelligent form. Specifically, these requirements are for
the design of the data structures required for the form’s
structure and form s processing instructions. Many of the
requirements listed are those recommended by Gehani [Geha82,
GehaB83] and Tsichritzis [Tsic82a, TsicB2b, TsicB82c, TsicB4].

IDOMS project definitions may be found in figure 2-1.

Creating a new IDO type is synonymous with creating a new

form structure, the form processing instructions and the



- 34 -

form routing instructicens. The data structures associated
with an IDD type will be located at each node within the
office automaticon system and will not generally be routed
between nodes. The assumption could be made that a copy of
each IDO type is resident at each node. An equally wvalid
approach 1is to assume if a node does not have a copy of a
specific IDO type, it may request another node to send a

copy. The second assumption is taken in the design work.
2.2 Interfaces with IDO

The feollowing is a list of the sections of the Intelligent
Data Object Management System which will interface with the

data structures:

[, A manager at each station will send and receive the
IDOs within the system. It will exXamine the processing
instructions to determine what the node is toc do with a
received object and set up all mechanisms to accomplish
those tasks. This station manager will know the high
level structure of +the IDO and it will be able to

access the data structures.

¢ A local manager has the capability of managing all of
the routines necessary to process the IDO. The local
manager will also know the high level structure and

have access to the data structures.



_35_

¢® A database retrieval mechanism will be provided to
access intelligent forms which are stored within a data
base. This retrieval mechanism will know a form‘s
structure and processing instructions in order to

access the form.

® A high-level definition language will be provided for
the creation of new IDO types. The programs associated
with the definition language will populate the form
structure and processing instructions data structures.
These programs will know the specifics of these data

structures.

® A display mechanism will be provided. It will require
access to the data structures which describe the form’s

structure.

@ A form creation, modification and deletion mechanism

will be provided. These form operations may be applied
to forms in a database or within the user’s local file
system. These programs will also have access to the
data structures associated with the form’s structure

and processing instructions.

& A mechanism for creation of processing instructions
will have access to and know about the gdata striuctures

for the processing instructions.



—36_

® A field calculation capability is provided. These
programs will have access to the data structures for
the form s structure and the form’s processing

instructions.

¢ A mechanism for providing security and integrity for
data on a form is provided. These programs will also
require access to the data structures for the form’s

structure and the form’s processing instructions.

2.3 Requirements for Form Structure Data Structures

The following must be incorporated into the design of the

data structures which support the form”s structure.

@ These data structures will be hidden from the user.
The underlying representation of the IDO must be hidden
from the user for the IDC to exhibit the

characteristics of an abstract data type.

@ Data structures for the form” s structure will include
the data structures which are used to display a blank
form (screen) on a terminal or to print it. The
initial screen includes the text portion of the form
and the slots where the values of the fields are to be

filled.

¢ They will include the data structures which are used to



- 3 -

provide the user with help or error messages for
filling cut fields of a form. These help messages
guide the user of the system in completing fields on

the form.

The form’s structure data structures will provide for
each IDO to have a unique form type number, a unique
form instance number and a unigue <copy humber. The
form type number will identify <the station which
originated the IDD type in case current processing at a
node is unaware of the IDO. The unique copy number is
for identifying a copy of a form instance. The
combination of these fields will unigquely identify a

particular form and serve as a form’s key.

These data structures will support single page forms.
Multiple page forms will not be supported (in the

design).

The data structures for the form’s structure will
support the attributes given in figure 2-2 for fields
cn a form. A definition of each of the attributes may

be found in figure 2-3.

These data structures will support single valued
attributes (simple attributes). Compound attributes

(structures) will not be supported.



- 138 -

¢ They will not support repeating groups or lists.

® The data structures for the form”’s structure will
support the existence of multiple copies of a form
instance. Many copies of a form instance ﬁay exist at

one time.

& The data structures for the form structure will include
those data structures required to control access to
fields. Access rights will be associated with specific
fields. Individual users or classes of users may bhe

denied access to a specific field.

® These data structures will support the ability to check
on a field’s content immediately after it is entered.
The integrity of the field“s content may be checked for

accuracy upon data entry.

2.4 Requirements for Processing Instructions Data

Structures

The data structures for the processing instructions must

support the following list of reguirements.

® The processing instructions will be hidden from the
user. The underlying representation of the IDO must be
concealed from the user. The user should only be able

to interact with an intelligent form according to the



- 36 -

operations supplied for that form.

Access rights associated with fields and with
operations will be supported with the data structures.
These access rights will indicate which users or
classes of users may update certain fields and which

may perform specific operations.

The operations listed in figure 2-4 are those normally
performed on form instances in a manual form system.
They are allowed on a form instance basis for all form
types in the IDO system. However, their use may be
restricted to certain users or class of users. Also,
these operations may be customized with customization
procedures. Operations other than those 1listed in

figure 2-4 may be defined by the user.

The processing instruction data structures will support
data integrity checking. The content of a field may be

checked for accuracy upon data entry.

External routines and variables may be referenced by

the processing instructions.

The processing instructions will access and retrieve
data from a database, form a file and from memory. The
data structures for the processing instructions will

support these access and retrieval methods.



_40_

Cperations for deriving field contents from another
field or group of fields contents will be supported.
These data structures will also support computing a
fields automatically (completing fields from existing
fields). In addition, recalculations  will be
supported. When a field used in a calculatjion changes

value the calculated field(s) will be recalculated.

New form types may be created by a user. The
processing instruction data structures will support

this.

Consistency ameong formal copies of a form instance will
be maintained. The Processing instruction data

structures will support this.

Fields may be accessed and modified in any order. They

need not be accessed or modified in sequence.

Error messages will be printed when the user has
dttempted to access a field or operation they are not

permitted to access.

The content of a field may be dependent on the content
of another field or group of fields. Consistency
checking between fields on the same form and on

different forms will be supported.



- 41 -

¢ Field values will be checked at the time a form is

entered and when the form is changed.

¢ Operations which enforce different constraints and
trigger actions including actions affecting other
fields on the same form or other forms will be
supported. These procedures are performed either

before a field is filled@ or after a field is filled.

2.5 Chapter Two Summary

The requirements for the design of the data structures for
the form structure and processing instructions have been
discussed in this chapter. The portions of IDOMS which will
interface with these data structures are also discussed. In
the next chapter, the logical and physical data structures
are design specified. The implementation of these data
structures within a UNIX environment and an implementation
which takes the output of the form definition language and

creates the physical data structures is discussed.



- 42 -

Abstract Data Type - A user defined data structure and the
set of operations defined on that data structure; a data
object and the set of operations available on that object

(user defined)

Access Rights - Privileges asscociated with accessing fields

or operations for a user or group of users

Actors - Communicating objects which have intelligence

collecticons of communicating objects
Attribute - A descriptor ¢of an entity, i.e., a variable

Compound Field - A field which consists of two or more

subfields; a structure

Computed Field - A field whose value i5 calculated from
other fields on this form or cother forms or from system or

user defined variables

Consistency Check - Verification that two or more field
values on a form or on different forms are in agreement if

there is a relationship between their values

Data Abstraction - A structure for data that defines both
the structure of the data and the legal cperations on that
data. The details of the underlying data structures and the

operation implementation are hidden from the user.

Figure 2-1. IDOMS Project Definitions



- 43 -

Data Mapping - Transiticning data from a user-friendly

format to machine oriented format

Domain - The set of wvalues from which the wvalue of an

attribute may be selected

Electronic Form - Abstraction and generalization of business
paper forms; Logical images of business paper forms an
abstraction and generalization of a business paper form; A

logical image of a business paper form.

Electronic Signature - An identifying mark (sequence aof
ASCII characters) which distinguishes a user from any other

user and provides an authcrization mechanism for forms

Error Message - Printed text (on a screen or paper) which
describes an error discovered when inputting or changing a

field or when performing field or form operations

Field Operations - Operations which may be performed on the

contents of fields (i.e., change)

Form - & form is any structure for data that can be
represented in a two-dimensional surface. Common forms
include those used in business, industry and bureaucratic
organizations for the specificaticn of functions. A form

constrains and guides the form instance user.

Figure 2-1 IDOMS Project Definitions (Continued)



Form

copy

Form

of a

Form

- 44 =

Copy - A copy of a form instance which has a unique
number
Copy Number - A unigue numeric identifier for this copy

form instance

Instance - A form instance consists of the form type,

the form key and the contents of the fields within the form;

A completed form ( the fields have assigned values)

Form

forn

Form

form

Instance Number - A unigque, numeric identifier for this
instance
Key (Identifier) - A unique field or set of fields on a

which distinguish this form instance (and copy) from

any others

Form

form

Form

user

Forn

type

Form

type

Operations - Operations which may be performed on a

instance (i.e., copy, route)

Template {Skeleton) - The display image of a form (the
and system defined information is excluded)

Type - A data type defined for forms; An abstract data

Type Number - A unique numeric identifier for this form

Figure 2-1 IDOMS Project Definitions (Continued)



_45_

Integrity Check - Verification, based on predefined rules,

that the contents of a field is accurate

Intelligent Abstract Data Type - An abstract data type whose
set of operations are extended to include those which may
cause a "triggered!" action, retrievals from an external

source and routing information

Intelligent Data Object (IDO) - An instance of an

intelligent abstract data type

Intelligent Form - A form which logically consists of the
form structure, the form processing instructions, the form

routing instructions and the associated data

Office Automation System - A computer software system that
seeks tO support an entire office procedure rather than
improve performance and efficiency of certain tasks

[Hamm8C].

Online Data INtegrity System (OPIN) - A form management
system designed primarily for telephony applicaticns and

which can be used to huild and maintain databases of forms

Post-Action - A condition which is tested immediately after

filling a form

Post-Condition - A conditien which is tested immediately

Figure 2-1 IDOMS Project Definitions (Continued)



- 46 -

after filling a form

Pre-Action - An action which follows the testing of a post-

condition

Pre-Condition - A condition which is tested immediately

prior to filling a field

Repeating Group — A list of cne to many items where items
may be single items or compound items (i.e., a list of

addresses or a list of courses and course grades)

Station - An abstract entity which represents a person

playing a certain role in an organization

Trigger (Condition) = A condition which activates

(initiates) a certain action

Type - A set of values and the set of operations that may be

performed on these values

User-Friendly - Presents information in a way that the

intended user may easily use and understand

Figure 2-1 IDOMS Project Definitions (Continued)



- 47 -

NAME

TYPE

LENGTH
RANGES
FORMAT
DEFAULT
REQUIRED
VIRTUAL
PERSONALIZED
UNCHANGEABLE
UNRESTRICTED
TAG

VARIANT
OPTIONAL
DEPENDENT
ORDERED

LOCK
CONDITIONAL
INVISIBLE
VARIABLE LENGTH

Figure 2-2. Attributes Supported By IDOMS



- 48 =~

Conditicnal ~ Field is filled by the user on the c¢ondition
that information is not currently available in the database
or that the information will change; it will alsc allow for
the field to have an initial default value

Default - Value which a field should take on initially upon
form creation

Dependent - Fields may Dbe filled with data satisfying
certain associated constraints

Format - Format of the field

Invisible - Field will be invisible t0 users or classes of
users which don’t have access rights to this field

Length - Maximum width of the field“s value

Lock - Causes other fields or this field to be locked when
it is filled

Name - Name of the field
Optional - User is not required to enter a wvalue

Ordered - Fields may be filled in only after some other
fields have been filled in

Personalized -~ Filled in automatically from the user’s
profile or system variables

Range - Range of values the field may assume

Required - The user must specify a value for this field in
order for the form tc be considered complete

Rollever - When entering a new form instance, the value for
this field remains from the previous form instance

Tag - The value of this field will determine the selection
of the proper variant from a set of variants

Type - May be character, string, integer, boolean, float or
enumeration types such as signature or date. User defined
types may also be supported

Unchangeable - Data entry for this fieid is optional but the
field“s value cannot be changed once a value is entered

Figure 2-3. Definitions Of Attributes Supported By IDOMS



- 49 -

Unrestricted - Data entry for this field is optional and the
field”s value may be changed at any time

Variant - These fields may not be filled in until the
corresponding tag field is filled in; only one variant is
selected per tag field value

Variable length -~ The length of the field is wvariable
Virtual - This field can‘t be filled out by the user; values

are computed autcomatically for the user agcording to rules
which have been prespecified

Figure 2-3 Definitions Of Attributes Supported By IDOMS (Continue



- B0 -

ACCESSING FORMS SEQUENTIALLY
AUTHORIZING A FORM

EDIT

SEND (MAIL/ROUTE)

RECEIVE

UPDATE (MODIFY)

CREATE

DESTROY (DELETE, SHRED)

ARCHIVE

DISPLAY

FIND (LOCATE)

COoPY (QFFICIALLY AND UNQFFICIALLY)
STORING A FORM IN A DATABASE OR A FILE
TRACE

LIST_ALL_FORMS

Figure 2-4. Valid Operations For IDOMS



_51_

3. CHAPTER THREE - DESIGN OF THE IDOC

3.1 Design Overview

The IDQ data structutes utilize the basic UNIX operating
system file structure. The UNIX file system is arranged as
a hierarchy of directeories in the form of an upside-down
tree. The source of the tree is the root, or the root
directory. Each directory may contain &ny number of
directories, developing a branch structure. Each directory

may alsc contain any number of files.

In a tree structure, data is organized so that items of
information are related by branches. A file is a collection

of records where each record consists of one or more fields.

A primary consideration in the design ¢f these data
structures was the fact that these data structures will be
created and accessed but not changed. The design of TIDOMS
deces not support changing the definition of form types once

they already exist within the system.

3.1.1 Overall File Structure
A model of the IDOMS directory structure is shown in figure
3-2. Figure 3-3 has this same directory structure expanded

to include the files within the directories.

wWithin the domain definitions directory, one file exists for



_52_

every domain the user has specified wvia the domain
specification mechanism of the high-level form dJefinition
language. One form structure file is created for every
intelligent form type in IDOMS. These files are stored
within the form structure directory. The file name is the

form name.

Twe files are used to represent a blank form: a form
skeleton file and a form field positions file. These files
are located in the form skeletons and form field positions
sub-directories, respectively, of the form displays

directory.

The operations which may be performed on forms and form
fields are located within the form processing instructions
directory. Each form has one form operations file, one form
check routines file and one form error routines file within
the operations, check routines and error routines sub-
directories of the form processing instructions,
respectively. A file name is the form name within these

directories.

3.1.2 Initial Set-Up

When setting up an IDO application, an IDO data dictionary
will be created. 1In order to create this data dictionary,
the application name must be supplied. The IDO data

dictionary will bDbe implemented using a UNIX directory



- B3 =

containing sub-directories. Four sub-directories are
created for the IDO form structure and processing
instructions: a domains directory, a structures directory, a

displays directory and a processing instructions directory.

The displays directory branches into two directories: the
skeletons directory and the field positions directory. The
processing instructions directory forks into three
directories: the operations directory, the check routines
directory and the error routines directory. All of the
above directories are created when the IDO application is

initially set-up (see figure 3-2).

The high-level form definiticon language programs create the
IDO data structures within these directories as a result of
processing the form specifications. More detail of the
contents of these directories is given by figure 3-3 and in

the rest of this chapter.

3.2 Domain Definition Design

Each field on a form has an underlying domain. Domains are
global to the IDO system application. This means that any
form may use a specified domain definition. Each domain

must have a unique name.

Two or more fields on the same form may specify the same

underlying domain. The field name on a form may be the same



- 5G4 =

as the underlying domain name. Two (or more) fields on the
same fdrm may not have the same field name. Two fields on

different forms may have the same field name.

A domain definition censists of the field type, the field
length, the allowable range of the field and the default
value for the field. Field type and length are required
attributes. The range and default value are optional (see

figure 3-13}.

The domain data structures are contained within files in the
domains directory within the IDO system application data
dicticonary directory (see figure 3-4). The name of this
domains directory is ido-appl-ident/IDD.DICT/DOMAINS. Each
domain data structure is in a separate file within the
DOMAINS directory. The file name is the domain name which

is allowed to be 1l-14 characters in length.

The domain data structure consists of four fields - the type
field, the 1length field, the range field and the default
field. The ASCII “dcl” character (021.0) is the field
delimiter in the domain definition data structure. When a
range or default wvalue has not been specified in the form

definition by the user, the field is empty.



_55_

3.2.1 Type

Valid field types are character, string, integer, boolean
and float. Only simple fields are supported by the IDO
design. Complex fields (e.g., structures and lists) are not

supported. A type must be specified for every domain.

The type field (see figure 3-20) of the domain data
structure is one ASCII character in length. The allowable
values for this field are:

‘¢’ for character,

“s” for string,

7i” for integer,

‘b’ for boolean and

7f7 for float.
The type field is populated based on the value the user has

specified in the domain definition.

3.2.2 Length
Fixed length fields are supported within the design of the
IDO. Variable length fields are not allowed. Every domain

must have a length.

Tne length field (see figure 3-20) in the domain data
structure ceontains an integer in the range from 0-512. This
field is populated bhased on the value the user specified for

length when defining the underlying domain.



- b =

3.2.3 Range

The range is the set of allowable values that a field may
centain. This set may consist of one or more values.
Specification of the range attribute for a domain is
optional. If supplied, the range must be valid for the type

and length specified.

Multiple ranges (a list of ranges) may be specified for one
domain. If no range is specified, the range list is empty.
If multiple ranges are specified for a domain, the elements
of the 1list are separated by the ASCII “dcz2’ (02Z.o)
character. The range field (see figure 3~20) of the domain
data structure may consist of one or more of the following

when a range has been specified for a domain:

¢ a single value of the valid type and length for

this domain or

® a range of values where each element in the set of
values associated with this range is of valid type
and length for this domain. These ranges appear
in the format (low-value, ASCII ~“dc3-, high-
value). The ASCII “dc3” isg the delimiter between

the low and high values associated with the range.



- 57 =

3.2.4 Default

The default attribute is used when all or most of the fields
referencing this domain will frequently have the same value.
A default value may be 0-512 in length and the type may be
any of the types listed in the type section above. The
default value for a domain must match the type, length and

range (if specified) of the domain.

The default attribute of a domain definition is optional. A
default may also be specified for a field {as opposed to a
domain). If defaults are specified for both a field and its
underlying domain, the default value for the field is used.
{The field’s default wvalue takes precedence over the

domain‘s default value.)

If a domain has no default value, the default field (see
figure 3-20) within the domain data structure is empty. 1If

there is a default value, this field contains that value.
3.3 Form Structure Design

A1l forms will have unigue names within an IDQ system
applitation. A form structure definition consists of the
field names, the underlying domain names, the field types,
the default value of the fields (optional}, the variables
which are used to personalize the field {(optional),

indication of whether or not the fields are rollover fields



- g -

(optional), any locks associated with the fields (optional)
and also any access rights associated with the fields

{cptiocnal).

The form structure data structures are located within files
in the form structures directory within the Intelligent Data
Object system’s data dictionary directory (see figures 3-2
and 3-5). The name of this form structure directory is
ido-appl-ident/IDO.DICT/STRUCTURES. The data structures for
a form are in a file within the STRUCTURES directory. The
form name is the name of this file. There is one file for

each form.

The data structure for the form structure consists of a form
identifier and a 1list of one or more 1list elements
containing the field name, the field type, the personalized
field, the rollover field, the lock field and the invisible
field (see figure 3~14). One group of these fields exists
for every field which has been defined on a form. An ASCII

“dc3” character delimits the list elements.

The ASCII “dcl” character (021.0) is the field delimiter in
the form structure data structure. When one of the optiocnal
fields has not Dbheen specified by the high-level form

definition program user, thig field will be empty.



_59_

3.3.1 Form Identification

The forh identification field is a tweo part field consisting
of the form instance number and the form copy number. This
field is specified by the IDO system (not by the user).
These form instance and form copy number sub~fields are
created automatically when a new IDO type is created. The
form identification field serves as a key to a form

instance. This key uniquely identifies a form instance.

The form instance number keeps track of the individual form
instances. The intent of the copy number field is to
maintain contrcl over the copies of an individual form

instance.

The form instance number subfield contains an integer ‘value
originally set to Zero when an IDC type is created. This
integer value may be between ¢ and 10,000, This subfield
will always contain a value (it may not be empty). The
value in this field will be incremented automatically as a
new form instance is created. This value is synchronized
between nodes or stations within the IDO system; all copies
of a form type within the system contain the same form

instance number.

The form copy number subfield also contains an integer value
originally set to zZero when an IDD type is created. This

subfield will always contain a wvalue 1in the range of O



- 80 -

through 10,000. The form copy number for each copy ¢of a

form type within the IDO system is synchronized.

3.3.2 Field Name
The field name is the name which has been specified within
the form definition for a particular field. A field name is

specified for every field on a form.

The form structure data structure contains one field name
field for every field which has been specified for a form
{see figure 3-21). This name field contains the ASCII
character field name. Field names are 1 to 30 characters in

length.

3.3.3 Domain Name
The domain name is the name of the underlying domain for
this field. A domain name is specified for every field on a

form.

The form structure data structure contains one domain name
field for every field specified for a form {see figure 3-
21). This field contains the ASCII character representation
of -the field. Dcmain names may Dbe 1-14 characters in

length.

3.3.4 Field Type
The field type indicates whether entering a field”s value is

required, computed, not required but not changeable after



- 61 -

entered, not regquired and changeable once a value as been
entered, optional or supplied by the system when entering or
changing a form instance. Only one of these is applicable
to a field. Conditional, tag and variant field types are
not supported in the IDO system design. Specification of
the field type is optional by the user of the form
definition language, Opticonal is the default type if a type-

has nect been specified.

The form structure data structures centain one field type
field for every field defined on a form (see figure 3-21).
This field is cne ASCII character in length. The field

contains:

® an ‘r’ when a value must be entered for a field
(required),

® a “v’ when the user can‘t supply a value because
the value is computed by the system (virtual),

@& a ‘u’ when the field is unchangeable (the user is
net required to supply a value but the field’s
value cannot be changed once a value is entered),

® an “n” when a field is unrestricted (the user is
not required to supply a value and may change a
value after it is entered),

¢ an ‘o7 when the field’s value will be optionally
supplied or

® a “p” when a field”s value will be automatically
filled frem the wuser’s profile or a system
variable.



- B2 -

3.3.5 Default Value

Default values (see figure 3-21)} for individual fields may
be specified within the form definiticen. If a default value
is specified for a field and for that field“s underlying
daomain, the default value for the field is wused.
Specification of a default value is opticnal. If a default
is defined for a field, it must be valid for the type,

length and range of this field”s domain.

The form structure data structure contains cone default field
for every field on a form. The default value may be 0-512
in length and may be of type character, integer, string,
boclean or float. The default value’s type will match the
type of the underlying domain. If no default is specified,

this field will be empty.

3.3.6 Personalized

A field may obtain its value from a user defined wvariable or
a system variable. When creating a new IDO type, the user
will specify whether or not a field is personalized. If it
is, they will specify the name of the variable the system

should use to populate this field.

The personalized field (see figure 3-21) of the form
structure data structure contains the name of the user or
system variahble which will be used to populate this field’s

value. The personalized field is an ASCII character fielad



- B3 -

from 0-14 characters in length. If a field on a form is not

personalized, this field is empty.

3.3.7 Rollover

When defining a form, the user may indicate a field is a
rollover field. B field is specified as a rollover field
when many instances of the form will be entered at one <time
and the field”s wvalue will be the same for many of these

forms.

When two or more instances of the same form are entered
consecutively, the value which was entered on one form for a
rollover field will reappear on the following form for that
same field. The user may change this value before storing

the form in a file or database.

The rollover field (see figure 3-21) of the form structure
is a boolean field. If the field on the form is a rollover
field it will contain a one; if it is not it will ceontain a

Zero.

3.3.8 Lock

IDO system users may define locks which are to be applied to
fields or groups of fields after a value for a specific
field has been entered. A user associates this locking
mechanism with a particular field and indicates which fields

should be locked after a value for the field is entered.



- B4 -

The lock field of the form‘s structure consists of a list of
zero or more elements containing the names of the fields to
be locked. A list element contains a field name which is 1
to 30 ASCII characters in length, The 1list items are
separated by the ASCII “dc2‘ character. If a field decesn‘t

have a lock asscciated with it the lock field is empty.

3.3.9 Invisible

Users or classes of users may be restricted from accessing a
field. They may be restricted from accessing one or more
fields on a form. The user of the IDO system specifies the
user or class (group) names which are restricted from

accessing a field.

The invisible field (see figure 3-21) of the form structure
data structure indicates which users or class of users are
restricted from accessing this field on the form. The
invisible field is an ASCII character field containing a
list of cne or mere list elements. An element centains the
user or class name. Each user or class name is 1-8 ASCII
characters in length., The elements are separated by the
ASCII “dc2” character. If the field on the form has no

restrictions, its associated invisible field is empty.



- B -

3.4 Form Display Design

Each form has infeormation for displaying a blank form
associated with it. This infermation indicates what text
will be printed and where it will be printed on a screen or
printer. It also indicates where the field values will be

printed.

The form display data structures are contained within two
directories, the form skeletons and the form field positions
directories, within the IDO system application data
dictionary (see figures 3-2, 3-6, 3-7 and 3-8). The names

of these directories are

ido-appl-ident/IDO.DICT/DISPLAYS/SKELETONS

and ido-appl-ident/IDO.DICT/DISPLAYS/FLD.POS

respectively. They are sub-directories within the DISPLAYS

directory.

3.4.1 Form Skeleton

A blank form consists of the textual information which is
displayed on a CRT or printed on a printer. The dimensiocn
of a CRT screen is 24 rows by B0 columns. The user creating
an IDO type specifies the row and column nhumbers where

textual information will be displayed on the screen.

A form skeleton data structure consists of a 1list of



- 66 -

structures. The structure list consists of three elements:
the line number where the text will begin on a screen, the
column number where text will begin on the screen and the
the text to be displayed (see figure 3-15). The form
skeleton data structure consists o©f one or more of these
list structures each separated by an ASCII “dc3“ character.
{Assumptions: The program creating this data structure has
checked that one textual field will not overlap another and
that the text is of valid length for the space available on

the screen.)

Only one form skeleton is allowed per form. Each form
skeleton is 1located within the SKELETONS directory. The
skeleton data structure file name is the form name. This

file name may be 1-14 characters in length.

3.4.1.1 Line Number
The line number field (see figure 3-22) contains an integer
between 1 and 24. This number indicates the starting line

for the text.

3.4.1.2 Column_Number
The column number field (see figure 3-22) contains an
integer between 1 and BO. This number indicates the

starting column for the text.



- 57 =

3.4.1.3 Text
Textual information which is to be displayed on a blank ferm
is contained within the text field. This field is 1 to 80

ASCII characters in length.

3.4.2 Field Positions

A user creating an IDO type will indicate where the field
values are to bpe displayed on the screen or printer (see
figure 3-22}. The user specifies the row and column numbers

where field values will be displayed.

3.4.3 Form Field Position

& form field position data structure consists of a list of
structures containing the beginning row and column numbers
where field values will he displayed and the name of the
field to be displayed at that location. This list contains

cne structure for every field appearing on the blank form.

3.4.3.1 Line Number
The line number field (see figure 3-23) contains an integer
between 1 and 24. This number indicates the starting line

for the field“s value.

3.4.3.2 Column_Number
The column number field contains an integer between the
values of I and 80. This number indicates the starting

column for the text.



_68_

3.4.3.3 Field Name
This field contains the name of the field to be displayed
{see figure 3-23). Field names are 1 to 30 ASCII characters

in length.

3.5 Form Processing Instructions Design

When creating an IDO type, the user specifies which
operations (both standard and user defined) are allowed for
a form. The user also specifies any users or classes of

users which are restricted from using these coperations.

The list of standard operations allowed on a form include:

mail,

edit,

send,

receive,

update,

create,

destroy,

archive,

display,

find,

COP¥

store,

list_all forms and
sequential_access.

User defined gperations may be variations of these standard

operations.

Users of the IDO system may alsc specify check and error
routines associated with the filling of fields on a form.

Prier to or Jjust after entering a field’s wvalue, the



- 69 -

designer of the system may wish to check a condition. These

check routines may have associated error routines.

The data  structures which support the  processing
instructions include the form operations data structures,
the check routine data structures and the error routine data
structures. These data structures are within the
operations, check routines and error routines directories of

the IDO system. These directories are named

ido-appl~ident/ID0.DICT/PROC. INSTRS/OPS,
ido-appl-ident/ID0O.DICT/PROC. INSTRS/CHK.RTNS and

ido-appl-ident/IDO.DICT/PROC. INSTRS/ERR.RTNS

respectively (see figures 3-2, 3-9, 3-10, 3-11 and 3-12).

3.5.1 Form Operations

The form operations data structures contain the 1list of
allowable form operations and the users or classes of users
which are restricted from using these operations (if
applicable). An operation which is not 1listed in this

structure is not allowed on this form type.

The form operations data structure is a list of 0 or more
list items. There are two elements in the list: the
cperation and the list of users or classes of users
restricted from using the associated operation {(see figure

3-17). An operation may have no user restrictions



—70_

associated with it.

3.5.1.1 Operation Field
The operation field (see figure 3-24) is a two character

ASCII field containing one of the following:

7 for the mail operation,
- for the edit operation,
 for the send operation,
7 for the receive operation,

“u” for the update operation,

“e¢” for the create operation,

“d” for the destroy operation,

“a’ for the archive pperation,

“17 for the display operation,

“f7 for the find operation,

‘07 for the copy operation,

“£“ for the store operation,

<z for authorize,

717 for the list-all-operation,

‘g” for the sequential-access operation or
any other one or two character user defined
operation code.

N A

m
e
s
r

s

3.5.1.2 Restrictions Field

The restrictions field (see figure 3-24) is a 1list of the
users which are restricted from using the cperation. Each
element in the list contains the ASCII character user or
class name, The user or class identifier is 1-8 ASCII

characters in length.

3.5.2 Field Check Routines

The check routines data structures contain the names of the
check routines associated with the fields on a form. It
also contains the name of the field the check routine is

associated with and an indicator field which indicates



- 7] -

whether the routine should be executed before or after the
the field is filled. These check routines are performed
either just prior to filling a field on a form or just after

filling a field on a form.

The data structure for the check routines is a list of 0 or
more items. Each element in the list contains three parts:
the field name, the check routine name and a pre or post

indigator.

3.5.2.1 TField Name
This field (see figure 3-25) contains the name of the field
which has an associated pre or post check routine. The

field name is 1 t¢ 30 ASCII characters in length.

3.5.2.2 Check Routine

The check routine field (see figure 3-25) contains the name
of the check routine which should be executed immediately
prior to filling this field or immediately after filling
this field. The check routine field is 1-30 ASCII
characters in length. The name of the check routine
(operation name) is & link to the routine which is stored
perhaps in the data dictionary or perhaps outside of the

data dictionary with a group of programs.



= HY =

3.5.2.3 Pre-or-Post

The pre-or-post field (see figure 3-25) indicates whether
the check routine 1in this 1list element is a pre-filling
routine or a post-filling routine. The pre-or-post field is
a Dboclean field. A zero indicates this check routine is
used before filling a field and a one indicates this check

routine is used after filling a field.

3.5.3 Error Routines

The error routines data structures contain the names ¢f the
error routines associated with the fields on a ferm. It
alsc contains the name of the field the error routine 1is
associated with and an indicator field which indicates
whether the routine should be exXecuted before or after the
field is filled. An error routine may print an error

message or a help message.

3.5.3.1 Field Name
This field (see figure 3-26) contains the name of the field
which has an associated pre or post error routine. The

field name is 1 to 30 ASCII characters in length.

3.5.3.2 Error Routine

An error routine may or may nct accompany a check routine.
The error routine field (see figure 3-26) contains the name
of the error routine which sheuld be eXecuted immediately

after an error has occurred. The error routine field is 1-



= HY -

30 ASCII characters in length.

3.5.3.3 Pre-or-post

The pre-cor-post field indicates whether the error routine in
this list element is a pre-filling routine or a post-filling
routine. The pre-or-post field is a boolean field. A =zero
indicates this error routine is used before f£illing a field
and z one indicates this error routine is used after filling

a field.

3.6 Summary

The lcgical and pnysical data structures associated with an
intelligent data object’s form structure and processing
instructions have been described in detail in this chapter.
An implementation which takes the output of the form
definition language and creates the physical data structures
has alsoc been discussed. The next chapter will discuss some
of the strengths and weaknesses to this approach and suggest
extensions of the Intelligent Data Qbject Management System

project.



-74 -

FIGURE 3-1. IDOMS APPLICATION

DIRECTORY

.../application-name/DATA.DICT

DATA _
DICTIONARY




-5

FIGURE 3-2. IDOMS APPLICATION - FORM STRUCTURE AND
PROCESSING INSTRUCTIONS DATA STRUCTURES

../application-name/TDO.DICT

DO DATA

ICTIONARY
DIRECTORIES

]
/DOMAINS /STRUCTURES /DISPLAYS /PROC.INST
DOMAIN FORM FORM mggggmc

DEFINTTIONS STRUCTURES DISPLAYS INSTRUCTION

/

/SKELETONS | /FLD.POS

FORM %
SKELETONS | | poctotl o
/OPS /CHK.RTNS | /ERR.F

CHECK ERROR
OPERATION ROUTINES ROUTINES




-76 -

FIGURE 3-3. IDOMS APPLICATION - FORM STRUCTURE AND
PROCESSING INSTRUCTIONS DATA STRUCTURES

DO DATA
DICTIONARY
|
DOMAIN FORM FORM PR?O.C]';SSRMNG
DEFINITIONS STRUCTURES DISPLAYS Bt
. DOMAIN FORM
DEFINTTIONS STRUCTURES
=
SKELETONS B T
—— =
SKELETONS |1 posrTIONS
CHECK
OPERATIONS ERROR
ROUTINES ROUTINES
FORM FORM FORM
OPERATIONS CHECK ERREH
b s s ek ROUTINES | | : ROUTINES




17 -

FIGURE 3-4, IDOMS APPLICATION - DOMAIN DEFINITIONS

DIRECTORY .../application-name/IDO. DICT/DOMAINS
DOMAIN
DEFINITIONS
FILES
____________ s e
/domain-name /domain-name {domain-name :
|
DOMAIN
DOMAIN DOMAIN DEFINTTIONS

DEFINITIONS DEFINITIONS




-78 -

FIGURE 3-5. IDOMS APPLICATION - FORM STRUCTURE

DIRECTORY .../appiication-name/IDO. DICT/STRUCTURES
FORM
STRUCTURES
FILES
_____________ o
|
/form-name fform-pame Hform-anme i
FORM FORM FORM

STRUCTURE STRUCTURE STRUCTURE




-79 -

FIGURE 3-6. TDOMS APPLICATION - FORM DISPLAYS

DIRECTORY
...application-name/IDQ. DICT/DISPLAYS
FORM
DISPLAYS
DIRECTORIES {SKELETONS /FLD.PQS
roru o
SKELETONS POSITIONS




-80 -

FIGURE 3-7. IDOMS APPLICATION - FORM SKELETONS

DIRECTORY .. 4application-name/IDO, DICT/DISPLA YS/SKELETONS
FORM
SKELETONS
FILES
............. oo
/form-name fform-name form-name 1
I
FORM FORM FORM

SKELETON SKELETON SKELETON




-81-

FIGURE 3-8. IDOMS APPLICATION - FORM FIELD POSITIONS

.. fepplication-name/TDO. DICT/DISPLA YSFLD.POS

DIRECTORY
FORM
FIELD
POSITIONS
FILES '
_____________ o e on
/form-name /form-name fform-name i
)
FORM FORM FORM
FIELD FIELD FIELD
POSITIONS POSITIONS POSITIONS




.82 -

FIGURE 3-9, IDOMS APPLICATION - FORM PROCESSING INSTRUCTIONS

DIRECTORY .../application-name/IDO. DICT/PROC.INSTRS
FORM
PROCESSING
[NSTRUCTION
DIRECTORIES
JOPS /CHK.RTNS /ERR.RTNS
CHECK ERROR
OFERATIONS ROUTINES ROUTINES




-83-

FIGURE 3-10. TDOMS APPLICATION - FORM OPERATIONS

DIRECTORY .../application-name/IDO. DICT/PROC. INSTRS/OPS
OPERATIONS
FILES
............. o g
fform-name /form-name Horm-name E
FORM FORM FORM

OPERATIONS OPERATIONS OPERATIONS




FIGURE 3-11. IDOMS APPLICATION - FORM CHECK ROUTINES

DIRECTORY .../application-nameTDO. DICT/PROC. INSTRS/CHK. RTNS
CHECK
ROUTINES
FILES
_____________ Fommnmme-
/form-name /form-name /form-name E

FORM FORM FORM

CHECK CHECK CHECK
ROUTINES ROUTINES ROUTINES



-85 -

FIGURE 3-12. IDOMS APPLICATION - FORM ERROR ROUTINES

DIRECTORY .. Japplication-name/[DO, DICT/PROC. INSTRS/ERR RTNS
ERROR
ROUTINES
FILES
_____________ o e
/form-name /form-name /form-name i

FORM FORM FORM

ERROR ERROR ERROR
ROUTINES ROUTINES ROUTINES




FIGURE 3-13, DOMAIN DEFINITION ATTRIBUTES

DOMAIN
DEFINITION

TYPE LENGTH RANGE DEFAULT



- 87 =

FIGURE 3-14. FORM STRUCTURE ATTRIBUTES

FORM
STRUCTURE

FIELD_NAME LOCK

FIELD_TYPE | PERSONALIZED
INVISIBLE
FORM_ID

DOMAIN_NAME ROLLOVER

DEFAULT



FIGURE 3-15 FORM SKELETON ATTRIBUTES

FORM
SKELETOCN

LINE_NO

COLUMN_NO



-89 .

FIGURE 3-16 FORM FIELD POSITIONS ATTRIBUTES

FORM
FIELD
POSITIONS

LINE_NO FIELD_NAME

COLUMN_NO



-90 -

FIGURE 3-17 FORM OPERATIONS ATTRIBUTES

FORM
OPERATIONS

OPERATION RESTRICTIONS



-91-

FIGURE 3-18. FORM CHECK ROUTINES ATTRIBUTES

FORM
CHECK
ROUTINES

FIELD _NAME ROUTINE

PRE_POST



-92 -

FIGURE 3-19. FORM ERROR ROUTINES ATTRIBUTES

FORM
ERROR
ROUTINES

FIELD_NAME ROUTINE

PRE_POST



.93.

FIGURE 3-20. DOMAIN DATA STRUCTURE

FIELD FIELD FIELD
TYPE DELIMITER LENGTH DELIMITER RANGE DELIMITER DEFAULT
1 char ascii 3 digit ascii empty or sacii empty or
*del’ char integer 'del’ char range 'dcl’ char default

TYPE - ASCIi CHARACTER; 1 CHARACTER IN LENGTH; ALLOWABLE VALUES:; 'C FOR
CHARACTER, 'S FOR STRING, 'T FOR INTEGER, 'B' FOR BOOLEAN AND 'F" FOR
FLOAT

LENGTH - INTEGER: 3 DIGITS IN LENGTH; ALLOWABLE VALUES: 0-512
RANGE - CHARACTER, STRING, INTEGER, BOOLEAN OR FLOAT (SAME AS TYPE); VARIAB

LENGTH (1 OR MORE); ALLOWABLE VALUES: EMPTY, (NO RANGE) AND ZERO
OR MORE SINGLE ITEMS AND RANGES OF TTEMS

NULL OR ||ingleitem'or W lignelitem'orl

I
0 OR MORE

DEFAULT - CHARACTER, STRING, INTEGER, BOOLEAN OR FLOAT (SAME AS TYPE);
VARIABLE LENGTH (1 OR MORE); ALLOWABLE VALUES: EMPTY (NO DEFAULT)
OR A DEFAULT VALUE WHERE TYPE, LENGTH AND RANGE ARE VALID FOR
THIS DOMAIN

NOTE * - SINGLE ITEM (LE., 99, 'DOG') OR A RANGE OF ITEMS (LE. 0-99, A-Z)



-94.

FIGURE 3-21. FORM STRUCTURE DATA STRUCTURE

FIELD DOMAIN FIELD DEFAULT PERSON-
NUMBER NUMBER NAME NAME TYPE VALUE ALIZED ROLLOVER LOCK INVISHH

Sdigit | Sdigit | 1-30msci! 1-l4ach | lasci | OS2y, g | 0-30 ascii | 0-8 asc

integer | imoger | charactens charactens | chamacter | "7 | | boolea® | characters | characn

! Y Ay

BY ASCHI DC2' CHARS

FIELD DELIMITER I

ASCHI DC1' CHARACTER

LIST ELEMENT DELIMI"

:rnan‘.smm ASCD DCY

INSTANCE NUMEER - INTRGER; $ DIGHTS IN LENGTH; ALLOWARLE VALURS: 0-10,000; SYSTEM
OCONTROLLED VALUE

COPY NUMBER - INTBGER; $ DIOTTS IN LENOTH; ALLOWABRLE VALUES: 0-10,000; SYSTEM OONTROLLED
VALUE

FIELD NAME - ASCII CHARACTER; 1-30 CHARACTERS IN LENGTH; ALLOWARLE VALUES: ANY
COMBINATION CF 130 ASCII CHARACTERS !

DOMAIN NAME - ASCYI CHARACTER; 1-14 CHARACTERS IN LENGTH; ALLOWARLE VALUES: ANY
COMEBINATION OF 1-30 ASCII CHARACTERS

FIELD TYPR - ASCHI CHARACTER; 1| CHARACTER IN LENGTH; ALLOWABLE VALUBS: 'R’ FOR NBQUIRED,
WV FOR VIRTUAL. U POR UNCHANGEARLE, ‘N' FOR UNRESTRICTED:, "0’ FOR OPTIONAL
OR 'P FOR FILLED FROM UBER PROFILE CR SYSTEM VARIABLE

DEFAULT VALUE - CHARACTER, STRING, INTBGER, BOCLEAN OR FLOAT: (-312 INLENOTH, ALLOWABLE
VALLES: EMPTY (NO DEFAULT) OR A DEFAULT VALUE WHOSE TYPE, LENGTH AND
RANGE ARE VALID FOR THH DOMAIN

PERSCNALIZED - ASCTI CHARACTER; (-14 CHARACTERS IN LENGTH; ALLOWABLE VALUES: EMPTY (NOT
PERSCNALIZED) OR ANY COMBINATION OF 1-14 ASCII CHARACTERS

ROLLOVER - BOOLEAN; 1 DIGIT IN LENGTH; ALLOWARLE VALUES: *1'B IF ROLLOVER FIELD, '0'B [F NOT

LOCK - ASCH] CHARACTER; LIST OF 0 OR MORE ELEMENTS; ABOUT EACH ELEMENT: ASCI] CHARACTER
1-3) CHARACTERS IN LENGTH; ALLOWABLE VALUES; ANY COMBINATION OF 1-30 CHARACTERS;
EACH ELEMENT IS SEPARATED BY A 'DC2" ASCII CHARACTER

INVISIELE - ASCII CHARACTER; LIST OF 0 OR MORE ELEMENTS; ABOUT EACH ELEMENT: ASCIl CHARACTER:
1-8 CHARACTERS IN LENGTH: ALLOWABLE VALUES: ANY COMBINATION OF 1-§ CHARACTERS
WHICH ARE ALLOWED POR UNIX USER-ID OR GROUP-ID; BACH ELEMENT IS SEFARATED BY
A DL ASCTI CHARACTER



.95 .

FIGURE 3-22. FORM SKELETON DATA STRUCTURE

LINE NUMBER COLUMN NUMBER TEXT
2 digit ! 2 digit : 1-30 ascii :
integer ] integer | characters )
1 1 ]
FIELD DELIMITER

ASCII 'DC1' CHARACTER

1 PER EACH GROUP OF LIST ELEMENT DELIMITER
CHARACTERS ON SCREEN ASCII 'DC3' CHARACTER

LINE NUMBER - INTEGER,; 2 DIGITS IN LENGTH; ALLOWABLE VALUES: 1-24
COLUMN NUMBER - INTEGER; 2 DIGITS IN LENGTH; ALLOWABLE VALUES: 1-80

TEXT - ASCII CHARACTER; 1-80 CHARACTERS IN LENGTH; ALLOWABLE
VALUES: COMBINATION OF 1-80 ASCII CHARACTERS



FIGURE 3-23. FORM FIELD POSITIONS DATA STRUCTURE

LINE NUMBER COLUMN NUMBER FIELD NAME
2 digit : 2 digit : 1-30 ascii :
integer I integer I characters 1
1 1 PR |
FIELD DELIMITER

ASCII 'DC1' CHARACTER

1 PER EACH GROUP OF LIST ELEMENT DELIMITER
CHARACTERS ON SCREEN  ASCIH 'DC3' CHARACTER

LINE NUMBER - INTEGER; 2 DIGITS IN LENGTH; ALLOWABLE VALUES: 1-24
COLUMN NUMBER - INTEGER; 2 DIGITS IN LENGTH; ALLOWABLE VALUES: 1-80

FIELD NAME - ASCII CHARACTER,; 1-80 CHARACTERS IN LENGTH; ALLOWABLE
VALUES: ANY COMBINATION CF 1-80 ASCII CHARACTERS



-97-

FIGURE 3-24. FORM OPERATIONS DATA STRUCTURE

OPERATION RESTRICTIONS
: 2 ascii : 1-8 ascii :
{ characters i characters '
[ - 1 |
; ;
FIELD DELIMITER

1 PER EACH OPERATION LIST ELEMENT DELIMITER
ALLOWED ON A FORM ASCII 'DC3 CHARACTER

OPERATION - ASCII CHARACTER,; 2 CHARACTERS IN LENGTH; ALLOWABLE VALLUES:
‘M’ FOR MAIL, 'E' FOR EDIT, 'S’ FOR SEND, 'R’ FOR RECEIVE, "I FOR
UPDATE, 'C FOR CREATE, 'D' FOR DESTROY, 'A’ FOR ARCHIVE, 'T' FOR
DISPLAY, 'F FOR FIND, 'O’ FOR COPY, 'T" FOR STORE, 'Z’ FOR AUTHORIZE,

'T FOR LIST ALL (FORMS}, 'Q' FOR SEQUENTIALLY ACCESS FORMS, OR ANY
OTHER ONE OR TWO CHARACTER USER DEFINED OPERATION CODE

RESTRICTIONS - ASCTI CHARACTER; 1 TO 8 CHARACTERS IN LENGTH; ALLOWABLE
VALUES; EMPTY OR ANY COMBINATION OF 1 TO 8 ASCI1 CHARACTERS



- 08 -

FIGURE 3-25. FORM CHECK ROUTINES DATA STRUCTURE

FIELD NAME PRE OR POST CHECK ROUTINE
1-30 ascii ' t 1-14 ascii !
characters | e chmawn |
’
FIELD DELIMITER
........... ASCILDEY CHARACTER. .. coooenmy iamensi i s,
: ' LIST ELEMENT DELIMITER
1 PER EACH FIELD'S PRE ASCII 'DC3' CHARACTER
OR POST CHECK ROUTINE
(0 OR MORE PER FORM;

0 OR 1 PER FIELD)

FIELD NAME - ASCTI CHARACTER; 1-30 CHARACTERS IN LENGTH; ALLOWABLE
VALUES: ANY COMBINATION OF 1 TO 30 ASCII CHARACTERS

PRE OR POST - BOOLEAN; 1 DIGIT IN LENGTH; ALLOWABLE VALUES: A ZERO
INDICATES THIS CHECK ROUTINE SHOULD BE RUN PRIOR TO FILLING
THE FIELD AND A ONE INDICATES IT SHOULD BE RUN AFTER FILLING
THE FIELD

CHECK ROUTINE - ASCIl CHARACTER; 1-14 CHARACTERS IN LENGTH; ALLOWABLI
VALUES: ANY COMBINATION OF 1 TO 14 ASCII CHARACTERS



FIGURE 3-26. ERROR CHECK ROUTINES DATA STRUCTURE

FIELD NAME PRE OR POST ERROR ROUTINE :
1-30 ascii ! ! 1-14 ascii !
$

FIELD DELIMITER

............ ASCH 'DC1' CHARACTER ... . ..

1 PER EACH FIELD'S PRE LIST ELEN[E;NT DELIMITER
OR POST ERROR ROUTINE ASCH 'DC3' CHARACTER
(0 OR MORE PER FORM;
0 OR 1 PER FIELD)

‘FIELD NAME - ASCII CHARACTER,; 1-30 CHARACTERS IN LENGTH; ALLOWABLE
VALUES: ANY COMBINATION OF 1 TO 30 ASCI1 CHARACTERS

PRE OR POST - BOOLEAN; 1 DIGIT IN LENGTH; ALLOWABLE VALUES: A ZERQO
INDICATES THIS ERROR ROUTINE SHOULD BE RUN PRIOR TO FILLING
THE FIELD AND A ONE INDICATES IT SHOULD BE RUN AFTER FILLING
THE FIELD

ERROR ROUTINE - ASCIT1 CHARACTER; 1-14 CHARACTERS IN LENGTH; ALLOWABLI
VALUES: ANY COMBINATION OF 1 TO 14 ASCII CHARACTERS



- 100 -

4. CHAPTER FOUR - CONCLUSIONS AND EXTENSIONS

4.1 Introduction

Studying the Intelligent Data Object apprecach to routing
information within a distributed office automation
environment has been a diligent and interesting endeavor.
This chapter discusses some of the conclusions and
extensions to the Intelligent Data Object Management System
project as &a whole and to this piece of the project, the
design of the data structures for the Intelligent Data

Object.

4.2 Conclusicns

The group of six working on the IDOMS preoject, "The Chicago
Six"!, had good intentions of Dbeginning to work on the
project in the fall and completing & generous portion (if
not all) of the work prior to arriving at Kansas State
University this summer. However, for numerous reascns, the
project did not really get off the ground until the spring.
This late start has disclosed weaknesses in the overall

design of IDOMS.

The original intent was for one person in the group to study
the design of the entire IDOMS project. However, no real
overall design plan was formulated because of time

constraints. Each of us covered the overall design



- 101 -

individually within our reports - each with a somewhat
different approach +t¢ the problem at hand. Coordination
problems are expected to surface during the implementation
of each of the pieces and during the integration of the
various pieces. Considering the time constraints of the
overall project, it is felt that a significant amount of

work was accomplished.

Four members of the group have had at least a minimal amcunt
of exposure to the ODIN system, a product of AT&T, which was
discussed in Chapter One of this report. ODIN is a general
purpose form management system primarily designed for
switching system database administration. Exposure to ODIN
may have swayed our approach to the design of the

Intelligent Data Object Management System.

It was assumed in this work that many capabilities will be
supported by IDOMS in the design work of the data structures
for the Intelligent Data Object. These assumptions may be
quite different than those made Dby other members of the
project team. For example, in this work it assumed that
each form will have a form key consisting of a form type
identifier, a form instance identifier and an identifier for
copies of a form instance. 1In addition, it was assumed that
consistency checking may be performed on fields which are

different form types and that the system will maintain



- 102 -

censistency ameng copies of a form.

The design of the data structures for the Inteiligent Data
Object was kept simple. The Unix operating system file
structure was used as the foundation far these data
structures. For a prototype system which will be used at
KSuU, these simple data structures should Dbe more than
adequate. However, in the future more robust data
structures may be considered based c¢n the efficiency of

performing field and form operations.
4.3 Extensions

The Intelligent Data Object Management System is a very
large preject. The original problem definition was divided
into at least ten sub-projects. Only five of these pieces
have been covered by the group working on the IDOMS project
this summer. The remaining pieces of the project have Dbeen

left for future work. These pieces include:

1. Designing a local manager to manage the routines
required to process an IDO.

2. Medification and deletion of forms.

3. Design of the local data structures.

4., Creating the precessing instructions.

5. Security and integrity of actual data on a form.

Many other enhancements and changes should be considered as



- 103 -

possible extensions to IDOMS in the future. Possible

enhancements to IDOMS include the following:

@ Only textual displays on a CRT or on a printer have
been considered in the design of the system. Voice and
video displays may be considered as a future

enhancement.

¢ Forms within IDOMS are limited to single-page forms.
Multiple~page forms are more desirable from a system
user‘s point of view and should be considered as a

future addition to the system.

¢ A2 form is only allowed to have one mask {or template).
Users may wish to display one form in many different

ways. A form should be allowed multiple masks.

¢ Summaries of data on various forms may be desirable. &
report generation capability would Dbe a nice added

feature to IDOMS.

#® Repeat fields and compound fields were not considered
in the design of the data structures for the form
structure and processing instructions. Allowing these
should be considered as a future enhancement to the

svstem.

@ During the design of the 1IDO data structures, the



- 104 -

assumption was made that an IDO definition would not
change once it was created. In the future, the ability
to change an IDO definition and a mechanism to update
any existing forms to the new fermat (data mapping

capability) may be desirable.

A mapping capability should be considered for mapping
the ocutput from the high-level form definiticen language
to a more machine-oriented format. The efficiency of
the operations performed on fields and forms may be

improved.

In general, the IDO data structures may be redesigned
to improve the access time required to access the field
and field operations. Test should be. performed using
the prototype Intelligent Data Object Management
System. For example, it might be more efficient to
store all of the data structures for one form together

in one UNIX directory.

Tag, variant and conditiocnal field attributes were not
supported in the design of the data structures. These

should be considered in the future.

The security of the Intelligent Data O0Object data
structures was not discussed and should be considered

in the future.



- 105 -

@ A form should be allowed tc have multiple parts.



[Ah1s83]

[AhlsB4]

{Baumg0]

[Berngz]

[Boch]

[Byrasz]

[Cham76)

[Chan]

(ChriB4]

[Codda70]

- 106 -

IDOMS PROJECT BIBLIOGRAPHY

Ahlsen, M., "Making Type Changes Transparent",
IEEE, 1983

Ahlsen, M., "An Architecture For Object
Management In QIS", ACM TOOLS, Vol. 2, No. 3,
July 1984, p. 173-196

Baumann, L.S. and Coop, R.D., "Automated Workflow
Control: A Key To Office Productivity", Proc.
AFIPS Office Automation Conf., Mar 1980, and
Electronic Office Regearch Project, Sperry
Ufnivac, Roseville, Minn, Naticnal Computer
Cenference, 1980

Bernal, M., "Interface Concepts For Electronic
Forms Design ° And Manipulation", Office
Information Systems, ed. by N. Naffah, North-
Holland Co., 18982

Bochmann, G.V. and Pickens, J.R., "A Methodclogy
For The BSpecification Qf A Message Transport
System" .

Byrd, Roy J. and Smith, Stephen E. and dedJong, S.
Peter, "An Actor- Based Programming System", ACM
0-89791-075-3/82/006/0067

Chamberlin, D.D. and Astrahan, M.M. and Eswarah,
K.P. and Griffiths, P.P. and Lorie, R.A. and
Mehl, J.W. and Reisner, P. and Wade, B.W.,
"SEQUEL 2: A Unified Approach To Data Definition
Manipulation and Control”, Publication Unknowrn,
November 1976

Chan, E. and Lochovsky, F.H., "2 Graphical
Database Design Aid Using The Entity-Relationship
Model™

Christeodoulakis, S. and Faloutsos, C., "Design
Considerations For A Message File Server", IEEE,
Vol. SE-10, No. 2, March 1984

Codd, E.F., "A Relational Model of Data For Large
Shared Data Banks", Communications of the ACHN,
Vol. 13, No. 6, June 1870



[Cook ]

[Dawe]

[DejoBO]

[Deut ]

[Deog83]

[Dipi83]

[E11i80]

[E11i82]

{Embl180]

[Ferrsgz]

[Fong83]

- 107 -

Cook, Carolyn L., "Streamlining Office
Procedures—-aAn 2analysis Using The Information
Control Net Model"

Dawes, N.W. and Harris, S.J. and Magoon, M.I. and
Maveety, S.J. and Petty, D.J., "The Design and
Service Impact of Cocos, An Electronic Office
System"

deJong, S.P. and Byrd, R.J., "Intelligent Forms
Creation In The System Form Business Automation
(sBA)", Research Report RC 8529, Computer Science
Dept. IBM T. J. Research Center, Yorktown
Heights, New York 1059B, October 1980

Deutsch, D., "Design Of A Message Format
Standard"

Deogun, Jitender S., "Conceptual Development of
Office Automation Models", Proceedings of the
16th Annual Int“l Conf. On System Sciences, 1983,
Vol. 1

DiPirro, J.E. and Ferrans, J.E. and Juszczak, C.,
"A Form Management System For Switching Database
Administration", Proceedings IEEE International
Conference On Communications, Boston, MA, june
19-22, 1983, pp. A4.1.1-24.1.6 (pp. 125-130),
vol. 1

Ellis, Clarence 3. and Nutt, Gary J., "Office
Information Systems and Computer Science",
Computing Surveys, Vol. 12, No. 1, March 1980

Elliis, Clarence 4. and Bernal, Marc,
"Officetalk-D: An ExXperimental Office Information
System", ACM 0-89781-075-3/82/006/0131

Embley, D.W., "A Forms—-Based Non-Procedural
Programming System", Research Report, University
of Nebraska-Lincoln, October 1980

Ferrans, James C., "SEDL - A Language For
Specifying Integrity Constraints On Office
Forms", Proceedings ACM-SIGOA Conference Cn
Qffice Information Systems, Philadelphia, PA,
June 21-23, 1982, pp. 123-13C

Fong, Amelia C., "A Mcdel For Automatic Form-
Processing Procedures", Proceedings of the 16th



[Garc]

[Gehag2]

[GehaBl]

[GehaB3]

[Gibbg2]

[GibbB3]

[Grie77]

[Gutt]

[Gutt78]

[ Hammgo ]

[Bamm79]

- 108 -

Annual Int“l Conf. on System Sciences, 1983, Vol.
1

Garcia-Luna, J.J. and Kuo, F.F., "Addressing And
Directory Systems For Large Computer Mail
Systems™

Gehani, Narain, "The Potential Of Forms In Office
Automation”, IEEE Transactions On Communications,
Vol COM-30, No. 1, Jan 1982, pp. 120-125.

Gehani, N.H., "An Electronic Form System: An
Experience In Prototyping™, Bell Laboratories
Research Report, June 1981

Gehani, N.H., "High Level Form Definitien In
Dffice Information Systems", The Computer
Journal, Vol. 26, No. 1, 1983

Gibbs, Simon J., "Office Information Models and
the Representation of Office Objects", ACM O-
89791-075-3/82/006/0021

Gibbs, S., "An Object-Oriented Office Data
Model", Dept of Computer Science, Univ., of
Toronto, 1983

Gries, David and Gehani, Narain, "Some Ideas on
Data Types in High-Level Languages",
Communications of the ACM, June 1977, Vol. 20,
No. 6

Guttag, "Abstract Data Types And The Development
Of Data Structures", SIGPLAN Notices, Vol. 8, No.
2!

Guttag and Hotwitz and Messer, "The Design Of
Data Type Specifications", Current Trends In
Programming Methedelogy, Vol Iv, Data
Structuring, Prentice Hall, 197B.

Hammer, Michael and Kunin, Jay S.., "Design
Principles Of Bn Office Specification Language”,
Proceedings AFIPS Office Automation Conference,
Mar 1980, Naticnal Computer Conference

Hammer, Michael and Zisman, Michael, "Design and
Implementation of OQffice Information Systems”,
Procedures from New York Symposium on  Automated
Office Systems, May 1879



[ Hamm&la]

{ Hamm81Db]

[Hamm81c]

[Hewi ]

[HoggB4]

[Hogg81l ]
[JacoB4]
[Kerr])

[KonsB2]

[Kraig4]

[Laddso]

- 109 -

Hammer, Michael et al, "Implementaticn of Etude,
An Integrated and Interactive Document Production
System", Procedure from ACM Symposium on Text
Manipulation, Portland, Oregon, June 1981, pp.
137-146

Hammer and Company, "Report on Integated Office
System Design", 3rd ed, Cambridge, Mass., Hammer
& Co, 1981

Hammer, M. et al, "A Very High Level Programming
Langquage for Data Processing Applications",
Communications ¢of the ACM, July 1981, Vel. 20,
No. 11, pp. B32-B40

Hewitt, Carl and Baker, Henry Jr., "Actors and
Continucous Functionals", Library For Computer
Science, Massachusetts Institute of Technology,
545 Technology Sguare, Cambridge, Massachusetts
02139, MIT/LCS/TR-194

Hogg, John and Gamvroulas, Stelios, "An Active
Mail System", Sigmod Record, Vol. 14, No. 2, 1984

Hogg, J. and Nierstrasz, O. and Tsichritzis, D.,
"Form Procedures In Omega Alpha", D. Tsichritzis,
Ed., CSRG Tech. Rep. 127, Univ. of Toronto, 1581

Jacobson, Bill, "SOFTWARE REVIEW - DataEase vs
Condor and dBASE II", BYTE Magazine, Octocber
1984, pp. 289-302

Kerr, I.H., "Interconnection COf Electronic Mail
Systems =~ A Proposal On Naming, Addressing and
Routing"®

Konsynski, Benn R. and Bracker, Lynne ¢. and
Bracker, Wwilliam E., "A Model For Specification
Of Office Communications™, IEEE Transactions On
Communications, Vol. Com-30, No. 1, January 1982,
Pp. 27-36

Krajewski, Rich, "DATABASES - Database Types",
BYTE Magazine, October 1984, pp. 137-142

Ladd, Ivor and Tsichritzis, D.C., "An Office Form
Flow Model", Proceedings AFIPS Qffice Automation
Conference, Naticnal Comp. Conf., Mar. 1980,
University Of Toronto, Ont. Canada



[LebeBd2]

{Lisk74]

[Lisk75]

[Lond76]

[Lyng84]

{Martgz]

[Maze]

[Mazes3]

[McBrs3]

[Moto]

(Mylog83]

- 110 -

Lebensold, J., and Radhakrishnan, T. and
Jaworski, W.M., "A Modelling Tocol for Qffice
Information Systems", 1982 ACM (0-89791- Q75-
3/82/006/0141

Liskov, Barbara and Zilles, Stephen, "Programming
With Abstract Data Types", SIGPLAN, April 1974

Liskov, Barbara H. and 2Zilles, Stephen N.,
"Specification Techniques for Data Abstractions®,
IEEE Transactions On Seftware Engineering, Vol.
SE-1, No. 1, March 1875

London, Ralph L. and Shaw, Mary and Wulf, Wm. A.,
"Abstraction and Verification in Alphard: A
Symbol Table Example®™, University of Southern
California, Information Sciences Institute,
December 1976

Lyngbaek and McLeod, "Object Management In
Distributed Informaticon Systems", ACM TOOIS, Vol
12, No. 2, April 1984, pp. 96—122

Martin, P. and Tsichritzis, D.C., "A Message
Management Model", Alpha Beta, Tech. Rep. CSRG-
143, Univ. of Toronto, Toronto, 1982

Mazer, M.S., "The Specification of Routing In A
Message Management System", ¥.5. Thesis
Department of Computer Science Univ. of Toronto

Mazer, Murray S. and Lechovsky, Fredrick H.,
"Routing Specification In A Message Management
System", Proceedings of the 16th Annual Hawaii
Int“l Conf. on System Sciences, 1983, Vol. 1

McBride, R. A. and Unger, E. A., "Mpodeling Jobs
In A Distributed System", 1983 ACM 0-88791-123-
7/83/012/0032

Motolese, E. and Rondi, R. and Salvadori, E. and
Vignali, M., "MAILZK: A Computer Mail Package For
Local Applications"”

Mylopoulos, John and Bernstein, Philip A. and
wWong, Harry K.T., "A Language Facility for
Designing Database-Intensive Applications", ACM
0362-5915/80/0600-0185, ACM Transactions on
Database Systems, Vol. 5, No. 2, June 1980, Pages
185-207



[Nierg83]

[CpseB3]

(Oppe83]

[Pati70]

[Pear]

[Pete81]

[Pete77]

[Pric]

[Rabi82]

[Sche]

[Schig2]

-~ 111 -

Nierstrasz, O.M. and Tsichritzis, D.C., "Message
Flow Modeling"™, Alpha Beta, Tech. Rep. CSRG-143,
Univ. of Toreonto, Toronte, 1983

Opseth, Lyle M. and Sorenson, Panl and Tremblay,
Jean-Paul, YA Case Study In Office Informations
Systems Using O©ODL"™, Proceedings of the 16th
Annual Int’l Conf. on System Sciences, 1983, Vol.
1

Oppen and Dalal, "The Clearinghouse: A
Decentralized Agent For Locating Named QObjects In
A Distributed Environment™, ACM TOOIS, Vol 1, No.
3, July 1983, p. 23-253

Patil, S.S., "Coordinatiocn of Asynchronous
Events", Ph.D. Dissertation, Dept. Electrical
Engineering, Project MAC, M.I.T., Cambridge,
Mass., 1970

Pearson, M.M.L. and Kulp, J.E., "“Creating Aan
Adaptive Computerized Conferencing System On
UNIX®

Peterson, James L., "Petri Net Theory And The
Modeling Of Systems"™, Prentice- Hall, Inc.,
Englewood Cliffs, N.J. 07632, 1981

Peterson, J.L., "Petri Nets", ACM Comput. Surv.,
9, 2(Sept. 1977), pp. 223-252

Price, W.L., "Encryption In Computer Networks and
Message Systems"

Rabitti, F. and Gibbs, S., "A Distributed Form
Management System With Global Query Facilities",
In Office Information Systems, N. Naffah, E&.,
North-Holland, 1982

Schek, H.J. and Pistor, P., "Data Structures for
an Integrated Data Base Management and
Information Retrieval BSystem", IBM Scientific
Center Heidelberg Tiergartenstrasse 15, D-6%800
Heidelberg, West Germany

Schicker, P., "Naming And Addressing In A
Computer-Based Mail Environment™, IEEE Trans.
Commun., COM=-30, 1 (Jan 1982), pp. 46-52



[schil

[Sshaw7ba]

[Shaw76b]

[ Shoc82]

[simo84]

[StefB80]

[Stef]

[Taps]

[Taro]

[TsicB82a]

[TsicB4]

[TsicB1]

[TsicB2b]

- 112 -

Schicker, P., "Service Definiticns In & Computer
Based Mail Envirconment"®

Shaw, Mary, "Abstraction and Verification 1In
Alphard: Design and Verification OQOf A Tree
Handler", Carnegie-Mellon Univ Pittsburgh Pa Dept
of Computer Science, June 1976

Shaw, Mary and wWulf, Wm. A&, and London, Ralph &a.,
"Abstraction and Verification in Alphard:
Iteration and Generators", University of Southern
California, Information Sciences Institute,
August 1976

Shoch, "The Worm Programs—--Early Experience With
A Distributed Computaticn", CACM Vol 25, No. 3,
march 1982

Simons, Gary F., "“DATAbstraction - A Basic
Implementaticn For Problem Solving", BYTE
Magazine, October 1984, pp. 130-131 and 414-440

Stefferud, E. and Mchugh, J., "The Role Of
Computer Mail In Cffice Automation®

Stefferud, Einar, "“Electrenic VS Paper Media
Continua =-- A Comparison", NCC “8C Personal
Computing Digest

Tapscott, D., "Research On The Impact Of Office
Information Communication Systems"

Tarouco, L.M.R., "An Experimental Message
Computer System Between Universities In Brazil"

Tsichritzis, D. and Christodoulakis, S., "Message
Fileg", ACM 0- B89791-075-3/82/006/0110

Tsichritzis, D., "Message Addressing Schemes",
ACM Transactions on Office Information Systems,
Vol. 2, No. 1, January 1984, Pages 58-77

Tsichritzis, D.C., "Integrating Database and
Message Systems", Proc. 7th International
Conference On Very Large Data Bases", 1981, pp.
356-362

Tsichritzis, D.C. and Rabitti, F.A. and Gibbs, 8.
and Nierstrasz, O.M. and Hegyg, J., "A System For
Managing Structured Messages", IEEE Trans.



[Tsic82c]

[Tsics0]

[Uh1is81]

[vittBl]

{vitt]

(Whit77]

[wWulf7s]

[Yen)

[Zism78]

[Zism77]

[2loo81]

- 113 -

Commun., COM-30, 1(Jan 1982), pp. 66-73

Tsichritzis, D.C., "Forms Management", Commun ACM
25, 7(July 1982), pp. 453-478

Tsichritzis, D., "A Form Manipulation System",
Proc. N.Y.U. Symp. Autcomated Office Systems, May
1979. Tsichritzis, D., "OFS: An Integrated Form
Management Systen”, Proceedings 0Of The ACM
International Conference 0On Very Large Data
Bases, 1980

Uhlig, R.P. {editor), "Computer Message Systems”,
North—=-Holland Publishing Co., IFIP Symposium On
Computer Message Systems, Ottawa, Canada, 6-8
April 1981

Vittal, John, "Active Message Processing:
Messages As Messengers", North- Helland
Publishing Company, IFIP, 1581

Vittal, J., "MSG-A Simple Message System"

White, Robert, "A Prototype For The Automated
Office", DATAMATION, Apr. 77

Wulf, Wm. A. and London, Ralph L. and Shaw, Mary,
"Abstraction and Verification in Alphardg:
Intreoduction to Language and Methodclogy",
University of Southern California, Informaticn
Sciences Institute, June 1976

Yeh, Raymond T., "Current Trends 1In Programming
Methodology", Volume v, Data Structuring,
Chapter 4, The Design Of Data Type
Specifications, Prentice-Hall, 1Inc., Englewocd
Cliffs, New Jersey 07632

Zisman, Michael D., "Office Automation:
Revolution or Evolution?", Sloan Management
Review, Spring 1978

Z2isman, Michael D., "Representation,
Specification, and Automation of Office
Procedures", A Dissertation In Decision Sciences,
1877, University of Pennsylvania, Business
Administratiocon

Zloof, M.M., "QBE/OBE: A Language For Office And
Business Automation", IEEE Computer {May 1981),



[Zlo077]

[Zlo080]

- 114 -

Pp. 13-22

Zloof, M.M., "Query By Example: A Data Base
Language", IBM Systems Journal, Vol. 16, No. 4,
December 1377

Zloof, M.M., "A Language ¥For Office and Business
Automation®, IBM Research Report RCBOS1,
Yorktown, New Jersey, January 1980



DESIGN OF THE IDO FOR THE INTELLIGENT DATA
OBJECT MANAGEMENT SYSTEM (IDOMS) PROJECT

by

RONNA WYNNE RYKOWSKI

B. 8., Northern Illinocis University, 1981

AN ABSTRACT OF A MASTER‘S REPORT

submitted in partial fulfillment of the
requirements for the degree
MASTER QF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY

Manhattan, Kansas

1986



This report presents the Intelligent Data Object appreoach to
routing information within a distributed computing system in
an office informaticn environment. In our prototype system,
the Intelligent Data Object Management System (IDOMS), an
intelligent form is used as the foundation for creating the
intelligent data object. Intelligent forms have built-in
decision making capability and the ability to query data
external to them. The project has been restricted to the
UNIX operating system; this proiject is part of an overall
plan at Kansas State University to study concurrency and

concurrency related problems.

The focus of this paper is on the requirements and design of
the Intelligent Data Object (intelligent form)..
Specifically, the design of the logical and physical data
structures associated with the form structure and the form
processing instructions are described. The implementation
of these data structures within a UNIX environment and an
implementation which takes the output of the form definition
language and creates the physical data structures is

discussed.



