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Abstract 

This dissertation describes the application of single molecule spectroscopy and tracking 

to investigations of the nanoscale properties of thin-film chemical gradients and the transport 

dynamics of molecules dispersed within and upon these gradients. Chemical gradients are 

surface bound materials that incorporate gradually changing chemical and/or physical properties. 

A continuous and gradual change in the properties of gradients are expected and often required 

for their intended applications, which range from directed growth of cell colonies to 

combinatorial materials science. In reality, such conditions are almost never met due to 

spontaneous demixing and dewetting processes that can lead to properties variations on 

microscopic length scales. A better understanding on the properties of chemical gradients on 

microscopic length scales will aid in the production of better engineered materials.  

Single molecule spectroscopy (SMS) allows for gradient properties to be probed on 

nanometer-to-micrometer length scales. In this dissertation, quantitative measurements of 

gradient polarity (i.e., dielectric properties) are made along a sol-gel derived thin film that 

incorporates a macroscopic polarity gradient. These measurements report on the microscopic 

heterogeneity of the gradient film, and point to the occurrence of phase separation of the polar 

and nonpolar components along the gradient. Single molecule tracking (SMT) provides an 

important means to examine the dynamics of molecular mass transport in thin films and on 

surfaces. In this dissertation, SMT is employed to study mass transport in thin water films 

condensed over monolayer wettability gradients under ambient environments. The results show 

that the rate and the mechanism of molecular transport depend on the surface wettability, and on 

the ambient relative humidity.  Finally, wettability gradients have been broadly used to drive the 

transport of liquid droplets. In this dissertation, these applications are extended to achieve 



  

spontaneous stretching of DNA by the propulsion of liquid droplets along the gradient. Single 

molecule fluorescence imaging of DNA stretched along these gradients demonstrates that 

hydrophobic surfaces play an important role in DNA stretching. The study also shows the 

surface tension force acting at the gradient-droplet contact line (interface) to be responsible for 

DNA elongation and alignment. Overall, single molecule methods have been shown to be highly 

useful for better understanding the properties of chemical gradients as described in this 

dissertation.  
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Abstract 

 

This dissertation describes the application of single molecule spectroscopy and tracking 

to investigations of the nanoscale properties of thin-film chemical gradients and the transport 

dynamics of molecules dispersed within and upon these gradients. Chemical gradients are 

surface bound materials that incorporate gradually changing chemical and/or physical properties. 

A continuous and gradual change in the properties of gradients are expected and often required 

for their intended applications, which range from directed growth of cell colonies to 

combinatorial materials science. In reality, such conditions are almost never met due to 

spontaneous demixing and dewetting processes that can lead to properties variations on 

microscopic length scales. A better understanding on the properties of chemical gradients on 

microscopic length scales will aid in the production of better engineered materials.  

Single molecule spectroscopy (SMS) allows for gradient properties to be probed on 

nanometer-to-micrometer length scales.  In this dissertation, quantitative measurements of 

gradient polarity (i.e., dielectric properties) are made along a sol-gel derived thin film that 

incorporates a macroscopic polarity gradient. These measurements report on the microscopic 

heterogeneity of the gradient film, and point to the occurrence of phase separation of the polar 

and nonpolar components along the gradient. Single molecule tracking (SMT) provides an 

important means to examine the dynamics of molecular mass transport in thin films and on 

surfaces.  In this dissertation, SMT is employed to study mass transport in thin water films 

condensed over monolayer wettability gradients under ambient environments. The results show 

that the rate and the mechanism of molecular transport depend on the surface wettability, and on 

the ambient relative humidity.  Finally, wettability gradients have been broadly used to drive the 



  

transport of liquid droplets.  In this dissertation, these applications are extended to achieve 

spontaneous stretching of DNA by the propulsion of liquid droplets along the gradient. Single 

molecule fluorescence imaging of DNA stretched along these gradients demonstrates that 

hydrophobic surfaces play an important role in DNA stretching. The study also shows the 

surface tension force acting at the gradient-droplet contact line (interface) to be responsible for 

DNA elongation and alignment. Overall, single molecule methods have been shown to be highly 

useful for better understanding the properties of chemical gradients as described in this 

dissertation. 
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Chapter 1 - General Introduction 

1.1 Thin-Film Chemical Gradients 

Thin-film chemical gradients are surface bound materials designed to incorporate 

continuously changing physicochemical properties as a function of position on a substrate.
1-4

 The 

work described in this dissertation focused on obtaining a better understanding of the nanoscale 

properties of these materials. Gradients can be prepared by using any one of the two general 

methods: (i) direct deposition and (ii) post-deposition modification. In direct deposition, 

gradients are prepared typically on a flat substrate by controlled and gradual deposition of the 

gradient precursors such as monomers, oligomers, and polymers either from solution or from the 

vapor phase by using any one of a number of deposition techniques. Some of these techniques 

include, but are not limited to, controlled immersion
5
 and infusion,

6
 dip coating,

7,8
 contact

9
 and 

inkjet
10

 printing, electrochemical deposition,
11

 vapor phase techniques,
12

 and microfluidics
13

.  

 In the case of post-deposition, a flat substrate bearing a pre-coated material (thin film, 

self-assembled monolayer or SAM) is progressively modified either by chemical (etching)
14

 or 

by physical (irradiation)
15

 means in a top down manner. However, the direct deposition with the 

bottom up approach is currently the most widely employed method of gradient fabrication. 

Gradient films can be prepared to be either static or dynamic. A static gradient has 

physicochemical properties that are fixed during its preparation and these properties do not 

evolve with time. However, in a dynamic gradient, the physicochemical properties change over 

time. Most of the methods listed above yield only static gradients. Dynamic gradients can be 

obtained by applying a few methods such as those based on microfluidics and electrochemistry. 

Chemical gradients can be prepared by using one or more of a large number of chemical 

precursors including organic polymers, organosilanes and alkanethiols, many of which are 
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commercially available. Gradients prepared from organosilanes are the focus of this dissertation. 

The use of organosilanes as precursors allows for the preparation of gradients in one or more of 

the properties such as polarity,
16

 wettability,
12

 charge,
17

 pH, ligand density,
18

 etc. They also 

allow gradients to be prepared on technologically useful silica substrates.  

 Each chemical gradient can be described in terms of its many attributes.
2
 Three such 

important attributes are the gradient directionality, its dimensionality and its length scale shown 

in Figure 1.1. A gradient can be prepared so that its properties change in one direction 

(unidirectional), in perpendicular directions (orthogonal) or in radial directions emanating from 

the center toward the periphery (Figure 1.1A). Unidirectional gradients are the most common. 

When such gradients incorporate more than one functional component, the properties of the 

gradient can vary either in parallel (aligned) or in antiparallel (opposed) directions. Gradients can 

be made in one, two or even three dimensions (Figure 1.1B). While an isolated 1D gradient in 

the form of a line is rarely made, 2D gradients are commonly prepared in the forms of thin films 

and SAMs. A 2D gradient can be extended into a 3D gradient by a number of methods including 

a grafting-onto method. In this method, a 2D gradient in polymer density (concentration) is first 

prepared which is followed by grafting a second end functionalized polymer producing a 3D 

gradient. The gradient length scale is another important attribute that defines the extent of 

gradient continuity and smoothness. A gradient which appears to be continuous and smooth on 

macroscale can be actually discontinuous and discrete at microscale as shown in Figure 1.1C. In 

fact, a gradient is comprised of a collection of many individual samples each having a uniform 

property. Ideally, the variation in the property between these individual samples is smooth and 

hence the gradient is continuous. However, in reality there is an abrupt change in property 

between these individual samples making gradient rather discontinuous at microscopic length 
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scales. Therefore, examination of gradient properties at microscopic length scales can provide a 

better understanding of these materials. 

 

 

Figure 1.1 Key attributes of chemical gradients. A) Direction, B) Dimension, C) Length scale. 

Adapted with permission from Ref. (2). Copyright 2008, American Chemical Society. 

 

A number of measurement tools have been employed to characterize the composition and 

the properties of chemical gradients. The chemical composition of gradient films is generally 

accessed by using techniques such as XPS, FTIR or Raman-scattering. While XPS
6
 provides the 

elemental composition, FTIR
19

 and Raman
20

 reveal the chemical functionalities incorporated 

along the gradient. Water contact angle measurements
12

 are useful as a means to follow the 

macroscopic wettability (surface energy) of the gradient surface. AFM
21

 allows for the density of 

adsorbed species to be mapped along the gradient surface. Electrochemical methods
17

 are useful 

in characterizing gradients incorporating charged and redox species on the surface. Bulk 

fluorescence spectroscopy has been applied to measure macroscopic polarity
16

. Many of the 

methods listed above are bulk methods that are useful only when an average property along the 

gradient surface is sought. Since the gradients are inherently heterogeneous materials, a complete 

understanding of their properties at the microscopic scale is necessary in order to better design 
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these materials for different applications. Toward this end, single molecule spectroscopy (SMS) 

allows for gradient properties to be examined on molecular length scales providing the complete 

distribution of the materials properties under study. As a result of its utility, SMS studies of 

gradient properties are emphasized in this dissertation.   

 

     1.2 Importance of Thin Film Chemical Gradients 

Thin film chemical gradients are important materials due to their significant potential 

utility in a number of basic and applied studies. Chemical gradients can serve as a combinatorial 

material library along a single substrate (sample) and can aid in the development, optimization 

and screening of new materials. For example, Potyrailo et al. have prepared gradient polymer 

libraries to explore novel materials for sensing applications.
22

 Jayaraman et al. have employed 

gradients in platinum surface coverage as a means for measuring the activity of spatially 

localized catalysts for elctro-oxidation reactions in an effort to discover new catalysts.
23

  

Gradient surfaces are also useful in studies on the adhesion of proteins, cells and vesicles 

relevant to the development of biocompatible surfaces and to applications in tissue engineering.
24

 

For example, Harris et al. employed ligand density gradients in cell-adhesive RGD prepared 

from anionic polymer brushes to control the spatial attachment of fibroblasts.
25

 Spencer et al. 

developed SAM films incorporating orthogonal gradients in charge density and net charge, and 

examined the adsorption of proteins having negative (bovine serum albumin, fibrinogen) and 

positive (lysozyme) charges.
26

 This study demonstrated that adsorption is influenced mainly by 

electrostatic interaction and, surprisingly, even the charge-balanced zwitterion was found to 

adsorb. 
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Likewise, gradient surfaces can act as surface engines, driving the transport of liquid 

droplets. Chaudhary and Whitesides
12

 initially demonstrated the spontaneous motion of a small 

droplet of  water across a few millimeter distance, along a surface free energy gradient, even 

when the substrate was inclined at an angle. They reported that a negligible contact-angle 

hysteresis (≤10
0
) was required to observe droplet motion along the gradient. In a similar manner, 

gradient surfaces have also been used to direct the motion of nanoparticles,
27,28

 

macromolecules,
29,30

 vesicles,
31

 and cells
13,32-34

. Additionally, gradient surfaces have been shown 

to be useful in difficult chemical separations.
35,36

    

 

 1.3 Objective and Motivation of Present Research 

     The work performed for this dissertation addresses two specific objectives: 

I. To better understand the nanoscale polarity (dielectric properties) along organosilane 

gradients prepared by sol-gel deposition. To this end, quantitative SMS measurements were 

undertaken and were used to determine the polarity distribution and to reveal the extent of 

heterogeneity and phase separation as a function of position along the gradients. 

II. To better understand surface wettability and the role of condensed water layers in 

governing molecular mass transport along gradient SAM films prepared by vapor-phase 

deposition of organosilanes. To this end, single molecule tracking methods were employed to 

explore the rate and mechanism of probe molecule diffusion on the film surface, as a function of 

position along the gradient and of relative humidity (RH). 

Thin-film chemical gradients are inherently multi-component materials. At the molecular 

level, each component represents a particular chemical functionality. Gradient properties are 

determined by the co-operative interactions (co-operativity) of chemical functionalities closely 
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spaced within the dipole-dipole coupling distance. In addition, when a foreign molecule 

(analyte/reagent) comes in contact with a gradient during its application, one of the gradient 

components can, preferentially, interact more strongly with the foreign molecule, altering its 

adsorption or partition compared to those on a single-component and non-gradient thin film. 

Depending on the local chemical composition, solvent environment, pH and the structure of the 

foreign molecule, such interactions can represent H-bonding, electrostatic and dipole-dipole 

interactions, and  π-π interactions. 

Ideally, gradient components (precursors) are considered to be mixed very well so that a 

gradient film exhibits continuous and smooth variations in its properties down to the molecular 

level. In reality, however, a gradient film which appears to have continuous variations in its 

macroscopic property may still exhibit stepwise (discrete) variations in its nanoscopic properties. 

These discrete properties variations may be caused by phase separation of the gradient 

components owing to poor miscibility of certain precursor organosilanes (e.g. polar vs. 

nonpolar), different rates of their hydrolysis and condensation, and surface dewetting. Phase 

separation occurs due to a decrease in entropy with the corresponding increase in free energy 

during the transition of colloidal sols into network gel at constant temperature. In the gaps 

between the neighboring phase separated domains, there is a smaller chance for co-operative 

interactions among the gradient components which leads to an abrupt (rather than continuous) 

change in gradient properties. Phase separation and microscopic heterogeneity limit the utility of 

gradient films in many applications where gradual properties variations are expected and/or 

required. Understanding such microscopic to nanoscopic heterogeneity along gradient films can, 

therefore, lead to improvements in the design of these important materials. The ability to probe 

the properties of individual nanoscale environments with single molecule sensitivity, and to 
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follow the motion of individual molecules makes the technique of single molecule spectroscopy 

(SMS) an ideal tool for nanoscale characterization of gradient films.  
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Chapter 2 -  Preparation and Characterization of Chemical 

Gradients 

 2.1 Methods of Gradient Preparation 

A myriad of techniques have been employed to prepare thin film chemical gradients. 

Some of the common techniques employed by different research groups will be discussed here. 

Figure 2.1 shows cartoons representing a few of such techniques. 

  

 2.1.1 Immersion Based Techniques  

Gradient deposition from the solution phase may be accomplished by immersion based 

techniques. In a commonly used immersion based technique, suitable substrate is gradually 

exposed to a precursor solution either by slowly immersing the substrate into the solution or by 

infusing the solution with certain rate (Figure 2.1A). A gradual variation in the exposure time of 

the substrates to the precursor solutions lead to formation of gradients. For example, Spencer et 

al. used a controlled immersion
5
 in order to prepare concentration gradient in methyl- or 

hydroxyl- terminated alkanethiol. The subsequent immersion of the first gradient into a 

complimentary thiol solution produced a two-component counter gradient in wettability.
37

A sol-

gel dip-coating method called controlled-rate infusion (CRI)
6
 was employed by the group of 

Collinson to produce chemical gradients from aminosilanes on silica substrates. Similarly, the 

Higgins group has developed a method called infusion-withdrawal dip-coating (IWDC)
16

 based 

on similar sol-gel dip-coating that allows to gradually change the concentration of the 

organosilanes solutions over time, resulting in gradient deposition. The sol-gel approach used in 

both the techniques involves hydrolysis of organosilanes with subsequent condensations. The 

hydrolyzed organosilanes undergo condensation reactions with each other producing low 
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molecular weight oligomers and/or with the surface silanol groups depositing thin films on the 

surface. The IWDC method was employed for preparation of polarity gradients
8
 described in 

Chapter 5 of this dissertation. In IWDC method,
16

 a sol of time- varying composition is 

generated by infusing one sol into the other with simultaneous withdrawal of the mixture sol. 

The concentrations of the two sols at a time are expressed by the following equations- 

 

                                   
       

         
 

    
                                   (2.1)     

 

Here      is the concentration of the sol present in dip-coating reservoir at time t, 

       is its initial concentration,          and           are sol volumes in the reservoir at 

time t and at the initial respectively, and      and     the rates of withdrawal and infusion 

respectively. 

 

                               

    
  

       

         
 

    
                                     (2.2) 

 

Here       is the concentration of the sol being infused at time t and    its invariant 

concentration. The CRI and IWDC methods afford some control over the gradient profiles, 

although the gradients can be less uniform than vapor deposited ones, due to surface tension 

gradients, contact line pinning and other factors that arise during dip-coating of liquid sols.     

 

 2.1.2 Vapor Diffusion  
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The formation of wettability gradients by a diffusing vapor front of organochlorosilane 

dissolved in paraffin oil was first experimentally demonstrated by Whitesides.
12

 The experiment 

can be carried out in simple set up as shown in Figure 2.1B. Chaudhury et al. have extensively 

used this method to study a number of parameters that govern droplet motion along wettability 

gradients.
38-40

 The Genzer group has used this method in preparation of gradients in grafting 

density and molecular weight of polymer brushes.
18,41,42

 This is also one of the techniques 

employed in this dissertation for making two-component gradients in wettability
43

 described in 

Chapter 6. The deposition of organosilanes on silica surface depends on the chemical reactions 

between the organochlorosilane molecules and the hydroxy groups present on the silica surface. 

The water adsorbed on silica surface hydrolyzes the organochlorosilanes before they can 

condense with the surface hydroxy (silanol) groups. The strong siloxane (Si-O-Si) bond formed 

as a result of condensation attaches organosilane to the silica surface. Parameters
43-45

 that affect 

gradient deposition by this technique are the vapor pressure of the precursor organochlorosilanes, 

the humidity in the deposition environment, the separation between the substrate and the silane 

reservoir, and the exposure time etc. Monolayer gradients obtained by this technique are more 

uniform and stable than alternatives prepared by solution phase methods, but it is hard to control 

the gradient profile or steepness.   

 

2.1.3 Contact Printing  

The contact printing technique initially developed by the Whitesides group
46

 has been 

widely used for generating gradient SAMs. In this technique, an elastomeric stamp is first soaked 

with chemical (ink) and brought in contact with the surface to be printed. Choi et al. found a 

method to generate a gradient by varying the contact time between a silicone stamp containing 
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octadecyltrichlorosilane (OTS) and silicon.
47

 A longer contact time printed more OTS and a 

gradient in OTS concentration was formed. This method affords the gradient length to be tuned 

from adjustments in the radius and the shape of the silicone stamp. Kraus et al. produced a 

chemical gradient by a method of mass-transfer microcontact printing (µCP) in which the 

amount of ink transported to the substrate is controlled by the thickness of the stamp as shown in 

Figure 2.1C.
9
 They showed reaction-limited flux (   of the ink to the surface is given by 

following equation- 

 

                                        
 

 
 

   

   
                             (2.3) 

 

Here,    is the initial sticking probability of ink to surface,   is fraction of surface 

covered, h is stamp thickness,    is Boltzmann constant,   is temperature and m the mass of 

molecule. By using wedge-shaped PDMS stamp of varying thickness, they printed 

hexadecnethiol (HDT) density gradients on a gold surface. The µCP methods allow producing 

gradients on micrometer length scales but are limited to mostly the planar surfaces. 

 



12 

                         

Figure 2.1 Different techniques for preparation of chemical gradients. A) Immersion technique, 

B) Vapor diffusion, C) Contact printing, and D) Microfluidic system. Adapted with permission 

from Ref. (2). Copyright 2008, American Chemical Society. 

 

 2.1.4 Microfluidic System  

Microfluidic system offers a versatile way of creating chemical gradients by controlling 

the flow of individual solutions into a network of microchannels as shown in Figure 2.1D.
48

 The 

individual solutions are split, mixed and recombined as they travel down the network. A gradient 

is established perpendicular to the flow direction across an outlet channel which collects all the 

branches of the network. The gradient in solution is then deposited on the surface. Gunawan et 

al. have used microfluidics to generate counter gradients of proteins laminin and collagen I on 

SAM coated gold substrate in order to study cell behavior in different protein environments
49

. 
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Similarly, Shi et al. produced gradients in polydopamine on hydrophobic surface by employing 

microfluidic system.
50

 They used this gradient to enable spatial deposition of the adhesive 

proteins and to control the adhesion of mesenchymal stem cells. One advantage of this system is 

that it allows making dynamic gradient by simply changing the flow velocity of the input 

solutions. 

 

 2.1.5 Electrochemical Method 

Electrochemical methods of gradient generation involve either purely electrochemistry or 

a combination of electrochemistry along with immersion or irradiation. Purely electrochemical 

gradients can be obtained by applying a potential in a gradient fashion. For example, Bohn et al. 

created octanethiol gradients on gold substrates by the reductive desorption of thiol by using an 

in-plane potential gradient.
51

 The octanethiol gradient was further backfilled with 3-

mercpatopropionic acid to obtain a two-component gradient in surface energy. In an another 

experiment, by Yamada et al., a dynamically controlled wettability gradient was prepared by 

applying an in-plane potential gradient to an electrode modified with a redox-active monolayer 

of ferrocenyl alkanethiol.
52

Electrochemical methods provide a valuable means to prepare 

dynamic gradients on surfaces and also allow for the switching of gradient properties. 

 

 

 2.1.6 UV Irradiation 

Modulation of the exposure of photosensitive films to UV light has offered an important 

means of fabricating gradients. In one method employed by Amis et al., surface energy gradients 

were prepared by exposing SAM films deposited from n-octyldimethychlorosilane vapor, to UV 
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light of varied exposure along the film.
53

 In this approach, as the duration of UV exposure 

increases, the film gets increasingly hydrophilic due to oxidation (ozonolysis) of the hydrocarbon 

chain. In an another method, Roberson et al. exposed a chlorosilane SAM on silicon to a gradient 

intensity of UV-ozone radiation with the help of a variable density filter to make surface energy 

gradient.
54

 Similar exposure to a gradient UV-light was applied for converting films prepared 

from a photosensitive polymer brush
55

 and proteins
56

 into gradients in polymer composition and 

thickness, and in protein concentration respectively.  

 

 2.2 Common Techniques of Gradient Characterization 

  

 2.2.1 Water Contact Angle (WCA) Measurements 

Measurement of water contact angles represents the most straightforward approach to 

determining the surface wettability (free energy) along a gradient. The contact angle of a liquid 

represents the angle formed by a droplet at the three-phase boundary where liquid, gas and solid 

intersect. The contact angle of a drop of water      on an ideally flat surface is determined by 

the thermodynamic equilibrium existing at three interfaces as described by Young's equation- 

 

                                                                                                                 (2.4) 

 

Where   ,     and     represent the liquid-vapor, solid-vapor, and solid-liquid interfacial 

tensions or energies respectively. According to equation 2.4, when the energy of the solid-vapor 

interface       is higher than that of the liquid-vapor interface       or the surface tension of the 

liquid, the solid surface gets completely wet by the liquid. Otherwise, the liquid only, partially, 
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wets the solid surface. Young's equation allows to calculate only one contact angle- the static or 

equilibrium contact angle for a surface. But in practice a range of contact angles are possible for 

a surface due to its roughness or heterogeneity. In such case both the advancing and receding 

contact angles can be measured by increasing and decreasing the droplet volume respectively. 

The difference between the two angles is called contact angle hysteresis.  

WCA measurements have been widely used to access the macroscopic wetting property of 

a number of gradient surfaces which differ in the range of their wettability.
5,57

 Wettability 

gradient can cause spontaneous motion of small droplet of water. However, such ability is 

decreased due to the presence of contact angle hysteresis. Whitesides et al. showed that the 

contact angle hysteresis of less than 10
o 

is required to observe the spontaneous motion of a water 

droplet along a wettability gradient.
12

 Daniel et al. have applied external vibration to overcome 

the effect of contact angle hysteresis in droplet motion.
58

 Although useful, this method can 

provide information only on the macroscopic properties of gradient surfaces and the measured 

contact angles data require adjustments for the effect of surface roughness.     

 

 2.2.2 X-ray Photoelectron Spectroscopy (XPS)  

X-ray photoelectron spectroscopy (XPS) is an important surface analysis technique that 

provides information on chemical composition of the surface. In this technique, a surface is 

irradiated with X-rays of sufficient energy in order to eject core shell electron as a result of 

photoelectric effect. The kinetic energy (     of the ejected electron is measured, and it depends 

upon the binding energy (     of the electron and the energy of the X-ray irradiation beam (   . 

 

                                                                                                            (2.5) 
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Here       is the work function of the spectrometer. The binding energy can therefore be 

calculated by using equation 2.5 from the known values of the energy of the X-rays and the 

work function of the spectrometer. The binding energies (B.E) are unique for electrons residing 

in the particular orbital of a specific element. This enables to identify the chemical composition 

of the surface by comparing the measured binding energies with the reference values. The 

intensity of the XPS signal directly correlates to the amount of atoms present on the surface. 

Moreover, an atom can undergo a characteristic shift in its binding energy depending upon its 

chemical environment which allows to obtain detailed information on surface chemistry. 

XPS has been widely used to examine the chemical composition and/or concentration 

along gradient surfaces. For example, Spencer and co-workers employed XPS to study chemical 

gradients prepared by controlled immersion of gold into solutions of either alkanethiols or their 

derivatives.
37,59,60

 In one of such studies, XPS validated the presence of a composition gradient in 

methyl and carboxy groups and also determined the states of protonation and deprotonation of 

the carboxy group from the chemical shift in the binding energy of the carboxylic carbon (C 1s 

B.E ~ 289.7 eV).
37

 Kannan et al. have applied XPS in order to first confirm the gradient 

deposition of aminosilane on silica and then to determine their profiles (steepness) while 

prepared by CRI method with various rates of infusion.
6
 The XPS data acquired along the 

substrate for N 1s (399.2 eV) and Si 2p (102.9 eV) B.E showed  unidirectional concentration 

gradients in amine groups present on silica surface. The XPS measurements further revealed the 

ability of CRI method in programming gradient profile at predefined positions. Recently, Ashraf 

et al.
61

 have used XPS to examine the cooperative effects in bifunctionalized charge gradients 

derived  from aminosilane and mercaptosilane. The results of this study showed that the extent of 
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amine protonation (N 1s B.E for NH3
+ 

~ 401 eV) depends on the local concentration of the 

sulfonate groups (S 2p B.E for SO3
- 

~168.5 eV)  that were obtained after oxidation of the 

mercapto groups (S 2p B.E for SH ~163.5 eV), and of the surface hydroxyl groups from the 

silica substrate. 

Although a highly surface sensitive technique, the XPS signal represents an average 

signal from a number of atoms. The technique requires ultra-high vacuum, the long acquisition 

time and can cause sample degradation.  

 

 2.2.3 FTIR and Raman Spectroscopy  

FTIR and Raman scattering are vibrational spectroscopies that can be used to map the 

chemical functionalities in/on gradient materials. Harris et al. have used FTIR to validate the 

formation of gradient obtained by photopolymerization of surface attached poly(methyl 

methacrylate) (PMMA).
55

 An increase in the IR absorption signal for the carbonyl (C=O) stretch 

at 1730 cm
-1 

across the surface indicated the presence of a PMMA gradient. FTIR was also 

employed by Cui et al. to probe the composition along a thin film gradient prepared from 

tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMOS) using the IWDC method.
19

 

The FTIR results depicted a continuous increase in Si-CH3 absorption at 1275 cm
-1 

confirming a 

gradient in methyl groups. Moreover, a polarization modulated FTIR was used to demonstrate 

the conformational order of monolayer gradients by Spencer et al.
37

 In this study, a comparison 

of the IR data lead to the conclusion that a monolayer gradient of methyl groups on a gold had 

lower conformational order compared to monolayer methyl-hydroxy and methyl-carboxyl 

counter gradients. In a different study, chemical composition along electrochemically generated 

gradients were mapped by Bohn et al. by using surface-enhanced Raman spectroscopy (SERS).
20
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The Raman scattering data revealed the existence of a one-component and an opposed two-

component gradients prepared on gold from naphthalenethiol alone and along with 

chlorobenzenemethanethiol, respectively. Although very useful in determining the chemical 

functional groups, both FTIR and Raman scattering are ensemble techniques, and do not provide 

direct information on the molecular scale properties of the gradient films.  

 

 2.2.4 Fluorescence Spectroscopy 

Fluorescence spectroscopy is a highly sensitive analytical technique. The electronic 

excitation of certain organic fluorophores with light (photons) of appropriate energy results in 

the subsequent emission of light with lower energy called fluorescence. Bulk fluorescence 

measurements can provide information on the average properties and dynamics associated with a 

range of materials including thin films. Crucial to such measurement is the choice of appropriate 

fluorophores. A wide range of fluorophores are now commercially available which are sensitive 

to the polarity, pH, and charge of the environment, as well as the presence of certain metals ions.  

Fluorescence spectroscopy has been widely used to characterize a number of sol-gel 

derived materials including the organically modified silicates (ORMOSILS).
62-66

 Zink et al. used 

fluorescence spectroscopy, for the first time, to monitor the chemical evolution in situ during thin 

film deposition of sol-gel derived silica by using pyranine (8-hydroxy-1,3,6-trisulfonated 

pyrene), which is sensitive to alcohol/water ratio, as a probe molecule.
67

 A number of 

fluorescence studies have since examined the polarity and pH of the relatively dry and solvent 

filled porous environments within ORMOSIL materials, as well as the molecular mobility within 

these materials. The Brennan group measured fluorescence from solvatochromic dyes 7AI (7-

azaindole) and PRODAN [6-Propionyl-2 dimethylamino(naphthalene)] doped in ORMOSIL 
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monoliths prepared by mixing tetraethoxysilane (TEOS) sols with sols of either 

methyltriethoxysilane (MTES) or dimethyldimethoxysilane (DMDMS).
64

 In this study, the 

material polarity was found to be dependent on the solvent composition up to 7 days after its 

preparation, but on the organic functional groups covalently attached to the silica matrix 

afterwards, due to the loss of solvent. Interestingly, materials that incorporated more than 20% 

MTES or 5% DMDMS were found to undergo phase separations. Based on several other studies, 

the mobility of the dopant (dye, enzyme, protein, polymer) entrapped within the sol-gel matrix 

was found depend upon factors such as dopant-matrix interactions, the porosity of the material, 

and its organic content. Small dye molecules were found to be more mobile as the percent of 

organic moiety increased in ORMOSIL materials.  

Bulk fluorescence measurements can also be extended to characterize thin film gradient 

materials. The Higgins group has previously acquired bulk fluorescence spectra of the polarity 

sensitive dye Nile Red along a thin film, prepared from tetramethoxysilane (TMOS) and 

methyltrimethoxysilane (MTMOS) by using IWDC, in order to confirm the presence of a 

polarity gradient.
16

Although very useful for macroscopic characterization, ensemble fluorescence 

spectroscopy provides relatively little information on either the nanoscale properties of the sol-

gel materials or on material heterogeneity.    
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Chapter 3 - Single Molecule Methods 

Single molecule (SM) methods allow for individual molecules to be detected, observed 

and followed. Observation at the single molecule level represents the fundamental concentration 

limit to analyte detection, and provides access to the complete statistical distribution of the 

parameter under study. Such information is not generally accessible by ensemble methods. 

 

 3.1 Importance of Single Molecule Studies 

In physical sciences, measurements are often made on an ensemble of particles (atoms, 

molecules, functional groups) where the number of the particles is expressed in terms of the 

Avogadro's number (6.022 x 10
23

). Such measurements, when undertaken by bulk techniques, 

provide only the average value of the parameter under study and little information on its true 

distribution. Understanding the distribution of the values taken on by the parameter becomes 

particularly important when the particles in the ensemble behave differently with respect to each 

other. In that case, the average value reported by the bulk techniques rarely represents the true 

value of the parameter. The realization has long driven the search for methods that can measure 

(examine) one particle at a time and thus can provide the full distribution of the measured 

parameter. Towards this end, single molecule spectroscopy (SMS) has succeeded in exploring 

the behaviors of individual molecules in the complex local environments of a broad range of 

materials.  

Ensemble measurements that provide the average value of an experimental parameter still 

have great value, especially when relatively homogenous materials are under investigation. 
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However, in practice, even materials that are expected to be homogeneous, such as polymers and 

glasses, are often found to be heterogeneous on certain length scales. Single molecule 

spectroscopy has many distinct advantages over ensemble methods for the study of such 

materials. First, it completely removes ensemble averaging and allows for the actual distribution 

of values for the experimental parameter to be constructed. Undoubtedly, the distribution of 

parameters provides more information compared to a single average value. A close examination 

of the distribution profile for the presence of multiple peaks and/or changes in its shape often 

reflect the presence of multiple domains and/or rare behavior of the molecules in the materials. 

Second, the probe molecule used in single molecule studies can be chosen to be sensitive to a 

particular material property such as polarity, pH, charge or viscosity, and hence SMS provides an 

important means to measure the properties of nanoscale environments in a range of materials. 

Third, the direct observation of single molecule motion by SMT allows for the rate and 

mechanism of such motion to be quantitatively explored. From these two parameters, important 

new information can be gleaned as to the viscosity and rigidity of the microscopic environment 

of the materials, the presence of specific molecule-matrix interactions, and even the structure of 

the nanoscale materials. 

 

 3.2 General Background and Theory  

The detection of single organic chromophores (i.e., single molecules) was reported for 

the first time separately by Moerner and Orrit in experiments performed under cryogenic 

temperatures. In 1987, Moerner et al.
68

 detected the absorption of single pentacene molecules in 

p-terphenyl. Later in 1990, Orrit et al.
69

 detected the fluorescence from the same system. In 1993, 

Betzig et al.
70

 carried out the first single molecule experiment at room temperature by using near-
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field optical microscopy. Over the past three decades room temperature single molecule 

spectroscopy has expanded significantly with respect to the materials being explored and the 

experimental techniques now available. 

In a typical SM experiment, the material under study is doped with a nanomolar or sub-

nanomolar concentration of certain organic dye molecules called fluorophores. The fluorophores 

are optically detected by exciting their fluorescence. The fluorescence process can be described 

with the help of a Jablonski diagram, as shown in Figure 3.1. The phenomenon starts with the 

excitation of the molecule from the electronic ground state to any one of the excited vibrational 

states within the first excited electronic state of the molecule. Excitation occurs in about 10
-15 

sec. The excitation is brought about by the use of suitable laser light having a photon energy 

equal to the energy difference between the ground and the excited states of the molecule. Once in 

the excited vibrational state, the molecule subsequently relaxes to the ground vibrational state of 

the first excited electronic state via non-radiative decay. This process is also fast occurring in 

about 10
-12 

sec. Fluorescence occurs when the molecule later relaxes to the ground electronic 

state by the emission of a photon that is usually red shifted (lower energy) with respect to the 

excitation photon. This allows for the fluorescence to be spectrally separated from the excitation 

source. Fluorescence is relatively slow, occurring on a 10
-9

 sec time scale.  

Detection of fluorescence is carried out by using highly sensitive detectors such as 

avalanche photodiodes (APDs) or charge coupled device (CCD) cameras. A high magnification, 

high numerical aperture objective lens helps to both illuminate the sample and to collect the 

emitted photons. Such lens is required to collect as many number of emitted photons as possible. 

The collection efficiency of an objective lens for the emitted photons directly correlates with its 
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numerical aperture. A number of optics such as filters, dichroic and reflecting mirrors and 

polarizers are also employed in collecting and isolating the excitation and emitted light.  

 

                       

Figure 3.1 Jablonski diagram showing the principle of fluorescence. So - ground singlet state, S1 

first excited singlet state, T1 - triplet state. 

 

 

 3.3  Experimental Techniques for SMS  

A number of optical microscopy techniques have been implemented in single molecule 

spectroscopic experiments. These include near-field optical microscopy, confocal microscopy, 

and wide field fluorescence microscopy. Wide field microscopy was almost exclusively 

employed in the work performed for this dissertation. This is one of the most common 

techniques currently used to observe single molecule fluorescence. As the name implies, the 

sample is broadly illuminated (a region several microns in diameter) by focusing laser on the 

back aperture of the microscope objective. Several molecules are then simultaneously detected 
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through fluorescence. Wide field fluorescence imaging methods can be further implemented 

either in the epi-illumination or the  total internal reflection modes.  

 

 3.3.1 Epi-illumination Microscopy 

Figure 3.2a shows a basic set up for wide field microscope in epi-illumination mode. In 

this set up, the input laser beam is reflected off of a dichroic mirror so as to focus on the back 

aperture of the microscope objective. The fluorescence is collected by passing first through the 

same microscope objective and then through the dichroic mirror. The residual excitation light is 

separated from the fluorescence by passing through an appropriate filter. The fluorescence is 

finally detected by an array detector such as CCD camera. For all SMS experiments, the signal-

to-noise ratio is an important parameter. One way of improving this parameter is to use a high 

numerical aperture (NA) microscope objective to ensure the maximum collection of emitted 

fluorescence. NA = n x sinθmax depends on the refractive index (n) of the medium between the 

objective and the sample and on the maximum collection angle (θmax) of the objective. In most of 

the SMS experiments, the medium is an oil (n=1.51) and an oil immersion objective is used with 

NA as high as 1.49. Epifluorescence microscopy is useful when the samples under study are very 

thin, such as thin films and monolayers where the background fluorescence is relatively small. 
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Figure 3.2 Wide field microscopy in (a) epi-illumination and (b) total internal reflection (TIRF) 

geometry. DM- dichroic mirror, F- filter, L-lens, λex. - excitation light, λfl. - fluorescence. 

 

 3.3.2 Total Internal Reflection Fluorescence (TIRF) Microscopy 

TIRF microscopy is a popular method for examining the molecules on surfaces and at 

interfaces in thick samples as it provides a means to minimize the background fluorescence and 

scattering. Figure 3.2b depicts a simple diagram of a wide field microscope operated in TIRF 

mode. This mode is achieved when the excitation laser light emerging from the microscope 

objective is incident at the sample surface at an angle (θ) greater than the critical angle      so 

that it is totally internally reflected.  
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Here,   is the refractive index of the sample/substrate and    that of the medium in 

contact with the sample (air or liquid) and    >    . This produces an evanescent field that 

decays exponentially away from the interface.  

 

                                                    
 

 
                                       

          

Here,    is the intensity right at the interface at z = 0, and    is the intensity at distance z 

away from the interface. The parameter d refers to the distance from the interface at which the 

intensity of evanescent field decreases to 1/e or 37% of    and is also called the penetration depth 

and is given by- 

 

                                     
 

     
         

 
                                                 

          

Here,   is the wavelength of the excitation laser. The value of d ranges between 100-200 

nm depending on the wavelength and refractive indexes. This means that only the molecules 

close to the interface will be effectively excited and hence will contribute more in the detected 

fluorescence. TIRF microscopy has proven very useful in the study of interfacial phenomena 

such as adsorption and desorption with effective elimination of the background light.  

 

 3.4 Super-Localization of Single-Molecule Emitter 

A fundamental limitation on the resolution of far field microscopes for imaging with 

visible light is imposed by diffraction as light enters the microscope objective. This limits the 
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lateral resolution (r) in the x- and y-directions of the image plane to about half the wavelength 

(λ) of the light emitted by the molecule. 

 

                                                              
 

   
                                                           

 

Here, NA is the numerical aperture of the objective currently found in the range of 1.3-

1.5 for very good objectives. Resolution is commonly defined as the minimum separation 

between two sources of light required to fully distinguish (resolve) them from one another. It 

also represents the diffraction-limited radial dimension for a point source of light imaged in the 

microscope. For a very tiny molecule (1-2 nm size), emitting at 510 nm, and being imaged with a 

1.4 NA objective, the resolution becomes ~ 182 nm. The molecule appears as diffraction limited 

spot of fluorescence of this size when detected with a CCD camera. This spot represents the 

point spread function (PSF) of the objective, which produces an Airy pattern for the distribution 

of the intensity. Thus two molecules separated by a distance < 182 nm would appear as a single 

blob of light and could not be further resolved.  

Beating the diffraction limited resolution of the imaging system has long been a goal of 

many optical imaging research programs. Single molecule spectroscopy is one method that has 

allowed for this limit on resolution to be surpassed, and has already paved the way toward 

development of super-resolution fluorescence microscopy. The effort has been recognized by the 

2014 Nobel Prize in Chemistry. Today, super-resolution single molecule microscopy represents a 

collection of techniques having different abbreviations such as STED,
71

 PALM,
72

 f-PALM,
73

 

STORM
74

 etc. all of them allowing a spatial resolution far below that of the diffraction limit to 

be obtained, although each employs different method for achieving super-resolution.  
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One common approach for super-resolution imaging is to precisely and accurately 

localize the shape (PSF) of the single-molecule emitter. This involves fitting the intensity 

distribution of the diffraction limited fluorescent image of the molecule approximately to a 2D-

Gaussian function. 

 

                                      
      

 

   
  

      
 

   
                                              

          

Here    is the peak intensity (amplitude) of the fitting,   ,    are the central x-, and y-

positions of the fit, and    and     are the standard deviations in x- and y-positions. The position 

(  ,   ) provides the precise localization of the single-molecule emitter, while the amplitude 

itself provides the peak intensity of the fluorescence. Among a number of factors, the number of 

photons detected (N) mostly determines the localization precision (   as shown by following 

equation- 

 

                                                
 

    
                                                 

        

Thus, in the above example, for 100 photons detected (N=100), the localization precision 

becomes ~ 18 nm or ten times better than expected from the diffraction-limited resolution. This 

represents super-localization, which is beyond the limit of diffraction. The super-localization of 

individual fluorophores doped in thin film materials allows for the local or nanoscale properties 

of the materials to be probed using single molecule methods.   
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 3.5 Single Molecule (Particle) Tracking 

A distinct advantage of the super-localization of single molecules is the ability to track 

the motion of individual molecules with high resolution, which allows for molecular mass 

transport to be studied in real time. In single molecule tracking (SMT), videos of single molecule 

motion are recorded at certain frame rates usually using wide field fluorescence microscope. 

Then, each molecule is super-localized in its position in all of the frames in which it appears 

prior to photobleaching. By linking these positions frame by frame, individual molecular 

trajectories are produced. For a lower particle density (sparsely isolated population), such linking 

can be carried out by a simple separation-based criterion such as the nearest neighbor distance. 

For this, the distances between the position of a molecule in a particular frame and the positions 

of all the molecules in the consecutive frame are calculated. The pairs of positions showing the 

smallest distance are regarded as the most likely occurrence of the same molecule in successive 

frames, and the positions in the corresponding frames are linked.  

The most common approach for further analysis of molecular trajectories involves 

calculation of the mean square displacement (MSD), which describes the average of the squares 

of the frame-to-frame displacements (step sizes) for all time lags (t) of certain duration within the 

trajectory. The dependence of the MSD on t determines the type of motion the molecule exhibits. 

For example, a linear variation of MSD with t indicates a Brownian motion in 2D. 

 

                                                                                                      

      

Here, D represents the diffusion coefficient. A nonlinear variation of MSD with t, 

however, indicates a motion different from the Brownian motion. The value of D can further be 
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correlated to the viscosity (rigidity) of the local molecular environment via the Stokes-Einstein 

equation. Despite the importance of SMT techniques to study molecular mass transport, the 

quantitative interpretation of the data acquired from an SMT experiment is often tricky and 

sometimes challenging. A number of artifacts can be introduced due to fluorescence blinking, 

photobleaching, missed localization, high particle density, localization error as a result of low 

SNR, poor statistics in short trajectories, and transitions between different types of motion within 

the same trajectory. These artifacts can, however, be eliminated or minimized through the use of 

dedicated tools for detection and analysis. 

 

 3.6 Application of SMS to Thin-Film Chemical Gradients 

Thin film chemical gradients are inherently heterogeneous materials due to the presence 

of two or more different chemical components. SMS techniques are well suited to studies of such 

materials and as means to uncover their nanoscale heterogeneity. In the past, the Higgins group 

has extensively employed SMS techniques to characterize the properties and dynamics 

associated with non-gradient thin film materials derived from sol-gel deposition. Their studies 

have focused on quantitatively measuring the polarity
75

 and pH
76

 properties of individual 

nanoscale environments within sol-gel derived organically modified silicate (ORMOSIL) films. 

To probe these properties by SMS methods, the ORMOSIL films were separately doped with 

nanomolar concentrations of the polarity sensitive dye Nile Red and the pH sensitive dye C-

SNARF-1. The results of these studies have provided important insights on the local 

heterogeneity of the material properties, and the extent of phase separation between inorganic 

and organic rich domains. The same group also studied molecular diffusion in sol-gel derived 

mesoporous silica films
77

 by using fluorescence correlation spectroscopy, and on a silica film 
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polarity gradient
19

 by using SMT. In both the materials, the rates of molecular diffusion were 

higher compared to those in the inorganic silicate films, indicating a less viscous liquid-like 

environments in the ORMOSIL films produced as a result of organic modification. 

Work for this dissertation was undertaken in part to extend the application of SMS 

techniques to characterization of thin film gradient materials. The benefits of applying SMS 

techniques to gradient materials are two-fold. First, the SMS technique allows for the nanoscale 

material properties and mass transport dynamics to be explored. Second, chemical gradients 

facilitate the study of materials properties for samples of different chemical compositions by 

combinatorial methods. The properties of materials having various chemical compositions can be 

investigated using a single sample, thus avoiding the tedious steps of preparing multiple samples. 

In this dissertation, one study is focused on determining the variation in nanoscale polarity 

(dielectric) properties, and on exploring the phase separation and cooperative effects between 

two different chemical compositions along a sol-gel derived thin film gradient in polarity. In 

another study, the effects of surface wettability and the relative humidity of the ambient 

environment on the molecular diffusion is carried out in a combinatorial manner. In the third 

study, the spontaneous motion of water droplet along wettability gradients was shown to be 

useful in molecular combing of DNA molecules, and the effect of the gradient wettability on 

DNA stretching was studied.  
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Chapter 4 - Experimental Considerations 

 4.1 Preparation of Samples 

  

 4.1.1 Silica Base Layer 

Thin film gradients from organosilane precursors were found to best adhere to the glass and 

silicon substrates when deposited on a silica base layer. This base layer also affords similar 

surface chemistries on both substrates, helping to ensure the gradients obtained are of similar 

nature. Therefore, silica base layers were employed in all the experiments carried out under this 

dissertation.   

The base layer was prepared by spin casting a sol derived from tetramethoxysilane 

(TMOS) onto silica and silicon substrates. TMOS (99%) was obtained from Sigma-Aldrich and 

was used as received. The amount of TMOS was varied to get different thicknesses of the base 

layer. For one study presented in Chapter 5, the TMOS sol was prepared by mixing TMOS, 

ethanol (200 proof), deionized water, and 0.1M HCl in mole ratios of 1.0:31.5:5.5:0.01 

(TMOS:ethanol:H2O:HCl) while for other studies presented in Chapter 6 and Chapter 7, the 

mole ratios were changed to 1:125.8:22.1:0.04. In all studies, the sol was stirred for 1 h after 

initial mixing and was subsequently aged in a desiccator for 23 h prior to use. 

Glass coverslips (FisherFinest Premium, 25 mm x 25 mm) or cut pieces (25 mm X 25 mm) 

of silicon wafers (University Wafer, 500 µm thickness) were employed as substrates. The glass 

substrate was used for characterizations that involve fluorescence studies and water contact angle 

measurements. The silicon substrate was used for characterizations by spectroscopic 

ellipsometry and by atomic force microscopy (AFM).  Prior to use, each substrate was cleaned 

by exposure to an air plasma for 5 min.  A 150 uL aliquot of a TMOS sol prepared as described 
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above was then spin coated (5000 rpm, 30s) onto the glass coverslip or silicon wafer. Base layer 

films obtained by this procedure were uniform. The base layers were desiccated for at least 

overnight (but not longer than two weeks) before use for gradient deposition.  

 

 4.1.2 Thin Film Polarity Gradients 

All thin film polarity gradients were prepared by exposing the base layer coated-substrate 

to a sol of time varying composition. These sols were obtained by simultaneously mixing two 

separate sols while withdrawing the excess sol in a method called infusion-withdrawal dip-

coating (IWDC). For Chapter 5 the two sols were derived from nonpolar 

phenyltrimethoxysilane (PTMOS) and polar TMOS. Each sol was prepared using a two-step 

acid/base hydrolysis and condensation process. PTMOS (97%, Sigma-Aldrich) was used as 

received. PTMOS sols were prepared in silane:ethanol:H2O:HCl(0.1M):NH3(1M) mole ratios of 

1.0:60.9:10.2:0.01:0.07 while TMOS sols were prepared with similar mole ratios of 

1.0:59.0:9.8:0.01:0.07. 

Sols were prepared by first mixing the silane, ethanol and acid.  The TMOS and PTMOS 

sols were then stirred for 5 min and 10 min, respectively.  Base (NH3) was subsequently added to 

both sols. For characterization by single-molecule spectroscopy, a sufficient amount of 

solvatochromic Nile Red dye (Figure 4.1) in ethanolic solution was also added at this point so 

that its final concentration in both the sols was 1.0 nM.  After addition of the base and dye, the 

sols were again stirred for 35 and 30 min, respectively, to bring the total stirring time in each 

case to 40 min. The TMOS and PTMOS sols were then aged for 1.5 h and 4 h, respectively, in a 

desiccator, prior to use.                   
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Figure 4.1 Chemical structure of 9-diethylamino-5H-benzo[alpha]phenoxazine-5-one (Nile 

Red).   

  

 4.1.3 Infusion-Withdrawal Dip-Coating (IWDC) 

Infusion-Withdrawal Dip-Coating (IWDC) was performed in a specially designed glass 

reservoir. A diagram of the setup is given in Figure 4.2a. 

 

                           

Figure 4.2 a) Schematic showing the apparatus used for infusion-withdrawal dip-coating 

(IWDC). The deposition reservoir incorporates two openings: a lower inlet for infusion of TMOS 

derived sol near the magnetic stir bar and an upper outlet for withdrawal of the mixed sols. b) 
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Photograph of a PTMOS-TMOS derived gradient prepared by IWDC, and c) change in sol 

composition during IWDC. 

 

Films were deposited by first filling the reservoir with the PTMOS sol. The base layer-

coated substrate was first cleaned in an air plasma for 2 min and then immediately suspended in 

this sol so that the lower ~20 mm were immersed.  A syringe pump programmed to infuse the 

TMOS sol at a time varying rate was then started.  Simultaneously, a second syringe pump 

programmed to withdraw the mixed sol at a rate 0.1 mL/min faster than the infusion rate was 

also started. Table 4.1 shows the rates of infusion and withdrawal programmed in the syringe 

pumps.                         

This procedure produced a sol inside the glass reservoir that changes from pure PTMOS to 

predominantly TMOS over the course of 45 min as shown in Figure 4.2c. Thin film deposition 

took place by rapid evaporation of solvent and the increased concentration of the organosilanes, 

perhaps, in the form of oligomers in the receding meniscus. Film deposition was performed in a 

Plexiglas chamber mounted on a floating optical table. The humidity in the chamber was 

maintained at ~ 60% RH throughout the coating process. Nongradient (uniform) TMOS and 

PTMOS derived controls were also obtained by dip coating, using the same sols. In this case, the 

individual sols were drained from the reservoir at the same 0.1 mL/min rate as in gradient 

deposition by IWDC.          

The resulting gradient films and nongradient controls appeared optically clear but 

incorporated colored interference fringes as shown in Figure 4.2b due to some irregular 

thickness variations. The gradient begins ~ 5 mm from the top edge of the coverslip, where the 
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PTMOS content is greatest. The initial 5 mm was left uncoated (except for the TMOS base layer) 

to allow for mounting in the IWDC apparatus.  

 

Table 4.1 Rates of infusion (Fin) for the TMOS sol and withdrawal (Fout) for the waste 

programmed into the syringe pumps. The pumping rates changed in 5-min intervals during 

IWDC. Vsol represents the volume of the sol left in the reservoir at the end of each 5-min interval.     

Time (min) Fin (ml/min) Fout (ml/min) Vsol (ml)

5 0.3 0.4 8.5

10 0.4 0.5 8

15 0.5 0.6 7.5

20 0.6 0.7 7

25 0.7 0.8 6.5

30 0.8 0.9 6

35 0.9 1 5.5

40 1 1.1 5

45 1.1 1.2 4.5  

 

 

4.1.4 Gradient Self-Assembled Monolayers (SAMs) 

All SAM wettability gradients were prepared by exposure of the base layer-coated 

substrate to the vapor of one or more organochlorosilanes. For the study presented in Chapter 6, 

one-component and opposed two-component SAM wettability gradients were prepared by 

employing hydrophilic 3-cyanopropyltrichlorosilane (CN-silane) and hydrophobic 

octyltrichlorosilane (C8-silane). Both were obtained from Sigma-Aldrich, at 97% purity, and 

were used as received. For the study presented in Chapter 7, one-component SAM wettability 

gradients were prepared by using only the C8-silane. Table 4.2 provides the vapor pressures (VP) 

and boiling points (BP) of some of the organochlorosilanes used in this dissertation.                      
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Table 4.2 Vapor pressures and boiling points of the organosilanes employed. 

 

Silane VP (mm of Hg at 25
o 
C) BP (760 mm of HG) 

C8-silane 0.0797 234.7
o 
C 

CN-Silane 0.0447 237.5
o 
C 

  

 

  

 4.1.5 Vapor-Phase Deposition (VPD) 

The vapor phase deposition of the organochlorosilanes was carried out under room 

temperature and pressure. Figure 4.3a shows the apparatus used to prepare two-component 

gradient SAMs from CN-silane and C8-silane. It consists of a substrate supported on a platform, 

with the substrate positioned midway between two reservoirs designed to hold the precursor 

organosilanes. These components were all housed inside a plexiglass box. The box allowed for 

VPD of gradients in the absence of air currents and under controlled humidity. The humidity 

inside the chamber was maintained at 60 ± 2% RH for all depositions.  
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Figure 4.3 Apparatus used for vapor phase deposition of organosilanes. a) Top and side views of 

VPD apparatus used to deposit two-component gradient SAMs. Shown in the figure are two 

reservoirs for loading CN-silane (red) and C8-silane (blue). b) Top and side view of the VPD 

apparatus used to deposit one-component gradient SAMs. The only reservoir shown is loaded 

with C8-silane (blue). The entire apparatus is enclosed in a plexiglass chamber to control the 

humidity during deposition.    

 

The edge-to-edge separation between each reservoir and the substrate was maintained at an 

experimentally optimized distance of 5 mm in all depositions. Each base-layer-coated substrate 

was treated in an air plasma for 2 min immediately prior to its insertion in the deposition 

chamber. The two reservoirs were then loaded with a mixture of paraffin oil (200 µL) and one of 

the two organosilanes (50 µL). The CN-silane was loaded first and was immediately followed by 

loading of the C8-silane. The inlets were promptly closed and the substrate was exposed to silane 

vapor for 5 min. This exposure time was determined to yield optimal results after extensive 

experimentation. The substrate was immediately removed from the chamber after film 



39 

deposition. The resulting gradient SAM films looked optically clear and clean by eye. Each film 

was then stored in a desiccator under static vacuum for 12 h. These were subsequently spin 

coated (5000 rpm, 30 s) with a 150 µL aliquot of 4 nM C11OPDI dye (Figure 4.4) synthesized in 

house in HPLC grade ethanol. After coating with dye, each gradient was stored in a desiccator 

for an additional 48 h before characterization by SMT and other methods. 

Figure 4.3b represents the apparatus used to prepare steep one-component SAM 

wettability gradients. The set up is similar to that used to prepare two-component gradients 

except for a few changes. In this set up, only one reservoir is used to load a mixture of C8-silane 

(20 µL) and paraffin oil (200 µL). An experimentally optimized distance of 2 mm is maintained 

between the substrate and the reservoir. The exposure time of the substrate to silane vapor was 4 

min. Each film was stored in a desiccator for at least one hour (but not exceeding 12 h.) before 

its use to drive droplet motion of DNA solution for stretching of the DNA. 

                                               

                         

Figure 4.4 Chemical structure of N,N'-bis(octyloxypropyl)-perylene-3,4,9,10-tetracarboxylic 

diimide (C11OPDI) used as the fluorescent probe. 

 

  

 4.2 Instrumentation  

  

 4.2.1 Water Contact Angle (WCA)   
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The macroscopic wettability along the gradient surface was initially accessed by sessile 

drop or static water contact angle measurements. The home built apparatus used for contact 

angle goniometry is shown in Figure 4.5. All components of this instrument are mounted on an 

optical table. The sample is placed on a translational stage. Droplets of high purity water (1.0 μL) 

are placed along the gradient film using a microliter syringe. Droplet images were acquired with 

a CCD camera attached to a Navitar zoom lens.  A lamp and a thin filter paper (diffuser) were 

placed behind the droplet for illumination purposes.  The filter paper served to make the droplets 

appear black in the images, as is necessary for measurement precision and image processing.  

 

                 

Figure 4.5 Set up used to measure static water contact angles along gradient films. 

 

  

4.2.2 Spectroscopic Ellipsometry  

In this dissertation, spectroscopic ellipsometry (α-SE, J.A. Woolam) was employed to 

measure the thickness of the silica base layer, the gradients, and the thin water layer condensed 

on the gradient surfaces. Ellipsometry measures a change in the polarization of light as it reflects 

from a material surface. The change in polarization is represented as an amplitude ratio tan(ψ) 

and a phase difference (∆). Here, linearly polarized light (across all visible wavelengths) was 

reflected from the sample and the output polarization was measured. The output response 
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depends on the optical properties of the material, including its thickness. The change in 

polarization (ρ) is given by following equation- 

 

                                                                                               

       

All ellipsometric raw data were globally fit to the "Si with Transparent Film" model 

available in the CompleteEASE software provided with the instrument. A single layer model was 

used due to the negligible difference in refractive index of the base layer and the deposited 

gradient film. Figure 4.6 shows two sets of ellipsometric data for: (a) the base layer alone and 

(b) the base layer after vapor-phase deposition of C8-silane.  

 

                       

Figure 4.6 Spectroscopic ellipsometry data for (a) a thin base-layer coated silicon wafer, and (b) 

the same film after vapor phase deposition of C8-silane. The colored lines represent the raw data 

fit to a model for a single layer transparent film on silicon (black dashed lines). The Cauchy 
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relationship was employed to model film dispersion. The parameters obtained by global fitting of 

data shown in (a): Cauchy A = 1.465 ± 0.0024, B = 7.0 ± 0.9 x 10
-3 

µm
2
, C = - 2.3 ± 1 x 10

-4 
µm

4 

, n = 1.465, thickness = 25.60 ± .035 nm, and mean square error = 1.1; in (b): A = 1.451 ± 0.001, 

B = 2.5 ± 0.7 x 10
-3 

µm
2
, C = - 4.0 ±  0.8 x 10

-4 
µm

4 
, n = 1.455, thickness = 26.81 ± 0.29 nm, and 

mean square error = 0.97. The difference between the two measured thicknesses, ~ 1.21 nm, 

gives the thickness of the C8-film. 

 

All gradient samples were prepared on base-layer coated silicon substrates for thickness 

measurements. The thickness of gradients prepared on glass substrates were not uniform. 

Initially, the thickness of the base layer was measured at an interval of 1mm along each silicon 

substrate. The gradients were then deposited, and the thickness was again measured from similar 

positions, to within ±1 mm along each gradient. The difference in thickness between the two 

measurements gave the thickness of the gradient at each position. In addition, the thicknesses of 

both the base layer and the gradient films were measured under dry conditions (~ 16% RH) as 

water adsorbed on the surface was found to increase the observed film thickness. This method 

was also used to measure the thickness of thin water films adsorbed along the gradient SAM in 

wettability under different humidity conditions. 

 

 4.2.3 Raman Microscopy  

The chemical composition of the polarity gradients was determined in Raman scattering 

experiments. The principle of Raman scattering is based on the inelastic scattering of incident 

photons by polarizable molecules. Very few (one in a million) of the incident photons can 

interact with a polarizable molecule and excite the molecule in its vibrational state through a 
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virtual state. During such transitions, the photon loses energy equivalent to the energy of the 

vibration probed. As a result the scattered photon has lower energy (frequency) compared to the 

incident photon. The loss in energy can be calculate as the energy difference between the 

incident and the scattered photons as shown in following equation- 

 

                                             
 

          
  

 

           
                                                   

 

Here,    is the Raman shift, while λ incidence and λ scattering represent the wavelength of incidence 

and scattered photons in nm. The vibrational Raman spectrum serves as a finger print for many 

functional groups. In this dissertation, Raman scattering experiments were performed on a home-

built Raman microscope as shown in Figure 4.7a. In this microscope, 488 nm light from a diode 

laser source was reflected from a dichroic mirror into the back aperture of a 1.3 numerical 

aperture (NA), 100 X oil immersion objective. The light was focused to a diffraction limited spot 

in the sample. The power was set to 0.6 mW in all experiments. Scattered light was collected 

from the sample by the same objective. Rayleigh scattered light was blocked by passing the 

collected light back through the dichroic mirror and through a 488 nm holographic notch filter 

(Kaiser Optical). Raman scattered photons were directed through a 0.3 m imaging spectrograph 

(Acton Research) and detected using a thermoelectrically-cooled CCD camera (Andor Newton). 

Spectra were acquired at 1 mm intervals along and across the gradients.   
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Figure 4.7 a) Optical microscope used to acquire the Raman spectra along the sol-gel derived 

polarity gradients, b) Atomic emission spectra from a neon lamp acquired on the same 

microscope, and c) Calibration of the spectrometer wavelength from the known peak 

wavelengths of neon emission. Red points show the data while the dashed line shows a linear fit. 

 

The spectrograph was calibrated to determine the wavelength corresponding to each 

pixel. This was carried out by recording the atomic emission of a neon lamp on the microscope. 

The atomic emission spectrum of the neon lamp is shown in Figure 4.7b. The actual wavelength 

for neon emission (as reported in the CRC Handbook of Chemistry and Physics) was plotted 

against the raw pixel number as shown in Figure 4.7c. The data were then fit to a line. The 

results of the fitting were applied for calibrating the wavelength of the Raman spectra acquired 

from the gradient samples. According to this calibration,             is given by following 

equation- 
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Here,    and   
  are the center wavelengths set in the software while acquiring spectra from the 

neon lamp and the sample, respectively, and    represents the pixel count along X-axis of the 

spectra. The values 475.02 and 0.33 respectively represent the intercept and slope obtained from 

the calibration procedure, as shown in Figure 4.7c. 

 

 4.2.4 Wide-Field Fluorescence Microscopy  

All single-molecule experiments in this dissertation were performed on an inverted wide-

field fluorescence microscope. The microscope was custom built on a floating optical table. Two 

separate configurations of the wide-field microscope were used for different studies. 

 

 4.2.4.1 Two-color single-molecule spectroscopy (SMS) 

For this purpose, gradients doped to nanomolar levels with Nile Red were mounted atop 

the microscope. The primary components along the optical path are depicted in Figure 4.8a. 

Individual Nile Red molecules were excited by 532 nm laser light.  The source light was passed 

through a spinning optical diffuser, reflected from a dichroic beam splitter (Chroma 555, DCLP) 

and subsequently focused into the back aperture of a 1.49 NA 100X oil immersion objective 

(Nikon Apo-TIRF).  The illuminated area in the sample was ~15 µm in diameter.  The incident 

power was maintained at 1-3 mW in all experiments.  Nile Red fluorescence was collected by the 

same objective, in an epi-illumination geometry, and separated from the excitation light by 

passage back through the same dichroic beam splitter and a 550 nm colored-glass long-pass 

filter.  The fluorescence was subsequently split into two spectral bands using an image splitter 

(Cairn Research OptoSplit II). Separation of the two bands was accomplished using a second 

dichroic beam splitter (Chroma 610, DCLP) and appropriate bandpass filters, which divided the 



46 

fluorescence into separate spectral bands spanning 640±20 nm and 590±20 nm. Fluorescence in 

these two bands was simultaneously detected by a thermoelectrically-cooled CCD camera 

(Andor iXon DU-897). Fluorescence videos 50-100 frames in length were acquired from each 

location in the sample at a rate of ~ 2 frames/sec.  Videos were collected from five different 

locations across the gradient at each of ten positions along the gradient (i.e., on a 1 mm X 1 mm 

grid), for a total of 50 videos.  

The videos obtained were analyzed using software written in-house, in the LabView 

programming environment. This software was used to select the two images depicted in each 

video frame (typically 100 X 120 pixel regions) and to correct for offset and any rotation of the 

images imparted by the optical system. Image rotation was minimal and was always less than 

±2
o
. The software was then used to automatically locate each fluorescence spot in the pairs of 

images. These were subsequently fit to 2D Gaussian functions to determine the location and peak 

signal for each spot.  
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Figure 4.8 Wide-field microscope used to acquire a) two-color fluorescence videos of Nile Red 

incorporated within polarity gradients, b) wide-field fluorescence videos for single molecule 

tracking studies of C11OPDI dye molecules along the CN-C8 derived gradient SAMs.  

 

 4.2.4.2 Single molecule tracking (SMT)  

     All SMT experiments were performed on the same inverted wide-field fluorescence 

microscope used above, with a few differences in the optical path, as shown in Figure 4.8b. In 

these experiments, each sample was again mounted over a high numerical aperture (NA) oil 

immersion objective (Nikon Apo TIRF, 100X, 1.49 NA) that was used for both sample 

illumination and collection of the resulting fluorescence. An enclosed plexiglass chamber was 

placed over the sample and was used to control the ambient RH by purging the box with dry or 

humidified nitrogen gas. Blue light (488 nm) from a diode laser was used for excitation of the 

C11OPDI dye doped into the films. Prior to incidence on the sample, the excitation light was 

converted to circular polarization, passed through a spinning optical diffuser, reflected off a 

dichroic beam splitter (Chroma, 505 DCLP) and focused into the back aperture of the objective.  
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The excitation power was maintained at 100-125 µW in all experiments, yielding average 

excitation intensities of ~56-70 W/cm
2
. The relatively low excitation intensity allowed for the 

dye molecules to be tracked over long periods of time prior to photobleaching. The fluorescence 

emitted by the individual dye molecules was separated from the excitation light by passing it 

through the aforementioned beam splitter and through a band pass filter (Chroma, HQ 535/50).  

The fluorescence was detected using a CCD camera (Andor iXon DU-897).  Fluorescence videos 

450 frames in length were recorded for each location on the sample at a rate of 2 frames/s.  

Videos were acquired from a total of 70 distinct locations along each gradient at 1 mm spacings 

in each dimension.  The data acquired spanned distances of 4 mm across each gradient and 13 

mm along each gradient with a total of five videos collected across the gradient at each of 14 

different positions along the gradient.  The fluorescent spots produced by the single molecules in 

each video frame were detected, fit to 2D Gaussian intensity profiles, and linked into trajectories 

using a LabView-based particle-tracking program written in-house.  
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Chapter 5 - Single Molecule Spectroscopic Imaging Studies of 

Polarity Gradients Prepared by Infusion-Withdrawal Dip-

Coating  

Reproduced with permission from Giri D.; Hanks, C.N.; Collinson, M.M.; Higgins, D.A. Single-

Molecule Spectroscopic Imaging Studies of Polarity Gradients Prepared by Infusion-Withdrawal 

Dip-Coating. J. Phys. Chem. C 2014, 118, 6423-6432. Copyright 2014, American Chemical 

Society.   

 

 5.1 Introduction 

Chemical gradients are materials that are designed to exhibit continuous, gradually 

changing chemical or physical properties along one, two, or even three dimensions.
1,3,78

 They 

find a wealth of possible applications in stationary-phase-gradient chemical separations
35

 and 

high throughput screening,
79-81

 and for controlling the motions of liquid droplets,
12

 

macromolecules,
29

 vesicles,
31

 nanoparticles
27

 and cells.
32

 Gradients have been prepared by a 

variety of approaches, including by self-assembly of alkanethiols
82

 and organosilanes,
12

 and by 

chemical attachment
83-85

 of organic polymers on surfaces. Gradual variations in film composition 

in many of these were achieved by vapor diffusion,
12

 solution diffusion,
82

 lithographic 

approaches,
86

 printing techniques,
9
 electrochemical methods

51,85,87
 or by controlled immersion

5
 

or infusion.
88

 The full complement of methods and materials previously employed for gradient 

production is described in contemporary reviews.
1-4,78

 Most recently, our groups have begun to 

explore the use of sol-gel chemistry coupled with infusion-withdrawal dip-coating (IWDC)
16,19

 

and controlled-rate infusion
6,17,89

 methods to prepare organosilane-based gradients.  
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Sol-gel chemistry
90-92

 has several unique attributes that make it nearly ideal for the 

preparation of thin film and surface gradients.
6,16,17,19,35,89

 First, the chemistry of the sol-gel 

process is relatively simple. Sol preparation begins by dissolving one or more 

organoalkoxysilane precursors of general formula Rx'Si(OR)4-x in a suitable solvent, along with a 

near-stoichiometric amount of water. Here, R usually represents a methyl or ethyl group and R' a 

non-hydrolyzable organic group. A wide variety of precursor silanes having different R' groups 

are commercially available, allowing for access to a broad range of physical (e.g., wettability, 

polarity, charge) and chemical (e.g., acidity) gradients. Upon addition of acid or base to the sol, 

the alkoxy groups hydrolyze to form silanols that subsequently condense to form a gel. Their 

condensation with OH groups on oxide surfaces affords an efficient means for anchoring the 

gradient to a substrate surface. Sol-gel-based gradients can be produced by relatively simple dip-

coating procedures,
16,19

 or by infusion of a sol into a suitable reservoir,
6,89

 capillary
17

 or 

microfluidic device.
48

 In all such cases, the presence of multiple reactive groups on the precursor 

silanes allows for cross-linking of the gel, making the resulting gradients mechanically robust 

and relatively stable. Finally, the rapid increase in sol viscosity that occurs upon gelation may 

allow for metastable materials compositions and morphologies to be “frozen in” to the gradients, 

providing access to unique non-equilibrium systems.   

Given the broad interest in gradient materials and the aforementioned attributes and 

enormous flexibility of sol-gel approaches, it is somewhat surprising that these methods have not 

been more widely explored for the fabrication of gradient materials to date. The limited use of 

sol-gel methods in gradient production is likely due to a dearth of knowledge on their chemical 

and physical properties. While we have reported XPS,
6,89

 FTIR,
19

 fluorescence,
16

 streaming 

potential
17

 and water contact angle
16

 studies of the macroscale properties of amine-
6,17,89

 and 
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methyl-modified
16

 silica gradients, only a single report on their sub-micrometer-scale properties 

has been published.
19

 Much remains to be learned in particular about the nanoscale properties of 

these gradients.
93

 Ideally, any such gradient would be comprised of molecularly mixed 

components and would exhibit gradual compositional and physical properties variations down to 

molecular length scales. In reality, such idyllic character is seldom observed. Gradient 

complexity may arise from phase separation of the gradient components during film formation, 

due to limited precursor miscibility. Instead of gradually varying properties, such gradients 

would exhibit step-wise (or discrete) properties variations on the length scale of the resulting 

domains. A better understanding of the compositional and physical properties variations 

occurring along gradients requires the implementation of new methods to probe their properties 

across a range of length scales from the macroscale down to molecular levels.      

This chapter describes two-color single molecule spectroscopic (SMS) imaging studies
94

 of 

two-component organosilane-based polarity gradients prepared by IWDC.
16

 Gradient films are 

obtained by immersing a substrate in a binary sol mixture of time varying composition. In the 

present studies, gradients were obtained by slowly mixing a relatively nonpolar 

phenyltrimethoxysilane (PTMOS) sol with a polar tetramethoxysilane (TMOS) sol. The mole 

fraction of the former decreased while that of the latter increased in time during dip coating.  

Sessile drop water contact angle measurements and Raman mapping were used to verify that a 

one-dimensional gradient was formed, on macroscopic length scales. Extensive SMS imaging 

studies were performed to probe the polarity properties of the same films on length scales 

ranging from nanometers to millimeters. The solvatochromic dye Nile Red was used as a polarity 

sensitive probe. The results afforded quantitative estimates of the local film polarity,
94

 via the 

Clausius-Mossotti factor. Ensemble data compiled from the SMS experiments depict a 
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continuous increase in the polarity of the film running from the high-phenyl end towards the 

low-phenyl end. These same data also reveal dramatic variations in the local film polarity on 

nanometer length scales. Two distinct classes of environment are found in some film regions, 

consistent with phase separation of the polar and nonpolar film components.  

  

 5.2 Experimental Considerations 

  

 5.2.1 Sample Preparation 

Base layer coating of substrates. Gradient films were found to be more uniform and 

adhered better to the substrate surface when deposited on a silica base layer. Silica base layers 

were prepared from TMOS based sols. TMOS (99%) was obtained from Sigma-Aldrich and was 

used as received. Each sol was prepared by mixing TMOS, ethanol (200 proof), deionized water, 

and 0.1M HCl in mole ratios of 1.0:31.5:5.5:0.01 (TMOS:ethanol:H2O:HCl) in a clean glass vial. 

The sol was subsequently stirred for 1 h and aged in a desiccator for 23 h prior to use. 

Glass coverslips (FisherFinest Premium, 25 mm x 25 mm) were employed as substrates. 

Prior to use, each was cleaned by exposure to an air plasma for 5 min.  A 150 uL aliquot of a 

TMOS sol prepared as described above was then spin coated onto the coverslip (5000 rpm, 30 s). 

Base layer films obtained by this procedure were uniform, with thicknesses of 150 ± 10 nm, as 

determined by spectroscopic ellipsometry. 

Gradient films. All gradients were prepared by IWDC. In IWDC, the substrate surface is 

exposed to a sol of time varying composition. In the present studies, separate sols derived from 

TMOS and PTMOS were employed. Each was prepared using a two-step acid/base hydrolysis 

and condensation process. PTMOS (97%) was obtained from Sigma-Aldrich and was used as 
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received. TMOS sols were prepared in silane:ethanol:H2O:HCl(0.1M):NH3(1M) mole ratios of 

1.0:59.0:9.8:0.01:0.07, while PTMOS  sols were prepared with similar mole ratios of 

1.0:60.9:10.2:0.01:0.07.  

Sols were prepared by first mixing the silane, ethanol and acid. The TMOS and PTMOS 

sols were then stirred for 5 min and 10 min, respectively. Base (NH3) was subsequently added to 

both sols. Sufficient Nile Red dye was also added at this point (in ethanolic solution) so that its 

final concentration in the sols was 1.0 nM. After addition of the base and dye, the sols were 

again stirred for 35 and 30 min, respectively, to bring the total stirring time in each case to 40 

min. The TMOS and PTMOS sols were then aged for 1.5 h and 4 h, respectively, in a desiccator, 

prior to use. 

IWDC was performed in a specially designed glass reservoir. A diagram of the setup is 

given in Figure 4.2 (a). Films were deposited by first filling the reservoir with the PTMOS sol.  

The base layer coated substrate was then suspended in this sol so that the lower ~20 mm were 

immersed. A syringe pump programmed to infuse the TMOS sol at a time varying rate was then 

started. Simultaneously, a second syringe pump programmed to withdraw the mixed sol at a rate 

0.1 mL/min faster than the infusion rate was also started. This procedure produced a sol of time 

varying composition (ranging from a pure PTMOS sol to a predominantly TMOS sol) as shown 

in Figure 4.2 (c) that slowly receded down the substrate surface over the course of 45 min. Film 

deposition was performed in a Plexiglas chamber mounted on a floating optical table. The 

humidity in the chamber was maintained at ~ 60% RH throughout the coating process. 

Nongradient (uniform) TMOS and PTMOS derived controls were also obtained by dip coating, 

using the same sols. In this case, the individual sols were drained from the reservoir at the same 

0.1 mL/min rate as in gradient deposition by IWDC.   
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The resulting gradient films and nongradient controls appeared optically clear but 

incorporated colored interference fringes as shown in Figure 4.2 (b) due to some irregular 

thickness variations. As in a previous report, these variations are attributable to sticking and 

slipping of the sol meniscus during the coating process. The gradient begins ~ 5 mm from the top 

edge of the coverslip, where the PTMOS content is greatest. The initial 5 mm was left uncoated 

(except for the TMOS base layer) to allow for mounting in the IWDC apparatus. Hereafter, the 

high-phenyl end of the gradient will be referred to as the top of the gradient and will be 

designated as the 0 mm position on the substrate. Likewise, the low-phenyl end will be referred 

to as the bottom of the gradient. 

 

 5.2.2 Gradient Characterization 

Water contact angle measurements.  Sessile drop water contact angles were measured on a 

home-built instrument. Droplets of 1.0 µL were deposited along the gradient and non-gradient 

control surfaces using a microliter syringe. Images of the droplets were acquired using a CCD 

camera and were analyzed using software by First Ten Angstroms. 

Raman microscopy. Raman scattering experiments were performed on a home-built 

Raman microscope shown in Figure 4.7. This microscope employed a diode laser emitting 488 

nm light as the source. The source light was reflected from a dichroic mirror into the back 

aperture of a 1.3 numerical aperture (NA) 100 X oil immersion objective, which focused the 

light to a diffraction limited spot in the sample. The incident power was set to 0.6 mW in all 

experiments. Scattered light was collected from the sample by the same objective. Rayleigh 

scattered light was blocked by passing the collected light back through the dichroic mirror and 

through a 488 nm holographic notch filter (Kaiser Optical). Raman scattered photons were 

directed through a 0.3 m imaging spectrograph (Acton Research) and detected using a 
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thermoelectrically-cooled CCD camera (Andor Newton). Spectra were acquired at 1 mm 

intervals along and across the gradients.   

Two-color single molecule spectroscopic (SMS) imaging. The polarity properties of 

individual nanoenvironments along the gradients were assessed by two-color SMS imaging.
94

  

For this purpose, gradients doped to nanomolar levels with Nile Red were mounted atop a wide-

field fluorescence video microscope. This microscope has been described previously in detail.
95

  

The primary components along the optical path are depicted in Figure 4.8a. Individual Nile Red 

molecules (Figure 4.1) were excited by 532 nm laser light. The source light was passed through 

a spinning optical diffuser, reflected from a dichroic beam splitter (Chroma 555, DCLP) and 

subsequently focused into the back aperture of a 1.49 NA 100X oil immersion objective (Nikon 

Apo-TIRF). The illuminated area in the sample was ~15 µm in diameter. The incident power was 

maintained at 1-3 mW in all experiments. Nile Red fluorescence was collected by the same 

objective, in an epi-illumination geometry, and separated from the excitation light by passage 

back through the same dichroic beam splitter and a 550 nm colored-glass long-pass filter. The 

fluorescence was subsequently split into two spectral bands using an image splitter (Cairn 

Research OptoSplit II). Separation of the two bands was accomplished using a second dichroic 

beam splitter (Chroma 610, DCLP) and appropriate bandpass filters, which divided the 

fluorescence into separate spectral bands spanning 640±20 nm and 590±20 nm. Fluorescence in 

these two bands was simultaneously detected by a thermoelectrically-cooled CCD camera 

(Andor iXon DU-897). Fluorescence videos 50-100 frames in length were acquired from each 

location in the sample at a rate of ~ 2 frames/sec. Videos were collected from five different 

locations across the gradient at each of ten positions along the gradient (i.e., on a 1 mm X 1 mm 

grid), for a total of 50 videos.  
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The videos obtained were analyzed using software written in-house, in the LabView 

programming environment. This software was used to select the two images depicted in each 

video frame (typically 100 X 120 pixel regions) and to correct for offset and any rotation of the 

images imparted by the optical system. Image rotation was minimal and was always less than 

±2
o
. The software was then used to automatically locate each fluorescence spot in the pairs of 

images. These were subsequently fit to 2D Gaussian functions to determine the location and peak 

signal for each spot. Spots produced by the same molecule were subsequently linked into 

trajectories using methods similar to those reported in the literature.
96

   

  

 5.3 Results and Discussion 

Prior to characterization of the PTMOS-TMOS derived polarity gradients, significant effort 

was devoted to optimization of sol compositions, sol mixing and aging times and exact film 

deposition conditions. This process included selecting conditions under which the precursor sols 

remained optically clear during film deposition, and for which gelation occurred well after 

deposition was complete. The experimental conditions were also adjusted to avoid dewetting of 

the TMOS base layer and to obtain films that appeared most uniform by eye. The exact 

conditions selected are defined under Experimental Considerations. The resulting gradients 

formed by IWDC were ~145±14 nm thick (on top of the base layer), as determined by 

spectroscopic ellipsometry. Several replicate gradients and nongradient controls were produced 

and characterized by water contact angle measurements, Raman mapping and SMS imaging, as 

described below. All were found to yield similar general trends.  However, small but obvious 

variability was observed in the properties exhibited by replicate gradients. Variability in gradient 

properties was attributed to subtle differences in the exact conditions of film deposition, which 
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resulted primarily from variations in the extent of sol mixing during IWDC. Because of this film-

to-film variability, all gradient results described below were obtained from a single film. To 

avoid contamination of the sample, single molecule experiments were performed first, followed 

by Raman mapping and water contact angle measurements. These results are described below in 

reverse order.   

 

 5.3.1 Water Contact Angle Measurements. 

Water contact angle data obtained along a PTMOS-TMOS derived gradient are shown in 

Figure 5.1. These data were acquired at 2 mm intervals along the gradient, with three replicate 

measurements made at 2 mm intervals across the gradient in each case. The data shown depict 

the average and standard deviations for each position. The mean water contact angle was found 

to decrease, as expected, from the top (high-phenyl end) to the bottom (low-phenyl end) of the 

gradient. The increase in wettability towards the low-phenyl end is caused by an increase in the 

density of SiOH sites, along with a corresponding decrease in the density of phenyl groups. The 

error bars shown in Figure 5.1 are relatively large and are attributed to gradient heterogeneity 

extending down to micrometer length scales,
97,98

 especially in central gradient regions; the 

origins and impacts of this heterogeneity are addressed further, below. 
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Figure 5.1 Sessile drop water contact angle data obtained along a single PTMOS-TMOS derived 

polarity gradient. The data points show the average contact angle measured at three different 

positions across the gradient at each designated position along the gradient. The error bars depict 

the standard deviation of the measured values. The solid blue line is a sigmoidal curve, which 

has been added only to better depict the trend in the data. 

 

 5.3.2 Raman Microscopy. 

Figures 5.2 a) & b) show Raman spectra obtained from the same PTMOS-TMOS derived 

gradient and from a uniform TMOS derived control, respectively, in the C-H stretching region.  

These spectra have been corrected for a complex sloping baseline and are offset vertically to 

allow for better viewing. The Raman band peaked at ~ 3059 cm
-1

 corresponds to the expected 

phenyl C-H stretch.
99

 The peak at ~ 2937 cm
-1

 falls in the aliphatic C-H stretching region and is 

attributed to the presence of residual unhydrolyzed methoxy groups; its presence is neglected in 

the remainder of this report. The area under the 3059 cm
-1

 peak is expected to be proportional to 

the phenyl content of the film. However, a small peak in this same region also appears in the 

TMOS derived base layer spectrum shown in Figure 5.2b. Its presence in the latter is believed to 

result from a weak contribution by the immersion oil used in the microscope. Figure 5.2c plots 

the area under the 3059 cm
-1

 peak as a function of position along the gradient, after subtraction 
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of the oil background. The 3059 cm
-1

 peak area exhibits a gradual decrease from the top of the 

gradient, towards the bottom, as expected for decreasing phenyl content. The relative density of 

phenyl groups is concluded to change by at least a factor of two along the length of the gradient 

mapped. Instrument limitations prevented access to the very top and bottom of the gradient in the 

Raman experiments. As a result, the length of the gradient probed in Figure 5.2c is shorter than 

in Figure 5.1. The error bars included in Figure 5.2c depict the standard deviation from five 

replicate measurements made at 1 mm intervals across the gradient. As with the water contact 

angle data, the relatively large error bars reflect a certain level of heterogeneity in the gradient.  

In this case, they reflect gradient heterogeneity on micrometer length scales.        
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Figure 5.2 a) Raman spectra in the C-H stretching region along the PTMOS-TMOS derived 

gradient. The spectra shown were acquired at 2 mm intervals (starting at 1 mm) from the high-

phenyl end (blue) to the low-phenyl end (red). Each represents the average of five spectra 

acquired across the gradient. The spectra have been baseline corrected and offset vertically to 

allow for better viewing. b)  Raman spectrum from a TMOS derived base layer, plotted as the 

average of five replicate spectra. c) Average area under the peak at 3059 cm
-1

 as a function of 

position along the gradient, from five replicate measurements. The error bars represent the 

standard deviation of the five measurements. These data have been corrected for the small 

background peak in panel b. The solid blue line is a sigmoidal curve, which has been added only 
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to better depict the trend in the data. These data were collected by Chelsea Hanks, under the 

direction of Dipak Giri. 

 

5.3.3 Calibration of The Nile Red Response. 

Nile Red is a strongly solvatochromic dye
100,101

 that is also sufficiently fluorescent to allow 

for its detection at the single molecule level.
102,103

 It has been previously employed by our group 

to quantitatively assess the static and dynamic polarity properties of nongradient organic 

polymer
103

 and sol-gel-derived silica films.
75,104

 More recently, it has been used by Reid and 

coworkers for quantitative estimation of dielectric constants in single molecule studies of organic 

polymer films.
94

It is used here for a similar purpose.   

Estimation of gradient polarity from Nile Red emission data requires the careful calibration 

of its response to environments of different dielectric constant. For this purpose, solution phase 

(bulk) fluorescence spectra were first acquired in a series of solvent mixtures. Figure 5.3a 

presents representative data obtained using a conventional fluorimeter. Ethanol and toluene were 

employed as solution-phase models for the silica and phenyl-modified silica environments in the 

gradients. The data in Figure 5.3a reveal a monotonic bathochromic shift in the emission 

maximum from ~ 565 nm in pure toluene to ~ 630 nm in pure ethanol. In particular, the polarity 

sensitivity of Nile Red is attributable to the charge-transfer character of its lowest energy 

electronic transition.
105,106

 The fluorescence intensity was also found to decrease as the solvent 

polarity increased, as expected.
100,107

 

The polarity of the environment surrounding each Nile Red molecule can be characterized 

by monitoring its fluorescence in two spectral bands near its emission maxima in polar and 

nonpolar media. In the present work, Nile Red emission was monitored in bands spanning 

640±20 nm and 590±20 nm. Because the fluorescence microscope employed for SMS imaging 
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experiments exhibited different transmission characteristics than the fluorimeter employed 

above, calibration of the Nile Red response was actually performed on the microscope itself. For 

this purpose, an optical cell was constructed by drilling a small hole in a glass microscope slide. 

The hole was filled with the same series of Nile Red doped solvent mixtures employed above, 

sealed with a cover glass and placed on the optical microscope. Nile Red emission was excited at 

532 nm and simultaneously detected in the aforementioned spectral bands. After proper 

subtraction of the detector background counts, the emission signals at 590 and 640 nm were used 

to determine the emission ratio, E, as given by equation 5.1.  

 

 

Figure 5.3 a) Fluorescence spectra obtained from Nile Red (100 nM) in different solvent 

mixtures with toluene:ethanol ratios of 100:0, 80:20, 60:40, 40:60, 20:80, 0:100 (vol%). The 

fluorescence was excited at 532 nm. b) Plot of the Nile Red emission ratio, E, as a function of 

the Clausius-Mossotti factor for the series of solvent mixtures. The data in b) were acquired on 

the same microscope used to collect the single molecule data. 
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The emission ratio was subsequently plotted as a function of the Clausius-Mossotti (CM) 

factor, (-1)/(2+1), for the solvent mixtures employed, as shown in Figure 5.3b. The dielectric 

constant for each solvent mixture was determined from the known dielectric constants of toluene 

(2.4) and ethanol (24.3),
108

 assuming a linear dependence on the volume fraction of each solvent 

in each mixture. A nearly perfect linear relationship between E and the CM factor was obtained 

(see Figure 5.3b), as defined in equation 5.2. Fitting of the data in Figure 5.3b to equation 5.2 

yielded values of 3.57±0.01 and -1.21±0.01 for the constants K and C, respectively. These 

constants are employed below for estimation of the polarity (i.e., the CM factor) of the nanoscale 

environments surrounding each molecule in SMS imaging studies. 

 

 5.3.4 Single Molecule Studies of Gradient Polarity. 

Environmental polarity was probed on nanometer length scales in gradient and nongradient 

films by recording two-color SMS videos of the Nile Red doped samples. Videos were acquired 

from approximately 50 distinct regions along each gradient. These videos revealed the presence 

of well-separated fluorescent spots. Figures 5.4 a) &b) depict a representative pair of images 

taken from one such video obtained near the high-phenyl end of the gradient analyzed in Figures 

5.1, 5.2. The fluorescent spots observed were attributed to excitation and detection of emission 

from single Nile Red molecules. In most instances, pairs of corresponding spots appeared at 
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identical locations in both the 590 and 640 nm videos (compare Figures 5.4 a,b). The relative 

intensities of the pairs of spots were found to vary from spot to spot, as expected for polarity-

dependent variations in the emission spectrum of each molecule. 

Automated spot location and tracking software written in-house was used to detect the 

individual pairs of spots in the video data. Once a given spot was located in either the 590 or 640 

nm image, a search was subsequently initiated for its pair in the other image. The intensity 

profiles produced by each spot were then fit to 2D Gaussian functions to determine their precise 

locations and their signal levels. The signal level was obtained as the amplitude of the Gaussian 

fit. The individual spots were then linked into pairs of trajectories, using methods described in 

the literature.
96

 Representative results are shown in Figure 5.4d.   

 

 

Figure 5.4 a), b) Fluorescence images showing Nile Red single molecule emission near 640 nm 

and 590 nm, respectively. The two images are of the same region near the high-phenyl end (~ 1 

mm from the top) of the PTMOS-TMOS derived gradient. Both images are plotted on identical 
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intensity scales (350 counts maximum). c) Image showing the CM factor (colored diamonds, see 

color bar) determined by applying equation. 5.2 in the analysis of the signal from each molecule. 

d) Trajectories (> 6 frames in length, with total signal > 1.5 times the background noise) 

showing the motions of the individual molecules. The color scale shows the CM factor along 

each trajectory.  

 

The polarity of each local environment probed by the individual molecules was determined 

by calculating the emission ratio, E, (see equation 5.1) on a spot-by-spot basis, from the two-

color SMS image data. The CM factor for each spot was subsequently calculated from equation 

5.2, using the K and C parameters given above. Figure 5.4c plots an image depicting the CM 

factors (colored diamonds) obtained from the molecules detected in Figures 5.4a,b. The colored 

trajectories plotted in Figure 5.4d show the CM factor for each trajectory along the length of the 

video data. Only trajectories longer than six frames are shown. These data suggest that the local 

film polarity is highly variable, with some molecules exhibiting CM factors near 0.5 while others 

yield values ranging down to near zero. The largest fraction of spots appear to have CM factors 

near 0.3, consistent with a dielectric constant of ~ 3.3, slightly larger than that of pure toluene.  

As is apparent from Figure 5.4d a large fraction of the molecules detected are mobile.  

Unlike our previous studies of methyl-modified silica gradients, in which molecular mobility 

was found to increase with increasing film organic content,
19

 the present materials reveal no 

clear trend in mobility, possibly due to higher viscosity in the PTMOS-based films.  

The mobility of the molecules allows for the polarity to be assessed across short distance 

scales along the gradient. Figure 5.5 plots three example trajectories selected from a region 2 

mm down the gradient relative to that shown in Figure 5.4.  Figure 5.5a (left panel) plots the 

trajectory of a mobile molecule, while Figure 5.5a (right panel) plots its E value and CM factor 
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as a function of time. These data appear to show the molecule moving back and forth between 

two or more regions of relatively low (CM factor ~ 0.4) and relatively high (CM factor ~ 0.6) 

polarity. Such results may reflect temporal, spatial or simultaneous temporal and spatial 

variations in the local polarity. Temporal fluctuations in the local polarity may arise from 

motions of any (organo)silane oligomers contained within the film.
19

 In the present case, spatial 

variations are most likely dominant. Were the observed variations due to temporal fluctuations 

alone, the polarity values obtained would not show such a clear spatial dependence (see Figure 

5.5a, left panel). Figure 5.5b (left and right) plots similar data for a molecule confined to a 

smaller region of the gradient. In this case, the polarity remains approximately constant across 

the trajectory (CM factor ~ 0.35). Very few fluctuations are observed to fall outside the range 

expected from the measurement error (the error bars represent the standard deviation) for this 

molecule. Finally, Figure 5.5c (left and right) plots data from a molecule that is initially mobile 

but quickly becomes confined in a small region of the sample. Within this region, the polarity 

appears to abruptly increase midway through the trajectory and then later decreases to 

approximately its original value. In this case, it is most important that the nonpolar and polar 

measurements appear to come from regions that are closely overlapped in the film plane. The 

two environments associated with these variations may arise from differences in the film 

properties along the depth dimension, or they may be due to temporal fluctuations in the 

environmental polarity. Unfortunately, it is not possible to distinguish between these two 

mechanisms at the present time.   
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Figure 5.5 a) – c) Representative trajectories (left) and associated polarity data (right) obtained 

for three single molecules near the high-phenyl end (~ 3 mm from the top) of the polarity 

gradient. The polarity plots depict the emission ratios, E, and the CM factors for each molecule 

as a function of frame number (bottom axes) and time (top axes). The data point colors depict the 

E values and CM factors at each point. The color scale is the same as in Figure 4c,d. Error bars 

are included on each of the E and CM factor plots. These were determined from the measured 

signal levels in each detection channel. 

 

It should be emphasized that the data in Figures 5.5a,c depict rare behavior. The majority 

of trajectories detected exhibit polarity values that remain relatively constant (similar to Figure 

5.5b) along their lengths, suggesting the molecules spend much of their time in regions of 

relatively uniform polarity, at least over the tens of seconds they can be followed, prior to 

photobleaching. In addition, as is also evidenced in Figures 5.5b,c, the CM factors occasionally 
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take on values > 0.5. Such values frequently appear under low signal-to-noise conditions, as 

reflected by the large error bars on some data points. However, they may also result from 

specific molecule-matrix interactions (e.g. hydrogen bonding of Nile Red to the matrix
104

). In 

fact, the CM factor is based on a continuum model and does not allow for the possibility of such 

interactions.    

Polarity data were obtained from several thousand molecules detected along much of the 

gradient. Unfortunately, physical limitations of the microscope prevented data collection from 

the very top and bottom of the gradient so that only the middle ~ 10 mm were accessible. The 

full range of behaviors exhibited by the molecules in the associated trajectories is most 

efficiently visualized in histogram form. Figure 5.6 plots these histograms, which depict the 

distributions of E values and CM factors obtained. Because many of the molecules were found to 

be mobile, their trajectories were deemed to represent multiple unique measurements of film 

polarity as the molecules explored different film regions. Therefore, in compiling data for these 

histograms, the individual trajectories were first broken up into segments representing unique 

film regions. Trajectory segments were identified by comparing the frame-to-frame displacement 

of each molecule to the estimated spot localization precision. As is now well known, the location 

of each molecule can be determined to much higher precision than expected from the diffraction 

limited resolution of the microscope.
72,74,109,110

 In the present studies, a mean localization 

precision of 22.5 nm was estimated from the observed signal and noise levels, using the method 

of Webb, et al.
111

 Spot displacements greater than three times this distance from the mean 

position of one or more other spots along the same trajectory were considered to represent 

unique measurements of gradient polarity. Each of these unique measurements is assumed to 
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define the polarity properties of one nanoenvironment and makes an independent contribution to 

the histograms shown in Figure 5.6.  

 

 

Figure 5.6 Distribution of unique single molecule emission ratios, E (bottom axes), and CM 

factors (top axes) as a function of position along the gradient, running between the high-phenyl 

(1 mm) to low-phenyl (10 mm) ends. The solid lines show fits of the data to Gaussian functions.  
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The peak at E < -0.2 is due to impurities. Emission from Nile Red is very weak in polar TMOS 

derived films increasing the visibility of the impurity spot distribution. Their contributions to the 

data are actually invariant across the gradient.  

 

  The data employed in preparing these histograms were also selected based on signal-to-

noise concerns. Specifically, only those molecules producing spots with a peak signal level (in 

each image) equivalent to 1.5 times the background noise or larger were included in the analysis.  

The mean square error was also calculated during fitting of the spots to Gaussian functions.  

These values were used to eliminate spots that could not be properly fit due to the presence of 

other nearby spots.        

Initial inspection of the histograms shown in Figure 5.6 reveals they are comprised of at 

least two distinct distributions, one having mean E < 0, the other, mean E > 0. The peak found at 

E < 0 is readily attributed to impurity spots. This same distribution appeared when blank 

gradients (absent Nile Red) were imaged and analyzed as described above (data not shown), 

while the E > 0 distribution disappeared under these same conditions. As a result, data falling 

within the low E distribution (specifically, those with E < -0.2) are excluded from further 

analysis and discussion. The cutoff employed was selected so that the entire distribution with 

mean E > 0 could be included in the analysis, even at the high-phenyl end of the gradient. Note 

that the population of unique measurements falling within the E < -0.2 distribution is invariant 

along the gradient. 

The distributions having E > -0.2 represent the polarity-sensitive Nile Red signal. These 

show a clear monotonic trend towards increasing average polarity with decreasing phenyl 

content along the gradient. Each of these distributions was fit to a Gaussian function to determine 

its peak position and width.  Figure 5.7 plots these peak positions. At the high-phenyl end of the 
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gradient, the peak of the distribution is located near CM ~ 0.36 and the full distribution can be fit 

with a single Gaussian function, suggesting a monomodal distribution of environments is 

present. However, the standard deviation of the distribution (0.097) is about 30% broader than 

expected from the measurement error (~ 0.076), based on signal-to-noise issues alone 

(measurement error calculated as shown in the Appendix). The polarity distribution and CM 

value obtained at the high-phenyl end both closely match those obtained from a uniform PTMOS 

derived control. A CM factor of ~ 0.36 was also obtained from this control, and the distribution 

width was somewhat narrower (0.086).  

 

 

Figure 5.7 Peak positions (symbols) from the Gaussian fits to the histograms shown in Figure 

3.6. The histograms at 6 mm and 7 mm were best fit to a two component Gaussian. As a result, 

two data points are displayed at these positions. Representative values obtained from a uniform 

PTMOS derived film (positive control, PC) and from a uniform TMOS derived film (negative 

control, NC) are shown as black squares at 0 mm and 11 mm). The blue line shows a sigmoidal 

function plotted through the primary series of data points and has been added only to better 

depict the trend in these data. Deviation of the NC data point from the gradient trend is due to the 

poor quality of the NC data. Nile Red is very weakly emissive in TMOS derived films.  
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Proceeding towards the low-phenyl end of the gradient, the peak of the distribution is found 

to gradually shift to higher CM factors, reaching CM ~ 0.48 at the end of the gradient. Again, 

this distribution can be fit to a single Gaussian function. The distribution width at the 9 mm 

position is 0.10, ~ 50% broader than expected (~ 0.068) from the signal-to-noise level. The 

distribution at the very end of the gradient (10 mm) is much narrower. The data obtained from a 

uniform TMOS derived control was found to be similar to that at the TMOS end of the gradient, 

yielding a CM factor of ~ 0.46.  However, Nile Red is only very weakly fluorescent in pure 

TMOS derived films;
75,104

 as a result, very few spots were detected in this control and at the low-

phenyl end of the gradient. The narrow distribution at the low-phenyl end and the differences 

between the control and gradient data are attributable to difficulties with single molecule 

detection in these regions. Nevertheless, the increased breadth of the other distributions, 

compared to what is expected from measurement noise alone, is consistent with random, 

nanometer-to-micrometer scale variations in the local polarity along the gradient. As a final 

caveat, it should be noted that gradient heterogeneity along the depth dimension may also 

contribute to the observed distribution widths.     

In fact, the majority of the distributions shown in Figure 5.6 could be fit to a single 

component Gaussian function, consistent with random variation in the local film polarity, such as 

may arise from random variations in the film composition and/or functional group orientations.  

However, two key exceptions appear at the 6 mm and 7 mm positions. In these locations, clear 

evidence of bimodal distributions is found, with two peaks each occurring at CM ~ 0.39 and ~ 

0.45 and at ~ 0.41 and ~ 0.45, respectively, as shown in Figure 5.7. The data point at 8 mm (see 

Figure 5.7) also appears to deviate slightly from the trend in a manner that is consistent with a 

small degree of bimodality. These particular distributions reflect non-random variations in the 
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local polarity and are very likely due to the appearance of TMOS-rich and PTMOS-rich domains 

in these regions of the gradient. Phase separation has been observed previously by atomic force 

microscopy
112,113

 and by IR microscopy
114

 in nongradient organosilane films prepared from 

binary sol mixtures. In the present studies, the bimodal distributions were manifested as 

differences in the polarity on lengths scales of several micrometers. Specifically, different 

distributions were obtained from videos of different (~ 15 µm diameter) film regions. The 

variations seen in Figures 5.4, 5.5 suggest some domaining may also occur on much shorter 

length scales, but these were found to represent minority sites in these other gradient regions and 

therefore do not make significant contributions to the histograms. 

The data and observations presented above yield important new information on gradient 

composition as a function of position. Along much of the gradient length, the mean polarity 

varies gradually on a millimeter length scale, suggesting the film composition also changes 

gradually in a relatively “smooth” manner. The somewhat broadened polarity distributions 

suggest, however, that the film composition is also variable on nanometer to micrometer distance 

scales. The appearance of monomodal Gaussian distributions suggests these variations occur by 

random fluctuations in the film properties, rather than by self-organization (i.e., phase 

separation) of the film components, although the possibility of phase separation on length scales 

smaller than the effective spatial resolution (i.e. < ~ 22.5 nm) cannot be discounted. Midway 

along the gradient, phase separation on longer length scales is suggested by the appearance of 

bimodal polarity distributions. Since the sol compositions and deposition conditions were 

selected to avoid visible phase separation in the deposition mixture, it is concluded that any such 

domain formation likely occurs near the exact time of film deposition. Dip coating has been 

extensively studied by Brinker and coworkers.
115,116

 These studies demonstrate that film 
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deposition during dip coating occurs in the sol meniscus, due to rapid evaporation of the solvent, 

along with condensation of the precursor silanes and densification of the gel film.  It is in this 

region where phase separation is most likely to occur. However, domain composition may differ 

from that expected from well-known models for equilibrium phase separation in binary 

mixtures.
117

 Such differences may arise in sol-gel films because of the rapid, simultaneous 

occurrence of solvent evaporation and silane condensation. These are expected to trap the 

domains in distinctly non-equilibrium configurations. Future studies will further address the 

length scales and compositions of the domains appearing in these and other sol-gel-derived 

gradients by high-resolution single molecule imaging methods.
72,74,109,110,118

 

 

 5.4 Conclusion 

In summary, this chapter reports single molecule spectroscopic imaging studies of polarity 

along a phenyl-modified organosilane thin film gradient. The gradient was prepared by infusion-

withdrawal dip-coating using TMOS and PTMOS based silica sols as precursors. The presence 

of a gradient in the resulting film was verified by water contact angle measurements and by 

Raman mapping. Two-color single molecule imaging experiments revealed through the observed 

breadths of the single-molecule-derived polarity distributions that the film polarity varied 

randomly on nanometer to micrometer distance scales. Quantitative estimates of the local 

polarity (via the Clausius-Mossotti factor) were obtained from the single molecule results.  

Ensemble distributions compiled from the single molecule data revealed the presence of a 

centimeter-scale gradient running down the film that largely exhibited smooth, monotonic 

variations in polarity. However, bimodal distributions were found midway along the gradient, 

consistent with phase separation of the polar and nonpolar film components in these regions.  
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Gradients incorporating phase-separated domains will exhibit properties that differ greatly from 

those comprised of molecularly-mixed materials. In particular, the presence of such domains will 

alter both the partitioning and adsorption phenomena important to stationary-phase-gradient 

chromatography
35

 and will also limit gradient utility for guiding the motions of liquid droplets,
12

 

macromolecules,
119

 vesicles and cells.
120
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Chapter 6 - Single Molecule Perspective on Mass Transport in 

Condensed Water Layers over Gradient Self-Assembled 

Monolayers 

Reproduced with permission from Giri, D.; Ashraf, K.M.; Collinson, M.M.; Higgins, D.A. 

Single-Molecule Perspective on Mass Transport in Condensed Water Layers over Gradient Self-

Assembled Monolayers. J. Phys. Chem C, 2015, 119 9418-9428. Copyright 2015, American 

Chemical Society. 

 

 6.1 Introduction 

The self-assembly of organosilane monolayers (SAMs) on oxides and other substrates 

provides a valuable route to the control of surface wettability, lubricity, adhesion and 

biocompatibility for the design of surfaces with applications in diverse fields such as molecular 

electronics, optics, bio/chemical sensing and model biological membranes. However, the 

properties of such surfaces are not entirely defined by the chemical composition of the SAMs 

alone. For example, when these materials are exposed to the ambient atmosphere, a layer of 

water rapidly condenses onto their surfaces. This condensed water layer can dramatically alter 

the surface properties. While a wide variety of organosilanes is now available, allowing for the 

macroscopic surface wettability to be tuned from hydrophilic to hydrophobic, even hydrophobic 

surfaces are at least partially covered by a thin (nanometer-thick) water layer under all but the 

driest conditions.
121-124

  

The structure of these thin water layers has been extensively studied by infrared 

spectroscopy,
121,125-127

 X-ray and neutron reflectometry
122,128,129

 and by surface selective 
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nonlinear optical methods.
130,131

 Theoretical studies have also contributed valuable insights into 

water layer coverage, thickness, organization and morphology.
123,132,133

 Infrared spectroscopy 

studies have shown that nanoscale water layers on silica surfaces evolve from ice-like to liquid-

like water as the ambient RH increases from low to high values.
125

 Atomic force microscopy 

(AFM) and the surface forces apparatus have been employed to measure the viscosity of water 

layers on modified and unmodified surfaces.
134,135

  The viscosity of the water layer on 

hydrophilic silica was found to be high by AFM, while values closer to that of bulk water were 

obtained on a hydrophobic surface.
134

 Other studies have reported on the heterogeneity of water 

layers condensed on SAM surfaces.
124

 Generally, water layers are found to be thin and relatively 

uniform on hydrophilic surfaces but collapse to form tiny droplets on hydrophobic surfaces.
123

  

The latter are often associated with SAM film defects.  

While significant progress has been made towards understanding the structure of 

condensed water layers on SAM surfaces,
136

 much remains to be learned about the diffusion of 

analytes, reagents, or contaminants within them.  Importantly, mass transport mechanisms and 

rates are expected to vary in a complex fashion with water layer thickness, continuity, structure 

and viscosity, all of which depend upon the nature of the SAM surface and the ambient RH.  

Relatively homogeneous water layers formed over hydrophilic surfaces may yield homogeneous 

diffusion, but the tendency of such layers to form ice-like assemblies
137,138

 suggests their 

viscosities will be high.  In contrast, hydrophobic regions, for which the water layers are 

comprised of tiny droplets of bulk-like water, are expected to allow for fast diffusion, but with 

motion confined by the spatial extent of the droplets.  Reagent/analyte interactions with the SAM 

surface also play a role in governing mass transport, with polar, hydrogen-bonding species 
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interacting most strongly with hydrophilic surfaces and nonpolar species interacting most 

strongly with hydrophobic surfaces. 

The investigation of mass transport near SAM surfaces in the presence of just a few 

monolayers of water requires the use of methods that are sensitive to in-plane (2D) molecular 

diffusion and surface adsorption/desorption phenomena.  These methods must also afford spatial 

resolution sufficient to resolve any variations in the local molecular mobility caused by 

heterogeneity in the water layer.  Fluorescence recovery after photobleaching
139

 is suitable for 

such studies, but may be difficult to apply in cases where significant spatial heterogeneity exists.  

Fluorescence correlation spectroscopy, as performed in a confocal (single point) configuration,
140

 

could also be employed, as could imaging correlation spectroscopy methods,
141

 but each requires 

trade-offs in either time resolution or accessible imaging area. 

Single molecule tracking (SMT) represents a viable alternative that is well suited to such 

studies.
142,143

 SMT has been widely employed to explore both the mechanisms and rates of 

molecular diffusion in gels
144,145

 and thin films,
77,146-149

 and for a variety of solid-liquid 

interfaces.
142,143,150-152

 In SMT, the sample is broadly illuminated by laser light that excites well-

separated fluorescent probe molecules doped into the films at nanomolar (or lower) 

concentrations. Videos of the molecules moving in/on the sample are then recorded. The 

individual molecules produce bright round fluorescent spots in each video frame. These spots are 

subsequently detected and linked into trajectories that are then used to quantify molecular 

mobility. Single molecule diffusion coefficients are frequently determined by plotting the mean 

square displacement (MSD) of the molecules as a function of time,
153

 or by constructing and 

fitting the distribution of step sizes taken by the molecules between sequential video frames.
149

  

Molecules exhibiting homogeneous Fickian diffusion generally produce linear MSD plots where 
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the slope is proportional to the diffusion coefficient, and step size distributions with Rayleigh-

like profiles.
149

 Non-Fickian diffusion leads to easily observable deviations from these behaviors.  

Investigations of mass transport over SAM surfaces might normally involve preparation of 

a large number of uniformly modified surfaces having a range of compositions. These SAMs 

would then be exposed to different environments and the motions of the molecules recorded for 

each sample. An alternative to such a lengthy series of experiments is to prepare a gradient SAM 

having a range of compositions along a single substrate.
2-4

 In this manner, the effect of SAM 

composition on wettability, the properties of the condensed water layer and single molecule 

mobility can be explored in a high-throughput manner.
78

 Several recent reviews provide detailed 

information on the preparation, characterization and utility of synthetic chemical gradients.
2,3,78

  

This chapter reports the application of SMT to studies of mass transport rates and 

mechanisms in nanometer-thick condensed water layers over SAM gradient surfaces. Results 

were obtained as a function of surface chemical composition and ambient RH.  Gradient SAMs 

were prepared by vapor phase deposition
12

 of hydrophilic 3-cyanopropyltrichlorosilane (CN) and 

hydrophobic octyltrichlorosilane (C8) precursors onto silica and silicon substrates. The CN and 

C8 precursors were deposited from opposite ends of the substrate, producing “opposed” two-

component gradients
5,51,154-156

 with variations in the CN and C8 coverages running in opposite 

directions along the surface. Static water contact angle (WCA) measurements were employed to 

verify gradient formation, and to obtain quantitative data on their macroscopic wettability as a 

function of position. Measurements of film thickness along the gradients were acquired by 

spectroscopic ellipsometry. These data also provided evidence of a spatially variable layer of 

water condensed on the gradient surface. The microscopic structure of these water layers was 

assessed by tapping mode atomic force microscopy (AFM). For SMT studies, a fluorescent 
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perylene diimide dye [N,N'-bis(octyloxypropyl)-perylene-3,4,9,10-tetracarboxylic diimide] 

(C11OPDI, Figure S1) was used as the probe molecule and was loaded into the films at 

nanomolar concentrations. The SMT results depict a general trend towards increasing dye 

mobility with increasing RH and increasing surface wettability. These studies also provide 

evidence that dye molecule diffusion involves both Fickian and desorption-mediated (Levy) 

mechanisms and that the relative contributions of these mechanisms depend upon surface 

wettability and ambient RH.  

 

 6.2 Experimental Considerations 

  

 6.2.1 Sample Preparation 

Deposition of silica base layer. Previous studies have demonstrated that organosilane 

gradients best adhere to the substrate when deposited on a silica base layer.
8,19

 Therefore, both 

the silica and silicon substrates used in these studies were first coated with a tetramethoxysilane 

(TMOS) based sol. This base layer also affords similar surface chemistries on both substrates, 

helping to ensure the gradients obtained are of similar nature. The TMOS sol was prepared by 

mixing TMOS (99%, Sigma-Aldrich), ethanol (200 proof), high purity water (18 MΩcm, 

Barnstead B-pure) and HCl (0.1 M) in a 1:125.8:22.1:0.04 (TMOS:ethanol:water:HCl) molar 

ratio in a clean glass vial. The mixture was stirred for 1 h and stored in a desiccator for 23 h prior 

to use.  Each substrate was cleaned in an air plasma for 5 min. before base-layer deposition. The 

base layer was formed by spin casting (5000 rpm, 30 s) a 150 µL aliquot of the aforementioned 

sol onto the substrate. All base layers thus obtained looked optically clear and uniform by eye. 
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Preparation of gradient self-assembled monolayers. All gradients were prepared by room-

temperature vapor-phase deposition (VPD) of polar and nonpolar organosilanes. The 

organosilanes employed were 3-cyanopropyltrichlorosilane (CN-silane) and octyltrichlorosilane 

(C8-silane), both obtained from Sigma-Aldrich. Both were of 97% purity and were used as 

received.  

A diagram of the apparatus used for VPD is shown in Figure 4.3 (a). It consists of a 

substrate supported on a platform, with the substrate positioned midway between two reservoirs 

designed to hold the precursor organosilanes. These components were all housed inside a 

plexiglass box. The box allowed for VPD of gradients in the absence of air currents and under 

controlled humidity. The humidity inside the chamber was maintained at 60 ± 2% RH for all 

depositions. The two reservoirs each comprised a single 3 mm X 20 mm slit cut into a glass 

slide. The edge-to-edge separation between each reservoir and the substrate was maintained at an 

experimentally optimized distance of 5 mm in all depositions.  

Each base-layer-coated substrate was treated in an air plasma for 2 min immediately prior 

to its insertion in the deposition chamber. The two reservoirs were then loaded with a mixture of 

paraffin oil (200 µL) and one of the two organosilanes (50 µL). The CN-silane was loaded first 

and was immediately followed by loading of the C8-silane. The inlets were promptly closed and 

the substrate was exposed to silane vapor for 5 min. This exposure time was determined to yield 

optimal results after extensive experimentation. The substrate was immediately removed from 

the chamber after film deposition. The resulting gradient SAM films looked optically clear and 

clean by eye. Each film was then stored in a desiccator under static vacuum for 12 h. These were 

subsequently spin coated (5000 rpm, 30 s) with a 150 µL aliquot of 4 nM C11OPDI dye shown in 

Figure 4.4 (synthesized in house)
157,158

 in HPLC grade ethanol. After coating with dye, each 
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gradient was stored in a desiccator for an additional 48 h before characterization by SMT and 

other methods.  

 

 6.2.2 Gradient Characterization 

Static water contact angle measurements.  Sessile drop WCAs were measured using a 

home built instrument. Droplets of high purity water (1.0 µL) were placed along the gradient 

using a microliter syringe. Images of the droplets were acquired with a CCD camera attached to 

a Navitar zoom lens. The images were analyzed using a routine available for the ImageJ software 

package.
159

  WCAs were measured at a separation of 3 mm along each gradient. Each 

measurement was replicated three times across the gradient at separations of 2 mm. All 

measurements were made under ambient lab conditions (30 ± 5% RH, 21.1 ± 0.6 
o
C).  

Film thickness measurements. Film thicknesses were measured by spectroscopic 

ellipsometry (α-SE, J.A. Woollam). For these measurements, gradient SAMs were prepared on 

base-layer-coated silicon substrates. For each sample, the base-layer thickness was determined 

first, prior to deposition of the gradient. The gradient thickness was subsequently measured after 

deposition and storage in a desiccator, as described above. Both the base-layer and gradient 

thicknesses were measured under 16% RH. Finally, the gradients were exposed to 65% RH (and 

95% RH) and the thicknesses were again measured. All measurements were made at the same 

series of positions (to within ±1 mm) in each case (base layer alone, gradient at 16% RH, 

gradient at 65% RH) to allow for determination of the SAM film and water layer thicknesses.  

Atomic force microscopy. The surface morphology of the SAM gradients and the 

condensed water layer were studied using a Veeco Dimension Icon AFM with a NanoScope V 

controller. Imaging was performed in tapping mode using a microfabricated silicon cantilever 
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(40 N/m, Veeco, Santa Barbara, CA) in air, under humidity controlled at 25%, 55% and 70% 

RH. The set point ratio Rsp = Afb/A0, where A0 is the free oscillation amplitude with the tip far 

from the sample surface and Afb is the oscillation amplitude in feedback, was maintained at a 

value of 0.95 during imaging.  Images were analyzed using the NanoScope software (v1.40). All 

AFM images reported were acquired on SAM-coated silicon substrates, but gradients on base-

layer-coated silica substrates yielded images that were indistinguishable from those on base-

layer-coated silicon.  

Optical microscopy. All SMT experiments were performed on an inverted wide-field 

fluorescence microscope as shown in Figure 4.8b in Chapter 4. In these experiments, each 

sample was mounted over a high numerical aperture (NA) oil immersion objective (Nikon Apo 

TIRF, 100X, 1.49 NA) that was used for both sample illumination and collection of the resulting 

fluorescence. Blue light (488 nm) from a diode laser was used for excitation of the C11OPDI dye 

doped into the films. The excitation power was maintained at 100-125 µW in all experiments, 

yielding average excitation intensities of ~56-70 W/cm2. The fluorescence was detected using a 

CCD camera (Andor iXon DU-897). Fluorescence videos 450 frames in length were recorded for 

each location on the sample at a rate of 2 frames/s. Videos were acquired from a total of 70 

distinct locations along each gradient at 1 mm spacings in each dimension. The fluorescent spots 

produced by the single molecules in each video frame were detected, fit to 2D Gaussian intensity 

profiles, and linked into trajectories using a LabView-based particle-tracking program written in-

house.  

 

 6.3 Results and Discussion 

 



84 

6.3.1 Gradient Wettability. The macroscopic wettability of each gradient was probed by 

measuring the static WCA as a function of position. Figure 6.1 shows the average WCA values 

obtained along one gradient. The WCA was found to increase from the hydrophilic CN end (0 

mm) to the hydrophobic C8 end (25 mm), as expected, for all SAM gradients prepared under the 

conditions specified above. The relatively small error bars, in comparison to those of previous 

gradient films,
8
 reflect the reduced roughness and improved homogeneity of VPD gradients.  

 
Figure 6.1 Representative static WCA data obtained along a CN-C8 gradient SAM. Each data 

point on the graph represents the average of three values measured across the film at three 

different positions. The error bars depict the standard deviation of these measurements. The solid 

blue line has been added to better show the trend. 

 

6.3.2 Gradient and Condensed Water Layer Thickness. Measurements of film thickness 

were made along the length of the silica base layer and the gradient SAMs under both dry and 

humid conditions. The base layer was found to be uniform with a thickness of 25.5 ± 0.5 nm 

(data not shown), when measured under dry conditions (16% RH). Figure 6.2 plots the SAM 

film thickness for dry (16% RH) and humid (65% RH) conditions. Due to instrumental 

limitations, film thickness data could only be obtained from the central ~20 mm of the gradient 

length. At 16% RH, the gradient SAM thickness ranged from a maximum of ~3.4 nm at the CN 
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end to ~1.1 nm at the C8 end. A single monolayer of well-packed C8-silane should yield a 

thickness of ~1.1 nm, while a CN-silane film should be thinner (~0.8 nm), assuming both are 

oriented perpendicular to the surface. The film thickness at the C8 end closely matches that 

expected for a monolayer. The greater thickness at the CN end could be due to the presence of 

residual water, even under dry conditions (see below). Cross-linking of the trichlorosilane 

precursors may also lead to formation of a multilayer film.   

 

Figure 6.2 Film thickness along a CN-C8 SAM gradient on a base-layer-coated silicon substrate.  

The measurements were made under dry (16% RH) and humid (65% RH) conditions.   

  

Upon exposure of the SAM gradient to higher humidity (e.g., 65% RH, for ~ 8 h), the 

apparent thickness of the film was found to increase at all points (see Figure 6.2). This increase 

in film thickness is attributable to condensation of water on the gradient SAM surface and/or 

swelling of the film. Unfortunately, it is not possible to unequivocally distinguish between these 

two cases at present. The increase in film thickness upon changing from dry to wet (65% RH) 

conditions ranged from ~ 3.5 nm near the CN end to ~ 0.7 nm near the C8 end.  Similar results 

were obtained at 95% RH (data not shown). While the C8 end of the gradient is hydrophobic 

(WCA > 100
o
), it is relevant that condensation still occurs even in this region, as expected from 
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previous reports.
121,160

 The change in thickness at the C8 end corresponds to ~ 3 molecular layers 

of water, while the change at the CN end is consistent with > 10 water layers. 

 

6.3.3 Structure of SAMs and Condensed Water Layer. Tapping mode AFM was 

employed to assess the nanoscale morphology of the gradient films, to confirm the presence of 

the condensed water layer at high RH, and to characterize its spatial heterogeneity. Previous 

theoretical
160

 and experimental
161

 studies have shown that water layers condensed on 

hydrophobic surfaces are often discontinuous, appearing as wet islands associated with film 

defects.   

Representative height and phase images acquired near the CN end at 25% RH are shown in 

Figure 6.3. These show small raised features ~ 10 nm in height and ~ 500-600 nm in width, 

along with pinholes exhibiting apparent depths of ~ 12-18 nm. These features are attributed to 

imperfections in both the base layer and the SAM film and are largely unavoidable. The phase 

images show much weaker contrast for these same film imperfections. However, associated with 

these features are relatively larger (~ 0.7-1.5 µm diameter), nominally round regions where the 

phase angle exhibits a subtle decrease (~ 2-3o) from the surroundings. These regions may reflect 

the condensation of water to form wet “islands” around certain film defects, even at 25% RH.  

Associated features in the height images produce changes too small for effective measurement. 

                                        

Figure 6.3 Tapping mode AFM images of a gradient sample acquired near the CN end of a 

gradient, at 25% RH. Height (left) and phase (right) images are shown for identical sample 
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regions. These data were acquired by Kayesh Ashraf, Virginia Commonwealth University, on 

sample prepared at Kansas State University.  

 

A series of representative height and phase images acquired along a gradient SAM at 70% 

RH are shown in Figure 6.4. Similar results were obtained at 55% RH (data not shown). While 

these particular images were acquired from a gradient supported on base-layer-coated silicon, 

images obtained from gradients on base-layer-coated silica were indistinguishable. 
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Figure 6.4 Representative tapping mode AFM height (left column) and phase angle (right 

column) images obtained as a function of position along a CN-C8 SAM gradient at 70% RH.  

The pairs of height and phase images show identical sample regions. These data were acquired 
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by Kayesh Ashraf, Virginia Commonwealth University, on sample prepared at Kansas State 

University.     

 

These images provide additional evidence of the film imperfections described above, and 

demonstrate they appear along the full length of the gradient. More importantly, they provide 

clear evidence for the formation of wet “islands” due to water condensation on the gradient 

surface. These islands appear as nominally round regions of greater topographic height (i.e., < 

0.5 nm to ~ 2 nm, from line profiles), and decreased phase angles (i.e., exhibiting a change of 10-

20
o
) from their surroundings as shown in Figure 6.5. They were found mainly from near the 

hydrophilic CN end to the midpoint of each gradient and were conspicuously absent nearest the 

hydrophobic C8 end. The islands also exhibited a clear increase in contrast
162

 and size in the 

phase images with increasing relative humidity (compare Figure 6.3 to Figure 6.4), when 

images acquired at similar positions near the CN end of the gradients are compared.  
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Figure 6.5 Tapping mode AFM images and line profiles acquired ~ 2 mm from the CN end of a 

gradient sample.  The images were acquired at 55% RH.  Top)  Height image and corresponding 

line profile, as defined by the white line on the image. Bottom)  Phase image and corresponding 

line profile, as defined by the white line on the image. The two images depict identical sample 

regions. These data were acquired by Kayesh Ashraf, Virginia Commonwealth University, on 

sample prepared at Kansas State University. 

 

The absence of wet islands in images recorded near the C8 end likely reflects a change in 

the morphology of these islands.  Again, the ellipsometry data show that water is present at the 

C8 end of the gradient. Nearer the CN end, they appear to be generally flat, covering relatively 

large surface areas. Proceeding towards the C8 end, the islands appear to shrink in size prior to 

disappearing. The latter is consistent with a transition to hemispherical droplets over 

hydrophobic film regions. These may better wet the AFM tip and/or move around with it over 

the most hydrophobic regions, making them effectively “invisible”. In contrast, the wet islands 
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found near the hydrophilic CN end were very stable, exhibiting no evidence of movement or 

changes in size across multiple images acquired over periods of 30 min (data not shown).  

     

6.3.4 Fluorescence Imaging and Single Molecule Tracking. The role of the condensed 

water layer in governing molecular mobility along the SAM gradients was explored by wide-

field fluorescence video microscopy and single molecule tracking (SMT).  For this purpose, 

fluorescence videos were acquired from a total of 70 distinct positions along each gradient under 

three different ambient humidities (16%, 65% and, 95% RH).  Figure 6.6 presents a pair of static 

images compiled from representative videos obtained near each end of the gradient and at 16% 

and 95% RH, respectively. The insets in Figures 6.6A,B depict cropped regions of single video 

frames, while the full size images were compiled by plotting the maximum fluorescence signal 

detected at each pixel across the full video length.  
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Figure 6.6 A), B) Images and C), D) trajectories obtained for C11OPDI dispersed on the SAM 

gradients at 16% RH (A and C) near the C8 end of the gradient and at 95% RH (B and D) near 

the CN end. A) and B) show the maximum fluorescence signal detected at each pixel across the 

full 450 frames comprising each video. The insets show single frame data, cropped from the 

center of each. C) and D) show the trajectories obtained from the same videos.  The scale bars 

apply to all images, insets and trajectory plots. 

 

Single frame images (insets in Figure 6.6) show that the video data are comprised of well-

spaced fluorescent spots of diffraction-limited size. These spots depict the emission from single 

C11OPDI molecules. Although C11OPDI is known to form aggregates (particularly at higher 

concentrations), any such species would not be detected here as their emission is red-shifted 

from that of the monomer
163

 to wavelengths outside the detection bandwidth (i.e., 535 ± 25 nm) 

and their luminescence quantum yield is greatly reduced.
157,164

 By comparing the single frame 

images to the compiled maximum-signal images (Figure 6.6), it is apparent that some of the 

molecules are mobile while others remain fixed for long periods of time. Single molecule 
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mobility is strongly dependent upon position along each gradient, and on ambient RH. The 

molecules are generally less mobile near the C8 end of each gradient and more mobile near the 

CN end (see below for details). Likewise, few molecules appear to be mobile under dry (16% 

RH) conditions, while many more become mobile with increasing humidity.  

The compiled maximum signal images provide strong evidence that molecular mobility 

occurs within the aforementioned wet regions of the gradient (Figure 6.6B). Especially at high 

RH and near the CN end, the mobile molecules appear to be restricted to round “islands” on the 

surface. However, these islands appear smaller in size than observed by AFM (compare Figures 

6.4 and 6.6B). This size difference arises partly from the finite length of time over which 

individual molecules can be tracked prior to photobleaching. The immobile molecules (Figure 

6.6A) are likely entrapped in the film, associated with film defects or otherwise adsorbed on its 

surface.  The characteristics of molecular mobility are explored in greater depth in the following 

sections.   

  

 6.3.4.1 Populations of mobile and immobile molecules. To gain deeper insights into the 

phenomena governing molecular mobility, automated SMT software was employed to map the 

pathways followed by each molecule. For this purpose, the intensity profile of each spot was first 

fit to a 2D Gaussian function, providing its location with precision better than expected from the 

diffraction limit,
111

 and its width. Subsequent linking of the spots was accomplished using a 

modified cost-functional method.
96

Trajectories ranging in length from two frames up to 

approximately the full video length were obtained. However, quantitative results on molecular 

diffusion can only be gleaned from relatively long trajectories.
165

 As a result, only those 

trajectories ≥ 10 frames in length were employed in the analyses described below. All others 
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were discarded. Figure 6.6C,D plot these trajectories for the data shown in Figure 6.6A,B.  

Inspection of the trajectory data confirms that the molecules are generally less mobile under dry 

conditions and near the C8 end of the gradient, and most mobile under high humidity and near 

the CN end of each film. 

 Variations in the relative populations of fixed and moving molecules and their mobilities 

were quantitatively assessed by first categorizing each trajectory as representing either a mobile 

or an immobile molecule. Separation of the trajectories into these two populations was 

accomplished by comparing the localization precision,   
 , for each molecule, averaged across its 

full trajectory length, to its approximate mean-square-displacement (MSD) for single-frame 

steps.
166

 The localization precision was explicitly determined from equation 6.1.
96

 

 

   
  

  

 
 

  

   
 

      

                  (6.1) 

 

where s
2
 is the variance of each Gaussian spot, N the total fluorescence counts detected, a

2
 the 

pixel area and b
 
the background noise.  In the present studies, s ≈ 1.28 pixels (160 nm), b ≈ 11.8 

counts, a ≈ 125 nm and N varied between spots and video frames.  Common values for   
  ranged 

from ~ 20 to ~ 28 nm.   
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Figure 6.7 Representative single molecule trajectories (insets) and MSD plots for an immobile 

molecule near the C8 end of a gradient at 16% RH (lower right) and for a mobile molecule near 

the CN end at 65% RH (upper left), respectively. Their MSD plots are shown in red and blue, 

respectively. The symbols depict the measured values, the solid lines are fits to the first four 

points.  The apparent diffusion coefficients for the molecules are also given. The scale bars 

depict distance along each trajectory. 

 

MSD values were determined for each molecule by averaging their frame-to-frame 

displacements across the full length of each trajectory for different frame delays. These values 

were then plotted vs. time and the first four points fit to a line to obtain an estimate of the MSD 

value for single-frame steps. Figure 6.7 depicts representative trajectories for immobile and 

mobile molecules, along with their MSD plots. Using data such as these, molecules having MSD 

>    
  were classified as mobile, while all others were classified as immobile. 

Histograms depicting the full distributions of MSD values from several thousand 

trajectories, all ≥ 10 frames in length, are plotted as a function of position along each gradient 

and for the three RH values in Figure 6.8. Results from both immobile and mobile molecules are 
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included.  The former are shown in red (near zero) and the latter in blue. The populations are 

plotted on a log scale to better highlight the behavior of the mobile fraction. Inspection of these 

plots reveals that the distributions are narrowest at 16% RH and much broader for 65% and 95% 

RH. The distribution widths change little with position at 16% RH. At higher RH, the 

distributions are generally broader near the CN end (6-9 mm) and narrower near the C8 end (16-

19 mm). Broader histograms are consistent with increased molecular mobility.  

 

 

Figure 6.8 Single-frame MSD distributions obtained from the SMT data as a function of both 

position along the CN-C8 SAM gradients and ambient RH. Each set of distributions depicts 

results obtained from near the CN end (6 mm) to near the C8 end (19 mm). Images could not be 
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collected from the first and last ~ 5 mm of each gradient, due to instrument limitations. Each 

histogram is a compilation of five replicate measurements, with the measurements separated by 1 

mm spacing across the sample. The blue bars show the mobile population while the red bars 

depict immobile molecules. The numbers appended to each distribution designate the position (in 

mm) along each gradient. 

 

The general increase in molecular mobility along the gradients and with increasing RH may 

be manifested in different ways, each reflective of the mechanisms that govern molecular 

motion. For example, greater mobility may result from an increase in the population of mobile 

molecules. It may also result from an increase in the rate of molecular diffusion. To explore these 

differences, Figure 6.9A plots the fraction of mobile molecules obtained from the data shown in 

Figure 6.8. These results show that < 15% of the C11OPDI molecules are mobile under “dry” 

(16% RH) conditions at all positions. The greatest population of mobile molecules is found near 

the CN end, while fewer molecules (< 5%) are mobile near the C8 end. These results 

demonstrate that, unlike the thicker gradient films investigated in our earlier studies, the SAM 

films studied here are unlikely to support mass transport on their own, at least under the 

conditions at which these experiments were performed (16% RH, ~ 21 
o
C). The greater 

population of mobile molecules detected near the CN end of the gradient is attributed to residual 

water on that end of the gradient (see Figure 6.3), even under such dry conditions.  
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Figure 6.9 A) Mean fraction of molecules classified as mobile as a function of position along 

each of three distinct CN-C8 SAM gradients under three different RHs. The error bars depict the 

standard error of the mean from five replicate measurements in each case. The solid lines have 

been added to better depict the trends in the data. B)  Mean apparent diffusion coefficient, D, for 

the mobile fraction as a function of position along each gradient. The error bars depict the pooled 

standard deviations from five videos in each case. Data are shown for three different ambient 

RHs, as designated in A).  

 

As the ambient humidity is increased, the population of mobile molecules rapidly increases 

near the CN end (see Figure 6.9A).  At 65% RH, > 50% of the detected molecules were found to 

be mobile near this end of the gradient, while only ~ 10% were deemed mobile near the C8 end.  

At 95% RH, the fraction of mobile molecules near the CN end further increased to > 65%, while 

at the C8 end, only ~ 30% were mobile.  
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The smaller fraction of mobile molecules at the C8 end could reflect enhanced 

intermolecular interactions between the hydrophobic C11OPDI dye and the hydrophobic C8 

alkane tails. It could also be due to differences in the morphology of the water layer covering the 

surface. Again, the water layer is at least 3 monolayers thick (on average, at 65% RH), even near 

the C8 end of the gradient. The “flat” wet islands observed at the CN end likely change to 

hemispherical droplets near the C8 end. The associated reduction in surface area covered by 

water may be manifested as an equivalent reduction in the population of mobile molecules.  

Indeed, the AFM phase images (Figure 6.4) are consistent with this hypothesis, depicting ~ 56% 

coverage by water at 70% RH near the CN end and undetectable water (likely present as droplets 

that wet the AFM tip) near the C8 end. Again, > 50% of the C11OPDI molecules are mobile near 

the CN end and ~ 10% are found to be mobile near the C8 end at 65% RH.  

While many of the immobile molecules found at the C8 end could simply be present 

outside the water droplets, it is also possible that these molecules are actually mobile but their 

motions are confined to regions < 2400 nm
2
 in size  (i.e., MSD <    

  as specified above). In this 

case, such molecules would be classified as immobile. Unfortunately, we were unable to obtain 

quantitative information on the spatial extent of confinement from MSD plots. As is well known, 

nonlinearities in MSD plots derived from relatively short trajectories are difficult to interpret in 

this manner.
167

      

 

4.3.4.2 Rate of molecular motion.  With a change in morphology of the condensed water 

layer (i.e., from islands to droplets), and expected changes in the interactions of the water and 

dye molecules with the SAM surface, the rates of C11OPDI molecule motions are also expected 

to vary with position and humidity. The rate of molecular mobility along each gradient is best 
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quantified by the apparent diffusion coefficient, D, for each molecule. For simple two 

dimensional Fickian diffusion, D is directly related to the measured MSD, as given in equation 

6.2. 

 

                                                           

        

where t is time.  In these studies, D was determined in the short-time limit (see Figure 6.7). D 

values measured from molecules that move over the course of individual video frames must 

generally be corrected for dynamic positional uncertainties.
168,169

 In the present studies, the 

aforementioned mean spot widths (~ 1.28 pixels) were found to differ by < ~ 1% between 

immobile and mobile molecules. Therefore, any molecular motions during individual frames 

were considered to be minimal and no such corrections were applied.   

Figure 6.9B plots the arithmetic mean of the D values obtained from the mobile population 

of molecules in Figure 6.8. These results depict a seemingly very complex dependence of D on 

both gradient position and ambient RH. The 16% RH data yields the smallest D values along 

much of the gradient.  However, these same data also exhibit a clear increase in D running from 

the CN end to the C8 end (black squares in Figure 6.9B). Note that this trend is in opposition to 

that observed for the population of mobile molecules, which was smaller at the C8 end (Figure 

6.9A). While the origins of this difference are uncertain at present, it may reflect a gradual 

reduction in the viscosity of the water layer condensed over hydrophobic regions of the 

gradient.
134

 It may also arise from increased confinement of the molecular motions to smaller 

wet regions towards the C8 end.   



101 

As the humidity is increased to 65% RH, the D values along the full length of the gradient 

are generally larger, as might be expected from literature reports of transitions from ice-like to 

liquid-like water on hydrophilic surfaces, with increasing RH.
125,142

 However, the spatial 

dependence in D is no longer monotonic and instead exhibits an initial increase with distance 

from the CN end, followed by a subsequent decrease towards the C8 end (blue squares in Figure 

6.9B). When the humidity is further increased to 95%, the D values obtained are somewhat 

smaller (on average) than those at 65% RH and also appear to exhibit a different trend with 

position. While these trends are difficult to explain, they may arise from a variety of effects 

including variations in 1) the nature of the condensed water layer from ice-like (or structured) to 

liquid-like,
125,137,138,142

  2) the spatial extent of confinement due to changes in wet-island 

morphology, and 3) the mechanisms governing mass transport at different positions and RH 

values. The latter possibility is explored in more detail, below. 

 

6.3.4.3 Mechanistic insights into single molecule diffusion. In the majority of SMT 

studies of diffusion in thin films reported to date, the data have been analyzed under the 

assumption that molecular motion follows a Fickian mechanism, with the MSD increasing 

linearly in time (see equation 6.2). However, molecular motion at interfaces and on surfaces 

may also (or instead) involve a desorption-mediated diffusion mechanism that mimics Levy 

processes.
142,170-173

 The desorption-mediated diffusion mechanism differs from Fickian diffusion 

in that the molecules are largely immobile on the sample surface and only become mobile when 

they briefly desorb into the neighboring solution. The molecules then quickly readsorb to the 

surface. The diffusion time steps in this case are exponentially distributed, producing clear 

changes in certain characteristics of molecular motion.   
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Evidence for the participation of both Fickian and desorption-mediated diffusion 

mechanisms was obtained by further analysis of the SMT data. While MSD plots (see Figure 

6.7) are expected to be linear in time for Fickian diffusion, they exhibit a super-diffusive t
3/2

 

dependence for desorption-mediated diffusion.
170-172

 Unfortunately, such behavior is often 

masked by nonidealities in the MSD plots due to statistical uncertainties brought about by finite 

trajectory lengths or the history of molecular motion along each trajectory.
149,167

 Figure 6.7 

depicts some of this complexity as the MSD plot for the mobile molecule deviates from linearity 

at longer times.  

More clear evidence for Fickian and desorption-mediated diffusion was obtained by 

plotting single-frame step size distributions for the individual trajectories. Fickian diffusion is 

expected to produce step sizes with a Rayleigh-like population distribution.
149

  

 

          
 

   
      

 

 
 
  

   
      (Fickian Diffusion)        (6.3) 

 

Here, A is a fitting constant, t is the measurement time (in this case, the frame time was 0.547 s), 

and r is the step size (absolute value). In contrast, desorption-mediated diffusion produces a 

population distribution characterized by a Cauchy-like function (in two dimensions)
170-172

      

 

        
     

             
          (Desorption-Mediated Diffusion)      (6.4) 

 

with       , in which  is the “retention time” of molecules on the surface, A is a fitting 

constant and r is again the step size.    
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Figure 6.10 plots trajectories and step-size distributions for three representative mobile 

molecules.  Molecules following a desorption-mediated diffusion mechanism are expected to 

exhibit a characteristic tail to large step sizes that is absent for Fickian diffusion.
170-172

  

Comparison of the three data sets shown in Figure 6.10 reveals that the distributions in Figures 

6.10B,C incorporate these long tails, while Figure 6.10A does not.  Note that it is not possible to 

track C11OPDI molecules diffusing through bulk water (D > 100 µm
2
/s) under the present 

conditions. However, for very thin (a few nm thick) films of water, the long step sizes are 

believed to be produced by brief excursions into the water layer, followed by rapid readsorption 

to the SAM surface.
170-172

 The very short time spent in the water makes the step sizes sufficiently 

short such that tracking of the molecule is still possible. In regions with thicker water layers, 

particularly long excursions may lead to termination of certain trajectories and a corresponding 

reduction in the population of long steps. A less commonly noted characteristic of desorption-

mediated diffusion is that it should also produce a much greater population of short step sizes, 

leading to a shift in the peak of the distribution to smaller values. Again, comparison of the three 

data sets in Figure 6.10 shows that panels B and C also incorporate relatively more short steps, 

as expected. As a caveat, it should be noted that both short and long steps might also be produced 

by molecules exchanging between ice-like and liquid-like layers of water.
125,142

 It is not possible 

at present to conclusively discount this possibility. However, as the hydrophobic dye appears to 

interact more strongly with the hydrophobic end of the gradient, the desorption-mediated 

mechanism is concluded to be most likely.  
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Figure 6.10 Representative single molecule trajectories (insets) and step size distributions 

obtained from these trajectories for A) a single molecule near the CN end of a gradient at 65% 

RH, B) another near the CN end at 95% RH and C) a third near the C8 end at 95% RH. All scale 

bars are 250 nm in length. The blue lines depict fits to equations 6.3 and 6.4 in each case as 

solid and dashed lines, respectively. The results are attributed to Fickian diffusion in A) and 

desorption mediated diffusion in B), C).   

 

  For a more quantitative assessment of the diffusion mechanism, each step-size distribution 

was fit to both equations 6.3 and 6.4 and the best fitting model was used to assign the dominant 

mechanism (either Fickian or desorption-mediated diffusion). Specifically, the fitting equation 
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that produced the smallest 
2
 was chosen as the most appropriate model. In this case, only those 

trajectories ≥ 30 frames in length were analyzed as shorter trajectories contained too few steps.  

From this analysis, Figure 6.10A is assigned to Fickian diffusion while Figures 6.10B,C are 

classified as desorption-mediated diffusion. It is noteworthy that Ag nanoclusters have also 

recently been reported to exhibit desorption-mediated (i.e., “stick-and-slide”) diffusion in thin 

water layers on silica surfaces.
142

 In fact, a significant population of molecules in the present 

studies shows only relatively small differences in 
2
 for the two fitting equations, making the 

assignment unclear in many cases and possibly consistent with hybrid behavior.   

The observation of desorption-mediated diffusion in these studies points to the important 

role played by dye-surface interactions in governing molecular motion. Hydrophobic interactions 

between the dye and SAM film are expected to be most prevalent near the C8 end of the 

gradient, and at high RH, where there is appreciable water on the gradient surface. Therefore, 

desorption-mediated diffusion is expected to be more common under these conditions. Indeed a 

clear trend towards increased contributions from the latter (at > 99.99% confidence) is found 

near the C8 end of the gradient at 95% RH.  Figure 6.11 plots these results. Unfortunately, the 

population of mobile molecules was too small to obtain detectable trends at 16% and 65% RH, 

particularly towards the C8 end of the gradient (data not shown). Due to broadening of the 

ensemble distributions (data not shown), no attempt was made to use these results to 

quantitatively assess the contributions from each mechanism.     
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Figure 6.11 Mean fraction of mobile molecules classified as exhibiting desorption-mediated 

(Levy) diffusion as a function of position along a CN-C8 SAM gradient at 95% RH. The error 

bars depict the standard deviation from five replicate videos in each case. The solid line was 

added to better depict the trends in the data.  

  

The change in mechanism from Fickian to desorption-mediated diffusion provides a 

possible explanation for at least some of the complex, non-monotonic trends in apparent D 

values shown in Figure 6.9B, as a function of position and ambient RH. Specifically, the 

increased and variable contributions of short and long step sizes for desorption-mediated 

diffusion makes it difficult to assign a meaningful mean D value to the associated molecular 

motions. With respect to the anomalous reduction in D between 65% and 95% RH, this 

observation is explained by the greater population of short step sizes brought about by increased 

contributions from desorption-mediated diffusion at 95% RH.  

 

 6.4 Conclusion 

In summary, this chapter repots the single molecule tracking studies of mass transport in 

water layers condensed from the ambient atmosphere onto opposed two-component gradient 



107 

self-assembled monolayers. The gradient SAMs were prepared by controlled vapor phase 

deposition of CN- and C8-silane precursors. Ellipsometric measurements showed that the 

condensed water layer was present along the entire length of the gradient, including at the 

hydrophobic C8 end. Tapping mode AFM data revealed that the water layer was heterogeneous, 

being comprised of micrometer-sized wet islands surrounded by “dry” regions near the CN end.  

The presence of water could not be detected by AFM at the C8 end, possibly indicating a 

transition from wet islands to hemispherical droplets of water.    

Single molecule tracking experiments were used to investigate the diffusion of a 

hydrophobic C11OPDI probe dye on the gradient surface, in the presence of the condensed water 

layer. These results demonstrated that the water layer facilitated dye diffusion. The population of 

mobile molecules was found to increase with increasing ambient RH and with increasing 

hydrophilicity along each gradient. The apparent probe molecule diffusion coefficients obtained 

from the SMT data exhibited complex, non-monotonic trends with position and humidity.  

Careful analysis of the trajectory data and single-frame step size distributions revealed that both 

Fickian and desorption-mediated (Levy) diffusion mechanisms contribute to the molecular 

motions. Desorption-mediated diffusion generally became more prevalent with increasing 

hydrophobicity along the gradient surface at high RH.   

An improved understanding of the mechanisms by which molecules move about on SAM-

coated substrates, especially when they are exposed to the ambient atmosphere will facilitate 

their development for use in molecular electronics, optics, bio/chemical sensors, as models for 

biological membranes, and as a means to control corrosion, friction and surface wear.  
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Water Droplets on Wettability Gradient Surfaces 

Reproduced from Giri, D.;
 
Li, Z.;

 
Ashraf, K.M.; Collinson, M.M.;

 
Higgins, D.A. Molecular 

Combing of λ-DNA using Self-Propelled Water Droplets on Wettability Gradient Surfaces. 

Manuscript submitted for publication in ACS Appl. Mater. Interfaces 

 

 7.1 Introduction 

Surface immobilization, elongation and alignment of DNA are required for a wide variety 

of genomic and biophysical investigations. Included are optical mapping and DNA 

barcoding,
174,175

 biophysical studies of DNA stability
175,176

 and replication,
175,177

 and 

investigations of DNA-protein interactions.
178-180

 A number of methods have been developed for 

manipulating DNA in this manner. These include the use of optical tweezers,
181,182

 microfluidic 

devices,
183

 and electrical,
184

  magnetic
185

 and shear flow
186,187

 forces. Of these methods, those 

based on solution flow are the most easily implemented under general circumstances. Many such 

procedures build upon the original description of molecular combing,
188

 in which DNA 

molecules are elongated by the receding meniscus of a water film. In the closely related method 

of dynamic molecular combing,
189

 DNA elongation is induced by withdrawing a substrate from a 

DNA solution. Alternative procedures based on the mechanical manipulation of DNA-containing 

liquid droplets have also been reported.
190,191

 The simplest such method involves depositing a 

droplet of DNA solution on a hydrophobic surface and allowing the droplet to evaporate.
192

 In 

this case, DNA elongation and alignment occur in the radial direction during droplet evaporation.  

When alignment of the DNA along a particular direction is required, the surface can be tilted to 
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induce directional droplet motion and DNA elongation.
193

 To date, such methods have largely 

required the application of an external stimulus (i.e., dipping or tilting of the substrate, or 

pumping of the solution) to drive solution motion. 

In this chapter, the manipulation of DNA molecules using water droplets that move 

spontaneously along surface wettability gradients is demonstrated. Chemical gradients comprise 

surfaces or films that incorporate gradually changing chemical and/or physical properties in one 

or more directions. Comprehensive accounts describing the preparation, characterization and 

general utility of such gradients can be found in recent reviews.
1-3

 Chemical gradients find broad 

utility in combinatorial materials chemistry,
194

 high-throughput screening of surface-molecule 

interactions,
195,196

 and for inducing and controlling the motion of liquid droplets,
12,197,198

 

cells,
33,199

 vesicles
31

 and nanoparticles.
27

  

Here, wettability gradients are prepared by vapor phase deposition of octyltrichlorosilane 

and fluorinated octytrichlorosilane.
12

 Small droplets of water placed on the hydrophobic end of 

these gradients spontaneously move towards the hydrophilic end. DNA molecules contained 

within these droplets are adsorbed on the hydrophobic gradient surface and are also elongated 

and aligned during droplet motion. The mechanism behind DNA elongation and alignment, the 

position dependence of adsorbed DNA density, the length of the elongated DNA molecules and 

their orientations in the film plane are all explored. 

The implementation of chemical gradients for the elongation and alignment of DNA may 

aid in the development of inexpensive, disposable and automated microfluidic
183,200,201

 and 

nanofluidic
202

 DNA barcoding devices with applications in the rapid detection and identification 

of biological contamination. With spontaneous, gradient-driven liquid motion, the pumps usually 

required to drive solution motion in fluidic devices could be eliminated. Motivation for the 
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present work comes from previous demonstrations of spontaneous droplet motion on gradient 

surfaces. Early examples include work by Chaudhury and Whitesides,
12

 in which a drop of water 

was shown to move a few millimeters along a wettability gradient. In later work,
203

 a fluorinated 

silane gradient was used to reduce surface friction and enhance droplet motion. 

 

 7.2 Experimental Considerations 

 

7.2.1 Sample Preparation. Surface wettability gradients were prepared by vapor phase 

deposition (VPD)
12

 of appropriate organochlorosilane precursors. VPD was performed under 

controlled relative humidity (RH ~ 60%), with the precursors deposited onto silica-base-layer 

coated glass and silicon substrates.
8,43

 The details of base-layer coating and gradient preparation 

are described in Chapter 4. Two precursor silanes were used for gradient preparation. These 

were n-octyltrichlorosilane (C8-silane) and a fluorinated n-octytrichlorosilane (trichloro-

[1H,1H,2H,2H-perfluoro-octyl]silane, F-silane). The C8-silane and F-silane were diluted 1:11 

and 1:21, respectively, by volume, in paraffin oil prior to use. VPD involved directional exposure 

of the substrates to vapor from the C8- and F-silane for 4 min and 3 min, respectively. All 

depositions were performed in a closed Plexiglas chamber that allowed for VPD in the absence 

of air currents. 

The -DNA employed in these studies (48,502 base pairs) was obtained from New England 

BioLabs. Elongation and alignment of the DNA molecules was explored by wide-field 

fluorescence microscopy. For this purpose, the -DNA was labeled with YOYO-1 (Invitrogen), a 

fluorescent DNA intercalator.
204

 The dye:base-pair ratio in the labeled DNA was 1:15 and was 

kept low to avoid changes in DNA length caused by the dye.
186

  Adsorption of the DNA to the 
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gradient surface was accomplished by placing 2 µL droplets of 40 pM -DNA in 1 mM 

phosphate buffered saline (PBS) solution (pH = 5.6) on each gradient, near its hydrophobic end.  

The droplet spontaneously moved towards the hydrophilic end immediately after coming into 

contact with the gradient surface. 

 

7.2.2 Gradient Characterization.  Evidence of film deposition was obtained from sessile 

drop water contact angle measurements. In these studies, 1.0 µL droplets of high purity water 

were placed at approximately equally spaced intervals along each gradient. Digital images of the 

droplets were recorded using a CCD camera attached to a Navitar zoom lens. An ImageJ 

software routine
159

 was used to measure the water contact angle from the images. Previous 

reports of spontaneous water droplet motion along wettability gradients have demonstrated that a 

contact-angle hysteresis of ≤ 10
o
 is required to achieve droplet motion.

12
 Evidence that this 

condition was met in the present studies was obtained from Wilhelmy plate based measurements 

of the dynamic water contact angle made on substrates coated with gradients on both sides.  

Spectroscopic ellipsometry was used to determine gradient film thickness. Gradient films in this 

case were prepared on silica-base-layer coated silicon substrates. The use of silicon substrates 

afforded the signal levels necessary for detection of monolayer and submonolayer films.   

The microscope employed to record fluorescence images of the surface-bound YOYO-1 

labeled DNA molecules has been described previously, in detail.
43

 Briefly, wide-field images of 

the DNA molecules were acquired using blue laser light (488 nm, ~ 1 mW) for fluorescence 

excitation. The laser light was first directed through a spinning optical diffuser, reflected from an 

appropriate dichroic mirror, and then focused into the back aperture of the water immersion 

objective (Nikon, 40X, 1.15 numerical aperture) used for sample illumination. Fluorescence 
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from the sample was collected using the same objective, in the epi-illumination geometry. The 

fluorescence was separated from residual laser light by passage back through the dichroic mirror 

and through an appropriate bandpass filter. After additional optical magnification of ~ 2.3X, 

fluorescence images were recorded on an electron-multiplying CCD camera, operated in 

conventional gain mode. The image pixel size was calibrated using fluorescent polystyrene 

beads. By this method, the 2 X 2-binned pixels in the images were determined to be 330 X 330 

nm
2
 in size. The fluorescence images obtained were all background subtracted and flattened 

using a rolling ball method (25 pixel ball radius) and subsequently subjected to a Gaussian 

smoothing routine ( = 1 pixel width), using software written in house. All DNA analysis was 

performed using the ImageJ software package. 

 

 7.3 Results and Discussion 

 

7.3.1 Gradient Characterization. Sessile drop water contact angle measurements were 

used to verify that a wettability gradient was obtained after VPD of each silane. Figure 7.1A 

depicts representative results. Contact angle measurements could not be obtained from the initial 

steep portion of each gradient, because the droplets spontaneously moved down the surface in 

this region. Dynamic contact angle data were also obtained from the gradients, by the Wilhelmy 

plate method. An example of the results obtained is depicted in Figure 7.1B. These data yield 

contact angles that are similar to those of the sessile drop measurements, although they were 

obtained from a different gradient. Most importantly, they reveal that the contact angle hysteresis 

was ≤ 10
o
 over a distance of ~ 6 mm from the high C8-silane end.

12
 This distance corresponds 

well with the distance over which the droplets were observed to move.  



113 

 

Figure 7.1 A) Representative sessile drop water contact angle (WCA) data obtained along C8- 

and F-silane gradients.  Each data point shows the average of three measurements made across 

the film at three different locations.  The error bars depict the standard deviation of these 

measurements.  B) Representative dynamic WCA results along a different C8-silane gradient, 

coated on both sides of the substrate. The upper and lower traces represent advancing and 

receding contact angles, respectively, for three consecutive cycles. The dynamic WCA data were 

acquired by Kayesh Ashraf, Virginia Commonwealth University, on sample prepared at Kansas 

State University.     

 

Figure 7.2 shows the displacement of droplet (2 µL) over time extracted from the video of 

droplet motion. In the video, the droplet once deposited on hydrophobic end, spontaneously 

moved toward the hydrophilic end.  
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Figure 7.2 Displacement of a 2µL droplet of DNA containing solution as it moved from 

hydrophobic (C8) end toward the hydrophilic (silica) end. Each images was acquired from the 

video recorded during the droplet motion.  

 

Figure 7.3 represents the Ellipsometric measurements of thickness along the gradients. The 

data revealed that the average film thickness near the hydrophobic end of a C8-silane gradient 

was ~ 1.3 nm. The film thickness gradually decreased down the gradient and became negligible 

at a distance of ~ 10 mm from the C8-silane end. The 1.3 nm film thickness is similar to the 1.1 

nm thickness expected for a monolayer of well-packed C8 chains oriented perpendicular to the 

film surface. 
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Figure 7.3 Ellipsometric film thickness along a C8-silane gradient, demonstrating transformation 

of surface coverage from approximately one monolayer on the left to the uncoated silica base 

layer on the right.   

 

7.3.2 DNA Imaging Studies. In studies of DNA adsorption, elongation and alignment, 2 

µL droplets of 40 pM -DNA in PBS solution were placed ~ 5 mm from the substrate edge, on 

the C8-silane end of the gradient. The droplets placed at this position initially moved rapidly (~ 4 

mm/s) down the gradient before slowing to lower velocity (~ 0.1 mm/s) and subsequently 

stopping. The droplets moved a total distance of ~ 4 mm after first contacting the gradient 

surface. Similar droplet motion was also observed along the F-silane gradient. Replicate data sets 

were acquired from each of the gradients by depositing three droplets at separations of 4 mm 

along a line running perpendicular to the gradient axis.  

Wide-field fluorescence images of surface-adsorbed YOYO-1 labeled DNA molecules 

were acquired along the gradients beginning from the position where the droplet was first 

deposited. Subsequent images were obtained by moving down the droplet path, towards the point 

where the droplet stopped. Several hundred images were acquired from five C8- and F-silane 
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gradients. Images were not acquired from the final droplet position, because a large quantity of 

DNA was deposited at this location, as the droplet evaporated.   

Figure 7.4 depicts representative images of YOYO-1 labeled -DNA on the gradients 

investigated. Shown are images acquired near the hydrophobic end (Figure 7.4A) and near the 

hydrophilic end (Figure 7.4B) of a C8-silane gradient. Also shown are images from a F-silane 

gradient at the hydrophobic end (Figure 7.4C) and another from a C8-silane gradient in the 

absence of -DNA (Figure 7.4D). Based on the microscope calibration described in 

Experimental Considerations, the size of the region depicted in each fluorescence image was ~ 

73 x 73 µm
2
. In all cases, the gradients were oriented from right (hydrophobic end) to left 

(hydrophilic end) on the images. Linear fluorescent features ascribed to elongated λ-DNA 

molecules were observed in images of all samples on which dye-labeled DNA-containing 

droplets had been deposited. The blank shown in Figure 7.4D demonstrates that no elongated 

fluorescent features were found in the absence of λ-DNA. 

The imaging results show that DNA molecules deposited on the C8-silane gradient 

(Figures 7.4A,B) were generally elongated in the expected direction (right to left). DNA 

alignment in this direction was most frequently observed in central regions of the gradient (i.e., 

nearest its center line) and nearest the center of each droplet as it moved down the gradient.  

Deviations from this orientation were commonly observed off the gradient central axis and as a 

function of distance from the droplet center (see Figures 7.4B,C). These issues are addressed 

further, below, as they provide evidence for the mechanism of DNA elongation and alignment.  
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Figure 7.4 A), B) Representative fluorescence images of elongated λ-DNA from near the 

hydrophobic and hydrophilic ends, respectively, on a C8-silane gradient. C) Image of λ-DNA on 

a F-silane gradient. The DNA in panels A) - C) was deposited by a spontaneously moving 

droplet. The original droplet motion was from right to left along the horizontal axis on each 

image. D) Fluorescence image from a region traversed by a YOYO-1 doped droplet in the 

absence of λ-DNA. A scale bar is shown in panel A, this same scale bar applies to all images.  

The color scale depicts fluorescence counts. In panels A), C), and D), the signal ranges from 50 - 

1250 counts (black - white), while in panel B) the maximum value is 2000 counts. The white 

arrow shown in A) points to a "hairpin-like" molecule. All images were background subtracted 

and flattened to compensate for the Gaussian profile in the fluorescence signal caused by sample 

illumination through the water immersion objective. The background visible around the edges of 

panel C) is an artifact due to image flattening. A Gaussian smooth ( = 1 pixel width) was also 

applied to enhance the signal-to-noise ratio of the images.     

 

The density of -DNA adsorbed to the gradient surface was quantitatively assessed by 

manually counting the number of DNA molecules found in each image. The mean number of 
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DNA molecules in each image is plotted as a function of position along representative C8- and 

F-silane gradients in Figure 7.5A. The results show a significant, approximately eight-fold 

reduction in the density of DNA on the F-silane gradient, compared to that observed on the C8-

silane gradient. This difference between the C8- and F-silane gradients is likely due to the 

omniphobic character of perfluorinated films,
205

 and demonstrates that the F-silane surface is not 

well suited to combing of DNA.   

In addition to its dependence on the silane precursor employed, the density of adsorbed 

DNA also exhibits a clear dependence on position along each gradient (see Figure 7.5A). These 

results indicate that hydrophobic interactions between the DNA molecules and gradient surface 

play an important role in governing DNA adsorption. Towards the hydrophilic end, fewer 

hydrocarbon groups are available to interact with the DNA and fewer molecules attach to the 

surface as a result. Such effects are well known, as has been reported in the literature.
206,207

  

Because of the dramatically lower density of adsorbed DNA on the F-silane gradients, no further 

analysis of the data from these surfaces is reported here.  

The extent of DNA elongation and alignment along the C8-silane gradients were quantified 

by manually measuring the length and orientation of each molecule in the film plane. Figure 

7.4B provides histograms showing the distribution of DNA lengths as a function of position 

along a representative C8-silane gradient. The full contour length of the λ-DNA employed is 

16.5 µm,
186

 while its persistence length and radius of gyration are only ~ 50 nm and ~ 0.8 µm, 

respectively.
208

 The distributions shown in Figure 7.4B are all peaked near ~ 6 µm, indicating 

that the most common DNA molecules are elongated to ~ 40% of their full length, under the 

present conditions. These same data yield an arithmetic mean DNA length of ~ 11 µm (see 

Figure 7.4A), corresponding to ~ 70% of the full contour length. 
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Figure 7.5 A) Mean DNA counts (per image, 73 X 73 µm
2
) from five replicate images as a 

function of position along C8-silane and F-silane gradients. Also shown is the mean DNA 

contour length along the C8-silane gradient. The error bars depict the 95% confidence intervals.  

The solid lines have been appended to better depict the trends. The DNA density is observed to 

decrease with decreasing surface hydrophobicity at > 99.9% confidence, while the trend towards 

shorter DNA molecules is only detected at 95% confidence. B)  Histograms showing DNA 

length distributions as a function of position along a C8-silane gradient.  
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The histograms depicted in Figure 7.5B demonstrate that the DNA length distributions are 

relatively broad. Many molecules appear to be much shorter than the most common length, while 

some appear to be longer than the full contour length. The appearance of relatively short DNA 

molecules has at least two possible origins. First, it is clear that as the DNA solutions age, 

fragmentation of the DNA leads to a shortening of the molecules. To help avoid these 

contributions, fresh DNA solutions were used in the present studies and all DNA solutions were 

stored in a refrigerator prior to use. Unfortunately, fragmentation of the DNA could not be 

completely avoided and some of the DNA molecules appeared shorter, even when fresh solutions 

prepared from new DNA samples were employed. The presence of these shorter molecules has 

previously been attributed to their fragmentation during handling.
188

 Second, the images obtained 

reveal that some DNA molecules attach to the gradient surface at both ends. In this case, the 

DNA folds back on itself while it is being elongated, forming "hairpin-like" strands exhibiting a 

clear "loop" at the down-gradient end of the DNA molecule. Such "hairpin-like" structures have 

been reported previously
209

 and were also observed in the fluorescence images acquired for the 

present studies (see white arrow in Figure 7.4A). When easily detected, these molecules have 

been removed from the data and are not included in Figure 7.5. However, in situations where the 

folded arms of the DNA strand are too close together to be resolved, no "loop" is observed.  

Instead, the close proximity of the two arms leads to an image that is brighter than that of the 

fully unfolded strand. Two DNA strands that have been shortened by fragmentation and are 

fortuitously found near each other produce a similar effect. Because of the reliance on human 

judgment in distinguishing such molecules, they have not been removed from the data set and are 

included in the histograms shown in Figure 7.5. Their presence leads to an apparent shortening 

of the overall population of elongated DNA molecules.    
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The appearance of DNA molecules that are longer than the maximum expected length 

(16.5 µm) is also easily explained and has been reported widely in the literature.
186,188,192

 For 

example, it is known that DNA molecules can be overstretched, resulting in a change in their 

conformation, and in their maximum length.
210

 Indeed, the forces acting on the DNA during its 

elongation in the present studies are expected to be relatively strong
188

 compared to those needed 

to "overstretch" -DNA.
181

 Furthermore, as noted above, two or more individual DNA molecules 

may adsorb to the gradient surface in close proximity so that their images cannot be resolved.  

Again, such overlapped DNA strands produce an image that is brighter than expected for an 

isolated molecule. While the occurrence of these overlapped strands is often easily identified in 

the fluorescence images (i.e., the brightest strands in Figure 7.4), nonuniformity in the 

fluorescence intensity resulting from the use of epi-illumination methods and imperfections in 

the incident laser field preclude their quantitative removal. As a result, none of these have been 

removed from the histograms shown in Figure 7.5B. 

Figure 7.5A plots the mean length of the DNA molecules in the histograms shown in 

Figure 7.5B. As with the DNA density data, the mean length of the DNA molecules is also 

found to decrease from the hydrophobic to hydrophilic ends of the gradient. A statistical test 

performed on the slope of the trend line indicates that it is significant at the 95% confidence 

level. The observed trend has two likely origins. First, it is possible that the aforementioned 

overlapped DNA molecules bias the results to larger values at the hydrophobic end. As the 

density of adsorbed DNA decreases, their occurrence becomes less common and the average 

molecular length becomes shorter. Second, the relatively longer DNA molecules found near the 

hydrophobic end of the gradient suggest a shear-force mechanism for DNA elongation. In this 

case, the forces active during elongation are defined by the velocity profile (or gradient) within 
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the liquid droplet, near the solution-surface interface. As the droplet slows, the velocity gradient 

becomes less significant, the forces acting upon the DNA become smaller, and the molecules are 

less elongated as a result. For reasons discussed below, it is believed the position-dependent 

decrease in DNA length in Figure 7.5A is dominated by the decrease in DNA density, rather 

than by a change in droplet velocity.    

The alignment of the DNA molecules observed along a line running perpendicular to the 

gradient axis also exhibits a monotonic trend with position. Figure 7.6 depicts representative 

images and histograms showing the observed trend. With a volume of 2 µL and a contact angle 

of ~ 70
o
 (estimated from the receding contact angle in Figure 7.1B) the radius of the circular 

contact line formed between a hemispherical water droplet and the gradient surface would be 

0.54 mm, as described in Appendix. The data in Figure 7.6 were acquired at 0.2 (± 0.1) mm 

intervals across the gradient width, beneath the pathway of a single droplet. The same trend was 

found at all other positions investigated along the length of this gradient, as well as in replicate 

measurements made on different gradients prepared in the same manner. The results show that 

DNA alignment depends upon the lateral distance of each location from the center of the droplet, 

as it moved down the gradient. DNA alignment was found to be parallel to the direction of 

droplet motion for central droplet regions. Towards the outer edges of the droplet, substantial 

characteristic deviations in the DNA orientation were observed. The top and bottom histograms 

shown in Figure 7.6 provide relevant examples of the latter. The top and bottom histograms 

were derived from images acquired at ± 0.4 mm from the droplet center. In contrast, the images 

acquired at ± 0.2 mm show markedly smaller deviations from the DNA alignment near the center 

of the droplet (0.0 mm in Figure 7.6). This behavior is very similar to that reported in previous 

publications on non-gradient materials.
183,188
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Figure 7.6 Histograms showing DNA alignment in the film plane, as a function of position 

across the droplet pathway.  These data were acquired at the high C8-silane end of a gradient.  

The insets show the images from which each histogram is derived and were acquired at 0.2 mm 

spacings for one droplet placed near the gradient centerline.  A scale bar is shown in the top 

panel.  This same scale bar applies to all images.  The color scale depicts fluorescence counts 

ranging from zero to 10
3
 counts per pixel in each image.   
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The results shown in Figure 7.6 are consistent with alignment of the DNA molecules 

perpendicular to the contact line at the trailing edge of the water droplet as it moved down the 

gradient. Under the circumstances mentioned above, the DNA molecules should be aligned at 

angles of ± 47.8
o
 at a distance of ± 0.4 mm from the droplet center (see Appendix), while mean 

angles of + 39.9
o
 and -33.8

o
 are obtained from the data in Figure 7.6.  Likewise, at ± 0.2 mm, the 

expected DNA alignment angles are ± 21.7
o
. The data in Figure 7.6 give mean values of + 4.6

o
 

and - 12.5
o
 in this case. The differences between the measured and expected values are readily 

explained by both experimental and theoretical challenges. For example, the error in determining 

the exact location of each image is estimated to be ± 0.1 mm, giving up to ~ 10
o
 to 15

o
 errors in 

the expected DNA orientation at ± 0.2 mm and ± 0.4 mm distances, respectively. Furthermore, 

the DNA is elongated by a moving droplet, while a model for a static hemispherical droplet was 

used to estimate DNA alignment. Deviations from a hemispherical droplet shape also arise from 

the presence of the gradient itself, which causes the contact angle to vary with position.      

The results described above nevertheless provide clear evidence for the mechanism of 

DNA adsorption, alignment and elongation as the droplet moves down the gradient. Figure 7.7A 

provides a pictorial model for this mechanism. Briefly, the first step in DNA elongation and 

alignment involves attachment of (at least) one of the strand ends to the hydrophobic surface.
206

  

As the droplet moves down the gradient, the remainder of the DNA strand is pulled through the 

water-air interface. The force imparted on the DNA by the surface tension at this interface leads 

to its elongation. Alignment of the DNA along the direction perpendicular to the droplet-surface 

contact line arises because the net force on the DNA is oriented in this direction.
188

 Were the 

molecules elongated by shear forces due to droplet motion alone, all the DNA molecules would 

instead align parallel to the direction of droplet motion, regardless of position within the droplet.  
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Figure 7.7 A)  Model for deposition of aligned DNA (red lines, not drawn to scale) from the 

trailing edge of a moving droplet (gray circle, ~ 1 mm diameter). DNA adsorbed to the surface at 

one of its ends is elongated and aligned by surface tension forces imparted on the molecule as it 

is pulled through the water-air interface. B) Model for vapor diffusion during gradient 

deposition. The contour lines depict log(concentration), in arbitrary units, for the precursor. The 

white square shows the location of the substrate and its size (25.4 mm x 25.4 mm). The white 

arrows depict the steepest direction (perpendicular to the contour lines) along the gradient at 

different positions. The reservoir is at the top of the simulated region, above the white square.  

  

As a caveat to the above discussion, it should be noted that some deviation in the direction 

of droplet motion was also observed across the gradient surface, particularly when droplets were 
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placed off the gradient centerline. Deviations in the droplet direction with distance from the 

gradient central axis that result from curvature in the gradient profile produced by the curved 

vapor diffusion front emanating from the precursor reservoir during film formation. To 

demonstrate this effect, finite difference time domain methods were employed to solve Fick's 

Second Law in two dimensions, using a model of the deposition apparatus. Details are given in 

the Appendix. The results are shown in Figure 7.7B. The contour lines shown depict the 

aforementioned curvature. The water droplets were found to move along the steepest wettability 

gradient, i.e. perpendicular to the contour lines (see white arrows) at different positions across 

the gradient.  

The surface-tension mechanism for DNA alignment produces elongated DNA that is very 

well oriented in the film plane, with the vast majority of molecules in each image aligning 

parallel to one another. Assessment of the degree of DNA alignment was performed by 

calculating a 2D order parameter for the DNA molecules in each image. The order parameter in 

this case is defined by <P> = (2<cos
2> - 1),

211
 where  represents the tilt of each DNA 

molecule from the local mean angle,   , and the brackets (< >) indicate that the average across all 

observed DNA molecules is calculated. Perfect alignment of the molecules would give <P> = 1, 

while randomly oriented molecules would yield <P> = 0. The results shown in Figure 7.6 all 

yield <P> > 0.99. These results indicate that the DNA molecules are all very well aligned with 

little distribution in their in-plane orientation angles, exactly as would be expected when the 

results of DNA deposition by a macroscopic droplet are observed locally under a microscope.    
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 7.4 Conclusion 

In conclusion, the use of wettability gradients for molecular combing has been demonstrated. 

Unlike in more common methods where the sample is tilted or withdrawn from a solution to 

produce a moving meniscus that elongates the DNA, the DNA-containing water droplets in the 

present studies moved spontaneously along the gradient surface from hydrophobic to hydrophilic 

regions, leaving elongated DNA molecules in their path. DNA elongation and alignment were 

shown to occur by a previously reported surface-tension-driven mechanism.
188

 The DNA was 

elongated to ~ 70% of its full contour length, on average, and DNA alignment was found to be 

perpendicular to the droplet-gradient contact line. The preparation of surfaces that can be used to 

manipulate DNA and other biomolecules in the absence of external stimuli promise to facilitate 

the development of fully automated, inexpensive, disposable devices for the analysis of genetic 

rearrangements and instabilities associated with cancer, in studies of protein-DNA interactions
175

 

and in detection and identification of microbial hazards. 
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Chapter 8 - General Conclusion and Future Direction 

 8.1 General Conclusion 

This dissertation presents applications of SMS to quantitatively measure the nanoscale 

polarity of sol-gel derived thin film gradients. SMT is also used to examine the mass transport 

dynamics of probe molecules on gradient SAM films under ambient humidity conditions. Both 

single-molecule techniques (SMS & SMT) have emerged as powerful means to study the 

nanoscale properties and the transport dynamics associated with thin-film chemical gradients.  

These properties would be otherwise obscured by conventional ensemble-based techniques. The 

use of highly sensitive fluorescent dyes, laser excitation sources, a highly sensitive detector, 

selective optics and high-throughput data analysis all come together to allow for single 

molecules to be detected with spatial resolution well beyond the diffraction limit of light, 

allowing for super-resolution characterization of the samples by single-molecule techniques. In 

particular, the ability to locate fluorescent molecules with very high precision, and to study their 

emission characteristics from the localized molecules allow for both the properties and transport 

dynamics associated with thin- film gradient materials to be studied at the nanoscale.   

In Chapter 5, sol-gel based IWDC was employed to prepare a macroscopic thin-film 

gradient in polarity by using polar and nonpolar organosilane precursors. An empirical relation 

between the fluorescence of solvatochromic Nile Red and the solvent polarity was established by 

calibration of the wide-field microscope. This relationship was extended to obtain the 

microscopic polarity in the form of the CM factor from the fluorescence of individual Nile Red 

molecules doped into the thin-film gradients. SMS characterization indicates the polarity of the 

gradient film is highly variable, changing on length scales of a few nanometers to a few 

micrometers. Compilation of microscopic polarity data in the form of histograms further 
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provided the polarity distribution along the gradient film. The technique also revealed evidence 

of phase-separation in the mid-region along the gradient. Some of the polarity data determined 

outside the range of CM factor showed evidence of specific film-dye interactions, possibly 

through H-bonding.  

In Chapter 6, macroscopic wettability gradients derived from SAM films were prepared 

by vapor-phase deposition of hydrophobic and hydrophilic organochlorosilane precursors. 

Ellipsometric thickness measurements and AFM images acquired along the gradient films under 

different humidity conditions confirmed the condensation of nanoscale water on their surfaces. 

Mass transport of a hydrophobic PDI dye in the water layer condensed over the gradient SAM 

was studied by employing SMT. Trajectories for each of the PDI molecules were generated by 

linking the single molecule positions frame to frame. Further analyses of the trajectories were 

carried out in order to calculate the step-size, mean square displacement and diffusion 

coefficient. The results indicate an increase in population of mobile molecules with an increase 

in both the SAM wettability and the RH of the environment. Furthermore, molecules found in 

the hydrophilic region were shown to follow a Fickian (Brownian) diffusion mechanism while 

those at the hydrophobic end exhibited desorption-mediated Levy diffusion. A complex trend in 

the evolution of the diffusion coefficient along the gradient was also found under each humidity 

condition. 

In Chapter 7, the ability of steep wettability gradients to drive the motions of water 

droplets was utilized, for the first time, in the spontaneous combing of DNA molecules. For this 

purpose wettability gradients prepared by using C8-silane and fluorinated C8-silane were 

employed. The DNA molecules were found to stretch in the direction of droplet motion from the 

hydrophobic end toward the hydrophilic end along both gradients. A decreasing density of 
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elongated DNA was found toward the regions of higher wettability in both gradients. However, 

the density of elongated DNA on gradient from fluorinated C8-silane was much smaller 

compared to that from C8-silane. In addition, DNA molecule were aligned perpendicular to the 

gradient-droplet contact line. The results on DNA alignment reveal the surface tension forces 

mainly responsible for the DNA elongation with negligible effect of shear forces.   

This dissertation also reports different methods for the preparation of macroscale thin-

film chemical gradients. The research work was also directed towards understanding the effects 

of various processing conditions on the overall quality and reproducibility of the thin-film 

gradient materials, and their optimization. The use of thin-film chemical gradients in 

combinatorial materials research was clearly demonstrated in this dissertation. Here, thin-film 

gradients served as combinatorial libraries to measure the properties of materials having a wide 

range of chemical compositions along a single sample in a high-throughput manner.  

 

 8.2 Future Direction 

Thin-film chemical gradients have provided more convenient and practical ways to carry 

out combinatorial material research in addition to their ability to drive mass transport relevant in 

many applications. Current research is mostly focused on controlling gradient properties at the 

macroscale. However, the use of gradients as functional materials in many applications depends 

upon their molecular properties at the nanoscale. Therefore, future effort needs to be directed 

towards controlling the nanoscale properties of thin-film chemical gradients.  

In the first study of this dissertation, the rate of infusion of TMOS and that of withdrawal 

of waste were increased in five minute intervals during IWDC. As a result, the degree of 

continuous change in composition of the binary sol also increased in a stepwise manner. This, in 
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turn, is likely to cause the gradient steepness to change in a stepwise (distinct) fashion. In order 

to produce a smooth change in properties along a gradient that has a single steepness, the rates of 

infusion and withdrawal during IWDC could instead be programmed in ramps. This would 

produce a binary sol whose composition changes in a continuous and smooth manner. 

The SMS characterization of nanoscale properties of gradient SAM films could assist in 

the designing of better molecularly engineered surfaces. However, the monolayer thickness of 

these SAM films make their characterization difficult as the fluorescent probes need to be 

incorporated within the film in order to respond to the film properties. There is limited 

knowledge regarding the effects of SAM film thickness on the emissive response of the 

fluorescent probes. Therefore, a systematic study in which the fluorescence is measured as a 

function of SAM film thickness would be very useful in determining the optimum thickness of 

such films for SMS characterization. 

In sol-gel based dip coating techniques such as IWDC, the rates of infusion and 

withdrawal can be programmed so as to produce a gradient of desired steepness. Such control 

over the gradient steepness is very difficult in VPD of the gradient SAMs. However, experiments 

aimed at exploring the effect of two key parameters on gradient steepness, the silane to substrate 

separation and the exposure time during VPD would be highly useful.   
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                                                             Appendix 

  

 1. Error Analysis for Single Molecule Emission Ratio Data. 

The individual fluorescent spots produced by single molecule emission are fit to Gaussian 

intensity profiles to determine the location of each molecule, the spot width, and its peak 

emission. The fits yield the signal amplitude for each spot and these values are used directly as 

I640 and I590 to calculate the emission ratio, E, and the Clausius-Mossotti (CM) factor. The width 

of the spot is obtained as the standard deviation and is designated as , below. Accounting for 

shot noise in the photon signal and in the background, b, the variance in the fitted amplitude, dI
2 , 

can be estimated for each channel as follows-
212
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Assuming the noise in the 640 nm and 590 nm channels is uncorrelated, the variance in E value 

is then estimated as- 
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The average background, b, was estimated to be 144 counts. The spot width, , is ~ 1.2 

pixels. Given the above values, the standard deviation in E is estimated to be         , for 
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nominal peak signals, I640 and I590, of ~100 counts each. Error estimates reported in the 

manuscript were determined from the experimental data in each case. 

 

  2. Finite Difference Time Domain Simulations of Vapor Diffusion Front. 

          The vapor diffusion front during VPD was simulated by numerically solving Fick's Second 

Law in two dimensions. The model for the deposition chamber included a 25.4 mm long 

rectangular reservoir. The simulation cells were 0.254 mm X 0.254 mm in size. The time step 

employed was 0.01 s and the diffusion coefficient of the precursor silane was estimated to be ~ 

0.025 cm
2
/s. Periodic boundary conditions were employed at the substrate end (top edge in 

Figure 7.7B, Chapter 7), while the vapor concentration was set to zero on the other three sides 

of the region. The simulation was run out to a time of 60 s. The log of the concentration 

(arbitrary) units was obtained and is plotted in Figure 7.7B. 

 

3. Estimation of Droplet Radius and Expected DNA Orientation. 

          The radius of the circular contact line for a hemispherical water droplet on the gradient 

surface was estimated by modeling the droplet as a spherical cap derived from a sphere of radius, 

R, as defined in equation A3. 

 

    
     

                
 
   

  (A3) 

 

Here, Vcap is the volume of water placed on the surface, and  is the measured water contact 

angle. For a 2 µL droplet and a contact angle of 70
o
, R = 0.57 mm. The radius, r, of the circular 

contact line on the surface is then obtained by simple trigonometry- 
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           (A4) 

 

For the above conditions, r ~ 0.54 mm. Finally, the expected orientation, , of the DNA (a line 

perpendicular to the droplet-surface contact line), measured relative to the direction of droplet 

motion, is determined from equation A5. 

 

         
 

 
   (A5) 

 

where d is the distance from the droplet centerline. At distances of ± 0.2 mm and ± 0.4 mm,   = 

± 21.7
o
 and ± 47.8

o
, respectively.     
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