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INTRODUCT ION

1.1 GENERAL

Solids mixing may be described as any operation in which energy is
applied to a particulate solid system such that the inhomogeneity and concen-
tration gradients tend to diminish. It is a critical operation in many pro-
cess Industries, such as agricultural, pharmaceutical, and ceramic industries.
However, it has been much less developed both theoretically and practically
compared to other unit operations. Recently there has been a spurt of acti-~
vity to further develop solids mixing.

Unlike liquid mixing, research on solids mixing has been relatively
limited. Probably the statistical nature and discontinuity property of the
solid particles hinder the development of this field. For example, the cate-
gories of the sampling technique used in a particulate process are far more
complex than those used in a liquid process.

The degree of mixedness is a fundamental state of a system and is always
evaluated from the sampling results. Fan, et al., (1970) reviewed over thirty
different definitions of the degree of mixedness. The difference in the
definitions for the criterion reveals the complexity of the mixing process and
the uncertainty of various concepts and notions in the field of solids mixing.

Since the mixing action is very complex, it is extremely difficult to
formulate an adequate mathematical model describing the action. The practi-

cality and experience still predominate in the design and operation of the
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mixing equipment and in the assessment of the quality of a mixture.

1.2 PREVIOUS WORK

The literature on solids mixing has been thoroughly reviewed by Weiden-
baum (1953), Gren (1967), Klothen (1969), Fan, et al. (1970), and Fan, et al.
(i972a). A brief review of the recent pertinent literature s given below.

Several researchers (Valentin, 1965; Rose, et al., 1965; and Fan, et al.,
1970) stressed the following needs in this field.

a. Unification of the mixing index

b. Clarification of the different mixing mechanisms

c. Measurement and control of segregation

d. Systematic study of mixers

e. Modelling and simulation of the mixing process

f. Rules for scale-up and design

g. Synthesis of the mixing process

1.2.1 Statistical Approach to Solids Mixing

Statistical analysis has become the approach most frequently used among
investigators because of the random nature of the mixing process. Probably
the point at which most analyses begin is that of defining a suitable measure
of the degree of mixing. This measure indicates how the composition of the
bed being mixed varies from point to point. Most authors (for exampie, Lacey,
1943; Bourne, 1965; Weidenbaum, 1969) have agreed that the best way to express
this degree of mixing is through statistical methods, namely some form of
variance which is based upon samples taken from various points in the bed.

Lacey (1943) has shown that for a completely random mixture, the vari-

ance In composition among a group of samples drawn from it is given by



i=3

2 _P(1 -P)
et TR (1)

where P = overall fraction of a particular type of trace particle
n = number of particles in the sample.
Also, for a completely unmixed system, he has shown that
s = P(1 - P) (2)

This leads to his definition of the degree of mixing any mixture
— (3)

where

" =\ 2
S --l-_|-:]— i (Xi X)

Fan, et al. (1970) reviewed over thirty different definitions of the
degree of mixedness, which differ with the systems used and the experimental
procedures followed, especially the sample size. Nevertheless, the relation-
ship between the variance and the sample size is unknown so that mixing
indices based upon the variance are dependent upon the sample size, and com-
parisons among mixing studies in which different sample sizes have been used
are therefore of limited value (Williams, 1969). To overcome these difficul-
ties a theoretical description of the relationship between variance and sample
size for non-random mixtures must be deduced. Bourne (1965, 1967) gave an
Interpretation of the results obtained by Poole, et al. (1964), using a
statistical theory developed by Landry (1944). Danckwerts (1963) proposed a

{
description of the correlation by correlograms, i.e., the relatlonship between
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the coefficient of correlation of point samples and the distance between the
samples. Schofield (1968) showed that the description mentioned can be used
to elucidate the mechanism involved in the mixing process. Williams (1969)
made a theoretical approach assuming mixing components of uniform particle
size. Furthermore, Harnby (1971) has discussed the application of social
survey statistical techniques to mixing problems. He mentioned the possibil-
ity of describing variance-sample size relationships by correlation theories.
Recently, Kristensen (1973) derived a general expressfcn for the variance of
the composition of samples drawn from random or non-random mixtures.

Buslik (1973) proposed the negative log of the sample weight required
to obtain a standard deviation of 1% as a simple numerical homogeneity index
for expressing varying degrees of homogeneity quantitatively. The proposed
method is of universal applicability, and a spectrum of index values for
homogeneity has been computed for certain mixtures over a very wide range.
With a different viewpoint, Akao, et al. (1971} proposed a degree of mixedness
for binary mixtures of uniform size particles in regular and random arrange-
ments based on the coordination number. An imaginary or hypothetical particle
model was proposed by Akao (1969) in evaluating the distribution of coordina-
tion numbers for fine-coarse mixtures.

For convenience of converting each of the degree of mixedness to other
forms, conversion formulae are tabulated in TABLE 1. Several converted
numerical values for different sizes of samples are presented in Appendix 1.5,
It can be seen that MI, Hh’ and HS are more dependent upon the size of the
sample than others. The form H3 = US - 02/03 - ci approaches unity more
rapidly than does the expression M8 = 0q " c/oo B while the latter form is

more convenient in practical application. The comparison of various forms of

expression may be the first step In unifying the definltion of the degree of



1-5

BITIERIIEY

L0 )

l

L+ (1 - NA) S

L+ (1 - N W [*Wz+(1-8) ZHIN _ (1 - 10
5 " -
. (L - N) M N_W WNA
R L - Tn - - ! — - !
z
4 0
£ ¢ 0 <« 0
W+ (CW - 1) NA z M Am_-:mz ) - -
l 0 - YD
z z
W- 1) N |ﬂ_-_ wo .
N 7 lm|~ W= 1A-=-1
W Z
_ R
(‘W= 1) N L ! y 0,
1 _zu_:m N:..:N |mu_
Z
(" €y y Ly

SW3ILSAS AMYNIE ¥0d4 SSING3IXIW J0 33¥H3CQ 40 SWHO4 LINITVAIND3

1 3naveL



1-6

iy 1- 6 6 6
N H-1 HA - L W
! 6
Z -
- 8 - N _
Sl L L ! N B Lo Ny 8 g
L NA 8 AG -0 =11 -1 G- W
NMA— = _.v W - ~u l_.
N L N
T.\E W] dxa NA = -1 HNA
_ : .N oy \N.E dxs - | [ ul NE dxa - | L,
L T_.m ulp W] dxa - | L L 4
l 4
L, 1o 9 9 9
N 5 M=l W= 1 W
M=
i &y %y by

|

panu3uo)-~| 37gvL



M~
1

I B R U e (e (e R LY R (R I

O.D
] 3 N Ul L o Sy
W NA | -
fo)
T 2o T o onp v T | - Np ;
e sesmaas TR s W
_ M Wp - | ! - M
l
m Ny, o (=) Ao -1 m
N l N A
Ny Ee- E- - H
ﬂ A0 &i-1p -1 r-0 e | /B
W Ny, . (-8 Su-ip ,
%y o _ _ W~ 1 = W
G dp = | (W - 1) ul Helr -
_ il T _ (-wtv-n
W ("W =~ ) ui W
& By Ly Y 5

panujluol--| 378YL



1-8

2° v- 6 (- fw
) 6 — 6 ‘
z VAR WA - 1
Np 8y -
3 u L - HA) W - N
(& - 8- D-Mb z_w_ \ & -0 B ﬁ L% = &
AR o _ %% 3\-: W-1]ul W
o 2o up - %y L - N
%.\ uj nz_ dx= L 4 4 th\. uj h_.,._“_ dxa 7 Nz
‘ ‘ mmmc_mzu dxa - | 22U mo ] : - L= [ vl nlaxe
NA - 9
. Yo % ow
N pwz - _. = mx = m
°y 8 L, " W

penuijuo)-~| 379YL




1-9

mi xedness.

The principle of uncertainty is Introduced in a probabilistic or sto-
chastic model. A stochastic process is a random phenomenon that is controlled
by statistical laws. This approach seems to be more fundamental and helpful
than the deterministic approach in analyzing and understanding the complex
mechanisms of solids mixing processes. With this type of model, mathematical
intractability can be avoided.

Oyama and Ayaki (1956) proposed a Markov chain model to describe the
mixing of particles in a drum mixer but did not conduct experiments to verify
the model. Oleniczak (1962) postulated a Poisson process to interchange par-
ticles between a volume element and the rest of the mixture. He obtained a
stochastic model for the V-type mixer. The distribution of tracer particles
was found to be bimodel at a low number of revolutions.

Makarov and Gorbushin (1970) used the Markov process technique to des-
cribe the mechanisms of transition of particles in a circular cell model.
They proposed this model for the preliminary design of a batch mixer for free
flowing materials with closed loop internal circulation. It is assumed that
the termination of convective mixing is the determining factor in obtaining
the optimum time of mixing because at some time Lo ™ topt’ and the mixing
process achieves an equilibrium with the segregation process. The main idea
is to divide the internal operating volume of the mixer into a number of zones,
each of which has a characteristic particle flow pattern. Assuming that the
laws governing the movement of particles through each zone are known, Makarov
and Gorbushin (1970) determined the average residence time of particles in
each zone and the standard deviation of the residence time distribution in
any zone. |If the system as a whole is linear, the total average residence

time of a particle and the standard devliation for the entire mixer can be
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calcutated. Experimental verification of the method was presented.

Fan, et al. (1972b) employed a Harkov chain model to model the axial
mixing of solld particles in a motionless mixer. One-step transition proba-
bilities were determined experimentally for the model. A fairly good agree-
ment with the experimental data was obtained for up to seven steps of the
Markov chain, or what was equivalent to seven consecutive passes of the mix-

ture through the mixer.

1.2.2 Scale-up and Design of Solids Mixers

While solids mixing is widely employed and considerable progress has
been made in understanding its mechanisms, sufficiently reliable 'design'
formulae are not available that permit an engineer to design industrial scale
mixers or scale-up small mixers based on the results of laboratory experi-
ments. Comparatively little has been reported on the design and scale-up of
solids mixers.

Muller (1967) and Rumpf and Muller (1562) evaluated different mixing
elements for a paddle mixer. Huller compared the amount of material 1ifted
by the differently shaped elements across the mixer diameter. He demonstrated
that the mixing rate is directly dependent on mixer speed and on the effective
surface area of the mixing element. The effective surface is a function of
the angle between the shaft and the mixing blade. No generalizations were
offered.

Luterek and Cachia (1971) used the Froude number as a criterion for
scale-up of V-type mixers. Their method was verified by experiments where two
different dry powders were mixed in V-type batch mixers of four different
sizes. The scale-up procedure is based on the principle that Froude numbers

for the laboratory scale mixer and the full scale mixer must be equal, l.e.:



N2 kD N kD

(——1 2 2y
g ‘lab. scale g ‘full scale (4)

Lynch and Ho (1973) presented a standard design procedure for determining the
power requirements for double cone and ribbon blenders.

Sawahata (1969) employed the relationship between the circulation and
mixing times to estimate the mixing time of a large-scale mixer. The c¢ircu-
lation time of the particulate solids in a drum mixer was related to the

operating variables as (Sawahata, 1967):

2 Z
Tye = (rmso)ﬂhgévz L (B‘&&)Hc <25 x 107 )
where '
THC = average circulation time of solid particles
R = the radius of the mixer
F/V = filling ratio of particles
h = thickness of the transportation zone

The thickness of the transportation zone, h, in equation (5) can be related to

the filling ratio and Froude number as (Sawahata, 1968, and Sawahata, 1969):

2
NTR F
= (o - 8 '—g'") (v) (6)

==

where constants, a and B, were determined by experiments (Sawahata, 1969).

For the V-type mixer the following equations hold.

VR

2 -
v = oy @2 18 EBy <76 x 107 (7)

where n is the correction factor.

The lengths of time needed to attaln a satisfactory mixed state for the
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drum mixer and V-type mixer, respectively (Sawahata, 1968), are

B, = 20 THC (8)

BV = 10 TV (9}

If the dynamic similarity exists between two geometrically similar drum mixers,

i.e., by holding the Froude number as constant,

2
Eaﬁ-= constant (10)
Let
F
¥ = constant (11)

Then, from equation (6), we have

= constant (12)

|

Relating equations (12) and (5), we have

N THC = constant | (13)

i.e., for two geometrically similar drum mixers,

NITl = N“TlI (]h)
Substituting equation (13) into equation (10)
T|/‘/_§| = Tn/ﬁ‘-n (15)

If (GHC)l represents the mixing time of a small-scale mixer, then the mixing

t ime (eHC)II of a large-scale mixer loaded with mixtures of the same concen-



tration as the small scale is

T MR‘I

v
Oucd = 7 Cuedy = = @) (16)

A similar result can be obtained by correlating equations (7), (9), and (10)
for the V-type mixer as follows:

(6,) —RV( ) T
6 = B =
A RI TR | "IIJET

(8,), (17)

where

(6,), . = the mixing time for a large-scale V-type mixer.
VoL
(BV)I = the mixing time for a small-scale V-type mixer.

Sawahata (1968) presented experimental verification of this method.

1.3 OBJECTIVES

The purposes of the present study are threefold, The first series of
studies sought to obtain further information on the statistical nature of the
samples in solids mixing by a nonparametric statistical approach. Most of
the previous works on the evaluation of the sampling results are parametri-
cally oriented (Harby, 1971; Shinnar and Moar, 1961; and Miles, et al., 1960).
They have to assume that the population is distributed with some parameters.
The application of nonparametric statistics has its merit in testing hypo-
theses when we do not assume, or even care about, the normality. Many of the
nonparametric tests and other nonparametric procedures are simpler than the
usual parametric procedures, and have high power to detect true differences.

The second phase of investigation studied a microscopic and geometric

mixing index-contact number. Most of the definitions of the degree of mixed-
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ness concern primarily the measurement of the standard deviation or the vari-
ance of the spot samples taken from a mixture. Such a viewpoint always neg-
lects the structure inside the spot samples, i.e., It assumes that a comp-
letely mixed state exists in any spot sample. This mixing index, first used
by Akao, et al. (1973), has the merit of not depending on this assumption.
The first part of this second phase was a computer simulation of the distri-
bution of the contact number for a binary system at the completely mixed
state. Results were obtained for the two dimensional cubic and hexagonal
packings at different concentrations of key components. |In the second part
of this phase, mixing index was employed to the radial mixing of particles of
the same size in a motionless mixer. The results were compared with those
made by spot sampling.

The third phase of work investigated the scale-up and design procedures
for tumbling mixers. The principle of similarity (Johnstone and Thring, 1957)
was exploited to study this category of mixers. If the physical properties of
the particles are not far different, it can be reasonably stated that the

criteria derived are applicable to the scale-up procedures.
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1.5 APPENDIX

Computer Program and Numerical Comparison of Some Degrees of Mixedness 1-18
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N.67111
Oe&63737H
N, 16D

T e BhAT
0eah221
D. 722118
0. 73431
0, 35207

R o T

proTIfLE
o
0,000
14978
AT
e 11857)
Ng 7407
D, H70TH
’ - .?‘ :f() f
Ay TILHD
[ IR REY S
0. N025
O.,7000.0)

5

O.H2987
DNe T24A1
fe37'970Q
0,20317

0.%57FR

Lo " F57 00 L 80
Pre §AMDL T = £2e
M3 LA

Q. 00000 Q. 225461

TLAHTLL N, 247247

NDLANLRT NLTHATY

TWhHTAPG P01

(g B TNH
R BT £
Ne 702708
N,RA3326H
T ALAD
0,871 1
1.390000

0. %8061
N. 536272
TahI6HERG
Nab6a710

0.82:21

N, %2477
De 7040
Ne %198
N 43940
PRI )
Doy Tar?
1, 00300

0. 24025
(a32173
fe 42458
N. 55840
0, 72329

Y 0L &

ug

0. 00N20
N, N7T424
Ne NETO4
P e "RT4LRH
N.12973
Oel®274
N 25117
N, 3704
TehT214
O HAHOR
P NN

Na65211
Ne 58974
NL.521364
J.452948
0.344460
B B P

h.‘(.'

100000
NaA223¢E
Na G472
T THTTH
N, 68044
Ne 1180
NeH3414
De DALY
ML RATHRED
l“_. '.'"Ilnl 2 I'S
e 2]

N. 60287
D.6HTTZ6
TLaTR215
N. 82956
0.921103
1.,00000

w7y

0. OO0Q0
Ne 3228
N, 338485
T e? " Th
Ne A8 0
087274
Gad&ATOR
Oe TL3072
DR 404
N, AIR00
1.00000

0.50000
0. 60000
W Lubt
2. 80000
0. 90000
1.00000

M

0.000Nn0
N, 10000
N. 20000

2 S

Ne 400NN
0.5000"
e 6HOQ00
0. 70000
SRR Dotk
Oe ODO0N
1.00000

Rt

SMIJMR IR AR ProT YO NS PER O SAMPLT = 17,
| 2 M3 MA 45 ME M7 M8 M0
N,N0000  0.02000 0,00203  0,31422  0,00000 1.00000 Q.00000 4.00000 1.00000
N,NAR2] A, 12200 Nt 4675 0,33944  (0,027094  0,93167  0.24803  0.10000 D.R6792
N 17ATSH e 28481 L8312 e B3HHRAZ T LOTARE L 36328 L3R T4T e 200 TaTAS1LY
DNa?20513 0.706823 0.4N300  0.739734 0211035 N,79487  0,44655 0,20000 0,631982
D,27251 Q,AT220 D.52468  0.43570  0,17411  0.752640  (0.%2692  0.4000™  ~,52770

Qe.4322311
Oe347T9
T e27182
d.20510Q
0.14792
010000

i

1.000 -
N. 85075
0.71385
e hdng]
N, 475343
“eAT4T
0.2883%
O 20842
Mel4380
N.000TFEH
D, A%ON0



AIMRER NF

M1
=N, 0NN
N.0%174%
0.1A349
0.24523
D.40871
0. 49046
N.57220
N0.65394
0, 73568
N.81743

MUMBER TF
"y

_r)n Oi'}ﬂ-’)i]
GeT8419
Ne14£3312
0.25257
N.33675
0.42034
N.50513
0.53932
0.67351
0.75770
TeB4129

MIMRER JF
M1

-0.00000
0.0Rr584
N.Y7172
Ne25757
Ne24343
O.42320
NeBH1815
0,60101
0. 63686
0.77272
N, 85853

TR - S
1

-0.02323
N, NRTHO
. 1?"1‘1 ('l.
Na2/127
Q. 2413726
O.473545
N M2254%
DL HETI6T
0.69672
N, T3]
N,ATHIN

PANTIC| FS PR

M2

Ne ONOND)
Ma 1540
0,39024
0. 42032
(e547:3
N0.6503R
Qe 74034
031699
N. 39024
N.73014%
De96667T

PARTIMCL=S

M2

0. N0000
“al6129
De 20847
Deh%4134
D,5671]
Nab544693
0.75511
0.32134
D.,37340
0.941.29
T« FTHOD

PARTTITL =9

Ho

0., 00009
0.16434
0.313295
a%4B8"
N, 56892
N, 67429
e TE4TE
D.84089
faRn1a95
N 24834
0.92N040)

f‘ﬂ"“‘{]’f’[ '."S

N‘2

0.00N00
Ne1HHLD
e BAAD
N 4ha7 A
D.575%37
Ne5H8120
0L77T203
e 347451
0.7901%02
De 35576

N85 17

0,602073
0, THE 2
0e 1619048
Ne7T4)

T0LT6H9HD

1.400100

SAMPLE =
M3 M4
N,0M2090 0,1825H7
Fel6221 “,193803
N.31060 0.21820
N.4451/ 0,24189
e B6589 L 2T127
N.HT271 N.20877
N, 76509 N,35R831
0.9451A 042677
0.91060 0,52758
0.,26221 0, 63074
leiaonn lea 70000
PER SAMDLFE =
M3 M4
0.000HNN0 0,15811
lie16543 (.17265
0.316%1 N.190173
O0.45206 NL.21154
Ta5744T 0.23929
D0.58174 0N,27305
e T7447T ~.31951
D.RARZEHEE  0O,3R501
N.91A431 N.48428
0.96543 0,485255
1.70000 1.00009
PR SAMPLE =
(L3} M4
0.00000 0.14142
NIHTTO0 Q.154TN
D.32028 D.17774
NadST 7T,19749
D.H80585  N,21539
De 52808 « 24780
0. 772053 N, 29164
N,207964 0,35444
a9273% L edD163
DaDCT7TO  OueARZZ224
1.,00090 1., 00000
Pr« SAMDLD =
M3 ML
N,20000 NLi291n
Q.1hds? Ne LAZ4H2
Ma3114] 0.1545273
DMHL98 N, YT4ATH
r.H8512 Ne 19811

N, 12868
N, 2700359
Te33A0T1
Os 42560
Na 59714
VL. 0ONA00

30.

40.

57

60,

Ma

0. 0000n
T aNEORR
0e.04365
0.07257
17851
Ne15439
" 21459
0. 27874
N.42206
N. 62167
l.0060h

M5
0.00000
N.01726

- 0.N2803

0.056246
0.09536
N. 13653
".19170
N, 26950
0433743
0.58729
1.00000

He
N.00082
0.01547
0.0%415

«+ 0715

0.123290
0.17501
Ne 24311
(«36137
0.5%6001
1.00000

8

0, 200NN
0.0)414%
N.N3127
N, NK2473
MrLaTa25
0. 114734
N.16223
e 23150
0.24004
0.537T4%
1.00000

Mé.
1.00000
N.91824
NeB36S]
Da 75477
N.67303
0,59129
Nie BT 954
N4 2780
e 34606
Ne26432

De18257

Mé
1.00000
Ne21521
N.R3162
De747T43
0.663225
0.57906
049487
0.41063
0432649
Ne24230

0.15811

M6

1.00000
ND.91414
N.B28218
Te 74247
NDab6B5H5T
D.,57071
NDe484B5
Ne 3VRNG
Te31714
Ne22TZR
Ne14142

Mb

1.00000
N.3129])
N, 738773
WA NP
N.56455
N TTHG
1,39037
NJINZAZR
Ne21619
Ne 12910

M7

0. 00000
"e?272393
0,32299
0. 40574
De4R253
N, 555%6
Frei2966
D T05BE]
D, 789093
0. 88455

R ATATaT oy

M7

0.003000
n,21836
0.31617
0.35°97258
0.47183
D.54426
Feh1757
Q. 62462
0.77902
0.87668
1.00000

My

CLOrDCT
Ne21423
0.31025
DeA9021
046378
0.52548
0.60835
Dae 6GRH3T
T L 1TO4hE
0,37021
1.00000

MT

N. ODOND
0.21067
0.30875
0.530461
NaH5738
0.52947
0.400873
N 6TTRG
no 7{‘.3“’1’2
e H6G 96
1.00000

1-19

2k
(.00000
Gellrr
0420000
0.30000
0440000
0. 50000
e BOCCN
0.70000
0. 80000
0490000
1e GA0ED

e

0.00000
Dal 00
0.,20000
N, 30000
0.,40000
0.50000
Ne b AN
0.,70000
0.80000
N,890000

1.00009

M
BeCONEN
0.10000
0.20000
0.40000
De 50000
0.60000
0. 70000
SRS Col i
0.90000
1.00000

MB

D. 00000
0.10000
1. 20000
N. 30000
Je LM
Ne 50000
0. 60000
0.70000
0. 20049
s LT
1.00000

M

1.00000
NeB4320
N, h9976
O« 5AGLR
D0.4%297
e 340A/7
125264
0.1R301
0.119756
0. 069864
i .1:3333

Mg

1.00000
D. 832871
N.69140
"L 5hEAH
0.43989
0.23531
De 24499
N.16866
Q10660
N.iB8T1
0,02500

MG

1. 00000
0.83%846
0.68605
Me55120
D.42108
Ce325T71
0.23508
0.15920
{. L] '!QG“'%
0-05}.(“{1
0.02009

MG
1.07000
Ta B340
N.68108
3. 54572
Ce%2457
N,31872
e 2797
0.15739
0.02108
Ne W46 TS
NeN1EAHT



NUMRER OF

M1
- 0.00000
N, N2805
L, 0176172
N.26414
N. 35219
Ne 44724
0.52829
0. 6163273
0.70438
0.,77243
« 88048

MIUMRER NF
M1

-0,00000
0.03832
Ne17764
Ne 26540
0.35528
Ne 44410
0:53232
ne6?174
0.71956
0.79938
N, 83820

MUMBER NE
M1

-0, 00090
AR S K2 PO oY
0.17392
Ne2A33R
0.357894
0.44730
M e A3IATH
Q67621
0. T'557
N.30513
0. 87459

M MBES IR
iAl

=0.0729N0
0. 09000
T T R
Ny 270NN
JQe 36000
Qe 4 BN0H
04 54900
ST RER
072000
N8 0N0
N 00NN

PART[CLES

M2

0.00000
N.1697%4
Ue32118
Ne45951
0.58034
TehBALT
ND.77749
0.35230
0,91261
0.25691
0.98571

PARTICLFES

"o
N.DNNNH
fel697H
0.32372
0.456192
D. 5843273
D.59097
N.73187%
N, R5692
0.721622
0.95975
T a9875"

PARTICLZS

M2

0. 00000
N,17092
Ne32R12
© 264773
Ne 98763
D.638452
Ne 73540
N. 36023
0.2191A
0.362073
N. 388549

PARTICLES

"2
04 IN00D
CA.1T1LR0
2 FRTED
Ny 46T
0.59040
N,AHQTHRN
N 198241
e BA3LT
Ny D2LAD
0w 96199
N0

PFR GAMPIF =

M3
N.00000
0.17078
Na32534
De&hm16
0.58R75
NaeHOAAM2
0.,7887%
D.865106
N.9725R4
N 37073
1.00000

PER SAMDPLE =

M3

0,009090
1719
0.32732
N bTT6H
0.59173
0.69972
0.79173
e B6TT6
0,32782
0.97190

let0CNG

PER
M3
0.00000
N.17234
0,32940
N,%6995
N.594273
0. 70237
N, 79423
Ne 3469Q5
0. 32949
N.97284
1.00000

PpEn
(S0
N.NNJNN
0.17264
a3
DeT7122
Na 9067 A
0. 7040 K
NDe 79636
CLBTLAZ
N.920%)
De1TVAG
1.09900

VLT

SAMY

M4

0.119562
0.12105
e 16507
Na162473
0. 183450
T.21352
N,253313
N.21165%
0.40431
ND.57582

1.72700

M4

0.11180
L. 12277
0, 13595
Na15242
0.17341
0.20112
0.22937
T e29557
0.38427
1.55728
1.70000

£ = e

4

0. 10541
0.11577
0.,12338
Celb4r8
De 16415
.. L9072
" 22755
N.28200
Ne3T173
0. 54093
1.00000

o=

nN. 100170
N.10789
TL. 12195
0.13699
D.15625
N, 10182
e 2YT739

271027
N0.38T71 4
N h2632
1.3N000

T0.

80.

100,

M5

N. 0NO0ON
NeN1311
N, NAARTT
0.07380
0.10676
0.15203
N, 21BN7T
De3224%
N.51824
l.00000

M5

N0.00000
C.M1227
0.02719
0.04572
0. 06937
0.12056

Oe 14362

e 20690
0.30902
0.50155
1.00000

Mg

0.00000
0.01158
N, 02668
T N4322
N.046566
N. 07536
0.13657
N 19740
T 20659
Det8693
1.00000

Me

0. 00000
0. 01099
~fL 02479
n.04110
ST BP0
0. 00091
N, 12043
e 18919
N. 23871
AT AR
1.009000

M6
1.00000

0.51165

NLR230N
N.73586
Oe 64781
N.55976
N.4T7171
N.38367
Ne 29562
0.20757
0el1l1952

46

1.00000
N7.91118
0.32236
0.73354
Da64472
0.55590
N.46708%
N.37E826A
N.28G44
0.20062
0.11180

M6

1.00400
N.9105%
0.32108
N, T731¢2
Ne54Z16
D0.55270
N.46325
D.37370
"a284373
D.1924R7
0.10541

Mé

1.00000
0,.,91000
NA2000
0. 730NN
ﬂ.ﬁ@”(ﬁ
D.55000
De 46000
Iq'l—_%?‘ﬂ‘-"hII
0. 28000
S 0 %
N 10000

M7

0.00000
0.20830
Ge3r197
D.37999
0.45209
0.52264%
0.59474
Nab7155%
0.75743
0. 36033
l.20000

M7
0. 00000
020604
0.29877
0.37507
Ded4T59
0.51767
0.58944%
Ne66611
0.75223
0.85624
1.00000

M7

e 2000G
D.20409
0.22600
Nn.37268
0.544369
0.51336
N. 584872
ND.66125
De THTOH
0.35258
1.00000

M7

0092000
0.20238
0.29357
036970
e &&0125H
0. 50958
0.5r073
NebBT11
0.747353
N e 349326
1.00000

1-20

MB

0.00000
0.10000
Ge 20NN CT
0.30000
0.40000
0.50000
0. /0000
e 70N
0.80000
0.90000
l.00000

MA

0.00000
LOF R €2
0.20000
0.30000
U.#OO”Q
0. 5000N
0.60000
O-TGOCQ
0.80000
0.90000
1.00000

Ma

Qe CCCD0

n.10000
0. 20000
Ca30000
Ne 40000
0.50000
0.60000
0. 70009
SeBOUNS
0.9N0000
1.00000

v8

0.00000
0.10000
0.20000
0«30000
Tk
UJa 50000
0. 60000
Ne 70000
0. 80000
ST te
1.00000

M9

1.00000
0.02166
n,6TRA2
0.54149
0.41964
N0.31332
N.22251
0414720
0.0R8739
0.,04309
(,01429

MG

1.00000
(93025
D.67628
0.53808
De4l567
0.30903
0.21817
C.14308
0.0837¢8
0.04025
0.01250

M9

l.0200n
0.32908
0.6T7418
2.53527
0.412737
0,30548
0.21460
0.13972
CeD)B0 R4
0.03767
0.01211

MY
1.00000
0.82810
0.67240
0.5329¢C
AT
0430250
0421160
0,13690
0. 07840
NeN3I610
0.01000



NIIMBER OF
oM
AP TR AR
N.092973
0.18596
0.27879
N 37172
Na&bah4
Ne5RTST
N. 65050
De 74343
48636
D,"2929

JIMRER OF
M]

“04 0700
0.00423
0.1384%
Ne 202689
Ne37591
Ne4T113
0.56536
0. 65959
"\i 7%381
On B4an4
Ol 9~'+2?7

WMUMRER AF
Ml
=0.071000
D 953
N.13090
0.2R500
0. 3870
0.47500
0. 5790
N.66500
0.76000
N 855N
0.945000

JIMPED (F
."1

R
0.09563
N, 19104
0.274%4
N, 339211
,".t*T {."4
NeS57317
Ne 67 BTN
Ne7H42"
0.,9597R
Na1H5628

PARTICLES

M2

£ N e e
0.17722
0.33717
0.477205
N. 60526
TeT13739
0.3904256
0.837745
0.93417
T a3T7322
0.9295109

PARTICL™S

M2

P o
0.17957
0.34139
0. 48545
N.461175
(e 72030
0,31109
0.38412
Na932739
Ne37A91
T a3667

PARTICLFS

M2

0.20010
Tel800Q7
0.34320
0.40878
N.61560
0.7243%
J.815170
nN,88778
0.34240
Da97397
N.972750

PARTTCL =8

M2
Ne1R193

N.345A1
O 49104
Ne 1AM
Ta 12714
NaALTHRY
NaROND A
Qe 24441
0. 910733
N, 9NN 9

PER SAMPLF =

M3 M4
N.CN070  0,07071
0.Y7811 0.,N0779%
Te33887 C.NBHARS
0.48226 D.09304
0.60830 0.1125%
CeTlH8 r,.132MA
0.80320 0N,15782
0.98%22&6 0.20232
C. 93287 (0.27560
(e @7811 D.43211
1.00000 1.70000
PFR SAMPLE =

M3 M4
NaNOUAN G,95T7T4
0.18017 0Q.N6374
0624252 0.97114
0.4B707 0.08049
NeA1330  0.,092686
Ne 72271 N.10917
0.71380 0N.13283
0.387T07 0,16940
0e94253 0,23452
N.,98018 0N,.379G3
1.70070 10700
PER SAMPLE =

M3 M4
0.00000 95,05000
f.18143 n,n85285
0.34476 Q.068173
0,.49000 (0.06923
0.41714 N NA0AG
0.72619 0,095824
ne81T1l% [.11628
0.89039 (0.14225
0.9447A~ 0.208235
N,OR1473 1, 244973
1.00000 1.000090
PEQ SAMDIFE =

M3 M4

e 207200 D.04477
019220 N, 04944
Ce a6 . D LIR523
De4D202 NGV H9
O.6194%  0.077738
0.72860 0.N8561
NB148 DoY04TT
Mg 272 .1 3499

004630
0.92729
1. 00000

N. 10940
s A1 A7
LeA0N0ON

200,

300.

40Q0.

500

M5

0.00000
N. 00780
Ga01737
N.02941
0. 04502
e OVBHN4G
0.N9589
D.14162
N.220480
M. 38890
1.00000

M5

NyNRren
0.00637
0.01423
0.02415
0. 03706
£ 05458
0.07970
0.11872
0.18751
0.34194
1.00000

M5
0.00000
N 552
N.N12325%
0.020928%
N.0322
N, Q470D
T e AT
0.10448
Qe 16667
31034
1. 00NDD

Mg
N. 00000
Ne NN&94
[ I )
N.018081
DeD2ROG
0.0420]1
N, 0A7P4
e 440
D 15174
e 24608
1. 00001

M &
1.00000
N.90707
MaB1414
D.72121
0.628218
T.53526
Debt243
0.3495"
« 25657
Ne 16364
1.07071

Mé&

1.0000N0
N,90577
N7.81155
0.71732
1. 62309
N"e 52887
0.473464
0634041
0.245619
N.15196
N.OSTT3

M6

1.00000
N.90500
D.831000
D.TL800
0.62000
Ne52500
Ve & 3000
N.33500
0.24000
0.14500
D 05000

\46

1.00000
NeING4HT
N BT804
N.71342
N H1 78S
NeH2220
Ve 42683
NagA3l3e
N.25578
NelaN2H
N DBA4T2

M7

0.00000
0.19181
r . 27”(’”
N.325124
0.41885
N.40565
NeH5482
Leh2994
N.71659
0.32660
1.00000

M7

0.00000
D.18628
.27059
0.34121
0.407218
De4T7262
0. 54053
0.61470
0.70106
N.81281
1.070000

M7

0.00000
.18254%
N.26522
D.33464
0.39946
D.N6278
(e B2078
0.40420
0.A0021
N.80286
1.00000

M7

0.00000
N.17976H
T 26122
0a3296A
3.39362
D 46715
0. 52344
CofN962A
N. 68190
0. 797049
1. 00000

1=21

MH

0. 00000
0.10000
(e 20010
0.30900
0. 40000
0.50000
0. 60000
0e7CNCH
0. 80000
0.90000
1.00000

iJB

2.00000
0.10000
Je 20000
0«30000
0. 40000
Ne BENCE
0.60000
0. 702G
0.80000
0.90000
l.00000

MR

0.00000
Ne1CL0N
0.20000
DL 300CN
N0.40000
0.50000
Q600N
0.70000
0.80000
0.90000
1.00000

RS 8

0.00000
N. 10000
Ge 20070
0.30000
Do 40000
0. 50000
(. 6ODNQQ
Mg M0 ".‘.l‘ﬂ
. BOOON
Qe 000N
1. 00000

M9

1.00000
0.82278
D.66203
0.52015%
0.39474
0. ::_,ﬂf\f)]-
N.,19574
N.12215
0.06583
N.02678
0.00500

M9

1.00000
0.082043
Ne 65861
0.51455
0.3R82%
Na27970
N0.13891
$.11588
N. 048041
0.02309
C.00333

Mg

1.00000
0.81902
Q.65610
NeH1122
0.38440
0.27552
"a18427
D.11222
0.057460
0.02103
0.0N259

MQ

1.00000
0.81807
e 65479
0.50296
M, 38179
N0.27286
D.18219
Ne1DBTH
0.058559¢
N, 019467
0.00200



NIMBER NF
31

"0- ononn
0.09592
76172194
N.2R8775
D.319367
N 479509
0.57551
0.67142
ML TEHET24
e BL326
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CHAPTER 11

AN APPLICATION OF NONPARAMETRIC STATISTICS
TO THE SAMPLING IN SOLIDS MIXING
2.1 INTRODUCTION

One of the most important problems in solids mixing is to evaluate the
homogeneity of a mixture or the degree of mixedness. For example, in prepar-
Ing solid animal feed, very small quantities of drugs, vitamins, and minerals
are often mixed with large quantities of feeds. These ingredients must be
thoroughly distributed, and to test this a proper analysis of the sampling
results is required. The results have been analyzed traditionally by using
parametric statistical tests (Weidenbaum, 1953; Harnby, 1971). However, the
use of nonparametric statistics instead may be advantageous in some cases in
the sampling and definitions of the degree of mixedness because of the
uncertainty involved in assuming the normality of the distribution of the
population. Many of the nonparametric tests are simpler to conduct and have
higher power to detect true difference than the usual parametric procedures
{Conover, 1971).

One of the purposes of the statistics is to provide measures for the
extent of subjectivity that enters into an investigator's conclusions. This
is accomplished by setting up a theoretical model for the experiment, for
example, the model of tossing a coin. The laws of probability are applied
then to this model to determine the probabilities for the various possible
outcomes of the experiment under the assumption that chance alone determines

the outcome of the experiment. While the description of a theoretical model
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may not be easy, the real difficulty lies in finding probablilities assoclated
with the model. To meet the difficulty the model Is changed slightly in
order to obtalin the 'exact'' solution to the "approximate' problem. Such an
approach is called parametric statistics and includes many well-known tests
such as t-test, F-test, and chli~-square test, which have been employed exten-
sively as statistical methods in investigations of the solids mixing problems
(Weidenbaum, 1958).

On the other hand, the problem may be approached without making any
change in the model and using rather simple and unsophisticated metﬁods to
find the desired probabilities. Thus, an "approximate'' solution to the
""exact' problem can be found. Such an approach of statistics is termed ''non-
parametric statistics."

This study was undertaken to show that nonparametric statistics can be
applied to analysis of the sampling results in solids mixing. |Its uses are

demonstrated by several examples.

2.2 NONPARAMETRIC STATISTICS
In nonparametric statistics, the measurement scale need not be numerical.
Types of measurement can be classified from the weakest scale to the strongest
as follows:
(1) Nominal scale
This merely cateqorizes the data. For example, the quality of a
mixture can be classified by visual inspection as ''passed' or '"failed."
Observations may be classified according to categories.
(2) oOrdinal scale
This scale refers to measurements where only the comparisons,

namely ''greater than,'' less than,'" and '"equal to' between measurements
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are employed. Observations may be arranged from the smallest to the
largest. For example, sample A may be more homogeneous than sample B
by visual Inspection.
(3) Interval scale

The scale not only provides the relative order of measurement, the
size of difference between two measurements is also provided. A zero
point and a unit by which the Interval between two measurements can be
described are defined for this scale. The numerical value of the obser-
vation according to this scale is physically meaningful.
(4) Ratio scale

This scale is similar to the interval scale; it has no natural zero
but allows measuring ratios. For example, in the definition of the
degree of mixedness, we usually associate the degree of mixedness of 0%
with the completely segregated state, and 100% with the completely mixed
state. The actual numerical value of the degree of mixedness is merely
a comparison with an arbitrary reference point at the completely segre-
gated state.
The steps in testing a hypothesis statistically are as follows:
(1) Formulate a null hypothesis Hj, and its alternative H,, regarding

a population parameter, etc.
(2) Select a test statistic which is most powerful.
(3) Describe a rule for accepting or rejecting Hy-
(4) Draw samples and test H-
(5) Apply the rule described in Step (3) in order to make a decision

as to the acceptance or rejection of HD'
Rejection of Hy Is equivalent to the statement that Ho is false. This

implies that HI is true. On the other hand, acceptance of H0 does not Imply
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that H0 is true. It simply indicates that H0 has not been shown to be false.
Therefore, in determining if a statement Is false, make that statement HO'
In determining if a statement is true, make that statement Hl' The procedure
for testing a hypothesis is shown in Fig. 1. Type | error (level of signifi-
cance) is the probability of rejecting a true null hypothesis, and type I
error is the probability of accepting a false null hypothesis. The probabi-
lity of the correct decision in rejecting a false null hypothesis, 1-8, is
called power. The critical level is the smallest significance level at which
the null hypothesis would be rejected for the given observation.
2.3 APPLICATIONS OF NONPARAMETRIC STATISTICS
TO THE SAMPLING I[N SOLIDS MIXING

2.3.1 Test of Sampling Techniques

In mixing a certain component with other components, the sample mean
will not vary far from its known population mean. The problem is then to
determine objectively whether the sample mean and the known population mean
are significantly different. The available nonparametric tests, depending on
types of sample obtained and types of measurement involved, are given in
TABLE 1. If the means from different sets of sample vary significantly, the
sampl ing may have been biased due to location or method (Weidenbaum, 1958).
This bias needs to be corrected before further sampling. Notice that the
tests listed under the nominal scale may be used in the ordinal scale of
measurement, and the tests listed under nominal and ordinal may be used in the
interval scale of measurement. Another application of this test of signifi-
cance for means is to determine which mixer gives a better equilibrium mixture
(see part E). For two different mixers, we can determine which is a better
mixer based on the comparison of the means In the samples by using the same

method of sampling.
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(a) Ho is true

Ho vs. Hi

S Yes Accept
Type I error HI
probability=a

No| Correct decision
probability=1—a

() Ho is falss

Ho vs. Hi

Yes Accept
Corract decision Hi

probability =1— 8

No | Typa II error
L probability =8

Accept
Ho

Fig. |. Two types of error in hypothesis testing.
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TABLE 1

NONPARAMETRIC TESTS FOR MEANS

Types of Samples

== ===

Measurement Scales

Nominal Ordinal Interval

Univariate

random sample Binomial Quantile Wilcoxon test
test test
XI' L] e o . xn
Bivariate sample
(x|, y‘), 9 8 & McNemar Sign Wilcoxon test
' test test

0 v,)

Randomization test

Multivariate
sample

CEhiraR Ak Friedman test

Bell-Doksum test

Two random samples

(K].n--,xn)a

(YI L ym)

Chi-square Mann=Whitney test

test Randomization test

Tukey's quick test

Several random
samples

Median test
Chi-square Kruskal-Wallis test
test Bell-Doksum test i
Slippage test

Other types

Median test extended

Many-way Durbin test for BIBD

Contingency (Balanced Incomplete
table Block Design)
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EXAMPLE 1. Wilcoxon Signed Ranks Test for Means
to Justify the Sampling Technique

If the population mean is known, the test of means can be a criterion
of the sampling procedure. Harnby (1966) studied the performance of mixing
the materials with segregating tendency (differences in size, density, etc.)
In various industrial mixers. He plotted the ''discharge profile' by sampling
at the outlet of a mixer at fixed time intervals until the discharge was com-
pleted. The ''discharge profile' plots the percentages of millet in the sam-
ples agalnst sample numbers for each run. In his study the procedure for
sampling in a Rotacube mixer operating with impeller can be tested by using
the Wilcoxon signed ranks test. The data is given in TABLE 2. A nonpara-
metric-statistics package for the IBM 360 NonPAR which includes the Wilcoxon
signed ranks.tests (Moe and Kemp, 1971) was used to perform the test. The
results are:
Hy : The mean E(X) is equal to 0.80
versus
Hl : E(X) is not equal to 0.80
The sample size is 37
The test statistic is 383.00
At a (level of significance) = 0.100, Ho is accepted
The critical level & = 0.438

Hence, we can conclude that the sampler performed satisfactorily under these

test conditions.

2.3.2 Test of Scale-up Procedures
In scaling up solids mixers, we wish to determine if the larger mixer
produces a ''better' mixture than that produced in the pilot mixer. |In other

words, we wish to determine If the variation in composition among spot samples



TABLE 2

DATA OF THE DISCHARGE PROFILE IN ROTOCUBE
(WITH IMPELLER OPERATING)
(MEAN = 0.80)  (HARNBY, 1966)

Sample No. Fraction of millet

in sample

1 0.9500
2 0.8625
3 0.8620
L 0.7750
5 0.7188
6 0.6630
i 0.5375
8 0.6500
9 D.7125
10 0.7188
1 0.7190
12 0.7437
13 0.7435
14 0.7313
15 0.7188
16 0.7188
17 0.7150
18 0.7437
19 0.7500
20 0.7563
21 0.7500
22 0.7312
23 0.7750
24 0.8075
25 0.8188
26 0.8438
27 0.8929
28 0.8813
29 0.8895
30 0.9000
31 0.9063
32 0.9288
33 0.9312
34 0.9400
35 0.9563
36 0.9641
37 0.9725
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In the larger mixer is smaller than that In the pilot-scale mixer. This can
be tested by the Siegel-Tukey test, the Mann-Whitney test, the Mood test, the
Freund-Ansari test, or the Klotz inverse normal score test. The usual para-
metric test for determining the equality of two variances is called the F-test.
However, the F-test is fairly sensitive to any departure from normality (Sie-
gel and Tukey, 1960). Therefore, use of a nonparametric test Is recommended
when the distribution of the population may be nonnormal. Here use of the

Mood test for variance is specifically illustrated.

EXAMPLE 2. Mood Test for Scaling-up Procedure
Suppose X (i =1, 2, ..., m) stands for the concentration of a key con-
stituent of the mixture in a pilot mixer, and y, (i =1, 2, ..., n) stands for
that in a larger mixer. |In the Mood test the sample sizes need not be equal
(i.e., m not necessarily to equal n). A Mood test was performed on the data
given in TABLE 3. The hypothesis and test result are:
Hy : Var. (X) 2 Var. (v)

versus

H, : Var. (X) < Vvar. (Y)

1
The test statistic is 2320.5 at a = 0.050. Since the critical level, &, is
0.817, H0 is accepted. Thus, we can conclude that the mixture in the larger

mixer is as good as that in the pilot mixer.

2.3.3 Test of the Distribution of a Solids Mixture

It is well-known that the theory of probability is applicable only to
events whose frequency of appearance can be either directly or indirectly
observed or deduced by logical analysis. Therefore, it may be desirable to
determine whether a set of spot samples comes from a certain frequency distri-

bution. In other words, we compare experimental data with those estimated



TABLE 3

CONCENTRATION OF ONE KEY CONSTITUENT
IN MIXTURE OF PILOT AND SCALED-UP MIXERS
AFTER THE SAME NUMBER OF REVOLUTIONS

Concentratlion In

Concentration In

Sample ho, pllot mixer scale-up mixer
i xl "ri
I 0.227 0.209
2 0.176 0.014
3 0.252 0.165
4 0.149 0.171
5 0.016 0.292
6 0.055 0.271
7 0.234 0.151
8 0.194 0.235
9 0.243 0.147
10 0.099 0.099
11 0.184 0.063
12 0.147 0.184
13 0.088 0.053
14 0.161 0.228

i5 0.171 0.271
16 0.17h 0.019
17 0.194 0.127
18 0.248 0.151
19 0.206 0.101
20 0.089 0.179
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from a theoretical model. |In terms of sollds mixing, suppose a certain com-
ponent (say 20% by weight) Is to be mixed with another solid mixture. |If no
segregation in the mixture is assumed, there would be an ideal perfect random
mixture concerning the distribution of this particular component in the mix-
ture. The perfect random mixture (which may be theoretically obtained by a
perfect mixer) would be a certain distribution of that component with 20% as
the mean. The nonparametric tests would enable us to determine whether the
distribution of that compbnent in a mixture is normal, Poisson, or Gama, etc.
If the variation from sample to sample is too large compared to that obtained
from perfect random mixture, some Segregation may be expected in the mixture.

A test of goodness of fit usually involves examining a random sample
from an unknown distribution F(X) in order to test the null hypothesis H0 that
the unknown distribution is in fact a known, specified function, F(X).

Samples Xy Xgp coey X oare randomly drawn from the population, and are
compared to F(X) to see if it is reasonable to say that F(X) is the true dis-
tribution function of the random sample. HNonparametric tests of goodness of
fit which can be used for this purpose are given in TABLE 4. Here the Lillie-

fors test Is employed to test the normality of the population distribution.

EXAMPLE 3. Lilliefors Test for Hormality

Suppose fifty random samples are taken from a solid mixture. The concen-
tration of the key component in the samples is shown in TABLE 5. The test
determines if the difference between the normal distribution function and the
true distribution function (unknown) is insignificant. |If the test results in
rejecting the null hypothesis (the distribution of the solid mixture is nor-

mal), other types of distribution may be postulated for further testing.



TABLE 4

NONPARAMETRIC TESTS OF GOODNESS OF FIT

Types of samples

Measurement scales

nominal ordinal interval
Komogorov test
Univariate random Chi-square Cramer-von Mises test
sample test for specified popu-

lation

Lilliefors test for
unspecified normal
population

Bivariate random
sample

Xps vory X and

YI' vEE Y ym

Smirnov test
Cramer-von Mises test
Wald-Wolfowitz test

Several random
samples

Birnbaum-Hall test
Smirnov test




TABLE 5

CONCENTRAT ION OF A KEY COMPONENT
IN FIFTY SAMPLES

Sample no. Concentration, % Sample no. Concentration, %

! 23 26 58
2 23 27 58
3 24 28 58
4 27 29 58
5 29 30 59
6 31 31 61
7 32 32 61
8 33 33 62
9 33 34 63
10 35 35 64
11 36 36 65
12 37 37 66
13 Lo 38 68
14 L2 39 68
15 43 40 70
16 43 4y 73
17 Ly 42 73
18 45 43 7h
19 48 L 75
20 48 45 . 77
21 54 13 81
22 5l 47 87
23 56 48 89
24 57 49 93
25 67 50 97
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H, : the random sample has the normal distribution with unspecified

mean and variance.

H] the distribution function of xi's is nonnormal
- 1 n
X = = b x; = 55.2
f=1
n ,
5 = 1 £ (x., - x)z = 10,7
N e i

The Lilliefors test demands the rejection of H0 at a = 0.05 if the test sta-
tistic exceeds its 0.95 quantile, 0.125. In this example, the test statistlic
is 0.08. Therefore the null hypothesis is accepted.

The acceptance of the null hypothesis does not mean that the parent
population is normal, but it does mean that the normal distribution appears
to be a reasonable approximation to the true unknown distribution. It is
appropriate to assume that the parent population is normally distributed and,
therefore, either a nonparametric method or a parametric statistical procedure
which assumes a normal parent distribution may be appropriate for further

testing with these data.

2.3.4 Test of Significance for Fraction Satisfactory

In quality control we are constantly concerned with the problem of
knowing the fraction of the population which meets the quality criterion.
The binomial test can be used to solve this problem. For example, in mixing
a certaln species with others the mixture Is considered to be adequate if a
certain number, for instance, five or less, of the agqlomerates of that parti-
cular species appears In any sample. |If more than five agglomerates are

found, the mixture is considered unsatisfactory.
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The hypothesis can be formulated as follows:
H0 : there are five or less than five agglomerates appearing in a
spot sample after mixing, f.e., mixing is adequate.

versus

H] : mixing is inadequate.
H0 is to be tested on the basis of ten spot samples randomly withdrawn from
the population (mixture). The assumption is made that each spot sample has
the same probability of containlng five or less agglomerates, independent of
the other samples. If an excessive number of samples are not satisfactory
(containing more than five agglomerates per sample), H0 should be rejected.
If we assume that the test statistic T be the total number of unsatisfactory

samples, then T has the binomial distribution with parameters p and n. Since

n= 10, p=0.05, from the binomial distribution

T

r Mp'-p)™!

Pr(T < 2) :

1A

0.9885

and therefore

P(T > 2) = 0.0115.
The set of points in the sample space which correspond to values of T greater
than 2 is called the critical region. Because the probability of locating a
point In the critical realon when Hj is true is very small {<0.0115), the

decision rule is: reject H, if the observed outcome is in the critical region

0

(when T > 2); otherwise, accept Hy-



2+16

v

2.3.5 Test of Significance for Determining when
Equilibrium State Is Reached

hfter a certaln period of time, further effort spent in the mixing may
not !hbrovg it significantly. Let X|» e+, X Fepresent values of certain
forms of the degree of mixedness at times Epy eoes toy respectively. When
equilibrium appears to have been reached the test of trend can be used to
determine if equilibrium indeed has been reached. |[f there is a trend, the
equilibrium state obviously has not been reached. The nonparametric tests
available for testing trend are the Cox and Stuart test, the Daniel test, runs

test, sign test, Spearman's p, and Kendall 7.

2.3.6 Test of Significance of Segregation

Numerous definitions for the degree of mixedness to measure the quality
of a mixture have been proposed (Fan, et al., 1970). They are generally based
on the standard deviation or the variance of the composition of samples taken
from different locations in the mixture. They can also be used as measures of
the degree of seqregation.

To detect the degree of segregation, a mixture can be divided into two
regions (not necessarily of equal volume). A number of samples is withdrawn
from each region. A test is now applied to determine whether the difference
between the means of the two regions could have occurred by chance or whether
there is evidence of segregation. Suppose region | contains n samples, and
let the mean and standard deviation be ;1 and Sy* Similarly, for region 2,
let there be n, samples with mean §2 and standard deviation Sy-

According to Williams and Birks (1965), the ratio of the difference
between two means to the standard error of the difference, R, can be considered

as a measure of segregation:
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i
A
/(F +-a-
1 2
where
- (2 -2
5 Z(x] x]) + E(xz x2)
5= n, +n, = 2
I 2
Note that the variance of ;I from region | is szfnl, and that of ;2 is 52/n2.
The variance of the difference between the means is, therefore, 52 %- + %-).
| 2

Such a measure of the segregation may also be called the segregation index,
which can be determined by performing the student's t-test.
A new index of segregation based on the test of means in nonparametric

statistics is proposed in the following example.

EXAMPLE 4. Test of Significance of Segregation

Richards (1966) employed William and Birks' (1965) segregation index in
his study of segregation according to size of a heap formed by pouring between
two vertical plates. The heap is shown in Fig. 2, where the numbers represent
the weight percentage of fine particles. The sampling procedure is accomp-
lished by dividing the heap into several small regions, and then withdrawing a
sample from the center of each region. Each sample may be analyzed for the
percentage composition of fine particles. The sampling results shown In Fig.
2 may be further divided into a central region, region 1, and two outer
regions, region 2. Two outer regions may be treated together as one region
because of symmetry.

The Mann-Whitney test for significance between the two sample means Is

H0 : E(X) = E(Y), l.e., the mean concentrations in the outer and

Inner regions are equal.
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versus

H E(X) # E(Y), i.e., they are not equal.

The calcul?ted test statistic is 16.0 at level of significance a = 0.10, Hg is
rejected. The critical level is
& = 0.000
The result indicates very marked segregation. This result of the non-
parametric test is consistent with the conclusion found by Richards (1966)

using the Williams and Birks' (1965) criterion mentioned above. From Fig. 2,

X, = 3.4%, X, = b1.3%

n, = 16, n, = 12

Hence
52 - 224 + 1934 = 83
16 + 12 - 2
and
R=63-1|""}I-3 ’=6.3

9.1 (17 + 13)

Assuming R is distributed identically with student t-distribution, R > 3 indi-
cates evidence of segregation with 99% certainty. Actually, thé test statis-
tic of the Mann-Whitney test can be used as an index of segregation without
assuming that the population is a normal distribution. Therefore, according
to this nonparametric statistical method, this index of segregation is

= e o nin+l)
T S —5
where

n
S= R(XI)
i=]

n = sample size of population |

The Index T may be found by first finding S, the sum of the ranks
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assigned to the observation from population one. Thus, in conjunction, the
table of the quantiles of the Mann-Whitney test statistic, the degree of segre-
gation can be indicated by this proposed index of segregation. Furthermore,
if enough experimental data are avallable, the quality of the mixture can be
graded as poor, fair, good, or excellent, according to the distribution of this

statistic.

2.4 CONCLUSIONS

Applicability of the nonparametric statistical tests in the field of
solids mixing is demonstrated in this report. The advantages of the nonpara-
metric test are numerous. First, it uses a simple model. Second, it involves
less computational effort, and, therefore, is easier and quicker to apply than
the parametric statistics tests. Third, much of the theory behind the non-
parametric method may be developed rigorously, using simple mathematics.

The procedure and theory behind each test mentioned in this paper are
available in standard texts on nonparametric statistics {Conover, 1971; Brad-
ley, 1968). When the sample size is large, a nonparametric statistical com-
puter package, the IBM 360 NonPAR, written in FORTRAN IV (Moe and Kemp, 1971)
can be employed instead of a calculator or hand calculation.

The nonparametric tests can be applied to test a variety of hypotheses
other than those which are considered in this work. For convenience, the
major nonparametric statistical tests are summarized on the following pages.

(1) Tests of goodness of fit:

Chi-square test, Kolmogrov test and Cramer-Von Mises test for
specified populations. Lilliefors test for unspecified normal
distribution.

(2) Tests for independence between classification of same data:



(3)

(4)

(5)

(6)

(7)

(8)

2=21

Three Chi-square tests with technically different Ho's.

Tests for independence between two variates X, and Yt

Bell-Doksum test, Olmstead-Tukey test

‘Tests for linear correlation:

Spearman's p and Kendall's T.

Test for trends:

With univariate sample: Cox and Stuart test

With bivariate.sample: Spearman's p and Kendall's r.

One sample tests on paired observations X and e

Wilcoxon signed ranks test, Sign test. They can test Ho's true

(xi - yi) =0, <0, >0o0r E(X) =, <, or > E(Y).

Tests for specified median # 0:

Walsh test (This test has the curious feature that the test

statistic changes for each n & a)

Quantile test with p* = 0.5 & x* #0

Two-sample tests for equalities of means of F (x) and G (x).

Wilcoxon-Mann-Whitney U test

Sequential W-H-W test (Alling)

Smirnov two-sample test (general)

Median test (assuming symmetry of distributions)

Cramer-Von Mises two-sample test

Terry-toeffding direct normal scores test (uses expected values of
N(O, 1), variates of rank R)

Van der Waerden's inverse normal score test (uses ¢-] (%éTJ) f rom
the normal distribution table.

Wald-Wol fowitz runs test

Tukey's quick test
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(9) Two-sample tests for equality of dispersion:
Mood's W-test
Klotz inverse normal scores test

" Siegel-Tukey test

(10) Tests for means corresponding to a one-way analysis of variance:
Kruskal-Wallis test
Bell-Boksum test
k=sample slipﬁage test
Birbaum-Hall 3-sample test
k-sample Smirnov test

(11) Tests for means corresponding to a two-way analysis of variance:
Friedman test: 1 observation per cell
Friedman test: m observations per cell
Bell-Doksum test
Cochran's test when data are 0's and 1's
Extended Median test

(12) Confidence bands or intervals
Kolmogrov confidence band on distribution function F(x)
C. I. (confidence interval) on p-th Quantile test, Xo#
C. I. on median test using Wilcoxon signed rank statistic
C. I. on median test using Walsh tables
C. |I. on difference between two means
C. I. on difference between two means using the Tukey's quick

test statistic

(13) Tolerance limits:
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x(o)fx(')c e yiF) o x("""+1)<...5x("+”

(=) (+)
(1 - o) confidence that fraction q of population lies within

limit determined by sample.
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CHAPTER 111

DISTRIBUTION OF CONTACT NUMBER—
A MIXING INDEX FOR SOLIDS MIXING
3.1 INTRODUCTION

Most of the availaSle definitions of the degree of mixedness which
specifies homogeneity or distribution of the composition in a solid mixture
are based on the variance of the concentration of a certain component among
constant volume spot samples. This neglects the distribution of particles
and packing inside the spot sample, l.e., it assumes that a spot sample is
completely mixed. For solid-solid chemical reaction, the rate of reaction is
proportional to the contact points or area among particles. Thus a defini-
tion of the degree of mixedness based on the number of contact points appears
to be of practical significance.

The contact number is the number of points of contact between two dif-
ferent types of particles for one key particle, a particle species which is
selected as a reference. Smith, et al. (1929) determined the relationship
between the porosity and the average number of contact points among particles.
Selection of the key component simplifies the sampling procedure and broadens
Its applications in solids mixing, heterogeneous chemical reaction and other
operations involving contact between different solid phases.

This chapter is concerned with a computer simulation of the distribution
of the contact number for the binary system at the completely mixed state.
Results were obtained for the two dimensional cubic and hexagonal packing

arrangements at different concentrations of the key component.
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3.2 DISTRIBUTION OF CONTACT NUMBER
Let Ai (i = 0, 1) denote the i-th component in a binary mixture with
reqular packing arrangement. When a particle of component Aj Is taken ran-
domly from'a mixture, the number of all particles which surround and are in
contact with that particular sampled particle of component Aj is called the
total coordination number, denoted by nj.

*
arrangement, nj is constant. Such a sampling is called the coordination num-

For a mixture with regularly packed

y
ber sampling of size n (Akao, et al., 1971). |If i (i) is the coordination
number contributed by component AI given that the sampled particle is com-

ponent Aj, it can be seen that

1

%
I"I-i= IEO Ci(j)'zcl(j) +C0(j) . _]==0, 1

For a binary mixture with the regularly packed arrangement, we have

Ifi#j (i, j=0,1), i () is specially called the contact number
between particles of components Ai and Aj. If any particle of Fomponent AO
is specially selected as the sampled particle, it is called the key particle
and component AO is called the key component.

Let the probability of the contact number be CI(O)' when the key com-

ponent is AO’ be PI(O)' Then

where HI is the random variable which represents the contact number and Y is
the random variable which can elther be AO or A] depending on the selection
of the key particle.

M, Is distributed binomially at the completely mixed state, i.e.,
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%

%* o
y x 1O _ )" T 100) - (1)

Preny ™ O

where X is the concentration of component |1 in the mixture. The theoretlical

mean and variance of the binomial distribution, respectively, are known to be
E (c () = n X (2)
CI(O) =N
V (e, y) = 0 X(1-X) (3)
Syig)s = O 3

If we disregard the boundary, we have

PriM, =0]Y=A} =1 (4)
for a completely segregated state. Hence

E (Cl(O}) = 0 (5)

V ey = 0 (6)

3.3 DEGREE OF MIXEDNESS BASED ON CONTACT NUMBER

A mixing index has traditionally been in terms of the variances of spot
samples. Since the variance is a macroscopic measure, it provides little
information with regard to microscopic characteristics of a mixture. Such
information is required in analyzing the compaction characteristics of the
mixture or determining the rate of a reaction undergoing inside the mixture.

By comparing the sample mean of the contact number to the scale between
the two extremes, i.e., the mean contact number of a completely mixed state
and that of a completely segregated state, a measure of degree of mixedness

can be defined as:
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E](O) B [E(CI(O))]seg
M= (7)
[E(CI(U))TmIX - [E(c](o))]seg

where EI(O) is the mean contact number from samples. We have then
M = 0 for the completely segregated state.

M = 1 for the completely mixed state.

3.4 COMPUTER SIMULATION

The distribution of the contact number at the completely mixed state
can be simulated on a computer to see the significance of the proposed defini-
tion of the degree of mixedness. Let W(i), i =1, 2, ..., n* denote the [-th
position of a particle which is in contact with the sampled particle in the
regularly packed arrangement. W(0) is the position for the sampled particle.
The cubic and hexagonal packed arrangements of particles are shown, respec-
tively, in Figs. 1 and 2. Random numbers with a uniform distribution are
generated to simulate a binary component system. Numbers O through 4 repre-

sent component A_. and numbers 5 through 9 component AI. A sequence of random

0
numbers with (n*+l) digits corresponds to the particles at positions W(0),
" g Fe— W(n*). Suppose that a number with five digits, 31829, is generated
for a two dimensional cubic arrangement which has a coordination number of L.
Then the particles at positions W(0), W(1), and W(3) are of component Ay, and
particles at positions W(2) and W(L4) are of component Al' Consequently the
contact number for this key particle is C](O) = 2,

The contact number distribution at the completely segregated state is
obviously a one-point distribution given by Eq. (4). The numerical experiment

was carried out only for the completely mixed state. To attain the numerical

stability, two thousand each of five and seven digital random numbers were
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Fig. 2.

Two dimensional

hexagonal packing.
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generated. The computer program for this simulation Is shown In Appendix 3.8.
The random number was generated by the Subroutine RANDU in IBM Programmer's
Manual (1967) which can produce 229 terms before repeating. The method used

in this subroutine is the power-residue method.

3.5 RESULTS AND DISCUSSION

The relative frequencies of the contact number at different concentra-
tions are plotted in Figs. 3 through 5, and tabulated in TABLE 1 for the two
dimensional cubic packing arrangement and those for the two dimensional hexa-
gonal packing arrangement in Figs. 6 through 8 and TABLE 2. The theoretical
predicted values of those frequencies based on the binomial distribution are
also plotted on these figures for comparison. It can be seen that the simu-
lated values are in fairly good agreement with the theoretical values.

The linear correlations of the expected value between the sample mean of
the contact number and the concentration and the parabolic correlations
between the sample variance and the concentration for the two dimensional
cubic packing arrangement are shown, respectively, in Figs. 9 and 10. Similar
results for the two dimensional hexagonal packipg are shown in Figs. 11 and 12.

Values of the degree of mixedness defined in Eq. (7) are computed from
the results of the simulation and are tabulated in TABLE 2 for different con-
centrations. We can see that the simulated value of the degree of mixedness
is reasonably close to the theoretical value of 1.

The distribution of the mean contact number according to the binomial
distribution is approximately normal when the sample size is large (Fisz,
1963); therefore, the t-test can be employed to examine if the sample mean is
not significantly different from the population mean, which is theoretically

the mean of the binomial distrlibution. For this purpose, let
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Hy E(CI(O)) = E(CI(O))' sample mean = population mean

H E(CI(O)) # E(CI(O))' sample mean # population mean.

|
Results of the test are summarized in TABLE 3. H0 is accepted at the 5% sig-

nificance level.

3.6 CONCLUDING REMARKS

In this chapter concepts of the contact and coordination numbers and a
definition of the degree of mixedness based on these concepts are introduced.
These concepts and definition are useful in understanding the microscopic and
geometric characteristics of solid mixtures, and in analyzing operations and
processes involving such mixtures. Results of the computer simulation for the
contact number distribution under the completely mixed state agree well with
the theoretical prediction, both for the two dimensional cubic and hexagonal

packing arrangements at different concentrations of the key component.
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3.8 APPENDIX
Computer Program for Simulating the Contact Number Distribution

DD N DLH N

(%)

999

990

110

LL3

117

DIMENSTON 17(2090),TAL12000)
READ (5,1) IX
FORMAT (15)

DO 3 I=1,20C0
IY=1X*655329
IF(IY)E.’!CH'S
TY=1Y+2147483647+1
[X=1Y¥

YFL=TY
YFL=YFL*.4655613F-9
[TY=YFL#*x1O%*5
[ZeI)y=1y

CONTINUE

WRITE (6,99G)

FORMAT {1¥,435H2000 RANDOM MNUMBERS ARE AS FOLLOWS: /)

WRITE (6,7) (172(1),7=1,2000)
FORMAT (1X,20(1X,15))
DN 99 KAW=1,5

ND=0

N1=0

N2=0

N3=0

N4=0

MO)=0

M1=0

M2=0

M3=0

M4=0

WRITE (6,4,990) KAW

FOEMAT (1X, TEHSTMNLATION OF DISTRIBUTION OF CONTACT NUMBER OF COM

ILETELY MIXED STATE AT X=,11,2H0%)
D) 8 1I=1,2000

IPL=1Z2(1)/10000
IP2=(I1Z(1)=1P1*10C00) /1000
IP3=(T1Z2(T)=1P1*x1000ON0-TP2%1000)/10N0
IP4&=({TZ2(1)=TPL1=10QN0=IP2%x1GOC-TP3#103) /10
[P5=TZ(1)=-TIP1*10000=1P2%1000-TP2%100-TP4*10
KAWI=10-KAW

DO 9 J=1,KAWY

ITF(IP4=(J=1)) 9,411,9

CONTINUF

MIJM1=0

MUM2=0

MUM3I=0

MM 4= 0

MIIME=(

MUMA=

KAW2=KAN1+]

N 110 J=KAW2,10

IF (IP1-(J=-1)) 110,112,110
CONTINOF

MUMI=MUYT+]

N 113 J=KAW2,10

IF (IP2=(J=-1)) 113,104,113
COMNTTMUFE

MUM2=MUIMD 4 ]

N 117 J=KAW?2,10

T (IP3=(Jd=1Y1 117,118,117
CANTINUF



59 MUM3=MUMI+ 1 3-24
60 118 DN 120 J=KAW2,10

61 1IF (IPS5—-(J-1)1) 120,121,120
62 120 CONTINUF
62 MUMG=MUM 4+ ]
64 121 TAL(TI)=MUML+MUMZ2 +MUIMI+MUM4
65 L=TAL(T)+1
66 IAL(I)=TAL(T)+10
67 GO TO (BO4BR5:9C;95,4964),L
68 80 MO=MO+1
69 GO TN 8
70 85 M1=M1+1
71 GO TO 8
12 G0 M2=M2+1
73 GO TO 8
T4 95 M3=M3+]
15 GO TO 8
16 96 M4=M4+1
17 GO TN 8
78 11 NUM1=0
79 NUM2=0
B0 MIM3=0
81 NIJM4 =0
B2 N 10 J=14KAW1
B2 IF(IP1-(J-1)) 10,12,10
B4 10 CAONTINUE
85 NUM1I=NUML+1
A& 12 Hn 13 J=11KA'~'11
87 IFCIPZ-(J-1)) 13,14,13
88 13 CONTTNUE
A9 MUM2=NUM2+1
90 14 DO 17 J=1,KAWL
91 IF(IP4=-(J-1)) 17,418,417
9z 17 CONTINUE
G3 NIIM3=NUJM3+ ]
94 18 DO 20 J=1,KAW1
95 TFOIPS=(J=11) 20,21,20
96 20 COMNTINUE
97 MUMG=N'IM4+]
98 21 TAL(OT)=NUML+NUMZ2+NUMI+NUM4
99 K=TA1(T)+1
100 GD TO {304404,50460,70),K
101 30 NO=NO+1
1072 G TO 8
103 40 MN1=N1+1
104 G TO 9
105 50 N2=N2+1
104 60 TD 8
107 60 N3=M3+1
108 GO TN 8
109 T0 N&=MN4+]1
110 A CONTINUF
111 WRITE (64,1901) (TAL(T),T7=1,2000)
112 1001 FORMAT (1X,27°04%,12))
112 MT=MNO+N1 N2 +N3 +84
114 FMNO=NOQ
116 FNL=N1
116 FNZ2=N2
117 FNA=N3

117 FM4=N4



119 FNT=NT 3-25
120 FRACNO=FNO/FNT

121 FRACNLI=FNY/FNT

122 FRACNZ=FN2/FNT

123 FRACM3=FN3/FENT

124 FRACN4=FN4/FNT

125 FRACMT=FRACNO+FRACII1I+FRACNZ+FRPACN3+FRACN4

126 NFO=NQ*0

127 NF1=N1%*1

128 NF2=N2*2

129 NFE3I=N3*3

130 NF4=N4*4

131 NFET=MNFO+NFL+NF2+NF3+NF4

132 NF20=N0®= Q%2

133 NF21=N1"*1%x%2

134 NF22=N2%2#:x2

135 NF23=N3s3%=xp

136 NFE24=N§x4k=xD

137 NF2T=NF20+NF21+NF22+NF23+NF24

138 WRITE (6,1002) ;

139 1002 FORMAT {10X,5HAL(0) 55X IHF¢S5X 3 THAL(O)*F 45X, IOHAL(O ) k%23 F 55X, THF/TC
2TAL)

140 WR2RITE (64+20032) NQO,MFO,NF2Q,FRACNQO

141 1C073 FORMAT (lZXV1f|393X1I‘f&'QX114!10X91515X1F806]

142 WRITE (6,1004) M1 NF1,NF21,FRACN]

143 1004 FORMAT (12X41H1 43X, T4,38XyT4,10X,15,45X4FBa6)

144 WRITE (A41005) N24MF2:NF22,FRACNZ2

145 1008 FNRMAT (12X 1H2+3XsT144BXyT4,10X,15,5X,FB.6)

146 WRITE (641C06) N3ZNF3,NF234FRACNS

147 1006 FORMAT (12X31H343X,T1448BX,3T14,10X,15,5X,F8.6)

148 WRITE (641007) N4 MNF4yNF24,FRACNSG

149 1007 FORMAT (12%31H4,3X%314,8X,T14,10%,75,5%X,F8.6)

150 WRITE (6,1008) MNTGNFT,NF2T FEACKNT

151 1008 FORMAT (BX6HTNTAL,3X 3 T14,8X,T4410X,1545%X,:FB.5)

152 FMET=NFT

1532 FNF2T=NF2T

154 PMEANO=FNFT/FNT

155 VARO=FNF2T-RME AN &2

156 WRITE (6,800} RMEANO,VAKOQO

157 BOD FORMAT (10X,6H MTAN=,FI .6, 9HVARTANCE=,F9.6//)

158 MT=MD+MI +M2+M3+M4

159 FMO=MO

160 FMl=M]

161 EMP2=MD

162 FM3=M3

163 FM4=Mg

164 FMT=MT

165 FRACMO=FMO/FMT

166 FRACMYI=FNML/FMT

167 FRACMZ2=FN2/FMT

168 FRACMZ=FMI/FMT

169 FRACM4G=FM4Y JEMT

170 FRACMT=TRACMAN+FRACMI+FPACM2+FPACHMIA+FRACMSL

171 MEQ=MO=xD

172 ME1=M]%]

173 ME2=MP %2

174 MEF3I=MAxT

175 MO 4 =My s

176 MET=MFO+MELTHMEF 2 ¢MT T4 ME 4

177 ME20=MORO% %D



178 MF21=M1% 1442 3-26
179 MF22=M2#2%% D

180 ME23=M3 ke )

181 ME24=Mbgufhen

182 ME2T=MF20+MFZ1+MF22+MFZ23+MF24

1083 WRITE (64,1010}

184 1010 FNPMAT (10X,5HAL(L1) 45X ¢ IHF ¢SX g THAL(LY " F 55X, LOHAL( L) %¥x2%F 68X, THF/TC
3TAL) '

185 WRTITE (641003) MOyMFO,NMF20,FRPACNO

1RA WRITE (641004) M1 ,MFELMP21,FRACM]L

107 WRITE (6,1005) M2,MF2,MF22FRACY2

1A8 WRITE (64,1N006) M3 MF3IMEZ3,FRACNKT

189 WRTITE (641007) M4 MF4MF24FPACMY

190 WRITE (6,1008) MT MFT ME2T,FRACNMT

191 FMFT=MFT

192 EME2T=MF2T

193 RUEANL=FMFT/FMT

194 VAR]I=FMF2T-RMEANL x*2

19% WRTITE (A,8702) RMEAN]T,VARI]

196 99 CONTINUF

197 sSTNP

197 END



CHAPTER [V

CONTACT NUMBER AS AN INDEX OF RADIAL MIXING
IN THE MOTIONLESS MIXER
L,1 INTRODUCTION

Over thirty different mixing indexes In solids mixing have been reviewed
by Fan, et al. (1970). Most of these indexes are in terms of the variances of
some spot samples and some reference states of a mixture. The diversity of
the definitions of these Indexes is Indicative of the complexity of the mixing
process and the uncertainty of various concepts and notions in the field of
solids mixing. |t appears that these macroscopically and statistically defined
mixing indexes cannot provide a sufficiently deep insight into the microscopic
and geometric nature of a mixture.

In this chapter a new mixing index proposed by Akao, et al. (1973),
which is based on the number of contacts between different particles, was
applied to the analysis of radial mixing in a motionless mixer. Although axial
mixing in a motionless mixer has been extensively studied (Chen, g;_gl:, 1972,
1973a, 1973b), the only work on radial mixing is that by Chen, et al. (1971).
In their study a series of cross-sectional photographs were taken every inch
along the axis of the total sample jn the collector. The cross-sectional view
of the collector on each photograph was divided into four quadrants, with each
quadrant considered as a sample. In this work, instead of dividing into four
parts, each photograph was regarded as a sample. After counting all red and
white particles surrounding and in contact with each white particle, which was

selected as the key particle, the average contact and coordination numbers for
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each sample were calculated, and then the sample mean of the contact number
and that of the coordination number were employed to calculate the degree of
mixedness for the mixture in this collector. The relationship between the
mixing index (so calculated) and the number of helices in the mixer was

obtained.

k.2 THEORETICAL

Brothman, et al. (1949) and Coulson and Maitra (1950) used the measure
of the interfacial area between two phases of moving media as an index of
mixing. Instead of the contact area, the number of contact points among indi-
vidual particles in a mixture has been proposed by Akao, et al. (1973) as a
microscopic and geometric measure of the degree of mixedness.

Let Ai(i = 0, 1) denote the i-th component in a binary mixture with regu-
lar packing arrangement. When a particle of component Aj is taken randomly
from a mixture, the number of all particles which surround and are in contact
with that particular sampled particle of component Aj is called the total coor-
dination number, denoted by nj. For a regular packing mixture, n? is constant.
Such a sampling is called the coordination number sampling of size n? (Akao,
et al., 1971). If ci(j) is the coordlnation number contributed by component

Ai given that the sampled particle is component Aj’ it can be seen that

1

* L
g i £

= c](j) + cO(j) § j=0,1

* * *
For a binary mixture with regular packing arrangement, we have N, =Ny =n.

ifi#) (,j=0,1), € (y) is specifically called the contact number

between particles of components Ai and Aj. If any particle of component AO Is
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specifically selected as the sampled particle, it is called the key particle

and component A_ is called the key component.

0
Let the probability of the contact number be i (0)} when the key com-

ponent is AO’ be PI(D)' Then

PLio) = Pr M, = < (o) | Y =4y (1)

where H] is the random variable which represents the contact number and Y is

the random variable which can either be Ao or A] depending on the selection of

the key particle.
M, Is distributed binomially at the completely mixed state, I.e., (Akao,

et al., 1973)
P A 1 ) P s
Pr (M, = <1 (0) | v = Ay = (c1(0)) % (1 - Xx) 1(0) (2)

where X is the concentration of component 1 in the mixture. The theoretical

mean and variance of the binomial distribution, respectively, are known to be

E(cy () = 1 X (3)
V(e (o)) = N X (1-X) (4)

For a mixture at the completely segregated state (Akao, et al., 1973)

Pro(iy = cpgy [ ¥ =Ag) =1 (5)
and hence

E(cy o)) = O (6)

V(CI(O)) = 0 (7)

By comparing the mean contact number of any sample to the scale between

the two extremes, i.e., the mean contact number of the completely mixed state
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and that of the completely segregated state, a measure of the degree of mixed-

ness can be defined as

o) " IE (€1 (0))seq

M e
LE (CI(O))]mix - e (cl(O))]seg

(8)

where EI(O) is the mean contact number from spot samples. Substituting Egns.

(4) and (6) into Eq. (8), we have

Moe — (9)

Note that M takes the values between 0 and 1, but due to sampling fluctuation
or measurement error inherently involved in experiments, M may assume a value
slightly greater than | when a mixture is very close to the completely mixed
state.

Most of the conventional mixing indexes are based on the variance of
some spot samples. It is difficult to employ such mixing indexes which are
macroscopic and statistical in nature for elucidating the relationship between
the degree or extent of mixing and the structure of the resulting mixture.
Akao, et al. (1973) employed the definition given by Eq. (9) in their studies
of the mixing process and structure of mixtures; however, they considered only
regularly packed mixtures. The present study extends their work to irregularly

packed mixtures.

4.3 EXPERIMENTAL
The experimental setup originally employed by Chen, et al. (1971) is
shown in Fig. 1. HMotionless mixers with 1, 2, 4, 6, 8 and 12 helices were

used by them. Initlally, approximately equal quantities of white and red



— — —Feeder
— — Paper
—+ ———Mixers or plain tubes
-+ ———_Collector
Fig. I . Schematic diagram of experimental setup

( Chen et al., 1971 ) .



h-6

Lucite particles were loaded side by side in the feeder of a mixer. The par-
ticles passed through the mixer when the paper at the bottom of the feeder was
rapldly pulled out. The particles were accumulated in the collector. A
cross-sectional photograph was taken by a Polaroid camera every inch along the
collector. Each photograph was divided into four quandrants, with each quad-
rant considered as a sample. Luclte particles of 1/8-in. and 3/16-in. diame~
ters were used separately in two series of experiments.

in this study each photograph taken by Chen, et al. (1971) was considered
as a sample. White particles were selected as key particles, and all red par-
ticles surrounding and in contact with each white particle were counted to
determine the contact number. The white particles in the outermost layer of
each sample were neglected to eliminate the wall effect. Figure 2 shows one
of these samples. The number in each white circle designate the contact num-
ber for that key particle. Both white and red particles surrounding and in
contact with a white one were also counted to obtain the coordination number
for each key particle. The mean contact number and the mean coordination
number for each sample were calculated, respectively, by dividing the sum of
the contact numbers and the sum of the coordination numbers by the total num-
ber of key particles.

The degree of mixedness for each sample was calculated by Eq. (9). The
average value of the degrees of mixedness for the samples was considered to be
the degree of mixedness of the mixture in the collector. TABLES | and 2 sum-

marize the results.

4.4 RESULTS AND DISCUSSIONS
Figure 3 shows the values of the new mixing index obtained in this work

and the conventional mixing index obtained by Chen, et al. (1971) as functions



Fig. 2. Schematic diagram of cross-sectional sample .
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DEGREE OF MIXEDNESS VS, NUMBER OF HELICES
FOR MIXING 1/8" WHITE AND RED

TABLE 1

LUCITE PARTICLES

4-8

No. of - * m*
helices “1(0) i (without helices)

0 1.34 4,28 .602 4,28

0.5 1.58 .60 .665 k.26

1 1.62 k.31 .723 4.15

2 1.83 4,52 779 4. 28

3 1.95 k.61 813 b, 31

L 2.31 .59 .968 4,32

5 2:32 4,51 .989 4,27

8 2.39 4.39 . 047 .23

12 2,50 4,32 .13 4,25




b=

TABLE 2

DEGREE OF MIXEDNESS VS. NUMBER OF HELICES
FOR MIXING 3/16" WHITE AND RED
LUCITE PARTICLES

*

:ZiiZZS El(o) n” ” (wlthoutmhelices)
0 1.33 k.20 0.646 L, 20
0.5 1.56 4,57 0.697 k.25
1 1.59 4.35 0.746 .31
2 1.71 4 43 0.783 L.29
4 2.01 4,12 0.995 k.13
6 2.07 Lok 1.020 b2
8 2.12 h.10 1.055 4,08
12 2.37 b 45 1.087 h.27
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of the number of helices in the static mixer. The conventional mixing Index

is defined as (Chen, et al., 1971)

02
I = e
M 1 5 (10)
o
o
and
n
X (xi-x)2
2 i=1
] et (11)
where
02 = variance after mixing
2 . -
o, = variance before mixing

X, = composition of red particles in the I-th sample

X = overall composition of red particles

n = number of samples
Figure 3 indicates that both mixing indexes increased rapidly as the number of
helices increased to four. |t also shows that the mixture of the smaller
Lucite particles gave rise to higher values of the degree of mixedness than
that of the larger Lucite particles. However, the values of M are larger than
those of M' for both types of particles. Since the gradient of M with respect
to the number of helices is larger than that of M', M appears to be a more
sensitive index for the progress of the mixing than the conventional one.

Some of the values of the degree of mixedness in TABLES 1 and 2 are
slightly greater than 1. The t-test was employed to see if these values
deviate significantly from the theoretically possible maximum of 1. The
results, as shown in TABLE 3, Indicate that the values do not significantly

devlate from 1 with a 95% confidence interval, {.e., their deviations from 1



TABLE 3

RESULTS OF THE T-TEST ON SOME MIXING

INDICES GREATER THAN ONE

s No. of ~ _ Significant
Particles ael feas c‘(o) M t-value Gl
1/8" 12 2.50 1.113 0.8460 1.96
white and
red lucite 8 2.39 1.047 0.3548 1.96
12 2.37 1.087 0.6225 1.96
3/16"

white and 8 2.12 1.055 0.3799 1.96

red lucite
6 2.07 1.020 0.1410 1.96
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are due to the experimental error. For example, some of the sample photo-
graphs had fuzzy images and some cross-sections of the samples were not truly
two dimensional.

TABLE 4 shows the values of the void fraction and mean coordination
number of different kinds of packing determined by earlier researchers (Smith,
et al., 1929; Graton, et al., 1935; Bernal, et al., 1960). It is obvious that
the void fraction decreases when the mean coordination number increases.
Although the coordination number In the two dimensional cross-section was
counted in this work, intuitively such a relationship still exists.

The mean coordination numbers n* and m* for the mixture of 1/8-in.
Lucite particles are compared in TABLE 1, and those for the mixture of 3/16-
in. Lucite particles are compared in TABLE 2. The mean coordination number
of the mixture passed through a mixer is represented by n*, while m* repre-
sents that passed through an equivalent p!a}n tube with the same length and
diameter as the mixer. It can be seen that n* is consistently greater than
m* for both sizes of particles. This implies that the void fraction of the
mixture flowed through a mixer is less than that through plain tubes with the
same length as the mixer. In other words, the helices have the significant
effect of reducing the void fraction of the mixture. A more random arrange-
ment of particles usually brings about a more compact structure (Rose, et al.,
1965; Fuerstenau, et al., 1967).

To see if there is any variation of contact number in the axial direc-
tion, the variance for the contact numbers of samples taken along the collec-

tor was calculated as

02 L I=1 ’ (12)
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and

chk =

where

= variance of the contact number in the axial direction
c; = mean contact number in the I-th 1-in. sample

c* = mean contact number of the mixture in a collector

number of l-in. samples in a collector

3
fl

TABLE 5 shows this variance for different numbers of helices and sizes of
particles. HNo systematic correlations with the number of helices can be found
for both 3/16-in. and 1/8-in. Lucite particles.

Generally speaking, the mean coordination number indicates that the
packing of these mixtures is between the cubic and hexagonal packings. |f the
sampling procedure is performed three dimensionally, additional information on

the structure can be obtained.

4,5 CONCLUDING REMARKS

A microscopic and geometric mixing index which is based on the number of
contacts between two kinds of particles was employed to study radial mixing in
motionless mixers. |t appears that this mixing index is more effective in
differentiating the quality of mixtures than the conventional one. Studies of
this mixing index involving segregating materials are the subjects of further

investigation.
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TABLE 5

VARIANCE OF CONTACT NUMBER WITHIN THE SAMPLES
IN THE AXIAL DIRECTION OF THE COLLECTOR

No. of helices 3/16 in. particles 1/8 in. particles
1 0.0858363 0.016183
2 0.0573956 0.0232
4 0.1039 0.02948
6 0.201045 0.01181
8 0.108625 0.01034
12 0.145152 0.0574
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CHAPTER V

SCALE-UP PROCEDURES FOR BATCH MIXERS--
APPLICATION TO TUMBLING MIXERS
5.1 INTRODUCTION

Solids mixing is an operation for changing a non-uniform system of par-
ticulate materials into a uniform one. Recent reviews of the literature on
this subject (Fan, et al., 1970; Fan, et al., 1971; Fan, et al., 1972) indi-
cate that in spite of its importance in industry, the practice of the art and
experience still predominate in the design of mixers. While some works (Ster-
rett, 1959; Luterek and Cachia, 1971; Lynch and Ho, 1972) have been published
on the scale-up and design of solids mixers, generally applicable methodo-
logies and procedures have not yet been developed.

This chapter presents the results of studies on scale-up and design
procedures for tumbling mixers. This class of mixers has been widely employed
in practice, and the theory and mechanisms of mixing in such mixers have been
investigated by several researchers (Lloyd, 1967; Hogg, 1969; Yano, 1957;
Carley-Macaley, 1962). Therefore, considerable background information is
available for establishing scale-up and design procedures for this class of

mixers.

5.2 MECHANISHMS OF MIXING IN TUMBLING MIXERS
It is generally considered that mixIng of solid particles can proceed
through three principal mechanisms (Lacey, 1954): diffusion, convection, and

shear. Diffusive mixing refers to the redistribution of particles through the
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mixer as a result of random motion of Individual particles relative to one
another. Convective mixing refers to the transfer of a group of adjacent par-
ticles from one location to another In the mixture. Shear mixing is described
as the mechanism by which changes in the configuration of the components are
effected through the setting up of slipping planes within the mixture. Hogg
(1969) suggested that shear mixing should not be regarded as a fundamental
mixing mechanism and that actually, shear mixing is always accompanied by con-
vective mixing.

Although all three mechanisms occur to some extent in a tumbling mixer,
they vary in importance according to the loading scheme and the mixer type.
In drum mixers with end-to-end loading as shown in Fig. l.a, the diffusion
mechanism predominates. However, the convective and shear mechanisms predomi-
nate in drum mixers with side-by-side or layer-by-layer loading as shown res-
pectively in Figs. 1.b and l.c. Since a relatively small number of zones of
distinctly different concentrations separated by an appreciable distance
exists at the early stage of the mixing operation, convective mixing tends to
predominate in this stage (Makarov, 1971). In the later stage of the mixing
operation, the number of zones of different concentrations increases. There-
fore, the distances of separation of the zones become relatively small, and a
sufficiently random mixture is produced through the enhanced operation of the
diffusive mechanism. The shift in the predominating mechanism can be observed
in the variance versus time plot for a general tumbling mixer shown in Fig. 2.
In the region AB, the variance decreases rapidly, exhibiting the characteris=
tics of convective mixing. In the region BC and beyond, the change in the
variance is small, exhibiting the characteristics of diffusive mixing. Gener-
ally, the time required to complete the diffusive stage is much longer than

the time required to complete the convective stage. A tumbling mixer should
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Fig.l.a Drum mixer with end to end loading.
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Fig. .b Drum m'i-xer with layer by layer loading.
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Fig. l.c. Drum mixer with side by side loading.
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be designed so that mixing proceeds through an optimal combination of both
mechanisms., Reductlion of the time over which diffusion takes place will

generally decrease the mixing time.

5.3 SCALE-UP PROCEDURES

An important concept for scale-up Is the principle of similarity (John-
stone and Thring, 1957). |In scaling up a tumbling mixer or, for that matter,
any mixer, three types of similarity need be considered: geometric, kinematic
and dynamic.

Two systems are said to be geometrically similar when the ratios of the
linear dimensions of the prototype and scaled-up vessels are constant. For
example, if the ratios of diameters and lengths are equal for two drum mixers,
then they are geometrically similar. Kinematic similarity exists between two
systems of different sizes when, in addition to being geometrically similar,
the ratios of velocities between corresponding points in the two systems are
equal. Dynamic similarity exists between two systems of different sizes when,
in addition to being geometrically and kinematically similar, the ratios of
forces between corresponding points in the two systems are equa].

Since the similarity criteria are ratios of like quantities, they are
dimensionless. There are two general methods of arriving at them. Where the
differential equations that govern the behavior of the system are unknown, it
is possible to derive the similarity criteria by means of 'dimensional analy-
sis.'"" Where the differential equations governing a particular process are
known, the equations can be transformed into dimensionless form to recover the
similarity relations from the parameters in the resulting dimensionless equa-

tion. This procedure may be termed 'normalization."

The classical principle of similarity can be expressed by an equation of
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the form
A=f(B,C, D, ...) (1)
where a dimensionless group A is a function of other dimensionless groups B,
C, D, etc.  Although the Froude number has been proposed as a criterion of the
dynamic similarity in scaling up a tumbling mixer (Luterek and Cachia, 1971;
Weidenbaum, 1958), the principle has not been extensively applied to the
study of solids mixing. Application of the two procedures to the scale-up of
a tumbling mixer is given'below.
5.3.1 Derivation of Similarity Criterion
with Governing Equation Unknown
Motion of the particulate material being mixed by tumbling in a mixer is
extremely complicated and i; is difficult, if not impossible, to formulate the
equation of motion governing such a system. When the differential equations
that govern the behavior of the system are unknown, but all the significant
variables which would influence the characteristics of the particle motion are
known, it is possible to derive the similarity criteria by means of dimensional
analysis, i.e., equation (1) can be derived by applying Buckingham's theorem
of dimensional analysis to the system considered. Buckingham's theorem may be
stated as follows (Buckingham, 1914; Buckingham, 1915):
1. The solution to every dimensionally homogeneous physical equation
has the form
¢(ﬂ], Tyy o = ) =0
where “l' Tos o o represent a complete set of dimensionless groups
of the variables and dimensional constants in the equation.
2. If an equation contains n separate variables and dimens}onal con-
stants, and these are gliven dimensional formulas in terms of m pri-

mary quantities, then the number of dimensionless groups in a com-
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plete set is (n-m).

An application of this theorem to the mixing of nonsegregation material
of similar physical properties with the exception of color in tumbling mixers
gives (see Appendix 5.10.)

2

f(N d » KE ’ i ’ J’ g ) =0 (2)
eff

w34, b eFf

The significant variables which appear in this expression are

d = rotating radlius of the mixer
g = gravitational acceleration
J = fraction of volume loaded by particles

K = mobility coefficient of the particles

L = effective length of the mixer
eff

N = rotational speed of the mixer

P = power needed to drive the mixer

t = mixing time

p = true density of the particle

Regardless of the type of tumbling mixers, including drum mixers, V-type
mixers, and double cone mixers, d is defined as the rotating radius as shown

in Figs. l.a through 1.gq. The effective length, L is different for dif-

eff’
ferent loading modes of the material as well as for different mixer geometries.
The effective lengths of various mixers are shown in Figs. l.a to l.g. Quan-
titatively, the longer the effective length, the longer the mixing time needed
to bring together the components which were originally separated. The reason

for defining the effective length as shown in Figs. l.a to l.g is to unify the

scale-up procedure for the system of tumbling mixers.

An Investigation of the relationship between the varlance of the mixture
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Fig. |.f. Double cone mixer with layer by
layer loading.
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and time of mixing nonsegregating materfal in tumbling mixers reveals that
the variance decreases monotonically at the early stage of mixing. A semi-

logarithmic plot of 02 as a function of time generally gives rise to a suffi-
]
cient linear relationship and, therefore, the mobility coefficient can be

defined from the slope of such a linear relationship.
The time required for obtaining a deslirable degree of mixedness is pro-

portional to the square of the effective Iength,'Leff. Thus, the slope of a

K

semi=-logarithmic plot can be taken as and the mobility coefficient,

2
(Leff)

K, can be recovered from the value of the slope.

For a geometrically similar system, T is constant, and thus eq. (2)

eff
can be reduced to
2 '
FEL, —Ho, S 0 =0 (3)
(Leff) N dp

Note that the Reynolds number which plays a prominent role in fluid mechanics
is absent in this expression because the stress transmitted by granular media

is independent of the rate of strain, i.e., they possess no property corres-
2
ponding to viscosity. However, the Froude number, Hai-, which arises fre-

quently in dealing with bodies of liquid with free surfaces is present. The
Froude number is the ratio of the centrifugal force to the gravity force, and

it can be a criterion for the dynamic similarity for a mixer. The dimension-

—"_53;5 , 1s the criterion for kinematic similarity. This

(Loee

dimensionless number must be used to calculate the mixing time required to

less mixing time,

attain a desirable state of mixedness.
If we assume that the fraction of volume loaded by particles, J, is con-

stant, then eq. (3) can be simplified as
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2
f(Ngd , —2t P =0 (4)

2 35
(Leff)

By letting the Power number, _§B§_ , be an Independent variable, equation (4)
N-d”p

can be written as

2
s =gt K (5)
Hd%p (Lege)

5.3.2 Derivation of Similarity Criterion
with Governing Equations Known

Where the differential equation governing a particular process Is known,
it is relatively simple to transform the equation into dimensionless analysis.
Such an example is a horizontal drum mixer rotating about its own axis with
end-to-end loading, as shown in Fig. l.a. For this mixer, the velocity of
particles due to its rotation has no component parallel to the mixer axis.
Each particle, as it rolls down the slope, has equal chances of deflecting to
either side on each encounter with another particle and therefore, the diffu-

sive mechanism predominates in the mixer. Thus we can write (Lacey, 1954):

Bc(;',:t) - acz(xét) (6)
X
where
¢ = concentration of one constituent in the mixer
D = diffusion coefficient
t = mixing time

x = coordinate of distance along the mixer axis
Equation (6) can be solved subject to initial and boundary conditions

(Hogg, et al., 1966; Cahn, 1966)
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c(x,0) = 0, -5 <x <0
= |, 0 <x < %
dc(x,t)
ax = 0
x = -L/2
cx,t)
X = 0
x = +L/2

The resulting expression is

1,2 i .
c(x,t) 5+ ;-kil ST XP [

'2([\ = l)ﬂth ] "
LZ

Sin[(Zk - ])TTX]

L (7)

The measured variance 02 of particles within the bed at any time t is given by

L/2
) =2 s
0

[c(x,t) - %]2dx (8)

Substitution of the general expression for c(x,t) given by equation (7) into

this equation and integration yield

2
02('__) &= ?...... 5 ] exp [_ 2(2'( = ])‘IT Dt] (9)

a k=l (2k - 1)? L2

which simpliflies to



2
0% (t) = —= exp L (10)
“2 L2

with the exception of a very small t.
It is obvious that for this mixer the mobility coefficient can be
directly related to the diffusion coefficient as

K =,%_ D (11)

and according to the definition of the effective length
b= 2L ce (12)
equation (10) can be written as

——EE—;EJ (13)

cz(t) = ~§- exp [-
K (Leff

It can be seen that lnuz is a linear function of t, except at very small t,
and the mobility coefficient, K, can be determined from the slope of this
linear relationship. As mentioned previously, K is varied for general tum-
bling mixers. Recall that the mobility coefficient is generally proportional

to the square of the effective length. Time required for mixing particles

with similar size and density in tumbling mixers to a desired degree of

mixedness can be characterized by the dimensionless number, it 7 s a5
(P
derived previously by dimensional analysis. ehE
The dimension form of equation (6) is
KC
[ = [5] (1)
L

Dividing both sides of equation (14) by [E?J glves the dimensionless equation



B [t

(tege)

] = constant (15)

2

This is in agreement with what was derived in the previous section.

5.3.3 Mixing Time and Power Requirement

Theoretically speaking, a generalized correlation which includes equa-
tion (3) or {5) can be established if sufficient experimental data exist.
However, it is not the case at this stage of development in the mixing tech-
nology. An alternative approach is to develop a stepwise scale-up procedure
in which only one similarity criterion is satisfied at each step.

In scale-up of solids mixers, usually two types of questions are mainly
raised. The first is "How long will it take to obtain a mixture with a
desired degree of mixedness?'' The second is ''How much power will be needed to
obtain such a mixture?"

Usually the mixing time and power requirement are treated separately

(Ho and Lynch, 1972). Since the dimensionless mixing time, -——JQL?E , is a
L ..)
criterion for the kinematic similarity, we have eff
Kt Kt
e = | (16)
E}eff)__ lab f}eff)__ plant

Such a similarity is maintained between the laboratory and plant scale of
similar geometries. The first question regarding mixing time can be answered
by means of equation (16).

Once the mixing time has been established, we should consider the power
requirement. For geometrically and kinematically similar systems, equation (5)

can be written as



2,0
P N™d, |
s 8 B (R (18)
N3d5p 0" g

Equation (18) answers the second question.

5.4 APPLICATION OF SCALE-UP PROCEDURES

This section describes how the general scale-up procedure developed in
the preceding section can be applied to each class of tumbling mixers. Since
the available information in mixing segregated materials is limited, all
applications given below are only concerned with mixing non-segregating

materials.

5.4.1 Drum Mixer

Mixing Time. For this class of mixers, and for all other classes of
tumbling mixers, equation (16} is applicable provided that the mobility coef-
ficient, K, can be correlated to the operating conditions such as the faction
of loading or rotational speed. Such correlations based on the available data
(Yano, 1957) are given in Fig. 3 for end-to-end loading. The mobility coeffi-

cient and the fraction of the critical rotational speed are correlated by the

equation
K = a, exp (aof) (19)
and
f = (20)
Vg/d

where f is the fraction of the critical rotational speed and defined by eq.

(20). The constants a, and a) can be estimated by means of a nonlinear least

square method (Draper and Smith, 1966) based on the following criterion.
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g 2
LI [(K)i, exp (K)i, cal] (21)

where

—

~

-
4

i jexp i-th experimental mobility coefficient

(K)i,cal = i-th calculated mobility coefficient

n = number of data points

Ti = sum of deviations
As a computing technique, a combination of the predictor-corrector method (a
numerical integration method) and the Gauss-Newton method (an iterative mini-
mum search technique), as proposed by Bard (1967), can be used. The values
of the parameters a, and a by means of the linearization least square method
as well as those determined by the nonlinear least square method are shown in
TABLE 1. Apparently no data has been published on side-by-side and Iayer-by-
layer loadings.

Power requirement. FfFor this class of mixers and for all other classes
of tumbling mixers, the correlation between the Power and Froude numbers given
by equation (18) can be used to estimate the power requirement.. A linear
relationship obtained by plotting the available data (Rose, 1954) is given in
Fig. 6. The constants o and ay in equation (18) are also estimated by the
linearization and nonlinear least square methods. Results of these estimations

for all types of drum mixers at different level of loadings are summarized in

TABLE 2.

5.4.2 V-Type Mixer
Mixing Time. For this class of mixers the correlation based on the
available data (Yano, et al., 1956; Yano, et al., 1957) is given in Fig. h.

Results of the parameter estimation are summarized in TABLE 3.
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TABLE 1

ESTIMATION OF PARAMETERS OF THE CORRELATIOI‘J.‘,r
BETWEEN THE MOBILITY COEFFICIENT AND THE
FRACTION OF THE CRITICAL ROTATIONAL
SPEED FOR DRUM MIXER WITH END-TO-END
LOADING (J = 0.135)

nonlinear parameter estimation
a, = 25.6

3.27 x 1072

1)
L}

g = (g [y ]2)1/2

Y

i, observed i, calculated

0.207

linear parameter estimation

a, = 28.6
a, = 2.00x10°
= - 2,1/2
o = (] [n Yi, observed ~ 1" Vi, salentatad)
= (0,172
1 - 2,1/2
g (I [Yi, observed Yi, calculated] )

1.234

kK = a, exp (aof)



TABLE 2

ESTIMATION OF PARAMETERS OF THE CORRELATIONT
BETWEEN THE POWER NUMBER AND THE
FROUDE NUMBER FOR DRUM MIXERS

5-23

Nonlinear parameter estimation

Linear parameter estimation

J ey o UT o o o clT
0.125 0.129 -1.2184  0.005095 131 -1.206 0234 .0138
0.25  0.152 =0.9658  0.1747 .14093  -0.97642 .253 .0208
0.375 0.1819 | -0.9889 0.3391 . 1987 -0.9767 . 362 .01394
0,50  0.2492  ~-0.9660  0.2289 .2407  -0.9707 1o . 00348
0.75  0.2039  -0.9458  0.07896 435 -0.98902 .092 . 12948

Yoy w2, |
m = a, (-—g—-)

a = (z [Yi, ob

o' = (J [Invy,

served Yi, calculated

, Oobserved

InY

}2)1/2

]2)1/2

i, observed



TABLE 3

ESTIMATION OF PARAMETERS OF THE CORRELATIONT
BETWEEN THE MOBILITY COEFFICIENT AND THE
FRACTION OF THE CRITICAL ROTATIONAL
SPEED FOR V-TYPE MIXER WITH
SIDE-BY-SIDE LOADING
(J = 0.135)

5-24

nonlinear parameter estimation

a, = 28.3
~}
3 = 1.37 x 10
G = _ ]2)1/2

(g [Yi, observed Yi, calculated

0.328

linear parameter estimation

ao = 29,2
a = 1.24 x ]0’]
i 2,1/2

o = (3 [n Yi, abseryed = P Yi, calculated] )

= 0.14]

1 _ 2,1/2

o = (Z [Yi, observed YI, calculated] )

= 1.28

1-
K= a exp (aof)
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coefficient and fraction of the
critical rotational speed of the
V-type mixer with side by side
loading, J=0.135 (Yano, et al., I957).
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Fig. 5. Correlation between mobility coefficient
and fraction of the critical rotational
speed of double cone mixer with side

by side loading, J=0.135 (Yano, et al., 1957).
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Power Requirement. The correlation between the Power and Froude num-
bers for this kind of mixers is shown In Fig. 7, which is based on the avall~
able data summarized in TABLE 7 (Patterson-Kelley Co., 1972). Note that the
available data are for the case of 75% loading (J = 0.75) only. The constants

o, and a, of the correlation are summarized In TABLE k4.

5.4.3 Double Cone Mixer

Mixing Time. For this class of mixers the correlation based on the
available data (Yano, et al., 1957) Is given in Fig. 5. The values of a, and
;l are summarized in TABLE 5.

Power Requirement. Figure 8 gives the correlation between the Power
and Froude numbers for double cone mixers based on the available data sum-
marized in TABLES 8 and 9 (Patterson-Kelley Co., 1972; Konline-Sanderson Co.,
1965). Note that the available data are for the case of 75% loading (J =

0.75) only. The constants @y and a, of the correlation given by equation (18)

are summarized in TABLE 6.

5.5 OTHER ASPECTS OF SCALE-UP PROCEDURES

Uthér significant aspects of the scale-up procedures which have not been
discussed so far are the optimal rotational speed, the average diameter of
particles, and the loading factor.

The optimal rotational speed at which the mixing time is shortest is
independent of the types of powders, but is dependent on the diameter of par-
ticles and size of mixers. A linear relationship exists between the optimal

rotational speed and the rotatlional radius (Kanise, 1960) as shown below.

(N_)2d
°op
g

= constant
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TABLE 4

ESTIMATION OF PARAMETERS OF THE CORRELATIONt
BETWEEN THE POWER NUMBER AND THE FROUDE
NUMBER FOR V-TYPE MIXERS

nonlinear parameter estimation

a, = 0.116

ay = 0.793

g =

(E [Yi, observed Yi, calculated

]2)1/2

linear parameter estimation

0.164

=]
n

0.716

=]
il

Q
n

(3 [in Y

0.245

el
L}

( Iy,

2.027

. observed = 0 Y

, observed - Yi. calculated

}2)1/2

i, calculated

]2)1/2

a
e " (ﬂfﬂ;
5 0" g

N3d p

|
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TABLE 5

ESTIMATION OF PARAMETERS OF THE CORRELATIONT
BETWEEN THE MOBILITY COEFFICIENT AND THE
FRACTION OF THE CRITICAL ROTATIONAL
SPEED FOR DOUBLE COME MIXERS WITH
SIDE-BY-SIDE LOADING
(J = 0.135)

nonlinear parameter estimation

a, = 16.6

a, = 1.7x10"
i

i, observed ) Yi, calculated

= 0.0453

linear parameter estimation

3 = 16.6
-1

a; = 1.59 x 10

= s 2.1/2
g (;[In Yi, observed b Yi, calcu]ated] )

= 0.0474

' = - 2,1/2

9 (Z[Yi, observed Yi, calculated] )

= 0.135
.i.
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TABLE 6

ESTIMATION OF PARAMETER OF THE CORRELATIONT
BETWEEN THE POWER NUMBER AND THE FROUDE
NUMBER FOR DOUBLE CONE MIXERS

nonl inear parameter estimation

1.25 x 1072

@ = 1.45

]2)1/2

Q
]

(X [YI, observed Yi, calculated

1.397

linear parameter estimation

a, = 2.53 x 10_2
@, = 1.29]
i} _ 2,172
o (@ [in Yi, observed ~ 1" Vi, caleulated] )
= 0.245
_ _ 2,1/2
o (E [Yi, observed Yi, calculated] )
= 9,433
(8]
top 5 (EEEJ :
NBdSD 0" g
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TABLE 7

SPECIFICATIONS OF STANDARD TWIN-SHELL MIXERS
(FROM THE CATALOG OF KOMLINE-SANDERSON
ENGINEERING CORPORATION)

Work. Cap. Blender Approx. Speed Max. Density Maximum Radius
Cu. Ft. Horsepower RPM (1b./ft.3) of Revolution
(inches)
1 1/4 30 165 14-1/8
2 1/3 25 90 17-5/8
3 3/ 25 135 21-3/4
5 3/h 25 65 25
10 2 20 75 31-1/2
20 3 16.5 65 37-1/4
30 3 14.7 55 Lk-1/2
Lo 5 13.7 65 k9
50 5 13.7 55 51-3/4
60 5 112 50 56
75 7-17/2 11 55 59-1/4
100 7-1/2 8.3 50 66-1/4
125 10 8.4 50 70

150 10 7 50 7h
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TABLE 8

SPECIFICATIONS OF STANDARD DOUBLE CONE MIXERS
(FROM THE CATALOG OF KOML INE-SANDERSON
ENGINEERING CORPORATION)

Work. Cap. Blender Approx. Speed Max. Dens%ty Max imum Raqius
Cu. Ft. Horsepower RPM (1b./ft.”) of Revolution
(inches)
1 3/4 Ly 400 14-1/2
2 3/4 40 170 16-5/8
3 3/4 35 110 19-1/8
5 ] 32 85 21-5/8
10 2 28.5 110 26
15 2 25 15 29-1/4
20 2 23 55 32-1/2
30 3 21.9 50 35-324
4o B 20.8 55 39~-1/4
50 7-1/2 18.75 75 L2-1/4
60 7-1/2 17.5 55 bh-3/4
73 7-1/2 15.75 50 48
100 10 14.8 50 53-3/h
125 15 13.7 55 57
150 15 12.75 50 60-1/2
200 20 11.2 50 67

300 25 8.25 50 76
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TABLE 9

SPECIFICATIONS OF STANDARD DOUBLE CONE MIXERS
(FROM THE CATALOG OF THE PATTERSON-
KELLY CO., INC.)

Work. Cap. Blender Approx. Speed Max. Densijty Maximum Radius
Cu. Ft. Horsepower RPM (1b./ft.3) of Revolution
(inches)
1 1/4 30 164 14-1/8
2 1/3 37 85 16-3/8
3 3/h 30 125 17-3/4
5 1 30 60 20-1/4
10 2 27 80 23-7/8
20 3 23 55 29-3/4
30 3 21.9 50 33-1/2
Lo 10 19.5 127 38-3/4
50 7-1/2 20 70 42
60 7-1/2 20 56 Lh-1/2
75 7-1/2 12 59 46
100 10 14,7 50 52-3/4
125 15 14 50 54=3 /L

150 15 7 50 58-3/4
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where

Nop = optimal rotational speed

d = rotational radius of the mixer
g = gravity acceleration
This relationship, together with available data (Kanise, 1960; Patterson-Kelley
Co., 1972) are plotted in Fig. 9.
When the rotational speed is optimal, the average diameter of particles
can be related to the Froude number for various tumbling mixers as shown in

Fig. 10 (Kanise, 1960). This implies that

b
- = 1
(N _)°d
= b i)
av 0 g
where
bo, bl = constants
- = average diameter of particles

if the rational radius is held constant, we have

No=d /2
op av

Any tumbling mixer attains the maximum degree of mixedness at a certain
loading factor which is defined as the ratio of the loading volume to the
volume of the mixer. In other words, below or above this loading, the degree
of mixedness which can be attained is less than the maximum. The optimum
powder loading factor which depends on the physical properties of the par-
ticles to be mixed and on many other factors, is usually about 30% volume of

the mixer (Yano, et al., 1957; Kanise, 1960).
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5.6 COST ESTIMATION

In estimating the cost of solids mixers, the following Items must be
considered: capital cost of the mixer, capital cost of necessary auxiliary
equipment, labor cost, and other operating costs such as power, depreciation,
and maintenance.

Approximate capital cost including the auxiliary equipment and power
requirements of V-type and double cone mixers are given in Figs. 11 and 12,
respectively. This information was obtained from the Patterson-Kelley Com-
pany of East Stroudsburg, Pennsylvania. The cost data is for August, 1972,
and is subject to change. Depreciation Is based on a 20-year working 1ife
plus 5% interest on capital. A working time of 2000 hours per year is assumed.
The cost of depreciation is calculated by the Sinking-fund method. The annual
depreciation cost may be expressed in the equation as follows (Peters and
Timmerhaus, 1968):

;
R= (v VS) }T-:f?ggrr
where
i = annual interest rate expressed as a fraction
R = uniform annual payments made at the end of each year (this
is the annual depreciation cost), dollars
V-V = total amount of the annuity accumulated in an estimated
service life of n years (original value of property minus
salvage value at end of service life), dollars.
The $4/hr. labor charge was assumed for operating both double cone and
V-type mixers. Power costs were estimated at 1£€/KWh. The power required can

be obtained from Figs. 11 and 12. TABLE 10 was prepared on the basis of costs

for mixing 2000 1bs per hour of a l:1 Justin and Reed wheat mixture. The
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TABLE 10

COSTS OF MIXING 1000 LBS. JUSTIN WHEAT
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AND 1000 LBS. REED WHEAT
V-type Double cone

Time to fill {min.) 1.5 1.5
Time to mix (min.) 15 10
Time to empty (min.) 1.5 1.5
Number of batches per hour 3.3 4.6
Mixer capacity required Weight (Ib; 2000 2000

(Justin and Reed Volume (ft2) i i

wheat mixture)
Mixer, capital cost (%) 5400 6100
Depreciation ($/hr) 0.733 0.828
Power ($/hr) 0.0283 0.0276
Labor {$/hr) 4.0 k.0
Unit cost ($/ton=hr) 1.475 1.057
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total cost is obviously dominated by the labor cost. Compared with the labor
cost, power and depreciation costs are Insignificant. The double cone mixer
shows a higher unit cost than the V-type mixer. Harnby (1968) suggested that
reducing the number of mixing cycles and having the mixer standing idle for a
proportion of Its time would reduce labor utilization considerably. Other
types of tumbling mixers, such as drum and rotating cube mixers, have not been
considered because of the limited Information available. Generally speaking,
the range of the unit cost of preparing a mixture in a tumbling mixer is
between 1 and 2 dollars/ton/hr. The cost information can be updated by taking
into account inflation in the recent year. An annual inflation factor of 6.5%

has been employed (Friedman, 1973).

5.7 EXAMPLES
The following examples illustrate the procedure to follow when using

the general scale-up procedures described previously.

EXAMPLE 1.

A drum mixer is 0.99 ft. in diameter and 1.245 feet in length, and
revolves at a speed of 15 r.p.m. Two lots of glass beads with true density
of 393 lb/ft3 and identical physical properties in all respects except for
differences in color are end-to-end loaded inside the mixer. The fraction of
loading is 0.135. Calculate the power needed to drive the drum mixer, and the
mixing time required to obtain a mixture with 62 = 0,0001.

At first we calculate

Nd _ (62.9)% x (0.99/2) 2

g 60% x 32.2

= 1,69 x 10

Since J = 0.135, we find from Fig. 6



P

NBdSp

= 5.10

Thus P is calculated as

o . 5:10 x (62.9)% x (0.99/2)° x 393 x 3.03 x 1077

60 x 60 x 60
For this mixer we have (see Fig. l.a)

L = ,6225 ft.

eff
d = 0.99 ft.
and

f = L 0.195
vg/d

From Fig. 3, we find
2
K= 14.7 ft"/hr.
Substitution of these values and

02 = 0.0001

into eq. (13) yields

0.0001 =% exp [ - lﬂ#Z—ELE-
T (.6625)

Thus the mixing time is

t =12.1 min.

EXAMPLE 2.

= .00208 h.p.
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To prepare 50-50 feed mixtures of bean screenings (density, 48 1bs/cu.

ft.) and ground sorghum (density, 48 lbs/cu.ft.), two geometrically similar

V-type mixers with side~-by~side loading are available.

following dimensions:

The mixers have the



Expe
d

befs

For both mixers, the fraction
0.135.
The mixing time to atta

tal mixer which revolves at 5

5-46

rimental Hixer Full Scale Mixer
]Oll 3-5I
an 2.8

of the loading, J, under operating condltion is

in the sample variance of 0,001 in the experimen-

r.p.m. is two minutes. Calculate the rotational

speed required by the full scale mixer to attain the same variance of the com-

position after 15 minutes of mixing.

estimate the unit cost ($/ton
bean screenings and ground so
For two geometrically s

Kt

(L

eff) (Leff

—E ) s

Also calculate the power requirement and
~hr) of this operation in mixing 250 1bs. each of
rghum in the full scale mixer.

imilar mixers, we have from equation (16)

)2]2

where subscript 1 represents the experimental mixer, and 2 the full scale

mixer. The fraction of the ¢

Ay
E, = 0.0842

I a7a

From Fig. 4 we obtain
2
K = 5.82 ft"/hr.

Therefore

and

ritical speed is calculated as

= 0.436
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From Fig. 4 we have

f2 = 0.11

Thus the rotational speed of the full scale mixer is

N2 = f2 ¢g7d2 = 3,19 r.p.m.

The volume of the material to be mixed is

500

g = 10.4 ftB

The working capacity (total inner volume) of the mixer is

10.4
0.135

= 77.1 ft3

From Fig. 11 we obtain the power requirement of 6.21 h.p. and the capital cost
of $6300. Following the procedure given in the previous section the itemized
costs shown in TABLE 11 were obtained. These costs have been converted to the

1973 basis using an annual inflatlon factor of 6.5%.

CONCLUDING REMARKS

While the scale-up and design procedures given here are applicable only
to one class of batch mixers, namely tumbling mixers, there is no doubt that
similar procedures can be developed for other classes of batch mixers. How-
ever, somewhat different data and additional information is required to

develop scale-up and design procedures for continuous mixers.



TABLE

11
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SPECIFICATIONS AND COST INFORMATION

FOR EXAMPLE 2

Weight of material (1b)
Volume of materials (ft
Volume of mixer (ft>)
Mixer, capital cost ($)
Depreciation (S$/hr)
Power ($/hr)

Labor ($/hr)

Unit cost (S$/ton-hr)

3)

500
10.4
77.1
6710
0.781
0.0273
4,26

1. 414
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5.10 APPENDIX
Derivation of Equation (2)
The technique of dimensional analysis is applied to the problem stated

as follows:

P=f(d, g, J, K, Leff, N, t, p) (A-1)

Since the fraction of loading is dimensionless itself, it is chosen as the
first dimensionless group

TT*BJ
Equation (A-1) is rewritten

P = fl(d’ g, K, Leff’ N, T, p) (A-2)

The total number of variables is eight in equation (A-2), and we have chosen
to express these in terms of three fundamental dimensions: length (L), mass
(M), and time (p). As is often the case, the maximum number of variables
which will not form a dimensionless group is equal to the number of fundamen-
tal dimensions. Thus, according to Buckingham's theorem, we would obtain five
dimensionless groups. The variables which we choose to be common to all
groups are the following: N, Leff’ and K. Each of the remaining five vari;
ables will in turn be added to the first three, to give the five groups. The

dimensionless groups are obtained as follows:
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'n6-=Nt

The last dimensionless group [s the total number of revolutions of the mixer
during the period, t, of the mixing operation. It Is taken into account by

other dimensionless groups. Thus, the final equation obtalned is

2
N™d Kt P d
f( b 2’ 35 lJ‘L )=0
) N“d"p eff

(Lets
As In all cases where dimensional analysis is used, it is not certain that
the effects are completely described by the variables chosen. For example,
the friction force between surfaces of particles and the cylinder has not

been included.



CHAPTER VI
SUMMARY AND RECOMMENDATIONS

The major results of this study are summarized below.
1) The nonparametric test was successfully introduced to the field of solids
mixing. Wilcoxon signed ranks test for means was employed to justify the
sampling technique. Mood's test for variance was used as a criterion for
testing the validity of the scale-up procedures. Lilliefor's test was applied
in testing the normality of the population. The Mann-Whitney test statistic
was used as a measure of segregation for the mixture.
2) The computer simulation on the distribution of the contact number at the
completely mixed state indicated that it is a binomial distribution for both
the two dimensional cubic and hexagonal packing mixtures.
3) The application of the contact number sampling to radial mixing in a
motionless mixer showed that the mixing index based on the contact number
adequately represents the state of the mixture. This geometric and micro-
scopic mixing index provides more information about the structure of the mix-
ture than does the conventional mixing index.
L) Dimensional analysis led to the conclusion that dimensionless numbers in

the following equation are pertinent to the scale-up of tumbling mixers.

de Kt

f( ) ,J)"O
I

2 BPS
eff) N“d”p

The correlation between the mobillty coefficient and the fraction of the cri-
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tical rotational speed determined the mixing time. The correlation between
the Power number and Froude number determined the power requirement.

Further studies are recommended below.
1) Simulate the distribution of the contact number at the completely mixed
state of a randomly packed mixture.
2) Conduct studies on the radial mixing of particles of different sizes to
gain additional understanding of the characteristics of the motionless mixer.

3) Develop scale-up procedures for batch mixers other than tumbling mixers.
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Nonparametric statistical tests are employed to analyze the sampling
results of solids mixing. These tests can be performed on the data with dif~
ferent kinds of scale of measurement, such as nominal, ordinal, interval or
ratio, without knowing the distribution of the population. In this report
the nonparametric statistics are Introduced and applied to the study of solids
mixing--test of applicability of sampling technique, test of scale-up proce-
dure, test of distribution of solid mixture, test of significance of fraction
satisfactory, test of significance of equilibrium state and segregation. An
index of segregation is proposed by usling the test statistic of the Mann-
Whitney test. A nonparametric statistics package written in FORTRAN for the
IBM 360 NONPAR was employed to perform the tests.

Concepts of the contact and coordination numbers are introduced. These
concepts are useful in understanding the microscopic and geometric character-
istics of solid mixtures, and in analyzing operations and processes involving
such mixtures. Results of the computer simulation for the contact number
distribution under the completely mixed state agree well with the theoretical
prediction both for the two dimensional cubic and hexagonal packing arrange-
ments at different concentrations of the key component.

A geometric and microscopic mixing index defined by the contact number
was used to study the radial mixing in a motionless mixer. The mixing index,
a measure of radial mixing, increased exponentially as the number of helices
in the motionless mixer increased. The helices in the mixer have the signifi-
cant effect of reducing the void fraction of the mixture. The relationship
between the coordination number of compaction of the mixture through the
mixer was studied. The mean coordination number indicates that the packing

of these mixtures are between the cubic and hexagonal packings.



Dimensional analysis has been employed in the study of scale-up proce-
dures for tumbling mixers with nonsegregating materials. A scale-up procedure
based on a correlation between the mobility coefficient and the fraction of
the critical rotational speed for drum mixers, V-type mixers, and double cone
mixers was proposed to determine the mixing time. A correlation of the Power
number and Froude number for tumbling mixers was also obtained. The scale-up
procedure based on these correlations was obtained on the basis of published
data. |In addition, a cost estimation procedure was outlined for the mixing
of wheat. |In general the unit cost was estimated to be about 1-2 $/ton-hr.

for tumbling mixers.



