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', Equilibrium studies on a single-solute system (phenol) were

(• ^ carried out. All the experiments were conducted at 25°C and pH 7

using tapwater passing through a carbon column. The water was boiled

to destroy any microorganisms in the water. The isotherm data were

then fitted by the three pxareimeter isotherm equation.

Batch studies were conducted on a single solute system for single

adsorbent sizes. The results were predicted by a computer program

and geometric mean diameter was used for the different particle sizes.

Fixed-bed studies were conducted for single adsorbent sizes as

well as for a mixture of adsorbent sizes in a single solute system. A

modified mathematical model was used so that the equilibrium could be

represented by the three parameter isotherm. The model was devoted to

compare the performance of a column fixed bed for constant pH and

temperature with different particle sizes. Breakthrough curves were

analyzed for geometric mean diameters. In the case of a mixture of

sizes, the model was analyzed for stratified bed layers.

Sensitivity analyses were carried out for the mixed sizes and the

results showed that if kf (film transfer coefficient) is smaller than

the calculated value, it becomes a controlling factor in the model. On the

other hand, if k£ is greater than the calculated value, then D (solid

phase diffusion coefficient) takes over as the rate limiting factor in

the model.

In the tapered bed studies, the operating conditions were kept

the same as the circular bed. The tapered bed showed significant



improvement in breakthrough time over the circular bed in both single

and mixed sizes. The experimental data showed that for single sizes

(#12/14). the tapered bed slowed the breakthrough time as much as 38%

at C/Cq =0.1. Similarly, for the mixed sizes at C/Cq =0.1. the

improvement was 18%. More detailed experimental euid modeling studies

need to be performed in the future to exp»and upon the results

presented here.
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Chapter 1

INTRODUCTION

1-1 General Discussion

The discharge of chemicals and pesticides by industries into the

environment will cause severe adverse effects including toxicity,

carcinogenicity, taste and odor problems and degradation of the

quality of water for consumptive use. In recent years, control of

hazardous pollutants in water and wastewater treatment constitutes a

matter of steadily expanding concern for the water quality specialist.

Consequently, there is a need to develop more advEinced technologies

capable of removing these contaminants efficiently from water, to

prevent further dispersion into the environment.

All organic contaminants cannot be regulated. Therefore, the

Environmental Protection Agency (EPA) has developed a list of 129

chemical compounds (priority pollutants). The list is based on the

following considerations:

(a) quantity produced yearly,

(b) physical and chemical properties,

(c) frequency of occurrence in water.

(d) availability of chemical standard and measurement,

(e) toxicity, and

(f) public interest.

A number of phenolic compounds occupy a prominent position on the

EPA priority pollutant list. Apart from its toxicity, phenol is

considered to contribute taste and odor problems in drinking water



with concentration as little as 2 /^tg/L. Phenol can combine with

the chlorite ion to produce chlorophenol

.

Sources of phenolic compounds include effluents from coal-gas in

steel plants, petroleum refineries, as well as a wide variety of

industrial wastes from a process involving use of phenol as a raw

material. On the other hemd, sources contributing to chlorophenol in

industrial effluents are from leather finishing, paint and ink

formulating, and paper industries.

1-2 Adsorption

An increased awareness of the occurrence of phenol, p-chlorophenol

(PCP) , pesticides and other polluteints in natural water has led to the

emergence of adsorption by activated carbon as one of the most

effective methods of removing these chemicals from drinking and

wastewaters.

Adsorption is a surface phenomenon that is defined as the

increase in concentration of a particular component at the surface or

interface between two phases. In any solid or liquid, atoms at the

surface are subject to unbalanced forces of attraction normal to the

surface plsuie. These forces are merely extensions of the forces

acting within the body of the material and are ultimately responsible

for the phenomenon of adsorption.

1-3 Activation

Activation is a physical change wherein the surface of the carbon

Is tremendously increased by the removal of hydrocarbons from the

carbon structure. The two most important steps are carbonization and



oxidation. Both methods involve a reaction with oxidizing gases of

steam, air, and carbon dioxide at an elevated temperature, which

causes an extensive burnoff of noncarbon impurities.

In the past, a large scale study has been done on the

phenomenon of activated carbon adsorption in a phenol aqueous system.

A homogeneous solid phase diffusion model has been used to predict the

breakthrough curve for phenol adsorption. But, no known existing

literature refers to the adsorption capacities of activated carbon in

tapered fixed bed experiments. Therefore, this research is a

preliminary study of the adsorption capacities of activated carbon

in a tapered fixed bed, because some early studies done by Mathews

have shown that tapered bed has better efficiency in adsorption

(slower breakthrough point) compared to circular bed.

1-4 Objectives of study

1) To establish adsorption isotherm for phenol at 25°C.

2) To assess the ability of an adsorption model in order to

predict the adsorption rates for phenol aqueous system.

3) To compare the adsorption processes between a columnar and

a tapered fixed bed.

The scope of this research consisted of:

1) Establishing adsorption equilibrium and kinetics of phenol,

2) Conducting adsorption equilibrium experiments for single solute

at 25 C to obtain isotherm pareimeters, and

3) Conducting kinetic studies to determine adsorption rates

and transport pxarsuneters.



CHAPTER 2

REVIEW OF RELATED LITERATURE

2-1 Single Solute Adsorption Models

2-1-1 Equilibrium Models

Several mathematical relationships have been developed to

characterize the equilibrium distribution of solute between the solid

and liquid phases.

An adsorption isotherm is an expression of equilibrium at a given

temperature between equilibrium concentration, Cg, which is the amount

of organic compound left in solution, and surface concentration, q ,^e

the amount of compound on the surface of the activated carbon.

Two linear models, the Lemgmuir isotherm and the Freundlich

isotherm are most commonly used to describe the equilibrium condition.

The Freundlich isotherm (Freundlich. 1926)

qe=KCg" (2.1)

was developed empirically and was based on the assumption that the

adsorbent had a heterogeneous surface composed of different classes of

adsorption sites. Despite this assumption, the Freundlich isotherm is

often used as a means of data description. A plot of log (q ) versus

log (Cg) should yield a straight line and K and n are constants

depending on the temperature and the solute used.

The Langmuir isotherm (Langmuir, 1918) was theoretically derived

on the assumptions that the maximum adsorption is monolayer, the

energy of adsorption is constant, and there is no migration of solute



in the plane of the surface.

The Leuigmuir isotherm is generally written as

QbC^

Qe = (2.2)
1 + bC,e

where Q is the number of moles of solute adsorbed by per unit mass of

adsorbent in forming a complete monolayer on the adsorbent. The

constant, b, is related to the energy of enthalpy, of adsorption.

In the case of adsorption by activated carbon in am aqueous

system, neither Freundlich nor Langmuir isotherms may describe the

data satisfactorily over a wide range of concentrations. An empirical

equation with three parameters that represents data over wide range

has been proposed by several investigators. (Redlich and Peterson,

1959: Radke and Prausnitz, 1972; and Mathews and Weber, 1977). The

equation is of the form

Qe = —
H i 1 (2.3)

1 + bc/

At low concentrations, this three parameter equation becomes linear

and when /3 = 1 it becomes the Langmuir isotherm. At high

concentrations, this equation becomes the Freundlich isotherm. In

this research, the three parameter equation was selected to describe

equilibrium adsorption.

The BET isotherm (Weber. 1972) assumed that several layers of

adsorbate molecules form at the surface of the adsorbent and that the

Langmuir equation applies to each layer. The BET isotherm reduces to



the Langmulr model when the limit of adsorption is a monolayer. The

BET model equation is commonly written as follow:

% = (2.4)
(C^ - C) [1 + (A - 1) C / C 1

where

Qg = amount of the solute adsorbed per unit mass of adsorbent,

C = concentration of the solute in solution at equilibrivmi.

Cg = saturation concentration of the solute,

Xjji = amount of the solute adsorbed in forming a complete

mono layer , and

A = a constant to describe the energy of interaction.

2-1-2 Batch Kinetic Models

The rate at which equilibrium is attained in an adsorption system

is described in a kinetic model. The process kinetics which describes

the rates at which molecules are transferred from solution to the

surface of the carbon particles involves several sequential and

parallel transport and reaction phenomena. For adsorption to occur,

the following steps must take place:

(1) Film transfer - The adsorbate passes through a film surrounding the

adsorbent particle to the surface of the particle.

(2) Pore diffusion - The adsorbate diffuses through the pore of the

particle.

(3) Surface diffusion - The adsorbate diffuses along the surface

of the pore.



(4) Adsorption - The solute becomes attached to the surface of the

pore, that is, to be adsorbed.

Figure 2.1 represents the overall rates of adsorption of solute onto

granular particles.

Several models have been used frequently to describe the

different combination of rate processes in adsorption systems. The

following models tried to simplify the rate processes by making

assumptions:

(1) An effective or overall reaction rate expression (Thomas, 1944;

Hiester and Vermeulen. 1952; Keinath and Weber, 1968).

(2) A linear or quadratic driving force approximation for

intraparticle diffusion (Glueckauf and Coates, 1947; Vermeulen,

1953; Vassilion and Dranoff, 1962; Hall et al . 1966; Cooney and

Strusi. 1972; Hsieh et al. 1977).

(3) Film treinsfer as the only rate controlling factor (Gariepy and

Zwiebel 1971; Zwiebel et al . 1972; Kyte, 1973; Keinath, 1977).

Weber and Rumer (1965) have proposed a model considering pore

diffusion, cylindrical particle shape, and Langmuir isotherm for

adsorption of benzenesulfonates on activated carbon. This was

followed by a proposed similar model with this model having spherical

particles Snoeyink and Weber (1968). Neretnieks (1976) presented and

solved equations for surface and combined diffusion along with film

transfer by using forms of the Freundlich and Langmuir isotherms.

Digiano and Weber (1973) considered film resistance, pore

diffusion and the Langmuir isotherm in their infinite batch model to

describe data for p-nitrophenol and 2,4-dinitrophenol with activated
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carbon. The infinite batch system is one in which a boundary

condition of concentration of solute in solution is implied. It was

found that the einion forms of the solute did not diffuse as rapidly as

in their neutral forms.

Rosen (1952) developed the homogeneous solid phase diffusion

model to predict the adsorption rates in batch and fixed bed reactors.

The model considered the film transfer and solid phase diffusion as

the rate limiting steps and the model equations are solved numerically

for the three parameter isotherm.

Mathews and Weber (1977) have successfully predicted adsorption

for four solutes exhibiting widely different adsorption equilibrium

and rate characteristics by using the homogeneous solid phases

diffusion model with the three parameter isotherm.

The homogeneous solid phase diffusion model will be described in

the next several paragraphs.

The concentration of the solute, C, and the distribution of the

adsorbent particle may be assumed uniform throughout the rapidly

2^itated batch reactor. The film transfer from the fluid phase to the

solid phase is expressed in terms of the time rate of change of the

average solute concentration, q, of the particle.

dq kfA^— = —^ (C - CJ (2.5)
dt Vp A

k£ is the film transfer coefficient; A^, V and p. are the surface

area, volume, and density of the particle respectively; C is the

concentration of the solute in the liquid expressed in moles/liter;



and Cg is the equilibrium liquid phase concentration at the particle

surface.

The average solute concentration of the entire particle with a

radius of R (cm) is obtained by integrating the pointwise

concentration over the volume of the particles, yielding

3 r

q = — ! qr^ dr (2.6)
R^ J

For a spherical particle, assuming symmetry in two directions,

trEinsport within the solid phase is given by

6q Dg 6 5q— = ( r^ ) (2.7)
6t r^ 5r 6r

q is the dimensionless solid phase concentration at an internal

radius, r, and Dg is the solid phase diffusion coefficient. The mass

balance for the batch reactor is

dC dq
V = - w (2.8)

dt dt

V is the volume of solution, and w is the total weight of carbon. The

initial boundary conditions are

© t = : C = Cq (2.9)

@t=0. 0<r<R:q=0 (2.10)

@ t > 0. r = : 6q / 5r = (2.11)

@ t > 0. r = R

10



R2kf 6 r 9
( C - Cg ) = ! qr^ dr (2.12)

t> 6t J

@ r = R. Cg = fCqg) (2.13)

Equation 2.9 and 2.10 imply that the initial concentration of the

solute in the liquid phase is C and zero in the solid phase.

Equation 2.11 shows that as time is greater than zero, the

concentration gradient at the center of the particle is zero.

Substituting equation 2.6 into equation 2.5 gives equation 2.12; the

mass balance on adsorbent particles. Equation 2.13 is the isotherm

relations between surface concentration and solution concentration of

solute. The three parameter equation, equation 2.3, is used to

describe equilibrium, q^, at the external surface.

Traegner and Suidan (1989) developed a parameter search procedure

using the Levenberg-Marquardt numerical algorithm. This procedure

viniquely determines the external film mass transfer and surface

diffusion coefficients for the homogeneous surface diffusion model.

A technique for predicting granulated activated carbon (GAC)

performance is developed by Clark et al. (1986). This technique used

the freundlich isotherm smd logistic function formulation and applied

to the total organic carbon (TOC) loading. The results were verified

by field study conducted in Cincinnati, Ohio.

Crittenden et al. (1987), proposed and verified correlations to

determine single solute isotherm and mass transfer parameters. These

correlations were used in combination with a simplified version of a

mass transfer model to calculate mass transfer zone length and the

11



maximum amount of water that may be treated. The calculated results

were used to select the optimum fixed-bed adsorber operation.

A mathematical model of simultaneous adsorption and biodegradation of

a single substrate in beds of sorptive media is developed by Speitel

et al . (1987). The model describes adsorption equilibrium and rate by

Fruendlich isotherm and surface diffusion respectively, whereas the

biodegradation is described by Monod kinetics.

Mathews and Zayas (1989) used a Quantiment-720-23A programmable

and computerized image analyzer to determine size and shape

characteristics of individual carbon particles. Sauter mean of

particle diameters from projected area measurements was recommended to

account for the effects due to the variations in particle size Euid

shape. Power-law correlations were developed to indicate the

effect of batch adsorber parameters and particle size on the kr

.

2-1-3 Kinetics for Fixed Beds

A Number of models have been proposed using the rate processes

as described above to predict the breakthrough profile of fixed beds.

Morton and Murril (1967) and Stuart and Camps (1973) used fixed

bed models to describe surface and film diffusion. Colwell and

Dranoff (1969) utilized the similar model but with axial dispersion.

The experimental data fit both models well.

Wheeler and Middleman (1970) incorporated three types of

resistances in their models. They were: intraparticle transport,

surface reaction, and particle to fluid convective mass transfer.

Peel and Benedek (1980) developed a model accounting for the

12
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internal structure of the activated carbon. This model proposed that

the carbon particle has two regions; micropores and macropores. Rapid

diffusion and adsorption takes place in macropores and the rest of it

takes place in the micropores until equilibrium is reached. This

model, however, did not show any improvement in prediction compared to

other models.

Michigan Adsorption Design and Application Model (MADAM) was used

by Weber and Pirbazari (1982) to simulate and predict the behavior of

fixed beds in water treatment conditions.

Weber et al . (1987) used the MADAM to model the adsorption of

target organic compounds in the presence of background dissolved

organic matter. A bisolute version of MADAM sufficiently calibrated

and predicted fixed-bed adsorber profiles for lindane and humic acid.

A second modeling approach was used to investigate the adsorption

equilibrium and rate parameters. The modeling was performed for a

designated target compound (lindane) in the presence of a

theoretically unspecified background water.

Snoeyink et al. (1986) discovered that the free or combined

chlorine reacts with phenols adsorbed on GAC, and produced a series of

oxidation products that were not formed in the absence of carbon.

Products like p-benzoquinone , 2,4,dichlorophenol emd 4,4 -

dihydroxybiphenyl were strongly adsorbed and occupied adsorption sites

causing premature breakthrough.

2-1-4 Fixed Bed Model

Equation 2.7 and equations 2.9 to 2.13 from section 2-1-3 are

13



parts of the equations used to describe the fixed bed model. Other

equations in the liquid phase conditions are as follow:

6C 6C 1 - ^b
+ V + ( 3 ) kf ( C - Cg ) = (2. 14)

6t 6z e^R

© t = . < z < L^j : C =0 (2.15)

@ t > . z = = C = Cq (2.16)

Equation 2.14 gives the mass balance of the solute at any time in the

bed. The first term is the rate of change in the concentration, the

second term is the convective change in the concentration inside the

bed. and the last term is the rate of mass transfer through the film

to the solid surface. Here, v is the superficial liquid velocity, €.

is the porosity of the bed, and z is the bed height. In addition,

equation 2.15 represents the initial condition of the bed at time

equal to zero, whereas equation 2.16 shows that the solution

concentration at the entrance to the bed is equal to the initial

concentration at time eqiaal to or greater than zero. L^^ is the length

of the bed. and C^ is the initial solution concentration.

2-1-5 Solution of The Model

In the fixed bed model, the differential equations are solved by

using the orthogonal collocation method which is one of several other

weighted residual methods. In this method, the solution of the

differential equations is approximated by trial and error having

functions and/or constants. When this trial solution is substituted

into the differential equation, the residual is forced to zero at

collocation points. A special case of the collocation method is

14



orthogonal collocation, whereby the trial functions are a set of

orthogonal polynomials and the collocation points are the roots of

these polynomials. In orthogonal collocation, the partial

differential equations are reduced to first order ordinary

differential equations. These ordinary differential equations were

then solved by a computer subroutine prograun developed by Gear (Gear,

1976; Hindmarsh. 1974). Later, Mathews and Kulkarni (1983) modified

the progrEun by treating the whole bed as a series of small beds of

the same sizes containing one particular size of carbon.

The program was modified and equilibrium is represented by the

three parameter isotherm. In the original program, single solute

equilibrium constants were determined by fitting a Freundlich isotherm

equation to the equilibrium data. Consequently, the curve portion of

the data near low concentrations was represented by a linear isotherm

resulted in erroneous predictions. There are several input data

requirements to run the program:

(1) weight of carbon,

(2) bed height,

(3) radius of adsorbent particle,

(4) molecular weight of the solute.

(5) Influent concentration.

(6) isotherm constamts.

(7) collocation constants,

(8) intraparticle diffusion coefficient, Dg and

(9) external mass transfer coefficient, kr.

The Dg was established from batch studies and the sets of

15



equations suggested by Dwiwedi and Upadhyay (1977) to find k^ are as

follows:

ejjj = 0.4548 Njjg"^-'*^^^.

6Jh = 1.1068 N,Re
-0.72

Jd = ( kf/u ) N 2/3
sc

%e > 10 (2.17)

%e ^ 10 (2.18)

(2.19)

where

€ = porosity of bed,

Jjj = mass transfer factor,

%e ~ Reynolds number (D G / /i )

,

D = particle dieimeter,

G = superficial mass flow rate,

H = absolute viscosity,

u = superficial fluid velocity {G / f>)

.

t> = density,

Ngp = Schmidt number (/i / |t)Di ) , and

D^ = molecular diffusivity.

Wilke and Chang (1955), developed an equation to calculate Di :

(2.20)Dl = T X 10-"^ (M)0-5 / (
1/3

J

where
T = absolute temperature in deg K,

M = molecular weight of the solvent,

fi = solution viscosity in centipoise, and

Vq = molal volume of the solute at normal boiling point

* refer appendix for sample calculation.

16



The ideal adsorbed solution (IAS) model was used by Kong and

Digiano (1986) to predict multicomponent adsorption equilibria for

carbon tetrachloride, trichlorethylene, and tetrachloroethylene in two

component and three-component solution on activated carbon and

carbonaceous resin. Single solute adsorption experiments were

performed to acquire isotherm parameters and multicomponent adsorption

experiments to verify IAS model results. The model described some of

the multicomponent adsorption equilibria for the concentration range

of 1-2000 p(g/L. However there were notable exceptions not easily

explained by experimental error, suggesting that the IAS model may

not be valid in general. It was concluded that carbonaceous resin had

a higher capacity for each of the three volatile orgEinic chemical than

does activated carbon.

Later in 1987, Crittenden et al. developed an equilibrium column

model (ECM) to evaluate multicomponent competition in fixed-bed

adsorptions columns. The model ignored mass transfer resistances and

used IAS theory to predict the competitive effects in multicomponent

mixtures. ECM was shown to be able to calculate the elution order of

the adsorbates, the lowest carbon usage rate in multicomponent

mixtures, and the highest possible effluent concentrations due to

competitive adsorption.

A rapid small scale column test (RSSCT) that uses a smaller

adsorbent particle was used by Crittenden et al . (1987) to simulate a

five-month pilot plant adsorption study in several days. The

mathematical model includes the use of axial dispersion, intraparticle

pore and surface diffusion. Liquid-phase mass transfer resistance is

17



used to scale down the RSSCT from the pilot plant operation without

extensive isotherm and kinetic data. This study presented evidence

that the surface diffusivities were not necessarily constant with

adsorbent particle radius.

In the same year, Crittenden et al. (1987) proposed a

hypothetical component classification procedure (HOCP) to predict

fixed-bed removal of individual components of total surrogates such as

total orgsuiic halogen (TOX) in mixtures of unknown composition.

Wilmanski and Lipinski (1989) modified the irreversible, one-

component adsorption model to simulate the fixed-bed total organic

carbon (TOC) removal. The model assumed that the pore diffusion

coefficient was not constant.

Biodegradation of synthetic organic chemicals in GAC columns, may

extend the GAC service life through in-situ biological regeneration of

sorption sites by decreasing the chemical loading onto the GAC

(Speitel et al . 1989). Biodegradation of p-nitrophenol (PNP). 2,4-

dichlorophenol (DCP), and pentachlorophenol (PC?) were investigated

over the concentration range of 1-25 ptg/L- PNP and DCP were found to

be reeidily biodegraded but PCP biodegraded at a slower rate.

2-1-6 Single Solute Fixed Bed With Two Or More Adsorbents

Numerous researchers have tried to correlate kinetics with

different pore size distributions and surface areas. Smith et al

.

(1959) studied the adsorption of 2,4-dichlorophenol with four

different types of activated carbon. It was found that there is a

relationship between adsorption rate and micropores with less than

18
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2.50 X 10 cm radius.

Westmark (1975) proposed a model with four different carbon

sizes. The vra.ter used was treated by sedimentation, biological

oxidation, coagulation with alum, and finally filtered to remove

suspended particles. The contaminants were measured in terms of COD.

By varying the values of the isotherm constants in the linear

isotherms and pore diffusion, the experimental data was corrected for

extremely adsorbable smd nonadsorbable compounds.

Holzel et al . (1979) concluded that the p-nitrophenol exhibited a

higher diffusivity in carbon with larger pore volume.

Lee et al. (1980) proposed a model to predict adsorption of

humic substances on different carbons. By using film transfer

coefficients amd surface diffusivities independent of fixed bed

experimental data, the model predicted the performance of the fixed

bed very well.
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CHAPTER 3

EXPERIMENTAL MATERIALS AND METHODS

3-1 Materials

3-1-1 Adsorbent

The adsorbent used in this research was granular activated carbon

(Carborundum) supplied by CECA Inc.. Pryor, Oklahoma. The properties

of the carbon used are listed in Table 3.1.

The carbon is received from the manufacturer as No. 12/40

(particles passing through a U.S. Standard Mesh Size No. 12 screen but

retained on No. 40 screen). For batch kinetic and equilibrium studies

No. 25/30 and No. 30/35 were used respectively. In fixed and tapered

bed experiments carbon No. 12/14. 14/16. 16/18 and 18/20 were used

instead. The geometric mean diameter of a particle used in this

research was calculated by (d^ a ^2)^^^ where dj is the mesh size of

the upper sieve and dg is the mesh size of the lower sieve (Table 3.2).

The carbon was washed several times with tap water passing through

carbon column before performing the experiments to remove fines and

any foreign objects. The carbon was then dried to a constant weight

in an oven at 200°C and kept at room temperature in airtight glass

containers.

3-1-2 Adsorbate

The solute used in the study was phenol. The properties of phenol

are shown in Table 3.3. The solute was supplied by J.T. Baker Chemical

Co. Phillipsburg. NJ. in crystal form stored in a dark glass bottle.

20



Table 3.1 Properties of the adsorbent.

Manufacturer

U.S. Mesh size

Raw material

CECA Inc., Pryor, Oklahoma

12/40

Bituminous coal

Physical Properties

Surface area, m /gm

Apparent density, gm/cc

Particle density wetted
in water, gms/cc

Effective size, mm

1000-1100

0.47

0.60

1.9 or less
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Table 3.2 Carbon size fraction and diameters.

Size Geometric
faction mean diameter

(microns)

#12-#14 1539

#14-#16 1290

#16-#18 1091

ttl8-tt20 917

#20-#25 772

#25-#30 647

#30-#35 543

6 . M

22



Table 3.3 Solute and its properties

Phenol

Supplier

Recent grade

Formula

Molecular Weight

pKa

Melting point

Boiling point

Diffusivity
in water © 25°C
(cm /sec)

J.T. Baker Chemical Company-

Baker TM

CgHgOH

94.11

9.90

43°C

181.75°C

10.43 X 10"^
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All stock solutions were prepared with tap water passing through a

three foot carbon column to remove organic compounds from the water.

This organic free water was used for batch studies, equilibrium

studies, and fixed euid tapered bed experiments. The temperature of the

solute for all the experiments in this research was kept constsmt at

25°C while the pH was kept at 7.

3-2 Methods

3-2-1 Analytical Methods

The concentrations of phenol solution were emalyzed by ultraviolet

light adsorption spectrophotometry with a Baush and Lomb Spectronic

710 Spectrophotometer. A preliminary test was required to determine

the wavelengths of maximum absorbEince for phenol. Several different

concentrations of phenol solutions were used to obtain the calibration

charts independently at its wavelength of maximum absorbance. Phenol

was analyzed at 270 nm with molar absorptivities 6 of 1466 /mole-cm

which was determined from the slope of the calibration curves. The

suitable absorbance (A) range for 10 mm photocell is 0.1 < A < 1.2.

A 50 mm photocell was used for low concentration samples (less than

10"^ moles/L).

Friedel (1951) developed a relationship between the concentration

of phenol. Cp (moles/L). absorbance. A. € and photocell size L (cm)

which indicate:

^270

e L

The concentration of phenol can then be determined knowing absorbance

24



at wavelength 270 nm and cell size.

3-2-2 Batch Kinetic Experiments

Batch kinetic experiments were conducted in a rectangular Plexiglas

vessel with an internal dimension LxBxH of 34x30x35 cm. The schematic

of the set-up is illustrated in Figure 3.1. A steel impeller was

located at the center of the vessel and 7 cm from the bottom. A

heater eind a temperature regulator were used to keep the solution

constant at 25°C.

Twenty-four liters of phenol solution with a concentration of

2.5 X 10 moles/L were introduced into the vessel with the solution

kept at pH 7. No crystals of solute were introduced directly into the

vessel. The impeller was maintained at a speed of 700 rpm to agitate

the solution to reach equilibrium uniformly within the vessel.

After establishing this condition, samples were withdrawn to

determine the initial concentration of the solution. At time t = 0, 6

gms of no. 25/30 carbon were added abruptly into the reaction vessel and

agitated by the stirrer rapidly.

A glass tubing with a brass mesh wire attached to an end was

lowered into the vessel during sampling. At a selected time interval,

a sample of 10 ml was collected by inserting a pipette into the glass

tubing. This was to prevent any carbon being drawn out of the vessel.

The sample collected for analysis resulted in a small decrease in

the total adsorbate available to the adsorbent. Correction for this

error was not required since the maximum cumulative error was not

significant.

25



<u r
1/)

in ZD

0)

o > o
^— l_
o 1—

2 o c
o

c
o

3 (

)

en o>
c c

•~ o T3
3 <U

o <U

.,_ o 0) O.
lO CO q: CO

LU U. CO X

c
o
O

0)

<»
1—

u

~
Z3

0)

O f= 6
I. o —
03

a. e 0)

e
1— ^ <a

(U
0) -C (U

H I- X CO

< CD O Q

CO

in
00
ON

c
•H

•w

:3

C

•J

CO

u

26



The objective of these studies was to determine the D , solid

phase diffusion coefficient and k£, film transfer coefficient. Rate

studies were conducted for carbon size 25/30, stirring speed of 700

RPM, reaction volume of 24 liters and total carbon weight of 6 gm.

The initial concentration of phenol was 2.5 x 10 M and the pH was

kept constant at 7 so that the solution would contain almost 100 %

phenol.

CgHgOH ^=== CgHsO- + H-^ (4.1)

By adding acid to the equilibrium equation 4.1, the reaction will

shift to the left. A computer progrEun written by Mathews (1975) was

used to estimate the D^ and k^. The input data necessary to run this

progrEum includes:

(1) the three parameters isotherm A, B, and /} from equilibrium studies,

(2) weighted geometric mean diameter of the carbon used, and

(3) initial estimate for kr and D .

The film transfer coefficient can be calculated from batch data

using equation 4.2.

-In (C^/Cq) R t>v

kf = (4.2)
t 3w

where

Cg = concentration of solution at a specific time

Cq - initial concentration of the solution

t = time (sec.)

R, ^, w = radius, density and weight of carbon particle
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respectively

V = volume of solution

A graph of -In (Cg/C^) versus t was plotted and the linear portion of

the time points was fitted with a straight line. The value of kr

was then calculated from the slope. At a longer contact time, £in

increasing influence of intraparticle resistance causes nonlinearity.

3-2-3 Equilibrium Experiments

Equilibrium experiments were conducted by the standard bottle-

point method to investigate the capacity of carbon at various solution

concentrations. This method allows a solution with known initial

concentration to come into contact with different amounts of carbon

dosages until equilibrium is reached. The carbon used for these

experiments was No. 30/35. The water used in making the standard

solution was boiled inorder to kill the microorganisms present in the

water. This is to eliminate any interactions of the microorganisms

with the teflon cap of the bottles.

Different carbon dosages varying from 0.1 to 1.0 gm were added

into a series of 250 ml glass bottles (washed and dried) which

contained 100 ml of phenol with known initial concentration.

Once the solutions and the carbon were introduced into the

bottles, the bottles were sealed with teflon caps to ensure

airtightness and placed in a Controlled Environment Incubator Shaker

(Lab-line Instruments Inc.), with the temperature set at 25 °C. The

shaker was manipulated in such a way that the carbon particles were

always kept suspended and not stuck to the sides of the bottles. One
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bottle consisting of only solution (without carbon) was set aside as a

control to determine if the glass or teflon cap adsorbed any of the

solutes. In addition, there were three bottles with the same zunount

of carbon dosages to ensure that equilibrium was reached. The maximum

absorbance was reached on the eighth day. After equilibrium was

reached, the seunples were then analyzed for their final concentration.

The amount of solute adsorbed per unit mass of carbon, q was

then determined by

^e = ( Co - C^ ) V / W (3.2)

where

q^ = surface concentration (mmoles/gm)

Cq = initial concentration of solutes (moles/1)

Cg = final concentration of solutes (mmoles/1)

V = volume of solutes (liters)

W = weight of carbon (gm)

By using different amounts of carbon dosages, an isotherm profile can

be determined and plotted on a log-log scale since each bottle

represents a pwint on the equilibrium curve.

The three parameter equation correlates equilibrium relation

between surface concentration. q„. and solution concentration. Cc e

^e =
J- A < 1 (2.3)

A. B. and /J are determined by the best statistical representation of

the experimental data and estimated by a nonlinear parameter estimation
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technique developed by Mathews (1975).

3-2-4 Fixed Bed Experiments

Figure 3-2 shows the schematic of the fixed bed experiment. The

fixed bed was a glass column with an inner disuneter of 5.08 cm and a

height of 30 cm. In this research, all experiments were conducted

with downflow. The carbon in the column was supported by a brass wire

at one end. Table 3.4 outlines the operating conditions for the fixed

bed.

A 30-gallon tank in which a constant head was maintained by

overflow, supplied a continuous flow for the experiments. The water

collected in this tank was produced by passing tap water through a

three-foot long carbon column. This was to remove organic and other

adsorbate from the tap water. Two variable flow pumps were

manipulated to force the water, as well as the concentrated solution,

into the fixed bed column at a combined flowrate of 830 ml/min. Flow

meters were used to monitor the flow rate of the concentrated solution

and solution entering the column at 30 and 830 ml/min respectively.

The concentrated solution was stored in a 40-liter jar and maintained

at a higher concentration than that required in the experiments. The

flow from the jar was adjusted to have proper dilution to the desired

concentration in the system. Constant checks on this influent

concentration were required to ensure a minimum variation in flowrate.

A predetermined amount of carbon was introduced into the column.

In case a mixture of sizes was used, the smallest size was introduced

first, followed by the next larger size, and so on. In this
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Table 3.4 Fixed bed operating conditions.

Sieve Size
faction

Column
diameter

Flowrate Hydraulic loading
rate

(cm) (ml/min) (m/min)

#12-#14 5.08 830 0.4095

#14-#16 5.08 830 0.4095

ttl6-#18 5.08 830 0.4095

#18-#20 5.08 830 0.4095

mixed sizes
(12/14. 14/16.
16/18 and 18/20)

5.08 830 0.4095
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experiment, equal dosages of carbon No. 12/14, 14/16. 16/18 and 18/20

were used as mixed sizes. Carbon 12/14 would come into contact with

the solution entering the column first and carbon No. 18/20 would be

the last carbon size that the solution flowed through before it flowed

out of the column. A few modifications were needed before the

prediction model for mixed sizes could be run.

The first method was to use the average diameters of the mixed

carbon sizes as an input data. Then, using the equation by Upadyay

and Dwiwedi (1977). the film transfer coefficient was determined.

Surface diffusion coefficient was resolved by taking the mean of the

coefficient of the individual carbon sizes which were established from

batch studies with single sized particles.

The second method was to treat the different carbon sizes as

separate individual layers. In this experiment, four values of the

film transfer and surface diffusion coefficient were needed since

there were four layers of carbon used.

Another fixed bed experiment was set up the same as the one

described above (mixed sizes), but the order of the carbon in the

column was reversed.

Water was passed through the column before the start of the

experiment for about 15 minutes and the walls of the column were

gently tapped to remove all the entrapped air.

Before the column could be operated, the temperature in the

constant head tank was maintained at a higher temperature using a

heater and a temperature regulator. When this water mixed with the

solution from the jar. the temperature of the combined solution was
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exactly 25°C. Once £igain, the pH of the solution entering the column

needed to be 7.

The procedure adopted for maintaining the pH of the solution

entering the column equal to 7 is described below:

Let T (ml) = volume of acid needed in the 40 liters solution jar

to maintained pH = 7

Q (ml) = total aunount of acid needed in the solution jar to

bring dovm the pH of the solution entering the

column to 7

T X 830 / 30 = Q (3.3)

A mass balance equation was used to determine the concentration

of the solution in the jar.

FiCi + F2C2 = F3C3 (3.4)

where

Fj. F2. F3 = flowrate of water, solution in the jar. zmd

solution entering the column respectively.

Cj, C2. Cj = concentration of water (taken as zero).

solution in the jar zuid solution entering the

column respectively.

As C3 (10 moles/1, in this experiments) and F3 (830 ml/min) are

known, C2 can be determined from Equation 3.4.

The column was operated until the ratio of effluent concentration.

Cg. to influent concentration. C^. reached 0.90. The duration of the

experiment was usually 14 hours. Effluent solutions were sampled at
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intervals of an hour and were analyzed for concentration. Breaikthrough

curves were hence obtained by plotting CVC., against time.

3-2-5 Tapered Bed Experiments

All the procedures and methods outlined for the fixed columnar bed

applied for the tapered bed experiments.

Predetermined Eimounts of carbon were first filled up at the

smaller end of the tapered bed Eind the remaining empty spaces were

then occupied by glass balls and glass marbles. The experiments were

set up for downflows. The influent solution comes into contact with

the carbon through the narrower end and flows out through the wider

end (Figure 3.3).

The tapered bed was made from plexiglas and stands at a height of

71 cm. The top rectangular segment measured 2.54 cm^ by 10.7 cm^

tall, which was filled up with glass balls measuring 3 mm in diameter.

The function of this segment was to act as a distributor. The bottom

section of the tapered bed measured 2.54 cm^ and widened to 9.5 cm^.

A brass wire mesh separated the glass ball from the carbon (Figure 3.4).
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CHAPTER 4 '

RESULTS AND DISCUSSION

4-1 Equilibrivim Studies

Experimental results of surface concentration q . and solution

concentration Cg, obtained in section 3-2-3 are fitted by equation 2-3

with parameter values summarized in Table 4.1. The corresponding data

are plotted in Figure 4.1.

The adsorbate (phenol) removal per unit weight of carbon is

nearly the same at all equilibrium concentrations along the isotherm

plot due to the flat slope.

4-2 Batch Kinetic Studies

Figure 4.2 gives the experimental and predicted plot for batch

studies for phenol solution and size fraction 25/30. It shows that

the experimental data is very close to the predicted value. The

optimum contact time in Figure 4.2 is about 240 minutes. At the

initial stage of the adsorption process in batch reactors, film

diffusion is the rate limiting steps. As the carbon becomes loaded

with the adsorbate. the reaction rate is then controlled by

intraparticle diffusion.

Table 4.2 lists the sieve size used, where k£ and D are

estimated from the batch rate data for phenol. It is noted that the

k£ decreases as the particle size of carbon increases. On the other

hand, the Dg is nearly independent of the carbon particle size.
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Table 4.1 Three parameter isotherm constants for phenol

Source: Kunjupalu (1986)

39

Solute A B /}

phenol 15.11 7.546 0.8685
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â >—

'

t,

o .

t^ a
j->

o (1
4-> 13
ri
t^ —

1

t\1

c u
o C •

•M a u
i-> H O
a r-l iJ

u f- o
o O F
w ft rt
T3 X •->

< O XI

CM

'T'

bj)

t,2.

ONOO SS31N0 ! SN3}^ I a

41



Table 4.2 External fixed-bed mass transfer coefficients and
intraparticle diffusion coefficient for phenol adsorption
for single adsorbent sizes.

Size
faction

Geometric
mesm diameter
(microns) (cm/s)x 10^

****Ds

(cm2/s)«10^

#12-#14 1539 3.13 3.4

#14-#16 1290 4.11 3.3

#16-#18 1091 4.69 3.3

#18-#20 917 5.62 3.2

mixed sizes
(#12/14. #14/16
#16/18 and #18/20)

1209 5.02 3.3

» calculated from equations suggested by Dwiwedi and Upxadhyay (1977),
referes appendix for detail calculations. These values correspond
to operating conditions shown in Table 4-4.

»«« Kunjupalu (1986)
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4-3 Single Solute Studies for Single Sizes.

4-3-1 Column

The column studies were the fixed bed type eind the column was

operated in a downflow direction. Phenol was used as a solute in these

experiments. The data collected in the column fixed bed experiments

were applied to judge the efficiency of the mathematical model in

predicting breakthrough curves. Table 4.3 illustrates the operating

conditions for the column fixed bed in phenol adsorption.

As noted earlier, the rates of adsorption is controlled by

transport processes at the surface of or within the carbon granule,

and therefore depend greatly on the particle size of the adsorbent.

Figures 4.3 to 4.6 show the experimental and predicted

breakthrough curves for phenol with single carbon sizes. The percent

deviation of experimental to predicted results was within 5%. The

"breakpoint" on these curves are those points at which the effluent

from the adsorber no longer can adsorbed the adsorbate satisfactorily.

It can be seen from those figures that after a trace of solute was

detected in the effluent, the concentration rose gradually at first

and then sharply until it approached the value of influent

concentration.

The general pattern of breakthrough curves has a characteristic S

shape. Factors which affect the actual shape of the breakthrough

curve include pH. rate-limiting mechanisms, adsorbate concentration,

particle size of the adsorbent, depth of the column or bed. and the

velocity of fluid. In general, the time to reach breakthrough for a

specific type of adsorbent and a given adsorbate is decreased by:
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increased particle size of the adsorbent, increased concentration of

adsorbate in solution, increased flow rate, eind decreased bed depth.

From Figures 4.3 to 4.6, it can be concluded that carbon size

#18/20 has the slowest breakthrough of about six hours.

4-3-2 Tapered Bed

The operating conditions for the tapered bed were the same as for the

circular bed. Figures 4.7 and 4.8 present the predicted and

experimental breakthrough curves for carbon sizes #12/14 and #16/18.

At C/Cq = 0.05 and 0.1 for carbon size #12/14, the improvement in

slowing the breakthrough time by the tapered bed was 62% and 38%

respectively. Similarly at the same C/C^, the improvement for

carbon #16/18 was 24% and 17% respectively. Eventhough these results

clearly demonstrated that the tapered bed operated at a better

efficiency than the circular bed, more details studies like optimum

angle of taper and studies on channeling effects in the tapered bed

need to be done, before the results can be conclusive.

4-4 Single Solute Studies for Mixture of Carbon Sizes

4-4-1 Column

A mixture of carbon sizes were also used in the column studies.

Table 4.4 gives the operating conditions for phenol adsorption for a

mixture of sizes. Figure 4.9 shows that the tapered bed has slower

breakthrough curve than the circular bed. An elaborate discussion can

be found in section 4-4-3.

There were less than 5% deviation between the breakthrough curves

using average diameter method and the stratified layer method. Figure 4.10.
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Table 4.3 Fixed bed operating conditions for single size.

Sieve Size
faction

Column
diameter

(cm)

Flowrate

(ml/min)

Hydraulic loading
rate
(m/min)

Weight of
carbon
(gms)

#12-#14 5.08 830 0.4095 250

#14-#16 5.08 830 0.4095 250

#16-#18 5.08 830 0.4095 250

#18-#20 5.08 830 0.4095 250
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Table 4.4 Fixed bed operating conditions for mixed sizes.

Sieve Size
faction

Colunvn

dieuneter

(cm)

Flowrate

(ml/min)

Hydraulic loading
rate
(m/min)

Weight of
carbon
(gms)

#12-#14 5.08 830 0.4095 250

#14-#16 5.08 830 0.4095 250

#16-#18 5.08 830 0.4095 250

#18-#20 5.08 830 0.4095 250

mixed sizes
(12/14. 14/16. 5.08
16/18 and 18/20)

830 0.4095 62.5
(each size)
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Figure 4.11 exhibits the fact that even when the carbon layers in the

column was reversed (#18/20, #16/18, #14/16 and #12/14), the model

still predicted the experimental data well; there is less than 5%

deviation between the experimental data and the predicted value. The

sudden fluctuation of concentration at the end of the experiment might

be due to non uniform flowrate at that moment.

4-4-2 Sensitivity analyses

Sensitivity analyses were performed on the column studies for the

rommixed sizes. Figures 4.12 to 4.15 reveal that if kr is decreased f

5.08 X 10"-^ to 2.54 x lO""^ (0.5kf) and 1.52 x 10"-^
(0.3kf) the

prediction is far off the experimental values. In this case, both the

0.5k£ and 0.3k£ have faster breeikthrough, but the former is slower

that the latter. This is because with the same flowrate, as kr

increased there is little cheinge in the breakthrough curve. However

at a lower value of k£ the system is essentially intraparticle, and

film transfer coefficient will be the controlling factor. Conversely

if k£ increases, the solid phase diffusion coefficient tzikes

over as the limiting factor in the model.

4-4-3 Tapered Bed

Tapered bed was again used in comparison to circular bed in

phenol adsorption for a mixture of carbon sizes. Under the same

operating conditions. Figure 4.9 provides evidence that the tapered

bed has a slower breakthrough than the circular bed.

At C/Cq =0.05 and 0.1, the improvement of the tapered bed over

the circular bed was 19% and 18% respectively.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5-1 Summary and Conclusions

Equilibrium studies were conducted for the adsorption of phenol

on activated carbon from water. The tests were conducted with

tapwater passed through a carbon column and boiled to destroy

microorganisms in the water. The temperature for the tests was 25°C,

and the pH of the water was adjusted to 7. Eight days were required to

attain equilibrium. The data were fitted by the three parameter

isotherm equation which was established by Mathews and Weber (1977).

It vfas seen that the three parameter isotherm fitted the experimental

data well.

Batch studies were conducted for phenol for single adsorbent

sizes. For all the experiments performed during batch studies, the pH

of the water was maintained at 7 and the temperature was kept cons taint

at 25°C.

For phenol adsorption in single sizes, the film transfer

coefficient increased as particle size decreased to within the size

range of 1539 microns to 917 microns. In addition, the surface

diffusion coefficient was reasonably constant ranging from 3.2 x 10~°

—8 2to 3.4 X 10 cm /s for the same size range. It was concluded that

the prediction model agreed with the experimental data.

Fixed bed studies were conducted for single adsorbent sizes as

well as for a mixture of adsorbent sizes. A 5.08 cm column was used

for the carbon sizes #12/14. #14/16, #16/18, and #18/20. The
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temperature and pH were maintained at 25°C and 7, respectively. The

fixed bed progreun based on the homogeneous solid phase diffusion model

which was modified by Mathews (1984) was used to predict breakthrough

curves of phenol at 25°C.

For column studies, it was seen that in the case of single

adsorbent sizes as well as for a mixture of adsorbent sizes fitted by

avereige and by stratified layer methods, the percent deviation of

experimental to predicted values was within 5% . Similarly, the

deviation for reversed mixed sizes (#18/20, ttl6/18. #14/16, and

#12/14) was also 5%.

The operating conditions in the tapered bed studies, were

identical to the column studies. At C/C = 0.05 emd 0.1 for carbon

size #12/14, the improvement in delaying the breakthrough time by the

tapered bed over the circular bed was 62% smd 38% respectively.

Similarly, at the same C/C^ as above, the improvement for carbon

#16/18 was 24% and 17% respectively.

For the mixed sizes (#12/14, #14/16, #16/18 and #18/20), and at

the same two C/C^ of 0.05 and 0.1, the improvement of tapered bed over

circular bed was 19% and 18% respectively.

The above results for the tapered bed indicate that it operates

at a better efficiency than the circular bed in both mixed and single

sizes.

Prediction using the average diameter and layered methods did not

show any significeint deviation from each other.

Sensitivity analyses were conducted for the mixed sizes and the

results indicated that with the same flowrate, as k£ (film transfer

62



coefficient) increased, there is little change in the breEikthrough

curve. However, at a lower values of kr , the system is essentially

intraparticle and film transfer coefficient will be the controlling

factor. Conversely if k£ increases, the solid phase diffusion

coefficient takes over as a limiting factor in the model.

5-2 Recommendations

1) Develop a model to predict breakthrough for a single or

multisolute in the tapered bed.

2) Design and construct the tapered bed for optimum adsorption.

Increase or decrease the existing tapered angle to attain optimum

"break point". Care must be teiken not to increase the tapered

angle too much as the channeling effect will occur.
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Sample calculations for fixed-bed external mass transfer coefficient
using Dwiwedi and Upadhyay's (1977) equations.
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

carbon #12/14

volume of carbon = mass of carbon/density of carbon
(Vj,) = 250/0.672

= 372.024 cm-^

volume of bed = cross sectional area of bed x bed height
(V^) = 20.268 X 30.8

= 624.264 cm-^

porosity of bed = (V^ - V )/Vh
(e) = 0.404

superficial fluid velocity u = G/t> = flow rate/cross section of bed
= 830/20.268
= 40.951 cm/min
= 0.6825 cm/sec •

G/^solution = 0-6825
G = 0.6825 X 0.997

= 0.6805 g/(sec cm^)

Schmidt number Ng^ = M / ^Di

= 0.8904 X 10"2 / (0.997 x 10.43 x 10"^)

= 856

= DpG / ^
2= 0^1539 X 0.6805 /(0.8904 x 10"^)

= 11.76

= 0.4548 %g"0-^069
^

M > 10
= 0.4129

2/3
sc

Renolds number %e

equation 2.17:

'ii

equation 2.19:

kf / u

kf

= ( k. / u ) N
= 4.580 X 10 -^

= 3.125 X 10"-^ cm/s
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Calculated external mass transfer coefficient k^ for fixed bed model
using Dwiwedi and Upadhyay's (1977) equations.

KKKKKXXKXXXXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXX
Sieve Geo. mean Bed Ht. Porosity Reynolds Mass Iran. Film Transfer
no. dia. (cm) (cm) of bed num. factor Jj coef. kr
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
12/14 0.1539

14/16 0.1290

16/18 0.1091

18/20 0.0917

Mixed
sizes 0.1209

Superficial Fluid Velocity u = 0.6825 cm/sec

Schmidt Number = 856

30.8 0.4041 11.76 0.4129 3.13E-03

30.2 0.3922 9.86 0.5432 4.11E-03

30.0 0.3882 8.34 0.6193 4.69E-03

29.0 0.3671 7.01 0.7421 5.62E-03

27.5 0.3325 9.24 0.6712 •5.08E-03
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Tapered Bed Operating Conditions.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Sieve no. Bed Height Bed Diameter

(cm) (cm)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
12/14 27 6

16/18 23.5 5.5

Mixed size 26.5 5.9
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