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INTRODUCTION 

Semiarid and arid regions comprise a major portion of the 

agricultural lands of the globe. Potential production is high in 

these regions but frequently falls far short of expectations due 

to the action of two major limiting factors; high temperature and 

drought. These factors may operate singly but far more frequently 

are found in combination, and the situation in the field is 

generally such as to make any distinction between them extremely 

difficult. 

Numerous studies of drought resistance have been carried out 

and several competent investigators have turned their attention 

to heat resistance investigations. The anatomical adaptations of 

heat and drought resistant species have been described in detail 

as have the several growth habits which enable some plants to 

evade, escape, or endure these periods of stress. While these 

adaptations are of interest and some of them are possessed by 

many of the common crop plants, it is generally recognized that 

knowledge of the mechanisms which enable the plant to live through 

heat and drought in the vegetative condition is inadequate. 

The suggestion has been made by Duggar (1936) that there may 

be a direct relationship between the photosynthetic process and 

heat resistance, since exposure of plants to light seems to induce 

increased heat resistance. Several workers, as reported by Franck 

and Loomis (191+9, p. 21+9), have shown that photosynthesis occurs 

in all portions of the visible spectrum. The investigation herein 
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reported represents an attempt to determine by physical means 

whether induction of heat resistance by exposure to light also 

occurs in all regions of the spectrum or only in certain portions. 

REVIEW OF LITERATURE 

Morphological and Physiological Influences of Radiation 

Probably the first investigations involving the influence of 

different spectral regions on the green plant were concerned with 

gross morphological characteristics. The work of Popp (1924) is 

an example of this type of research. It was found that plants 

grown under glass which screened out various portions of the 

spectrum showed marked morphological and physiological differences. 

Plants were grown under five different types of glass. Those 

plants receiving all light of wave lengths longer than 3880A were 

superior in dry weight over all others tested and bloomed earlier. 

Plants grown in 4710A were tall but did not produce as much total 

dry matter. Soy beans grown in this situation and also in light 

of wave lengths longer than 5410A became twiners. In both of 

these latter treatments storage organs failed to develop. It is 

unfortunate that this work included no comparison with direct 

sunlight. 

Hibben (1924) found that constant regulated artificial light 

alone produces better growth than the changeable daylight of 

early spring when considering the natural development of the bulb 
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plants. He also reported that light from the incandescent 

electric lamp produces better growth than does the same light from 

which wave lengths below 5500A have been screened. 

Working with lettuce seeds and seedlings, Flint and Moreland 

(1939) report that red light (7600A) inhibits germination and re- 

tards development of the seedlings. No greening was observed in 

these plants. The authors state that this does not seem to be 

associated with assimilation or temperature. These effects 

were not found under radiation of 6500A or of 8500A wave length. 

Plants grown under continuous sodium vapor light (5893A) 

were used in experiments by Arthur and Harvill (1937). Such 

plants were found to grow well for a short time, after which slow 

degeneration occurred. When the sodium light was supplemented by 

a two-hour exposure each day to light from a mercury vapor lamp, 

the plants appeared to be rejuvenated, with excellent leaf color, 

and normal flowering occurring in some plants. The light of the 

mercury vapor lamp is rich in short wave length radiation, much 

of the energy lying within the ultra-violet region of the spectrum. 

Using Marchantia, radish, and several other plants, 

Schappelle (1936) found that red and blue lights are of approxi- 

mately equal effectiveness in producing reproductive growth re- 

sponse. In all cases it was found that either end of the visible 

spectrum, given in complete absence of the other, causes abnormal 

growth. Blue light appeared more injurious than red in this 

respect. 

Arthur and Stewart (1935) found that when equal intensities 



of light from Mazda bulbs, and from neon, sodium and mercury 

vapor lamps were used as illumination for the growth of buckwheat 

plants there was a difference in production of dry weight. The 

lamps in order of dry weight production ranged from neon through 

Mazda and sodium and down to mercury vapor. Efficiency of use of 

the various lights by plants was calculated. The sodium light 

was found to be most efficient with the neon lamp second and the 

mercury vapor lamp least efficient. No correlation could be de- 

tected between the efficiency of the lamp and the relationship of 

its energy spectrum to the absorption spectrum of chlorophyll. 

In a somewhat different type of study of light efficiency in 

photosynthesis, Warburg and Negelein (1923) using the green algae 

Chlorella reported a photosynthetic value of 33.8 for blue light 

(4360A) as compared with 53.5 for yellow light (5780A). Red 

light (6600A) was reported to be 1.13 times as effective as yellow. 

In a study of comparative rates of photosynthesis in equal 

intensities of red and blue as compared with sunlight, Dastur and 

Mehta (1935) reported the rate to be highest in sunlight, inter- 

mediate in red light, and very low in the blue light. These 

authors concluded that the efficiency of photosynthesis decreases 

with decreasing wave lengths but that both red and blue light are 

necessary for normal photosynthesis. Hoover (1937) found that on 

a basis of equal incident energy determined as a function of the 

wave length of light, the entire visible spectrum is effective in 

the wheat plant. Plotted as a curve, photosynthesis against wave 

length, a principal maximum appears at 6550A in the red and a 
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secondary maximum at 1i1100A in the blue. Increased reflection and 

transmission of radiation in the green region are given as a 

possible explanation for the lower effectiveness of incident green 

rays. In general agreement with these investigations, Dutcher 

and Haley (1932, P. 280) found that carbohydrates may be synthe- 

sized in the absence of ultra-violet light and under the in- 

fluence of any light of a definite wave length, but that some 

wave lengths are more efficient for photosynthesis than others. 

Duggar (1936, p. 632) reports the use of a different method in a 

similar investigation. Irradiated cells were tested with methyl- 

ene blue and their permeability to the dye measured. Permeability 

was found to depend more on the wave length of irradiation than on 

the amount of energy applied. White light gave greatest permea- 

bility, followed by ultra-violet, blue, green, and red with no 

light the lowest. This author also states (p. 783) that as the 

wave length of incident radiation decreases, light transmission 

decreases and absorption of the light by the leaf increases. 

In an attempt to duplicate results by other workers Fuller 

(1932) exposed tomato and bean plants to radiation from a quartz 

mercury vapor lamp. His results indicate that much of the injury 

which has been ascribed to the blue and violet region may actually 

be due to infra-red radiation. In order to obtain high intensi- 

ties the plants were placed only 15 inches from the light source. 

It was found that these radiations were rich in both ultra-violet 

and infra-red rays and that considerable heat was produced. When 

the light was passed through a quartz water cell which screened 
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out all infra-red rays, injury to the plants was greatly reduced, 

indicating that this injury, formerly thought to be an effect of 

ultra-violet radiation, may be largely the result of infra-red 

influence. 

In an investigation of the influence of wave length of light 

on quantum yield of photosynthesis by the green algae Chlorella, 

Emerson and Lewis (1943) report a maximum yield of 0.09 at about 

6850A. This was reduced and became "vanishingly small" beyond 

wave lengths of 7300A. From 6850A to 5800A the level of yield 

was near 0.09, while below 5800A it declined to a minimum of 0.065 

at 4850A before rising again to nearly 0.08 at 4200A. This would 

indicate that at least 12 quanta of red light are required per 

molecule of 02 evolved by the plant in photosynthesis. Other 

workers as reported by Franck and Loomis (1949, p. 219, 239, 251 

and 273) achieved substantially similar results. These results 

are contrary to those reported by Warburg and Negelein (1923) and 

by Baly (1940) in which the maximum quantum yield for the green 

algae Chlorella is reported to be near 0.25 at a wave length of 

5780A. 

Arthur and Stewart (1933) studied transpiration in tobacco 

plants exposed to both visible and infra-red radiation under con- 

trolled temperatures and humidities. It was found that, using a 

standard incandescent lamp, an increase of 2.3 times the energy 

doubled the rate of water loss. The relationship appeared to be 

independent of humidity over a range of 50 percent to 88 percent 

at a temperature of 73° to 78° Fahrenheit. At higher temperature 
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of 980 to 1000 high humidity was reported to decrease trans- 

piration slightly. At the lower temperature the rate of water 

loss under the lamp without a filter was about 2.5 times the loss 

under the same lamp with a heat-transmitting filter which passed 

infra-red rays only. At the higher temperatures the water loss 

under infra-red increased rapidly. It was concluded that trans- 

piration makes it possible for leaves to exist under high radi- 

ation values at high temperatures. In all cases the stomata were 

found to be closed completely under infra-red radiation. Sayre 

(1929) had similar results. Using plants of the species Rume4 

patienti4 he reported no opening of the stomata in light of wave 

lengths longer than 6900A. Other regions of the visible spectrum 

were reported to be equally effective with the exception of the 

violet region, which was not investigated. Duggar (1936, p. 774) 

cites investigations by Iwanoff and Thielmann which indicated 

that blue-violet light seems to favor increased transpiration over 

red-yellow light. 

Chemical Influences of Radiation 

Some attempts have been made to determine the influence of 

various wave lengths of radiations on the chemical composition of 

the plant. Using the wheat plant, Lease and Tottingham (1935) 

found that elimination of the blue region from radiation re- 

sembling sunlight decreased nitrate assimilation and conserved 

carbohydrates in the young plant. The plant tissue was found to 
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be increased in chlorophyll and sulfhydryl content over that of 

the controls. Associated with an increase in nitrate assimila- 

tion was a depression of pentosan formation. Tottingham (1939, 

p. 214) reports that nitrates could not be absorbed and retained 

by the plant in darkness. 

Using lights of equal total intensity Dastur, Kanitkar, and 

Rao (1938) found that water soluble nitrogen was formed in 

leaves in greatest amounts under a carbon arc lamp. A "daylight" 

lamp was next, followed in order by an ordinary electric lamp and 

daylight. With low light intensity using monochromatic light and 

daylight, organic nitrogen content of leaves was investigated. 

Water-soluble nitrogen formation was found to be greatest in day- 

light with red light equal to blue-violet at a lower level. It 

has been reported by Tottingham (1939, p. 212) that plants which 

have grown under light having wave lengths down to 2900A have a 

smaller percentage of xylan on a dry matter basis than do those 

which received no wave lengths shorter than 5200A. He reported 

that both the ultra-violet and the blue-violet regions appeared 

to favor the formation of uronic acid and that this condition is 

associated with a decline in the production of xylan and other 

pentosans. Gortner (1929) found that high pentosan content is 

characteristic of many desert plants and that these compounds are 

highly hydrophilic, apparently functioning as an aid in prevention 

of water loss. Tottingham and Lowsma (1928) found that increased 

absorption of nitrate by the young wheat plant when exposed to an 

increase in blue-violet and long ultra-violet radiation was as- 
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sociated with sugar consumption and synthesis of protein forms of 

nitrogen. 

In early experiments with ultra-violet radiation on living 

bacteria, Burge (1917) found that exposure to radiation of suf- 

ficient intensity to kill the cells does not decrease the activity 

of intra-cellular enzymes to any appreciable extent. Death of 

the cells was described as being due to coagulation of the proto- 

plasm. 

Heat Resistance: Artificial Hardening and 
Reaction to Drought 

Some comparatively recent investigations have been made con- 

cerning the influence of temperature or heat on the physiological 

activities of the living plant. Whitfield (1932), in an ecological 

study, reported that soil temperature below 400 F. has an im- 

portant influence on transpiration but that at higher temperature 

the influence is not great. 

In a similar study using Helianthus annuus, Clements and 

Martin (1934) observed little variation in transpiration when soil 

temperature varied between 55° F. and 100° F. and report that 

there was no indication that transpiration would be greatly affect- 

ed at higher soil temperatures. In a detailed analysis of wheat 

plants during hardening for drought resistance, Vassiliev and 

Vassiliev (1936) determined the changes in carbohydrates in five 

varieties of wheat while growing normally, during stress for 

moisture which induced permanent wilting, and after recovery. 
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They reported that at the beginning of wilting there was an in- 

creased concentration of monosaccharides and sucrose and a de- 

crease in hemicellulose. At the stage of permanent wilting 

sucrose had decreased, monosaccharides had increased, and there 

was a decided increase in hemicellulose to a level above that of 

the check plants. Twenty-four hours after the resumption of 

irrigation, monosaccharides and sucrose had decreased. No report 

was made on hemicellulose at this point. Eight days after the 

plants had recovered, the monosaccharide content was lower than 

the check plants. Sucrose and hemicellulose content had increas- 

ed. The suggestion was made that in the wheat plant hemicellu- 

loses take the place of starch as storage foods and act to bind 

water against loss. 

Hardening of plants was found by Dexter (1933) to be favored 

by conditions which promote the accumulation or conservation of 

carbohydrates and other reserve foods. These conditions were re- 

ported to be any which further photosynthesis and reduce respir- 

ation and growth. 

Whitman (1941) took weekly samples of the principle species 

of four representative grassland types in western North Dakota. 

Tests were made for total water, osmotic value of expressed sap, 

and relative proportions of bound and free water. It was found 

that the increase in bound water expressed as percentage of total 

water was the result of losses of free water due to progressive 

drying of the plant tissues and not from increases in the water- 

retaining capacity of the leaves. He considered bound water per- 
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centage to be a reflection of the relative degree of dryness of 

the habitat and not a measure of the inherent adaptation of that 

species to a dry habitat. 

Investigations by Bartel (1947), using four varieties of 

spring wheat, indicated that drought conditions cause a decrease 

in total moisture content of the leaves and an increase in os- 

motic pressure and percentage of total solids in the expressed 

juices. He also reported the reduction in moisture content to be 

about the same for all varieties, but that the increase in osmotic 

pressure and in percentage of total solids was greatest in the 

variety which had been observed to be most drought resistant and 

least in the variety which had been observed to be least drought 

resistant. 

Laboratory methods and testing procedures have been devised 

for determining relative heat and drought resistance of the living 

plant. Hunter, Laude and Brunson (1936) tested 14-day-old corn 

seedlings of several varieties under controlled temperature and 

found that an exposure of 6.5 hours to a temperature of 140° F. and 

a relative humidity of about 30 percent resulted in differential 

injury to the varieties. This injury was in the same order as 

the drought injury which had been noted in the field. Heyne and 

Laude (1940) reported similar results and also noted an increase 

in heat resistance when the plants were exposed to as little as 1 

hour of light following 12 hours of darkness. 

Evidence now available indicates a definite close relation- 

ship between increased heat and drought resistance and exposure to 
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light. Duggar (1936, P. 727-762) reported a quick response to 

light in this respect and suggested that the response might be 

directly related to the photosynthetic process. Laude (1939) and 

Kenway, Peto, and Neatby (1942) found a rapid increase in sur- 

vival of plants exposed to heat and drought, this increase cor- 

relating with increase in the length of time during which the 

plants were exposed to light prior to treatment. It was deter- 

mined that the lowest survival rate was among plants which had 

been held in total darkness and that at the end of a two-hour 

light period the greatest gain in survival was noted although 

small additional gains were reported for longer exposures. 

A close relationship between heat resistance and hardening 

due to drought has been reported by several workers. Julander 

(1945), working with several species of grasses, reported that 

heat resistance is a measure of drought resistance and that 

hardening by drought under conditions favoring the accumulation 

of reserves produced highly significant differences in the abil- 

ity of the plants to resist heat. In the species tested, this 

ability corresponds closely with the aridity of the natural habi- 

tat. 

MATERIALS AND METHODS 

The Plants 

Plants used in this series of experiments were Zea mays and 

Tritkcum villgare. The varieties selected were chosen on the 
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basis of availability of seed and uniformity of growth. Of the 

wheats the variety Pawnee was selected and for corn, the single 

cross WF9x38-11. The plants were grown under normal greenhouse 

conditions in 4-inch unglazed pots. 

The soil used was a dark fertile loam, taken from the Agrono- 

my farm. In experiments 1 to 13 the soil was used without ad- 

mixture, but in subsequent experiments clean sand was added at the 

rate of 5 parts of soil to 2 parts of sand in an attempt to obtain 

uniform pot drainage. No nutrients were added in any of the ex- 

periments, the plants being irrigated with tap water only. 

Five seeds were planted in each pot and the seedlings thinned 

to three. The plants were tested from 28 to 35 days after plant- 

ing to insure that endosperm reserves were depleted. Heyne and 

Laude (1940) found that corn endosperm reserves are essentially 

exhausted at 21 days after planting. 

Light Treatments 

Pertinent information about the light treatments used in 

this series of experiments is given in the chart in Plate I. 

Because of space limitations it was not possible to include 

all of these treatments in any one experiment. However, every 

experiment included a "sunlight" treatment and a "total darkness" 

treatment, the latter serving as a check. The "sunlight" treat- 

ment consisted of exposure to the direct rays of the sun in the 

greenhouse for the period of the treatment. The intensity of this 
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illumination varied greatly from over 4000 foot-candles on bright 

days to less than 200 foot-candles on dark, cloudy days. In the 

"total darkness" treatment a group of plants, similar in every 

way to those being exposed to light, were held in complete dark- 

ness during the treatment period. These were then exposed to 

high temperatures as were the plants which had received light 

treatments. It was expected that exposure to bright sunlight 

would induce the maximum amount of heat resistance which could be 

produced by light exposure and that the "total darkness" treat- 

ment would in all cases represent the daily minimum heat resistance 

and any increase above this minimum could be ascribed to the in- 

fluence of light treatments. Periods of exposure to the light 

were 1, 3 and 6 hours. The temperature within the light compart- 

ment was partially regulated by ventilation during treatment, and 

the difference between the highest and lowest treatment tempera- 

ture during one experiment was seldom more than 7° F. Light in- 

tensity was measured by means of a Weston Photronic cell using a 

quartz screen which records radiant energy over a range of wave 

lights from 2900 Angstrom units to well into the infra-red region 

of the spectrum. An effort was made to equalize the light in- 

tensity of the treatments by regulating the distance of the plants 

from the light source and by changing the number of tubes used. 

This was partially successful in all cases except that of the 

sodium vapor lamp and, of course, in the case of sunlight. 

The light treatments were carried out in specially construct- 

ed compartments (Fig. 1) in which was located a shelf adjustable 



EXPLANATION OF PLATE I 

The portion of the spectrum included in these investigations 

is plotted on the horizontal axis. It will be noted that this does 

not correspond exactly to the so-called "visible spectrum" which is 

generally considered to extend from 3900 to 7600A. The curves for 

the various light treatments are all plotted to peak at 100 on a 

relative scale and do not indicate the comparative amounts of 

visible light emitted by the various sources. 
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Table 1. Light sources used and portion of spectrum covered by each. 

Treatment: Light source Manufactured 
by 

Size : No. : 

:of bulbs: 

Light intensity : 

at plant height : 

Foot candles : 

: 

Portion of : 

8nectrum covered : 

Peak at 

A Sunlight 2900-35,000A 5000A 

B Total Darkness 

C North Light 2900-35,000A 

D Red Fluorescent General Electric 40 Watt 4 70 6000-7200A 6400A 

E Blue Fluorescent General Electric 40 Watt 2 110 3700-5800A 4400A 

F Green Fluorescent General Electric 40 Watt 2 100 4800-6000A 5300A 

G Sodium Vapor General Electric 180 Watt 1 200 5500-6500A 5893A 

J 360BL Fluorescent General Electric 40 Watt 2 100 3200-4500A 3600A 

K Gold Fluorescent Westinghouse 40 Watt 2 110 5200-6900A 6000A 
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for height. The covering of the compartment was Sisal-Kraft build- 

ing paper and was essentially light proof. The inner surface of 

the covering was sprayed with a white water-mix type of paint to 

reduce light loss. 

The Heat Chamber 

The heat chamber used in these experiments (Fig. 2) was a 

room 6 x 6 x 8 feet. In the center of this room a turntable 5 

feet in diameter was located, operating at a constant speed of 

about 2 RPM. The room is heated by a steam radiator to a temper- 

ature of about 135° F. There was no automatic control and this 

temperature was found to vary depending on the number of pots 

placed in the room. Temperature and humidity were recorded by a 

hygro-thermograph and were found to remain quite constant within 

any one experiment. The length of exposure in the heat chamber 

was determined by the time required to produce differential injury 

to the plants. Injury was determined by visual examination of the 

plants during exposure. 

Experimental Procedure 

The general procedure used in these experiments was as 

follows: Plants which had grown under uniform conditions in the 

greenhouse were placed in a dark room (Fig. 3) in the evening. 

The following morning, units of four pots each were exposed to 



EXPLANATION OF PLATE II 

Fig. 1. Close-up of light compartments. 

Fig. 2. Heat chamber with plants under treatment. Note the 
hygro-thermograph in operation on the turntable. 

Fig. 3. Interior of dark room. 
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EXPLANATION OF PLATE III 

Fig. 4. Plants recovering in the greenhouse after treatment and 
before results are read. 

Fig. 5. Close -up of injured plants, showing the appearance of 
severe leaf injury which is not fatal to the plant. 
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Fig. 4 

Fig. 5 
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various controlled light treatments for a definite length of time. 

After this exposure all of the pots were placed randomly in the 

heat chamber and exposed to a temperature high enough to cause 

differential injury to the plants. The pots were well watered 

prior to the light treatment and again after they had cooled upon 

removal from the high temperature treatment. They were then re- 

turned to the greenhouse bench (Fig. 4) and allowed to recover 

for about one week before survival determinations were made. 

EXPERIMENTAL RESULTS 

An attempt was made to record results as percent injury of 

tissue of the plants in each pot. This was found to be an un- 

reliable method as there was considerable difficulty in determin- 

ing the limits of the living and dead parts. It was observed 

that in some cases plants which a few days after treatment gave 

every evidence of life later succumbed. It was consequently 

decided to record results as percentage surviving plants per pot. 

Determination of the percentage of survival was made one week or 

more after treatment, at which time the living plants or plant 

parts showed up in sharp contrast to the dead tissue (Fig. 5). 

Since in most cases there were only three plants per pot and 

this did not appear to constitute an adequate sampling unit, the 

four pots used in any one experiment were treated as a unit by 

reading the pots individually and then totaling the resultant 

percentages. 



EXPLANATION OF PLATE IV 

Fig. 6. Wheat exposed to three hours and to six hours of light. 
The pot on the extreme left contains normal plants. 

Fig. 7. Corn exposed to three hours and to six hours of light. 

Fig. 8. Corn plants which have been exposed to treatments as 
labeled for three hours. The pot on the left contains 
normal plants. 

The pots are arranged from left to right in order of 
increasing injury. Subscripts on the labels indicate 
length of light exposure. 
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PLATE IV 

Fig. 7 

Pig. 



EXPLANATION OF PLATE V 

Fig. 9. Wheat plants which have been treated as labeled for 
three hours. The pot on the left contains normal 
plants. 

Fig. 10. Corn plants which have been treated as labeled. 
Compare to the wheat plants in Fig. 9. 

Fig. 11. Corn plants from the last series of experiments com- 
pared to the normal plants on the left. 
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PLATE V 

Fig. 9 

Fig. 10 

Fig. 11 
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A three-hour period of exposure to light was selected since 

Heyne and Laude (1940) reported that the greatest increase in heat 

resistance due to light occurs during the first two hours of ex- 

posure. Preliminary tests using both wheat and corn tended to 

corroborate these findings to the extent that an exposure to light 

of six hours as compared to one of three hours did not produce a 

significant increase in heat resistance in any of the spectral 

regions investigated. There appeared to be a difference in re- 

action to length of exposure due to the species being used. Wheat 

(Fig. 6) showed greatest increases under a six-hour exposure while 

corn (Fig. 7) appeared to be favored by the shorter three-hour 

period. These differences, if real, were not great and could not 

be shown to be significant. 

Due to space limitations, only three artificial light treat- 

ments could be included in any one experiment, so the various 

light treatments were compared best by reference to their stand- 

ings with relation to the two treatments, A (sunlight) and B 

(darkness), common to all of the experiments. Of most importance 

was the comparison with total darkness. Since the intensity of 

sunlight varied greatly its influence could be expected to vary. 

However, as the "darkness" did not vary in quality, all light 

being excluded and the temperature accurately regulated, the B 

treatment could be regarded as a base or minimum and any increase 

in heat resistance above this minimum could be considered as due 

to the influence of that particular light to which the plants were 

exposed. 
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In a comparison of each light treatment with the "darkness" 

treatment it was found that treatments A, C, D, F, G, J, and K all 

gave significant increases in heat resistance over the B (dark- 

ness) treatment. Treatment E did not show a significant increase 

over treatment B; but, as treatment E was used only in a small 

number of experiments it was felt that this lack of a significant 

increase was due to chance variations rather than to a lesser 

effectiveness of the blue light in inducing heat resistance. Ad- 

ditional tests are needed to determine this point. 

Sample data are given (Tables 2 and 3) indicating the method 

of summarization and analysis used. A total of 56 experiments 

was run using various combinations of light treatments. These 

were later grouped for summary and the treatments compared in 

pairs using data from all experiments in which the pair of treat- 

ments under consideration appeared. This made possible a greater 

number of comparisons and increased the accuracy obtained. For 

an example, from Tables 2 and 3 data can be had on 6 experiments 

including treatments C, F, and G and l4 experiments including 

treatments J and K. But by combining data from the two tables it 

is possible to deal with a total of 20 experiments which include 

treatments A, B, and D. This method was used in all analyses of 

the data obtained from these experiments. 

Treatment A (sunlight) was found to induce significantly 

higher heat resistance than did treatment B (darkness) or any 

other light treatment except C (north light). There was an ap- 

parent difference between treatments A and C in favor of A but 
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Table 2. Survival data from experiments 8 through 13. 

Experiment : 
Treatment 

No. : A. B: C: D: F: G: Total 

8 233 33 367 67 

9 334 33 13 
263 

loo 
10 400 167 7 167 
11 33 0 33 0 
12 400 0 0 0 
13 367 0 300 loo 

233 99 
233 127 
133 267 
66 33 
66 

199 67 

1032 
96 

1401 
0 

166 5 6 

4 
1033 

Total 1767 233 1100 434 930 593 5057 
Mean 295 39 183 72 155 99 

Least significant difference 96, P .05 

Table 3. Survival data from experiments 43 through 56. 

Experiment : 
Treatment 

No. A B : D : J : K : Total 

4 
46 
5 

4 
48 
7 

49 
50 
51 
52 

55 
56 

3 50 

400 
400 
400 

24o 
37 5 

300 
380 
222 
400 
4400 

00 
400 

275 260 
180 235 
270 300 
100 22 
250 355 
275 350 
148 180 
215 333 
3 340 
4o 335 
oo 

1 

245 
loo 350 o2 

2 

loo 141 
248 36o 

25o 
17 
275 

5 

10 
375 
350 
160 

5 

5 

3 2 
20 
267 

239 o 
5 

157 
350 
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the difference, if real, was not great enough to be significant. 

No method could be devised by which to control the intensity of 

sunlight without altering its quality; and since this intensity 

varied from 150 to 4000 or more foot-candles in the greenhouse 

while that of the artificial light sources ranged from 70 to 200 

foot-candles, it is not unlikely that the superiority of sunlight 

in inducing heat resistance in these experiments is an expression 

of this higher intensity. 

No significant differences could be detected between the 

various artificial light treatments and all except treatment E 

(blue fluorescent tube) induced a significant increase in heat re- 

sistance over darkness. The differences described above may be 

seen readily in Fig. 12 and are present, though not apparent, in 

Fig. 13. The apparently smaller differences indicated in Fig. 13 

are due probably to less severe total injury to the plants used 

in that series of experiments. This was caused by mechanical 

difficulties which developed in the temperature control mechanism 

necessitating the use of higher temperatures (about 135° F.). 

Under this high temperature a shorter exposure period was essential 

to avoid killing all of the plants and the differential injury 

obtained was not so marked as at the lower temperatures previous- 

ly used. 

DISCUSSION 

The data presented are from experiments selected to include 

all light treatments in a sufficient number of replications to 
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give adequate comparisons. Where it was felt that uncontrollable 

factors, such as fluctuating sunlight intensity due to cloud 

cover, had an undue influence, the data from the experiment were 

discarded. No comparison of the two species used was attempted 

since both wheat and corn gave quite similar results. Better 

differential survival was apparent in the experiments using corn 

but this may be due to the greater difficulty encountered in de- 

termining the severity of injury to wheat while it was in the 

heat chamber. 

Relative humidity in the heat chamber could not be controlled 

but ranged from 30 percent to 35 percent in all experiments. The 

rate of water loss from the plants was high, and some of the 

injury obtained may have been due to physiologic drought. How- 

ever, since the pots were uniformly saturated before treatment and 

the plants were of uniform size, any injury due to physiologic 

drought should have been uniformly distributed among the pots. 

The soil in the pots appeared moist at the time of removal from 

the heat chamber, and at no time were the plants under stress from 

an actual shortage of soil moisture. 

Regulation of light intensity in the treatments was only 

partially successful. By using more or fewer fluorescent tubes 

and by changing the distance of the plants from the light source 

some equalization of intensity could be effected. This did not 

permit raising the intensity of the red (D) light to a point of 

equality with the others, nor was it possible to reduce the in- 

tensity of the sodium (G) light to that of the others. As has 
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been reported previously, no regulation of sunlight intensity was 

achieved. The intensities arrived at by these adjustments and 

used in the experiments are recorded in Table 1. Light intensity 

was measured by a Weston Photronic cell using a quartz screen and 

highly sensitive to all visible radiations. This range of sensi- 

tivity extends into the ultra-violet region as low as 2900A, and 

far into the infra-red. As all of the light sources used had 

their peak energy output within a range of 3200 to 6400A, the in- 

tensities could be measured with good accuracy. 

Since results were recorded simply as "living" and "dead" 

plants and these readings were made after the live plants had re- 

covered sufficiently to be in sharp contrast with the dead ones, 

there could be no appreciable error at this point. However, con- 

siderable variation between pots subjected to the same treatment 

was noted frequently. This may have been the result of heat 

injury to the root system since the soil temperature in the pots 

got much higher than it would have under comparable field con- 

ditions. No practical method for maintaining a lower temperature 

in the soil could be devised. 

All artificial light treatments produced significant in- 

creases in heat resistance over that observed under the "total 

darkness" treatment with the single exception of the blue light 

treatment. This exception appeared to be due to experimental 

error rather than to a real difference in induced heat resistance. 

Had the E (blue light) treatment been included in a larger number 

of experiments, it is probable that the error term would have been 
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reduced and that there would have been a significant increase in 

heat resistance over darkness. Since photosynthesis is known to 

occur at comparable rates throughout the visible spectrum, as has 

been reported previously, there would appear to be a very close 

relationship between the photosynthetic process and heat re- 

sistance as induced by exposure to isolated segments of the 

visible spectrum as represented by sunlight. 

CONCLUSIONS 

Young corn and wheat plants were held in darkness for 12 

hours and then treated by exposure in groups to various portions 

of the spectrum, with one group of plants being kept in darkness 

during the treatment period. All were then placed in a heat 

chamber until differential injury was obtained. From analyses of 

the results, based on the percentage of the plants which sur- 

vived, it is concluded that: 

1. Exposure of plants to visible radiation for a period of 

three hours induced a significant increase in heat resistance 

over plants which had no light. 

2. A six-hour exposure to light was not significantly better 

than a three-hour exposure when measured by the induced heat re- 

sistance. 

3. Under the conditions of this investigation sunlight in- 

duced significantly higher heat resistance than did any arti- 

ficial light treatment. 
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4. Exposure to artificial light in various segments of the 

spectrum including violet, green, gold, orange (sodium vapor), 

and red produced significant increases in heat resistance over 

that possessed by plants which had received no light. Exposure 

to blue light caused no significant increase but this may have 

been due to the fact that this experiment was repeated only a few 

times. 

5. Nonsignificant differences between artificial light treat- 

ments possibly were the result of different amounts of light 

being supplied to the plants in the several treatment groups. 

Another possible reason might be that the amount of light or the 

time of exposure did not develop the maximum influence in each 

case. 

6. All regions of the visible spectrum included in this 

study were effective in inducing heat resistance in plants which 

previously had been held in darkness. 
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