WILLIAM CHRISTIAN ELVIN BRAUN
B. S., Kansas State University, 1966
A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Industrial Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas1967
Approved by:
Major Professor
2168
TAii
196.
R68
TABLE OF CONTENTS
INTRODUCTION 1
Background and Purpose 1
Problem. 3
SURVEY OF THE LITERATURE 4
Approaches to the Problem. 5
Evaluation of the Proposed Simulation Solution 8
THEORETICAL CONSIDERATIONS 9
COMPUTATIONAL PROCEDURE 11
SUMMARIZATION OF THE SIMULATION PROCEDURE 27
DISCUSSION OF SAMPLE PROBLEMS 28
RESULTS 30
CONCLUSIONS 35
RECOMMENDATIONS 37
ACKNOWLEDGMENTS 39
REFERENCES 40
APPENDICES
I Confidence Coefficients 43
II Computer Program Discussion 44
III Computer Program 57
IV Example Problems 67
V Computer Output 75
VI Statistical Tests 119

INTRODUCTION

Background and Purpose

The movement or relocation of consumer products ranging from airrifle shot to huge machine tools, and covering items from the food and clothing industries to hardware items such as sewer pipe, electric motors and weapons for the Viet Nam war all serve to point up the invaluable usage of transportation to the United States' mobile economy. It is stated that in 1964 , over $1 \frac{1}{2}$ million railroad freight cars were utilized for the movement of physical facilities (11).

This number of freight cars does not include the additional transportation of passengers. Add to the railroad industries movement the fact that todays' trucks haul over 29 billion intercity ton-miles of goods (one ton-mile being equivalent to one ton being carried one mile) (5). Furthermore, the transportation of school children throughout the United States to and from school buildings requires the carrying of four times the amount of passengers daily, than does the commercial intercity transport system composed of railroads and commercial bus lines (5).

Air lines and water movement of physical facilities and passengers are also to be included when considering the nations' transportation system. Combining the cost of this phenomenal amount of transportation required annually would result in a figure reaching into the hundreds of billions of dollars.

Many areas of the nation's transportation system are available for study to the Industrial Engineer seriously interested in reducing the cost of transportation for an industry, school system, or transportation facility of some type. These areas, such as scheduling frequency, vehicle capacity, routing, terminal facilities, and automatic vehicle control are all fertile
areas for study and eventually a reduction of costs (10). However, the study of all these areas would be a magnanimous task in its own right, but the study of any one part of the transportation system could conceivably be conducted by one researcher. A glance at the possible areas of improvement in terms of reducing mileage and inherent costs thereof yielded the choice of the routing or dispatching problem as rather a contral problem area and an excellent basis for reducing costs. It appears that if an optimum routing procedure could be developed, some of the associated problems would be reduced in magnitude, such as scheduling of vehicles, and vehicle capacity.

Routing, for purposes of this study, is defined to be the derivation of a permutation of demand points or stops over which to send carriers of passengers or physical goods. Before the advent of operations research techniques, the typical means of routing carrier vehicles was to pick the best looking array of stops from a map of the area over which routing was to take place and mold it to the utilization of carriers consistent with their capacity. If a shorter route could be determined by manipulating routes and vehicles it was used.

This procedure could be computationally possible for four or five stops, but as distribution points increased the efficiency of "routing" would tend to decrease, the optimum route becoming more and more difficult to locate.

The possibility of performing much the same operation by means of utilizing a computer for the computational labor and simulation for organizing the problem came under full consideration, and was consequently developed as herein stated. This means of searching for a short route as constrained by necessary assumptions in the solution of the problem is compared to methods of solution utilizing operations research analysis, for purposes of
determining the best available routing technique currently available.

Problem

The problem is basically one of minimizing the distance through an array of demand points while satisfying certain restrictions, given the original distance between all demand points and a point referred to as the origin, where demand equals zero. In solving the problem the following considerations must be taken into account;
(1) The demand at each demand point must be fulfilied, preferably simultaneously.
(2) Carriers may or may not all be equivalent in capacity.
(3) The demand at any demand point may not be greater than the capacity of any one fleet vehicle.
(4) The determined routes are all either 'pick-up' or 'distribution' routes, and not both.
"Truck dispatching" or "carrier routing" are titles for problems which fall along the lines of the problem as outlined above. A solution to the particular problem as above specified is herein sought, by means of computer simulation.

Many solutions to the classic traveling salesman problem have been proposed in literature published in the past fifteen years. This problem gained a reputation of being that type of problem which had a simple title, although requiring an extreme amount of labor in seeking out a satisfactory solution (12). However, a solution did exist and in a recent promotional contest, several contestants determined the solution to a 33-city problem (12). The fact that many early attempts to solve the traveling salesman were abortive, lead to the quick exclusion of those articles from the reference list. Since an algorithm was needed which could be programmed for a computer, besides guaranteeing an optimal solution and at the same time remaining applicable to a variable size of problem, the obvious solution was found in the form of a Master's Report in the Industrial Engineering Department at Kansas State University. V. C. Patel, (13) working with a 'branch and bound' algorithm, (12), wrote a computer program for the solution of variable sizes of traveling salesman problems. By changing the form of the program and the values of the dimension statements, Patel's work was completely adaptable to the needs of the proposed study.

Other than literature directly concerned with the traveling salesman problem, Boyer's article (2) made reference to a similar method to the proposed simulation procedure in passing, by noting that years would be required to obtain and test all routes using a method of random generation of stop order. Boyer further goes on to state that an extension of this very program became the basis of his method of solving carrier routing problems. A number of approaches have been taken in attempting to solve the routing or carrier dispatching problem. These methods, which include Boyer's
'feasible route generation' (2), dynamic programming (16), algorithms by Dantzig \& Ranser (8), Clarke and Wright (4), and Cochran (5) are discussed briefly below for purposes of result comparison later in this paper.

Approaches to the Problem

A semi-simulation approach to the carrier dispatching problem was taken by Boyer (2) in that the original feasible route is determined by partitioning the school system (in this case) into individual bus routes. At this point, a computer program written in SPS is used to generate all feasible routes for each partition of the school system. Upon generation of all routes, the computer printout is perused to locate the 'best' route generated for each vehicle or system partition. The cost is then determined and the best route is utilized.

Tillman (16) attacked a small scale school bus scheduling problem (carrier dispatching) by applying the technique of dynamic programming. For the particular problem used, involving five stops, three busses and 40 pupils, an optimum solution was obtained. However, for larger problems, computational difficulty by reason of overwhelming numbers of calculations to be performed outweighs the advantages of this method (5).

An algorithm published in 1958 by Dantzig and Ramser (8) has yielded quite satisfactory, albeit, not optimal results, in carrier dispatching. Basically, the algorithm consists of ordering demand at demand points from least to greatest. These demands are then used in the following manner; the solution is one of stage-wise combination of demands, such that in the first stage pairs of points are joined, pairs of pairs are joined in the second stage, etc. (5). Therefore the demands must be combined initially so that when the first pair of points is joined, the demand does not exceed the
capacity of the carrier fleet. If another joining is desired, the original combinations must allow two pairs of points to be joined without exceeding carrier capacity, and so on until the maximum number of joinings desired is satisfied. The remaining variables are interpair distances and therefore to optimize route length, the sum of these interpair distances is minimized at each stage, and the final stage results in the minimum trip length.

A modification to the above algorithm was proposed in 1962 by Clarke and Wright (4). These authors felt that Dantzig and Ramser paid too much heed to vehicle loading and not enough to distance saving. Therefore, their algorithm consisted of ordering the demand points according to distance from the origin, closest first, next closest second, and so on until all points were ordered. Capacity of vehicles was also ordered from smallest to largest to aid in the computation. The distance matrix was then used to determine maximum savings between each two respective stops. These maximum savings were then sought out, largest first until no more savings existed, and the allocated routes were then determined. This algorithm seems to yield quite good, although still not minimal routes.

Cochran (5) proceeded to modify the algorithm set forth by Clarke and Wright by adding additional constraints in an attempt to further reduce total mileage per route. One modification which Cochran made was to utilize 'freed' vehicles, or carriers which had initially been assigned to some demand point and were displaced by a new combination of demand points, by including a reassignment of carriers to loads after each pair of loads was combined (5). Each demand, beginning with the smallest was then allocated to the vehicle of smallest capacity which could take on that demand. This modification was intended to more fully utilize available vehicles, thus reducing total miles travelled. Another modification set forth by Cochran was one of limiting
the mileage of any vehicle in the fleet to less than a certain set figure. This modification, more for practical considerations than as an additional means of reducing route mileage is listed here for completeness. Cochran's reassignment modification did aid in further reducing mileage below that of former methods on several example problems, and appears to be the most efficient method available to date in the literature.

Evaluation of the Proposed Simulation Solution

To the present, then, a method of solution of the carrier dispatching problem which can guarantee an optimal route is still not to be found in the literature. Therefore it is proposed herein to seek a simulation solution in which a minimum route can be determined, or to at least be able to make a probability statement as to the "closeness" of the actual determined route to the true minimal route. This, then, is to be conducted as a feasibility study on one simulation approach to the carrier dispatching problem. As a need for a true optimum route becomes more and more acute, it is obvious that a study of this nature may open the way for further research in this area. Such was the case, as to be noted in the section headed "Recommendations."

In deciding how best to program the computer to 'search' for a minimal route, several factors had to be taken into account. These are the following;
(1) It must be assumed that the capacity of at least the largest carrier (assuming here that carriers of varying size are available) exceeds that of the load to be either loaded or distributed at each demand point. In the event that a load does exceed the largest capacity carrier's capability, allocate a carrier of highest capacity to the demand point and include the remainder of the load, which will be less than a vehicle load of the highest capacity. The remainder is then considered to be the demand at that particular demand point and full truckloads are excluded from consideration in solution of the problem.
(2) It must be assumed that a sufficient number of carriers are available to be able to contain the total demand at all demand points so that if all carriers are dispatched simultaneously on their respective routes, no demand point is slighted.
(3) It must be assumed that as carriers proceed from the origin (for example, a loading dock) they complete the route either distributing the load originally carried from the loading dock without replenishing the supply along the way, or conversely, picking up loads beginning empty at the origin and not unloading any commodities along the route.
(4) A final assumption is that if a carrier does not retain the capacity to assume the full demand at a demand point, no demand at that point is taken on by that vehicle. It is assumed that the
next vehicle will proceed with full potential capacity to this stop, and if assumption (1) holds, pick up all demand at that point.

Step 1.
Proceeding under the assumptions as discussed above, the first step in the computation procedure is one of assigning identification numbers to respective demand points for easy numerical association in computer subscripting operations, and for referability as to final output of routes. These demand points are labeled $P_{i}(i=1,2, \ldots \ldots$, NS $)$, where NS equals the number of demand points. The arrangement in order of demand points is immaterial for simulation purposes since a matrix of respective distances between every pair of demand points is a prerequisite for solving the traveling salesman problem. This is a definite advantage over most of the operations research approaches to the problem. Adding l (one) to the value of NS given above yields the value $M M$, which is the identification number assigned to the origin or point of departure and return of the carrier facilities. An $M \mathbb{M}$ by $\mathbb{M M}$ matrix is then assembled, giving the respective distance between each two demand points or a demand point and the origin. Consider the matrix shown in Figure 1 of Plate I, Note that MM is the highest numbered stop in the matrix designation.

Associated with each demand point in the matrix is the demand of passengers seeking to obtain a seat in a bus or train, or a load of merchandise to be discharged or taken on. This is represented pictorially in Figure 2 of Plate I. Note that as formerly specified, there is no demand associated with the origin.

Now that the stops and their respective loads are determined, it is natural to consider the available carriers and their capacities.

EXPLANATION OF PLATE I

Fig. 1. Distance matrix in miles between stops.
Fig. 2. Demand at each respective demand point.
Fig. 3. Carrier capacity in same units as demand.

PLATE I

	1	2	3	4	5	$M M$
1	0	4	6	3	2	5
2	4	0	5	4	11	7
3	6	5	0	7	6	11
4	3	4	7	0	8	13
5	2	11	6	8	0	10
$M M$	5	7	11	13	10	0

Fig. 1

STOP	DEMAND
1	10
2	8
3	6
4	9
5	7
MM	0
Total	40

Fig. 2

CARRIER	CAPACITY
1	20
2	20
3	20
Total	60

Fig. 3

It may be seen in Figure 3 of Plate I that the capacity of the available carriers is fixed; that is, the capacity of Carrier l equals the capacity of Carrier 2 equals the capacity of Carrier 3. In comparing these capacities with the demands at each stop, it can be seen that the requirement of carrier capacity exceeding demand point loads is met. Also, a sufficient number of carriers is available to simultaneously pick up the demand on each route, and the demand is all positive so that no demand is to be discharged along a route.

Since the capacity of carriers for this example problem is the same, a fixed capacity solution is necessary. But in the event that all carriers were not equal in capacity, it would not do to load or unload them in a fixed capacity format. Therefore, a provision was made in which either fixed or variable capacity vehicles could be utilized through changing a minimal amount of input data as explained in Appendix II. In order to carry out this computation, however, the capacities of vehicles to be utilized must be ordered from least to greatest such that $q_{i}(i=1,2, \ldots, N B)$, where $N B$ is the total number of carriers available, fulfill the requirement that:

$$
q_{i} \leq q_{i+1} \leq q_{i+2} \leq \cdots \leq q_{N B}
$$

Step 2.
The next item to consider in setting up the problem is the number of total routes to simulate for each run of the simulation program. The program is based upon the assumption that the probability of obtaining a minimal length route is a monotonic nondecreasing function of run length. Computer speed and cost would be a critical factor at this point, as well as the number of demand points over which the routing problem is to take place.

A flow diagram of utilization of random numbers in sequencing the order of stops.

As NS increases, time per pass increases. The IBM 1410 computer is a medium-fast computer capable of turning out one route every two seconds for a small five stop problem, and a route every 11.8 seconds for a problem involving 25 demand points using the simulation program. These times could be decreased markedly by a faster computer or increased considerably by, say, the IBM 1620 computer. However, when the number of total test routes is determined it is labeled MCASE and punched into the control card as described in Appendix II. Therefore, if 2000 test routes are desired, the number 2000 is punched into the input data card for MCASE. Step 3.

After the number of demand points involved is decided upon, it becomes necessary to determine an ordering of the stops. This is done by the use of a random number generator function which has been converted from IBM's System Library Subroutine to an Autocoder function for the IBM 1410. This generator, capable of producing five thousand random numbers per second, has been tested for randomness by D. J. Wichlan (17) using the Kendall-Babington-Smith chi-square test. Wichlan showed it to result in nonsignificant variation from a random uniform distribution at an alpha level of .05 . An algorithm for converting each random number generated to a permuted stop is used and illustrated in PLATE II. Thus, for a matrix of NS stops, NS random numbers are all that are required to permute all the demand points into a random order. This permutation of stops or demand points occurs routinely, once for every trial route desired. This part of the program is solely responsible for the total number of miles per complete route since a generation of stops located in the same general area to later be allocated to the same vehicle will quite naturally reduce the number of miles per total trip, and conversely, generating stops at alternate ends of
the demand point array to be allocated to one vehicular route will produce a non-minimal route.

Step 4.
Now that a permuted order of demand points has been generated, the carriers must be loaded or unloaded in one of the following two ways;
(1) If the fleet of carrier vehicles is composed of carriers which all have equivalent capacity, the fleet is considered to be one of 'fixed capacity'. Therefore to insure vehicles which are filled to maximum capacity without actually exceeding their load capabilities, each respective carrier is dispatched to the first stop in its route as determined by the random number generator. At this point the vehicle's capacity is reduced by the amount of demand at that particular demand point. The capacity remaining ($N Q$ in the program) available for additional loads is tested and determined to be positive (some remaining potential capacity exists), zero (the demand exactly equals the carrier's capacity), or negative (the vehicle is overloaded). The program continues in one of three ways from this point;
(a) If some remaining capacity exists, the vehicle is forwarded to the next stop in its route sequence. Once again the available capacity is reduced by the new demand at the demand point, and again tested for an overloaded condition. If capacity remains at this point, (a) is repeated. If capacity just equals the load, proceed to section (b). If the vehicle has been filled beyond its capacity, proceed to section (c).
(b) If the program arrives at this section, it is assured that the load just exactly fills the carrier to capacity. The program
continutes by extracting the stops involved in the route for which this capacity is fulfilled and assembling a unique sub-matrix from the original distance matrix as explained below in Step 5.
(c) When the program reaches this point, it is due to the exceeding of a vehicle's capacity. In order to restore conditions to what they were prior to assuming the excess demand at this last demand point, the demand at the final demand point on this route is removed and the index of stop numbers, (JI) is reduced by one. In effect this restores conditions to the satisfactory state prior to overloading and resets the demand point extracted from this route as the first stop on the succeeding vehicle's route.
(2) In the event that the carrier fleet is composed of vehicles which differ in capacity, the fleet is considered to be one of 'variable capacity'. Therefore, the program must know how to choose an appropriate size of vehicle for a given load. There are two ways in which this may be done, both of which will be explained below. The first method was rejected in favor of the second method.
(a) As first programed, the vehicles were loaded (unloaded) as described under (1), above. The vehicles were filled until such time as the minimal capacity was exceeded, that is the capacity of the smallest carrier in the fleet. At this time, then, the negative load (overload) was converted to the equivalent positive load. For example, if a 4000 pound load had been exceeded at a certain demand point, by 200 pounds, the load was merely assumed to be 4200 pounds and the remaining
vehicles of larger capacity were tested in order of size (smallest to largest) until a carrier of sufficient size, possibly 5000 pounds of capacity, was chosen for the given route. This was discarded for two reasons; first, the process used by the program for finding a suitable capacity vehicle tended to emphasize usage of the smallest vehicles in the fleet first. Obviously, this left the larger capacity vehicles idle which without a doubt represent a higher initial investment. Secondly, it may be reasoned that the usage of larger capacity vehicles in hauling loads over a route could quite easily eliminate the need and therefore expense for one or more carriers. This has actually been borne out in previous attempts at solution of the routing problem.
(b) As the program now exists, the carriers are loaded in the following manner to utilize most fully the vehicles of largest capacity. The carriers are filled until the capacity of the largest vehicle in the fleet is exceeded. Then, as explained under Number (1), Part (c) above, conditions are restored to that preceding the demand point causing overload by removing the demand at the last stop on this route and decreasing the stop index by one. At this time the load remaining on the carrier is tested against all vehicle capacities beginning with that of the smallest vehicles and proceeding to the largest. When a sufficiently large carrier is obtained to assume the remaining load, this capacity vehicle is assigned to that route. This feature of the program does tend to utilize the carriers of largest capacity first. Also if

Abstract

all carriers of one capacity are previously assigned to routes within the total trip, a vehicle of the next largest capacity will be assigned to the route requiring a similar sized vehicle. If the maximum vehicle capacity has not been exceeded during successive demand point loadings, the program works under the same decision process as explained under (1) above. Also, as the program tests for overload conditions of vehicles after each demand point, it also checks to determine if all stops have been satisfied. If at any time the demand at the last permuted stop has been loaded without exceeding the capacity of the specified vehicle, the load is tested to determine which capacity of carrier is necessary to haul the load for that series of demand points.

Step 5.
As each carrier is loaded in the manner illustrated in the preceding section, the number of each stop (NSTOP) is retained by the computer method of subscripting a variable. After obtaining vehicles loaded to their maximum through use of the above procedure, it has been stated that overload stops are disregarded on the route for which they cause overload conditions. Thus, each value of NSTOP (saved by subscript notation MR(JI)) is extracted from the original distance matrix read in at the beginning of the program. The value of $M M$ is also included in the sub-matrix, so that the final matrix for each truck might appear as in Figure l, Plate III.

EXPLANATION OF PLATE III

Fig. 1. Section of original distance matrix.
Fig. 2. New sub-matrix to which traveling salesman is applied.

Fig. 3. Transformation of stop numbers to consecutive integers.

PLate III

	1	$2 \ldots 8 \ldots 16$
1	0	$3 \ldots 5 \ldots 7$
2	3	$0 \ldots 6 \ldots 10$
\vdots	\vdots	\vdots
8	5	$6 \ldots 0 \ldots 11$
\vdots	\vdots	\vdots
16	7	$10 \ldots 11 \ldots 0$

Fig. 1

	1	2	8	16
1	0	3	5	7
2	3	0	6	10
8	5	6	0	11
16	7	10	11	0

Fig. 2

	1	2	3	4
1	0	3	5	7
2	3	0	6	10
3	5	6	0	11
4	7	10	11	0

Fig. 3

It is further changed for ease of computer programming as indicated in Figure 3, PLATE III, by transforming the stop numbers to consecutive integers. (The stop numbers are retained by subscripting for printout of the final route, if the route is determined to be a low one.) Upon securing this sub-matrix for each carrier, the optimum ordering of the demand points remains to be obtained.

Step 6.

In attempting to find the optimum order of demand points consistent with a minimum route for each carrier, the problem has been reduced to that of the traveling salesman problem. ${ }^{1}$ Fortunately for the author, a computerized solution to the traveling salesman problem was available in the form of a Master's Report completed in 1964 by V. C. Patel (13). The computer solution to the traveling salesman problem as determined by Patel needed some modification in order to incorporate it into the current simulation program. This modification included the elimination of four subprograms and their attendant dimension and common statements, by their incorporation into the body of the main program, and also included the incorporation of a series of Fortran statements into the program in order to eliminate blocking of a subtour on the last pass of the traveling salesman algorithm, so that all demand points could be salvaged for the print out of the total route for each vehicle. With these changes applied to Patel's program and tested for validity, the traveling salesman algorithm became an integral part of

[^0]the program, and the means of determining a minimum path through a given series of stops. The fact exists that for only two demand points allocated to a route in conjunction with the origin, only one possible path exists and the mileage between the two points, and each point and the origin would yield the total route mileage (which is also symmetrical; that is ORIGIN - Stop 1 - Stop 2 - ORIGIN equals ORIGIN - Stop 2 - Stop 1 - ORIGIN). It is when there are more than two demand points allocated to a route that the traveling salesman solution provides a minimal path of several possible paths. Actually, there exist $\frac{1}{2}(\mathbb{N}-1)$: routes for the symmetrical problem, where N equals the size of the matrix to which the traveling salesman problem is applied. Therefore, for two demand points plus the origin, $N=3$, and there are $\frac{1}{2}(3-1)!=1$ route. For three demand points and the origin, there are $\frac{1}{2}(4-1)!=3$ distinct routes. The traveling salesman algorithm therefore becomes extremely valuable as the number of demand points per carrier route increases.

Step 7.
After obtaining the shortest route through the randomly generated demand points for one carrier, the program returns to Step 3 where each succeeding carrier is loaded, its demand points and its lowest route then being determined. The route mileage for each carrier is retained through subscripts used in programming. Upon the programs determination that all demand points have been satisfied, the mileage for each separate vehicle is accumulated into a total number of miles for all carriers. This total mileage figure is then tested against the shortest preceding value of total mileage (equal to 9999 miles for the initialized lowest route value) and if found to be a new lowest value, the total accumulated route mileage is
printed, along with individual mileage for each carrier, the capacity of each carrier, and the exact route for each carrier. If the total mileage figure is not a new minimal value, the program merely records the total length of the route and proceeds to a new pass or case to search for another possible route.

Step 8.
Finally for each total route which is formed, the value MCASE is tested to determine whether another trial route is to be searched for. If so, a new route is sought, but if the last iteration has concluded the search, the total time for all processing of routes on the 1410 is printed and the program halts. The time recorded may be used for calculation of time per iteration by dividing the number of minutes by the total number of passes made. This may prove very useful for predetermining the number of cases to attempt given a specified amount of computer time.

SUMMARIZATION OF THE SIMULATION PROCEDURE

The computational procedure may be stated briefly as follows:
Step l. Label the demand points from 1 to NS. Add 1 to NS to obtain MM. Form an inter-stop distance matrix. Order the carrier capacities from smallest to largest.

Step 2. Determine the value MCASE to tell the computer how many attempted routes are to be sought.

Step 3. A random permutation of the NS stops is generated.
Step 4. The carriers are loaded by dispatching each vehicle to the first permuted demand point not on the route of a previous vehicle.

Step 5. A sub-matrix of distances is formed for each distinct carrier route.

Step 6. The traveling salesman solution is then applied to each submatrix.

Step 7. The mileage is retained for each distinct carrier route.
Step 8. Sum the mileage saved from each distinct carrier route to obtain a grand total mileage figure. Compare this with the preceding route of shortest length and print the route for each carrier, mileage for each carrier, mileage summed for all carriers, and capacity of each vehicle if it is the shortest route. Otherwise, return to Step 3 unless the number of required iterations has occurred. If the number of passes originally required have been made, the program halts.

DISCUSSION OF SAMPLE PROBLEMS

As discussed previously in the literature survey section of this paper, several attempts have been made to solve the carrier dispatching or routing problem. As a basis of comparison among approaches to the problem, several small to medium sized problems now exist. The computer simulation approach as herein used is applied to four of these problems, which consist of the following:
(1) A 5-stop problem used in the dynamic programming approach to solving routing problems, is referred to as sample problem 1. The distance matrix for this, and all other sample problems may be found in Appendix IV. Note that the number of stops does not include one unit for the origin. Note also that destination identification numbers may vary from those used in this paper to those used in other publications, although the answers may be identical.
(2) A 12 stop problem is one utilizing a variable capacity fleet of vehicles. This problem was used to test the variable capacity portion of the simulation program and is included to demonstrate this feature of the program. This is referred to as sample problem 2.
(3) Sample problem 3 is a 13 stop problem with a fixed capacity fleet of vehicles. This was included as a means of determining the efficiency of the program on an intermediate size of problem. This is an actual problem concerning the routing of a fleet of feed delivery trucks. This problem and sample problem 4 were provided by the 'Grain and Feed Marketing Project of the Agricultural

Experiment Station at Kansas State University' (5).
(4) This problem is an actual 33 stop problem concerning the routing of a fleet of fixed capacity vehicles. Fortunately, 8 demand points could be eliminated by sending full vehicles to each of 8 delivery points and the resulting problem utilizing 25 demand points fell within the limitations of the computer dimension statements.

A comparison of the results as obtained by the approach taken by the author and those methods used by other authors is best illustrated by the grid included in the section headed "Results".

RESULTS

The results of several methods of attack on the routing problem are shown pictorially in Plate IV. Note that the simulation approach at best was able to tie the minimum route determined for the smallest problem. As may be noted, the simulation approach used by the author continues to worsen as problem size increases. This is quite naturally explained as follows:

For the five stop problem, a total of fifteen distinctly different routes existed. This is determined through combinatorial analysis by using the number of demand points picked up by each vehicle, the number of vehicles, and symmetry. Therefore, if it can be known that of the five stops available, two must be assigned to one vehicle, the situation of five items taken two at a time occurs, or C_{2}^{5}. Similarly for the three remaining stops, if it is known that two appear in the next vehicle, the combination C_{2}^{3} occurs. Lastly, the last demand point is picked up by one truck, or C_{1}^{1} is the result. Multiplying;

$$
\begin{aligned}
c_{2}^{5} \cdot c_{2}^{3} \cdot c_{1}^{1} & =\left(\frac{5 \cdot 4}{2 \cdot 1}\right)\left(\frac{3 \cdot 2}{2 \cdot 1}\right)\left(\frac{1}{1}\right) \\
& =10 \cdot 3 \\
& =30
\end{aligned}
$$

The factor of symmetry occurs in this problem, since the route 'ORIGIN - A - B - ORIGIN' equals the route 'ORIGIN - B - A - ORIGIN'. Therefore, the number of routes (30) is divided by two, and equal to 15. Therefore it would seem quite natural that one of every fifteen generated routes would be the minimum route, (assuming that only one minimum exists).

EXPLANATION OF PLATE IV

Minimal computer simulation results and their relationship to other approaches to the routing problem.

PLATE IV

PROBLEM SIZE	METHOD(Number of miles/Number of vehicles)				
(Number of Stops)	DYNAMIC PROGRAMMING	DANTZIG and RAMSER	FEED * COMPANY	MODIFIED CLARKE and WRIGHT	COMPUTER SIMULATION
5	44/3	-	-	44/3	44/3
12	-	294/4	-	290/4	296/4
13	-	-	1474/5	1433/4	1510/4 +
33	-	1587/16	1587/16	1468/14	1870/14t

* Feed Company listed here is the supplier of the 13 and 33 stop problem, as discussed earlier.
t See Appendix I for minimum routes obtained with other numbers of vehicles for this number of stops.

Such is precisely the case. Of 520 generated routes for the 5 stop problem, 32 were the minimum route. But since 32 is not exactly equal to one fifteenth of 520 (nearer to 35), a non-parametric Kolmogrov-Smirnov and a x^{2} one sample test were applied, and it was determined that the observed distribution was equivalent to the expected theoretical distribution (see Appendix VI). This method of calculation of all possible routes, then, works quite well for small, simple problems.

If the above calculation could be further extended to larger problems, all would be quite simple. It could merely be stated that the probability of a minimum route's appearance would be equivalent to the number of passes made times one over the number of total possible distinct routes. Then by generating this total number of routes one would expect to obtain the minimum route length at least once.

However, it was determined in all example problems except the 5 stop problem that the number of demand points per vehicle varied between trial routes. Therefore the above calculation may not be precisely carried out to yield a certain total number of possible routes for larger and more practical problems. At best, a rough approximation could be made to the total number of possible distinct routes, and repetition could occur (i. e., the same route might appear more than once). Curves of total route mileage were plotted versus frequency of occurence in a class interval. Some of the resultant curves (see Appendix V for examples) were bimodal, others were unimodal, and all were skewed to the left. Part of the skewness could be attributed to the traveling salesman's reduction of all truck routes to their minimal value, so the simulation program was re-written without the traveling salesman feature. The resulting program merely figured mileage for each route in the random manner in which the stops were
selected. Curves plotted from this 'no-traveling salesman' program appeared still markedly skewed to the left. Therefore, it was decided that in order to attempt to make a statement regarding whether or not a true minimum had been determined, a distribution free approach had to be taken. An approximation to the standard form of Tchebycheff's inequality was chosen for these statements, and a specific confidence coefficient had to be calculated for each distinct problem, broken down further by total number of vehicles per total route. A calculation of the confidence interval for the 13 stop problem utilizing 4 vehicles follows:

```
Tchebycheff's inequality \(=P(|y-\bar{z}| \geq k s) \leq 1 / k^{2}\)
where, \(\mathrm{y}=\) minimum observed value \(=1510\)
    \(\bar{z}=\) mean of observed values \(=1959.46\)
    s = standard deviation of observed values \(=149.8\)
    \(\mathrm{k}=\) confidence factor \(=\) unknown.
Then, setting \(|y-\bar{z}|=k s\), assuming the worst possible event,
    \(|1510-1959.46|=k(148.9)\)
```

and $k=(449.46) /(148.9)$
$=3.02$

Then $1 / \mathrm{k}^{2}$ becomes $1 /(3.02)^{2}=1 / 9.07=.110$
Therefore, it may be stated that no more than 11.0 per cent of all possible routes lie outside the Tchebycheff limits. Recall that this confidence coefficient applies to one specific problem for a given number of vehicles. Similar confidence coefficients may be located in Appendix I for all other example problems.

CONCLUSIONS

Surprisingly, the routing or carrier dispatching problem has been relatively untouched considering the fruitful results potentially available in an optimal solution. A few dedicated men have carried on the research in this area, mostly from an operation's research or optimization approach. However, even though the results of the approach as used by the author were somewhat disappointing in that improvement on existing solutions did not occur, the research did result in some possible ways of obtaining a better solution. This will be discussed further at the end of this section.

At present then, it appears that Cochran's modified Clarke and Wright algorithmic approach yields the 'best' results in every example problem, where best indicates lowest mileage and fewest vehicles. The simulation approach did tie the modified Clarke and Wright approach in number of vehicles to be assigned to a route. A major difference, however, lies in the fact that the algorithmic approach tends to produce more nearly optimal routes as the number of demand points increases, whereas the simulation approach results in poorer approximations to the minimum as the problem size increases. Although the feature of finding the fewest available vehicles needed for a route is fine, a difference of $1870-1468=402$ miles can hardly be dispelled as a drop in the bucket when speaking of route mileage and expense (in the 33 stop problem). But this discrepancy lies in the fact that the simulation method as used by the author falls in the category of 'incomplete' search. If therefore, it were possible to convert the approach to 'complete' search, the minimal existing route could be guaranteed, a property of which no algorithm to date can boast. A means of doing this on a high speed computer has been hypothesized in the section labeled
"Recommendations". Another method which could reduce computer time considerably would be an approach utilizing a program with the traveling salesman as a subroutine, to be applied strictly to routes which have a route length shorter than a given value when mileage is first figured in the random ordering of stops sequence. It was determined that as problem size increased and especially as the number of demand points loaded onto a vehicle increased, this approach could produce roughly five to six times as many routes in the same period of time as the program utilizing the traveling salesman algorithm for every route. However, this method would still fall into the area labeled 'incomplete' search. Further pursuing of an optimal route, therefore, could prove quite valuable.

Obviously, a need for more research and minimal distance routes exists at present. With the aid of a high speed computer, such as IBM's 360 , and the programming of the hypothesized method, an optimal solution should not be out of reason for the size of problems used as examples in this thesis.

RECOMMENDATIONS

In determining the feasibility of computer simulation as an approach to solving carrier dispatching problems, a statement cannot truly be made that it is either good or bad. The reason for this is that simulation may be applied to the same problem from many differing approaches. Hence, although the research as conducted herein by the author failed to attain a prominence all its own in the sense that no new optimum route was determined over other methods, and the simulation could at best only tie the optimum distance in a small available problem, this does not rule out the fact that simulation may be utilized most effectively in carrier dispatching. On the contrary, a new approach to the problem was discovered as a result of the research conducted on this problem. It is included here as a suggested proposal for exploration as a thesis, report, or problems topic in future research. The suggested new approach is stated as follows;

Step 1.
Determine a distance matrix between all respective demand points as explained in the "Computational Procedure" section herein. Order all the stops from one (1) to the maximum number of stops (NS).

Step 2.
For a given number and capacity of carriers, load the vehicles by including as many stops as possible in ascending order on the vehicles in their order as determined by capacity when setting up the problem.

Step 3.

Proceed at this point in one of two ways; ${ }^{1}$
(1) Apply the traveling salesman solution as included in the program found in the Appendix of this thesis to the stops' demand loaded on each vehicle to determine a minimum route for each vehicle.
(2) Permute and calculate the cost of each possible ordering of stops within vehicles; that is, calculate the distance for each vehicle in the order the demand points were originally picked up. Then within each vehicle's route, permute the stops and determine the new cost, until the minimum cost for this loading is obtained.

Step 4.
Now permute stops between vehicles. This is to say, replace a stop in the first (second, third, etc.) carrier with one found in the second (third, fourth, etc.) carrier. Then return to Step 3, saving only the shortest route as the program progresses. Repeat this step until all ordering and routes are determined and the minimum route determined should be the true minimal route.

A true solution is still being sought for optimizing carrier routing problems. The advocation of continued research in this area has been mentioned by many authors. Without doubt, a true minimum route solution for all vehicles dispatched through a series of demand points remains to be determined.

[^1]
ACKNOWLEDGEMEN'IS

The author wishes to express gratitude to all those involved directly or indirectly in helping to finalize this thesis. Special thanks go to major professor Dr. Louis E. Grosh for his continuing advice and guidance throughout the development of the research. Thanks go also to other members of the graduate committee, including Dr. Frank A. Tillman, Head of the Department of Industrial Engineering, Dr. W. J. Conover, Department of Statistics, and Professor J. J. Smaltz, Department of Industrial Engineering for needed assistance and guidance.

REFERENCES

1. Barachet, L. L., "Graphic Solution of the Traveling-Salesman Problem," Operations Research Journal of America, Vol. 5, 841-845 (December 1957).
2. Boyer, R. A., "The Use of a Computer to Design School Bus Routes," Cooperative Research Project 1605 of the United States Office of Education and the University of Mississippi, 1964.
3. Brown, R. G., "Smoothing, Forecasting and Prediction of Discrete Time Series," Prentice Hall, Inc. Englewood Cliffs, New Jersey. (1963) 253-254.
4. Clarke, G., and Wright, J. W., "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research Journal of America, Vol, 12, No. 4, 568-581 (July-August 1964).
5. Cochran, H. M., "Optimization of a Carrier Routing Problem," Unpublished Master's Thesis, K. S. U., 1966.
6. Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M., "On a LinearProgramming Combinatorial Approach to the Traveling-Salesman Problem," Operations Research Journal of America, Vol. 7, 58-66 (January-February 1959).
7. Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M., "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research Journal of America, Vol. 2, 393-410 (November 1954).
8. Dantzig, G. B., and Ramser, H. H., "The Truck Dispatching Problem," Management Science, Vol. 6, No. 1, 80-91 (October 1959).
9. Flood, M. M., "The Traveling-Salesman Problem," Operations Research Journal of America, Vol. 4, 61-75.
10. Griffin, W. C., "Potential Usefulness of Industrial Engineering in the Design of Mass Transportation Facilities," The Journal of Industrial Engineering, Vol. XVII, No. 11, 544-547 (November 1966).
11. Koomanoff, F. A., and Bondatelli, J. A., "Computer Simulation of Railroad Freight Transport Operations," The Journal of Industrial Engineering, Vol. XVIII, No. 1, 3-8 (January 1967).
12. Little, J. D. C., Murty, K. G., Sweeney, D, W., and Karel, C., "An Algorithm for the Traveling-Salesman Problem," Operations Research Journal of America, Vol. II, 972-989.
13. Patel, V. C., "Computerized Optimization of Postal Routes," Unpublished Master's Report, K. S. U., 1964.
14. Siegel, S., Nonparametric Statistics For the Behavioral Sciences, McGraw-Hill Book Company, Inc., New York - Toranto - London (1956) 42-47, 249.
15. Starr, M. K., and Miller, D. W., Inventory Control: Theory and Practice, Prentice Hall, Inc., Englewood Cliffs, New Jersey, (1962) 58-71.
16. Tillman, F. A., "Dynamic Programming Solution to the School Bus Scheduling Problem," Unpublished Working Papers, 1965.
17. Wichlan, D. J., "A Study of the Effect of Non-Normal Distributions Upon Simple Linear Regression, "Unpublished Master's Thesis, K.S.U., 1966.
18. Wilks, S. S., Mathematical Statistics, John Wiley and Sons, Inc., New York - London (1962) 243-245.

APPENDIX I

CONFIDENCE COEFFICIENTS

NO. OF STOPS	$\begin{gathered} \text { NO. OF } \\ \text { VEHICLES } \end{gathered}$	MINIMUM ROUTE	NO. OF OBSERVED ROUTES	CONFIDENCE COEFFICIENT
5	3	44^{*}	520	. 154
12	4	296	1517	. 113
13	4	1510	663	. 110
	5	1553	360	. 099
26	13	2124	29	Insufficient Data
	14	1870	402	. 0806
	15	1996	823	. 1064
	16	1959	317	. 0990
	17	2294	17	Insufficient Data

[^2]
APPENDIX II

Discussion of Computer Program
Attempting to manually determine a minimum route for a carrier routing problem of even small size by the process of trial and error becomes exceptionally tedious, laborious, and very lengthy with respect to time, what with modern high speed computers which thrive on this particular situation; that is, one of carrying out repeated sequences of calculation. Therefore, a manual solution to the problem of minimizing a route through a series of stops was never questioned as to its practicality and an immediate attempt was made to compile a Fortran II computer program for the IBM 1620 to carry out the iterative computations. This was eventaully converted to PR-155 for the IBM 1410 computer. This program is limited in the number of demand points only by the size of dimension statements and the capacity of core storage available to the user of the program. In particular, for the IBM 1401-1410 system, the program is maximally dimensioned for a problem of 28 demand points (including the origin), occupying 39,741 core storage positions. The number of carrier vehicles and their capacities are not limited except by practical considerations of the problem itself. A discussion of the computer program has unlimited usefulness to the potential user of the program as well as clarifying the steps in the program necessary to its successful running. This discussion will be broken into two categories as follows:
(1) Input data
(2) Output data and ways to modify it

(1) Data Cards

Three control cards, followed by three sets of data cards are necessary for the successful running of the computer program. These cards will be discussed in the order in which they are processed by the 1401 and they must therefore be ordered accordingly.

The first card, referred to here as control card number one (1) contains three items in the 14 format. This merely means that the first item (MM), which is the number of stops or points (including one for the origin), must be right justified in column l-4. Similarly, the second item, (NS), the number of stops (excluding the origin and therefore equal to $M M$ minus 1) is right justified in columns 5-9. Thirdly, the number of carrier vehicles, (NB), is right justified in columns 9-12. This completes the first card of the data deck.

The second control card, called control card number two (2) is for specifying whether or not the carrier fleet is composed of vehicles of equivalent or non-equivalent capacity (a fixed or variable capacity fleet). If all vehicles are of the same capacity, the digits 0000 are punched into columns 1-4 of this control card to indicate that MVAR, the variable fleet capacity option of the program is not to be used. On the other hand, if the variable capacity option is desired, insert a number 1 in column 4 of this card, with three leading zeros preceding it. The variable names MMI, MM2, MM3, and MM4 refer to the number of vehicles of each capacity including all vehicles of a given capacity and all those whose capacity is less than the given capacity. This is used for calculation in the variable capacity problem to determine appropriate vehicle size to dispatch over a series of stops. Therefore if three vehicles of 4000 pound capacity are available and four vehicles of 4500 pound capacity are available, MMI would be
equivalent to seven（7）．MM1 is therefore seen to be used for vehicles of the second largest category，and not the smallest category．This was done for ease of programming．MMI through MM4 therefore allow the pos－ sibility of using vehicles of 5 different capacities．The last item on this control card，still utilizing the $I 4$ format is LASCP，equal to either MM1，MM2，MM3，or MM4，depending on which is the largest and last to be punched with a number other than zero．Extending the example given below， if five carriers of a third and last vehicle capacity of 5000 pounds were available for use，MM2 and LASCP would both be punched with a 0012，and MM3 and MM4 would be 0000．A sample punched card for control card two for a variable capacity fleet composed of the following vehicles is shown below：

NUMBER	CAPACITY
3	4000
4	4500
5	5000

111固111111 11111111111 图11
33
444
55
7777771胃77777777777777777777771777
99

The third control card, control card number three (3) is used for specifying the number of complete computer runs through the program, MCASE, and a factor used as a multiplier of the vehicle capacity for final output, NFACT. This factor, NFACT, is for purposes of deleting low order (units, tens) digits when reading in data to conserve core and reduce labor. Therefore a truck of capacity 45000 may be read in as 4500 and at the time of the resulting print out, $4500 \times \mathrm{NFACT}=4500 \times 10=45000$ capacity. MCASE is punched right justified in columns l-4, NFACT similarly in 5-8. For 2000 cases and a factor of 10 , this control card would appear as;

Following the control cards is the first set of input data cards required by the program. This set of cards is composed of the distance matrix punched one number per card in the 14 format in the following manner. Beginning with row one and column one of the distance matrix, assumed to be symmetrical and square, either punching the distance matrix values from top to bottom in a column and moving to the right column-wise or punching values from left to right and moving down row-wise is equally acceptable. Since infinity is unknown in the language of computers, 9999 is assumed to be far larger than any actual distances encountered and is therefore used to represent infinity. This value is the first to be encountered in the distance matrix since it represents the distance from the first stop to itself, actually a distance of zero, but infinity at all such positions is a prerequisite for the utilization of the available 1620 Fortran II traveling salesman program. Thus, the correct distance matrix card set for the given sample matrix with $\mathbb{M}=4$ and $\mathbb{N S}=3$ below is as shown.

Distance to Origin

	1	2	3	Origin
¢ ¢ 1	0	5	10	13
式 2	5	0	17	22
- 3	10	17	0	24
Origin	13	22	24	0

Actual Distances

Distance to Origin

O Replaced by 9999

Punched distance matrix cards (Format I4)
9999
5
10
13
5
9999
17
22
10
17
9999
24
13
22
24
9999
It may be noted in the above example that there are 16 punched values, equal to four squared $\left(4^{2}\right)$ and also that $M M=4$ is the location of the origin in the matrix. This completes the card set immediately following the control cards.

Next in order is a set of cards assigning the respective demand to each of the demand points. This group of cards will number exactly NS, since no demand is assigned to the origin. These cards are punched in the I4 format and are ordered in ascending order according to stop number.

In other words, the demand for the stop labelled 1 is punched right justified into columns $1-4$ in the first card, at stop 2 is punched in the second card, and so on. When NS cards have been punched, the demand at each demand point will be satisfied.

The third set of input data cards is used to assign capacity to the carrier vehicles. If $N B$ is set equal to 20 , then 20 cards must be punched to satisfy the data read-in requirement. Normally it is assumed that carriers will be relatively equal in capacity, except when the variable capacity portion of the program is used. Therefore the values to be read in at this point would usually be equivalent, say, 5 busses of capacity 35 .

If the variable capacity portion of the program is utilized, the vehicles must be ordered in capacity from smallest to largest. Therefore, if there were three vehicles of smallest capacity, possibly 10 tons, three vehicles of 12 tons, and 2 vehicles of 14 tons, the capacity data would be read in as follows, in the I4 format.

10
10
10
12
12
12
14
14
This ordering is very important to the proper operation of the variable capacity program option.

Arrangement of the data input cards is critical and must be in the same order as the read statements, which is the following:
(1) Three control cards as specified above
(2) Set of distance cards
(3) Set of demand cards
(4) Set of carrier capacity cards arranged as described above.

(2) Output

The simulation program compiled for the IBM 1410 utilizes printed output for three reasons. In compiling and debugging the program on the 1410, it was necessary to leave the program at the 1410 center for an operator to run until such time as the program was debugged and the author became competent at running this particular computer himself. Card output, besides being more cumbersome than printed output, allowed the possibility of disorganizing the results through card dropping, operator neglect, or shuffling the cards at the time of printing out of the results. Reason two for the use of printed output is one of speed. The 1401 systems print unit provides a rate of 600 lines per minute as compared to 250 cards per minute on the card punch. Thirdly, volume of output alone necessitated the use of printed output, since a run of 2000 complete passes would use well over 2000 cards, but could easily be contained on 50 pages of output form paper. However, it should be interjected here that a change may be made to eliminate this factor of extensive output. This will be discussed after the form of output currently utilized is discussed.

The output as presently printed includes the following:
(1) A printout of total mileage for all vehicular routes versus a given pass, or iteration number is first printed. This value of total mileage is then checked against the previous lowest route retained by the program and if found to be greater in mileage than the minimum route encountered previously, a new pass is undertaken. If, however, the new mileage value is less than any previous route encountered, the following printout results.

> (a) The total route is broken down into individual carriers, and their particular mileage and their individual routes are given. At this time, the capacity of each vehicle is also stated. An example of fixed capacity output is given below:

```
DISTANCE COVERED BY TRUCK NUMBER 1 = 23
SEND TRUCK OF CAPACITY 20 ON ROUTE AS FOLLOWS,
    6
    4
    3
    6
DISTANCE COVERED BY TRUCK NUMBER 2 = 17
DISTANCE COVERED BY TRUCK NUMBER 3 = 4
SEND TRUCK OF CAPACITY 20 ON ROUTE AS FOLLOWS,
    l
TOTAL ROUTE FOR ALL TRUCKS = 44 ON PASS 22
```

Now, as suggested earlier, a very small change can substantially reduce the voluminous output which was necessary originally for purposes of statistical analysis and checking of the program. By merely eliminating the printout of total mileage versus pass number (see above) for all routes which are greater than a previous minimum route, which are really useless anyway, the output can be reduced by roughly 95%. And previously, after collecting the prodigious output for X number of passes through the maze of stops, it was necessary to search through the output until the last minimized route could be found. Now with the elimination of the unnecessary large routes, the lowest value of mileage and the required breakdown of routes will be the last complete route to appear in the printed output. It must be realized that due to the nature of the problem, programming efficiency,
and the limited amount of core storage available, some unnecessary previous minimum routes will appear in the output, since saving the previous values calls for some extensive dimension statements to reserve core for minimum values. Another factor also enters the picture at this point and this is one of retrieving the necessary values from core storage of the 1410 in the event of earlier than anticipated termination of the simulation program. These extra routes actually do no harm, taken a minimum of time and output forms and reduce considerably the above problems. One item which should be mentioned in this regard, is the fact that the first route is always compared with infinity, or 9999 in computer language and therefore will always be printed for future reference by the program.

Since it has now been determined how to substantially reduce output volume, punched cards once again become feasible as a form of output. To convert the program from printed output to punched output, substitute the first digit within the parentheses of each write statement (currently a 3), with the digit 2. This will cause punching to replace printing, if this is desired. If, however, both output media are desired, include an additional write statement directly beneath each write statement currently existing in the program and identical to the print statement, except for the substitution of a 2 for the 3 in the print statement.

One other feature of the program which should be mentioned is this; for a truck route which includes only one stop and the origin, the route output would appear as follows:

$$
\begin{aligned}
& \mathrm{XX} \\
& \mathrm{MM},
\end{aligned}
$$

Where $X X$ is any stop other than stop $M M$, and $M M$ is the origin number. More specifically, for a 25 stop problem including the origin, the output
might look like this:

$$
13
$$

25
This should be interpreted as "send a carrier from the origin to demand point 13, and after either loading or unloading the payload, return to the origin, stop number 25.

However, if more than one stop other than the origin is included in a route for one carrier, a route is printed with one stop number appearing twice; once in the first position and once in the last position in the order of the route. This is merely to indicate that a complete route has been determined. A route with two stops other than the origin might appear as follows:

$X X$		$M M$
$Y Y$	or	$X X$
$M M$		$Y Y$
$X X$		$M M$

Substituting possible values for a 25 stop problem (including the origin) in the above would yield the following theoretical routes;

22		25
13	or	22
25		13
22		25

It is assumed that the origin is the starting point for each route and also the end point, and therefore the above representations of a route indicate starting at the origin (stop number 25), proceeding to demand point 22 , proceeding further to demand point 13 , and returning to the origin. This results in a given number of miles. It is to be noted that exactly reversing the order of the stops would yield the same number of total miles, and therefore not affect the outcome of the solution, although it might be more convenient when actual use is made as to timing truck stops at certain
points along a delivery or pickup route. However, scrambling of the demand point order as obtained in the output will serve to undo all the value of finding the shortest distance between each subset of demand points.

In summarizing the output, then, it would appear wise to remove the printing (punching) out of all routes which are not smaller than the smallest retained in the computer program, thus substantially reducing the output. Other changes may be made as noted to manipulate the output to the desires of the prospective user of the program.

APPENDIX III

COMPUTER PROGRAM

MONITOR CARDS NECESSARY FOR PR-155 PROCESSOR
DIMENSION MCAP(26),NCB(20), KS(26),MW(26),N(26,26),NSUM(26)
DIMENSION MA $(26,26), \operatorname{ICHEK}(26), \operatorname{JCHEK}(26), \operatorname{NRET}(26), \mathrm{MR}(26), \mathrm{MS}(26)$
infut format statements
1 FORMAT(314)
103 F气RMAT(I4)
112 FORMAT(14)
113 FORMAT(614)
600 FERMAT(214)
C
${ }^{C}$
C
946 FORMAT(1HT,27HTOTAL ROUTE FこR ALL TRUCKS=I4,9H ON PASS I4)
303 FORMAT(1X,32HDISTANCE COVERED BY TRUCK NUMBER I4,IH=14)
323 FORMAT(1X,I3)
329 FORMAT(23H SEND TRUCK OF CAPACITYI5,21H ON ROUTE AS FOLLOWS,)
322 FORMAT(21H ROUTE IS AS FOLLOWS,)
12 FORMAT(26H TOTAL TIME FER THIS RUN $=F 6.1$.8H MINUTES) ITIME=ICLOCK(ITIME)
c
C
c
c
c
c
C
C
C
C
C

Itime and other variable names including the word time are USED IN DETERMINING THE TOTAL TIME FOR ALL ITERATIONS

ATIME = ITIME
READ IN INFORMATION WHICH IS KNOWN
READ (1,1)MM,NS,NB
MM=THE NUMBER OF STOPS INCLUDING 1 FOR THE ORIGIN NS $=$ THE NUMBER OF STOPS NOT INCLUDING THE ORIGIN NB=THE NUMBER OF TRUCKS (BUSSES, ETC.) AVAILABLE FER USE

2 READ (1,103)((MA(I,J),I=1,MM),J=1,MM)
MA(I,J) = THE ORIGINAL DISTANCE MATRIX
READ (1,112)(KS(I),I=1,NS)
KS=THE NUMBER OF ITEMS (IN PCUNDS, TONS, BUNDLES, PEOPLE, ETC)
TO BE LこADED AT A STCP
READ (1,103)(NCB(I),I=1,NB)
NCB= THE CAPACITY OF TRUCKS (BUSSES, ETC) TO BE ROUTED
READ(1,113)MVAR,MM1,MM2,MM3,MM4,LASCP
MVAR = ZERE IF THE VARIABLE CAPACITY PORTION OF THE PROGRAM IS
NOT DESIRED, ONE IF IT IS DESIRED
MMI TO MM4 ARE THE HIGHEST NUMBER (IN ASCENDING ORDER) OF
CARRIERS IN ALL CAPACITIES EXCEPT THE SMALLEST
LASCP $=$ THE HIGHEST NUMBER OF THE CARRIERS OF LARGEST CAPACITY,
EQUIVALENT TO EITHER MMI, MM2, MM3, OR MM4. FOR FIXED CAPACITY
VEHICLES, LASCP = THE HIGHEST NUMBER OF THE NUMBER OF CARRIERS
AVAILABLE.
READ (1,600)MCASE,NFACT
MCASE = THE NUMBER OF DESIRED TRIAL ROUTES
TEST FOR NUMBER OF TRIAL TOTAL ROUTES DESIRED
NCASE $=0$
NCASE = THE RUNNING INDEX FOR COUNTING ITERATIONS OR PASSES
NMIN $=9999$
NMIN = THE INITIAL VALUE WITH WHICH. TO COMPARE TOTAL MILEAGE
937 ICK=0
ICK = AN INITIAL VALUE OF A VARIABLE USED IN PRINTING OUT
FINAL ROUTES
IF(NCASE-0) $948,948,947$
947 NTSUM $=0$
NTSUM $=$ TOTAL MILEAGE VARIABLE INITIALIZED TO ZERO

D $2945 \mathrm{I}=1$, JK
945 NTSUM=NTSUM+NSUM(1)
WRITE $(3,946)$ NTSUM, NCASE
IF(NTSUM-NMIN) $632,948,948$
632 NMIN=NTSUM
$I J I=0$

NORIT=O
IF(NCASE-MCASE) $32,32,938$

BTIME=ITIME
CTIME=(BTIME-ATIME)*.06
WRITE(3,12)CTIME
PRINT TOTAL TIME FOR ALL ITERATIONS
STOP
AFTER SUCCESFUL RUNNING OF THE PROGRAM, THE PROGRAM ENDS AT THE above statement

32 CONTINUE
$1 J I=0$
$105 \mathrm{NA}=\mathrm{NS}$
DC $106 \mathrm{~J} 0=1$,NS
$M W(J 0)=J 0$
106 MS (Jこ) =0
MW(JO) AND MS(JO) ARE USED IN FINDING A RANDCM STOP SEQUENCE
NBB =NS-1
DO 109 IO=1,NBB
$B=N A$
NXNX=325
NXNX=A STARTING VALUE FOR THE RANDOM NUMBER GENERATOR
$N A 1=I R A N D M(N X N X)$

C
IJI = AN INITIALIZING VALUE OF A VARIABLE NEEDED TO TRANSMIT
A SUBMATRIX FROM THE ORIGINAL DISTANCE MATRIX
NORIT = A VARIABLE USED TO DETERMINE WHETHER OR NOT TO PRINT
A ROUTE
THE PRECEDING STATEMENT DETERMINES WHETHER OR NOT THIS IS THE
FINAL ITERATION FOR THIS DATA SET
DC $106 \mathrm{JO}=1$,NS
106 MS (JN)=0
$B=N A$

```
C
C
C
C
    GEN=NA1
    A1=GEN*(.000001)
    Jこ=A1*B+1.
    MS(IO)=MW(JO)
    NC=NA-1
        IF(Jこ-NA)108,109,109
    108 DO 410 Kこ=JO,NC
    +10 MW(KO)=MW(KO+1)
    109 NA=NA-1
        MS(NS)=MW(1)
C
C
C
    6 3 3 ~ J K = 1
C
C JK = RUNNING INDEX NUMBERING TRUCKS
C
    N1 = MM1
    M2 =MM2
    M3=MM3
    M4=MM4
    JI=1
C
C
    JI = A RUNNING INDEX OF STOP NUMBERS
    19 NSTOP=MS(JI)
    MR(JI)=MS(JI)
    NEED=JI
    NEE=NEED
    NET=NEE-1
    MCAP(NSTOP)=NCB(LASCP)-KS(NSTOP)
    NQ=MCAP(NSTOP)
    IF(JI-NS)118,117.99
    118 IF(NQ)114,115,116
    116 JI=JI+1
        NSTCP=MS(JI)
        MR(JI)=MS(JI)
        MCAP(NSTCP)=NQ-KS(NSTCP)
        NQ=MCAP(NSTOP)
        IF(JI-NS)118,117,99
    117 IF(NQ)114,120,119
    119 NQ=NCB(LASCP)-NQ
        IF(NQ-NCB(1))121,122,122
    121 JCAPY=NCB(1)
        GC Tこ 115
    122 NQ=NQ-NCB(1)
        G^ Tこ 123
    120 JCAPY=NCB{LASCP)
        Gこ TO 115
    214 IF(MVAR-1)230,235,235
```

```
    230NQ=KS(NSTCP)+NQ
        JI=JI-1
        JCAPY=NCB(LASCP)
        JCAPY = A VALUE OF CAPACITY OF A CARRIER TO BE SAVED FOR THE
        PRINTOUT OF RESULTS
    GO TO 115
        **OPTIONAL VARIABLE CAPACITY FEATURE OF THIS PROGRAM**
    235NQ=NCB(LASCP)-NCB(1)-(KS(NSTOP)+NQ)
        J=JI-1
C
C
C
C
    123 IF(NCB(M1)-NCB(1))938,202,205
        CHECK TO DETERMINE IF ANY CARRIERS OF THIS CAPACITY ARE STILL
        AVAILABLE
    205 NEX=NCB(M1)-NCB(1)
        M1=M1-1
        IF(NQ-NEX)201,201,202
    201 JCAPY=NCB(M1+1)
    GO TO 115
    202 M1=M1+1
        IF(M2-0)938,215,232
    232 IF(NCB(M2)-NCB(MI))938,204,220
        CHECK TO DETERMINE IF ANY CARRIERS OF THIS CAPACITY ARE STILL
        AVAILABLE
    220 NEX=NCB(M2)-NCB(1)
    M2=M2-1
    IF(NQ-NEX)203,203,204
    203 JCAPY=NCB(M2+1)
    GO TO 115
    204 M2=M2+1
    IF(M3-0)938,215,234
    234 IF(NCB(M3)-NCB(M2))938,206,221
        CHECK TO DETERMINE IF ANY CARRIERS OF THIS CAPACITY ARE STILL
        AVAILABLE
    221 NEX=NCB(M3)-NCB(1)
    M3=M3-1
    IF(NQ-NEX)208,208,206
    208 JCAPY=NCB(M3+1)
    GO TO 115
    206 M3=M3+1
    IF(M4-0)938,215,236
    236 IF(NCB(M4)-NCB(M3))938,215,209
```

```
C
C CHECK TO DETERMINE IF ANY CARRIERS OF THIS CAPACITY ARE STILL
AVAILABLE
    209 NEX=NCB(M4)-NCB(1)
    M4=M4-1
    IF(NQ-NEX)211,211,215
    211 JCAPY=NCB(M4+1)
    GO TO 115
    215NQ=KS(NSTOP)-NQ
    JI=JI-I
    JCAPY=NCB(1)
    GO TO 115
    115 NJI=JI+1
c
C
NJO=NJI
    IF:IJI-0)127,127,128
    128 DC 129 II=1,IJI
        NEED=NEED-NRET(II)
    129 NJI=NJI-NRET(II)
    127 MR(NJO)=MM
        IZ=NEE-1
        DC 126 I=NEED,NJI
        IZ=IZ+1
        JZ=NEE-1
        DO 125 J=NEED,NJI
        JZ=JZ+1
        I ==MR(IZ)
        JO=MR(JZ)
    125 N(I,J)=MA(IO,JO)
    126 CONTINUE
    NRET(JK)=NJI-1
    GO TO 501
C
C
C
    502 IF(JI-NS)25,937,937
C
C
    25JK=JK+1
        J=JI+1
        GO TO 19
n\capnnn
        *** TRAVELING SALESMAN FINDS DISTANCE TRUCK JK MUST COVER ***
            DEFINED STATEMENTS DIRECTLY BELOW
        501 MMA=NJI-NEED
    M=MMA+1
    LL=0
```

```
C
C LL = AN INITIAL VALUE FOR MILEAGE SUMMATION IN dISTANCE
        SUBMATRIX
    I PRCT=0
        iprCt is a value of a variable used to set a node in the
        SUBMATRIX TO INFINITY
    KKK=0
        KKK = A VARIABLE USED TO ELIMINATE SUBTOUR BLOCKING OF LAST
        ITERATION OF TRAVELING SALESMAN
            FIND ROW MINIMUM VALUES IN SUBMATRIX
    C
        3 DO 70 I= 1,M
        MINR=N(I,1)
C
C
        MINR is EQUAL TO The minimUM VAlUE in A ROW
        DO 100 JB=2,M
        IF(N(I,JB)-MINR)90,100,100
        90 MINR=N(I,JB)
    100 CONTINUE
        L=MINR
        IF (L-9999)4,70,4
C
c
        4LL=LL+L
    c
C
C
        DO 6 JC=1.M
        IF(N(I,JC)-9999)5,6,5
        5 N(I,JC)=N(I,JC)-L
        6 CONTINUE
C
C
C
    70 CONTINUE
    DC 80 J=1,M
    MINC=N(1,J)
        MINC IS EQUAL TO THE MINImUM VALUE IN A COLUMN
C
C
    DO 200 IB=2,M
    IF(N(IB,J)-MINC)190,200,200
190 MINC=N(IB,J)
200 CONTINUE
    L=MINC
```

IF(L-9999) $30,80,30$

```
C SUM DISTANCE IN MILES
C
    30LL=LL+L
C
c
        DO 7 IC=1,M
        IF(N(IC,J)-9999)31,7,31
        31N(IC,J)=N(IC,J)-L
        7 CONTINUE
        80 CONTINUE
C
C
                EVALUATES MATRIX FOR DETERMINATION OF PIVOTAL NODE
        x 1=-1
        X2=-1
        DO 8I=1,M
        DC 8 J=1,M
        IF (N(I,J))99,9,8
        99 STOP
            9 K=J
            MINER=9999
            DO 1O JA=1,M
            IF(JA-K)14,10,14
        14 IF(MINER-N(I,JA))10,10,88
        88 MINER=N(I,JA)
        10 CONTINUE
        Ll=MINER
        MINEC=9999
        DO 20 IA=1,M
        IF(IA-K)15,20,15
        15 IF(MINEC-N(IA,J))20,20,18
        18 MINEC=N(IA,J)
        20 CONTINUE
        L2=MINEC
        X1=L1+L2
        IF(X1-X2)8,990,11
990 IF(J-1)8,8,11
    11 X2=X1
        I1=I
        Jl=J
    8 CONTINUE
        N(J1,11)=9999
```

 DO110 K=1,M
 N(II,K)=9999
 110N(K,JI)=9999
 C
c
C
304 KKK=KKK-1
C
c
C
D` 300 l=1,IPRCT
Dこ 290 J=1,IPRCT
IF(ICHEK(I)-JCHEK(J))290,280,290
280 IROW=JCHEK(I)
JCOL=ICHEK(J)
N(IROW,JCOL)=9999
281 DO 285 K=1,IPRCT
IF(ICHEK(K)-IROW)285,282,285
282 IROW=JCHEK(K)
N(IRNW,JCふL)=9999
GO TO 281
285 CONTINUE
GO TO 300
290 CONTINUE
300 CONTINUE
GO TO 306
305 KKK=KKKK-1
306 14= K2
KKK=KKKK+1
IF(KKK-M)3,555,555
C
C
555 1 }x=
|JI=IJI+1
NSUM(IJI)=LL
IF(NORIT-0)99,502,631
631 WRITE(3,303)IJI,LL
DETERMINE ROUTE OF TRUCK
WR!TE(3,329)JCAPY
WRITE(3,322)
IS=ICHEK(IX)+NET
IT=JCHEX(IX)+NET
WRITE(3,323)MR(IS)
NEW=NJI-NEED
IF(NEW-1) 99,503,324
503 WRITE(3,323)MR(IT)
GO TO 502
324 WRITE(3,323)MR(IT)
326 JX=1

```
```

 327 ICK=ICHEK(JX)+NET
 IF(IT-ICK)328,321,328
 328 JX=JX+1
 GO TO 327
 321 IT=JCHEK(JX)+NET
 WRITE(3,323)MR(IT)
 I X=I X+1
 IF(IX-MMA)326,504,99
 ;04 WRITE(3,323)MR(IS)
GO TO 502
END
ONOIAMONSS EXEQ AUTOCODER,,,NCPCH
OnO3A
0n04A
0005A
0006A
0n07A
0008A
0009A
0010A
0011A
0012ACALC
0013A
OO14A
OO15A
0016A
0017A
0018A
0019A

 MON$$
 BLANKS DCW =5
 END
 MON$$ EXEQ LINKLOAD
 CALL BRAUN
 MON$$ EXEQ BRAUN,MJB
    ```

0002A

APPENDIX IV

EXAMPLE PROBLEMS

\section*{FIVE STOP PROBLEM}
\begin{tabular}{c|cccccc} 
& 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & 9999 & 11 & 9 & 12 & 13 & 10 \\
2 & 11 & 9999 & 10 & 11 & 4 & 8 \\
3 & 9 & 10 & 9999 & 8 & 9 & 4 \\
4 & 12 & 11 & 8 & 9999 & 7 & 2 \\
5 & 13 & 4 & 9 & 7 & 9999 & 5 \\
6 & 10 & 8 & 4 & 2 & 5 & 9999
\end{tabular}

INTER-STOP DISTANCE MATRIX
\begin{tabular}{|c|c|}
\hline STOP NUMBER & DEMAND \\
\hline 1 & 10 \\
2 & 8 \\
3 & 6 \\
4 & 9 \\
5 & 7 \\
\hline
\end{tabular}

DEMAND AT RESPECTIVE STOPS
\begin{tabular}{|c|c|}
\hline VEHICLE NUMBER & CAPACITY \\
\hline 1 & 20 \\
2 & 20 \\
3 & 20 \\
\hline
\end{tabular}

CAPACITY OF AVAILABLE VEHICLES

TWELVE STOP PROBLEM
\begin{tabular}{c|ccccccccccccc} 
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline 1 & 9999 & 5 & 12 & 22 & 21 & 24 & 31 & 35 & 37 & 41 & 49 & 51 & 9 \\
2 & 5 & 9999 & 7 & 17 & 16 & 23 & 26 & 30 & 36 & 36 & 44 & 46 & 14 \\
3 & 12 & 7 & 9999 & 10 & 21 & 30 & 27 & 37 & 43 & 31 & 37 & 39 & 21 \\
4 & 22 & 17 & 10 & 9999 & 19 & 28 & 25 & 35 & 41 & 29 & 31 & 29 & 23 \\
5 & 21 & 16 & 21 & 19 & 9999 & 9 & 10 & 16 & 22 & 20 & 28 & 30 & 22 \\
6 & 24 & 23 & 30 & 21 & 9 & 9999 & 7 & 11 & 13 & 17 & 25 & 27 & 25 \\
7 & 31 & 26 & 27 & 25 & 10 & 7 & 9999 & 10 & 16 & 10 & 18 & 20 & 32 \\
8 & 35 & 30 & 37 & 35 & 16 & 11 & 10 & 9999 & 6 & 6 & 14 & 16 & 36 \\
9 & 37 & 36 & 43 & 41 & 22 & 13 & 16 & 6 & 9999 & 12 & 12 & 20 & 38 \\
10 & 41 & 36 & 31 & 29 & 20 & 17 & 10 & 6 & 12 & 9999 & 8 & 10 & 42 \\
11 & 49 & 44 & 37 & 31 & 28 & 25 & 18 & 14 & 12 & 8 & 9999 & 10 & 50 \\
12 & 51 & 46 & 39 & 29 & 30 & 27 & 20 & 16 & 20 & 10 & 10 & 9999 & 52 \\
13 & 9 & 14 & 21 & 23 & 22 & 25 & 32 & 36 & 38 & 42 & 50 & 52 & 9999
\end{tabular}

TWELVE STOP PROBLEM (contd.)
\begin{tabular}{|c|c|}
\hline STOP NUMBER & DEMAND \\
\hline 1 & 1200 \\
2 & 1700 \\
3 & 1500 \\
4 & 1400 \\
5 & 1700 \\
6 & 1400 \\
7 & 1200 \\
8 & 1900 \\
9 & 1800 \\
10 & 1600 \\
11 & 1700 \\
12 & 1100 \\
\hline
\end{tabular}

DEMAND AT RESPECTIVE STOPS
\begin{tabular}{|c|c|}
\hline VEHICLE NUMBER & CAPACITY \\
\hline 1 & 4000 \\
2 & 4000 \\
3 & 4000 \\
4 & 4000 \\
5 & 4000 \\
6 & 5000 \\
7 & 5000 \\
8 & 5000 \\
9 & 6000 \\
10 & 6000 \\
11 & 6000 \\
12 & 6000 \\
\hline
\end{tabular}

CAPACITY OF AVAILABLE VEHICLES

THIRTEEN STOP PROBLEM
\begin{tabular}{c|ccccccccccccccc} 
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline 1 & 9999 & 8 & 31 & 77 & 87 & 59 & 85 & 88 & 155 & 193 & 190 & 215 & 234 & 25 \\
2 & 8 & 9999 & 32 & 84 & 94 & 53 & 79 & 101 & 162 & 200 & 197 & 223 & 228 & 32 \\
3 & 31 & 32 & 9999 & 78 & 10 & 105 & 123 & 149 & 113 & 118 & 188 & 214 & 223 & 48 \\
4 & 77 & 84 & 78 & 9999 & 88 & 25 & 43 & 121 & 158 & 196 & 206 & 222 & 118 & 51 \\
5 & 87 & 94 & 10 & 88 & 9999 & 111 & 137 & 156 & 98 & 94 & 98 & 185 & 232 & 63 \\
6 & 59 & 53 & 105 & 25 & 111 & 9999 & 26 & 128 & 173 & 211 & 211 & 237 & 173 & 65 \\
7 & 85 & 79 & 123 & 43 & 137 & 26 & 9999 & 154 & 199 & 237 & 237 & 263 & 164 & 92 \\
8 & 88 & 101 & 149 & 121 & 156 & 128 & 154 & 9999 & 223 & 250 & 289 & 315 & 301 & 100 \\
9 & 155 & 162 & 113 & 158 & 98 & 173 & 199 & 223 & 9999 & 38 & 85 & 111 & 166 & 133 \\
10 & 193 & 200 & 118 & 196 & 94 & 211 & 237 & 250 & 38 & 9999 & 94 & 120 & 192 & 161 \\
11 & 190 & 197 & 188 & 206 & 98 & 211 & 237 & 289 & 85 & 94 & 9999 & 26 & 145 & 186 \\
12 & 215 & 223 & 214 & 222 & 185 & 237 & 263 & 315 & 111 & 120 & 26 & 9999 & 159 & 212 \\
13 & 234 & 228 & 223 & 188 & 232 & 173 & 164 & 301 & 166 & 192 & 145 & 159 & 9999 & 222 \\
14 & 25 & 32 & 48 & 51 & 63 & 65 & 92 & 100 & 133 & 161 & 186 & 212 & 222 & 9999
\end{tabular}

THIRTEEN STOP PROBLEM (contd.)
\begin{tabular}{|c|r|}
\hline STOP NUMBER & DEMAND \\
\hline 1 & 1000 \\
2 & 8700 \\
3 & 19500 \\
4 & 8580 \\
5 & 6400 \\
6 & 12220 \\
7 & 12120 \\
8 & 7800 \\
9 & 4550 \\
10 & 4000 \\
11 & 10500 \\
12 & 12000 \\
13 & 37260 \\
\hline
\end{tabular}

DEMAND AT RESPECTIVE STOPS
\begin{tabular}{|c|c|}
\hline VEHICLE NUMBER & CAPACITY \\
\hline 1 & 45000 \\
2 & 45000 \\
3 & 45000 \\
4 & 45000 \\
5 & 45000 \\
6 & 45000 \\
7 & 45000 \\
8 & 45000 \\
9 & 45000 \\
10 & 45000 \\
\hline
\end{tabular}

CAPACITY OF AVAILABLE VEHICLES

TWENTY SIX STOP PROBLEM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 \\
\hline 1 & \(\infty\) & 8 & 11 & 13 & 18 & 129 & 151 & 133 & 138 & 164 & 155 & 159 & 161 & 65 & 176 & 176 & 176 & 155 & 150 & 141 & 153 & 221 & 213 & 146 & 143 & 141 \\
\hline 2 & 8 & \(\infty\) & 3 & 8 & 10 & 121 & 143 & 125 & 130 & 156 & 147 & 151 & 153 & 57 & 168 & 168 & 168 & 174 & 142 & 133 & 145 & 213 & 205 & 138 & 135 & 133 \\
\hline 3 & 11 & 3 & \(\infty\) & 6 & 9 & 121 & 143 & 125 & 130 & 156 & 147 & 151 & 153 & 57 & 168 & 168 & 168 & 174 & 142 & 133 & 145 & 213 & 205 & 138 & 135 & 133 \\
\hline 4 & 13 & 8 & 6 & \(\infty\) & 3 & 123 & 145 & 127 & 132 & 158 & 149 & 153 & 155 & 59 & 170 & 170 & 170 & 176 & 141 & 132 & 144 & 215 & 207 & 140 & 137 & 135 \\
\hline 5 & 18 & 10 & 9 & 3 & \(\infty\) & 126 & 148 & 130 & 135 & 161 & 152 & 156 & 158 & 162 & 173 & 173 & 173 & 179 & 144 & 135 & 147 & 218 & 210 & 143 & 140 & 138 \\
\hline 6 & 129 & 121 & 121 & 123 & 126 & - & 22 & 36 & 30 & 31 & 26 & 30 & 32 & 36 & 47 & 47 & 47 & 53 & 105 & 103 & 109 & 92 & 84 & 17 & 14 & 12 \\
\hline 7 & 151 & 143 & 143 & 145 & 148 & 22 & \(\infty\) & 46 & 40 & 37 & 36 & 40 & 42 & 46 & 57 & 57 & 57 & 63 & 115 & 113 & 119 & 102 & 94 & 27 & 24 & 22 \\
\hline 8 & 133 & 125 & 125 & 127 & 130 & 36 & 46 & \(\infty\) & 5 & 51 & 38 & 28 & 44 & 34 & 45 & 45 & 38 & 46 & 98 & 96 & 102 & 104 & 78 & 29 & 26 & 24 \\
\hline 9 & 138 & 130 & 130 & 132 & 135 & 30 & 40 & 5 & \(\infty\) & 45 & 32 & 23 & 38 & 29 & 40 & 40 & 33 & 41 & 93 & 91 & 97 & 98 & 73 & 23 & 20 & 18 \\
\hline 10 & 164 & 156 & 156 & 158 & 161 & 31 & 37 & 51 & 45 & \(\infty\) & 41 & 45 & 47 & 51 & 62 & 62 & 62 & 68 & 120 & 118 & 124 & 107 & 99 & 32 & 29 & 27 \\
\hline 11 & 155 & 147 & 147 & 149 & 152 & 26 & 36 & 38 & 32 & 41 & \(\infty\) & 32 & 6 & 31 & 36 & 36 & 42 & 45 & 102 & 102 & 108 & 81 & 73 & 19 & 14 & 14 \\
\hline 12 & 159 & 151 & 151 & 153 & 156 & 30 & 40 & 28 & 23 & 45 & 32 & 38 & 38 & 14 & 25 & 25 & 17 & 23 & 75 & 73 & 79 & 70 & 55 & 23 & 18 & 18 \\
\hline 13 & 161 & 153 & 153 & 155 & 158 & 32 & 42 & 44 & 38 & 47 & 6 & 38 & \(\infty\) & 31 & 42 & 42 & 48 & 56 & 108 & 106 & 114 & 87 & 79 & 25 & 20 & 20 \\
\hline 14 & 165 & 157 & 157 & 159 & 162 & 36 & 46 & 34 & 29 & 51 & 31 & 14 & 31 & \(\infty\) & 23 & 23 & 17 & 20 & 89 & 87 & 93 & 68 & 48 & 29 & 24 & 24 \\
\hline 15 & 176 & 168 & 168 & 170 & 173 & 47 & 57 & 45 & 40 & 62 & 36 & 25 & 42 & 23 & \(\infty\) & 0 & 42 & 26 & 100 & 98 & 104 & 48 & 48 & 40 & 35 & 35 \\
\hline 16 & 176 & 168 & 168 & 170 & 173 & 47 & 57 & 45 & 40 & 62 & 36 & 25 & 42 & 23 & 0 & \(\infty\) & 42 & 26 & 100 & 98 & 104 & 48 & 48 & 40 & 35 & 35 \\
\hline 17 & 176 & 168 & 168 & 170 & 173 & 47 & 57 & 38 & 33 & 62 & 42 & 17 & 48 & 17 & 42 & 42 & \(\infty\) & 11 & 57 & 55 & 61 & 60 & 45 & 40 & 35 & 35 \\
\hline 18 & 155 & 174 & 174 & 176 & 179 & 53 & 63 & 46 & 41 & 68 & 45 & 23 & 56 & 20 & 26 & 26 & 11 & \(\infty\) & 52 & 50 & 56 & 49 & 34 & 46 & 41 & 41 \\
\hline 19 & 150 & 142 & 142 & 141 & 144 & 105 & 115 & 98 & 93 & 120 & 102 & 75 & 108 & 89 & 100 & 100 & 57 & 52 & \(\infty\) & 8 & 14 & 101 & 80 & 98 & 93 & 93 \\
\hline 20 & 141 & 133 & 133 & 132 & 135 & 103 & 113 & 96 & 91 & 118 & 102 & 73 & 106 & 87 & 98 & 98 & 55 & 50 & 8 & \(\infty\) & 12 & 99 & 78 & 96 & 91 & 91 \\
\hline 21 & 153 & 145 & 145 & 144 & 147 & 109 & 119 & 102 & 97 & 124 & 108 & 79 & 114 & 93 & 104 & 104 & 61 & 56 & 14 & 12 & \(\infty\) & 105 & 84 & 102 & 97 & 97 \\
\hline 22 & 221 & 213 & 213 & 215 & 218 & 92 & 102 & 104 & 98 & 107 & 81 & 70 & 87 & 68 & 48 & 48 & 60 & 49 & 101 & 99 & 105 & \(\infty\) & 33 & 85 & 80 & 80 \\
\hline 23 & 213 & 205 & 205 & 207 & 210 & 84 & 94 & 78 & 73 & 99 & 73 & 55 & 79 & 48 & 48 & 48 & 45 & 34 & 80 & 78 & 84 & 33 & \(\infty\) & 77 & 72 & 72 \\
\hline 24 & 146 & 138 & 138 & 140 & 143 & 17 & 27 & 29 & 23 & 32 & 19 & 23 & 25 & 29 & 40 & 40 & 40 & 46 & 98 & 96 & 102 & 85 & 77 & \(\infty\) & 5 & 5 \\
\hline 25 & 143 & 135 & 135 & 137 & 140 & 14 & 24 & 26 & 20 & 29 & 14 & 28 & 20 & 24 & 35 & 35 & 35 & 41 & 93 & 91 & 97 & 80 & 72 & 5 & \(\infty\) & 2 \\
\hline 26 & 141 & 133 & 133 & 135 & 138 & 12 & 22 & 24 & 18 & 27 & 14 & 18 & 20 & 24 & 35 & 35 & 35 & 41 & 93 & 91 & 97 & 80 & 72 & 5 & 2 & \(\infty\) \\
\hline
\end{tabular}

INTER-STOP DISTANCE MATRIX

TWENTY SIX STOP PROBLEM (contd.)
\begin{tabular}{|c|c|}
\hline VEHICLE NUMBER & CAPACITY \\
\hline 1 & 120 \\
2 & 120 \\
3 & 120 \\
4 & 120 \\
5 & 120 \\
6 & 120 \\
7 & 120 \\
8 & 120 \\
9 & 120 \\
10 & 120 \\
11 & 120 \\
12 & 120 \\
13 & 120 \\
14 & 120 \\
15 & 120 \\
16 & 120 \\
17 & 120 \\
18 & 120 \\
19 & 120 \\
20 & 120 \\
\hline CAPACITY OF AVAILABLE VEHICLES \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline STOP NUMBER & DEMAND \\
\hline 1 & 30 \\
2 & 60 \\
3 & 30 \\
4 & 90 \\
5 & 30 \\
6 & 50 \\
7 & 60 \\
8 & 60 \\
9 & 20 \\
10 & 90 \\
11 & 90 \\
12 & 60 \\
13 & 100 \\
14 & 30 \\
15 & 60 \\
16 & 80 \\
17 & 60 \\
18 & 40 \\
19 & 30 \\
20 & 30 \\
21 & 50 \\
22 & 60 \\
23 & 60 \\
24 & 80 \\
25 & 60 \\
\hline
\end{tabular}

DEMAND AT RESPECTIVE STOPS

APPENDIX V

COMPUTER OUTPUT

The volume of computer output included herein has been reduced as much as possible without sacrificing completeness. The output included is as follows:

PROBLEM 1
The complete 1410 output is included for 520 passes of the 5 stop problem. Immediately following the computer output is a relative frequency distribution of the total route mileage.

\section*{PROBLEM 2}

Two pages of 1410 output including the minimum obtained route are included for the 12 stop problem. A relative frequency distribution of total route mileage is included to illustrate the form of the output.

\section*{PROBLEM 3}

Output for the 13 stop problem is similar to Problem 2 with the inclusion of all routes which are lower than previous low routes and also frequency distributions for both 4 and 5 . vehicle routes.

\section*{PROBLEM 4}

Output for the 33 stop problem is similar to that of Problem 2 with the inclusion of frequency distributions for 14,15 , and 16 vehicle routes.

PROBLEM 1


TCTAL RCUTE FOR MLL TRUCKS= 53 U. PASS 14

TOTAL RCUTE FOR ALL TRUCKS= 53 GN PASS 15
TOTAL RCUTE FOK ALL TRUCKS= 58 OM PASS lo

TCTAL RUUTE FCR ALL TRUCKS= 44 GN PASS 17

TOTAL RCUTE FOR ALL TRUCKS= 27 OA PASS 13

TOTAL ROUTE FOR ALL TRUCKS= 44 UN PASE 19


TOTAL ROUTE FOR ALL TRUCKS= 44 UN PASS 17

TOTAL ROUTE FOR ALL TRUCKS \(=54\) UN PASS 20

TCTAL ROUTE FOR ALL TRUCKS= 26 Oï PASS 21

TOTAL RCUTE FOR ALL TRUCKS = 27 GN PASS 22.

TOTAL RCUTE FOR ALL TRUCKS = 49 UN PASS 23

TUTAL RCUTE FOR ALL TRUCKS= 31 UN PASS 24

TOTAL RCUTE FOR ALL TRUCKS= 59 ON PASS 25

TOTAL ROUTE FOR ALL TRUCKS= よみ GN PASS 2G

TUTAL RCUTE FOR ALL TRUCKS= 51 ON PASS 27

TOTAL ROUTE FOR ALL TKUCKS = 57 OA PASS 28

TUTAL ROUTE FOR ALL TRUCKS= 54 ON PASS 29

TOTAL RCUTE FOR ALL TRUCKS \(=29\) UN PASS 30

TOTAL ROUTE FOR ALL TRUCKS = 51 GNPASS 31

TOTAL ROUTE FOR ALL TRUCKS= 21 GN PASS 32

TOTAL RCUTE FUR ALL TRUGKS = 58 UN PASS 33

TCTAL RCUTE FOR ALL TKUKRS= 44 Gii PAS: 5\%


TCTAL RCUTE FOR ALL TRUEKS= 99 DU PASS 3
TOTAL RCUTE FOR ALL TRUEKS= 54 UN PASS 37
TUTAL RCUTE FCR ALL TRUCKS \(=44\) Uiv PASS 40
TOTAL RCUTE FOR ALL TRUCKS = bG ON PASS 41
TUTAL ROUTE FOR ALL TRUCKS = 21 UN PASS 42
TCTAL ROUTE FOR ALL TRUCKS = JI LN PASS 43
TCTAL RCUTE FGR ALL TRUCKS= 36 UN PASS 44
TUTAL RCUTE FOR ALL TRUCKS= 59 ON PASS 45
TUTAL ROUTE FGR ALL TRUCKS = 59 ON PASS 46
TUTAL ROUTE FOR ALL TRUCKS \(=4\) ON PASS 47
TOTAL RCUTE FUR ALL TKUCKS \(=44\) ON PASS 48
TOTAL RCUTE FOR ALL TRUCKS= 59 ON PASS 49
TUTAL ROUTE FCR ALL TRUCKS \(=49\) ON PASS 50
TUTAL RCUTE FOR ALL TRUCKS \(=58\) UN PASS 5
TOTAL ROUTE FOR ALL TRUCKS = 53 ON PASS 52
TUTAL ROUTE FOR ALL TRUCKS = 51 GIN PASS 53
TOTAL RCUTE FOR ALL TRUCKS= 56 ON PASS 54
TUTAL RCUTE FOR ALL TRUCKS = 53 ON PASS 55
TOTAL RCUTE FOR ALL TRUCKS = 51 OA PASS 50
TOTAL ROUTE FOR ALL TRUCKS= 51 ON PASS 57
TOTAL RCUTE FOR ALL TRUCKS = 51 ON PASS 58
TOTAL ROUTE FOR ALL TRUCKS = 53 ON PASS 59

TOTAL RCUTE FOR MLL TRUCKS \(=51\) UNABASS 60 total rcute fur all trucks = is On pass 61

TOTAL ROUTE FGR ALL TRUCKS \(=49\) ON PASS 62
TOTAL RCUTE FOR ALL TRUCKS = 54 UN PASS 63
TOTAL RCUTE FOR ALL TRUCKS = 54 ON PASS 64
TUTAL RCUTE FCR ALL TRUCKS = 34 Uf PASS 65
TUTAL RGUTE FOR ALL TRUCKS \(=53 \mathrm{CN}\) PASS 66
TOTAL KCUTE FOR ALL TRUCKS \(=51\) GN PMSS 67
TOTAL RCUTE FOR ALL TRUCKS = 54 ON PASS 68
TCTAL RCUTE FOR ALL TRUCKS = 9 i UN PASS 69
TCTAL RCUTE FOR ALL TRUCKS= 51 DN PASS 70
TOTAL RCUTE FOR ALL TRUCKS \(=49\) ON PASS 71
TOTAL RCUTE FOR ALL TRUCKS = 5P ON PASS 72
TGTAL RQUTE FOR ALL TRUCKS= 99 ON PASS 73
TOTAL RCUTE FOR ALL TRUCKS= り1 ON ONSS 74
total rcute for all trucks \(\quad 54\) UN pass 75
total rcute for all trucks = 52 oin pass 76
TOTAL RCUTE FOR ALL TRUCKS \(=58\) UN PASS 77
TOTAL RCUTE FOR ALL TRUCKS = 53 LiN PASS 78
TUTAL ROUTE FOR ALL TRUGKS \(=59\) Giv PASS 79
TUTAL RCUTE FOR ALL TRUCKS= 51 OM PASS 80
TOTAL ROUTE FOR ALL TRUCKS = 57 ON PASS 81
TOTAL RCUTE FOR ALL TRUCKS = 54 Giv PASS 8.2
TOTAL ROUTE FOR ALL TRUCKS \(=54\) ON PASS 8.3
TOTAL ROUTE FOR ALL TRUCKS \(=57\) UN PASS 84
TOTAL ROUTE FOR ALL TRUCKS = 54 UN PASS 85

TUTAL RCUTE FOR ALL TRUCKS= 53 ON PASS 36
TUTAL RCUTE FOR ALL TRUCKS= 53 ON PASS B7
TUTAL RCUTE FUR ALL TRUCKS= 51 ON PASS yo
TOTAL RCUTE FOR ALL TRUCKS= 33 CN PASS 39
TGTAL RCUTE FGR ALL TRUCKS= 54 UG PASS 20
TOTAL RCUTE FOR ALL TRUCKS = 54 OiN PASS 91
TOTAL RCUTE FOR ALL TRUCKS \(=\) yo OA PASS 92
TOTAL RCUTE FOR ALL TRUCKS= 49 EN PASS 93
TCTAL RCUTE FOR ALL TRUCKS= 56 CN PASS 94
TOTAL RCUTE FOR ALL TRUCKS \(=51\) UN PASS 95
TOTAL ROUTE FOR ALL TRUCKS= 52 CN PASS 96
TOTAL ROUTE FOR ALL TRUCKS = 53 ON PASS 97
TOTAL RCUTE FOR ALL TRUCKS \(=33\) ON PASS 98
TOTAL RCUTE FOR ALL TRUCKS \(=49\) ON PACO 99
TOTAL RCUTE FOR ALL TRUCKS = 49 UN PASS 100
TOTAL RCUTE FOR ALL TRUCKS \(=56\) GN PASS 101
TUTAL RCUTE FOR ALL TRUCKS \(=54\) GN PASS 102
TOTAL RCUTE FOR ALL TRUCKS = 59 ON PASS 103
TUTAL ROUTE FOR ALL TRUCKS= 54 ON PASS 104
TUTAL RCUTE FOR ALL TRUCKS \(=\) D6 UN PASS 105
TOTAL ROUTE FOR ALL TRUCKS = 51 ON PASS 106
total route for all trucks = 56 on pass 107
TUTAL RCUTE FOR ALL TRUCKS= 59 ON PASS 108
TOTAL RCUTE FOR ALL TRUCKS \(=58\) ON PASS 109
TUTAL ROUTE FOR ALL TRUCKS = 53 Ci PASS 110
TOTAL ROUTE FOR ALL TRUCKS \(=49\) ON PASS 111
TOTAL : RCUTE FOR ALL TRUCKS= 1 LZ: PASS 112
TGTAL RCUTE FOK ALL TRUOKSE 54 Ü甘 PASS 113
TUTAL RCUTE FOR ALL TRUCKS = 51 WN PASS 114
TOTAL RCUTE FOR ALL TRUCKS= 51 DN PASS 125
TOTAL RCUTE FOR ALL TRUCKS= 53 DN PASE 116
TOTAL RCUTE FOR ALL TRUCKS= 51 UN PASS 117
TCTAL RCUTE FOR ALL TRUCKS= bl UA PASS LIR
TOTAL RCUTE FOR ALL TRUCRS= 58 GN PASS ..... 119
TOTAL ROUTE FOR ALL TRUCKS = 49 UN PASS 120
TUTAL ROUTE FOR ALL TRUCKS= 40 UN PASS ..... 121
TOTAL RGUTE FOR ALL TRUCKS = 53 CA PASS ..... 122
TOTAL RGUTE FOR ALL TRUCKS \(=44\) GN PASS ..... 123
TOTAL RCUTE FOR ALL TRUCKS = 59 DN PASS ..... 124
TOTAL KGUTE FOR ALL TRUCKS= 51 LAN PASS ..... 125
TUTAL ROUTE FOR ALL TRUCKS \(=56\) UN PASS ..... 126
TOTAL RCUTE FOR ALL TRUCKS= 53 GN PASS ..... 127
TOTAL ROUTE FOR ALL TRUCKS = 59 UN PASS ..... 128
TOTAL RCUTE FOR ALL TRUCKS \(=\) \(\quad\) OR UN PASS ..... 12.9
TOTAL ROUTE FER ALL TRUCKS= 53 ON PASS ..... 130
TUTAL ROUTE FOR ALL TRUCKS= 56 DN PASS ..... 131
TOTAL ROUTE FOR ALL TRUCKS = 44 CN PASS ..... 132
TOTAL ROUTE FOR ALL TRUCKS= 51 CN PASS ..... 133
TUTAL KCUTE FOR ALL TRUCKS= 44 ON PASS ..... 134
TOTAL ROUTE FOR ALL TRUCKS= 49 ON PASS ..... 135
TUTAL ROUTE FOR ALL TRUCKS = 58 DN PASS ..... 136
TOTAL ROUTE FOR ALL TRUCKS = 58 CN PASS ..... 137
tutal rcute fur all trucrs = 59 on pass 13a TUTAL RCUFE FUR ALL TRUCKj= 57 ON PASS 130 TUTAL RCUIE FUR ALI TRUCKS = 4 A ON PASS \(14 \%\) TETAL RCUTE FOR ALL TRUKKS \(=56\) ON PASS 141 TCTAL RCU \(E\) FUR \(\triangle L\) TRUCKS \(=34\) ON PASS 14 ? TUTAL RCUTE FOR ALL TRUCKS= 54 ON PASS 143 TGTAL RCUTE FCR ALL TRIJCKS = bl ON PASS 144 TUTAL RCUTE FOR ALL TRUCKS= 57 ON PASS 145 TUTAL RCUTE FOK ALL TRUCKS= 51 ON PASS 146 total route for all trucks= 53 ON PASS 147 TUTAL RCUTE FOR ALL TRUCKS \(=49\) ON PASS 148
TOTAL ROUTE FGK ALL TRUCKS \(=49\) ON PASS 149
TOTAL RCUTE FOR ALL TRUCKS \(=44\) ON PASS 150
TOTAL RCUTE FOR ALL TRUCKS = 53 ON PASS 151.
TOTAL RGUTE FOR ALL TRUCKS \(=44\) ON PASS 152
TUTAL RCUTE FOR ALL TRUCKS= 58 ON PASS 153
TOTAL RCUTE FOR ALL TRUCKS= 51 ON PASS 154
TUTAL RCUTE FOR ALL TRUCKS= 57 ON PASS 155
TUTAL RCUTE FOR ALL TRUCKS = 58 ON PASS 156
TOTAL ROUTE FOR ALL TRUCKS= 21 ON PASS 157
TOTAL ROUTE FOR ALL TRUCKS= 53 ON PASS 158
TOTAL ROUTE FOR ALL TRUCKS= 58 ON PASS 159
TGTAL ROUTE FOR ALL TRUCKS= 56 UN PASS 160
TOTAL RCUTE FOR ALL TRUCKS \(=51\) ON PASS 161
TUTAL ROUTE FOR ALL TRUCKS \(=56\) ON PASS 162
TUTAL ROUTE FOR ALL TRUCKS = 58 ON PASS 163

TOTAL RGUTE FOR ALL TRUCKS = 54 G: PASS 164 TOYAL RCUTE FOR ALL TRUCKS= 53 OV PASS 165 TUTAL RCUTE FOR ALL TRUCKS= 53 UN PASS 166 total reute for all tikucks = 50 div pass 167 TUTAL RCUTE FOR ALL TRUCKS= 53 UV PASS 168 TUTAL RCUTE FOR ALL TRUCKS= 56 UN PASS \(1.6 \%\) TUTAL RCUTE FOR ALL TRIJCKS= 44 ON PASS 170 tCTAL RGUTE FOR ALL TRUCKS= SL ON PASS 171 TOTAL RCUTE FUR ALL TRUCKS= 51 ON PASS 172 TOTAL RCUTE FOR ALL TRUCKS \(=49\) UN PASS 173

TGTAL RCUTE FOR ALL TRUCKS \(=54\) UN PASS 174
TOTAL ROUTE FOR ALL TRUCKS \(=51\) ON PASS 175
TOTAL ROUTE FOR ALL TRUCKS \(=51\) ON PASS 176
TOTAL RCUTE FOR ALL TRUCKS \(=58\) DN PASS 177
TCTAL ROUTE FUR ALL TRUCKS \(=54\) ON PASS 178
TUTAL RCUTE FOR ALL TRUCKS \(=56\) UN PASS 1.79
TOTAL RCUTE FOR ALL TRUCKS \(=54\) ON PASS 130
TOTAL RCUTE FOR ALL TRUCKS \(=59\) UN PASS 181
TOTAL RCUTE FOR ALL TRUCKS = 58 ON PASS 182
TOTAL ROUTE FOR ALL TRUCKS \(=44\) ON PASS 183
TOTAL ROUTE FOR ALL TRUCKS = 56 ON PASS 184
TOTAL ROUTE FOR ALL TRUCKS = 51 Liv PASS 185
TUTAL KOUTE FOR ALL TKUCKS= 51 ON PASS 186
TOTAL ROUTE FOR ALL TRUCKS \(=56\) ON PASS 187
TUTAL KCUTE FOR ALL TRUCKS \(=56\) ON PASS 188
TCTAL ROUTE FOR ALL TRUCKS \(=53\) ON PASS 199
total rcute for all trucks = 5? UN PASS 190
total route pur all thucks= 56 DM pass 191 TOTAL RGUTE FUR ALL TRUCKS= 54 UN PASS 19 ? TOTAL ROUTE FUR ALL TRUGKS= 58 Gid PASS 173 TOTAL ROUTE FOR ALL TKUCKS \(=58\) DN PASS 194 TUTAL RCUTE FOR ALL TRUCKS= 53 ON PASS 195 TUTAL RCUTE FGR ALL TRUCKS \(=54\) ON PASS 196 TOTAL RCUTE FOR ALL TRUCKS = 51 DN PASS 197 TOTAL RCUTE FOR ALL TRUCKS = 59 ON PASS 198 TOTAL RCUTE FOR ALL TRUCKS \(=49\) ON PASS 199 TUTAL ROUTE FOR ALL TRUCKS \(=54\) EN PASS 200 TOTAL ROUTE FOR ALL TRUCKS \(=57\) UN PASS 201 TOTAL ROUTE FOR ALL TRUCKS \(=53\) DN PASS 202

TOTAL RCUTE FOR ALL TRUCKS= 51 UN PASS 203 TOTAL ROUTE FOR ALL TRUCKS= 44 ON PASS 204 TUTAL RCUTE FOR ALL TRUCKS= 59 DiN PASS 205 TOTAL ROUTE FOR ALL TRUCKS \(=56\) ON PASS 206

TUTAL ROUTE FOR MLL TRUCKS= 54 UN PASS 207
TOTAL ROUTE FOR ALL TRUCKS \(=54\) U. PASS 208
TUTAL RCUTE FOR ALL TRUCKS \(=56\) ON PASS 209
TUTAL ROUTE FOR ALL TRUCKS \(=49\) ON PASS 210
TOTAL ROUTE FOR ALL TRUCKS \(=51\) on pass 211
TUTAL RCUTE FOR ALL TRUCKS \(=58\) UN PASS 212
TOTAL RCUTE FOR ALL TRUCKS \(=53\) UN PASS \(2: 3\)
TOTAL RCUTE FOR ALL TRUCKS = 56 ON PASS 214
TOTAL ROUTE FOR ALL TRUCKS \(=56\) ON PASS 215

TUTAL RCUTE FOR ALL TRUCKS= 21 UN pASS 216 TUTAL RGUTE FUR ALL TRUCKS= 44 MN PASG 217 TUTAL RCUTE FOR ALL TRUCKS= 57 UN PASS 218 TUTAL RCUTE FOR ALL TRUCKS= 51 UN PASS 219 TCTAL KCUTE FOR MLL TRUCKS= 51 Di PASS 220 TUTAL RGUTE FOR ALL TRUCKS= 27 OU PASS 221 TUTAL ROUTE FOR ALL TRUCKS= 91 UN PASS 222 TOTAL RGUTE FOR ALL TRUCKS \(=54\) 0: 5 PASS 223 TUTAL ROUTE FOR ALL TRUCKS= 58 Ui. PASS 224 total route for all trucks = 53 on pass 225 TOTAL RCUTE FOR ALL TRUCKS \(=53\) UN PASS 226 TUTAL ROUTE FOR ALL TRUCKS = 57 DN PASS 227 TOTAL RCUTE FOR ALL TRUCKS = 58 UN PASS 228 TOTAL ROUTE FOR ALL TRUCKS \(=56\) ON PASS 229 TOTAL ROUTE FOR ALL TRUCKS = 53 ON PASS 230 TUTAL RCUTE FOR ALL TRUCKS \(=53\) LIN PASS 231 TOTAL RCUTE FOR ALL TRUCKS = 51 ON PASS 232 TOTAL ROUTE FOR ALL TRUCKS = 54 ON PASS 233

TOTAL ROUTE FOR ALL TRUCKS= 53 ON PASS 2.34
TOTAL ROUTE FOR ALL TRUCKS = 53 OAN PASS 235
TOTAL ROUTE FOR ALL TRUCKS \(=53\) CN PASS 236
TUTAL ROUTE FOR ALL TRUCKS \(=44\) ON PASS 237
TOTAL ROUTE FOR ALL TRUCKS \(=51\) GN PASS 230
TOTAL RCUTE FOR ALL TRUCKS = 52 ON PASS 239
TOTAL RCUTE FQR ALL TRUCKS= 58 ON PASS 240
TOTAL RCUTE FOR ALL TRUCKS \(=58\) CO PASS 241

TUTAL RCUIE FOR ALL FSUCKS= ra UNPASS 742
TOTAL RCUTE FER ALL TRUCKS \(=54\) UN DA5S 243
TOTAL RCUTE FOR ALL TRUCKS= b3 UN PASS 244
TOTAL ROUTE FOK ALL TRUCKS \(=69\) UN PASS 245
TUTAL RCUTE FOR ALL TRUCKS \(=44\) UN PASS 246
TOTAL RCUTE FOR ALL TRUCKS = 51 OR PASS 247
TUTAL KOUTE FOR ALL TRUCKS \(=34\) ON PASS 248
TOTAL ROUTE FOR ALL TRUCKS \(=44\) ON PASS 249
TOTAL ROUTE FOR ALL TRIJCKS \(=51\) UA PASS 250
TOTAL RCUTE FOR ALL TRUCKS = 51 DiN PASS 251
TOTAL RGUTE FOR ALL TRUCXS \(=54\) ON PASS \(25 \%\)
TOTAL RGUTE FOR ALL TRUCRS= 53 UN PASS 253
TUTAL ROUTE FOR ALL TRUCKS \(=50\) CN PASS 254
TUTAL ROUTE FOR ALL TRUCKS \(=59\) UB PASS 255
TOTAL REUTE FOR ALL TRUCKS \(=56\) SN PASS 256
TOTAL ROUTE FOR ALL TRIJCKS = 59 UN PASS 2.57
TETAL RCUTE FOR ALL TRUCKS = 34 ON OASS 258
TOTAL KGUTE FOR ALL TRUCKS \(=51\) UN PASS 259
TOTAL RCUTE FOR ALL TRUCKS = 53 ON PASS 260
TOTAL ROUTE FOR ALL TRUCKS \(=58\) UN PASS 261
TOTAL ROUTE FOR ALL TRUCKS \(=54\) LIN PASS 262
TOTAL ROUTE FOR ALL TRUCKS = 39 DN PASS 263
TOTAL ROUTE FOR ALL TRUCKS \(=51\) ON PASS 264
TOTAL ROUTE FOR ALL TRIJCKS \(=49\) ON PASS 265
TOTAL ROUTE FOR ALL TRUGKS = 51 Liv PASS 266
TOTAL ROUTE FOR ALL TRUCKS \(=54\) ON PASS 267

TUTAL RUUTE FQR ALL TRUGKS= 33 OM paSS 269
TUTAL RCUTE FOR ALL TRUCKS = 37 OV PASS 270
TOTAL RCUTE FOR ALL TRUCKS= 49 ON PASS 272
TUTAL RCUTE FOR ALL TRUCKS = 51 LIN PASS 272
TUTAL RGUTE FOR ALL TRUGKis= 53 LO PASS 273
TUTAL ROUFE FOR ALL TRUCKS= 58 OM PASS 274
TOTAL ROUTE FOR ALL TRUCKS \(=53\) UN PASS 275
TOTAL ROUTE FOR ALL TRUCKS = 59 ONPASS 276
TOTAL RCUTE FCR ALL TRUCKS \(=53 \mathrm{CN}\) PASS 277
TOTAL RCUTE FOR ALL TRUCKS= 57 ON PASS 278

TOTAL ROUTE FUR ALL TRUCKS = 54 UN PASS 279
TOTAL ROUTE FOR ALL TRUCKS \(=49\) ON PASS 280
TUTAL RGUTE FOR ALL TRUCKS = 56 Oí PASS 281
TOTAL RCUTE FOR ALL TRUCKS= 54 On PASS 282
TGTAL RCUTE FOR ALL TRUCKS = 53 ON PASS 283
TOTAL ROUTE FOR ALL TRUCKS = 58 ON PASS 284
TOTAL RCUTE FOR ALL TRUCKS = 51 ON PASS 285
TOTAL RCUTE FOR ALL TRUCKS= 51 DN PASS 286
TOTAL ROUTE FOR ALL TRUCKS = 44 ON PASS 287
TOTAL RCUTE FOR ALL TRUCKS \(=57\) OU PASS 288
TOTAL ROUTE FOR ALL TRUCKS = 51 CN PASS 289
TUTAL RCUTE FOR ALL TRUCKS= 54 ON PASS 290

TOTAL RCUTE FUR ALL TRUCKS \(=58\) OiN PASS 291
TOTAL RCUTE FOR ALL TRUCKS= 33 OiS PASS 292
TOTAL ROUTE FOR ALL TRUCKS \(=54\) ON PASS 293
TGTAL RUUTE FUR ALG TRUCKS= D: UNPMSS 294
TUTAL KCUTE FOR ALL TRリCKS= 54 OU DASS 295
TUTAL ROUTE FOR ALL TRUCKS= 49 ON DASS 290
TCTAL RCUTE FOR ALL TRUCKS= 33 DA PASS 297
TUTAL RCUTE FOK ALL TRUCKS = jl JN PASS 293
TETAL RCUTE FCR ALL TRUOKJ= 96 ON PNSS 299
TCTAL RCUTE FOR ALL TRIJCKS= 54 ON PASS 300
TOTAL RCUTE FUR ALL TRUCKS = 47 OA PASS ..... 307
TUTAL REUTE FOR ALL TRUCKS= 58 UN PASS ..... 302
TOTAL RCUTE FOR ALL TRUCKS= 53 ON PASS ..... 303
TOTAL RCUTE FOR ALL TRUCKS= 53 Giv PASS ..... 304
TUTAL RCUTE FOR ALL TRUCKS= 54 CIV PASS ..... 305
TUTAL RCUTE FOR ALL TRUCKS= 53 CN PASS ..... 306
TOTAL RCUTE FOR ALL TRUCKS = 57 ON PASS ..... 307
TOTAL KUUTE FOR ALL TRUCKS= \(=5 L\) LN PASS ..... 308
TOTAL RCUTE FOR ALL TRUCKS= 54 UN PASS ..... 309
TOTAL ROUTE FOR ALL TRUCKS = \(\quad\) OY GN PASS ..... 310
TOTAL RCUTE FOR ALL TRUCKS= 58 ON PASS ..... 311
TOTAL ROUTE FOR ALL TRUCKS = 51 ON PASS ..... 312
TOTAL ROUTE FOR ALL TRUCKS= 5l ON PASS ..... 313
TOTAL ROUTE FOR ALL TRUCKS = 53 ON PASS ..... 314
TUTAL ROUTE FOK ALL TRUCK'今= 52 DN PASS ..... 315
TUTAL ROUTE FOR ALL TRUCiSS= 53 Div rASS ..... 316
TOTAL RCUTE FCR ALL TRUCKS= 51 CN PASS ..... 317
TUTAL ROUTE FOR ALL TRUCKS= 57 CN PASS ..... 313
TOTAL ROUTE FOR ALL TRUCKS= 56 BN PASS ..... 319

TOTAL RCUTE FOR ALL TBNLKS = 54 DN PASS 3OO
TOTAL RCUTE FGR ALL TRUCKS= 56 UN pASS 321
TCTAL RCUTE FOR ALL TRUCKS= 5804 DASS 322
TOTAL RCUTE FOR ALL TRUCKS= 51 UN PASS 323
TUTAL RCUTE FOR ALL TRUCKS \(=57\) DU PASS 324
TUTAL RCUTE FOR ALL TRUCKS \(=53\) UA PASS 325
TOTAL RCUTE FUR ALL TRUCKS = 53 UN PASS 326
TOTAL ROUTE FOR ALL TRUCKS = 53 UA PASS 377
TOTAL ROUTE FOR ALL TRUCKS= 53 DN PASS 328
TUTAL ROUTE FOR ALL TRUCKS \(=58 \mathrm{CN}\) PASS 329
TUTAL ROUTE FOR ALL TRUCKS \(=56\) ON PASS 330
TOTAL ROUTE FOK ALL TRUCKS= 53 ON PASS 331
TCTAL RCUTE FOR ALL TRUCKS \(=54\) ON PASS 332
TOTAL RGUTE FOR ALL TRUCKS = 44 DN PASS 3.33
TOTAL ROUTE FOR ALL TRUCKS \(=54\) ON PASS 334
TOTAL ROUTE FOR ALL TRUCKS \(=44\) ON PASS 335
TOTAL ROUTE FOR ALL TRUCKS = 51 UN PASS 336
TOTAL ROUTE FOR ALL TRUCKS \(=49\) ON PASS 337
TOTAL ROUTE FOR ALL TRUCKS= 49 ON PASS 338
TUTAL KCUTE FOR ALL TRUCKS \(=58\) UV PASS 339
TUTAL ROUTE FOR ALL TRUCKS \(=51\) ON PASS 340
TCTAL ROUTE FOR ALL TRUCKS= 56 ON PASS 341
TUTAL RCUTE FOR ALL TRUCKS= 53 ON PASS 342
TOTAL ROUTE FOR ALL TRUCKS = 53 ON PASS 343
TUTAL RCUTE FOR ALL TRUCKS= D1 ON PASS 344
TOTAL RCUTE FOK ALL TRUCKS \(=54\) OIV PASS 345
 TETAL RCUTE FUR ALL TRUCKS= 34 JV PASJ 347 TUTAL ROUTE FOR ALL TRUCKS = 97 GN PASS 348 TUTAL KGUTE FUR ALL TRUGRS= \(\because 4\) UV PASS 3,47 TETAL RCUTE FO: ALL TRUCKS = 06 OU PAS5 330 TUTAL RCUTE FOR ALL TRUCKS= 33 UV iASS 351 TUTAL RCUTE FOR ALL TRUCKS = 5604 PASS 352 TOTAL RCUTE FOR ALL TRUCKS \(=58\) OF PASS 353 TOTAL RCUTE FOR ALL TRUCRS= 54 ON PASS 354 TGTAL ROUTE FOR ALL TRUCKS \(=58\) ON PASS 355 TUTAL ROUTE FOR ALL TRUCKS = 54 UN PASS 356 TOTAL RCUTE FOR ALL TRUCKS = 51 UN PASS 357 TUTAL ROUTE FOR ALL TRUCKS= bl ON PASS 358 TUTAL ROUTE FCR ALL TRUCKS = 56 ON PASS 359 TOTAL ROUTE FUR ALL TRUCKS = 52 DN PASS 360 TOTAL ROUTE FOR ALL TRUCKS = 33 UN PASS 361 TOTAL ROUTE FOR ALL TRUCKS = 51 UN PASS 362 TOTAL RCUTE FOR ALL TRUCKS= 56 UN PASS 363

TOTAL RCUTE FOR ALL TRUCKS = 54 CN PASS 364

TOTAL ROUTE FOR ALL TRUCKS \(=57\) DN PASS 365

TUTAL ROUTE FOR MLL TRUCKS= 53 ON PASS 366

TUTAL ROUTE FUR ALL TRUCKS \(=54\) DiN PASS 367

TUTAL RCUTE FOR ALL TRUCKS = 58 ON PASS 368

TOTAL ROUTE FOR ALL TRUCKS = 57 DN PASS 363

TOTAL ROUTE FOR ALL TRUCKS \(=56\) UN PASS 370

TOTAL ROUTE FOR ALL TRUCKS \(=56\) ON PASS 371

tital rgute for all trucis = gl un pass 373
TOTAL KCUTE FOR ALL TRUCKS = 44 Giv PASS 374
TUTAL RCUTE FOR ALL TRUCKS = 31 UN PAS'S 375
TOTAL ROUTE FOR ALL TRUCKS= 54 ONPASS 376
tutai rcute for all tirucks= 51 uiv pass 377
TOTAL ROUTE FOR ALL TRUCKS \(=\) ! 2 GN PASS 378
TOTAL RCUTE FOR ALL TRUCKS \(=53\) UN PASS 379
TETAL RCUTE FOR ALL TRUCKS= 51 UN PASS 380
tetal rcute for all trucks= 51 on pass 381
TCTAL RCUTE FGR ALL TRUCKS= 53 CH PASS 382
TOTAL RCUTE FGR ALL TRUCKS \(=53\) CN PASS 383
TOTAL RCUTE FOR ALL TRUCKS \(=58\) ON PASS 384
TOTAL ROUTE FOR ALL TRUCKS \(=5600\) PASS 385
TOTAL RCUTE FOR ALL TKUCKS= 51 LiN PASS 306
TCTAL RCUTE FOR ALL TRUCKS= 58 ON PASS 387
TOTAL RCUTE FOR ALL TRUCKS= 57 ON PASS 388
TOTAL RCUTE FOR ALL TRUCKS= 59 ON PASS 389
TOTAL RCUTE FOR ALL TRUCKS \(=56\) UN PASS 390
TOTAL ROUTE FOR ALL TRUCKS \(=58\) ON PASS 391
TOTAL ROUTE FOR ALL TRUCKS \(=38\) ON PASS 392
TUTAL ROUTE FOR ALL TRUCKS \(=53\) ON PASS 393
TUTAL RCUTE FOR ALL TRUCKS \(=24\) ON PASS 304
TOTAL KCUTE FOR ALL TRUCKS = 57 OIN PASS 395
TOTAL ROUTE FUR ALL TRUCKS \(=49\) DA PASS 396
TUTAL ROUTE FUR ALL TRUCKS \(=49\) UN PASS 397
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline tutal & RCute & FCR & ALL & TRMEK: \(=\) & & ON & PASS & 398 \\
\hline TOTAL & KCUTE & FUR & ALL & TRUSKS \(=\) & 51 & ON & PASS & 399 \\
\hline total & RCute & FOR & ALL & Tizucks= & 53 & ON & PASS & 400 \\
\hline total & KCUTE & FOR & ALL & TRUCKS \(=\) & 54 & ON & PASS & 491 \\
\hline total & ROUTE & FOR & ALL & TRUCKS \(=\) & 58 & ON & PASS & 402 \\
\hline TUTAL & RCUTE & FOR & ALL & TRUCKS \(=\) & 56 & Ciis & PASS & 403 \\
\hline TUTAL & RCUTE & FUR & ALL & TRUCKS \(=\) & 51 & Cf. & PASS & 404 \\
\hline TCTAL & RCUTE & FOR & ALL & TRUCKS \(=\) & 58 & OH & PASS & 405 \\
\hline TUTAL & RCUTE & FGR & ALL & TRUCKS \(=\) & 54 & Uiv & PASS & 406 \\
\hline TOTAL & RCUTE & FOR & ALL & TRUCKS \(=\) & 53 & ON & PASS & 407 \\
\hline tutal & RCUTE & FOR & ALL & TRUCKS \(=\) & 58 & CiN & PASS & 408 \\
\hline toral & ROUTE & FQR & ALL & TRUSCKS \(=\) & 56 & CN & PASS & 409 \\
\hline TUTAL & ROUTE & FOR & ALL & TRUCKS \(=\) & 54 & ON & PASS & 410 \\
\hline total & rcute & FOR & ALL & TRUCRS \(=\) & 51 & 0 Ca & PASS & 411 \\
\hline TOTAL & rcute & FOR & ALL & TRUCKS= & 54 & ON & PASS & 412 \\
\hline TOTAL & RCute & FOR & ALL & TRUCKS \(=\) & 56 & UN & PASS & 413 \\
\hline total & route & FOR & ALL & TRUCKS \(=\) & 53 & ON & PASS & 414 \\
\hline tutal & RCUTE & FOK & ALL & TRUCKS \(=\) & 56 & ON & PASS & 415 \\
\hline tutal & ROUTE & FOR & ALL & TRUCKS \(=\) & 58 & On & PASS & 416 \\
\hline TGTAL & ROUTE & FOR & ALL & TRUCKS = & 58 & ON & PASS & 417 \\
\hline tutal r & RCUTE & FOR & ALL & TRUCKS \(=\) & 56 & CN & PASS & 418 \\
\hline TCTAL & RCUTE & FOR & ALL & TRUCKS \(=\) & 53 & ON & PASS & 419 \\
\hline total h & kCUTE & FOR & ALL & TRUCKS \(=\) & bl & 0 CH & PASS & 420 \\
\hline tutal k & ROUTE & FOR & ALL & TRUCKS = & 44 & ON & PASS & 421 \\
\hline rotal & rcute & FOR & ALL & TRUCKS \(=\) & 53 & ON & PASS & 422 \\
\hline TUTAL R & RCuTE & FOR & ALL & TRUCKS \(=\) & 58 & ON & PASS & 423 \\
\hline
\end{tabular}
TUTAL RCUTE FOR ALL TRUCKS = 54 CN PASS 424
TUTAL RCUTE FOR ALL TRUCKS \(=56\) Did pASS ..... 425
total route for all trucks = by on pass ..... 426
TOTAL ROUTE FOR ALL TRULKS = 33 Giv PASS ..... 427
TOTAL RCUTE FOR ALL TRUCKS = 56 ON PASS ..... 428
TOTAL RCUTE FOR ALL TRUGKS= 54 ON PASS ..... 429
total rcute for all trucks = 53 cin pass ..... 430
TUTAL RCUTE FGR ALL TRUCKS = 56 UN PASS ..... 431
TUTAL ROUTE FOR ALL TRUCKS= 53 ON PASS ..... 432
TUTAL RGUTE FOR ALL TRUCKS = 53 UN PASS ..... 433
TOTAL ROUTE FUR ALL TRUCKS = 49 UIN PASS ..... 434
TOTAL RCUTE FOR ALL TRUCKS \(=54\) UN PASS ..... 435
TUTAL ROUTE FOR ALL TRUCKS = 51 UN PASS ..... 436
TOTAL RGUTE FOR ALL TRUCKS= 53 ON PASS ..... 437
TOTAL RCUTE FOR ALL TRUCKS= 56 ON PASS ..... 438
TOTAL RCUTE FOR ALL TRUCKS \(=59\) ON PASS ..... 439
TOTAL RCUTE FOR ALL TRUCKS = 53 ON PASS ..... 440
TOTAL RCUTE FOR ALL TRUCKS= 51 ON PASS ..... 441
TOTAL RCUTE FOR ALL TRUCKS \(=50\) ON PASS ..... 442
TUTAL ROUTE FGR ALL TRUCKS= 44 ON PASS ..... 443
TOTAL RCUTE FOR ALL TRUCKS \(=51\) ON PASS ..... 444
TUTAL RCUTE FOR ALL TRUCKS \(=54\) ON PASS ..... 445
TOTAL RCUTE FOR ALL TRUCKS= 31 UN PASS ..... 446
TOTAL ROUTE FOR ALL TRUCKS \(=53\) ON PASS ..... 447
TOTAL RCUTE FOR ALL TRUCKS = 57 ON PASS ..... 448
TOTAL RCUTE FOR ALL TRUCKS= 59 ON PASS 449

TUTAL RCUTE FOR ALL TAUCKS \(=58\) ON PASS 450
TUTAL RCUTE FOK ALL TRUCKS \(=54\) ON PASS 451
TUTAL RGUTE FOR ALL TRUGKS = 54 (NN PASS 45?
TUTAL RCUTE FOR ALL TBUCKS= 98 ON PASS 453
TOTAL RCUTE FOR ALL TRUCKS= 51 UN PASS 454
TUTAL RCUTE FOR ALL TRUCKS \(=58\) DN PASS 455
TUTAL ROUTE FGR ALL TPUCKS \(=59\) ON PASS 456
TETAL RCUTE FOR ALL TRUCKS= 26 OU PASS 457
TOTAL RCUTE FOR ALL TRUCKS = 54 ON PASS 458
TOTAL RCUTE FOR ALL TRUCKS \(=51\) ON PASS 459
TOTAL RCUTE FOR ALL TRUCKS \(=44\) ON PASS 460
TOTAL RCUTE FGR ALL TRUCKS = 58 ON PASS 461
TOTAL RCUTE FOR ALL TRUCKS \(=540 \mathrm{ON}\) PASS 462
TOTAL RCUTE FOR ALL TRUCKS= 53 ON PASS 463
TUTAL ROUTE FOR ALL TRUCKS= 59 CN PASS 464
TOTAL RCUTE FOR ALL TRUCKS= 51 ON PASS 465

TUTAL ROUTE FOR ALL TRUCKS \(=51\) DN PASS 46 G
TUTAL ROUTE FOR ALL TRUCKS \(=59\) ON PASS 467
TOTAL ROUTE FOR ALL TRUCKS \(=53\) ON PASS 468
TUTAL ROUTE FOR ALL TRUCKS \(=58\) ON PASS 469
TOTAL ROUTE FOR ALL TRUCKS \(=49\) ON PASS 470
TOTAL RCUTE FOR ALL TRUCKS \(=54\) UN PASS 471
TOTAL ROUTE FOR ALL TRUCKS \(=28\) DN PASS 472

TOTAL ROUTE FOR ALL TRUCKS \(=50\) ON PASS 473
TOTAL RGUTE FOR ALL TRUCKS= 44 ON PASS 474
TCTAL RCUTE FOR ALL TRUCKS \(=53\) ON PASS 475

Tital reute fur all trucks \(=57\) ON PASS 476 TGTAL RGUTE FOR ALL TRUCKS \(=56\) ON PASS 477 TUTAL RCUTEFOR ALL TRUCKS \(=54\) ON PASS 478 TOTAL RCUTE FOR ALL TRUCKS \(=56\) ON PASS 479 tOTAL ROUTE FGR ALL TRUCKS = 57 DN PASS 490 TOTAL KOUTE FOR ALL TRUJKS \(=53\) UN PASS 48. TCTAL RCUTE FOR ALL TRUCKS \(=44\) Giv PASS 4 P2 TOTAL RCUTE FOR ALL TRUCKS = 53 OA PASS 493 TOTAL RCUTE FOR ALL TRUCKS= 53 UN PASS 484 TUTAL RCUTE FOR ALL TRUCKS \(=31\) UN PASS 485 TUTAL ROUTE FOR ALL TRUCKS \(=54\) DNPASS 486 TUTAL RCUTE FOR ALL TRUCKS \(=44\) ONPASS 487 TOTAL ROUTE FOR ALL TRUCKS \(=53\) ON PASS 488 TGTAL RCUTE FOR ALL TRUCKS = 51 ONPASS 489 TUTAL RCUTE FOR ALL TRUCKS = 49 ON PASS 490 TGTAL ROUTE FOR ALL TRUCKS \(=56\) OA PASS 491 TOTAL RCUTE FOR ALL TRUCKS = 54 DN PASS 492 TOTAL RCUTE FOR ALL TRUCKS \(=51\) ON PASS 493 TUTAL RCUTE FOR ALL TRUCKS = 51 ON PASS 494 TOTAL RCUTE FOR ALL TRUCKS= 49 UN PASS 495 TCTAL ROUTE FOR ALL TRUCKS \(=54 \mathrm{CN}\) PASS 496 TOTAL ROUTE FOR ALL TRUCKS \(=59\) UN PASS 497

TUTAL ROUTE FOR ALL TRUCKS \(=540 \div\) PASS 498
TOTAL ROUTE FOR ALL TRUCKS \(=59\) ON PASS 409
TOTAL RCUTE FOR ALL TRUCKS \(=44\) UN PASS 500
TOTAL ROUTE FOR ALL TRUCKS \(=44\) UN PASS 501

TUTAL RCUTE FBR MLL TAMCKS= 3 LUNOS ,OB
TUTAL ROUTE FUR ALL T:くUCKS= 54 UV mASS 5:4
TGTAL REUTE FOR ALL TRUCKS= 57 DN PASS bOS
TUTAL RCUTE FOR ALL TPUCKS= 36 UN PASS 506

TOTAL ROUTE FOR ALL TRUCKS= 44 U*J PASS 507
TUTAL KCUTE FUR ALL TRUCKS= 51 0: PASS 508

TETAL RCUTE FOK ALL TRUCKS= 54 UN PASS 509
TOTAL RCUTE FOR ALL TRUCKS= 56 Uii PASS 310
TETAL RCUTE FOR ALL TRUCKS \(=44^{4}\) UN PASS 511
TOTAL RCUTE FUR ALL TRUCKS = 58 UR PASS 512
TOTAL ROUTE FOK ALL TRUCKS= 51 UN PASS 513 TOTAL RCUTE FOR ALL TRUCKS = 33 LNA PASE 514

TUTAL RCUTE FOR MLL TRUCKS= 5I ON PASS 515

TCTAL ROUTE FOR ALL TRUCKS = 57 GN PASS 510
TOTAL RCUTE FOR ALL T:ZUCKS= 51 ON PASS 517
TOTAL ROUTE FOR NLL TRUCKS \(=49\) ON PASS 518

TUTAL ROUTE FQR ALL TRUCKS = 58 ON YASS 519
TOTAL ROUTE FOR ALL TRUCKS = 57 UN PASS 520
TETAL TIME FOR THIS RUN = 18.0 MLNUTES


PROBLEM 2
 SEND TRUCK OF CAPACITY 4000 D:V ROUTE AS FOLLOWS. RUUTE IS AS FOLLOWS,



Total Route Mileage (miles)


PROBLEM 3
```

ZuTAL ROUTE FUR ALL TRUCKS=1944 ON PASS 2
MISTANGE CLVEREDBY TRUCK NUMERR I= I= 633
RUUT: IS AS FOLLOWS.
12
12
i
14
4
D'2}\mathrm{ IANCE COVEREO BY TRUCK NUMEER 3= 291
RUUTE IS AS FOLLOWS.
7
OISTANGE CTVEREU BY TRUCK NUMAER 4=444
RUUTE IS AS FOLLOWS,
13
TOSAL ROUTE FOR ALL TRUCKS=1994 ON PASS 1
TUTAL ROUTE FOR ALL TRUCKS=1683 ON PASS 2
OISTANGE COVEREUSBY TRUCK NUMBER I= 575
RMUTE IS AS FOLLOWS,
13
14
LI3
RUUTE IS AS FOLLOWS.
3
14
DISTANCE COVERED PY TRUCK NUMIER 3=517
RUUTE IS AS FOLLOWS.
M
OCSTANGE COVEREO BY TRUCK NUMBER 4= 310
RUUTE IS AS FOLLOWS,
6
\$
4
TOFAL ROUTE FOR ALL TRUCKS=1683 ON PASS 2
TOTAL ROUTE FOR ALL TRUCKS=2210 ON PASS 3
TOTAL ROUTE FOR ALL TRUCKS=2000 ON PASS 4
TUTAL ROUTE FOR ALL TRUCKS=2222 ON PASS 5

```

TUMAL RUUTE FOR ALL TRUCKS=1917 OM PASS 110
TUIAL ROUTE FDR ALL TRUCKS=2137 UN PASS 111
TUTAL RCUTE FOR ALL TRUCKS=2217 UM PASS 112
TGTAL ROUTE FOR ALL TKUCKS \(=1917\) ON PASS 11.3
tutal route for all trucks 2031 div pass 114
TUTAL RGUTE FOR ALL TRUCKS=1741 UN PASS 115

TUTAL ROUTE FOR ALL TRUCKS \(=1887\) OS PASS 116
TUJAL KOUTE FUR ALL TRUCKS \(=1669\) ON PASS 117
DISTANCE COVEREO EY TRUCK NUMPER \(1=481\) RUI
14
14

RUUTE IS AS FGLLOWS,

3
14
4
DISTANCE COVEREO BY TRUCK NUMEER \(4=424\) RUUTE IS AS FOLLOWS,

TUTAL ROUTE FOR ALL TRUCKS \(=1669\) ON PASS 117
TUTAL ROUTE FOR all Trucks \(=2091\) on pass 118
TUTAL ROUTE FOR ALL TRUCKS=1721 Oiv PASS 119
IOTAL ROUTE FOR ALL TRUCKS \(=22.63\) UN PASS 120
TUTAL ROUTE FOR ALL TRUCKS \(=1960\) ON PASS 121
TOTAL ROUTE FOR ALL TRUCKS \(=2161\) Oiv PASS 122
TOTAL ROUTE FOR ALL TRUCKS \(=1833\) ON PASS 123
TUTAL ROUTE FOR ALL TRUCKS \(=2006\) ON PASS 124
TUTAL ROUTE FOR ALL TRUCKS \(=1865\) ON PASS 125

TUTAL ROUTE FOR ALL TRUCKS=195! UM PASS 178
TOTAL ROUTE FOR ALL TRUCKS=1924 Din PASS 179
TOTAL ROUTE FUR ALL TRUCKS \(=2071\) ON PASS 130
TOTAL ROUTE FOR ALL TRUCKS=1952 0i pass 181
TUTAL ROUTE FOR ALL TRUCKS \(=2159\) ON PASS 182
TUTAL ROUTE FOR ALL TRUCKS \(=1931\) ON PASS 193
TUTAL ROUTE FER ALL TRUCKS \(=1730\) ON PASS 184
TUTAL ROUTE FOR ALL TRUCKS=1941 ON PASS 185
TUTAL ROUTE FOR ALL TRUCKS \(=1797\) OiS PASS 186
TOTAL ROUTE FOR ALL TRUCKS=1892 ON PASS 187
TOTAL ROUTE FOR ALL TRUCKS \(=2075\) ON PASS 188
TOTAL ROUTE FOR ALL TRUCKS=1042. ON PASS 189
TOTAL ROUTE FUR ALL TRUCKS \(=1897\) ON PASS 190
TOTAL ROUTE FOR ALL TRUCKS \(=1982\) ON PASS 191
TOTAL ROUTE FOR ALL TRUCKS=1972 ON PASS 192
TOTAL ROUTE FOR ALL TRUCKS=1830 CN PASS 193
TOTAL ROUTE FOR ALL TRUCKS \(=1968\) ON PASS 194
TOTAL ROUTE FOR ALL TRUCKS \(=2121\) ON PASS 195
tutal route fur all trucks=1571 ON pass 196
DISTANCE COVERED BY TRUCK NUMEER \(1=575\) RUUTE IS AS FOLLOWS,

DISTANCE COVEREG BY TRUCK NUMEER \(2=400\) ROUTE IS AS FOLLOWS.


TUTAL KCUTE FOR ALL TRUCKS=2273 OA PASS 197

TUTAL ROUTE FUR ALL TRUCKS \(=2213\) LN PASS 198

TUTAL ROUTE FOR ALL TRUCKS=2160 UN PASS 199

TUTAL ROUTE FOR ALL TRUCKS \(=2379\) UN PASS 200

TUTAL ROUTE FOR ALL RRUCKS \(=2028\) ON PASS 201
TUTAL KOUTE FOR ALL TRUCKS \(=2349\) DN PASS 202

TUTAL KGUTE FOR ALL TRUCKS \(=2158\) ON PASS 203

TOTAL ROUTE FOR ALL TRUCKS=1874 ON PASS 204
TOTAL ROUTE FOR ALL TRUCKS=1955 ON PASS 205

TOTAL ROUTE FOR ALL TRUCKS \(=2172\) OA PASS 266

TOTAL ROUTE FOR ALL TRUCKS=2190 ON PASS 207

TUTAL ROUTE FOR ALL TRUCKS \(=1680\) UN PASS 208
TUTAL ROUTE FUR ALL TRUCKS \(=1797\) ON PASS 209

TOTAL ROUTE FOR ALL TRUCKS \(=2053\) ON PASS 220

TOTAL ROUTE FOR ALL TRUCKS \(=1970\) UN PASS 211
TOTAL ROUTE FOR ALL TRUCKS \(=1838\) ON PASS 212

TUTAL ROUTE FOR ALL TRUCKS = 2107 ON PASS 213
TOTAL ROUTE FUR ALL TRUCKS \(=2375\) ON PASS 214

TUTAL ROUTE FOR ALL TRUCKS=2133 ON PASS 215

TUTAL ROUTE FOR ALL TRUCKS=1939 UN PASS 215

TUTAL ROUTE FOR ALL TRUCKS=1788 ON PASS 217

TOTAL ROUTE FOR ALL TRUCKS = 1965 ON PASS 218

TUTAL RCUTE FOR ALL TRUCKS=7010 ON PASS B31
TUTAL RCUTE FOR ALL TRUCKS \(=2001\) UN PASS 532
TOTAL ROUTE FOR ALL TRUCKS=1729 UN PASS 533
TUTAL ROUTE FOR ALL TRUCKS \(=1851\) ON PASS 534
TOTAL RCUTE FUR ALL TRUCKS \(=1990\) OA PASS 535
TUTAL ROUTE FOR ALL TRUCKS \(=2059\) ON PASS 536
TOTAL ROUTE FOR ALL TRUCKS \(=2083\) UN PASS 537
TOTAL KOUTE FOR ALL TRUCKS \(=1967\) ON PASS 538
TUTAL ROUTE FOR ALL TRUCKS \(=1992\) ON PASS 539
TUTAL RCUTE FOR ALL TRUCKS \(=2047\) DN PASS 540
TOTAL ROUTE FOR ALL TRUCKS \(=1857\) ON PASS 541
TUTAL ROUTE FOR ALL TRUCKS \(=2076\) ON PASS 542
TUTAL RCUTE FOR ALL TRUCKS \(=2005\) ON PASS 543
TOTAL RCUTE FOR ALL TRUCKS \(=2253\) ON PASS 544
TETAL ROUTE FOR ALL TRUCKS \(=1547\) ON PASS 545
DISTANCE GOVEKED BY TRUCK NUMBER \(\quad 1=\) óbl RUUTE IS AS FOLLOWS,

DISTANCE COVERED BY TRUCK NUMPER \(2=141\) RUUTE IS AS FOLLOWS.

DISTANCE COVERED RY TRUCK NUMEER \(3=444\)
RUUUTE IS AS FOLLOWS,
'4
DISTANGE CCVERED BY TRUCK NUMEER \(4=301\)
RUUTE IS AS FOLLOWS,

TUTAL RCUTE FUR ALL TRUCKS \(=1547\) UN PASS 545
TOTAL ROUTE FOR ALL TRUCKS \(=1956\) ON PASS 546

TUTAL RCUTE FOR ALL TKIERS=24ST U: PASS 590
TUIAL ROUTE FGR ALL TRUCKS \(=2197\) ON PASS 600

TUIAL ROUTE FOR ALL TRUCKS=2042 DN PASS bOL
TUTAL ROUTE FOR ALL TRUCKS=1975 Div PASS 602

TUTAL RCUTE FOR ALL TRUCKS=2D29 Div PASS 603
TOTAL RCUTE FOR ALL TRUCKS \(=1828\) Oiv PASS 604

TOTAL ROUTE FOR ALL TRUCKS \(=2310\) OiN PASS 605
TUTAL ROUTE FCR ALL TRUCKS \(=1911\) ON PASS 606
TOTAL ROUTE FOR ALL TRUCKS=2272 UN PASS 607

TUTAL RCUTE FOR ALL TRUCKS \(=2047\) ON PASS 608
TOTAL ROUTE FOR ALL TRUCKS \(=1981\) ON PASS 609

TOTAL ROUTE FOR ALL TRUCKS=2004 ON PASS 620
TUTAL ROUTE FOR ALL TRUCKS \(=1510\) ON PASS 611
DISTANCE GOVERED BY TRUCK NUMER \(\quad 1=2.3\) RUUTE IS AS FULLOWS,

DISTANCE COVERED BY TRUCK NUMBER \(2=96\) RUUTE IS AS FOLLOWS,
3
RISTANCE COVERED BY TRUCK NUMBER \(\quad 3=521\)
RUUTE IS AS FOLIOWS,
I 2
14
13
QISTANGE COVEREO BY TRUCK NUMEER
RUUTE IS AS FOLEOWS,

TUTAL ROUTE FOR ALL TRUCKS \(=1510\) ON PASS 611
TOTAL RCUTE FOR ALL TRUCKS \(=2234\) DiV PASS 612

TUTAL ROUTE FOR ALL TRUCKS=2110 ON PASS 613
TUTAL ROUTE FUR ALL TRUCKS \(=1604\) ON PASS 614


Total Route Mileage (miles)


PROBLEM 4

TUTAL RCUIE FOR ALL T：UCKS＝236 LO PAS it

TUTAL RCUIE FU：？ALL reUCKS＝ \(26!10\) G NASS I4G

TLTAL KCUTE EOS ALL TRUCKS＝74ジ OY PASS 147


TUTAL RCUTE FQR ALL TQUCKS＝97：S w．PASS 149

TOTAL RGUTE FGK ALL TRUCKS＝244P COB PASS 130
TETAL KOUTE FQR ALL TRUCKS＝2307 GN PASS 151

TUTAL RCUTE FOR ALL TRUCKS＝25\＆Lin ：3ASS 152

TOTAL RCUTE FOR ALL FKUCKS＝22．う WN PAS5 \(15 \%\)

TOTAL REUTE FOR ALL TRUCKS＝24Lの UN PASG ISム
TUTAL RCUTE FGR ALL TRUCKS＝2539 ON PASS L5：

TUTAL RCUTE FOR ALL TRUCKS＝2429 LN PASS isG

TUTAL RUUTE FOR ALL TKUCKS＝2609 GM PASS 157

TOTAL ROUTE FOK ALL TRUCKS \(=2542\) OA PASS 158

TOTAL ROUTE FOR ALL TRUCKS＝187O UZ PASS 159
BISTANCE COVEREL BY TRUCK NUABFM \(\quad=46\)

DYSTANCE COVERED BY TRUCK MUMEER 2．\(=253\)
RUUTE IS AS FULiOWS，

DLSTANCE COVERER PY TRUCK NUMBRA \(4=4\) RuUTE IS AS FOLLOWS，

OJSTAVCE COVEREL DY TRUCK NUABEK \(5=40\)
RUNTE IS AS FULRONS，
12
26
DISTANCE GOVERED BY TRUCK NUMEEN \(\quad 6=102\)
```

Ruvie IS AS folbobis,

```
```

Dístance cuverel hy tizuck numben $7=763$

```
RUUTE IS AS FOLLOWS,
```

DISTANGE CIVERE: BY TRUCK NUMPRR }y=33

```
RUMTE IS AS FOLIOWS,

UISTANCE COVERED RY TRUCK NUMEER \(10=54\) RUUVE: IS AS FOLLOWS,
TUTAL ROUTE FOR ALL TRUCKS \(=2693\) DN PASS ..... 160
TUTAL ROUTE FOR ALL TRUCKS \(=2332\) Ü PASS ..... 161
TOTAL KOUTE FOR ALL TRUCKS=2057 ORY PASS ..... 162
TUTAL ROUTE FOR ALL TRUCKS=2136 ON PASS ..... 163
TUTAL RCUTE FOR ALL TRUCKS=7432 ON PASS ..... 164
TOTAL RCUTE FOR ALL TRUCKS=23UL DN PASS ..... 165
TUTAL ROUTE FOR ALL TRUCKS \(=2247\) ON PASS ..... 166
TUTAL RCUTE FUR ALL TRUCKS \(=2717\) ON PASS ..... 167
TUTAL RCUTE FOR ALL TRUCKS \(=2556\) ON PASS ..... 168
TOTAL RCUTE FOR ALL TRUCKS \(=2507\) UiV PASS 169




Total Route Mileage (miles)

APPENDIX VI

STATISTICAL TESTS
(see page 122)
```

H_{0} : There is no difference in the theoretical and observed distribution
of mileage values obtained for the 5 stop problem
MAXIMUM DEVIATION $=D=\operatorname{maximum}\left|F_{o}(X)-S_{N}(X)\right|$
Let $\alpha=.01$, and $N=520$ observed routes
$D_{\text {observed }}=\left|\frac{312}{520}-\frac{335}{520}\right|$
$=\frac{23}{520}$
$=.0442$

```
Going to the K-S one-sample table of critical values (14),
\(D_{\text {tabular }, .01}=1.63 / \sqrt{520}\)
    \(=1.63 / 22.8\)
    \(=.0715\)

At \(\alpha=.01, D_{\text {observed }}<D_{\text {tabular }}\)
\(\therefore\) ACCEPT \(H_{0}\) : EQUAL POPULATIONS

STATISTICAL TEST TWO

The \(\chi^{2}\) One-Sample Test
(see page 122)
\(H_{0}\) : There is no difference in the theoretical and observed distribution of mileage values obtained for the five stop problem.

Let \(\alpha=.01\), and \(N=520\) observed routes
\(x^{2}=\sum_{i=1}^{k} \frac{\left(0_{i}-E_{i}\right)^{2}}{E_{i}}\), where \(k=\) number of categories.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{9}{|c|}{Mileage Value} & \multirow[b]{2}{*}{Total} \\
\hline & 44 & 49 & 51 & 53 & 54 & 56 & 57 & 58 & 59 & \\
\hline Number Observed & 32 & 32 & 105 & 88 & 80 & 58 & 31 & 63 & 31 & \\
\hline Number Expected & 35 & 35 & 104 & 69 & 69 & 69 & 35 & 69 & 35 & 520 \\
\hline Difference & -3 & -3 & 1 & 19 & 11 & -11 & -4 & -6 & -4 & \\
\hline
\end{tabular}
\(x^{2}=\frac{(32-35)^{2}}{35}+\frac{(32-35)^{2}}{35}+\ldots+\frac{(31-35)^{2}}{35}\)
\(=10.69\) for \(k-1 \mathrm{df}\), where \(\mathrm{k}=9\).
Going to the Chi-square one-sample table of critical values (14), for 8 degrees of freedom.

Chi-square \(.01,8 \mathrm{df}=20.09\)
At \(\alpha=.01, x^{2}<\) Chi-square
\(\therefore\) Accept \(H_{0}\) : EQUAL POPULATIONS


Total Route Mileage (miles)

A COMPUTERIZED SIMULATION APPROACH TO THE SOLUTION OF THE CARRIER DISPATCHING PROBLEM

\section*{by}

WILLIAM CHRISTIAN ELVIN BRAUN
B. S., Kansas State University, 1966

\section*{AN ABSTRACT OF A MASTER'S THESIS}
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1967

The purpose of this research is to study the feasibility of determining a solution to the large scale carrier dispatching problem utilizing the tool of computerized simulation and to develop statistical confidence intervals for the shortest resulting route.

A Fortran program was compiled, utilizing a computerized algorithm for solving the now famous 'Traveling Salesman' problem, in conjunction with a random ordering of a series of 'demand points'. The computer program, assembled for an IBM 1410 computer was used in solving several problems with low routes previously suggested to be optimum by various algorithms.

Experience with the sample problems indicates a decrease in efficiency over time of finding a near optimal route with an increasing number of demand points. Although an optimal solution is not apt to be determined, a route is always determined, which is an advantage over some of the algorithms which require an approximation after the solution is obtained.```


[^0]:    $I_{\text {The }}$ traveling salesman problem may be stated as follows: Determine the shortest route for a salesman (vehicle) starting from a given city, visiting each of a specified group of cities, (demand points), and then returning to his original point of departure (origin).

[^1]:    1 A third approach at this point is one of utilizing a method of finding a short path through a series of demand points as discovered by Shen Lin of Bell Telephone Laboratories. A write-up of this method may be located in the Bell advertisement in the October 1966 issue of Scientific American, page 19.

[^2]:    Actual Minimum

