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0.2 ABSTRACT

A new analytical method of determining the mcment carrying capacity of
beams with eccentric rectangular web openings is developed., Using this method,
the effects of varying the opening eccentricity, length and height were
investigated analytically for a number of beam sections. From this analysis,
the following conclusions are drawn: a. As opening eccentricity increases,
the moment carrying capacity decreases for low shear values and increases for
high shear values; b. As opening length increases, the moment carrying
capacity decreases; c. As opening height increases, the mament carrying
capacity decreases; d. As opening length becomes successively smaller than
opening height, the moment carrying capacity increases; e. Shear forces are
unequally distributed across unequal web areas above and below eccentric
openings., The larger area carries the larger shear force.

The analytical results campared favorably with the limited experimental
data available., In all cases, the analytical results were slightly

conservative,
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CHAPTER 1

INTRODUCTION

l.l Problem Statement

The primary problem with which the structural designer is faced is that
of designing safe, functional structures while maintaining material and labor
costs as low as possible. Many standard design procedures are based upon such
an economic principle.

In the case of multi-story building design, economic principles are of
paramount importance. All other variables being equal, the design which
results in the lowest structure will be the most economical and desirable
design. This is logical when one considers the additional materials and labor
required to increase the height of such a structure. Comfortable human
occupation demands that the floor to ceiling height in such a structure be
relatively fixed. Thus, the distance from the floor of one story to the
ceiling of the story below becomes & critical distance which must be
minimized to insure minimum overall building height.

One procedure which has proved very satisfactory in this regard is to
cut rectangular holes in the webs of girders to allow for the passage of
heating and air-conditioning ducts. Prior to this practice, ductwork had been
placed either above or below the girders, which increased the between floor
distance by the height of the particular duct. The practice of passing ducts
thru the webs of the girders resulted partially from analytical and experi-
mental investigations of the effects produced when rectangular and other
shaped openings were present in the webs of beams (A synopsis of this work

will be found in Section 1.2). All of this work, however, concerned openings



which were centered on the middepth of the heams. As far as can be determined,
no analytical work and very little experimental work has been carried out to
determine the effect of locating web openings off the middepth of the beam.
Yet, returning to the multi-story building design, it is not difficult to
imagine that within any particular floor system, several different sizes of
girders may be used. The designer, being resiricted to using center line web
openings only, would have to sacrifice much of the material and labor savings
by being forced to have all of the ductwork curved and twisted to fit the
center cut openings of the various sized girders. A more economical solution
would be to allow the ductwork to remain straight and to vary the location of
the openings in the varicus sized girders to allow for the passage of straight
ducts. After 811, it should cost no more to cut an opening off center than to
cut the same opening in the center of a beam web,

Prior to adopting such a procedure, however, the resulting loss of
strength and moment carrying capacity must be known and allowed for in the
design, It is obvious that some change in behavior and stress distribution
must occur when the opening is cut off center as opposed to being cut in the
center of the web. The basic question is exactly how much change will occur
and in which direction? The answer to this question from an analytical point
of view forms the basis of this thesis. An ultimate strength analytical
solution to the problem of eccentric web openings will be presented, verified

and discussed in the pages which follow,

1.2 Literature Review

The subject of openings in the webs of wide flange beams has received

considerable attention in recent litersature, Much work has been conducted



analyzing the stresses around such openings utilizing the elastic theory (1,
2,3,4). Ultimate strength behavior of such beams has been the subject of
recent papers. One paper (5) presented an ultimate strength analysis in which
the effects of secondary bending were not included. Two other papers (6,7)
concerned experimental investigations, the test results of which were not
correlated with an nltimate strength analysis.

In 1968, Bower (8) conducted an ultimate strength analysis of rectan-
gular openings in the webs of beams, His theory was based upon the assumption
that a point of contraflexure occurred above and below the center of the
cpening. Experimental results were not correlated with the theory because of
the effect of strain hardening.

Also in 1968, Redwood (9) conducted an ultimate strength analysis of
the same problem, His theory differed from Bower's insofar as the points of
contraflexure were assumed to occur samewhere along the length of the opening,
not necessarily in the center, Correlation with previous experimental work
indicated the theoretical results were conservative when shears were large.

A subsequent paper (10) partially rectified this situation, which was caused
primarily by the effects of strain hardening.

Reinforced rectangular openings were analyzed by Congdon in 1969 (11).
Experimental results were correlated with the theory and an approximate
method of analysis was offered.,

In all of the papers thus far discussed, the center lines of the
openings coincided with the longitudinal center lines of the beams. No
theoretical analysis has been found which treats the subject of eccentric
openings, The limited experimental work in this area has been conducted by

U. S. Steel Corporation {12,13).



1.3 Scope of the Investigation

This investigation waes limited to an analytical, ultimate strength
analysis of wide flange beams containing unreinforced, rectangular, eccentric
openings in their webs. Variables investigated included moment to shear
ratios, opening lengths, opening depths and opening eccentricities. The shear
distribution across the unequal web areas above and below eccentric openings

was also investigated, but to a somewhat limited extent,



CHAPTER II

ULTIMATE STRENGTH ANALYSIS

2.1 Assumptions

For the purpose of this analysis, several assumptions were made which
simplified and indeed made possible some of the necessary calculations. These
assumptions will be outlined and discussed.

a. Failure of the member occurs through the formation of a four hinge
mechanism, each hinge being located at a corner of the opening. The beam,
opening and assumed mechanism is shown in Fig. 1(a) while a cross section
through the opening is shown in Fig. 1(b).

b. Points of contraflexure occur in the centers of the tee sections
above and below the opening. This assumption will permit the calculation of
secondary bending due to shear. The secondary bending moment concept will
best be understood by referring to Fig,., 2. This illustration shows the forces
acting on the beam at a section through the mid length of the opening. Note
that the shear forces Vt and Vﬁ acting on the ends of the tee sections induce
moments at sections two and four respectively, in much the same manner as a
concentrated load at the end of a cantilever beam induces a moment at the
fixed end. These moments induced by the shear forces will be referred to as
secondary moments. All moments which are not attributed to nor required to
resist the transverse shear forces will be referred to as primary moments,

c. Assumed stress distributions for sections one thru four are
indicated in figures 3(a) thru 3(d) respectively. At sections one and three,
the point of stress reversal may occur elther in the web or in the flange.

At sections two and four, it is assumed that the point of stress reversal



will always occur in the flange.

d. For any of the four sections, that portion of the stress distribu-
tion diagram which results from secondary bending is balanced by an equal
portion from the opposite stress distribution, It is assumed that the
balancing portion is taken from the extreme opposite end of the stress
diagram, to achieve the maximum lever arm to resist the secondary moment.
Referring to Fig. 4, the indicated positive portion of the stress diagram
must be balanced by a portion of the negative distribution. According to this
assumption, the balancing portion is taken from the extreme opposite end,
indicated by the crosshatched area. The remaining negative portion of the
stress distribution diagram contributes to resisting the primary moment.

e, Shear stresses are assumed to be carried only by the webs of the
tee sections above and below the opening. It is further assumed that these
stresses are uniformly distributed over the depth of the respective web
segments.,

f. Yielding in the flanges is in direct tension or compression.
Yielding in the web occurs under combined bending and shear and is governed
by the Von Mises' yield criteria (1k),

g. As the shear force inecreases, the point of stress reversal at
section one will enter the flange before the point of stress reversal at
section three enters the flange. This assumption is based on the fact that
for eccentric openings, the web area at section one will be less than the web
area at section three,

For the purpose of this analysis, the opening will always be displaced
toward the top (or compression) flange of the beam. Eccentricity in that

direction will be considered positive eccentricity and all derivations and



examples will be based on positive eccentricity. However, should an opening
with negative eccentricity be encountered, the shape of the interaction curve
will be exactly the same as the one for the same specimen and opening with
positive eccentricity. This result will apply as long as the yield stress of

the beam is the same in tension as in compression.

2.2 General Approach

Prior to discussing in detail the method of solution and the derivation
of all equations, it is felt that the reader will benefit from knowing the
general, overall approach which was used to solve the problem. To accomplish
this purpose, a flow diagram of the basic steps used in arriving at a
solution has been included (see Fig. 5). The basic procedure shown is
applicable to all cases of stress reversal. Only the equations used to
determine the indicated parameters change. The reader will be able to follow
the flow diagram as the detailed method of solving the problem is discussed
in the following pages.

One problem which was encountered was the distribution of shear forces
across unequal web areas above and below an eccentric opening. Nowhere in the
literature could an exact procedure be found for the correct distribution of
such forces. In one paper (12), Bower summarized five different approaches
for distributing such forces. However, experimental results compared
favorably with only one approach., It was recommended that this approach be
used when applying the Vierendeel analysis which for the purposes of this
ultimate strength analysis, would not be applicable.

The problem was solved by assuming & shear force across the top tee

section. Then, thru application of static equilibrium principles and the



Von Mises' yield criteria, a shear force was determined across the bottom tee
section which satisfied these criteria. This procedure will be illustrated
and discussed in subsequent pages.

Considering assumptions ¢ and g, three different stress reversal cases
were developed considering all sections acting together. These cases were

designated as follows:

Case Section Stress Reversal in:
I 1 Web
2 Flange
3 Web
4 Flange
II 1 Flange
2 Flange
3 Web
N Flange
III 1 Flange
2 Flange
3 Flange
4 Flange

Derivations and discussion for each case will be treated separately from the

other cases,

2.3 Analysis

Throughout this section, the symbols used in the derivation of

equations are defined where they first appear, in either the illustrations or



the text. In addition, Appendix A contains a listing of all symbols with the

appropriate definitions,
a. Case I

The shear force Vt across the top tee section is assumed and varies
fran a small finite amount up to the maximum amount which the section can
carry.

Knowing the shear force across the top tee section, the shear stress is
determined from assumption e:

T, = -—i——- (1)
wis - e)

Knowing the shear stress, the normal stress carrying capacity of the
web is determined from the Von Mises' yield criteria (14). A simplification
of this criteria as it applies to 2 biaxial state of stress msy be expressed

mathematically as follows:

2 o2 2
o, o + 31 (2)

vhere o‘y is the yield stress, o, is the normal stress carrying cepacity and

T is the shear stress. Rewriting for the top tee section:

o, = o, + 31,7 {3)
or
0.2 = oyz - 3142 (&)

Oy and Ty are respectively the normal stress and the shear stress acting on
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the top tee section. The secondary moment caused by the shear force Vt may be

computed fram equilibrium:

M, = (Vt)(a) (5)

where Ml is the secondary moment at section one and a is the half length of
the opening.
Referring to Fig. 6, the resisting secondary moment is calculated from

the stress distribution disgram.
P, = k(s = e)(o)(w) (6)
Fop = gl(oy)(b) (1)

From equilibrium, these two forces must be equal. Equating and solving for

ields:
gl ¥

) kl(s - e)(g,)(w)

El - (8)

(oy)(b)

The distance between the two forces is the mament arm and the expression for
this distance is:

Moment Arm = (s = e) + t = - (9)
2 2

The gy term is eliminated by substituting Eqn. 8 into Eqn. 9. The internal

resisting secondary moment is then determined fraom:
M, = (F,)(Moment Arm) (10)

Substituting Eqns. 6 and 9 into Eqn. 10 and equating the resulting expression



to Ml determined fram Eqn. 5, the following quadratic equation is obtained:

(s - e)zotw(otw

2 be

klz +1)| - kl[otw(s -e)(s=-e+t)] + Via =0 (11)
Egn. 11 is solved for kl. Only one root satisfies the location of the point
of stress reversal assumed for Case I (0<k,<1.0).

Knowing k;, the overall force at section one is determined from the

stress distribution diagram:
F} = Apoy + 0pw(s = e)(1 - 2Kk;) (12)

Referring to Fig. T(a), equilibrium of the top tee section requires
that F; = F,. From the stress distribution diagram, the force at section two

is:

F, = (s = e)wo, + Afoy(l - 2k2) (13)

Knowing F,, Eqn. 13 is solved for k,. To satisfy stress reversal
requirements, 0<k5<1.0.
Referring to Fig. 7(b), equilibrium requires that F; = Fy. From the

stress distribution diagram for section three:
F3 = Apoy + opw(s + e)(1 - 2k3) (1)

Knowing F3, the only unknown terms in Eqn. 14 are Oy the normal stress
carrying capacity of the bottom tee section and k3, the location of stress
reversal at section three. The equation is solved for k3 in terms of Ops

resulting in:
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1 F3-A0'

e Ty
k3 2

- (15)
2w(s + e)db

In the same manner as for the top tee section, secondary mament
relationships can be determined for the bottom tee section. For any shear
force Vb assumed across the bottam tee section, the shear stress will be from
assumption e:

Vo

T = —— (16)
w(s + e)

From the Von Mises' yield criteria, the normal stress carrying capacity is:

0,2 = oyz - Bsz (17)

The secondary mament expression for section three derived from the stress

distribution diagram is:

(s + e) wo
My = ky(s + e)woy[(s + e) + ¢ - Rkl = ) (18)

2 bUy

Likewise, the secondary moment produced by the shear force across the bottom

tee section is:
My = (V,)(a) (19)

For any given value of V., Eqn. 18 must equal Eqn. 19. Eqn. 15 must
also be satisfied because of the equilibrium condition that Fl = F3. One way
of solving these three equations is by trial and error. Assuming a shear
force V,, the normal stress capacity O, is determined fram Eqns. 16 and 17.

kg is then determined fram Eqn. 15. Knowing k3, Eqn. 18 is solved for the
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secondary mament M3. This is compared to the secondary moment found fram Egn.
19 and if the two are unequal, Vb is incremented and the process repeated
until a valune of Vb is found which results in the secondary moment
expressions being, for all practical purposes, equal.

Using the values of Vb and 0, which satisfy all equations, k3 is known
from Eqn. 15 and is checked to insure that the stress reversal assumptions
for Case I are satisfied {0<k3<l.0). Fram equilibrium of the bottom tee
section, F3 = Fj,. The force expression for section four is determined from

the stress distribution diagram:
F, = th(s +e)+ Afoy(l - 2k,) (20)

k) may be determined using Eqn. 20 and must be checked to insure that k) is
less than 1.0.

Knowing all of the locations of stress reversal, the forces on the
sections and the normal stress carrying capacities for any given value of
shear, the moment capacity at the mid length of the opening can be determined,
Referring to Fig. 8, the moment at the opening mid length is determined as

follows:
M, =0
1-‘2(:1‘,3 +h) + F)(y, + h) = VL + Va =0 (21)
But, the moment at the center is V{. Thus:
M= F2(y2 + h) + Fh(yh + h) + Va (22)

From the stress diagrams of sections two and four, the following equations

are derived for F2y2 and thh:



14

1 t
— - 2 - - al 2_
Fy = 2wot(s e)” + Afoy[(s e)(1 2k2) + 2(2k2 hkg + 1)] (23)
i t
F,7 =-;wa(s +e)? + AnyI(s +e)(1 - 2k)) +-;(2kﬁ - bk +1)] (24)

Equations for F2 and Fh have already been designated as Eans., 13 and 20,
respectively, Thus, all terms being known, Egn., 22 is solved for the mament

capacity at the mid length of the opening.
b. Case ££

The same basic procedure used to develop Case I is used for Case II.
The only difference is that stress reversal at section one occurs in the
flange., Thus, a different formula has to be developed with which kl can be
determined,

For an assumed value of shear across the top, the normal stress
capacity is determined as in the previous section, With the stress reversal
occurring in the flange at section one however, the secondary moment
expression derived from the stress distribution diagram changes. Referring to

Fig. 9, the secondary moment reletionships are:
F, = (s = e)wo, + (t - klt)bcry (25)

h =

ch gloyb (26)

Since from equilibrium the two forces must be equal, Equns. 25 and 26 are
solved for gy}

(s - e)woy
g =——+ t(1 - k) (27)

Wy
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From the top of the flange, the centroid of F+ is:

S = e t - klt
(s - e)wct(t +—) + (t - klt)bU (t » —)
vy = 2 ¥ 2 (28)
(s - e)wct + (t + klt)boy

The distance between F_ and Fc is the internal secondary resisting moment

h

arm and can be expressed as:

€1
Moment Arm = y = —— (29)
2
Substituting Egn. 27 into Eqn. 29 eliminates the gl term, The equation for

the internal secondary resisting mament is:
M, = (F,)(Moment Arm) (30)

Substituting Egns. 25, 29 and 28 in Eqn. 30 and equating the resulting
expression to Ml determined from Egn. 5, the following quadratic equation is

obtained:

(s - e)?wo wo
k2A.t0 - k-[A 0.t + t(s - e)wo,] - tfl -
1"ty L ey £ N ]
2 UUV

t

U
+
Ll
i
[}
o

(31)

Solution of the above quadratic equation gives kl, the voint of stress rever-
sal at section one., Only one solution to the guadratic ecuation satisfies the
stress reversal assumption (0<k;<1.0).

Knowing kl, the force on the section is determined from the following
formula wnich was derived from the Case II stress distribution diagram for

section one:

F, = Afcy(Ekl - L) - G - e)wcrt (32)
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The determined values of kl and Fl are used throughout the remainder of the
calculations exactly as was done in Case I, This procedure is valid for
increasing values of shear until the stress reversal at section three goes

from the web into the flange, At that time, Case III begins and some of the

calculations have to again be revised.
c, Case III

As in Case 11, the same basic procedure is used to develop Case III as
was used to develop Case I. The only difference fram Case II is that stress
reversal at section three is in the flange instead of the web,

For the assumed value of shear across the top tee section, the same
procedure for determining shear stress, normal stress capacity, kl, k2 and
Fl is followed as for Case II. Secondary mament relations for section
three are changed to reflect the changed stress reversal location. Referring
to Fig. 10, the following relationships are derived from the stress

distributicn diagram:

F_= (s + eJwoy, + (t = k3t)bo, (33)

Fch = g30yb (34)

Fram equilibrium, the above two forces must be equal, Solving Eans, 33 and 3k
for ga yields:

(s + e)wo
=—+ t = k3t (35)

bU ]
¥

From the bottom of the flange, the centroid of F_ is:
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s + e t - k3t
(s + e)wa(t +—) + (t - k_t)bo (t = —— =)
v 5 37y

2 (36)
(s + e)wcb + (t - k3t)b0y

The distance between F_ and Fc is the internal resistings secondary moment

h

arm. The expression for this distance is:
Moment Arm = y - — (37)

Substituting Eqn. 35 into Egn. 37 eliminates the term £ The internal

resisting secondary moment is determined from the equation:
M3 = (F_)(Moment Arm) (38)

Substituting Eqns. 33, 37 and 36 into Eaon. 38 results in the following

secondary mament expression:

(s + e)zwob WOy
k2A to - k3(Afoyt + t(s + e)wob) = (1 - )

(39)
3Ty 2 bo,

[}
=

From the stress distribution diagram, the following expression for the force

on section three is derived:

F3 = Afcy(2k3 -1) = (s + e)wob (4o)

Knowing Fl and that Fl = F3, Ean. 40 is solved for k3 for any assumed value

of shear across the bottam, Knowing k Ean. 39 is solved for the resisting

33

secondary moment. The secondary moment M, determined fram Enn. 19 is compared

3

to the resisting moment determined from Eqn. 39 and if the two are unenual,

vy is changed in the approrriate direction and the iteration process is
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repeated until the two secondary moment values are, for all practical
purposes, equal, At that time, the value of k3 is checked to insure that
0<k3<l.0. Knowing that F3 = F)» the value of k; is determined from the
following equation derived from the stress distribution diasgram:

(s + e)

ky=1-kg+ (b1)

k), is then checked to insure that the stress reversal assumption was
satisfied, that is, 0<k;<1.0. The value of the moment at the mid length of
the opening is determined in the same manner as in Case I.

One peculiarity of this method of analysis is the inability to
calculate the moment capacity for zero shear. This is because, even with zero
shear assumed across the top tee section, there was always some shear
calculated across the bottom section. It has been concluded that for very
small values of shear, the portion carried by the top (or smaller) section is
negligible until a certain value is reached, at which time both sections
begin to carry significant portions of the shear force, Thus, the values of
moments for zero shear are calculated from the expressions which follow:

for zero eccentricity:

t s
Mg = chAf(s + h +;) + achy(;- + h) (k2)
far non zero eccentricity:
2
Mpi = Afo&(d -t) + Hﬂj[sd - 5° =« 2st + e(28 - d + 2t)] (43)

Utilizing the procedures set forth in this chapter, moment carrying
capacities for varying values of shear forces were camputed. This data was

plotted graphically in the form of interaction curves. Prior to plotting
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however, the calculated moments and the assumed shear forces were nondimen-
sionalized by division by the plastiec mament and shear capacities of the

uncut sections, The equations for these values follow:

Q.
M, = Afay(d -t) + wld - 2t)‘{— (Lk)

w(id - 2t)0y

V =

(¥5)
P 3

The maximum shear or shear limit is the ratio of the web area of the
cut section to the web area of the uncut section:
d -2t = 2h

v, = v (46)
£ d - 2t P

The computed shear value cannot ever exceed the above limit. It was found
that for the unreinforced openings investigated analytically, the strength of
the member was always controlled by the mament carrying capacity at the
opening. Thus, the shear limit given by Eqn. 46 did not control the solution

in any of these cases.

2.4 Computer Program

A computer program was developed to compute interaction curves for any
combination of beam and opening sizes and eccentricities, using the formulas
and procedures discussed in section 2.3. Several modifications were made to
the basic procedure, however, to insure continuity of the resultant
interaction curve.

It was found that for eccentric openings, practically all of the
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initial shear force increments are carried by the larger web section only.
The shear force across the smaller web section remained insignificant until
a higher value of total, applied shear was reached. Therefore, assuming a
significant value of Vt for the initial increment sometimes could, and in
fact did, result in interaction curves with no plotted points for low shear
values up to 60% of the range of the shear ordinate. In addition, referring
to Fig. 11, the H/Mp value corresponding to zero shear seemed inconsistent
with the remaining shape of the interaction curve., In the figure, the dashed
line indicates the curve shape which would seem more reasonable, while the
solid line indicates the shape required to intersect the moment axis at the
camputed maximum moment value, To verify the seemingly inconsistent shape
of the interaction curve, the bottom shear force corresponding to a
negligible (Vt = 0.00005) value of top shear was determined. Then several
approximate points were determined within the interval to confirm the shape
of the interaction curve. The additional points did confirm the seemingly
inconsistent decrease in mament capacity for low values of shear.

To insure continuity from Case I to Case II, the program was modified
to campute a point at the exact shear value where the stress reversal changes
(at k; = 1.0). This procedure also facilitated a more uniform point spread
through the range of Case II,

The program has been designed to print out all data needed to
independently check any particular values. The method used by the author to
check the calculations was to compute the primary moments at sectiomns 1-3
and 2-4 from the stress distribution diagrams. Only those portions of the
diagrams not used in balancing the secondary maments were used to calculate

the primary maments, The difference between the primary moments at sections



1-3 and 2-4 should equal zero and both should egual the computed moment
value at the mid length of the opening.
The camputer program is reproduced in Appendix B, A sample print

out of results will be found in Appendix C.

21
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CHAPTER 111

INVESTIGATION OF VARIABLES

3.1 General Tests

Beam sizes, opening dimensions and eccentricities were selected to
gain insight into the effects induced by changing various parameters. In
particular, the parameters were:

a, Increasing eccentricity

b. Increasing opening length

c. Increasing opening height

d. Height of opening greater than length

Six beam sizes were selected from the allowable stress design beam
selection table in the AISC Steel Construction Manual (15). These beams are
the most econamical for a particular range of section modulus values, since
these would be the most commonly used sections in actual practice.

Table 1 indicates the various beam and opening dimensions used for the
first seven tests. Two tests with different beam sizes were conducted for
the first three parameters investigated, while one test was conducted for the
last parameter. The interaction curves derived from this data indicate

general trends resulting when the indicated parameters are varied as shown,

3.2 Specific Tests

Specific examples were also calculated in order to compare results with
the limited experimental results available (13). The data is summarized in
Table 2, Test F was conducted in order to compare the theoretical values of

shear distribution across eccentric openings with experimental results (12).
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CHAPTER IV

DISCUSSION OF RESULTS

4.1 General Results

The interaction curves derived for the general tests are shown in
Figs. 12 thru 18, The results will be discussed separately.

Figures 12 and 13 show how the mament capacity changes with varying
eccentricity. As indicated by the figures, when eccentricity is increased, the
moment carrying capacity also increases for the higher values of shear,
However, it is evident that for lower values of shear, the moment capacity
decreases below that for zero eccentricity. Although the change is small in
camparison to the size of the change in eccentricity, the fact that the
change may go in either direction is significant. The reason for the
decrease for low shear values is that the maximum normal force on either tee
section is limited to that which the smaller tee section is capable of
withstanding. The increase in the strength of beams with eccentric openings
subjected to high shear forces is due to an increase in the mament arms in
the larger tee section which is greater than the decrease in moment arms in
the smaller tee section.,

Figures 14 and 15 show the interaction curves produced when a change
in opening length occurs., As can be seen, the mament carrying capacity
decreases as the opening length increases. This is understandable insofar as
the secondary mament to be resisted increases as the opening length and thus
the moment arm for the shear forces increases.

Figures 16 and 17 show that as the depth of the opening increases, the

mament carrying capacity decreases. As opening depth increases, web area
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decreases., Thus, less normal force capacity exists for any value of shear,
and the moment carrying capacity is reduced,

In the above two tests, two samples were included in each test. One
sample had an eccentricity of zero, while the other had some eccentricity.
Comparison of the respective graphs indicates that the general results
discussed are applicable to both the concentric and eccentric openings.
Closer observaetion also confirms the characteristics previously indicated as
being associated with eccentric openings as campared with concentric
openings. That is, with eccentric openings, the interaction curves tend to
flatten out far low values of shear, thereby decreasing the mament carrying
capacity. For higher values of shear, the mament carrying capacity tends
to increase,

The results of the last general test are shown in Fig. 18. The
objective was to investigate the consequences of the opening length becoming
successively smaller than the opening depth. As shown in the interaction
curve, the moment capacity increases. This is due to the mament arm for the
shear forces decreasing, thereby decreasing the secondary moments which the
sections must resist.

During the testing of the variocus beams, openings and eccentricities,
it was noted that several of the initial assumptions made in section 2,1
held true for all combinations of variasbles. Specifically, assumption ¢
concerning the points of stress reversal always proved to be correct, That
is, the points of stress reversal at sections two and four always remained
in the flanges while the points of stress reversal at sections one and three
occurred in both the web and the flanges. Assumption g was alsoc verified as

being correct. The point of stress reversal at section one always entered
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the flange before the point of stress reversal at section three.

L,2 Specific Results

Figures 19 thru 22 indicate the correlation between the available
experimental results (13) and the camputed analytical results, The inter-
action curves have been plotted using data generated from the computer
analysis. On each graph is plotted the experimental point obtained for the
indicated value of moment to shear ratio. The dashed lines indicate the
interaction curve obtained using the same beam and opening with zero
eccentricity. It will be noted that in all cases, the manalytical result
gives a more accurate prediction of the ultimate strength than the concentric
(or zero eccentricity) result. However, even the analytical results were
slightly conservative when compared to the experimental results. This in-
dicates that the analytical results provide a reasonable, but samewhat
conservative estimate of the actual strength of beams with eccentric web
openings.

The last test consists of a camparison of the shear force
distributions across the unequal tee sections. The results are presented in
Table 3, and indicate that the analytical results compared gquite favarably
with the results obtained experimentally. In fact, the correlation is better
than any of the analytical methods thus far proposed (12),

It has been suggested that opening eccentricity will result in little
change fram the concentric hole case (13). The results of this study indicate
that for small values of eccentricity, this statement is correct. However, as
eccentricity is increased, the change becames more pronounced and more

importantly, for low values of shear the mament carrying capacity is less



than that for the concentric case, For higher values of shear, the mament
capacity increases which would make the concentric case a more conservative

solution.

26
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CHAPTER V.

CONCLUSIONS

A new analytical method has been developed to determine the ultimate
mament capacity of wide flange beams containing eccentric rectangular web
openings.,

Comparison with the limited experimental results available indicates
that the analytical method of analysis presented herein provides & reasonably
accurate prediction of the moment carrying capacity for any given combination
of beam size, opening size and eccentricity.

Based on the discussion and results of the previous chapter, the
following specific conclusions can be formulated:

a. As the opening eccentricity increases, the moment carrying capacity
increases for high values of shear and decreases for low values of shear,

b. As the length of an eccentric (or otherwise) opeuning increases,
the moment carrying capacity will decrease.

c. As the height of an eccentric {or concentric) opening increases,
the mament carrying capacity will decrease,

d. If the opening length becomes successively smaller than the height,
the moment carrying capacity will increase,

e. Shear forces across an eccentric opening are distributed unequally,

with the larger web area carrying the larger portion of the shear force,



CHAPTER VI

RECOMMENDATIONS FOR FURTHER STUDY

Following the present analysis, the logical next step would be to
conduct a similar analysis for reinforced eccentric openings. Basically, the
same procedures discussed in this paper could be applied to the reinforced
opening case, The significant difference would be the existence of several
additional cases of stress reversal. For sections one and three, cases would
have to be developed to handle stress reversals in the reinforcing, above and
below the reinforcing and in the flanges, With the eccentric opening, almosﬁ
any combination of stress reversals in sections one and three may be possible,
and provisions would have to be made to check the locations of stress
reversals and to apply the correct procedures for each case,

Experimental study of eccentric web openings would alsc be appropriate
so that correlation between the analytical and experimental results would be
more accurate and meaningful. Experimental programs should include

unreinforced as well as reinforced eccentric web openings.
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Beam
No.

32

Experimental Theoretical
1.0 40,0 .52 39.2 L8
2.0 ho,0 .23 ko.8 22
1.0 0.0 Al 0.0 .21
2,0 0.0 .21 0.0 .25

Due to the use of incremental shear values in the computer
program, an exact M/V value of 40.0 was not obtained for
comparison purposes. However, the indicated values are close

enough to afford a reasonable comparison.

Shear Force Distribution Results

Table 3
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APPENDIX A

Nomenclature

Half length of opening

Flange area (b x t)

Total web area (s x w)

Flange width

Depth of Beam

Opening eccentricity

Total normal force, section one

Total normal force, section two

Total normal force, section three

Total normal force, section four

Force due to negative stress block

Force due to positive stress block

Force due to crosshatcned portion of stress block
Depth of resisting stress block, section one
Depth of resisting stress block, section three
Half depth of opening

Stress reversal coefficient, section one
Stress reversal coefficient, section two
Stress reversal coefficient, section three
Stress reversal coefficient, section four
Horizontal distance from opening centerline to closest support
Secondary moment, section one

Secondary moment, section two

56
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M3 Secondary mament, section three
My, Secondary moment, section four
Mﬁ Plastic moment capacity, uncut section

Mx Moments about point x

Mﬁi Plastic moment capacity, zero shear

P Concentrated load

s Half of total web depth at opening (d/2 = t = h)
t Flange thickness

v Total shear force (Vi + Vy)

Vp Shear force, botton tee section

YL. Shear limit

Vp Plastic shear capacity, uncut section

Vt Shear force, top tee section

w Web thickness

y Depth from edge of flange to centroid of positive and negative stress

blocks for sections one and three respectively
Yo Distance from opening edge to total normal force, section two

Yy Distance from opening edge to total normal force, section four

o, Normal stress, bottom tee section
Normal stress

gy Normal stress, top tee section

oy Yield stress
oyf Flange yield stress
Uyw Web yield stress

T Shear stress



Tp

T

t

Shear stress, bottom tee section

Shear stress, top tee section

58



APPENDIX B

Computer Program

A computer program was developed to compute the interaction curve
relating moment and shear capacities for wide flange beams containing
eccentric rectangular unreinforced web openings. The program was written
in Fortran IV and is shown on the following pages. Three data cards are
necessary for each sample beam and one card is necessary to indicate how

many beams will be analyzed., A sample data table follows:

Card Description Items
1 Number of beams to be analyzed No. beams
2 Beam 1, beam dimensions d, b, t, w
3 Beam 1, opening dimensions 2h, 2a, e
I Beam 1, flange & web yield stresses Oyes Oyy
5 Beam 2, beam dimensions d, b, t, w

Etc.



5 FCRMAT (112)
10 FCRMAT (4F1Ce4)
20 FCTRMAT (3F10.4)
30 FCRMAT (2F10.4)
38 FCRMAT (/77)
40 FCRMAT(40H INTERACTICN BETWEEN MTCMENT AND SHEAR -
1 BHSPECIMEN1I3//)

50 FCRMAT (39H BEAM FLANGE FLANGE WEB )
51 FCRMAT (41H DEPTH WIDTH THICK THICK o
60 FCRMAT (/29H HCLE HCLE ECCe )

61 FCRMAT (19H DEPTH LENGTH /)

70 FCRMAT (/18H FLANGE WEB)

71 FCRMAT (19H YIELD YIELD)

72 FCRMAT (20H STRESS STRESS/)

BO FCRMAT (/7H CASE I /)
81 FCRMAT (/BH CASE I11/)
82 FCRMAT (/9H CASE IIl /)

8% FZRMAT (//61H PLASTIC PLASTIC
1 SHFAR )

86 FCRMAT (65H SHEAR MOMENT
ILIMIT /)

g8 FCRMAT (/117H M/MP V/vP M Vv
1 VB SIG T SIG B Kl K2
12HK4)

1 FCRMAT (3F2044//)
2 FCRMAT (2F10e491F106193F10e%92F10e3s4F10s4)
READ 54NB
N=1
8 PRINT 404N
PRINT 5C
PRINT 51
READ 1CsDsBeToW
PRINT 10sDsBoeTol
PRINT 60
PRINT 61
READ 2usHseASE
PRINT 20sHsASE
H=H/2.(J
A=A/2 .U
READ 30+S5IGYSIGYW
S=D/?-O‘T"’H
PV=W®(D=2.CxT)%#SIGYW/3,0%%0,.5
PMz=B#T2#SIGY *#(D=T)+W*([D=2,0#T )% #2%¥SIGYW/ 4.0
VPVM= (D=2 % T=2,0%H) /{D=2.0%#T)
PRINT 70
PRINT 71
PRINT 72
PRINT 30+SIGYsSIGYW
PRINT 85
PRINT &é
PRINT 1sPVsPMsVPVYM

/)

K3

60

vT



PRINT 88
PRINT 80
AW=5%W
AF=B#*T
IF (E) 12914912
12 ZM=AF#*SIGY®(D=T)+SICYWHYX{ SHD=2 qO*SHT=SHRZ2=EXD+2 OXE*T+
12 CHE®S)
GC TC 16
14 ZM=2 4 0*SIGYRAF® (S+H+T/2,0)+2 4 OHAWRSIGYWH (S/2.0+H)
16 Z=ZM/PM
V=060
PRINT 29ZsVsZMoVaVaVsSIGYWeSIGYWeVeVeVeV
VINCR=0.0
J=1
K=1
L=1
MM=1
IF (E) 96495496
G5 VT=(al0
VINCR=PV/100a0U
L=L=2
G TC 929
96 VT=Ce0C00S5
GE To 93
97 VvT=vI
99 VT=VT+VINCR
TT=VT/{W*(S=E))
XX=SIGYWk %23 ,0#TT*#2
IF (xX) 5C3+1004100
1C0 SIGT=XX*#(,5
Al={(S—E)R*¥Z22SIGT*¥W/ 2.0 ) ¥(SIGT*w/ (SIGY*B)+1.0)
A2==SIGCT#WR(S-E)®(S=E+T)
A3=VT=A
Au=A2%%2-4,0#A1%A3
IF (A4) 1151104110
110 Cl=(=A2+A4%#%0,5)/(2,0%A1)
ClA=(-A2-A4¥¥(45)/(2.,0%A1)
IF (C1) 12051129112
112 IF {({1-140) 12649126120
120 IF (C1A) 10191229122
122 IF (Cl1A-1.0) 12491244101
1061 C1l=140
VT=VT=VINCR
102 TT=VT/ (W% {S=~E))
XX=SIGYWR%2=3,0%TT#%2
IF (XX) 5031035103
103 SIGT=XX*#%(,5
IMI=SIGT*WR(S—E) ¥ (S=E+T)=( (S—E)*#2XSIGT*W/2.0)%(SIGT*W/
1(SIGY*B)+1,0)
IMIA=VT®A
IF (MM=-1) 10491159104

61



1C4 IF (MM=2) 10591169105
105 IF (MM=3) 1G6+117+106
106 1IF (MM=4) 10791184107
17 IF (MM=5) 11994119,1199
115 IF (ZM1=-ZM1A) 1160+1199+115C
1150 VT=VT+1l.0
GCZ TC 1C2
1160 VT=VT=0.1
MM=2
GZ TC 102
116 IF (2ZM1=ZM1A) 1160+1199,117C
117C VT=VT+U.01
MM=173
GCZ TC 102
117 IF (ZM1-2ZM1A) 1180+11994117C
1180 VT=VvT=-0L.001
MM=4
GZ TC 1C2
118 IF (ZM1-ZM]1A) 1180U+119991169C
1190 VT=VT+C.0001
MM=5
GZ TC 102
119 IF (ZM1-ZM1A} 1199+1199,1190
1199 MmM=(
GC TC 126
124 C1=C1lA
126 F=AF#*SIGY+SIGTH#WH(S=F)#(]1,0-2.0%C1)
127 C2=Ue5—{(F=(S=E)*WHSIGT)/(2.0%AF%*SIGY )]
IF (C2) ©900s128+128
128 IF (C2-1eC) 130¢130+900
130 vB=vT
1723 M=]
Ql=W*(S+E)
QR2=SI1GYW*xD
Q3=(F-AF®*S5IGY)/(2.0%Q1)
Q4=5+F+T
Q5=(S+E) /2.0
Q6=W/(B*SIGY)
CT7=2,0%AF®SIGY
QB=AF#T*S5IGY
QO=(S+E)##2%W/ 2,0
132 TB=VB/Ql
YY=Q2=3,0%TR*#%#2
IF (YY) 50551359135
135 SIGR=YY#%U,5
IF (k) 310s310s136
136 €3=C,5-Q3/SIGR
IF (L) 13741599137
159 Bl={(S+E) *#2#WHSIGB/2.0)%{ 1 0+WHSIGB/ (B*SIGY))
B2==(S+E) *W*SIGB* (S+E+T)
B3=VB*A



Ba=zBo##2-4,U#B1#B3
IF (84) 20U91591+1591
15¢1 C3=(=B2+B4¥%¥0Des5)/{2.0%B1)
C3A=(-BZ2-B4x*%(Ue5)1/(2.0%B1)
IF (C3) 159541592+1592
1662 IF (C3-1,0) 1593+1593,1595
1595 IF (C3A) 2009159441594
1594 IF {(C3A=-1,.C) 1556915969200
1596 C3=C2A
1593 C4=Ca%SIGB*W*(S+E)/(AF*SIGY)
IF (Ca)y 9U0s1111s1111
1111 IF (C4-1.0) 1671674900
137 ZM3=C3*SIGEB*Q1*(Q4—(C3%#Q5* (SIGo*GEE+1e0)))
Z=vB#%A
IF (M=1) 14151459141
141 IF (M=2) 14241489142
142 1F (M=3) 14351500143
143 IF (M=4) 14445152+144
144 IF (M=5) 20C 9154200
145 1IF (Z2-=-ZM3) 14691609147
146 VB=VB+1.0
GZ TC 132
147 VR=VR~C,1
M=2
G2 T2 132
148 IF (Z=-ZM3) 14991605147
149 VB=VB+veUl
M=13
GC T2 132
150 IF (Z=-ZM3) 149491609151
151 VB=VR=0,001
M=4
GC 1T 132
152 IF (Z-2ZM3) 1534160151
153 VB=VB+U.U001
M=5
GC TC 132
154 IF (Z-ZM3) 153451605160
160 Ca=C3*#S]GO*W*(S+E)/(AF®SIGY)
IF (C4) G9C0sl619161
161 IF (Ca-149) 1624162900
162 IF (C3) 300416391673
163 IF (C3-10) 16441644300
164 IF (L} 16791679165
165 VBB=VYR
VBI=VEB/2.9
VR=0,C
L=L=-1
168 VEB=VB+VRBI
IF (vB5=VvB) 16991329132
169 L=L-1



167

166
171

174
199
200
201

202
2C4

205

2058
203

2C6
208

210

212
220
221
223
224

300

302

VINCR=PV/10040

GZ TC 99

V=vVT+VB
FY2A=(S=E1#(1e0=-2e0%C2)1+T*0a5* (24 UX(2%%2-44U%C2+140)
FY2=QeS*WXSIGT*#(S—E) *%2+AFXSIGY*FY2A
FYLAZ(SHE )% (1e0-2e0%CU)+0oSHTH(2,0¥CLHX2 =4 ,0%C4+100)
FY&=0oO*NRSIGB* (S+E) ¥ %2 +AFXSIGY*FY4A
IM=FY2+FY4+F %2 4 O*H+VEA

IMP=2ZM/PM

VVP=v/PV

IF (K) 30243024166

IF (J) 2025202s171

PRINT 2+2MP3VVP eZMaV sVT sVBsSIGT +SIGBsClsC2,C3:C4
IF (L) 17451684168

IF (MM) 199,4199+99

VT=VT+PV/ 10000

IF (E) 2015300201

1=1

J=J=1

VINCR=PV/1C0040

62 1o 208

IF (1) 205,2054+204

PRINT 81

I=1-1

PRINT 2¢ZMPyVVP ¢ZMaV aVTsVBsSIGTsSIGBeClsC2+C3sCkh
GZ TC 203

VT=VI

VT=VT+VINCR

TT=VT/(W*(S=F))
XX=STIGYW*#2=3,0%TT#*%2

IF (XX) 500+2069206

SIGT=XX*%(,5

Bl=AF*T*SIGY
B2=—AF*SIGY*T-T*(S—-E)*W#SIGT
B3==((S—E ) #¥2%WH¥SIGT/2,0)%(140-WASIGT/(B®SIGY))+VT*A
B4=B2%%¥2-4,0%B1%B3

IF (R4) 50092109210
Cl=(-Bl-B4*%0,5)/(24U%B1)
ClA=(-B2+B4%*%0e5)/(2,0%B1)

IF (C1) 2209212212

IF (C1-1eD) 22402244220

IF (C1A) 5009221+221

IF (C1A=140) 223+223,500

C1=C1A
F=AF%*SIGY%(2,0%Cl-140)=-(S=E)}*WxSIGT
G2 T2 127

I=3

K=K-1

VINCR=PV/4UG 40

Go To 208

IF (1) 30543055304

6k



304 PRINT 82
I[=1-1
305 IF (ZM) 5(00306+306
306 PRINT 2¢ZMPsVVP 3ZMsVoVTsVBsSIGTsSIGBsC1sC24C3,4C4
GC TC 203
310 C3=0U5+(F+Q1*SI1GB)/Q7
IMA=w (C3%#2%QB)+CAH (QB+T*Q1%XSIGB)+ (Q9%SIGB) ¥ ( 1,0-Q6%SIGR)
Z=VBxA
IF (M=1) 34143455341
34]1 1F (M=2) 342,348+342
342 IF (M=3) 343,3509343
343 IF (M=4) 34443524344
344 JF (M=5) 900s354,90C
345 [F (Z-=ZM3) 34635793247
346 VB=VB+1.0
GCZ TC 132
347 VB=VR=-Cosl
M=2
62 T2 132
348 IF (Z=-2ZM3) 3493574347
349 VR=VR+0.01
M=3
GC TC 132
350 IF (Z=ZM3) 349+357+351
351 VB=VR-vl.0C(C1
M=4
GC TC 132
352 1IF (Z2-ZM3) 353,3574+35]
353 VBR=VR+0.,0C01
M=§
G 12 132
354 [F (Z-2ZM3) 35343574+357
357 C4=14C0-C3+WxSIGB*(S+E)/ (AF*SIGY)
IF (C4) 9Q00s161s161
500 VWT=VT=-VINCR
VINCR=VINCR/10.0
VIMIN=PV/1000U040
IF (VINCR-VIMIN) 900+203+2C3
503 VI=VT=VINCR
VINCR=VINCR/1C,.0
VIMIN=PV/100000040
IF (VINCR-VIMIN) S00s97+97
505 IF (K) 5CCs500+506
506 VI=VT=VINCR
VINCR=VINCR/1040
VIMIN=PV/1GC0000.,0
IF (VINCR-VIMIN) 900s507+507
5C7 IF (J)Y 205542055497
9N0 1F (N=-NB) 9U1+902+902
901 N=N+1
PRINT 35



G2 TC 8
902 STCP
END
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ABSTRACT

A new analytical method of determining the mament carrying capacity of
beams with eccentric rectangular web openings is developed. Using this method,
the effects of varying the opening eccentricity, length and height were
investigated analytically for a number of beam sections. Fram this analysis,
the following conclusions are drawn: a. As opening eccentricity increases,
the mament carrying capacity decreases for low shear values and increases for
high shear values; b. As opening length increases, the moment carrying
capacity decreases; c. As opening height increases, the moment carrying
capacity decreases; d. As opening length becomes successively smaller than
opening height, the moment carrying capacity increases; e. Shear forces are
unequally distributed across unequal web areas above and below eccentric
openings., The larger area carries the larger shear force.

The analytical results compared favorably with the limited experimental
data available. In all cases, the analytical results were slightly

conservative,





