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Abstract 

Nearly 30% of emerging infectious diseases are caused by vector-borne pathogens with 

wildlife origins, posing a risk for public health, livestock, and wildlife species of conservation 

concern. Understanding the spatial patterns of exposure to dipteran vectors and their associated 

pathogens is critical for epidemiological research to target prevention and control of vector-borne 

infectious diseases. In recent years, Western Equine encephalitis, St. Louis encephalitis, West 

Nile Virus encephalitis and avian malaria have not only been a public health concern but also a 

conservation concern, specifically the conservation of grassland nesting birds. Although the 

central Great Plains is the most specious region for grassland nesting birds, their role in the 

enzootic (primary) amplification cycle of infectious diseases may lead to further population 

depressions, and could potentially result in spill-over events to humans and livestock. The goals 

of my thesis were 1) to identify the underlying causes of spatio-temporal abundance patterns of 

mosquito vectors within the grasslands of the eastern Smoky Hills, and 2) to create probabilistic 

distributions of functional disease vectors, to evaluate disease risk in Greater Prairie-chicken 

(Tympanuchus cupido, surrogate species for other grassland nesting birds). First, I found that 

temporal dynamics in mosquito abundances were explained by maximum and minimum 

temperature indices. Spatial dynamics in mosquito abundances were best explained by 

environmental variables, such as curvature, TWI (Topographic Wetness Index), distance to 

woodland and distance to road. Second, the overall predictive power of the ecological niche 

models of important vector species in the grasslands of the Smoky Hills was better than random 

predictions, indicating that the most important predictor variables in their distribution were: 

distance to water, TWI, AASHTO (soil particle size distribution), and mean temperature during 

the coldest quarter. Furthermore, the spatial analysis indicated that Greater Prairie-chicken nest 

in areas with a higher probability of vector occurrence than other potentially available habitats 

within the grasslands. However, I failed to detect a significant difference in the probability of 

vector occurrence at nest of infected versus uninfected females. Understanding the distribution 

and abundance patterns of vectors of infectious diseases can provide important insights for 

wildlife conservation as well as public health management. 
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Chapter 1 - INTRODUCTION 

Monitoring vector communities has been an integral part of disease surveillance and 

control programs (Center for Disease Control and Prevention 1994). However, merely a century 

ago the role of mosquitoes as disease agents in the spread of infectious diseases could not be 

fathomed (Spielman et al. 2001). Discoveries of the causative disease agents/vectors of malaria 

by Charles Laveran and Sir Ronald Ross, as well as Patrick Manson on filarial encephalitis, and 

the Yellow Fever Commission largely contributed to today’s awareness of the importance of 

dipteran vectors. The Yellow Fever Commission was formed to investigate the causative agents 

of yellow fever of deployed U.S. soldiers in Cuba, which resulted in one of the earliest vector 

control programs. Today, mosquito control and eradication programs have eliminated vector-

borne diseases (yellow fever, filarial encephalitis, malaria) from most developed countries 

(World Health Organization 2001). 

Despite the diversity of Diptera (100,000 – 120,000 species; Arnett 1985, Evenhuis 1989, 

Southwood 1978, Gaston 1991) only a few of today’s 3,500 described mosquito species are 

implicated in the spread of infectious diseases (Foley et al. 2010, Reither 2001). Important 

properties of vector species in the spread of disease are: 1) survival and reproduction rate, 2) 

activity (i.e. biting rate), and 3) rate of development and reproduction of pathogens within the 

vector itself (Kovats et al. 2001). Anopheles gambiae and Aedes aeypti are amongst today’s most 

important vectors of emerging infectious diseases. The arrival of Anopheles gambiae to 

northeastern Brazil in 1930 triggered a malaria epidemic, which resulted in an estimated 16,000 

deaths before the vector could be eradicated (Coggeshall 1944, Tatem et al. 2006a). Similarly, 

the 19th and early 20th century epidemics of yellow fever were facilitated by the introduction of 

Aedes aegypti to North America (Bryant et al. 2007, Rogers et al. 2006, Tatem et al. 2006b). 

Nearly 30 % of the infectious disease events can be attributed to vector-borne pathogens, 

whose transmission is strongly influenced by the abundance and distribution of vector species 

(Gratz 1999). Rigorous surveillance programs are an essential component of effective vector 

control, and suppression of infectious disease spread (Center for Disease Control and Prevention 

2011). In the United States, this role is taken on by local health departments and state health 

agencies. Agencies, particularly the Center for Disease Control and Prevention, coordinate 

surveillance efforts of infectious disease vectors on a national level. In recent years, the most 
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rigorous national mosquito surveillance program was a result of the 1999 emergence of West 

Nile Virus, which led to budget allocations towards vector control programs and disease 

surveillance. Since then, annual ‘West Nile Virus Activity Reports’ have been published 

indicating positive mosquito pools (involving 64 species) across the United States (Center for 

Disease Control and Prevention 2011, United States Geological Survey 2012). Similar national 

surveillance and control programs have been put in place for: other arboviral encephalitides 

(Eastern Equine encephalitis, Western Equine encephalitis, St. Louis encephalitis), and Dengue 

hemorrhagic fever (Center for Disease Control and Prevention 2008). 

Disease transmission is a dynamic process that depends on: host and vector ecology, 

pathogen properties, and landscape features. In the case of West Nile Virus encephalitis, enzootic 

transmission cycles between mosquitoes and avian species are responsible for the amplification 

of the virus in the environment (Turell et al. 2001); when West Nile Virus enzootic activity is 

most intense (Lothrop et al. 2008) it results in increased spill-over events to humans. Thus, 

understanding the infectious cycles of vector-borne pathogens in wildlife can lead to a better 

understanding of disease in humans. Indeed, the majority of infectious disease events are caused 

by pathogens with wildlife origin and/or exhibit enzootic cycles (Brown 2004, Jones et al. 2008, 

Taylor et al. 2001). 

In addition to the threat to public health, vector-borne pathogens can also pose a 

significant risk to wildlife species. Vector-borne pathogens are implicated in the decline of 

wildlife species worldwide, and may lead to extinction events when virulent pathogens encounter 

naïve host populations (Daszak 2000, Daszak et al. 2001, Dobson et al. 2001, Marra et al. 2004, 

Smith et al. 2009). The introduction of avian malaria to the Hawaiian Islands has been 

implicated in the extinction of the endemic avifauna (van Riper et al. 1986, Warner 1968) and 

continues to be a threat to the highly susceptible Laysan Finch (van Riper et al. 1986) and honey 

creepers (Depanidinae; Atkinson et al. 2000). Similarly, the introduction of West Nile Virus in 

Europe and North America resulted in high mortality events in domestic birds (Europe: domestic 

geese; North America: American Crow and 22 other bird species; Komar 2003). 

Infectious disease threat is of particular concern in the Great Plains, because this region 

represents the largest North American grassland habitat (Samson et al. 2004), and is among the 

most specious region for grassland nesting birds (United States Department of Agriculture 1999). 

The transmission of infectious diseases in the grassland bird community is likely to occur during 
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the nesting season, and has the potential to exacerbate the decline of resident birds (West Nile 

Virus in Greater Sage-grouse, Centrocerus urophasianus, Naugle et al. 2004; avian malaria in 

Greater Sage-grouse, Boyce 1990), and summer breeding migrants. During the breeding season 

(early summer) local residents, Greater Prairie-chicken (Tympanuchus cupido), Eastern 

Meadowlark (Sturnella magna), and Western Meadowlark (Sturnella neglecta) nest 

sympatrically with summer breeding migrants, Dickcissel (Spiza americana), Grasshopper 

Sparrow (Ammodramus savannarum), and Upland Sandpiper (Bartramia longicauda) in the 

Kansas grasslands. Resident species have been experiencing declines throughout their range due 

the conversion of grasslands and changes in land management practices. As a result, Greater 

Prairie-chicken have been listed as ‘vulnerable’ (Schroeder et al. 1993), and although Eastern 

Meadowlark and Western Meadowlark are considered to be of ‘least concern’, their breeding 

populations have declined by as much as 70% since the 1970 (Lanyon 1995). Comparable effects 

due to the loss of continuous grasslands have been observed in summer breeding migrant 

species; Grasshopper Sparrows  have decline throughout their range (Vickery 1996), Upland 

Sandpipers  continue to experience alarming population declines (Houston et al. 2001), and 

Dickcissel after drastic population reductions between 1966 – 1978 have finally stabilized at 

lower numbers (Temple 2002).  

The grasslands of North America represent a unique situation in which public health and 

wildlife conservation concerns intertwine. The grasslands serve as interface for the disease 

transmission within the enzootic mosquito-avian cycle (involving grassland bird species), and 

can pose a significant risk to livestock and public health when enzootic activity is most intense 

(Petersen et al. 2008). In Kansas, infectious encephalitides (Western Equine encephalitis, St. 

Louis encephalitis, West Nile Virus encephalitis) cases in livestock and humans are preceded by 

epidemics in the local avian fauna. In 2002, there were 794 reports of equine and 22 reports of 

human West Nile Virus encephalitis across the state (Kansas Department of Health and 

Environment 2002). The following year, Kansas experienced a sharp increase in human West 

Nile Virus encephalitis cases (n=91).  

Accurate information on the spatio-temporal dynamics of mosquito communities in a 

region is necessary for the development of efficient control measures of infectious diseases 

(Alten et al. 2002), because vector demography is closely associated with biophysical variables. 

Variations in spatial abundance and diversity of mosquito communities have been observed as a 
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result of local topography and vegetation (Johnson et al. 2008, Lothrop et al. 2001, Zyzak et al. 

2002), which define habitat and resources for mosquitoes. For instance, fine-scale topographic 

depression may provide ephemeral breeding sites under suitable meteorological conditions 

(Fisher et al. 2004). In addition, temperature and precipitation are responsible for the seasonal 

dynamics of mosquito communities (Jones et al. 2004). Consequently, disease incidence of 

pathogens occurs in well-defined seasonal periods that are associated with fluctuations in vector 

abundances. In the Midwest, the onset of West Nile Virus has been linked to the seasonal shift in 

mosquito populations of Culex pipiens and Culex restuans (Westcott et al. 2011). However, very 

little is published on the mosquito community dynamics in grassland communities, where public 

health and wildlife conservation are both affected by these vector dynamics (Meade et al. 2000). 

The goal of this study was to investigate the pattern of abundance and distribution of 

vector mosquito species in the grasslands of the eastern Smoky Hills, its implication on disease 

transmission to humans, and to sensitive grassland bird species. My thesis is divided into three 

chapters. Here, I review the history of vector control as it relates to emerging infectious diseases 

and its importance for public health, and wildlife species of conservation concern. In chapter 

two, I examine the spatio-temporal distribution of potential vector species of arboviruses and 

Plasmodium species, as well as the underlying meteorological and environmental variables that 

give rise to peaks in vector abundance. In chapter three, I utilized ecological niche modeling to 

determine the potential distribution of the most abundant vectors of these disease agents, assess 

the probability of avian malaria vector occurrence (Culex species) at Greater Prairie-chicken nest 

locations versus potentially available grassland habitat, and finally determine if the probability of 

vector occurrence relates to disease agent incidence in nesting females.  
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Chapter 2 - PATTERNS OF SPATIO-TEMPORAL 

DISTRIBUTION, ABUNDANCE, AND DIVERSITY IN A 

MOSQUITO COMMUNITY FROM THE EASTERN SMOKY 

HILLS 

 Abstract 
Nearly 30% of the emerging infectious disease events are caused by vector-borne 

pathogens with wildlife origins, posing a risk for public health, livestock and wildlife species of 

conservation concern. Effective control measures for infectious diseases can only be developed if 

habitat associations are quantified, and spatio-temporal dynamics of mosquito vector 

communities are examined. In recent years, Western Equine encephalitis, St. Louis encephalitis, 

West Nile Virus encephalitis and avian malaria have been not only a concern for public health 

but also a conservation concern, specifically the conservation of grassland nesting birds. 

Although the central Great Plains is the most specious region for grassland nesting birds, their 

role in the enzootic (primary) amplification cycle of infectious diseases may lead to further 

population depressions, and could potentially result in spill-over events to humans and livestock. 

Previous studies have reported the occurrence and distribution of mosquito vectors in Kansas but 

little is known about infectious disease vectors in a grassland context. Combining mosquito 

surveillance data with meteorological and environmental variables, I examined the underlying 

causes of spatio-temporal abundance patterns of vector species within the grasslands of the 

eastern Smoky Hills. Using multiple linear regression I found evidence that mosquito 

abundances are explained by meteorological and environmental variables. Temporal dynamics in 

mosquito abundances were explained by maximum and minimum temperature indices, both with 

an adjusted R2 of 0.73. Spatial dynamics in mosquito abundances were best explained by a model 

containing the following environmental variables (adjusted R2 of 0.37): curvature, TWI 

(Topographic Wetness Index), distance to woodland, and distance to road. My research results 

address the underlying causes of the spatio-temporal dynamics of mosquito species across a 

grassland ecosystem, and add to the existing survey of mosquito communities in the central 

Great Plains, especially Kansas. 
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 Introduction 
Monitoring vector communities has been an integral part of disease surveillance and 

control programs (Center for Disease Control and Prevention 2011). Nearly 30% of the emerging 

infectious disease events are caused by vector-borne pathogens with wildlife origins (Jones et al. 

2008), which pose a risk for public health, livestock and wildlife species of conservation 

concern. Effective control measures for emerging infectious diseases can only be developed if 

habitat associations are quantified and spatio-temporal distributions of vector species are 

examined, because mosquito vector demography is closely associated with biophysical variables. 

For instance, seasonal rainfalls provide ephemeral breeding sites (Norris 2004) and availability 

of breeding sites is closely tied to mosquito abundance. In addition, elevated temperatures during 

summer lead to reduced developmental time for pupal/larval life stages, increased mosquito 

abundances, and shortened extrinsic incubation periods of pathogens they carry, thus creating 

conditions for rapid disease emergence. 

In recent years multiple mosquito-borne infectious diseases have been of public health 

and conservation concern in the central Great Plains, including: Western Equine encephalitis, St. 

Louis encephalitis, West Nile Virus encephalitis (Kansas Department of Health and Environment 

2012) and avian malaria. In grassland nesting birds, infectious encephalitides and avian malaria 

exhibit an enzootic avian cycle, which has been shown to result in large scale population declines 

(West Nile Virus in Greater Sage-grouse, Centrocercus urophasianus, Naugle et al. 2004), and 

compromised fitness (avian malaria in Greater Sage-grouse, Boyce 1990). Grassland nesting 

birds, particularly in the central Great Plains are of conservation concern due to marked 

population reductions (Brennan et al. 2005, Jones et al. 1997, Knopf 1994). Infectious 

encephalitides also exhibit a zoonotic cycle involving human and livestock hosts, and the 

emergence in humans and livestock is often preceded by avian epidemics, which serve as 

mechanisms of amplification of the viruses in the environment (Burkett-Cedena et al. 2011, 

Turell et al. 2001). 

Although the occurrence and distribution of mosquito-borne infectious diseases (Kansas 

Department of Health and Environment 2012) and their vectors (DeMoss Hill 1939, Edman et al. 

1964, Janovy 1966, Lungstrom 1954, Lungstrom et al. 1961) has been reported for multiple 

counties in Kansas, little is known about infectious disease vectors in a grassland context. 

Grasslands along with agricultural fields represent one of the world’s largest biomes (Foley et al. 
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2005), and provide a unique interface for the transmission from the enzootic mosquito-avian 

cycle (involving grassland nesting birds) to mammalian spill-over hosts such as humans and 

livestock. 

This study focused on the seasonal distribution of mosquitoes in the grassland of the 

Smoky Hills, Cloud County, Kansas. The objectives were to, 1) examine the spatio-temporal 

distribution of potential vectors of infectious encephalitides, and avian malaria, and 2) determine 

the underlying meteorological and environmental variables that give rise to peaks in vector 

abundance. 

 Methods 

 Study Site 
The study site was located in north-central Kansas, in the Smoky Hills eco-region of 

Cloud County, Kansas (Fig. 2.1.). The Smoky Hills are tillable, with native prairies characterized 

by moderate to high fragmentation, row crop agriculture, and low intensity cattle stocking. The 

study area encompassed  283 km2 of fragmented prairie landscape; consisting of 73% grassland, 

25% cropland, and a road density of 1.4 km/km2. Cultivated croplands included wheat, sorghum, 

soybeans, and corn. The climate was temperate, with moderate rainfall and annual precipitation 

during the sample year of 883 mm, of which nearly half could be attributed to precipitation from 

May through July 2010. 

Since 2001 there have been two outbreaks of mosquito-borne infectious disease within 10 

counties surrounding the study site (Appendix A: Fig. A.2.; Kansas Department of Health and 

Environment 2012). Human cases of infectious encephalitides occurred both in 2003 and 2008. 

The last human incident report in Cloud County occurred in 2003 (West Nile Virus encephalitis, 

Kansas Department of Health and Environment 2003). 

 

 Mosquito Surveillance 
Twenty sites were randomly selected within grassland habitat (Fig 2.1). I chose to sample 

only grasslands to better understand the vector ecology in this habitat. Adult mosquitoes were 

collected in Center for Disease Control and Prevention (CDC) miniature light traps (J.W. Hock, 

Gainesville, FL) weekly from May through July 2010. These light traps are considered the 
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industry standard for collecting host-seeking mosquitoes (Meeraus 2008). Light traps were baited 

with 1 kg dry ice, powered by 6-V lantern batteries and hung 1.5 m above the ground. The traps 

were deployed before dusk and retrieved the following morning (Appendix A: Fig. A.1.). 

Collected mosquitoes were transported to the laboratory in ice chests filled with dry ice and 

subsequently stored at -20 ˚C until identification. Adults were identified to species level using 

dichotomous keys (Pratt and Stojanovich 1961). Field collected specimens of Culex species were 

often difficult to differentiate due to missing morphological characters. Differentiation between 

Culex restuans and Culex pipiens was achieved by the presence of two small white-scaled rounds 

spots on the scutum (80% success rate, Apperson et al. 2002). Mosquito abundance was 

estimated by standardizing mosquito counts by the number of traps operated weekly or among 

locations. The co-occurrence between mosquito taxa was determined using a Pearson’s 

correlation matrix. Correlation coefficients greater than 0.5 may imply habitat similarities or 

temporal coincidence between mosquito taxa. Species diversity was estimated using the Shannon 

index, designated H’ (Krebs, 1989): 

𝐻′ =  −�𝑝𝑖 log 𝑝𝑖

𝑅

𝑖=1

 

where pi is the proportion of individuals belonging to the ith species within the community of 

interest. 

 

 Meteorological Data 
Daily weather data, including precipitation, wind speed, minimum and maximum 

temperatures were recorded by the National Oceanic and Atmospheric Administration (NOAA) 

at Concordia Blosser Municipal Airport (N 39°32.949’ W 097.39.133’), 12 km north of the study 

site. I calculated mean weekly precipitation, temperature (minimum, maximum), wind speed, and 

accounted for lagged responses to precipitation and temperature by including conditions one, and 

two weeks prior from May 5th (two weeks before sample season) to August 2nd, 2010 (Appendix 

A: Table A.3., Fig. A.3.). 
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 Environmental Data 
I used Arc Info 10 (Environmental Systems Research Institute, Radlands, CA) for 

geospatial analysis and data extraction. All data sets were acquired from Kansas Geospatial 

Community Commons (www.kansasgis.org). Landcover analysis was conducted using the 30 m 

resolution of the 2005 landcover map of Kansas (Kansas Applied Remote Sensing Program 

2005; Whistler et al. 2006) depicting the following landcover classes: urban industrial/ 

commercial, urban residential, urban open land, urban woodland, urban water, cropland, 

grassland, CRP (Conservation Reserve Program), woodland and water. I used the 1999 National 

Elevation Dataset (U.S. Geological Survey, EROS Data Center) and roadway dataset that 

combined the 2006 Kansas State, and Non-State Road System dataset (Kansas Department of 

Transportation: Bureau of Transportation Planning). Each landcover data set was aggregated to 

30 m grain size prior to geospatial analysis. Using this dataset, we estimated five variables at 

each mosquito trapping location: distance to agriculture, distance to woodland, distance to water, 

distance to road, and distance to edge.  

Characteristics used to evaluate the area surrounding the trapping locations were: 

curvature, and topographic wetness index (TWI), which were analyzed using the 1999 National 

Elevation Dataset and Spatial Analyst tools. TWI describes the predicted soil moisture pattern, 

and is calculated as the natural logarithm of the ratio between local upslope contributing area, 

and slope (Pathak, 2010). These landscape characteristics were evaluated at the attractiveness 

range of CO2 baited mosquito traps, by applying a 30 m radius buffer to each trapping location. 

The attractiveness range of CDC CO2 baited light traps is somewhat ambiguous, however it has 

been shown that CO2 attracts mosquitoes from distances of <30 m, and is species dependent 

(Service, 1993). Thus, a 30 m buffer was selected to encompass mosquito habitat around 

trapping locations. 

 

 Statistical Analysis 
Several steps were taken to avoid overparameterizing biophysical models of mosquito 

abundance and diversity (Appendix A: Table A.4., A.5.). Meteorological and environmental 

variables were examined for colinearity using Pearson’s correlation matrices and redundant or 

highly correlated variables (r>0.90) were excluded from further analyses. Prior to model 
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construction, variables were tested for normality using Kolmogorov-Smirnov tests. Relative 

abundance, and TWI showed significant departures from normality, and were arcsin and log10 

transformed, respectively.  

To investigate the relationship of mosquito abundance/diversity with meteorological 

/environmental variables, I performed multiple linear regression analysis to fit the dependent 

variable, mosquito abundance/diversity, to the independent meteorological/environmental 

variables. The effects of meteorological variables (independent variables) on mosquito 

abundance/diversity (dependent variables) were examined using weekly averages of 

precipitation, wind speed, maximum temperature and minimum temperature. To account for 

lagged responses to precipitation, and temperature, conditions one and two weeks prior were 

included. I sampled mosquitoes weekly for a total of 9 weeks. Each week, mosquito 

abundance/diversity was averaged over the 20 sampling locations. Due to the small sample size I 

chose not to split data for cross-validation. The full models included 6 weather variables, and an 

intercept for a total of 7 parameters. Candidate models for mosquito abundance/diversity 

included all possible combination of weather variables (26 = 64 models). All 6 weather variables 

had been previously shown to be linked to mosquito abundance/diversity; hence I chose to 

include each possible combination of these variables. Furthermore, I included combinations of 

binary interaction terms for all 6 weather variables. 

The effects of environmental variables (independent variables) on mosquito 

abundance/diversity (dependent variables) were examined using curvature, TWI, distance to 

agriculture, distance to water, distance to woodland, distance to road, and distance to edge. I 

sampled 20 locations across my study area, and averaged the abundance and diversity of 

mosquitoes over time (the 9 sample occasions). Due to the small sample size I chose not to split 

data for cross-validation. The full models included 7 environmental variables, and an intercept 

for a total of 8 parameters. Candidate models included all possible combinations of 

environmental variables (27 = 128 models). I also included combinations of binary interaction 

terms for all 7 environmental variables. 
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I used Akaike’s Information Criterion with small sample size bias adjustment (AICc) to 

select the most parsimonious model(s) (Burnham and Anderson 1998).  

 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)
𝑁 − 𝑘 − 1

 

 

Where k is the number of model parameters and N is the number of sample points, AICc has 

been shown to be superior to AIC. All models within 2 units of the minimum AICc value have 

substantial support, and should be considered for inferences (Burnham and Anderson 1998). 

To determine biologically significant variables I calculated the cumulative AICc weights 

(Flanders-Wanner et al. 2004) of 2n models created for the analysis of mosquito abundance 

versus meteorological/environmental variables. The cumulative weight of a variable is calculated 

by summing up the AICc model weights of model (2n) containing that variable. 

 

wi  =  exp(−0.5∗𝛥𝑖)
∑ exp(−0.5∗𝛥𝑟)𝑅
𝑟=1

 

 

Where wi are Akaike weights for model i, Δi is the difference between best fitting model, and 

model i. The denominator is the sum of the relative likelihoods for all candidate models.  

 

 Results 

 Community Description 
The data collected in this study provide a description of the grassland mosquito 

community in the Smoky Hills eco-system in Cloud County, Kansas. Mosquito samples were 

collected for 9 weeks (once per week) at 20 sample sites from May through July (Table 2.1, 

2.2.). I collected 12,861 individual mosquitoes, of which 11,223 (87.3%) could be identified to 

species level. The remaining 12.7% could not be identified to due missing or damaged 

morphological characteristics of field collected samples. The mosquitoes captured in this study 

belonged to three genera: Aedes, Culex and Anopheles, representing 11 taxa (Table 2.1). Aedes 

was the most abundant genus, comprising 87.6% of the total collection, followed by Culex 

(12.1%), and Anopheles (0.3%). Of all taxa, Aedes sollicitans was the most abundant species 
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collected during this study, at 49.7%. Aedes nigromaculis (21.5%) was also very abundant 

throughout the study. Other common species included Aedes vexans (9.0%), Culex tarsalis 

(7.4%), Aedes taeniorhynchus (6.6%), and Culex salinarius (3.6%). Species encountered at 

lower abundances were Culex pipiens, Culex restuans, Aedes dorsalis, Aedes stimulans, and 

Anopheles species. Of the previously 35 (DeMoss Hill 1939, Edman et al. 1964, Janovy 1966, 

Lungstrom 1954, Lungstrom et al. 1961) mosquito taxa reported in Kansas, 9 were collected in 

this study. My collections include two previously unreported species in Kansas: Aedes stimulans 

and Aedes taeniorhynchus. 

Species abundances were used to calculate a Pearson’s correlation matrix. This analysis 

provided a measure of co-occurrence between mosquito species. Twenty pairs of mosquito taxa 

with a correlation coefficient greater than 0.5 co-occurred (Table 2.3.). The following pairs of 

mosquito taxa exhibited correlations greater than 0.9: Culex restuans/Aedes stimulans (r=0.93), 

Culex restuans/Aedes vexans (r=0.93), Aedes dorsalis/Aedes vexans (r=0.93), and Culex 

salinarius/Aedes taeniorhynchus (r=0.95). 

 

 Temporal Dynamics 
Temporal analysis revealed similar population fluctuation in all 3 genera. Standardized 

mosquito abundances indicated early season peaks in May and June followed by a decline in the 

last quarter of June and resurgence during July (Fig. 2.2., 2.3., Appendix A: Fig. A.5.). Aedes 

species exhibited small peaks in abundance mid-June, and reached their highest numbers in July, 

with the exception of Aedes vexans. Aedes vexans reached peak abundances in mid-June, and 

exhibited a minor peak in July. Aedes sollicitans was the most abundant species from June 

through the end of July, and exhibited a small peak in abundance in the middle of June, and 

achieved a major peak in the middle of July. Aedes nigromaculis, the second most abundant 

species, was similar to Aedes sollicitans; this species reached a small peak in the middle of June, 

and a maximum in July. Aedes taeniorhynchus abundances were low throughout May, and June. 

In July population numbers increased, reached maximum abundances in the third quarter of July, 

and remained stable until the end of the sample season. Culex species were encountered at lower 

abundances than Aedes species: however, Culex tarsalis was the most abundant species collected 

in May. Abundances of Culex tarsalis decreased in June and collection numbers remained small 
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throughout the sample period. Culex salinarius abundances remained low until the end of June 

and increased until July. 

 

 Association between Meteorological/Environmental Variables and Mosquito 

Abundance/Diversity 
Multiple linear regression models testing the association between meteorological 

variables, and mosquito abundance/diversity, were reduced from 10 to 6 weather variables, due 

to the high correlation between sample week temperature indices, and lagged temperature indices 

(a priori significant threshold, r>0.80; Appendix A: Table A.5.). The analysis between 

meteorological variables, and mosquito abundance produced 2 plausible models based on their 

AICc values (Table 2.4., 2.5.). None of the most plausible models contained precipitation, and 

wind variables. Temperature variables explained the temporal variation in observed mosquito 

abundances. The two best-fit models had an adjusted R2 of 0.73 and included one temperature 

variable. Minimum temperature (t=4.71, p=0.00), and maximum temperature (t=4.47, p=0.00) 

were positively correlated with mosquito abundance. The cumulative AICc weights analysis 

indicated that minimum and maximum temperature were biologically significant variables, 

accounting for 69%, and 30% of the AICc weights, respectively (Table 2.6.). Contrary to the 

abundance data, I found no best supported model with mosquito diversity data (Appendix A: 

Table A.6.). None of the meteorological variables used in this study explained the spatial 

variation in observed mosquito diversity. 

Multiple linear regression models testing the association between environmental 

variables, and mosquito abundance/diversity, were constructed with the full set of environmental 

variables (n=7). The Pearson’s correlation matrix did not indicate significant correlation between 

these variables (a priori significant threshold, r>0.80; Appendix A: Table A.4.). All plausible 

models contained TWI but excluded the following distance variables: distance to agriculture, 

distance to water, distance to edge habitat. The top model had an adjusted R2 of 0.37, and 

included the following variables: TWI, distance to road, distance to woodland, and curvature. 

TWI, and distance to road were significantly correlated with mosquito abundance; TWI, and 

distance to road showed a positive (t=3.51, p=0.00), and negative (t=-2.28, p=0.04) correlation, 

respectively. Distance to woodland, and curvature showed a weak correlation with mosquito 
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abundance. The cumulative AICc weights analysis indicated that TWI, distance to road, distance 

to woodland, and curvature were biologically significant variables, accounting for 81%, 52%, 

45% and 41% of the AICc weights, respectively (Table 2.9.). Unlike the abundance data, I found 

no best supported model for the association between environmental variables and mosquito 

diversity (Appendix A: Fig. A.7.). None of the environmental variables used in this study 

explained the spatial variation in observed mosquito diversity. 

 

 Discussion 
The most recent literature on mosquito surveillance in Kansas was published between the 

1940s and 1960s (DeMoss Hill 1939, Edman et al. 1964, Janovy 1966, Lungstrom 1954, 

Lungstrom et al. 1961), and documented 35 mosquito taxa. Mosquito community surveillance 

was conducted in south-eastern Kansas (Allen, Anderson, Bourbon and Neosho Counties, 

Lungstrom et al. 1964), Riley County (DeMoss Hill 1939, Edman et al. 1964), Barton County 

(Cheyenne Bottoms, Janovy 1966). These studies were conducted at a broader spatial scale 

(regional scale) than the present study (local scale). Hence, of the previously documented taxa, 

only a subset (9 species) was encountered in the study area, along with two previously 

unreported species in Kansas: Aedes stimulans and Aedes taeniorhynchus. Aedes stimulans 

occurs predominately in the north-eastern United States, and eastern Kansas is considered to be 

at the western range boundary of this species (Crans 2010). This species is likely an uncommon 

but regular part of the mosquito community in northeast Kansas. Aedes taeniorhynchus is 

associated with coastal plains adjacent to the Atlantic and Gulf coasts (Center for Disease 

Control and Prevention 2012, Harrison et al. 1973). However, this species has been shown to 

occur in inland areas rich in fossil fuels and has first been reported in the central Great Plains in 

1973 (Oklahoma, Harrison et al. 1973). Collectively, the mosquitoes I encountered in the 

grasslands of the Smoky Hills in Cloud County, Kansas, serve as vectors for a variety of 

infectious diseases of public health and/or conservation interest, including: Western Equine 

encephalitis, St. Louis encephalitis, West Nile Virus encephalitis, and avian malaria. 

The variation of overall mosquito abundance showed a clear seasonal pattern that was 

explained by meteorological data. Multiple linear regression suggested a positive association 

with temperature indices (minimum/maximum temperature). Increased environmental 
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temperatures likely drive mosquito abundance, by increasing the metabolic rates, reproductive 

output, and increased host seeking of these vectors (Shone et al. 2006), which has previously 

been shown in laboratory, and field studies (Chuang et al. 2011). 

In addition to the seasonal pattern observed in this study, I found indication for spatial 

variation of mosquito abundances across sample sites. Among the environmental variables 

considered, only TWI showed a strong positive association with mosquito abundances across 

sites. TWI, is a wetness index that estimates a surface’s potential to accumulate water based on 

the ratio between upslope contributing area, and slope. Hence, the positive correlation with 

mosquito abundance may be due to the increased availability of larval habitats in areas with a 

higher TWI. This index has been widely used in hydrological studies, and has previously been 

shown to predict spatial variation in mosquito communities (Clennon et al. 2010, Cohen et al. 

2008, Shaman et al. 2006); hence it is an important variable to include in future habitat models. 

In order to be a functional vector of infectious diseases, capable of transmitting a 

pathogen from on host to the next, a mosquito vector must feed readily on multiple vertebrate 

hosts, be capable of acquiring the pathogen, and be abundant in the environment (Bates 1949, 

Russell 1959). On the study site, the following mosquito species fulfill the requirements of 

functional disease vectors: Aedes sollicitans, Aedes nigromaculis, Aedes vexans, Culex tarsalis, 

Aedes taeniorhynchus, and Culex salinarius. These taxa accounted for 98% of the collected 

specimens. Other, more rare taxa which I encountered during this research accounted for less 

than 2% of the collected specimens. Due to their low abundances, Culex pipiens, Aedes 

stimulans, Culex restuans and Aedes dorsalis were not considered functional disease vectors in 

my study site.  

It has been suggested that vector species play specific roles in transmission of disease. 

Enzootic vectors (Culex species; Hammer et al. 2008, Kilpatrick et al. 2005, Marra et al. 2004, 

Turell et al. 2005) are responsible for amplification of pathogens in birds, due to their primarily 

ornithophilic, or bird-biting, feeding preferences. Instead, mosquito taxa, that consume a larger 

portion of their blood meals from mammals (Aedes species; Kilpatrick et al. 2005, Turell et al. 

2005) can be considered bridge vectors. However, it has been suggest that Culex species (Culex 

tarsalis, Culex salinarius, Culex pipiens, Culex restuans) serve as both, enzootic and epidemic, 

(e.g. bridge) vectors (Apperson et al. 2004, Kilpatrick et al. 2005, Turell et al. 2005). This has 

been attributed to seasonal shifts in feeding preferences; in early summer blood meals are 
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primarily acquired from avian species during their nesting season, as the season progresses, and 

nesting birds become less available, a shift towards mammalian feeding is observed (Tempelis et 

al. 1975). 

The most abundant mosquito collected during the sample season was Aedes sollicitans, 

the eastern salt marsh mosquito, making up nearly 50% of the collected specimens. Aedes 

sollicitans, a known vector of West Nile Virus encephalitis and avian malaria is typically found 

in moist substrate or depression in grassland habitats, and prefers to feed on mammalian host 

species (Turell et al. 2005) but avian blood meals occur at a high enough frequency to support 

the transmission of these pathogens (Crans et al. 1996) both within the grassland bird 

community, and in the case of West Nile Virus encephalitis to horses and humans. These 

mosquitoes exhibited low abundances until June, achieved a small peak in the third quarter of 

June, and a major peak in the middle of July. Both peaks in abundance occurred when maximum 

temperatures exceeded 30˚C. 

Aedes nigromaculis, the pasture mosquito (Miura 1969), was the second most abundant 

mosquito collected (21.5%), and clearly parallels the local biology of Aedes sollicitans (Janovy, 

1966). Aedes nigromaculis prefers mammalian blood meals, but has been shown to feed on avian 

species in Kansas (Janovy, 1966) at frequencies high enough to support vector competence for 

avian malaria. Throughout the sampling season, peaks in abundances occurred concurrently with 

Aedes sollicitans. While population abundances of Aedes sollicitans decreased in the last quarter 

of July, Aedes nigromaculis abundances continued to increase.  

The third most abundant species detected was the inland floodwater mosquito, Aedes 

vexans (9.0%). Aedes vexans is commonly encountered in transient water, such as rain pools 

located in grasslands or roadside ditches. In previous collection efforts, this species has been 

shown to be one of the most abundant mosquitos in Kansas (DeMoss Hill 1939, Edman et al. 

1964, Lungstrom et al.1961), preferentially feeding on mammalian hosts, but feeds on birds as 

well (Apperson et al. 2002, Molaei et al. 2006, Turell et al. 2005). Aedes vexans has been 

recognized as vector of Western Equine encephalitis, St. Louis encephalitis, West Nile Virus 

encephalitis, and avian malaria. High population abundances of this mosquito have been shown 

to occur after increased rainfall accumulating in grassland pastures of the Midwest (Janousek et 

al. 1999). In this study, increases abundances seem to follow precipitation events with a one 

week lag period.  
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The most abundant species in genus Culex, was the standing water mosquito (Culex 

tarsalis) making up 7.4% of the collections. This species utilizes different habitat types, but 

shows a preference for grasslands and croplands with high primary productivity that provide 

larval habitats (Reisen, 2002). Culex tarsalis was the most abundant species in May (28%), but 

population numbers collapsed at the end of the month, and remained low (<60 individuals/week) 

throughout the rest of the study period. Culex tarsalis is considered an important vector for the 

following diseases: Western Equine encephalitis, St. Louis encephalitis, West Nile Virus 

encephalitis and avian malaria. St. Louis encephalitis virus has previously been isolated from this 

species in the Midwest (Nebraska, Hammon et al. 1945, Nebraska Department of Health and 

Human Services 2012); and West Nile Virus surveillance programs conducted in Kansas 

confirmed the presence of this virus in Culex tarsalis (Kansas State University 2009). Culex 

tarsalis feeds predominately on Passeriformes in early summer and increases its host-breadth to 

other birds, mammals (livestock and wildlife species) and humans (Tempelis et al. 1957). Due to 

its opportunistic feeding preferences, ability to serve as a functional vector to a variety of 

pathogens and its high relative abundance, this mosquito may play an integral role in infectious 

disease transmission as both enzootic and bridge vector (Reisen et al. 2006) in the grasslands of 

the central Great Plains. 

Aedes taeniorhynchus, also known as the salt-marsh mosquito, has undergone local 

adaptations to tolerate a variety of freshwater habitats (Nayar, 1974). This species accounted for 

6.6% of the collected specimens in this study. Mammalian blood meals are preferred by Aedes 

taeniorhynchus but occasional blood meals of avian species have been reported (Galliformes, 

Barrera et al. 2011; Passeriformes, Suom et al. 2010). Aedes taeniorhynchus serves as a vector 

for West Nile Virus encephalitis, and may have vector competence for avian malaria (Carlson et 

al. 2011). Abundances remained low until July (< 20 individuals/week). In July as weekly 

maximum temperatures exceeded 30˚C and precipitation decreased, this species experience a 

peak in abundance in the third quarter of July, throughout the remainder of the study period 

population numbers remained stable.  

Culex salinarius is the second most abundant species in the Culex genus, comprising 

3.6% of all identified mosquitoes. Abundances remained low until the second quarter of July 

when weekly maximum temperatures continuously exceeded 33˚C. The continued increase in 

abundance may be a result of increasing temperature. Peaks in seasonal abundances of Culex 
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salinarius have previously been shown to occur during the summer, when temperatures are 

greatest (Eldridge et al. 1972, Slaff et al. 1981). This species is a vector for St. Louis 

encephalitis, West Nile Virus encephalitis, and avian malaria. Due to this species opportunistic 

feeding preferences, including both avian and mammalian hosts (Turell et al. 2005), vector 

competence, and seasonal overlap with West Nile Virus encephalitis cases, it may serve as 

enzootic and bridge vector (Bolling et al. 2005) during the months of June to August. In Kansas 

West Nile Virus was isolated from Culex salinarius in 2009 (Kansas State University, 2009). 

These characteristic fluctuations in mosquito abundances produce peaks of variable 

amplitude, which are linked to increased risk of disease transmission (Yang et al. 2009). 

Specifically, early season mosquito population fluctuations have been shown to be associated 

with increased human and livestock encephalitides cases (Lothrop et al. 2008). Infectious 

encephalitides (Western Equine encephalitis, St. Louis encephalitis, West Nile Virus 

encephalitis) have the highest number of incidence reports all mosquito-borne zoonotic diseases 

and hence are of particular importance to public health in North America. In Kansas, West Nile 

Virus encephalitis in humans and horses are predominately observed in late summer and fall, 

particularly after incidence reports in birds early in the season (Kansas Department of Health and 

Environment 2012).  

Understanding vector biology can be important to wildlife conservation efforts as well as 

public health management. Grassland birds are of particular concern due to their conservation 

status and their role in the principal amplification cycle. Infectious encephalitides are maintained 

through an enzootic cycle between ornithophilic mosquitoes and viremic birds. Transmission of 

infectious diseases in the Kansas grasslands is likely to occur during the nesting season (early 

summer) of grassland nesting birds such as: Greater Prairie-chicken (Tympanuchus cupido), 

Upland Sandpiper (Bertramia longicauda), Eastern Meadowlark (Sturnella magna), Western 

Meadowlark (Sturnella neglecta), Dickcissel (Spiza americana) and Grasshopper Sparrow 

(Ammodramus savannarum). During nesting, females spend extended periods of time in a 

brooding position which reduces defensive behavior towards mosquito attacks and increases 

disease transmission, while nestlings lack behavioral and morphological defenses to ward off 

mosquito parasitism, resulting in peak parasitemia during nesting season (Burkett-Cadena et al. 

2011, Valkiunas, 2005). The dominant mosquito species during this period was Culex tarsalis, 

with a peak in abundance in the last quarter of May, during which this mosquito species exhibits 
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an ornithophilic feeding preference. The peak in abundance may increase transmission of 

infectious encephalitides, particularly West Nile Virus encephalitis and avian malaria in Cloud 

County, Kansas. Hence, Culex tarsalis may be the primary enzootic vector of these pathogens. 

As the season progressed, I observed a shift in the mosquito community composition, towards 

opportunistically and mammalian feeding species. The shift in host feeding pattern has been 

implicated in the increased intensity of human and livestock epidemics of encephalitides 

particularly following high early season abundances of ornithophilic feeders. Likely bridge 

vectors in Cloud County are Aedes sollicitans, Aedes nigromaculis and Aedes vexans. During the 

sample year, no human cases of infectious encephalitides were reported in Cloud County; this 

may be due to the observed low amplitude peak of early-season ornithophilic mosquito species. 

Low abundances of these species have been shown to result in decrease tangential transmission 

to humans (Weaver et al. 2010). 

The underlying dynamics of seasonality in vector-borne infectious diseases have long 

been of interest to epidemiologists. Examining the temporal, and spatial dynamics of mosquito 

communities, when disease transmission is likely to occur, is integral for implementing 

surveillance programs and control measures. The purpose of this study was to establish general 

seasonal distributions and population patterns across a grassland ecosystem of various mosquito 

species that might be implicated as vectors of encephalitides and avian malaria. The information 

presented here contributes to the existing survey of mosquito communities in the central Great 

Plains, especially Kansas. 
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 Figures and Tables 
 

Table 2.1. Number and percent of mosquito species collected during the sample season (May - July 2010) in the Smoky Hills of Cloud County, Kansas. 

Date 
Aedes 

sollicitans 

Aedes 

nigromaculis 

Aedes 

vexans 

Culex 

tarsalis 

Aedes 

taeniorhynchus 

Culex 

salinarius 

Culex 

pipiens 

Aedes 

stimulans 

Culex 

restuans 
Anopheles 

Aedes 

dorsalis 
Total % Total 

17-May 1 2 0 10 0 0 11 0 0 0 1 25 0.22 

24-May 70 64 78 73 0 4 8 0 1 2 1 301 2.68 

30-May 28 22 5 574 1 0 17 0 1 0 2 650 5.79 

7-Jun 125 87 4 4 4 1 0 0 1 1 0 227 2.02 

21-Jun 934 543 565 46 16 15 3 30 30 3 9 2,194 19.55 

28-Jun 55 77 38 10 0 7 6 1 5 0 0 199 1.77 

12-Jul 1,578 242 52 23 85 75 8 10 4 4 3 2,084 18.57 

19-Jul 1,528 463 230 56 281 95 10 6 5 15 6 2,695 24.01 

26-Jul 1,261 913 40 32 353 206 14 16 8 4 1 2,848 25.38 

Total 5,580 2,413 1,012 828 740 403 77 63 55 29 23 11,223 100 

% Total 49.72 21.50 9.02 7.38 6.59 3.59 0.69 0.56 0.49 0.26 0.20 100   
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Table 2.2. Number of mosquito species collected during the sample season (May - July, 2010) at 20 sites in Cloud County of the Smoky Hill eco-region, 

Kansas. Location of the sites can be found in Figure 2.1. 

Species BS1 BS2 BS3 BS4 BS6 BS7 BS8 BS9 BS10 BS11 BS12 BS13 BS14 BS15 BS16 W1 W2 W3 W4 W5 Total 

% 

Total 

Culex pipiens 2 0 3 9 5 6 4 1 7 4 8 0 1 3 6 2 2 11 0 3 77 0.69 

Culex tarsalis 41 31 30 16 3 53 72 101 65 9 25 5 38 71 33 103 34 92 3 3 828 7.38 

Culex restuans 6 18 0 2 0 5 1 2 2 0 6 0 1 1 0 0 0 4 1 6 55 0.49 

Culex salinarius 10 16 4 2 13 81 12 11 9 6 18 0 8 11 0 16 12 154 1 19 403 3.59 

Aedes dorsalis 3 3 2 2 0 1 1 0 7 0 3 0 0 1 0 0 0 0 0 0 23 0.20 

Aedes nigromaculis 43 25 47 80 57 566 246 32 305 93 40 120 36 305 222 24 19 142 4 7 2,413 21.50 

Aedes sollicitans 39 84 108 201 113 504 410 246 2,402 123 88 220 87 311 340 80 25 187 6 6 5,580 49.72 

Aedes stimulans 3 1 3 0 4 2 5 5 18 1 4 1 4 2 8 0 0 2 0 0 63 0.56 

Aedes taeniorhynchus 9 4 25 4 1 170 47 25 195 26 43 0 40 40 12 1 1 95 2 0 740 6.59 

Aedes vexans 13 243 256 14 3 6 29 2 113 3 101 18 22 4 172 0 2 11 0 0 1012 9.02 

Anopheles 4 10 2 1 1 0 0 1 1 2 4 0 0 0 0 0 1 0 2 0 29 0.26 

Total 173 435 480 331 200 1,394 827 426 3,124 267 340 364 237 749 793 226 96 698 19 44 11,223 100 

%Total 1.54 3.88 4.28 2.95 1.78 12.42 7.37 3.80 27.84 2.38 3.03 3.24 2.11 6.67 7.07 2.01 0.86 6.22 0.17 0.39 100 
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Table 2.3. Mosquito taxa correlation according to Pearson’s correlation matrix, indicating a linear association between occurrence 

records of taxa. 

 

Culex 

pipiens 

Culex 

tarsalis 

Culex 

restuans 

Culex 

salinarius 

Aedes 

dorsalis 

Aedes 

nigromaculis 

Aedes 

sollicitans 

Aedes 

stimulans 

Aedes 

taeniorhynchus 

Aedes 

vexans 

Culex tarsalis 0.62 

         Culex restuans -0.34 -0.17 

        Culex salinarius 0.38 -0.22 0.09 

       Aedes dorsalis -0.15 -0.01 0.80 0.06 

      Aedes nigromaculis 0.13 -0.26 0.55 0.87 0.43 

     Aedes sollicitans 0.07 -0.28 0.36 0.74 0.56 0.74 

    Aedes stimulans -0.18 -0.22 0.93 0.39 0.76 0.75 0.60 

   Aedes taeniorhynchus 0.32 -0.19 0.05 0.95 0.16 0.83 0.74 0.31 

  Aedes vexans 0.35 -0.16 0.93 -0.02 0.93 0.44 0.39 0.82 0.05 

 Anopheles 0.85 -0.19 0.11 0.49 0.53 0.48 0.74 0.21 0.70 0.35 

Correlation coefficients greater than 0.5 are indicated in bold. 
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Table 2.4. Candidate models used to fit the dependent variable, mosquito abundance, to independent meteorological variables. 

Variables in the model 
No. of 

parameter 
AICca Delta AICc AICc weightb R2 Adjusted R2 p 

Tmin
c 2 -48.50 0.00 0.58 0.76 0.73 0.00 

Tmax
d 2 -46.88 1.62 0.26 0.76 0.73 0.00 

Tmin, Pmean
e 3 -42.40 4.11 0.07 0.99 0.88 0.00 

Tmin, Pmean, Pmean(2)f 4 -39.64 6.86 0.02 0.95 0.91 0.00 

Tmax, Pmean 2 -39.12 7.38 0.01 0.87 0.83 0.00 

Pmean 1 -38.80 7.70 0.01 0.30 0.21 0.12 

a AICc = Akaike’s Information Criterion with small-sample bias adjustment (Burnham and Anderson 1998). 
b AICc weight = percent of total weight from 128 models that can be attributed to the specified model. 
c Tmin = minimum temperature during the sample week. 
d Tmax = maximum temperature during the sample week. 
e Pmean = precipitation during the sample week. 
f Pmean(2) = precipitation two weeks prior to sample week, to account for lagged responses. 
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Table 2.5. Multiple linear regression results of the top performing models between the dependent variable, mosquito abundance, to the 

independent meteorological variables. 

Variables in the 

model 

No. of 

parameters 
Slope (SE) t p 

Tmin
a 2 0.2057 0.0113 4.7067 0.0022 

Tmax
b 2 0.0392 0.0083 4.7461 0.0021 

a Tmin = minimum temperature during the sample week. 
b Tmax = maximum temperature during the sample week. 
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Table 2.6. Cumulative AICc weights for all 6 meteorological variables hypothesized to influence mosquito abundance in the Smoky 

Hills of Cloud County, Kansas, 2010. 

Variable 
Cumulative AICca 

weightb 

minimum temperature 0.69 

maximum temperature 0.30 

precipitation 0.13 

precipitation two weeks prior 0.04 

wind speed 0.01 

precipitation one week prior 0.01 

a AICc = Akaike’s Information Criterion with small-sample bias adjustment (Burnham and Anderson 1998). 
b Cumulative AICc weight of a variable = the percent weight attributed to models containing that particular variable. Cumulative AICc 

weight is calculated as the sum of AICc model weights containing that variable. 
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Table 2.7. Candidate models used to fit the dependent variable, mosquito abundance, to independent environmental variables. 

Variables in model 
No. of 

parameters 
AICc a Delta AICc AICc Weight R2 Adjusted R2 P 

Curvc, TWId, Distwl
e, Distr

f 5 -87.73 0.00 0.10 0.50 0.37 0.03 

TWI, Distwl, Distr 4 -87.58 0.14 0.09 0.40 0.29 0.04 

TWI 2 -86.62 1.11 0.06 0.15 0.10 0.09 

Curv, TWI 3 -86.31 1.42 0.05 0.25 0.16 0.09 

TWI, Distwl 3 -86.02 1.70 0.04 0.24 0.15 0.10 

TWI, Distr 3 -85.83 1.89 0.04 0.23 0.14 0.11 

Curv, TWI, Distr 4 -85.79 1.93 0.04 0.34 0.22 0.07 

a AICc = Akaike’s Information Criterion with small-sample bias adjustment (Burnham and Anderson 1998). 
b AICc weight = percent of total weight from 128 models that can be attributed to the specified model. 
c Curvature = is a measurement of rate-change of the slope per unit distance and may be an indicator for of aquatic habitat stability. 
d TWI = Topographic Wetness Index, calculated as the natural logarithm of the ratio between local upslope contributing area and 

slope, and describes the predicted soil moisture pattern (ESRI, 2010). 
e Distwl = distance to the closest woodland, calculated using Euclidean distance (Arc Info 10). 
f Distr = distance to the closest road, calculated using Euclidean distance (Arc Info 10). 
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Table 2.8. Multiple linear regression results of the top performing models between the dependent variable, mosquito abundance, to the 

independent environmental variables. 

Variables in the 

Model 

No. of 

parameters 
pa 

Independent 

variable 
Slope (SE) t pb 

curv, TWI, 

dist_wl, dist_r 

5 0.0250 curv 

TWI 

dist_wl 

dist_r 

 0.2456 

 0.6738 

-0.0001 

-0.0002 

0.1393 

0.1921 

0.0001 

0.0001 

 1.7623 

 3.5071 

-2.1908 

-2.2803 

0.0980 

0.0030 

0.0540 

0.0380 

a p = p-value of the overall regression model. 
b p = p-value of the independent variables. 
c curvature = is a measurement of rate-change of the slope per unit distance and may be an indicator for of aquatic habitat stability. 
d TWI = Topographic Wetness Index, calculated as the natural logarithm of the ratio between local upslope contributing area and 

slope, and describes the predicted soil moisture pattern (ESRI, 2010) 
e dist_wl = distance to the closest woodland, calculated using Euclidean distance (Arc Info 10). 
f dist_r = distance to the closest road, calculated using Euclidean distance (Arc Info 10).
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Table 2.9. Cumulative AICc weights for all 7 environmental variables hypothesized to influence mosquito abundance in the Smoky 

Hills of Cloud County, Kansas, 2010. 

Variable 
Cumulative AICca 

weightb 

TWIc 0.81 

distance to road 0.52 

distance to woodland 0.45 

curvatured 0.41 

distance to edge habitat 0.21 

distance to agricultural field 0.20 

distance to water source 0.18 

a AICc = Akaike’s Information Criterion with small-sample bias adjustment (Burnham and Anderson 1998). 
b Cumulative AICc weight of a variable = the percent weight attributed to models containing that particular variable. Cumulative AICc 

weight is calculated as the sum of AICc model weights containing that variable. 
c TWI = Topographic Wetness Index, calculated as the natural logarithm of the ratio between local upslope contributing area and 

slope, and describes the predicted soil moisture pattern (ESRI, 2010) 
d curvature = is a measurement of rate-change of the slope per unit distance and may be an indicator for of aquatic habitat stability. 
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Figure 2.1. Location and landscape composition of the eastern Smoky Hills study site, Cloud 

County, Kansas. Locations of CDC CO2 mosquito traps operated during the study period are 

shown as red points the map. 
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Figure 2.2. Seasonal distribution of the dominant mosquito species found in the eastern Smoky 

Hills study site in 2010. Counts are standardized by the number of traps operated per week. 
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Figure 2.3. Seasonal distribution of mosquito species found at lower abundances in the eastern 

Smoky Hills study site in 2010. Counts are standardized by the number of traps operated per 

week.  
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Chapter 3 - ECOLOGICAL NICHE MODELING OF DISEASE 

VECTORS IN THE EASTERN SMOKY HILLS OF KANSAS 

 Abstract 
Ecological niche modeling techniques have been effectively utilized to address the 

underlying environmental and climatic factors associated with vector distributions, and have 

found broad applications in epidemiological studies, due to the fine spatial resolution of vector 

collection data compared to disease incidence data, which is often only available at a county-

level. In the Great Plains, mosquito vectors of arboviruses (disease agents of: Western Equine 

encephalitis, St. Louis encephalitis, West Nile Virus encephalitis) and Plasmodium species 

(disease agents of avian malaria) are of particular concern to public health, livestock and wildlife 

species. Here, I used the Pearson’s jackknife approach to develop ecological niche models for 

important vector species of these pathogens within the grasslands of the eastern Smoky Hills, 

Kansas. Both Culex and Aedes species are susceptible to disease agents of infectious 

encephalitides and avian malaria. Culex species are of primary interest due to their ornithophilic 

feeding preferences and role in the primary amplification cycle of infectious encephaltitides. 

Although most Aedes species prefer mammalian blood meals, they have been implicated in the 

transmission of avian malaria, and play an important role as bridge vectors of infectious 

encephalitides to humans and livestock. Occurrence data of Culex tarsalis, Culex salinarius, 

Aedes sollicitans, Aedes nigromaculis, Aedes vexans, and Aedes taeniorhynchus were collected 

from May to July 2010 and combined with 48 ecologically relevant environmental and 

bioclimatic layers. Based on the internal jackknife procedure which measures variable 

importance, models were reduced to 10 variables explaining at least 85% of the variation in the 

species’ occurrence data. The probabilistic distribution maps of Culex vectors (potential vector 

species of Plasmodium species) were used to evaluate if Greater Prairie-chicken (Tympanuchus 

cupido) females nest in areas associated with a higher probability of vector occurrence than other 

potentially available habitats within the grasslands. I also used the distribution maps to determine 

if there was a significantly higher probability of vector occurrence at nest locations of 

Plasmodium infected female Greater Prairie-chicken than at nests of uninfected females. The 

results show that the probability of avian malaria vectors at nest locations was significantly 

higher than other available grassland habitats within the study area. However, I failed to detect a 
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significant difference in the probability of vector occurrence at nest of infected versus uninfected 

females. 

 

 Introduction 
The discovery of the link between mosquitoes and the spread of infectious diseases has 

led to the prevention of disease spread through the control of mosquito vector populations 

(Medlock et al. 2006). The technological advances over the past two decades (remote sensing, 

geographic information system approaches, statistical modeling techniques) provide new 

opportunities to prevent and control vector-borne diseases by transforming point-based data into 

smooth surfaces that predict vector probability across geographical areas (Eisen et al. 2011). 

Ecological niche modeling techniques are a result of these recent developments; and establish the 

relationship between mapped species occurrences and ecologically relevant predictor variables. 

Resulting predictions are then utilized to create probabilistic distribution maps of species’ 

occurrences across the landscape (Eisen et al. 2011). These models have been effectively utilized 

to address the underlying environmental and climatic factors associated with vector distributions 

(Benedict et al. 2007, Foley et al. 2008, Larson et al. 2010, Levine et al. 2004, Moffet et al. 

2007, Peterson et al. 2005, Sweeney et al. 2007) and to identify patterns across the landscape. 

Niche models of arthropod vector distributions have found applications in epidemiological 

studies (Eisen et al. 2011) due to the fine spatial resolution of vector collection data compared to 

disease incidence data, which is often only available at a county-level. Furthermore, vector data 

can be advantageous because many species transmit multiple pathogens, and many vector-borne 

diseases are not ‘notifiable’, resulting in a lack of available epidemiological data (Eisen et al. 

2011). 

Mosquitoes in the central Great Plains can harbor a variety of infectious disease agents of 

public health and conservation concern, including: arboviruses (disease agent of Western Equine 

encephalitis, St. Louis encephalitis, West Nile Virus encephalitis) and Plasmodium species 

(disease agent of avian malaria). Infectious encephalitides are considered notifiable, and 

epidemiological data on human disease cases have been available in Kansas since 1964. Humans 

and livestock are considered incidental hosts of these pathogens; the primary amplification cycle 

(enzootic) involves mosquitoes and avian species.  
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In contrast, avian malaria exhibits a strictly enzootic avian cycle and is implicated in the 

extinction of the Hawaiian avifauna (Warner 1986), and continues to be a threat to the highly 

susceptible Laysan Finch (van Riper et al. 1986) and honey creepers (Depanidinae; Atkinson et 

al. 2001). The disease agent has also been detected in wild and captive penguin species, 

including: African black-footed penguins (Spheniscus dermersus; Stoskopf et al. 1979), and 

Magellanic penguins (Spheniscus magellanicus; Fix et al. 1988). In penguin species, infection 

often results in clinical symptoms (depression, anorexia, respiratory distress), and intense 

mortality events. In the Great Plains, the decline of grouse species (Greater Sage grouse, 

Centrocerus urophasianus; Boyce 1990) has been attributed to Plasmodium infections. Vector-

borne infectious diseases are hence of particular concern across the central Great-Plains, the most 

specious region for grassland nesting birds in North America, because of the presence of all the 

components of disease emergence: host and vector ecology, pathogen properties, and landscape 

features. Here, I investigate how mosquito abundance and diversity could both influence the 

decline of the grassland avifauna, and facilitate the primary amplification cycle of encephalitides 

important to public health. 

Previous studies using ecological niche modeling approaches to predict vector species’ 

distributions have commonly used coarse resolution datasets and have rarely been conducted at a 

local scale. Here, I develop high resolution ecological niche models of potentially relevant 

disease vectors of infectious encephalitides (Western Equine encephalitis, St. Louis encephalitis, 

West Nile Virus encephalitis) and avian malaria: Aedes sollicitans, Aedes nigromaculis, Culex 

tarsalis, Aedes vexans, Aedes taeniorhynchus, Culex salinarius. In grassland ecosystems the 

enzootic cycle of these diseases is maintained through the transmission between grassland 

nesting birds and Culex species. Disease transmission in the grasslands of the eastern Smoky 

Hills is likely to occur during the nesting season (early summer) of resident grassland birds: 

Greater Prairie-chicken (Tympanuchus cupido), Eastern Meadowlark (Sturnella magna), Western 

Meadowlark (Sturnella neglecta) and summer breeding migrants: Dickcissel (Spiza americana), 

Grasshopper Sparrow (Ammodramus savannarum), Upland Sandpipers (Bartramia longicauda). 

Greater Prairie-chicken are a good choice to model the grassland bird community because, 1) 

they share habitat and nesting requirements with other grassland bird species, and 2) infectious 

disease agents (Plasmodium) have been detected in this species across the eastern Smoky Hills. 

During the nesting season, grassland species are at risk of being infected with vector-borne 
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disease agents, due to the extended periods of time spent brooding, which increases their 

exposure to feeding mosquitoes. Since the nest ecology of Greater Prairie-chicken increases its 

risk of parasitism by mosquitoes, I compared the probability of vector occurrence (Culex 

tarsalis, Culex salinarius) at nest locations versus potentially available habitat to evaluate if 

females nest in areas that potentially increases their vulnerability to mosquito parasitism, which 

may result in increased disease transmission. Furthermore, to determine if there is a significant 

connection between mosquito habitat and incidence of avian malaria disease agents in nesting 

female Greater Prairie-chicken, I compared the probability of occurrence of Culex mosquitoes 

between nests of infected versus uninfected females. 

 

 Methods 

 Study Site 
The study site was located in north-central Kansas, in the Smoky Hills eco-region of 

Cloud County, Kansas (Fig. 3.1). The Smoky Hills are tillable, with native prairies characterized 

by moderate to high fragmentation by row crop agriculture, and low intensity cattle stocking. 

The study area encompassed 283 km2 of fragmented prairie landscape; consisting of 73% 

grassland, 25 % cropland and a road density of 1.4 km/km2. Cultivated croplands included 

wheat, sorghum, soybeans, and corn. The climate was temperate, with moderate rainfall and 

annual precipitation during the sample year of 883 mm, of which nearly half could be attributed 

to precipitation from May through July 2010. 

 

 Disease Vectors and Occurrence Data 
Mosquitoes were sampled weekly for a total of 9 weeks (May through July 2010) over 20 

georeferenced sampling locations using CDC miniature light traps (J. W. Hock, Gainesville, FL; 

Table 3.1.). I averaged species abundance data over time (the 9 sample occasions) and converted 

the dataset into presence/absence records for the most abundant vector species in the grassland of 

the Smoky Hills, Kansas (Table 3.2.). For a detailed methodology of mosquito surveillance in the 

eastern Smoky Hills refer to “Mosquito Surveillance” in Chapter 2. I chose to sample only 

grasslands because they represent an interface for the transmission of infectious disease between 
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livestock and wildlife species. Infectious disease vectors of avian malaria and infectious 

encephalitides (Western Equine encephalitis, St. Louis encephalitis, West Nile Virus 

encephalitis) were selected based on, 1) capability of acquiring the pathogen and transmitting it 

from one host to the next, 2) feeding preferences that include multiple vertebrate hosts, and 3) 

abundance in the environment (Bates 1949, Russell 1959). Culex tarsalis and Culex salinarius 

are likely the most significant enzootic vectors of avian malaria and infectious encephalitides 

(Turell et al. 2005, Valkiunas 2005), but also play a significant role as bridge vectors of the latter 

(Turell et al. 2005). Other potential bridge vectors included: Aedes sollicitans, Aedes 

nigromaculis, Aedes vexans, Aedes taeniorhynchus. 

Culex tarsalis is a vector of many infectious diseases throughout its range, including 

avian malaria and infectious encephalitides (Western Equine encephalitis, St. Louis encephalitis, 

West Nile Virus Encephalitis; Turell et al. 2005). This species has tested positive for avian 

malaria pathogens (Plasmodium; Janovy 1966) and WNV (Kansas State University 2009) in 

Kansas. Culex tarsalis utilizes different habitat types including road side ditches near grasslands 

that provide larval habitats with high primary productivity (Edmunds 1955, Rapp 1985, Reisen, 

2002). This species was encountered at all sample locations, hence 20 occurrence records were 

used for the construction of species probability distribution (Table 3.2.). 

Culex salinarius populations peak immediately after flooding because rotten vegetation 

acts as an oviposition attractant. This species can be found in freshwater habitats with moderate 

pollution levels, and roadside ditches (Crans 2010). The opportunistic and generalist feeding 

preferences, including both avian and mammalian hosts (Turell et al. 2005), the competence of 

Culex salinarius to transmit arboviruses, and the seasonal overlap with West Nile Virus 

encephalitis cases, suggest that this mosquito species may serve a enzootic and bridge vector 

(Bolling et al. 2005) during the months of June to August. In Kansas, West Nile Virus was 

isolated from Culex salinarius in 2009 (Kansas State University, 2009). In addition, this species 

has been shown to exhibit vector competence for avian malaria parasites (Valkiunas, 2005, 

Burkett-Cadena et al. 2011). Culex salinarius occurred in 18 out of 20 trapping locations, which 

were used to construct the species probability distribution within the study area (Table 3.2.). 

Aedes sollicitans and Aedes nigromaculis were the most abundant vector species within 

the study area and exhibited similarities in their local biology (Janovy 1966). Their larvae are 

typically found on moist substrate or depressions in grassland habitats. Both species are 
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susceptible to avian malaria and infectious encephalitides disease agents. Aedes sollicitans and 

Aedes nigromaculis are known vectors of West Nile Virus encephalitis and St. Louis encephalitis 

(Turell et al. 2005). They predominately feed on mammalian host species but avian blood meals 

occur at high enough frequency to support the transmission of these pathogens (Crans et al. 

1996, Janovy 1996). These species occurred at all 20 trapping locations (Table 3.2.). 

Aedes vexans, the inland floodwater mosquito, is one of the most abundant mosquitoes in 

Kansas (DeMoss Hill 1939, Edman et al. 1964, Lungstrom et al.1961). Aedes vexans is 

commonly encountered in transient water, such as rain pools located in grassland/woodland 

pools, vehicle ruts and roadside ditches (Siverly 1972). This species preferentially feeds on 

mammalian hosts, but feeds on avian hosts as well (Apperson et al. 2002, Molaei et al. 2006, 

Turell et al. 2005), and is a potential enzootic and bridge vector of infectious disease. Aedes 

vexans has been recognized as a vector of Western Equine encephalitis, St. Louis encephalitis, 

West Nile Virus encephalitis, and avian malaria. This species occurred at 17 out of 20 trapping 

locations (Table 3.2.). 

Aedes taeniorhynchus, also known as the salt-marsh mosquito, prefers temporary 

brackish pools of water for ovipositioning (O’Meara 1986). This species has an affinity for 

mammalian blood meals (Turell et al. 2005) but occasional blood meals of avian species have 

been reported (Galliformes, Barrera et al. 2011; Passeriformes, Suom et al. 2010). Aedes 

taeniorhynchus serves as vector for West Nile Virus, and may have vector competence for avian 

malaria pathogens (Carlson et al. 2011). Aedes taeniorhynchus specimens have tested positive 

for West Nile Virus every year in North America from 2001-2009 (Center for Disease Control 

and Prevention 2009). Eighteen occurrence records of this species were used to create a 

probability distribution within the study area (Table 3.2.). 

 

 Environmental Data 
Environmental variables were selected based on an assessment of the ecology of vector 

mosquitoes in Cloud County. Ecological niche models were constructed with 12 environmental 

variables (Table 3.3.), which included spatially explicit features of topography, land-cover and 

soil. I used Arc Info 10 (Environmental Systems Research Institute, Radlands, CA) for geospatial 

analysis and data extraction. All data sets were acquired from Kansas Geospatial Community 
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Commons (topography, land-cover; www.kansasgis.org) and National Resources Conservation 

Service (soil; soils.usda.gov/survey/geography/ssurgo). Data sets were standardized to finest 

spatial resolution available (30 m), creating grids that were 829 by 698 cells (578,642 individual 

cells). This resolution was selected based on the attractiveness range of CDC CO2 baited 

mosquito traps. The attractiveness range of CDC CO2 baited light traps is somewhat ambiguous, 

however it has been shown that CO2 attracts mosquitoes from distances of <30 m and is species 

dependent (Service 1993). 

Topographic variables were derived from the USGS national elevation model OCG Map 

seamless server (U.S. Geological Survey, EROS Data Center) at a 30 m resolution, and edited to 

the extent of the study site (Fig. 3.2.). I used the elevation dataset to calculate slope, aspect, 

curvature and Topographic Wetness Index (TWI). Slope identifies the gradient of a surface, 

calculated as the rate of change in elevation while aspect is the slope direction, with zero degrees 

at north and increasing clockwise. Both curvature, and TWI have been used to assess soil 

moisture patterns. Curvature has been used as a proxy for potential of water accumulation and is 

a function of the second derivative of the surface. TWI describes the predicted soil moisture 

pattern based on the natural logarithm of the ratio between local upslope contributing area and 

slope (Pathak, 2010). These variables have been shown to be associated with larval habitats and 

have been listed in recent literature to significantly contribute to ecological niche models of a 

variety of species (Ayala et al. 2009, Khatchikian et al. 2011, Larson et al. 2010, Peterson et al. 

2005, Sweeney et al. 2007). 

Land-cover variables were derived from the 2005 land cover map of Kansas (Kansas 

Applied Remote Sensing Program 2005; Whistler et al. 2006) and the roadway dataset that 

combined the 2006 Kansas State and Non-State Road System dataset (Kansas Department of 

Transportation: Bureau of Transportation and Planning) at a resolution of 30 m, and edited to the 

extent of the study site (Fig. 3.3.). I measured five variables at each mosquito trapping location: 

distance to agriculture, distance to woodland, distance to water, distance to road and distance to 

edge. To identify distance variables, I extracted the respective land-cover class as distinct data 

layer and then calculated the distance from each trapping location to the nearest land-cover class 

using Arc Info 10.  

Soil variables were derived from the Soil Survey Geographic Database (Natural 

Resources Conservation Service), converted to raster datasets with a 30 m resolution and edited 
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to the extent of the study site (Fig. 3.4.). I selected hydrologic soil variables describing the 

potential of soil to aggregate water based on a variety of soil indices: AASTHO (describes the 

particle-size distribution), drainage class (describes the frequency and duration of wet periods) 

and hydrologic soil groups (estimates of runoff potential). These variables have recently been 

used to characterize vector species distributions via ecological niche models (Larson et al. 2010). 

 

 Bioclimatic Data 
Thirty-six bioclimatic variables for the year 2010 were obtained from the WorldClim 

database (Hijmans et al. 2005; www.worldclim.org/bioclim). The naïve resolution of WorldClim 

data is 1 km; due to this coarser resolution I resampled the data to a 30 m resolution, using 

Bilinear Interpolation in the Resample tool in Arc Info 10, and edited each layer to the 

constraints of the study site (Table 3.3.). To account for extreme climatic conditions I included 

both temperature and seasonality of precipitation. I used these variables because they have been 

previously shown to be important in the spatial distribution of multiple mosquito species 

(Kulkarni et al. 2010, Moffett et al. 2007). I used temperature indices (minimum, mean, and 

maximum) averaged across year, coldest/warmest quarter, coldest/warmest month, sample 

season, each sample season month and month prior to sample season. Similarly, I used mean 

precipitation indices averaged across year, the driest and wettest quarters, the driest and wettest 

months, sample season, each sample season month and month prior to sample season. Because 

hyper-dimensional spaces can lead to overfitted models (Peterson et al. 2007), I determined 

multicollinearity among the 37 bioclimatic variables using correlation tests. Bioclimatic data 

from 100 randomly generated points across the study site was extracted to generate a correlation 

matrix between the variables. Highly correlated variables (r ≥ 0.90) were identified using a 

Pearson’s correlation matrix, and excluded from the final niche models (Table 3.4.).  

 

 Ecological Niche Modeling 

I used a maximum entropy approach to characterize probabilistic distribution of vector 

species across the study area based on incomplete occurrence data using the software program, 

Maxent (Phillips et al. 2004, Phillips et al. 2006b). This program uses a machine-learning 

approach based on the probability distribution of maximum entropy, a distribution close to 
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random, which is subjected to constraints imposed by the observed environmental and 

bioclimatic variables at the locations where the species was observed (Elith et al. 2009; Table 

3.2.). A probabilistic distribution map is created based on the biophysical characteristics of the 

occurrence data of a training dataset. The Maxent software version 3.1.0., developed by S. 

Phillips and colleagues (download at: http://www.csprinceton .edu/~schapire/maxent/) shows 

superior performance with small sample sizes (Pearson et al. 2007), spatial errors in occurrence 

records (Phillips et al. 2006a), and tests of model performance (Elith et al. 2006, Phillips et al. 

2006a). Recommended default settings were used for convergence thresholds (10−5) and 

maximum number of iterations (500). Probabilistic distributions maps were created for the most 

abundant vector species: Culex tarsalis, Culex salinarius, Aedes sollicitans, Aedes nigromaculis, 

Aedes vexans, and Aedes taeniorhynchus. Occurrence records of each species and the full set 

(n=48) of environmental and bioclimatic variables were entered as model parameters. Variable 

importance was determined with jackknife tests. I produced 3 model types using the jackknife 

procedure, 1) models created excluding one variable at a time, 2) models created with only one 

variable at a time, and 3) models created with the full set of variables (Phillips et al. 2006a, 

Phillips et al. 2008). Variables most important in model development decreased the training gain 

of the model when the variable was removed and increased the training gain when the model was 

developed with only that variable. Final models were reduced to less than 10 variables by 

excluding highly correlated variables (r ≥ 0.90) with low importance in model development. 

I used a cumulative probability distribution to interpret the suitable conditions for a 

species within a threshold range of 0-100% (Phillips 2006a). To distinguish between absence and 

presence I created binary maps, selecting a decision threshold, which enabled me to validate 

model performance (Pearson et al. 2007). I applied a Lowest Presence Threshold (LPT; Pearson 

et al. 2007) because I wanted areas to be represented that were at least as suitable as those where 

the species were observed while maintaining a high predictive success of occurrence records 

(Hernandez et al. 2006, Pearson et al. 2007). 

 Model Validation 
Since the datasets of potential vector species in the Smoky Hills of Cloud County, Kansas 

included ≤ 20 occurrence records, I followed the jackknife validation methodology developed by 

Pearson et al. (2007), which has been shown to be effective for sample sizes of 25 or less; as few 
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as 5 occurrence records produce an accurate prediction of a species distribution. Briefly, one 

occurrence record was removed from the data set, and the model was built using n-1 

occurrences. Thus, for a species with n records, n individual models were built. Model accuracy 

and significance were tested based on the ability of each model to predict the excluded 

occurrence record when a Lowest Presence Threshold was used to differentiate between suitable 

versus unsuitable habitat (LPT; Pearson et al. 2007). Models developed with this approach can 

be interpreted as identifying areas that are at least as suitable as known occurrence localities.  

 

 Evaluation: Comparison to Greater Prairie-chicken Nest locations and Plasmodium 

Incidence 
To determine if grassland birds nest in locations with high probability of occurrence of 

mosquito vectors, I assessed the probability of occurrence of individual vector species (Culex 

tarsalis, Culex salinarius) known to transmit Plasmodium and a combined model (created by 

averaging the models of both vector species into a single probability distribution) at 111 Greater 

Prairie-chicken nest locations (Fig. 3.5.). I compared the probability of vector occurrence at nests 

versus randomly selected grassland sites considered to be available nesting habitat for grassland 

birds with 2-sample t-tests combined with classical descriptive statistics. One hundred eleven 

random points were generated within the same spatial extent as the sampling area using Arc Info 

10. Probabilities of vector occurrence of individual/combined models were extracted from the 

probabilistic distribution maps for both nest locations and random points. Prior to testing, 

Kolmogorov-Smirnov tests for goodness of fit were used to verify the normality of the data. To 

mitigate the effects of inequality of population variances, I applied the Satterthwaite 

approximation: 

𝑆𝐸𝑆 = �𝑠12

𝑛1
+ 𝑠22

𝑛2
 

where 𝑠𝑖2 and 𝑛1 are the sample variances and sample sizes of both populations. This equation 

applies a weighted average of the standard errors instead of the pooled variance procedure. 

To assess the difference in the probabilities of Culex species occurrence at nests of 

Plasmodium infected females (n=8; infection status was determined with previously published 

primer pairs by Fallon et al. 2003 and Beadell et al. 2005; Appendix B.) versus all nest locations 

within the study area (n=111), I applied a Monte Carlo resampling procedure (Gotelli et al. 
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2004). I calculated the mean probability of vector occurrence at nest locations based on the 

individual and combined vector models of Culex tarsalis and Culex salinarius. Nest locations 

were drawn randomly in a group size of n=8; this process was repeated 10,000 times to achieve a 

representative random datasets that allowed for the comparison between nest of infected female 

Greater Prairie-chicken and uninfected females. The 2.5% and 97.5% confidence limits of the 

10,000 iterations were determined and used to determine significant differences between the 

datasets. 

 

 Results 
Of the resulting four niche models, all possessed a training AUC greater than 0.85 

indicating a high predictive success for the fit of the model to the training dataset (Table 3.6.). 

Predictions of the potential distribution of the six vector species as measured by the Pearson’s 

jackknife-based test procedure, applying the Lowest Presence Threshold (LTP), were 

significantly better than random expectations (p <0.01, Table 3.7.). 

 

 Ecological Niche Modeling of Important Vector Species 
Culex tarsalis, Aedes sollicitans, and Aedes nigromaculis were encountered at all 

trapping locations; hence I constructed one model of their potential distribution in the grasslands 

of the eastern Smoky Hills (Fig. 3.10, 3.14.). The model was created with the full set of 

occurrence records (n=20), and possessed a training AUC of 0.86 (Table 3.6.), indicating a good 

model fit. The estimated habitat suitability at occurrence points based on the generated 

probability distribution for these species was 59.73±26.95 (range: 6.66 – 100). Model validation 

using the Pearson’s jackknife method indicated a high statistical significance (p = 2.44e-3) at a 

success rate of 75% (Table 3.7.). The internal jackknife test of variable importance showed that 

distance to water, Topographic Wetness Index (TWI), precipitation of the driest quarter, and 

distance to woodland were the four most important predictors of habitat suitability. These 

variables contained the most information compared to other variables (Table 3.5., Fig. 3.6.). 

Ecological niche models for Culex salinarius, Aedes vexans, and Aedes taeniorhynchus 

were constructed with 17, 18 and 18 occurrence localities, respectively (Fig. 3.11 – 3.13.,       

3.15 – 3.17.). All models possessed a training AUC of ≥ 0.85 (Table 3.6.), indicating that the 
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data fit the models well. The average estimated habitat suitability at occurrence points was 

63.71±26.91 (range: 6.65 – 100). The jackknife validation indicated high statistical significance 

(p < 0.005) at a success rate ranging from 65 – 95% for the vector models when the Lower 

Presence Threshold was applied (Table 3.7.). Variable importance was measured via the internal 

jackknife test, and showed that distance to water, mean temperature of the coldest quarter, and 

AASHTO contained the most information compared to other variables, and were the most 

important predictors of habitat suitability within the grasslands of the study area (Fig. 3.7. – 

3.9.). 

 

 Evaluation: Comparison to Greater Prairie-chicken Nest Location and Plasmodium 

Incidence 
The individual models of Culex tarsalis (p = 0.000, two-tailed t test; Table 3.9., Fig. 

3.21.), Culex salinarius (p = 0.000, two-tailed t test; Table 3.9., Fig. 2.22.) and the combined 

model (0.000, two-tailed t test; Table 3.9., Fig. 2.23.) indicated a significantly higher probability 

of vector occurrence at Greater Prairie-chicken nest locations than randomly selected grassland 

sites. The Monte Carlo resampled nest locations of uninfected Greater Prairie-chicken had a 

probability of vector occurrence for Culex tarsalis of 36.78 (95% CI 20.57 - 54.25), Culex 

salinarius 34.34 (95% CI 15.99 - 51.26), and combined Culex model of 35.41 (95% CI 19.84 - 

55.41). The mean probability of vector occurrence at infected nests of the individual models 

(Culex tarsalis, 𝑥̅=50.31; Culex salinarius, 𝑥̅=45.51, Table 3.8.) and combined model (𝑥̅=47.91. 

Table 3.8.) did not fall outside the confidence interval for uninfected nest locations; hence I 

found no significant difference between nest of infected versus uninfected females (Fig. 3.24 – 

3.26.). 

 Discussion 
Ecological niche models of medically important vectors species have predominately been 

developed at broad spatial scales (continental and country-wide distributions) with (≥ 1 km 

resolutions; Abdel-Dayem et al. 2012, Ayala et al. 2009, Foley et al. 2008, Foley et al. 2009, 

Laporta et al. 2012, Levine et al. 2004, Masuoka et al. 2009, Moffett et al. 2007, Sweeney et al. 

2007). Spatial resolutions ≥ 1 km are often too coarse to adequately identify small mosquito 

habitats (Foley et al. 2009), hence there is a need to develop of high resolution maps identifying 



53 

 

areas potentially habitable to vector species. Accurate, high resolution niche models in 

combination with epidemiological data can help determine where disease transmission is likely 

to occur (Foley et al. 2008). Here, I constructed high resolution ecological niche models at a 

local scale (extent of the study site, 283 km2), focusing on multiple vector species within the 

grassland habitat that are potentially involved in the transmission cycle of infectious 

encephalitides (Western Equine encephalitis, St. Louis encephalitis, and West Nile Virus 

encephalitis) and avian malaria. Although the species’ identity of infectious encephalitides, and 

avian malaria vectors within the study area have not been confirmed, there is evidence for Culex 

species, particularly Culex tarsalis, Culex salinarius to be vectors of infectious encephalitides 

(Flock 2012, Kansas State University 2009) and avian malaria disease agents (Plasmodium, 

Janovy 1966) in Kansas. Furthermore, Aedes species have been implicated as important bridge 

vectors of infectious encephalitis to humans and livestock (Center for Disease Control and 

Prevention 2012). Aedes sollicitans, Aedes nigromaculis, Aedes vexans and Aedes 

taeniorhynchus were included in the analysis because they are amongst the most abundant 

potential vector species within the genus Aedes. 

The niche models were developed with a suite of predictor variables (n=48) based on the 

ecology of mosquito species encountered within the study site. In particular bioclimatic variables 

(temperature, precipitation) are biologically significant (Peterson 2001), because they address 

factors that potentially limit mosquito distribution (De Barros et al. 2007, Foley et al. 2008, 

Foley et al. 2009). For example, differences in precipitation during the sampling season or driest 

quarter of the year may lead to heterogeneity in the distribution of breeding sites, giving rise to 

the observed presence/absence of mosquito vectors at sample locations. Nonetheless, not all 

potential environmental variables were used in the construction of the niche models. For 

example, I excluded elevation, since it represents an indirect gradient, which rarely directly 

affects species’ distributions; instead it has a strong correlation to other predictors, such as 

temperature and precipitation (Elith et al. 2009). I also excluded variables for which sampling 

was insufficient. Although distance to agriculture has been shown to be ecologically relevant for 

species within the study area (Culex tarsalis, Edmunds 1955), the sample locations within the 

study area were located at a distance of 711.23±416.83 m (range: 150-1530 m), which would 

have introduced a bias in the model since locations at close proximity to agricultural fields 

remained unsampled. 
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 Ecological niche modeling of important vector species 
Overall, the predictive power of 4 ecological niche models: 1) a combined model for 

Culex tarsalis/Aedes sollicitans/Aedes nigromaculis, 2) Culex salinarius, 3) Aedes vexans, and 4) 

Aedes taeniorhynchus within the study area was better than random based on the training AUC 

and jackknife validation tests. All models possessed a training AUC of ≥ 0.85 (Table 3.6.), which 

indicated good model fit. Furthermore, the jackknife validation tests of the models created for the 

vector species of interest were highly significant (p <0.0005). The most important predictor 

variables shared by all 4 ecological niche models were: distance to water, Topographic Wetness 

Index (TWI), AASHTO (soil particle size distribution), and mean temperature during the coldest 

quarter.  

The ecological niche model created for Culex tarsalis, Aedes sollicitans, and Aedes 

nigromaculis described highly suitable areas which were in close proximity to water sources, had 

a high TWI, and high levels of precipitation during the driest quarter of the year. This model is in 

accordance with the biology of Aedes sollicitans, Aedes nigromaculis, and Culex tarsalis, 

because TWI and distance to water source include the attributes important to larval habitats, 

from small sources of standing water to large ponds (Aedes sollicitans, Crains 2010; Aedes 

nigromaculis, Janovy, 1966; Culex tarsalis, Crans 2010). Areas with increased precipitation 

during the driest quarter of the year provide ephemeral larval habitats when water resources are 

limited. 

Culex salinarius, the salt marsh Culex, has a wide range of salt tolerance, and is 

commonly observed in grassland habitats. This species is particularly associated with rotting 

vegetation around large bodies of water because they create an infusion which acts as oviposition 

attractant (Crans 2010). It has also been shown that Culex salinarius prefers densely vegetated 

larval habitats, which are commonly encountered near riparian areas (Slaff 1990). The model for 

Culex salinarius was dominated by variables that are in accordance with the ecology of this 

species, such as distance to water and distance to woodland. Also prevalent in the maximum 

entropy model was mean temperature during the coldest quarter; Culex salinarius has been 

identified as vector species sensitive to extreme temperatures below freezing (Crans 2010), 

hence in the absence of shelters (e.g. human dwellings) minimum temperatures during the 

coldest quarter of the year may influence the species’ distribution across the study area. 
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Aedes vexans, the inland floodwater mosquito, is one of the most abundant vector species 

within the continental United States, and can be found at high population densities in Kansas 

(DeMoss Hill 1939, Edman et al. 1964, Lungstrom et al.1961). The species’ seasonal 

distribution is influenced by precipitation patterns, which give rise to ephemeral larval habitats 

(Crans 2010, Schafer et al. 2006, Shaman et al. 2002). The model generated for Aedes vexans 

revealed that a combination of layers including distance to water, TWI and AASHTO (describes 

the particle size distribution) were associated with suitable environmental conditions. Although 

this species can be found in numerous habitats, it is predominantly found in transient water pools 

(Crans 2010) located in grassland habitats, where an increased TWI (Shaman et al. 2002) and 

clay soils provide suitable larval habitats. 

Aedes taenirohynchus, also known as the salt-marsh mosquito, has undergone recent 

adaptation to tolerate habitats with a wide range of salinities (Nayar, 1974). In inland areas it has 

been shown to be associated with areas rich in fossil fuels, and was first reported in the central 

Great Plains in 1973 (Oklahoma, Harrison et al. 1973). Aedes taeniorhynchus prefers to lay eggs 

in moist or dry soil at the periphery of large bodies of water, particularly ponds and marshes that 

are associated with decaying vegetation (Lancaster et al. 2007, Nielsen et al. 1953). The model 

created for Aedes taeniorhynchus was dominated by the distance to water variable, which is in 

accordance to the species requirement for large bodies of standing water. In addition this species 

was strongly influenced by mean temperature during the coldest quarter and mean precipitation 

during the driest quarter. The overwintering egg stage of Aedes taeniorhynchus has been shown 

to be more sensitive to low temperatures experienced during the winter months than other Aedes 

species within the study area (Aedes sollicitans, Knight 1967). Since the proliferation of this 

species is strongly correlated with precipitation patterns (Carlson et al. 1985, Wilson et al. 2002), 

their distribution within the study area may be explained by differences in precipitation patterns 

during the driest quarter of the year, when water resources are limited.  

 

 Comparison to Disease Incidence 
In the United States ecological niche maps of vector species have predominately been 

developed from a public health perspective to evaluate the link between probability of vector 

occurrence and human incidence of infectious diseases. However, epidemiological data based on 
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human incidence reports often obscures the spatial dimension of pathogen transmission because 

the location of pathogen exposure is often not investigated; instead the location of residence is 

used as a surrogate (Eisen et al. 2010). In contrast to these previous studies, I focused on 

multiple vector species solely within the grassland habitat that are potentially involved in the 

transmission cycle of infectious encephalitides and avian malaria. The grassland ecosystem is of 

particular interest because, 1) it represents an interface of the transmission of infectious diseases 

between mammals and birds (livestock and grassland nesting birds), 2) grassland nesting birds 

are involved in the principal amplification cycle of these diseases in the Great Plains, and 3) 

disease transmission to grassland bird species can be assumed to occur within a narrow spatial 

and temporal range of the nesting season that contributes to the incidence of human exposure 

later in the summer or early fall. Using the Greater Prairie-chicken as a surrogate species for 

other grassland nesting birds, I found that nest locations were associated with a higher 

probability of vector occurrence than other potentially available grassland habitats. This overlap 

between high probability vector habitat and nest locations is an indicator of increased risk of 

mosquito parasitism and could potentially serve as an indicator of disease amplification risk. 

Unexpectedly, I did not find a significant difference in the probability of vector occurrence at 

nests of infected female Greater Prairie-chicken versus uninfected females. Although few studies 

have successfully demonstrated the correlation with increased probability of vector occurrence 

and disease incidence (Carlson et al. 2011), vector abundance models rather than presence-only 

models may be better predictors of disease incidence (Eisen et al. 2008). 

 

 Assumptions and Limitations 
Despite the predictive power of the ecological niche models created for important vector 

species, this study has several assumptions and limitations that should be noted. First, I assumed 

that adult mosquito occurrence is an indicator of suitable habitat conditions. I feel this is a valid 

assumption given adult mosquitoes are located within close proximity of breeding sites and the 

small attractiveness range of CDC CO2 traps (< 30 m, Service 1993). It is, therefore, unlikely 

that the use of adult mosquito occurrence compared to larval occurrence data affects the accuracy 

of the model predictions. A second assumption was that that 20 occurrence records were 

sufficient to predict the distribution of vector species within the study area. As established by 
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Pearson et al. 2007, as few as 5 occurrence records produce accurate predictions of species’ 

distributions. Third, the most abundant vector species, Culex tarsalis, Aedes sollicitans, and 

Aedes nigromaculis were encountered at all 20 sample locations. While it may be argued that the 

combined model used to describe the distribution of these species instead reflects the distribution 

of trap locations; it is important to emphasize that ecological niche models identify suitable 

habitat conditions based on presence data only, not absence data. Hence, I believe that these 

models adequately describe the distribution of these species within the study area. Fourth, the 

analysis was conducted at a small spatial scale (283 km2), which can lead to the selection of 

ecologically irrelevant variables. Although ecological niche models have been performed at 

smaller spatial scales (< 54 km2, Khatchikian et al. 2011), I chose to only use potentially 

ecologically relevant variables for the construction of ecological niche models to limit the effects 

of the sample area. Lastly, the realism of ecological niche models is strongly dependent the 

variables used for their construction. I recognize that the Normalized Difference Vegetation 

Index (NDVI) is an important predictor variable in the distribution of mosquito species, however 

its available resolution of 1 km was too coarse for the construction of the high resolution niche 

models for this study.  

 

 Conclusion 
The grasslands of the central Great Plains represent an interface for complex transmission 

dynamics between humans, livestock, and wildlife species, particularly grassland nesting birds. 

In the grassland ecosystem the enzootic cycle of infectious encephalitides and avian malaria are 

maintained through the transmission between Culex species and grassland nesting birds. My 

results of the Greater Prairie-chicken nesting habitat analysis confirmed, that nest locations were 

located in highly suitable habitat of Culex species. This overlap in the local distribution of 

vectors and hosts not only demonstrates that grassland nesting birds are at risk of being 

parasitized by mosquitoes and associated pathogens, but also strongly supports the mechanism of 

transmission and amplification involved in the primary enzootic cycle of arboviruses and 

haemosporidians (Plasmodium species). While this poses a significant risk to the conservation of 

grassland nesting birds, other wildlife species as well as, livestock and humans are at risk. For 

example, suitable environmental conditions can exacerbate West Nile Virus amplification in the 
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environment, due to the early emergence of Culex vector species, and lead to an increased risk of 

exposure in humans. My maps highlight habitat suitability and amenable climatic conditions that 

influence the probability of occurrence of the vector species (Culex tarsalis, Culex salinarius and 

Aedes vexans have high bridge vector competence) associated with West Nile Virus encephalitis. 

These maps and predictive models developed from their content could be used by local public 

health officials to notify the public health of increased disease risk on the neighborhood scale.  

Vectors distributions can be modeled with high predictive accuracy due to the strong 

association with biophysical (environmental and climatic) variables. The knowledge of these 

associations has been utilized to construct predictive distribution maps identifying suitable 

habitats, where exposure to vector species is likely to occur. Understanding the spatial patterns of 

exposure to dipteran vectors and their associated pathogens is critical for epidemiological 

research to target limited surveillance, prevention, control, and reduce the incidence of vector-

borne infectious diseases (Eisen et al. 2008). The probabilistic distribution maps created here for 

medically important vectors species of infectious encephalitides (Western Equine encephalitis, 

St. Louis encephalitis, West Nile Virus encephalitis) and avian malaria are the initial step in 

understanding the disease transmission dynamics in the grassland of the central Great Plains.   
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 Figures and Tables 
 

Table 3.1. Most abundant vector species collected during the sample season (May - July, 2010) at 20 sites in in the grasslands of the eastern Smoky Hill 

eco-region, Kansas. 

Species BS1 BS2 BS3 BS4 BS6 BS7 BS8 BS9 BS10 BS11 BS12 BS13 BS14 BS15 BS16 W1 W2 W3 W4 W5 Total 

% 

Total 

Aedes sollicitans 39 84 108 201 113 504 410 246 2,402 123 88 220 87 311 340 80 25 187 6 6 5,580 50.84 

Aedes nigromaculis 43 25 47 80 57 566 246 32 305 93 40 120 36 305 222 24 19 142 4 7 2,413 21.98 

Culex tarsalis 41 31 30 16 3 53 72 101 65 9 25 5 38 71 33 103 34 92 3 3 828 7.54 

Aedes vexans 13 243 256 14 3 6 29 2 113 3 101 18 22 4 172 0 2 11 0 0 1,012 9.22 

Aedes taeniorhynchus 9 4 25 4 1 170 47 25 195 26 43 0 40 40 12 1 1 95 2 0 740 6.74 

Culex salinarius 10 16 4 2 13 81 12 11 9 6 18 0 8 11 0 16 12 154 1 19 403 3.67 

Total 155 403 470 317 190 1,380 816 417 3,089 260 315 363 231 742 779 224 93 681 16 35 10,976 100 

%Total 1.41 3.67 4.28 2.89 1.73 12.57 7.43 3.80 28.14 2.37 2.87 3.31 2.10 6.76 7.10 2.04 0.85 6.20 0.15 0.32 100.00  
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Table 3.2. Occurrence records of mosquito species collected during the sample season (May – July, 2010) at 20 sites in the 

grasslands of the eastern Smoky Hill eco-region, Kansas.  

 

Site ID 

Geographic reference  Species occurrence records 

Northing Easting 
Aedes 

sollicitans 

Aedes 

nigromaculis 
Culex tarsalis Aedes vexans 

Aedes 

taeniorhynchus 

Culex 

salinarius 

BS1 622056 4366146 1 1 1 1 1 1 

BS2 615644 4360203 1 1 1 1 1 1 

BS3 621509 4359691 1 1 1 1 1 1 

BS4 621101 4366440 1 1 1 1 1 1 

BS6 614953 4363595 1 1 1 1 1 1 

BS7 627011 4355338 1 1 1 1 1 1 

BS8 626702 4353664 1 1 1 1 1 1 

BS9 618475 4361437 1 1 1 1 1 1 

BS10 617920 4360485 1 1 1 1 1 1 

BS11 628193 4362326 1 1 1 1 1 1 

BS12 628242 4363409 1 1 1 1 1 1 

BS13 605370 4369611 1 1 1 1 0 0 

BS14 615638 4360980 1 1 1 1 1 1 

BS15 621412 4364537 1 1 1 1 1 1 

BS16 621275 4366746 1 1 1 1 1 0 

W1 619707 4361234 1 1 1 0 1 1 

W2 620866 4359818 1 1 1 1 1 1 

W3 626760 4355978 1 1 1 1 1 1 

W4 623481 4364995 1 1 1 0 1 1 

W5 620011 4372589 1 1 1 0 0 1 

Sum of Occurrences 20 20 20 17 18 18 
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Table 3.3. Description of parameters used to construct ecological niche models of vectors species with the grasslands of Cloud County, 

Kansas. 
Parameter Description Parameter Description 

Aspect Aspect Tmax(wq) Current average maximum temperature of the warmest quarter 

Slope Slope Tmax(ss) Current average maximum temperature of the sample season  

Curv Curvature of the terrain Tmax(jan) Current average maximum temperature of January  

TWI Topographic Wetness Index Tmax(apr) Current average maximum temperature of April 

Tmin(ave) Current average minimum annual temperature Tmax(may) Current average maximum temperature of May 

Tmin(cq) Current average minimum temperature of the coldest quarter Tmax(jun) Current average maximum temperature of June 

Tmin(wq) Current average minimum temperature of the warmest quarter Tmax(jul) Current average maximum temperature of July 

Tmin(ss) Current average minimum temperature of the sample season (May – July) Tseas
 Annual temperature seasonality 

Tmin(jan) Current average minimum temperature of January (coldest month) Pmean(ave) Current average mean annual precipitation 

Tmin(apr) Current average minimum temperature of April Pmean(dq) Current average mean precipitation of the driest quarter 

Tmin(may) Current average minimum temperature of May Pmean(wq) Current average mean precipitation of the wettest quarter 

Tmin(jun) Current average minimum temperature of June Pmean(ss) Current average mean precipitation of the sample season 

Tmin(jul) Current average minimum temperature of July Pmean(apr) Current average mean precipitation of April 

Tmean(ave) Current average mean annual temperature Pmean(may) Current average mean precipitation of May 

Tmean(cq) Current average mean temperature of the coldest quarter Pmean(jun) Current average mean precipitation of June 

Tmean(wq) Current average mean temperature of the warmest quarter Pmean(jul) Current average mean precipitation of July 

Tmean(ss) Current average mean temperature of the sample season  Pseas
 Annual precipitation seasonality 

Tmean(jan) Current average mean temperature of January  AASHTO AASHTO group 

Tmean(apr) Current average mean temperature of April HYSOIL Hydrologic group 

Tmean(may) Current average mean temperature of May DRACLA Drainage class 

Tmean(jun) Current average mean temperature of June Distedge
 Distance to edge 

Tmean(jul) Current average mean temperature of July Distw
 Distance to water 

Tmax(ave) Current average maximum annual temperature Distwl Distance to woodland 

Tmax(cq) Current average  maximum temperature of the coldest quarter Distr Distance to road 
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Table 3.4. Highly correlated variables (r ≥ 0.90). I generated 100 random points across the study 

site, extracted data from the bioclimatic variables and performed a Pearson’s correlation analysis. 
Correlated variables r Correlated variables r 
Tmin(ave) x Tmin(cq) 0.97 Tmean(cq) x Tmax(ave) 0.93 
Tmin(ave) x Tmin(wq) 0.95 Tmean(cq) x Tmax(cq) 0.94 
Tmin(ave) x Tmin(ss) 0.96 Tmean(cq) x Tmax(jan) 0.91 
Tmin(ave) x Tmin(may) 0.91 Tmean(cq) x Tmax(may) 0.92 
Tmin(ave) x Tmean(ave) 0.93 Tmean(wq) x Tmax(apr) 0.90 
Tmin(ave) x Tmean(cq) 0.92 Tmean(wq) x Tmax(may) 0.90 
Tmin(ave) x Tmean(wq) 0.95 Tmean(ss) x Tmean(wq) 0.98 
Tmin(ave) x Tmean(ss) 0.96 Tmean(may) x Tmean(ss) 0.91 
Tmin(cq) x Tmean(cq) 0.91 Tmean(may) x Tmax(may) 0.93 
Tmin(wq) x Tmean(ave) 0.97 Tmean(jun) x Tmax(ss) 0.90 
Tmin(wq) x Tmean(cq) 0.93 Tmean(jun) x Tmax(jun) 0.90 
Tmin(wq) x Tmean(wq) 1.00 Tmean(jul) x Tmax(jul) 0.91 
Tmin(wq) x Tmean(ss) 0.98 Tmax(ave) x Tmax(cq) 0.99 
Tmin(wq) x Tmax(apr) 0.90 Tmax(ave) x Tmax(wq) 0.98 
Tmin(wq) x Tmax(may) 0.90 Tmax(ave) x Tmax(ss) 0.99 
Tmin(ss) x Tmin(wq) 0.99 Tmax(ave) x Tmax(jan) 0.94 
Tmin(ss) x Tmean(ave) 0.94 Tmax(ave) xTmax(may) 0.95 
Tmin(ss) x Tmean(wq) 0.98 Tmax(ave) x Tmax(jun) 0.93 
Tmin(ss) x Tmean(ss) 1.00 Tmax(cq) x Tmax(wq) 0.96 
Tmin(ss) x Tmean(may) 0.91 Tmax(cq) x Tmax(ss) 0.96 
Tmin(jan) x Tmean(jan) 1.00 Tmax(cq) xT max(jan) 0.96 
Tmin(may) x Tmin(ss) 0.93 Tmax(cq) x Tmax(may) 0.92 
Tmin(may) x Tmean(ss) 0.93 Tmax(ss) x Tmax(wq) 0.99 
Tmin(may) x Tmean(may) 0.94 Tmax(jan) xT max(ss) 0.91 
Tmin(jun) x Tmin(wq) 0.93 Tmax(jan) xTmax(may) 0.91 
Tmin(jun) x Tmin(ss) 0.95 Tmax(apr) x Tmax(cq) 0.92 
Tmin(jun) x Tmean(wq) 0.93 Tmax(apr) xTmax(ss) 0.92 
Tmin(jun) xTmean(ss) 0.95 Tmax(apr) x Tmax(may) 0.93 
Tmin(jul) x Tmin(wq) 0.92 Tmax(may) x Tmax(ss) 0.94 
Tmin(jul) x Tmin(ss) 0.91 Tmax(jun) xTmax(wq) 0.95 
Tmin(jul) x Tmean(wq) 0.92 Tmax(jun) x Tmax(ss) 0.95 
Tmin(jul) x Tmean(ss) 0.91 Tmax(jul) x Tmax(wq) 0.93 
Tmean(ave) x Tmean(cq) 0.97 Tmax(jul) x Tmax(ss) 0.90 
Tmean(ave) x Tmean(wq) 0.97 Pmean(ave) x Pmean(wq) 0.93 
Tmean(ave) x Tmean(ss) 0.94 Pmean(ave) x Pmean(may) 0.90 
Tmean(ave) x Tmean(may) 0.91 Pmean(ave) x Pmean(jun) 0.90 
Tmean(ave) x Tmax(ave) 0.95 Pmean(apr) x Pmean(ave) 0.90 
Tmean(ave) x Tmax(cq) 0.92 Pmean(apr) x Pmean(wq) 0.90 
Tmean(ave) x Tmax(ss) 0.91 Pmean(apr) x Pmean(jun) 0.90 
Tmean(ave) x Tmax(apr) 0.94 Pmean(may) x Pmean(wq) 0.95 
Tmean(ave) x Tmax(may) 0.94 Pmean(jun) x Pmean(wq) 0.95 
Tmean(cq) x Tmean(wq) 0.93   
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Table 3.5.Variable contributions and permutations of ecological niche models developed for vector species in the grassland of the Smoky Hills, 

Cloud County, Kansas. 
Species Variable contributions (permutations) 

Culex tarsalis, 

Aedes sollicitans, 

Aedes nigromaculis 

Distw, 0.31 

(0.07) 

TWI, 0.16 

(0.37) 

Pmean(dq), 

0.14 (0.11) 

Distwl, 0.13 

(0.11) 

AASHTO, 

0.07 (0.16) 

Distedge, 0.06 

(0.05) 

Tmean(cq), 

0.05 (0.05) 

Aspect, 0.05 

(0.03) 

Curv, 0.04 

(0.06) 
 

Aedes vexans 
Distw, 0.25 

(0.00) 

TWI, 0.14 

(0.27) 

AASHTO, 

0.12 (0.03) 

Aspect, 0.11 

(0.20) 

Pmean(dq), 

0.09 (0.11) 

Tmax(cq), 0.09 

(0.09) 

Tmean(apr), 

0.07 (0.15) 

Tmean(ss), 

0.07 (0.09) 

Distr, 0.03 

(0.00) 

Distedge, 0.03 

(0.05) 

Aedes 

taeniorhynchus 

Distw, 0.24 

(0.14) 

Tmean(cq), 

0.18 (0.32) 

Pmean(dq), 

0.16 (0.17) 

AASHTO, 

0.12 (0.10) 

Aspect, 0.09 

(0.05) 

TWI, 0.06 

(0.05) 

Distr, 0.05 

(0.02) 

Distwl, 0.05 

(0.02) 

Distedge, 0.04 

(0.09) 

Tmean(apr), 

0.01 (0.04) 

Culex salinarius 
Distw, 0.27 

(0.07) 

Tmean(cq), 

0.24 (0.34) 

Distwl, 0.16 

(0.16) 

AASHTO, 

0.07 (0.03) 

Aspect, 0.07 

(0.11) 

TWI, 0.07 

(0.09) 

Pmean(dq), 

0.06 (0.02) 

Distedge, 0.04 

(0.08) 

Tmax(jul), 

0.01 (0.04) 
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Table 3.6. Training gain without and with predictor variables of ecological niche models developed for vector species in the grassland of the 

Smoky Hills, Cloud County, Kansas. 
Model  

(Training AUC) 
Variable, Training gain without variable (Training gain with variable) 

Culex tarsalis, 

Aedes sollicitans, 

Aedes nigromaculis 

(0.86) 

Distw, 0.36 

(0.18) 

TWI, 0.41 

(0.07) 

Distwl, 0.47 

(0.08) 

Pmean(dq), 

0.48 (0.08) 

AASHTO, 

0.48 (0.03) 

Distedge, 0.48 

(0.01) 

Tmean(cq), 

0.49 (0.07) 

Aspect, 0.50 

(0.05) 

Curv, 0.50 

(0.01) 
 

Aedes vexans (0.88) 
Distw, 0.43 

(0.15) 

TWI, 0.48 

(0.07) 

AASTHO, 

0.50 (0.07) 

Aspect, 0.50 

(0.07) 

Pmean(dq), 

0.52 (0.08) 

Tmax(cq), 0.54 

(0.06) 

Tmean(apr), 

0.53 (0.04) 

Tmean(ss), 

0.52 (0.05) 

Distr, 0.55 

(0.01) 

Distedge, 0.55 

(0.02) 

Aedes taeniorhynchus 

(0.90) 

Distw, 0.58 

(0.19) 

AASHTO, 

0.66 (0.09) 

Pmean(dq), 

0.68 (0.21) 

Aspect, 0.69 

(0.09) 

TWI, 0.70 

(0.04) 

Tmean(cq), 

0.71 (0.17) 

distedge, 0.71 

(0.02) 

distwl, 0.72 

(0.06) 

Tmean(apr), 

0.74 (0.03) 

Distr, 0.74 

(0.02) 

Culex salinarius (0.88) 
Distw, 0.49 

(0.21) 

Distwl, 0.57 

(0.13) 

Tmean(cq), 

0.58 (0.17) 

AASHTO, 

0.62 (0.04) 

Aspect, 0.62 

(0.04) 

TWI, 0.62 

(0.03) 

Distedge, 0.62 

(0.01) 

Pmean(dq), 

0.65 (0.13) 

Tmax(jul), 

0.65 (0.00) 
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Table 3.7. Jackknife tests of distribution models (LTP, Lowest Presence Threshold) for the six most abundant disease vectors in the 

Smoky Hills of Cloud County, Kansas 

Species 
 Maxent, LPT 

Locality sample size Threshold Success p 

Culex tarsalis,  

Aedes sollicitans,  

Aedes nigromaculis 

20  6.657 15 2.44e-3 

Aedes vexans 17 10.699 11 4.32e-3 

Aedes taeniorhynchus 18  4.523 17 3.50e-4 

Culex salinarius 18  5.176 14 1.24e-3 
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Table 3.8. Vector probability of Culex tarsalis, Culex salinarius, and cumulative avian malaria vectors associated with Greater Prairie-

chicken nests of females that tested positive for Plasmodium species. 
Positive Females Vector Probability 

Nest ID Culex tarsalis Culex salinarius 
Combined avian 

malaria vectors 

20076801 9.54 5.13 7.33 

20076830 80.71 84.83 82.77 

20076886 94.15 83.50 88.82 

20090788 62.40 56.94 59.67 

20097093 66.54 68.59 67.56 

20097099 32.85 29.72 31.29 

20100788 53.38 32.63 43.00 

20110855 2.97 2.73 2.85 

Mean 50.31 45.51 47.91 
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Table 3.9. Results of the 2-sample t-tests, to assess the differences in the probability of vector occurrence at nest locations versus 

potentially available grassland habitat. 
Vector Group n Mean SD SE DF t P (two-tailed) 

Culex tarsalis Random 111 23.3 22.9 2.2 217 -4.05 0.000 

 Nest locations 111 36.5 25.5 2.4    

Culex salinarius Random 111 19.6 21.7 2.1 217 -4.78 0.000 

 Nest locations 111 34.4 24.2 2.3    

Avian malaria vectors  Random 111 21.9 21.1 2.0 217 -4.43 0.000 

 Nest locations 111 35.4 24.3 2.3 217   
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Figure 3.1. Study site location. Kansas landcover data were developed by the Kanas Applied Remote Sensing Laboratory at University 

of Kansas, Lawrence. 
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Figure 3.2. Elevation map of the eastern Smoky Hills study site, located in Cloud County, Kansas. The elevation data were used to 

derive the following topographic maps: aspect, slope, curvature, and TWI (Topographic Wetness Index). 
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Figure 3.3. Landcover map of the eastern Smoky Hills study site, located in Cloud County, Kansas. The landcover data were used to 

derive the following distance measures: distance to woodland, distance to water, distance to edge, and distance to road. Distance 

measures are in meters. 
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Figure 3.4. Soil map of the eastern Smoky Hills study site, located in Cloud County, Kansas. The soil data were retrieved from the 

Soil Geographic Database, I selected the following soil indices: AASHTO (describes the particle-size distribution), drainage class 

(describes the frequency and duration of wet periods), and hydrologic soil groups (estimates of runoff potential). 
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Figure 3.5. Greater Prairie-chicken nest distribution across the eastern Smoky Hill study site, Cloud County, Kansas. The inset 

provides a detailed view of the nest locations within the landcover map. 
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Figure 3.6. Jackknife test of training gain for Culex tarsalis, Aedes sollicitans and Aedes 

nigromaculis, which are competent vectors of West Nile virus and Plasmodium species (avian 

malaria disease agents). The environmental predictor variables included (from the top): 

AASHTO, distance to edge, distance to water, distance to woodland, aspect, curvature, TWI 

(Topographic Wetness Index), mean temperature of the coldest quarter of the year, and mean 

precipitation of the driest quarter of the year. 
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Figure 3.7.  Jackknife test of training gain for Culex salinarius, a competent vector of West 

Nile Virus and Plasmodium species (avian malaria disease agents). The environmental 

predictor variables included (from the top): AASHTO, distance to edge, distance to water, 

distance to woodland, aspect, slope, TWI (Topographic Wetness Index), maximum 

temperature in July, mean temperature of the coldest quarter of the year, and mean 

precipitation of the driest quarter of the year.  
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Figure 3.8. Jackknife test of training gain for Aedes vexans, a competent vector of West Nile 

Virus and Plasmodium species (avian malaria disease agents). The environmental predictor 

variables included (from the top): AASHTO, distance to edge, distance to road, distance to 

water, aspect, TWI (Topographic Wetness Index), maximum temperature of the coldest quarter 

of the year, mean temperature of May, mean temperature during the sampling season and mean 

precipitation of the driest quarter of the year. 
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Figure 3.9. Jackknife test of training gain for Aedes taeniorhynchus, a competent vector of West 

Nile Virus and potential vector of Plasmodium species (avian malaria disease agents). The 

environmental predictor variables included (from the top): AASHTO, distance to edge, distance 

to road, distance to water, distance to woodland, aspect, TWI (Topographic Wetness Index), 

mean temperature of April, mean temperature of the coldest quarter of the year, and mean 

precipitation of the driest quarter of the year.  
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Figure 3.10. Maximum entropy probability distribution (red = high probability, blue = low 

probability) of Culex tarsalis, Aedes sollicitans, and Aedes nigromaculis in the grasslands of the 

Smoky Hill eco-region, Cloud County, Kansas. Species occurrences are indicated with white 

square symbols. 
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Figure 3.11. Maximum entropy probability distribution (red = high probability, blue = low 

probability) of Culex salinarius in the grasslands of the Smoky Hill eco-region, Cloud County, 

Kansas. Species occurrences are indicated with white square symbols. 
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Figure 3.12. Maximum entropy probability distribution (red = high probability, blue = low 

probability) of Aedes vexans in the grasslands of the Smoky Hill eco-region, Cloud County, 

Kansas. Species occurrences are indicated with white square symbols. 
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Figure 3.13. Maximum entropy probability distribution (red = high probability, blue = low 

probability) of Aedes taeniorhynchus in the grasslands of the Smoky Hill eco-region, Cloud 

County, Kansas. Species occurrences are indicated with white square symbols. 
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Figure 3.14. Presence-absence predicted distribution of Culex tarsalis, Aedes sollicitans, and 

Aedes nigromaculis based on the Lowest Presence Threshold (LPT). The distribution map was 

created by importing the Maxent cumulative output into Arc Info 10. 
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Figure 3.15. Presence-absence predicted distribution of Culex salinarius based on the Lowest 

Presence Threshold (LPT). The distribution map was created by importing the Maxent 

cumulative output into Arc Info 10. 
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Figure 3.16. Presence-absence predicted distribution of Aedes vexans based on the Lowest 

Presence Threshold (LPT). The distribution map was created by importing the Maxent 

cumulative output into Arc Info 10. 
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Figure 3.17. Presence-absence predicted distribution of Aedes taeniorhynchus based on the 

Lowest Presence Threshold (LPT). The distribution map was created by importing the Maxent 

cumulative output into Arc Info 10. 
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Figure 3.18. Predicted distribution of Culex tarsalis. This is the most abundant avian malaria vector with primarily ornithophilic 

feeding preferences during the avian nesting season. The map was created by importing the Maxent cumulative output of this species 

into Arc Info 10, and overlaid with Greater Prairie-chicken nests.  
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Figure 3.19. Predicted distribution of Culex salinarius. This is the second most abundant avian malaria vector with primarily 

ornithophilic feeding preferences during the avian nesting season. The map was created by importing the Maxent cumulative output of 

this species into Arc Info 10, and overlaid with Greater Prairie-chicken nests. 
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Figure 3.20. The predicted avian malaria vector distribution was created by importing the Maxent cumulative outputs of Culex tarsalis 

and Culex salinarius into Arc Info 10, and averaging their values via Spatial Analyst tools. This distribution was overlaid with Greater 

Prairie-chicken nests. 
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Figure 3.21. Comparison of the probability of Culex tarsalis occurrence at random points and 

nest locations of Greater Prairie-chicken in the grasslands of the Smoky Hills, Cloud County, 

Kansas.  
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Figure 3.22. Comparison of the probability of Culex salinarius occurrence at random points and 

nest locations of Greater Prairie-chicken in the grasslands of the Smoky Hills, Cloud County, 

Kansas.  
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Figure 3.23. Comparison of the probability of avian malaria vector (combined: Culex tarsalis 

and Culex salinarius) occurrence at random points and nest locations of Greater Prairie-chicken 

in the grasslands of the Smoky Hills, Cloud County, Kansas.  
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Figure 3.24. The simulated sampling distribution of the probability of Culex tarsalis occurrence 

at nest locations of uninfected female Greater Prairie-chicken was created with 10,000 sample 

means (sample size: n=8). The 95% confidence interval is indicated in the dashed-green line. The 

mean probability of Culex tarsalis occurrence at nests of infected females is indicated with the 

solid red line. 
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Figure 3.25. The simulated sampling distribution of the probability of Culex salinarius 

occurrence at nest locations of uninfected female Greater Prairie-chicken was created with 

10,000 sample means (sample size: n=8). The 95% confidence interval is indicated in the 

dashed-green line. The mean probability of Culex salinarius occurrence at nests of infected 

females is indicated with the solid red line. 
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Figure 3.26. The simulated sampling distribution of the probability of avian malaria vector 

(combined: Culex tarsalis, Culex salinarius) occurrence at nest locations of uninfected female 

Greater Prairie-chicken was created with 10,000 sample means (sample size: n=8). The 95% 

confidence interval is indicated in the dashed-green line. The mean probability of avian malaria 

vectors occurrence at nests of infected females is indicated with the solid red line. 
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Table A.1. Mosquito taxa encountered in the Smoky Hill eco-region, including their host feeding preferences and susceptibility to zoonotic 

pathogens. Feeding preferences, susceptibility to disease agents of encephalitides and role as enzootic/bridge vector reported in Turell et al. 

2005. Susceptibility to disease agents of avian malaria (Plasmodium species) was reported in Valkiunas 2005, unless otherwise noted. 

Mosquito Taxa (most recent 

report) 

Host feeding 

preference 

Susceptible to disease agents of Potential to serve as (infectious encephalitis) 

WEE SLE WNVE AM Enzootic vectore Bridge vectorf 

Aedes        

  sollicitans (Janovy 1966) mammals   S S 0 + 

  nigromaculis (Janovy 1966) mammals  S   0 + 

  vexans (Janovy 1966) mammals S S S S 0 ++ 

  taeniorhynchus* mammals   S d 0 + 

  stimulans* mammalsa    S 0 0 

  dorsalis (Janovy 1966) mammals S  S  0 ++ 

Culex        

  tarsalis (Janovy 1966) opportunisticb S S S S ++++ +++ 

  salinarius (Lungstrom et al. 1961) opportunistic  S S S +++ ++++ 

  pipiens (Janovy 1966) birds  S S S ++++ +++++ 

  restuans (Lungstrom et al. 1961) birds  S S S +++++ ++ 

* previously unreported in published literature to occur in Kansas. 
a host feeding pattern of Aedes stimulans reported in Molaei et al. 2008. 
b avian host feeding in spring and early summer with seasonal shift to mammalian hosts in late summer and fall. 
c Detection of SLE in Aedes nigromaculis reported in Hammon et al. 1943. 
d Detection of AM in head/thorax pool of Aedes nigromaculis. 
e Potential for species to serve as enzootic vector from little to no risk 0, to high risk +++++ 
f Potential for species to serve as bridge vector from little to no risk 0, to high risk +++++ 
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Table A.2. Average weekly meteorological variables (precipitation, wind speed, maximum 

temperature, and minimum temperature) retrieved from National Oceanic and Atmospheric 

Administration (NOAA) during the sample season, and mosquito abundance/diversity (H’).  

Date Precipitation Wind speed Maximum 

Temperature 

Minimum 

Temperature 

Abundance H’ 

5/3/2010 26.57 53.86 19.37 6.41 * * 

5/10/2010 34.57 41.43 15.49 7.30 * * 

5/17/2010 35.29 48.29 21.99 12.79 25 1.19 

5/24/2010 30.86 40.00 27.20 15.81 301 1.59 

5/31/2010 4.43 38.86 29.86 16.43 650 0.53 

6/7/2010 63.43 46.43 28.01 19.20 227 0.98 

6/14/2010 124.86 50.86 31.20 18.96 + + 

6/21/2010 21.71 49.71 33.57 19.27 2194 1.37 

6/28/2010 87.14 46.71 30.87 17.69 199 1.53 

7/5/2010 26.57 29.00 29.91 18.73 + + 

7/12/2010 40.57 39.29 34.06 21.34 2084 0.93 

7/19/2010 7.71 48.00 33.03 21.51 2695 1.36 

7/26/2010 0.00 37.14 34.51 21.59 2848 1.37 

* Meteorological data prior to the sample season.  
+ Mosquitoes samples were not obtained due the effects of excessive precipitation. 
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Table A.3. Site specific environmental variables (elevation, curvature, aspect, TWI, distance to agriculture, distance to woodland, 

distance to water, distance to road and distance to edge) of twenty sample locations within a radius of 30 m of mosquito traps and 

mosquito abundance/diversity (H’) within the Smoky Hill eco-region using ArcInfo 10 (Environmental Systems Research Institute, 

Radlands, CA). Elevation and distance measures are in meters. 

Site ID Latitude Longitude Elevation Curvature TWI Distance to 
agriculture 

Distance to 
woodland 

Distance 
to water 

Distance 
to road 

Distance 
to edge Abundance H' 

BS1 N 39˚26.173’ W097˚34.903’ 499.58 0.09 3.91 1083.74 60.00 595.48 120.00 60.00 173 1.931986 

BS2 N 39˚23.014’ W097˚39.434’ 454.00 -0.04 7.68 420.00 301.50 150.00 480.00 180.00 435 1.426649 

BS3 N 39˚22.689’ W097˚35.355’ 466.35 0.17 4.40 120.00 646.22 573.15 120.00 0.00 480 1.374599 

BS4 N 39˚26.340 W097˚35.566’ 495.86 0.30 3.75 937.23 445.98 361.25 90.00 90.00 331 1.187878 

BS6 N 39˚24.853’ W097˚39.881’ 487.81 0.18 4.46 366.20 607.45 182.48 150.00 120.00 200 1.207432 

BS7 N 39˚20.289’ W097˚31.573’ 457.76 0.35 5.88 658.64 902.50 517.88 300.00 270.00 1394 1.361727 

BS8 N 39˚19.387’ W097˚31.807’ 452.06 0.08 7.63 403.61 657.95 523.93 240.00 210.00 827 1.335851 

BS9 N 39˚23.658’ W097˚37.449’ 493.77 0.19 4.21 566.04 818.84 494.77 60.00 30.00 426 1.244555 

BS10 N 39˚23.148’ W097˚37.846’ 482.38 0.00 9.22 789.18 745.19 361.25 150.00 150.00 3124 0.884195 

BS11 N 39˚24.055’ W097˚30.670’ 493.59 0.28 5.05 1266.06 758.95 816.09 810.00 276.59 267 1.321729 

BS12 N 39˚24.640’ W097˚30.623’ 495.69 0.22 3.81 1015.14 174.93 630.71 270.00 174.93 340 1.876915 

BS13 N 39˚28.178’ W097˚46.501’ 476.20 0.26 3.58 152.97 391.15 240.00 300.00 152.97 364 0.893937 

BS14 N 39˚23.434’ W097˚39.430’ 459.92 0.28 4.30 390.00 30.00 30.00 360.00 30.00 237 1.697985 

BS15 N 39˚25.309’ W097˚35.370 502.34 0.15 4.00 254.56 660.00 174.93 210.00 150.00 749 1.256148 

BS16 N 39˚26.504’ W097˚35.441’ 490.80 0.22 4.29 1146.30 150.00 632.85 90.00 90.00 793 1.330054 

W1 N 39˚23.538’ W097˚36.593’ 480.98 0.03 8.51 1499.40 967.47 42.43 60.00 30.00 226 1.217171 

W2 N 39˚22.763’ W097˚35.801’ 471.39 -0.24 4.59 450.00 1008.46 30.00 30.00 0.00 96 1.554932 

W3 N 39˚20.637’ W097˚31.740’ 445.19 0.17 5.84 660.00 852.76 30.00 630.00 60.00 698 1.725951 

W4 N 39˚25.539’ W097˚33.923’ 506.68 -0.19 4.63 1530.00 570.79 534.14 720.00 108.17 19 1.767378 

W5 N 39˚29.673’ W097˚36.259’ 461.04 0.18 7.34 540.00 785.17 361.25 510.88 313.21 44 1.564678 
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Table A.4. Pearson’s correlation coefficients between environmental variables. 

Variable Curva TWI Distag Distwl Distw Distr 

TWIb -0.31      

Distag
c -0.17  0.11     

Distwl
d -0.18  0.44 0.41    

Distw
e  0.28 -0.20 0.36 -0.35   

Distr
f  0.01  0.16 0.22 -0.21 0.15  

Distedge
g  0.29  0.35 0.01 -0.21 0.36 0.52 

a Curvature = is a measurement of rate-change of the slope per unit distance and may be an indicator 

for of aquatic habitat stability. 
b TWI = Topographic Wetness Index, calculated as the natural logarithm of the ratio between local 

upslope contributing area and slope, and describes the predicted soil moisture pattern (ESRI, 2010) 
c Distag = distance to the closest agricultural field, calculated using Euclidean distance (Arc Info 10). 
d Distwl = distance to the closest woodland, calculated using Euclidean distance (Arc Info 10). 
e Distw = distance to the closest water source, calculated using Euclidean distance (Arc Info 10). 
f Distr = distance to the closest road, calculated using Euclidean distance (Arc Info 10). 
g Distedge = distance to the closest habitat edge, calculated using Euclidean distance (Arc Info 10). 
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Table A.5. Pearson’s correlation coefficients between meteorological variables. 

 Pmean
a Pmean(1) Pmean(2) Wind Tmax Tmax(1) Tmax(2) Tmin Tmin(1) 

Pmean(1)b -0.23         

Pmean(2)c  0.63  0.07        

Windd  0.37  0.49 0.05       

Tmax
e -0.70  0.20 0.37 -0.26      

Tmax(1)f  0.00  0.02 0.42 -0.03 0.88*     

Tmax(2)g  0.07 -0.09 0.46  0.00 0.79* 0.85*    

Tmin
h -0.20  0.18 0.18 -0.19    0.80    0.87* 0.83*   

Tmin(1)i -0.14  0.64 0.36 -0.14 0.95* 0.98* 0.85* 0.92*  

Tmin(2)j -0.02  0.44 0.44  0.01 0.89* 0.95* 0.96* 0.88* 0.95* 

a Pmean = precipitation during the sample week. 
b Pmean(1) = precipitation one week prior to sample week. 
c Pmean(2) = precipitation two weeks prior to sample week. 
d Wind = wind speed during the sample week. 
e Tmax = maximum temperature during the sample week 
f Tmax(1) = maximum temperature one week prior to sample week. 
g Tmax(2) = maximum temperature two weeks prior to sample week. 
h Tmin = minimum temperature during the sample week. 
i Tmin(1) = minimum temperature one week prior to sample week. 
j Tmin(2) = minimum temperature two weeks prior to sample week. 

*P<0.05 
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Table A.6. Candidate models used to fit the dependent variable, mosquito diversity, to 

independent meteorological variables. 

Variables in the Model 
No. of 

parameters 
AICca 

Delta 

AICc 

AICc 

weightb 
R2 

adjusted 

R2 
p 

Windc   2.00 -15.46 0.00 0.13 0.09 -0.04 0.44 

Pmean(2)d 

  

2.00 -15.09 0.37 0.11 5.00 -0.09 0.57 

Pmean 

  

2.00 -15.04 0.42 0.11 0.04 -0.09 0.59 

Pmean(1)f 

  

2.00 -14.99 0.47 0.10 0.04 -0.10 0.61 

Tmax
g 

  

2.00 -14.66 0.80 0.09 0.00 -0.13 0.89 

Tmin
h 

  

2.00 -14.66 0.81 0.09 0.00 -0.14 0.91 

a AICc = Akaike’s Information Criterion with small-sample bias adjustment (Burnham and 

Anderson 1998). 
b AICc weight = percent of total weight from 128 models that can be attributed to the specified 

model. 
c Wind = wind speed during the sample week. 
d Pmean(2) = precipitation two weeks prior to sample week, to account for lagged responses. 
e Pmean = precipitation during the sample week. 
f Pmean(1) = precipitation one week prior to sample week, to account for lagged responses.  
g Tmax = maximum temperature during the sample week. 
h Tmin = minimum temperature during the sample week. 
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Table A.7. Candidate models used to fit the dependent variable, mosquito diversity, to independent environmental variables. 

Variables in model 
No. of 

parameters 
AICc a Delta AICc AICc Weight R2 Adjusted R2 p 

Distr
c, Distedge

d 3 -48.22 0.00 0.07 0.22 0.13 0.12 

Distr 2 -47.98 0.25 0.06 0.10 0.05 0.18 

Distag
e 2 -47.38 0.84 0.04 0.07 0.02 0.26 

Distag, Distwl
f 3 -47.07 1.15 0.04 0.18 0.08 0.19 

TWIg 2 -46.84 1.39 0.03 0.05 -0.01 0.37 

TWI, Distr 3 -46.78 1.45 0.03 0.17 0.07 0.21 

Distwl 2 -46.69 1.53 0.03 0.04 -0.02 0.41 

Curvh 2 -46.58 1.65 0.03 0.03 -0.02 0.45 

Distedge 2 -46.35 1.88 0.03 0.02 -0.03 0.54 
a AICc = Akaike’s Information Criterion with small-sample bias adjustment (Burnham and Anderson 1998). 
b AICc weight = percent of total weight from 128 models that can be attributed to the specified model. 
c Distr = distance to the closest road, calculated using Euclidean distance (Arc Info 10). 
d Distedge = distance to the closest habitat edge, calculated using Euclidean distance (Arc Info 10). 
e Distag = distance to the closest agricultural field, calculated using Euclidean distance (Arc Info 10). 
f Distwl = distance to the closest woodland, calculated using Euclidean distance (Arc Info 10). 
g TWI = Topographic Wetness Index, calculated as the natural logarithm of the ratio between local upslope contributing area and 

slope, and describes the predicted soil moisture pattern (ESRI, 2010) 
h curvature = is a measurement of rate-change of the slope per unit distance and may be an indicator for of aquatic habitat stability. 
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Figure A.1. Center for Disease Control and Prevention (CDC) miniature light trap baited with 

dry ice, used for mosquito collections in this study. 
 

A – Dry ice baited thermos 

B - Weather guard 
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Figure A.2. Human case incident reports of infectious encephalitides (Western Equine encephalitis, St. Louis encephalitis, and West 

Nile Virus encephalitis) in Kansas from 1964 to 2010 (Kansas Department of Health 2012). 
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Figure A.3. Temperature and precipitation data from NOAA (National Oceanic and Atmospheric Administration) during the study 

period. Mean weekly minimum and maximum temperatures (˚C) are represented by the lines with square and diamond markers, 

respectively. Precipitation (mm) is represented by vertical bars (National Oceanic and Atmospheric Administration 2012). 
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Figure A.4. Seasonal abundance (diamond symbols)/diversity (square symbols) (measured using 

Shannon-Wiener diversity index) of mosquito species in Cloud County, located within the 

Smoky Hill eco-region in 2010. Counts for abundance were standardized by the number of traps 

operated. 
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Figure A.5. Seasonal abundance of mosquito genera in Cloud County, located within the Smoky 

Hill eco-region in 2010. Counts were standardized by the number of traps operated. 
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Figure A.6. Changes in the mosquito community composition from May - July, in the Smoky Hills of Cloud County, Kansas. 

 
* Gray symbol indicate that no species were encountered at a particular site/month. 
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Appendix B - BLOOD COLLECTION AND HAEMOSPORIDIAN 

SURVEILLANCE METHODS 

 

 Greater Prairie-chicken Blood Sampling and Nest Monitoring 

Greater Prairie-chicken females were captured during the breeding season from 2007-

2011 using walk-in funnel traps and drop-nets (Silvy et al. 1990, Schroeder et al. 1991). Field 

methods were approved by the Kansas State University Institutional Animal Care and Use 

Committee (Protocol Nos. 2474 and 2781). At capture a 40 µl blood sample was collected via 

toenail clipping and subsequently stored in 1000µl of either Longmire’s solution (Longmire et 

al. 1997) or Queen’s lysis buffer (Seutin et al. 1991) until DNA extraction could be carried out. 

Females were fitted with 11-g necklace style VHF radio transmitters (Model RI-2B, Holohil 

Systems Ltd., Ontario, Canada) and numbered metal leg band. During the breeding and nesting 

season females were located ≥ 3 times per week. Once a female was observed in an area for three 

consecutive days, a portable radio receiver and handheld Yagi antenna was used to locate the 

nest and flush the bird. Nest locations were georeferenced using portable GPS units. 

 

 Avian malaria disease agent surveillance in Greater Prairie-chicken 

DNA extraction was performed on female Greater Prairie-chicken blood samples (n=111) 

using commercially available Qiagen DNEasy tissue extraction kits (Qiagen Inc. Valencia, CA, 

USA). All samples were screened using two primer pairs to determine the infection status. 

Fragments of the parasites ribosomal RNA LSU genes and mitochondrial cytochrome b were 

amplified using primer pairs 343F/496R (Fallon et al. 2003) and 213F/372R (Beadell et al. 

2005), respectively. Positive and negative controls were included in every Polymerase Chain 

Reaction (PCR) to reduce the risk of false negatives and increase accuracy in determining 

infection status (Durrant et al. 2007). Amplification of fragments via PCR, was conducted in an 

Eppendorf epigradient thermocycler (Brinkman Inc. Westbury, NY, USA) in: 20 µl PCR 

cocktails containing: 30 ng of DNA, 2.5 mM MgCl, 0.2 mM dNTP’s, 10 µM of each forward 

and reverse primer, 0.2 units of Taq polymerase and 30ng of DNA, 2.0 MgCl, 0.2 mM dNTP’s, 

0.8 µg/µl BSA, 0.6 µM of each forward and revers primer, 0.2 units of Taq polymerase, 
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respectively for primer set 343F/496R and 213F/372R. Resulting products were visualized on a 

3% high resolution 3:1 agarose gel, formulated for the separation of small DNA fragments 

(Fisher Scientific, Waltham, MA). 

 

 Figures and Tables 
 

Table B.1. Primer pairs used for the amplification of haemosporidian RNA and DNA. 
Primer Pair Haemosporidian Location  Expected amplicon size 

343F/496R Plasmodium, Haemoproteus,  LSU rRNA genes 154 bp 

213F/372R Plasmodium, Haemoproteus, 

Leucocytozoon 

cyt b mDNA genes 160 bp 
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Appendix C - ECOLOGICAL NICHE MODELS OF VECTORS 

SPECIES WITH LOW ABUNDANCES 

This appendix contains the ecological niche modeling results of vector species found at 

lower abundances in the Smoky Hill study site in 2010: Culex pipiens, Culex restuans, Aedes 

dorsalis, Aedes stimulans, and Anopheles species (Anopheles species were grouped due to low 

abundances). 
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Table C.1. Variable contributions and permutations of ecological niche models developed for low abundance vector species in the grassland 

of the Smoky Hills, Cloud County, Kansas. 

Species Variable, Variable contributions (permutations) 

Culex pipiens 
Distw, 0.25 

(0.09) 

Tmean(cq), 

0.16 (0.30) 

TWI, 0.14 

(0.28) 

Distwl, 0.13 

(0.19) 

AASHTO, 

0.09 (0.000) 

Pmean(dq), 

0.08 (0.08) 

Distr, 0.07 

(0.01) 

Tmin(ss), 0.04 

(0.01) 

Distedge, 0.03 

(0.00) 

Pmean(ave), 

0.02 (0.04) 

Culex restuans 
AASHTO, 

0.37 (0.03) 

Distw, 0.30 

(0.45) 

Tmean(may), 

0.13 (0.40) 

Tseas, 0.06 

(0.00) 

Pmean(jul), 

0.05 (0.00) 

Pmean(dq), 

0.04 (0.04) 

Slope, 0.03 

(0.07) 

Distedge, 0.02 

(0.02) 

TWI, 0.01 

(0.00) 
 

Aedes dorsalis 
AASHTO, 

0.35 (0.11) 

Pmean(dq), 

0.26 (0.73) 

Pmean(jul), 

0.25 (0.00) 

Distr 0.09 

(0.06) 

Tmean(may), 

0.05 (0.09) 
     

Aedes stimulans 
Aspect, 0.17 

(0.18) 

Distw, 0.16 

(0.12) 

Tmean(ss), 0.14 

(0.09) 

TWI, 0.13 

(0.37) 

Tmax(cq), 0.10 

(0.22) 

AASHTO, 

0.10 (0.01) 

Pmean(dq), 

0.07 (0.02) 

Distedge, 0.07 

(0.00) 

Pmean(ave), 

0.06 (0.03) 
 

Anopheles species 
Aspect, 0.26 

(0.04) 

AASHTO, 

0.24 (0.28) 

Pmean(jul), 

0.19 (0.00) 

Pmean(dq), 

0.11 (0.37) 

Distedge, 0.07 

(0.26) 

Tmin(jun), 

0.07 (0.05) 

Pseas, 0.02 

(0.00) 

Distw, 0.02 

(0.02) 

Distwl, 0.01 

(0.01) 
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Table C.2. Training gain without and with predictor variables of ecological niche models developed for low abundance vector species in the grassland of 

the Smoky Hills, Cloud County, Kansas. 
Model  

(Training AUC) 
Variable, Training gain without variable (Training gain with variable) 

Culex pipiens 

(0.92) 

Distw, 0.57 

(0.20) 

TWI, 0.66 

(0.08) 

Distwl, 0.70 

(0.13) 

Tmean(cq), 0.72 

(0.17) 

AASHTO, 

0.73 (0.07) 

distr, 0.74 

(0.04) 

Pmean(dq), 0.75 

(0.16) 

Tmin(ss), 0.76 

(0.09) 

distedge, 0.76 

(0.01) 

Pmean(ave), 

0.77 (0.09) 

Culex restuans 

(0.82) 

AASHTO, 

0.23 (0.11) 

Distw, 0.23 

(0.11) 

Tmean(may), 

0.28 (0.05) 

Tseas, 0.30 

(0.05) 

Slope, 0.31 

(0.01) 

Distedge, 0.31 

(0.00) 

Pmean(dq), 0.32 

(0.07) 

Pmean(jul), 0.32 

(0.04) 

TWI, 0.32 

(0.00) 
 

Aedes dorsalis 

(0.82) 

AASHTO, 

0.19 (0.09) 

Pmean(dq), 0.24 

(0.15) 

Pmean(jul), 0.29 

(0.09) 

Distr, 0.26 

(0.03) 

Tmean(may), 

0.27 (0.06) 
     

Aedes stimulans 

(0.84) 

Aspect, 0.32 

(0.08) 

Distw, 0.32 

(0.12) 

TWI, 0.34 

(0.05) 

Tmean(ss), 0.36 

(0.06) 

Tmax(cq), 0.36 

(0.06) 

AASHTO, 

0.36 (0.04) 

Pmean(ave), 

0.36 (0.03) 

Distedge, 0.36 

(0.02) 

Pmean(dq), 

0.38 (0.05) 

Tmean(cq), 0.39 

(0.06) 

Anopheles spp. 

(0.79) 

Aspect, 0.20 

(0.06) 

AASHTO, 

0.21 (0.06) 

Pmean(jul), 0.27 

(0.05) 

Pmean(dq), 0.23 

(0.10) 

Distedge, 0.25 

(0.01) 

Tmin(jun), 0.26 

(0.00) 

Pseas, 0.27 

(0.02) 

Distw, 0.27 

(0.02) 

Distwl, 0.27 

(0.00) 
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Table C.3. Jackknife tests of distribution models (LTP, Lowest Presence Threshold) for low 

abundance vector species (Culex pipiens, Culex restuans, Aedes dorsalis, Aedes stimulans, and 

Anopheles species) in the Smoky Hills of Cloud County, Kansas. 

Species 
 Maxent, LPT 

Locality sample size Threshold Success p 

Culex pipiens 17 19.203 13 4.32e-3 

Culex restuans 13 15.583 11 1.00e-6 

Aedes dorsalis 9  7.788 8 4.47e-2 

Aedes stimulans 15 16.814 10 9.77e-3 

Anopheles species 11  4.504 7 1.22e-1 
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Figure C.1. Jackknife test of training gain for Culex pipiens, a competent vector of arboviruses 

(St. Louis and West Nile Virus disease agents) and Plasmodium species (avian malaria disease 

agents). The environmental predictor variables included (from the top): AASHTO, distance to 

edge, distance to road, distance to water, distance to woodland, TWI (Topographic Wetness 

Index), mean temperature of the coldest quarter of the year, minimum temperature during the 

sampling season, mean annual precipitation, and mean precipitation of the driest quarter of the 

year. 
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Figure C.2. Jackknife test of training gain for Culex restuans, a competent vector of arboviruses 

(St. Louis and West Nile Virus encephalitis disease agents) and Plasmodium species (avian 

malaria disease agents). The environmental predictor variables included (from the top): 

AASHTO, distance to road, distance to water, curvature, slope, TWI (Topographic Wetness 

Index), annual temperature seasonality, mean temperature of May, mean precipitation of the 

driest quarter of the year, and mean precipitation of July. 
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Figure C.3. Jackknife test of training gain for Aedes dorsalis, a competent vector of arboviruses 

(Western equine, St. Louis and West Nile Virus encephalitis disease agents) .The environmental 

predictor variables included (from the top): AASHTO, distance to road, distance to water, annual 

temperature seasonality, mean temperature of May, mean precipitation of the driest quarter of the 

year, and mean precipitation of July. 
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Figure C.4. Jackknife test of training gain for Aedes stimulans, a competent vector Plasmodium 

species (avian malaria disease agents).The environmental predictor variables included (from the 

top): AASHTO, distance to edge, distance to water, aspect, TWI, maximum temperature of the 

coldest quarter of the year, mean temperature during the sample season, mean annual 

precipitation, and mean precipitation of the driest quarter of the year. 
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Figure C.5. Jackknife test of training gain for Anopheles species.The environmental predictor 

variables included (from the top): AASHTO, distance to edge, distance to water, distance to 

woodland, aspect, curvature, TWI, minimum temperature of June, mean precipitation of the 

driest quarter of the year, mean precipitation of July, and annual precipitation seasonality. 
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Figure C.6. Maximum entropy probability distribution (red = high probability, blue = low 

probability) of Culex pipiens in the grasslands of the Smoky Hill eco-region, Cloud County, 

Kansas. Species occurrences are indicated with white square symbols. 
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Figure C.7. Maximum entropy probability distribution (red = high probability, blue = low 

probability) of Culex restuans in the grasslands of the Smoky Hill eco-region, Cloud County, 

Kansas. Species occurrences are indicated with white square symbols. 
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Figure C.8. Maximum entropy probability distribution (red = high probability, blue = low 

probability) of Aedes dorsalis in the grasslands of the Smoky Hill eco-region, Cloud County, 

Kansas. Species occurrences are indicated with white square symbols. 
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Figure C.9. Maximum entropy probability distribution (red = high probability, blue = low 

probability) of Aedes stimulans in the grasslands of the Smoky Hill eco-region, Cloud County, 

Kansas. Species occurrences are indicated with white square symbols. 
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Figure C.10. Maximum entropy probability distribution (red = high probability, blue = low 

probability) of Anopheles species in the grasslands of the Smoky Hill eco-region, Cloud County, 

Kansas. Species occurrences are indicated with white square symbols. 

 



132 

 

Figure C.11. Presence-absence predicted distribution of Culex pipiens based on the Lowest 

Presence Threshold (LPT). The distribution map was created by importing the Maxent 

cumulative output into ArcGIS 10. 
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Figure C.12. Presence-absence predicted distribution of Culex restuans based on the Lowest 

Presence Threshold (LPT). The distribution map was created by importing the Maxent 

cumulative output into ArcGIS 10. 
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Figure C.13. Presence-absence predicted distribution Aedes dorsalis based on the Lowest 

Presence Threshold (LPT). The distribution map was created by importing the Maxent 

cumulative output into ArcGIS 10. 

 



135 

 

Figure C.14. Presence-absence predicted distribution Aedes stimulans based on the Lowest 

Presence Threshold (LPT). The distribution map was created by importing the Maxent 

cumulative output into ArcGIS 10. 
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Figure C.15. Presence-absence predicted distribution Anopheles species based on the Lowest 

Presence Threshold (LPT). The distribution map was created by importing the Maxent 

cumulative output into ArcGIS 10. 
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