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CHAPTER 1

INTRODUCTION

Charge transfer or, sometimes, electron capture is a type of re-

arrangement collision. This is depicted in the reaction,
A+ (e +B) > (A+e)+B,

where A represents the projectile system, B the target system, and e the
transferred eleciron. Due to the Coulomb interactions influencing the
projectile's path, the projectile will scatter at various angles depend-
ing on the impact parameter, see Figure 1. Looking at many scattering
events corresponding to various impact parameters, an angular distribu-
tion will arise. Calculation of the charge transfer angular distributions
from the K shell by proton impact is presented in this thesis.

Thus far, charge transfer calculations yield non rigorous total
cross sections for K shell capture. The most extensively used method for
determining electron capture cross sections is the first Born approxima-
tion or, simply, the Born approximation. This method is used for its
simplicity and not necessarily for its walidity. It is known that the
second Born term dominates at very high energies‘and second order éalcu—
lations are now being pursued. In this presentation, the simplicity of
the first order calculation is retained while viewing the differential
cross secticn for charge transfer.

Examination of the differential cross section can give a deeper
understanding of the charge transfer process. The perturbing potential

for charge transfer 1s still somewhat unclear. Since the differential
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Figure 1. Scattering of an len from an atomic target, where

p is the impact parameter and © is the scattaring angle.
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cross section is sensitive to how the Hamiltonian is broken up, detailed
information of the charge transfer process‘is possible. Thus, calcula-
tions of angular distributions could lend credance to ideaé as to how
the Hamiltonian for charge transfer should be broken up in first order -
perturbation theory.

One of the first charge transfer calculations was done by Brinkman
and Kramers?in 1930. Their calculatien was performed adhering to the point
of view that the relevant interaction potential was between the projectile
and (captured) electron? It is argued that the internuclear interaction,
which is largely responsible for the path of the projectile, contributes
little to the total capture cross section for heavy particles. For most
capture cross sections, the resulting BK total cross sections were typi-
cally too large by a factor'of 2 to 10,

Another first order calculation was performed by Jacksou aud Schiffs_
in 1953 for the special case of protons incident upon hydrogen. The po-
tential used in the JS calculation was the full interaction, that is, the
BK potential and the internuclear (or core) potential. Including the
"core" term had the effect of reducing the total cross section over a
range of enzsrgies thus giving much better agreement with experiment.
However, when the JS method was applied to other systems of higher nuclear
charge, total calculated cross sections were found to disagree with ex-
periment by as much as several orders of magnitude.ﬁ'7

The success of the JS approach was later partially explained by
Bates®in 1958. Taking into account the nonorthogonality of the initial
and final state wave functions, Bates was able to demonstrate that a JS
like core term with unit nuclear charge originates from the average elec-

tron interaction. This tends to account for the relative success of the

4



JS method for protons on hydrogen, and suggests an alternate method for
targets of nuclear charge greater than one.

At the present time, some beljeve that the Bates calculation
offers the most complete picture for viewing charge transfer to first
order. Nevertheless, only various approximations for the Bates method
of charge exchange have been used resulting in total cross sections that
tend to agree with experimentPJO The success of these approximations
in predicting total cross sections tend to indicate that the Bates ap~
proach is superior to that of BK or JS.

Taking advantage of the heavy projectile mass, it is often useful
to study the charge transfer process by means of the impact parameter
treatment. A transformation from the wave picture over to an impact para-

meter plcture is presented in appendix 1. This impact parameter formal-

(o]

1si was used by Belkic and Salin 'in 1976 for the anguler distributions
for charge transfer.

The impact parameter formalism used in Belkic and Salin's calcula-
tion employs an eikonal phase so as to include the internuclear potential
together Withrthe Brinkman-Kramers method. Justification for the use of
the eikonal phase within the impact parameter treatment is made in Chapter
2. By including the internuclear potential in the eikonal phase, Belkic
and Salin were able to get improved agreement at wide angles with the
differential cross section for electron capture from argon by 6 MeV pro-
tons observed by Cockelzgg_gé,, in 1976, see Figure 2. Using the BK
probability amplitude for capﬁure which is calculated inra straight-1ine
impact-parameter version of the BK approximation Belkic and Salin were

able to obtain a better angular distribution than the BK calculation

which took into account no contributions of the internuclear repulsion.






Figure 2. Differential cross section in laboratory system

for capture of K-shell electrons frlom argon by 6 MeV protons.
The curve marked BK represents the Brinkman-Kramers approxi-
mation; and CBK, the Coulomb Brinkman-Kramers approximation.
Experimental data are those of Cocke, et al., (1976). Figure
taken from Belkic and Salin, J. Phys, B: Atom, Molec. Phys.

9, 1397 (1976).
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Note that their results are in good agreement at large angles {(i.e. small
impact parameters) but may give poor agreement at the forward angles
(i.e. large impact parameters). Data for ﬁrotons on Helium support this
trend, suggesting that the scattering potential is too strong at large
impact parameters.

One of the limitations of the Beikic and Salin calculation is the
omission of the screening effects by the electrons at large impact para-
meters. We include the effects of screening by the electrons in an ap-
proximate manner. Fof p + H and p + He, the internuclear potential is
represented by the static potential (cf. Chapter 2) which is introduced
into the eikonal phase within the BK method. Hence, it will be referred
to as the Static Brinkman—Kramers (SBK) approximation. For p + Ar which
is mathematically more complex, a screened Coulomb potential is incorpor-
ated in the eilenal phase as an approvimation for the statiec potential.
This Screened Coulomb Brinkman-Kramers calculation will be referred to as
the SCBK approximation.

Application of the eikonal impact parameter treatment of charge
transfer is made for three specific cases. The relatively simple system
of protons incident upen hydrogen is presented first. This is followed
by protons incident on helium. Then finally, the more complex system of
protons on argon is examined. The two later cases are compared with re-

cently gathered experimental differential cross sections for charge transfer.



CHAPTER 2

THEORY

2.1 The Differential Cross Section

The differential cross section is defined as

Number of particles per unit time scattered
do _ 1into a solid angle
dQ Number of particles incident on the
target per unit area per unit time

This can be written symbolically as,

do _ @49 (2.1)
df I .
The incideni flux, I, cau be given as,
I = velocity of incident particle
unit volume
I (2.2)
M1L3

where ﬁki is the magnitude of the relative initial momentum, My is the
3 . 3 3 7
initial reduced mass of the system, and L~ is the volume of a cube
L 13
of length, L. The transition probability per unit time, w , is given
by,
2m 2

w= 2= oo [H[v>]5, (2.3)

where pf is the density of final states and <¢f’H’[W> is the transition

matrix element for a tramsition from all possible states, ¥, into the



final state, ¢f, under the perturbing Hamiltonian, H'. The density of

final states, P is given by,

3
T e (2.4)

p. =
£ (Zw)qﬁz ,

where Mg is the reduced mass of the final system,,hkf is the magnitude

of the final relative momentum, df_ is the solid angle subtended by the

f

-

3,
detector, and .. = is the volume. Combining eq. 2.1, 2.2, 2.3 and

2.4, the differential cross section becomes,

6
L k
do _ Mi¥f £ 2
S5~ (b B e (2.5)
o (2m)h i
It is now convenient to introduce atomic units (e2 =h=m =1),

e

where ¢ is the clectreon charge and m, is the electron mass. A few basic

units are given below;

5 -9
unit length = a, = 5 = 5.29-10 “ cm
me
e
m e4 3
unit energy = e2 = 27.2 eV
h
3
unit time = i i = 2¢42-10_17 sec.
m e

Atomic units will be used unless stated otherwise.

The differential cross section given in atomic units is,

k
d Pibe  Fg 2
E%.= i : (E_)|<¢E|Hi|y>[ . (2.6)
10 ) i .

10



; . 3
where the wave functions are normalized to the unit volume, L™, As
yet, all we have done is to have re-written the definition of differential

cross section into a form that can be used for calculation.

2.2 The Hamiltonian

Charge transfer is not a well understood atomic process. In our
quest toward understanding the charge transfer process, approximations
for both the wave functions and the perturbing Hamiltonian are made.
However, in making approximations for the wave functiens, difficulties
arise from the fact that the wave functions are not described in the
same basis set (i.e., nonorthogonal wave functions are used). In
addition, it is a general practice to consider only one electron target
atoms in charge transfer.

The Hamiltonian for a charged projectile incident upon a multi-

electron target (assuming two body interactions) is given by,

furi
I

Total Kinetic Energy + Total Potential Energy

It

P° .
i § k3 T T,
IR ER

+

where 7 and M are the charge and mass of the incident projectile with
a a

momentum P, Z is the charge of the target nucleus, R represents the
b

[

S :
1t Ty the set of coordinates of the target
b

electrons measured from the target nucleus, and Pj is the momentum of the

>
projectile coordinate and r

jth electron. By adding then subtracting the average projectile electron

potential (i.e.,

11



2

5 a® 2.8
Vi = <¢i [ ¢a+__ ! ¢i> (2.8)
iR—l’jI

where ¢i is the initial bound state wave function for the jth electron),

the Hamiltonian in eq. 2.7 takes the form,

5

2M
a

|}
H = + V(R +H'+H +8H, (2.9)
S o (e}

' 15
where VS(R) is the static potential given by

zazbe2 % y
VR =R T _ (2.10)
or
Z, e 2, po(r,)
V) =z E +1° —Ll a7 ,
5 = |k

where (r,) is the ‘charge density tor the jth electron H' is the electron

) 8
capture potential prescribed by Bates, i.e.,

-Zae2 | Zae2 ]
H' = —=—— + <¢-' v ¢.> (2.].1)
Rx| PR 1

+
where x is the coordinate of the captured electron measured from the target

nucleus; Ho is the Hamiltonian that describes the initial bound state

of the electron to be captured, i.e.,

2 2
Pe Zbe 5
R — R it T T
HY = zme i v(x), (2.11A)

-
where Pe is the momentum of the captured electron and V(x) is the effective

potential between the captured electron and the spectator electrons, i.e.,
> zb 92
V(x) = L' ooy ol (2.11B)
k=1 Irk~x

12



where the prime indicates the restricted sum r, # x; and Hois the

Hamiltonian for the spectator electrons which is given by

z-1[ p 2 Zb62 X .
q = 51— - + V() - |, (2.11C)
0 j:l me rj ] e

where the summation is over all the spectator electrons and V(;&) is
the effective potential between the spectator electrons (cf. eq. 2.11B).
To retain the simplicity of the one electron atom, the effects due to
the spectator electrons, eq.2.11C, are ignoredmin the development to
follow. This is done so that simple hydrogenic wave functions can be
used to describe the bound state of the captured electron. Note that
in this fashion of breaking up the Hamiltonianm, both the static potential
and the electron capture potential of Bates are directly related.

The perturbation tc the one cleoctreon Hamiltonian is separakle
into two categories: the perturbation for electron capture and the
perturbation responsible for scattering of the projectile. Both are
needed for the differential cross section. The perturbation for the
capture process is the Bates potential, eq. 2.11. The "scattering"
perturbation is the stétic potential given by eq. 2.10. We choose to

treat these two processes separately.

2.3 The Eikonal Phase

We can treat the scattering process within the eikonal approxima-
tion. As an introduction to the eikonal approximation, let us consider

the scattering of a particle from the central potential, V(R). The time

13



independent Schrddinger equation for such a process is

{ v? |l
- EE + V(R)J P o= _2; v, (2.12)

where y is the reduced mass and k is the momentum of the projectile.

Assuming our wave function to be of the form,

Y = (K 2(R) | (2.13)

and substituting into eq. 2.12 we get

K2 72 211+ ¥4 (R)
c.
P ®(R) - P #(R) - o + V(R)®(R)
> 2
iR k5 . ,.. ik.R .
X e = E; YR} e " (£.14)

Equation 2.14 reduces to

2 >
Y ew - E’%@(R’ + V(R)8(R) = O. (2.15)

2y

Assuming 3(R) to vary slowly over many wavelengths of the incident pro-

g . 16
jectile, i.e.

v B(R) << B-Do(R), (2.16)

choosing ﬁ along the 2 direction, and solving eq. 2.15 for ¢(R) we get

o(R) ==[e}{p :i_ij V(R)dz]. (2.17)

, 2 2 ;
Noting that R = vp~ + 2" where p is the impact parameter, our projectile



wave function (eq. 2.13) is

y 3 exp(iﬁi-ﬁi + 2i8(p)), : (2.18)

where

e
8(p) = -

J V(R) dz, (2.19)
o

and pv = k.

2.4 The Eikonal Impact Parameter Method

McCarroll and Salin17(1968) present a method for evaluation of the
differential cross section (Appendix 1) where the wave picture is for-
mally transformed into an impact parameter picture. The results of this
method were then modified by Belkic and Salin (1976) so as to include
scattering from the internuclear potential in an eikonal phase. The
internuclear potential used by Belkic and Salin appears tc be tco strong
at the large impaclt parameters which suggests that screening of the elec-
trons is important for angular distributions. Here the eikonal impact
parameter method used by Belkic and Salin is presented in a'general form
so that the screening effects are properly taken into account.

The differential cross section (eq. Al. 38) is obtained by McCarroll
and Salin by evaluating the transition matrix. The transition matrix, Tif’

ig given by either of the two equivalent expressions,‘8

3
I

s <¢f|vf]wi> (2.20)

or

=]
"

15



where the subscripts i and f are used to denote initial and final con-
ditions. The first of the two expressions ftor the transition matrix is
evaluated in Appendix 1. Since the single electron charge transfer pro-
cess is time reversible, the perturbation is given by some appropriate
interaction potential between the captured electron and the projectile
either before or after the collision indicated by Vi and Vf respectively.
It has already been mentioned that the choice of the statiec poten-
tial in the eikonal phase corresponds to use of the Bates potential, i.e.

Ze2 Zue2

- b b
Ve 2 — - <¢i|——x——1¢i>. (2,22)

The Bates potential has two desirable features that the BK and JS poten-
tials lack. First, the orthogonality of the wave functions ¢i and ¢f are
maintained. Second, the choice of a zero point energy has no effect on
the total or differential cross sections as it should? However, the Bates
calculation is difficult computationally. For this reason, the BK poten-

tial is adopted at this point for computational convenience, i.e.

f X i (2.23)

One consequence of using the BK potential is failure of our calculation
to produce correctly normalized distributions. It is well known that the
BK results generally lie above observed results for total cross sections

The general form for the eikonal impact parameter method used by
Belkic and Salin is presented. Using the BK potential in the evaluation
of the probability awplitude (cf. Appendix 2), the differential cross

section {eq. Al.38) takes the form,

do _ . [ s 2 ’
= = |1uvfo pdpJO(nD)exp(ilﬁ(p))bBK(P)[ s (2.24)

16



where p is the reduced mass, v is the velocity of the incident projectile,
71 is the momentum transfer, J0 is the zero order Bessel function of the
first kind, &(g) is the eikonal phase (eq. 2.19) for the static potential,
and bBK(p) is the Brinkman-Kramers probabilify amplitude (eq. A2.30) for
the capture of an electron at the impact parameter, p. In eq. 2.24, the
probability amplitude (eq. Al.37) is separable into the BK probahility am-
plitude times an overall phase (eq. A2.8). The BK probability amplitudé

given by McGuire and Cocke'®is

2in Z 2z
byl = a ab
BK

5/2¢,
Sl

L.
E B—J %, [v%), (2.25)

where Za and Z, are the charges of the respective nuclei A and B, n and

b
n, are the principle quantum numbers of the bound electron to the respec-
tive nuclei A and B, K2 is the second order Bessel function of the third

kind, and

'Yz—-———-l- el o e _3_______ . (2'26)
n

Upon specification of the eikonal phase, the integration over impact
parameters gives the differential cross section for charge transfer of an

electron from the state nb to state na.



CHAPTER 3

APPLICATIONS AND RESULTS

3.1 The Static Brinkman-Kramers Approximation

Use of the static potential (eq. 2.10) in the calculation of the
eikonal phase (eq. 2.19) with the BK probability amplitude (eq. 2.25)
defines the Static Brinkman-Xramers (SBK) approximation, The static
potential for hydrogen and helium like targets 1is easily evaluated in
the independent electron approximation. The form of the eikonal phase
using the static potential is now presented.

The average electron-projectile interaction potential (eq. 2.8)
using hydrogenic wave functions is readily evaluated for the K shell.

The initial wave functionaﬁs

x13/2

N
o™ |
A

2 exp |- }-E%; Po(cose), (3.1)

* *
where Z (Z = Zb for a one electron atom) is the effective nuclear

charge seen by the bound electrons, and P0 is the Legendre polynomial.
' The projectile-electron interaction potentialmis

z -2 . ()4 :
Riia gy e i == ?j(cose), (3.2)

where R is the internuclear separation distance and r is the electron tar-
get separation distance (r< and r_refer to the lesser and greater of the
two distances). From eq. 3.1 and eq. 3.2, the average projectile - ls

electron interaction potential is

13



_ -7 ®) 3 g0, %
¥, .= ‘751 Eé—] { r? dr exp _,§§“£ L
e [aOJ o 0 I'>
X Kf r< ,{ a1 . 2m
1=0 }: J-T Pj(cosﬁ)Po(cosﬁ)Po(cosB)d(cosB) a do. (3.3)

Upon integration over ¢ and noting that Po(cose) =1, eq. 3.3 reads

- (213 =2 2| 1
V = =272 |}— Jr dr exp |- LR
e a a r
o ) o >
o r_ [ 1
X L = J P’? (cosE)Po(cose)d(cosB). (3.4)
7= s -1

Using the orthogonality of Legendre polynmnials‘f!2

1
j-—i Pj,(x)Po(x)dx = 2(‘?0, (2.5)

the summation vanished except for thef = 0 term. This reduces eq. 3.4 to,

oy za ® xze_x
= - —— S e e f
.Ve 5 Jo e dx, {3.6)
>
%
where ¥ = 272 _am and
o
. *
B if x < ZR
a
o
%, = " {3.7)
r if x > 22X .
a
o]
Since23
f:xe“xax = o R 42) (3.8)

1.9



and

I xze_xdx = e_x(uxz - 2x - 2), (3.9)
eq. 3.6 is evaluated as
g 1,2 22"R]
Vv = - -2 R -
Ve i ot + Za = + o exp A J. (3.10)
o o

This is precisely the expression that Bassel and Gerjouy9(1960) obtained

%
for the average electron interaction for protons on hydrogen (Z = Za = 1).

Hence, the static potential (eq. 2.10) for Z, < 2 is

* *
, |L_1.[1 .2 _2ZR
Zalb n R+ B exp - (3.11)
o} o
The eikonal phase for the static potential in eq. 3.11 is
Z 2z o | *) SN
~.-ab 1,2 -2Z R
s(p) = v J Rt o| exp 5 dz. - (3.12)
o o o] J
" 2 i
Letting q = and noting R = /b + 2z~ , we have
o
© 1
f (p2 + zz) & exp(—q(p2 + 22)%)dz (3.13)
o)

which is evaluated to be Ko (pq) which is the zerc-order modified Bessel

function of the third kind?4 Since

_qR
2 e - _."4aR
54 R = -g § (3.14)
we have
” 3. .23 - 8
J exp(-q(p” + =z )E)dz I K (pq). (3.15)
0 1 ©°

20



Letting p = pq, we have 2°

-0 5 K (P = 0 &y (P, (3.16)

where Kl is the first order Bessel function of the third kind. The eikonal

phase for the static potential is,

E: 17— = (3.17)

Appendix 3 contains a computer program for the calculation of the
differential cross section (eq. 2.24) for the static potential in the

eikonal phase (eq. 3.17)

3.2  Screened Coulomb Brinkman-Kramers Approximation

For targets with more than two elecrrons, the static poteniial con-
tains terms that arise from electrons in shells and subshells other than
the K shell. For this reason, there are a multitude of additional terms
to be evaluated to obtain the total static potential. To simplify matters,
we can approximate the screening of the electrons by the screened Coulomb

potential,

R T

Z Z
via) = 2B wgm [_ -11] . (3.18)
(8]

where L is an appropriate screening radius. For atom-atom collisions, an

expression for the screening radius exists in the literature, given by,2&27

_ 2/3 2/3.%
r = ao/(za + zb e, (3.19)



Making use of eq. 3.13, the eikonal phase (eq. 2.10) for a
screened Coulomb potential (eq. 3.18) is
= zazb 2]

§(p) = ~ KO L:j . (3.20)

Use of the screened Ceoulomb potential in the eikonal phase with the BK
probability amplitude defines the Screened Coulcmb Brinkman-Kramers (SCBK)
approximation.

The limiting cases for screening give the results of Brinkman and
Kramers and the results of Belkic and Salin. When the screening radius

is zero the screened Coulomb potential vanishes, i.e.

Z Z
BD s - B el (3.21)

R r r +o
o o
This corresponds to the calculation of Brinkman and Kramers. When the
screening radius is infinite the screened Coulomb potential reduces to
the Coulomb potential, i.e.
Z .z Z 7z

a R
R P ) TS
o o

(3.22)

8+
=

This is the potential used by Belkic and Salin to obtain the Coulomb

Brinkman-Kramers (CBK) approximation.

Appendix 4 contains a program for the calculation of the differential

cross section (eq. 2.24) using the screened Coulomb potential in the eikonal

phase (eq. 3.20).

3.3 Protons on Hydrogen

We can now test the effects of screening of the internuclear poten-



tial by the target electrons in the charge transfer process. Consider
the simplest possible system of a proton incident upon atomic hydrogen,

i.e.
ptH~>H+p .

In viewing this reaction, we compare the differential cross section of
SCBK, for several screening radii, with SBK.

There are several interesting features of SCBK and SBK. In figure
3, a comparison of the differential cross sections versus angle is pre-
sented for protons incident upon atomic hydrogen at 50 keV. There are
three distinct curve shapes (so0lid lines). The screened Coulomb Brinkman-
Kramers calculation reduces to the Brinkman-Kramers calculation and the
Coulomb Brinkman-Kramers calculation of Belkic and Salin in the limiting
cacee of screening parameters. The total crongs sectiong from All the dif-
ferential cross sections in figure 3 are identical. TFinally, the shape
of SCBK is not sensitive to reasonable choices of the screening parameter.

There are three distinct shapes for the differential cross section
indicated Ly the solid curves in figure 3. The BK angular distribution is
peaked in the forward direction and falls off rapidly at the larger angles,
for the BK calculation takes into account no internuclear interaction. On
the other hand, the CBK calculation takes into account the full internu-
clear interaction i.e. V(R) = % , where R is the internuclear separation
distance. As a result, the curve marked CBK shows that the capture process
at the larger angles is orders of magnitude above the BK results due to
inclusion of the internuclear repulsion within the eikonal phase. Recall-
ing the discussion of figure 2, the SBK calculation gives the desired re-

m

sults of following BK at the forward angles (0 < EE ) and CBK at large

o]
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Tigure 3. The differential cross section for electron capture

by 50 keV protons incident on atomic hydrogen is shown. The curve
marked BK is the Brinkman-Kramers approximation, CBK is the
Coulomb Brinkman-Kramers approximation, SBK is the Statiec Brinkman-
Kramers approximation, and SCBK the Screened Coulomb Brinkman-

Kramers approximation.
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m
angles (8 > EE » where m_ is the mass of the electron and mp is the pro-

jectile mass). The charge parametereg used are Za = Zb =7 = 1.

The SCBK calculation reduces to BK and CBK in the limiting cases
for screening parameters. The BK curve in figure 3 is obtained by choos-
ing the screening radius in SCBK to be 10_2, cf. eq. 3.21. The CBK curve
is obtained by choosing the screening radius in SCBK to be 102, cf. eq.
3.22. There were difficulties in choosing extreme values for the screeﬁ-
ing parameter due to the Bessel function subroutines. However, it is
noted that in atomic dimensions lO-2 ~ 0 and 102 ¥ o, This serves as a
check on the SCBK program.

The total integrated cross sections for BK, CBK, and SBK are iden-~

tical. This is because the eikonal phase appears as an overall phase in

the probability amplitude (eq. A2.8), i.e.

(

20 [[b(o) |20dp . (3.23)

)

UTotal

L}

2 JleK<p)|2pdp

= gk’

where b(p) is the probability amplitude (eq. A2.8), bBK(p) is the BK pro-

bability amplitude (eq. 2.9), p is the impact parameter, Orotal is the

total cross section, and o_ is the BK total cross section. The total

BK
integrated cress sections BK, SBK, and CBK are in agreement with the
closed form expression for the total BK cross section of 2.96 - 10—16 cmz.
This serves as a check on the various integration techniques used in the

SBK and SCBK computer programs.

The shape of SCBK is not sensitive to reasonable choices of the
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screening parameter. That is, the SCBK calculation for screening radii
on the order the K shell radius (dotted and dashed curves in figure 3)
retains the two region shape of the SBK célculation. For the Bohr screen-
ing radius (eq. 3.19), the SCBK calculation (dashed line) closely follows
that of SBK. This indicates that the screened Coulomb potential with Bohr

screening 1s a good approximation to the static potential.

3.4 Protons on Helium

Although the angular distribution for protons incident on atomic
hydrogen is easiest to treat theoretically, it is difficult to measure
experimentally simply because hydrogen is diatomic. A comparison with
observed differential cross sections is necessary to check the screening
effects of the electrons on the internuclear potential in the SBK approxi-
maticn. For these reasons we choose to consider the charge transfer pro-

Ccess,
+
p + He > H + He .

Data for this reaction exists af 293 keV observed by Brattongagg al.,
(1977).

The differential cross section for 293 keV protons incident on helium
is compared with the normalized theoretical predictions of BK, CBK, and
SBK (cf. figure 4). The fact that the theoretical predictions must be
reduced by a factor of 3.55 to agree with the observed cross Sectiﬁn of

19

— 2
9.4 = 10 cm“/atom indicates a poor asumption has been made. The charge

%*
parameters used in the SBK calculation are Za =1, zb =2 and Z = 1.618.
We believe the weakest assumption made is use of the BK probability ampli-

tude in our calculation, for it is well known that the BK results generally

lie above the cbserved total cross sections. Nevertheless, we are testing
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Figure 4, Differential cross secticn in laboratory system for
capture of K-shell electrons from helium by 293 keV protons.
The curve marked BK represents the normalized Brinkman-Kramers
approximation; CBX, the normalized Coulomb Brinkman-Kramers ap-
the normalized Sratic Brinkman—Kramers
approximation. Each theoretical curve has been reduced by a fac-
tor of 3.55 normalizing total cross sections to observed results
-19

2 . :
of 9.4 « 10 ©7 cm /atom. Experimental data are those of Brattonm,

et al., (1977).
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the screening effects on the differential cross section and not the BK
approximation. Hence, when comparing our predictions with data, normali-
zation is unavoidable when the BK probability amplitude ié used.

There is evidence that a normalization factor is justified for bring-
ing the SBK approximation into close agreement with observation. A recent
close coupling calculation of the Bates probability amplitude by Lin'"in-
dicates the Bates probability amplitude exhibits the same impact para-
meter dependence as the BK probability amplitude times a constant factor.
In addition, the total cross section from this calculation is in agreement
with that observed by Bratton, et al., (1977). Another justification of
the normalization of SBK is witnessed in a plot of the laboratory angle
Blé where the scattering distribution falls to half the maximum intensity
as a function of the projectile energyzgcf. figure 5. A normalization
factor is not an issue in the calculation ol 6% siuce we are cuousideiing
a ratio of intensities.

SBK gives a better fit to the data than CBK or BK. Referring to
figure 4, it is seen that the SBK calculation features two regions, the
forward angle region where BK gives a reasonable fit to the data and the
large angle region where CBK gives reasonable fit to the data. Referring
to figure 5, it is seen that the SBK approximation is superior to CBK in
its agreement with data. This is because CBK follows the angular distri-
bution at large angles whereas a% is calculated at the forward angle re-
gion where CBK is in poor agreement. A similar argument can be given as
to why BK and SBK agree in the calculation of G%. However, it should be
noted that the BK approximation does not give good agreement for large

angle capture as witnessed in the angular distribution in figure 4.
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Figure 5. The laboratory angle 915 where the scattering dis-
tribution falls to half the maximum intensity as a function
of the projectile energy. The curve marked BK represents
results using the Brinkman-Kramers approximation; SBK using
the Static Brinkman~-Kramers approximation; and CBK the Coulomb
Brinkman-Kramers approximation. Experimental data are due to

(o) Wittkower and Gilbodfw(1967), and (A) Bratton?i(1977).
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3.5 Protons on Argon

In considering the reaction of protons ineident on helium, a nor-
malization factor was introduced to bring the BK, CBK, and SBK calcula-
tions into agreement with the experimental total cross section. For the

reaction
p + Ar » ﬁ + Ar+,

the BK total cross section is in close agreement with the data at a pro-
jectile energy of 6 MeV. For this reaction, we compare the SCBK approxi-
mation to the data without normalization.

Using hydrogenic wave functions as before and charge parameters
Za = 1 and Zb = Z* = 18, we calculate BK, CBK and SCBK, cf. figure 6.

These are precisely the results obtained by Belkic and Salin for the BK
aund CDK approsimations in figure 2. The SCBE results are obtaipned for
Bohr screening which corresponds to the SBK approximation. The total

3 cmzlatom which

cross section for BK (i.e. all curves) is 1.78 - 10-’2
. . 32 -23 2

compares with the experimental results of (1.68 * 0.9) x 10 cm /atom,

Again the screened Coulomb Brinkman-Kramers approximation is in better

agreement with the data than either BK or CBK at both the large and small

angles.
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Figure 6. Differential cross section in laberatory system for
the capture of K-shell electrons from argen by 6 MeV protons.

The curve rﬁarked BK is the Brinkman-Kramers approximation; CBK,
the Coulomb Brinkman-Kramers approximation, and SCBK the _Screened
Coulomb Brinkman-Kramers approximation. Experimental data are

those of Cocke, et al., (1976).
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CHAPTER 4
CONCLUSIOCN

The role of the internuclear potential in angular distributions has
been examined. Using the eikonal method of McCarroll and Salin, the effee-
tive internuclear potential is represented by the static potential. The
shape of the angular distribution using this static potential gives im—‘
proved agreement with observed results of Brattonm, et al., over that ob-
tained by Belkic and Salin using an unscreened Coulomb potential and much
better agreement than Brinkman and Kramers which takes into account no
internuclear repulsion.

As a consequence of choosing the static potential to represent the
effective internuclear potential, the electron capture potential is found
to be the potential prescribed by Bates, Although the Brinkman-Kramers
potential is used tc approximate the Bates electron capture potential, the
shape of the differential cross seccion in the Static Brinkman-Kramers (SBK)
approximation exhibits twc distinct regions in the differential cross see—
tion corresponding to observation by Bratton, et al. In contrast to other
methods, the SBK approximation has no node in the differential cross sec-
tioﬁ. Since the static potential and the Bates potential afe intimately
related, the SBK results reinforce use of the Bates potential.

However, our SBK approximation suffers from various limitations.
Possible improvements in our calculation include:

i) use of the Bates potential in calculating the electron capture

probability amplitude,

ii) use of better wave functions to describe the bound electron, and

36



iii) taking into account second order effects.
Other effects are probably less important than these although they may

contribute to a total understanding of charge transfer.
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APPENDIX 1

The Transition Matrix

The form of the transition matrix developed in this section closely
follows that outlined by McCarroll and Salin (1968). Related results have
previously been given by Schiff3%195¢) and Glaubers%IQSS). From this
development the validity of the expressions for the transition matrix, and
hence the differential cross section, is clearly shown.

Consider the charge transfer process,
A+ (e+B) » (A+ e) + B.

A diagram of the position vectors for this reaction is given in Figure 7.
This diagram is used extensively in the steps to follow. In addition,

some vector relations corresponding to the diagram are used:

< ;;2 " ;’l (AL.1)
% = ;_,*2 - 1?3 (A1.2)
K=?3 _'r*l g S (A1.3)
£=1 (x+3). (A1.4)

Letting m be the mass of the projectile and M be the mass of the target,
the following vector quantities are defined from the reduced mass rela-

tions for the respective clectron-nucleus systems:

(Al.5)

and

40



41



Figure 7. The coordinates for the charge transfer process

A+ (e +B} + (A + e) + B.
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oD et § (A1,6)

Upon substitution for ; and e (eq. Al.1 and eq. Al.2) eq. Al.5 and Al.6

become,
T. +
. r, +r
e B | (A1.7)
i 3 m + 1
b
> >
mr, +r
> _ 2 a3 2 y
re = rl n_ 1 . (A1.8)

A two state wave expansion of the total wave function within the

independent electron model is

¥ = 8 FGE) +4,(DEE, (A1.9)

3 >
where ¢a(s) and ¢b(x) are the bound state functions of the active electron
around nuclei A and B, respectively. The asymptotic conditions on ¥ are

F(E,) (K, £) + 0
e o ko |
i) 3 expiLE; Ty r

ri+ o i

and

G(Fp) ——— 06, (A1.11)
ri + f ‘

The scattered waves are shown to fall off as exp(ikr)/r, i.e. OC%).

It is now of relative importahce to introduce the quantities,

F(%’i) = exp(-iic’i .}’i)F(?i) (A1.12)

and
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c(%f) = exp(iﬁi-¥f)6(¥f). (A1.13)

This phase transformation is made for later simplification in the trans-

ition matrix.

The transition matrix (eq. 2.18) is now given by,

Lo
]

1f = <oelVel¥y>

It

<¢a(g)exp(—i§f-?f)lvfl? >, (A1.14)

where ¥ is given by eq. Al.9. Substitution of F(¥i) and G(?f) from egs.

Al.12 and Al.13 gives,

e
¥y = exp(lki-ri;L(x, ri), (Al.15)
where
F o > O I [ o i 3 \
L(x, ri) ¢b(x)k(1i) + ¢b(s)G(rf;expL lki (rf + ri)i. (A1.16)

It then follows that the transition matrix is given by,

> - * o > _-) 5 - &
T, = Jdedr¢a (S)exp (1T, + B ED VLG, T)) -

Mocdification of the exponential phase in eq. Al.l7 is needed. Con-
sider,

e

&> > > > > > > > >
. . = P A . I »
kf rf + ki ri ki re ki te + kf re + kg ri
> > -> > -+ >
= (kf - ki)-rf +- ki-(ri + rf) (A1.18)
> > > >
= —ner_. + ki-(ri + rf), (A1.19)
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where the definition,

¥

(Al.20}

S
il
4
1
o

is used. Utilizing eq. Al.3 and eq. Al.6 (also see diagram) it follows

-r = ﬁ, (All 21)

since m, >> 1. Combining eq. Al.19 and eq. Al.21, the phase is

- > y AR W g >
kf-rf + ki-ri ¥ neR + ki (ri + rf). (A1.22)

Noting that
> o
R = zz +p, (A1.23)

where 2 is chosen to be (2ki)_l(§i + ﬁp) and'g is the plane of impact

_.>
parameters perpendicular to z, eq. Al.22 becones

> > > > - > > -+ :
kf-rf + ki-ri Y onez + onep + ki (ri + rf). (Al.24)
However, it is observed
2 2
I\. - 1{
Figmadetds (A1.25)
2ki
From conservation of energy, we have
k12 ku
_____ZUi 4 Ei = ——zuf -k Ef' (Al.26)

where E; and Eg are the initial and final binding energies of the elec-

trons to the respective nuclel B and A. Combining eq. Al.25 with eq.
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Al.26 and noting that

) (mb + l)mEl i} (ma +'l)mb .
312111=m + 4"1“'&1"5' +1=Ufs (A2,27)
a ' b a " ™
we get
€. - €
=t QU SN (41.28)
v

where pv = ki is used. Defining AE = Eg = € and substituting eq. Al,28

into eq. Al.24, the phase takes the form

> T ?.+.+ A};_
Rorvr,. + ke, % nep + ks (ri rf) + 2 (A1.29)

Replacing the phase in the transition matrix (eq. AL.17) by eq. Al.29,

we obtain
~ > - > 3 ks D
T;¢ ® JEXP(in-p)dpf_izfdr¢a (s)exp(ig)va(x? ri)’ (A1.30)
where
_ > > -+ AE '
g E ki (ri + rf) + a2 (Al1.31)

Considering only s state to s state electron capture gives our sys-—
tem cylindrical symmetry. Hence, the integration over the plane of im-

pact parameters becomes
+
dp = pdpdo (Al.32)

and

=¥

1‘3 = npcosa, (A1.33)
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where o 1s the azmuthal angle. The integral,

fgwexp(inocosa)da {Al.34)
i 35
is the evaluated to be,
2nJO(np), (Al1.35)

where Jo is the zero order Bessel function of the first kind. Using the

result of eq. Al.35, the transition matrix (eq. Al.30) becomes

Ty B ~12waOpdoJo(no)b(p). (A1, 36)
where
Y % .
b(p) =f—f dz[d?qsa (g)exp(if;)vft(;z, Fi). (A1.37)

It follows immediately (eq. Al.36 and eq. 2.6) that the differential cross

section is given by,

ds . . [ 2
E% z !~1UVJOpdpJ0(np)h(p)| ; (A1.38)

In arriving at eq. Al.38 near elastic scattering, i.e. k = ki 2 ke, is

f,

assumed,



APPENDIX 2

The Brinkman ¥ramers Probability Amplitude

The probability that a projectile will capture an electron at a

given impact parameter, p, is
Probability = |b(p)|2, (A2.1)

where b(p) is the probability amplitude. From appendix 1, the probability
amplitude is given by

Z

by = 2 exp(zies<'n)>f_iz J-Fd?qaa*(z)exp(ia);}’- b, (0 (A2.2)

where the EX potential (eq. 2.23) and the projectile wave function (eq.
. s (B - .
2,18) are used. Note in the eikonal phase, we have Kii]z. In the pro=~
> > &
bability amplitude (eq. Al.37), we have ky + kfliz. For small angle scatter-
> . > >
ing, ki is approximately parallel to ki + kf.

Using the definitions of the reduced mass (eq, Al.27) and the vec-

tor relations (eq. Al.3 - eq. Al.6)}, the phase (eq. Al.31) becomes

E= (f+ VT + (g - VR4 2 O an.3)
whetrea
om ( + 1)
=T B mi ¥ 1) | (A2.4)
a a M
and
1
A = —--——-—-—--é'—-—-"-—-—-—--
m, + m + 1. (A2.5)
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Noting that

v 23V (A2.6)
and that within Of%)
f+g = -1, (A2.7)
the probability amplitude (eq. A2.2) becomes
b(ﬁ) = =by () exp (218(p)), (A2.8)
where
b () = %jffiz exp(iCh(g - ) z +222))
f op ¥ o Zb - >
X Jdr¢a (s}?;¢b(x)exp(—inr) {(A2.9)

Following the Fourier transform method of McDowell and Coleman?6

the probability amplitude for symmetric charge capture (Za = Zb = Z and

m = mb = M) is

a

AE > % zb -+ e
dz exp (i g %) dr¢a (s);* ¢b(x)exp(~1v°r). (A2.10)

©a

_if[
bBK(o) == [_

By performing the Fourier transforms on
fa(ﬁ) =z J¢a(g}exp(—i§-g)dg ' (AZ2.11)
and
> - Zb e
gb(K) = ¢b(x};~ exp(~-iK+x)dx (A2.12)

to give
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¢, (8) = (zn)'3ffa<§)exp(iﬁ-§)dﬁ

and

i X = (2 )‘3f ®) exp (iF-x) d¥
. ¢b X) = T 8, exp(ikex s

eq. A2.10 is

BK

-_—0

- +

X Jd? exp(i(ﬁ'x - ks - 3*?)).

From eq. AL.3 and eq. Al.4,

K
|
my

and

> >
s=7-%R,

+
the integration over r reduces eq. A2.15 to

(vl

bBK(p) = % (ZTT)_:;de exp (i 3—]5 z)exp(% \_,r*.i{)

X Jdiéfa(ié)“gb("ﬁ + Vyexp(ik-R).

Recalling that

and choosing
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by (P) = 3 (2w)‘6f dz exp(12 z>JdEfdﬁfa(ﬁ>*gb(§)

{A2.13)

(A2.14)

(A2.15)

(A2.16)

(A2.17)

(A2.18)

(A2.19)

(A2.20)



such that ﬁ[lﬁ, the BK probability amplitude (eq. A2,18) is

(p) = 10 “3rmd1 mdl mdk f (k, k, & )*
bBK p) = v (2m) ) m{x mcy 7 a x* y? Tz

- oW

X gb(kx, ky, kz + v)exp(ipkx)f :z exp(iz(%-+ kz)). (A2.21)

At this time, we further limit our development of the BK probability
amplitude to consider K shell to K shell capture. The ls wave function

in momentum space is

1
“ sw*za5/2 (A2.22)
£ (k) =
(k° + 2 2)2
which gives
4W%7 5/2
> ¥ . .

g (k+v) = (A2.23)
b ol 2w Yy,

b

>
Completing the integration over z and substituting eq. A2.22 and

eq. A2.23, eq. A2.21 is

5 fe £ ’
_i8z” 2 2 2 -3
by (o) = 2o J_gkaJSky exp(ipk) (b + 1P + )72, (A2.24)
where
v2 2
B =-Z" Sl : (A2, 25)
Integrating over ky, eq. A2.24 reduces to
L k)
; BZ) ( cos (p x
b, (P) == dk_. (A2.26)
BK v, (kxz & B)5/2 X



The last integration, eq. A2.206 is

_ (21} 5 &. L '
e - (2] 2 12 (%), 2.

where K2 is the second-order modified Bessel function of the third kind.

This corresponds to the transition probability amplitude calculated in a

straight-line impact parameter method given by Belkic and Salin as,

1

Bl 0 [—zi] z z.)°/? o’ K g (A2.28)
B T Y [ab} Y, 2 Yo P> .
where
y =z%+ f; + —’3—}’3]2. (42.29)

An even more general expression given by McGuire and Cocke is given as,

{Q.inaJ 2 7, 5/2{02 J y
b, lp) = [-——=] |== — K (Y p}, (A2.30
BK v nanb Y 2
where
2 2 2
4 Z - Z
- b_ ¥, 1 |7a _ b ||2
R R Lk 5 5 (A2,31)
oy, Ty 0y
and
1 Za2 zb2
AE ab 1 o Ballac (A2.32)
"a ™

The princi 1 quantum numbers are indicated by n, and n, for the respec-

tive nuclei 4 and B. The probability amplitude in eq. A2.30 is justified19
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only when there 1s a one~to-one correspondence between the angle and

impact parameter, in contrast to eq. A2.28.



APPENDIY 3
The computer program for the calculation of the differential

cross section for the static potential in the eikonal phase, cf. Section

3.1, is listed.
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APPENDIX 4
The main program for the Screened Coulomb Brinlkman-Kramers approx-
imation is listed, cf. Section 3.2. The three subroutines not listed _

are identical to those used in Appendix 3.

>
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The effects of electronic screening of the internuclear potential
in charge transfer is considered. By studying the differential cross
section, the role of the internuclear potential is examined. Using
the eikonal method of McCarroll and Salin (1968), the effective inter-
nuclear potential is represented by the static potential. The
differential cross section for capture of K-shell electrons from
helium by 293 keV protons observed by Bratton, et al., (1977), are
compared with the theoretical predictions of Brinkman and Kramers
(BK), Belkic and Salin (CBK), and myself (SBK)}). The shape of the
observed differential cross section is in closer agreement to SBK, which
uses the static potential, than BK, which uses no potential, or CBK,
wvhich uses the full Coulomb potential. The SBK differential cross
section ylelds an improvement over CBK for the capture of K-shell
electrons from argon by 6 MeV protons observed by Cocke, et al.,

(1976). Both CBK and 5BK show marked improvements over BK.



