

Gestural musical interfaces using real time machine learning

by

Sai Sandeep Dasari

B.E., Osmania University, 2015

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2018

 Approved by:

Major Professor

Dr. William H. Hsu

Copyright

© Sai Sandeep Dasari 2018.

Abstract

We present gestural music instruments and interfaces that aid musicians and

audio engineers to express themselves efficiently. While we have mastered building

a wide variety of physical instruments, the quest for virtual instruments and sound

synthesis is on the rise. Virtual instruments are essentially software that enable

musicians to interact with a sound module in the computer. Since the invention of

MIDI (Musical Instrument Digital Interface), devices and interfaces to interact with

sound modules such as keyboards, drum machines, joysticks, mixing and mastering

systems have been flooding the music industry.

Research in the past decade gone one step further in interacting through

simple musical gestures to create, shape and arrange music in real time. Machine

learning is a powerful tool that can be smartly used to teach simple gestures to the

interface. The ability to teach innovative gestures and shape the way a sound module

behaves unleashes the untapped creativity of an artist. Timed music and multimedia

programs such as Max/MSP/Jitter along with machine learning techniques open

gateways to embodied musical experiences without physical touch. This master's

report presents my research, observations and how this interdisciplinary field of

research could be used to study wider neuroscience problems such as embodied music

cognition and human-computer interactions.

iv

Table of Contents

List of Figures... vi
List of Tables ... vii
Acknowledgements .. viii
Preface .. ix
Chapter 1 - Introduction .. 1
Chapter 2 - Background and Related Work .. 4

2.1 History of electronic music interfaces ... 4
2.1.1 Theremin (1920) .. 4
2.1.2 MIDI (1980-1983).. 5

2.2 Hardware and software applications .. 7
2.1.3 Audio engineering and software .. 7
2.1.4 Sensors and microcontrollers ... 10

2.3 Hand Gesture Recognition ... 12
2.3.1 Recognize static gestural patterns .. 14
2.3.2 Machine Learning ... 15

2.3.2.1 Classification .. 15
2.3.2.2 Support Vector Machines .. 16
2.3.2.3 Performance metrics ... 19

2.4 Related Work .. 20
Chapter 3 - Proposed Model .. 24

3.1 Data Flow... 24
3.2 Capturing motion data ... 25
3.3 Receive data and organize training pipelines: .. 25

3.3.1 Simple gestures and controller button interfacing ... 25
3.3.2 Feature Engineering .. 26
3.3.3 Train and Deploy Framework .. 27

3.4 MIDI processing module .. 27
3.5 Digital Audio Workstations ... 28

Chapter 4 - Experiment.. 30
4.1 Interfacing sensors with the programming language Max/MSP 31
4.2 Processing data into pitch, velocity and gestures... 33
4.3 Machine Learning model.. 35

4.3.1 Feature Engineering .. 35
4.3.2 Why Support Vector Machines? .. 35
4.3.3 Training and mapping the model .. 36

4.4 Creating MIDI triggers and Control Changes .. 37
4.4.1 Alternative uses of gestural interfaces. ... 38

Chapter 5 - Results and Future Work .. 40
5.1 Results .. 40

5.1.1 SVM Model Performance .. 41
5.2 Future Work .. 43

Chapter 6 - Conclusion ... 45

v

References .. 47

vi

List of Figures

Figure 2.1 A modern Theremin design used in the classic Star Wars theme............... 4
Figure 2.2 Akai APK Mini MIDI controller .. 6
Figure 3.1 Data Flow Chart ... 24
Figure 4.1 Position of palm in X-Y direction generates note .. 34
Figure 4.2 Gestures for triads visualized in Jitter ... 37
Figure 4.3 Use pinch gesture to create control changes .. 39
Figure 5.1 Confusion matrix calculated for the SVM gesture recognition model 41

vii

List of Tables

Table 2.1 MIDI notes and their relationships to different names and frequencies 7
Table 4.1 Experimental prototypes .. 30
Table 5.1 Performance metrics for macro averaging .. 42

viii

Acknowledgements

Pursuing this field of research was both emotionally and intellectually

satisfying experience for me. I would like to thank my major professor Dr. William H.

Hsu (Department of Computer Science) for his continued support and his

knowledgeable mentorship throughout my Master’s program. I would also like to

thank my research professor Dr. Carlos Castellanos (Department of Art) for inspiring

me to pursue interdisciplinary research and being a support outside my major. Lastly,

I’d like to thank my committee/course professors and my family, friends for being a

supportive community.

 A special word of appreciation to everyone in the local music community at

KState and Manhattan, KS that engaged in constructive criticism and made me enjoy

my study and music here.

ix

Preface

The idea to pursue this project of building virtual instrument came from my

experiences of recording and producing music from a small bedroom. I have always

had a passion for anything to do with music. My Master’s program at Kansas State

University and my research experiences working with Department of Arts pushed me

to deeply understand the science and technology behind musical instruments, mixing

and mastering. I took a keener interest towards audio engineering and machine

learning and eventually that culminated in an interdisciplinary research featuring

audio physics, arts, machine learning, embedded microcontrollers and neuroscience.

This report presents my methodology to build gestural virtual music

instruments, the experiments designed, the observed results and further research in

related fields. Chapter 1 introduces the idea of history of MIDI, electronic music and

virtual instruments. It explains the evolution of music and the need for smarter

interfaces to express ourselves, further reinforces the idea of teaching your interface

to do more than one purpose (playing, mixing or mastering). Chapter 2 dives into

similar research in the recent past and in other related fields i.e. human-computer

interaction, machine learning, audio Engineering, and electronic music. I also present

my previous attempts to work on similar projects for a course project (CIS 721) and

how I plan to improve on the project. Chapter 3 presents my holistic idea to bring

musical interfaces controlled by gestures on a user’s laptop running a Digital Audio

Workstation such as Ableton Live. This chapter talks about how the instrument can

be put together with hardware, software programming, gathering data, training the

x

machine learning model and using the real time predictions. Chapter 4 presents the

actual experiment conducted in MAX/MSP and Ableton Live using a Leap Motion

controller, individual controls achieved on the console and how I interfaced a WiiMote

with accelerometer readings to define and learn new gestures. Chapter 5 presents the

results of the experiment, feasibility and accuracy of the model and how intensive the

CPU usage is.

Through the course of the report, I have actively experimented with multiple

interfaces including Arduino, Raspberry Pi and game controllers. I have also tested

various arrangements within the program to set up MIDI note triggers and control

changes on the DAW. I will be primarily reporting on the simplest one that I felt is a

quick and easy instrument to master. The complex versions take more practice to

master, but have a wide ocean of sound synthesis potential making them ideal for

other forms of audio such as film scoring, visual experience audio design,

experimental art installations and neuroscience. This report lets me proudly present

all my hours of passion and research about new ways to create musical interfaces and

experiences.

Chapter 1 - Introduction

Sound is one of the essentials of human experience and recorded sounds i.e.

audio lets us communicate with each other anywhere around the world, which makes

it a very important form of evolution through the years. Music has been a universal

language for centuries now and has been exponentially evolving.

 The invention of recording sciences in the 20th century gave us a way to store

or share sound and music on a portable device. What followed was the beginning of a

whole new industry of music. These recording and sharing services are really

mediation technologies that we have invented for ourselves to express art. Over the

past 60 years, there have been a huge number of new instruments, interfaces,

recording, signal processing techniques. A good majority of these inventions are based

on analog electronics and signal processing. With growing processing power and

robust computing facilities, there is active research around the world in the music

industry to emulate acoustic and analog sounds digitally. The work in this field opens

an ocean of unexplored sounds that I could generated digitally. Computer-based

technologies such as digital signal processing, machine learning, human-computer

interaction, and audio synthesis open creative paths for artists, musicians and

audio/game engineers to generate and use sound innovatively.

Creatively tying down all the above powerful tools, we can come up with

elegant processes to build virtual instruments and design music for a wide range of

experiences. One such application that is widely researched and developed as we

speak is gestural musical interfaces. As with anything related to audio and music,

2

there is no single solution that works for every musician or audio engineer. Gestural

musical interfaces are mere brushes for an artist to express himself. They can only

be designed to be used in an abstract way. What the artist/musician does with the

interface is purely subjective and creates the real essence of music in general.

Gestural musical interfaces usually use some type of sensor to read the

environment and generate changes in the program to shape sound. The program

essentially polls the user’s actions and generate responses in the program. Actions

are actively processed and recorded into the program so they can be recognized by the

program. These actions or recognized gestures are varied and can be used to trigger

any parameter in general according to the artist. Marc Leman (2008) in his book [1]

talks about how the action-based interface and gestural interfaces bridge the gap

between physical and mental perception of sound. Embodied music cognition is a

major field of neuroscience that studies the role of human body in relation to all

musical activities.

Gestural interfaces give an opportunity to let the artist explore sound and

sound parameters in their own space via creative gestures. Like any other interface

or instrument, however a gestural interface also has obvious limitations. By

increasing the number of sensors and how they interact with a human body, a

complete embodied musical experience can be created.

In this research experiment, I focus on the hand gestures of an artist to create

a flexible instrument to play, control and mix music parameters in a Digital Audio

Workstation. All the sound generated is virtual and there is no physical instrument

3

to touch. The actual design of the interface was inspired from classic USB MIDI

keyboards made by AKAI. The instrument sends out MIDI triggers, control changes,

pitch bends and any other MIDI data on specific channels to the DAW. Any DAW like

Ableton Live is flexible in mapping the buttons in whichever way possible. The

mapping of the triggers usually depends on the artist and what the artist wants to

achieve ranging between performance, production, arrangement, mixing and

mastering. The instrument also features easy to use code modules that let the user

train gestures that they would want to use for a specific song or a show. Since all the

modules of the instrument is strictly computer generated, the gestures and settings

can be easily tucked into presets for convenient usage later.

While these gestural interfaces do pose a steep learning curve and a new way

to look at music, they do unleash creative musical experiences and can easily be used

to generate alternative sounds such as film scoring, meditative audio therapy, dance

generated music etc, if not the regular commercial music. They also give us a

potential tool to study and understand neuroscience problems such as embodied

music cognition and human-computer interaction to make art.

4

Chapter 2 - Background and Related Work

2.1 History of electronic music interfaces

2.1.1 Theremin (1920)

Touch free music instruments go back to as early as the 1920s when Leon Theremin,

a Russian and soviet inventor used a variable capacitor circuit to control pitch and

volume of an oscillator to generate amplified sound. This instrument was totally

hands free as it needed no physical contact. The hands acted as ground plates in the

variable capacitor circuit. The distance of the hands from 2 antennae determine the

pitch and volume. The Theremin was very successful and used in many major scores,

the most famous score being the Star Wars theme song. Inventors around the world

over the course of next 100 years have been continuously evolving and developing

models using similar circuits such as light sensitive resistors, sonar rangers or

infrared distance detection.

Figure 2.1 A modern Theremin design used in the classic Star Wars theme

5

2.1.2 MIDI (1980-1983)

In the early 1980s, there were wide variety of electronic music instruments

and interfaces already manufactured by different companies and being used.

However, there was no standardized means of synchronizing them. This need for a

universal communication standard pushed a bunch of audio engineers and technology

enthusiasts to come together and build a standardized protocol called MIDI or

Musical Instrument Digital Interface. The MIDI protocol created opportunities for

many other companies to develop innovative interfaces such as the sequencer,

sampler, DJ console, looping machines, mixing consoles and mostly recently MIDI

interfaces to control parameters within a program. MIDI stood the test of time and

invention, improved speeds and utilities through USB and now even wireless. Open

Sound Control (OSC) [2] is a protocol for wireless communication between electronic

instruments over network ports in the form of UDP packets. Simply put, OSC is the

wireless version of MIDI and can be used to develop innovative and portable MIDI

technologies. OSC is still being actively developed by CNMAT, UC Berkeley.

6

MIDI is a huge subject of study in itself, interested reader is referred to “The

Complete MIDI 1.0 specification” [3].

Figure 2.2 Akai APK Mini MIDI controller

The gist of the MIDI standard can be summarised by Table 2.1 (below), consisiting of

MIDI notes and how they can be related with frequency of sound. Any MIDI note

ranges between 0 – 127. The table presents only one octave of the notes. Ever since,

MIDI has been actively used in pretty much every gaming controller, music interface

or wireless device to transmit and receive data from the device.

7

Table 2.1 MIDI notes and their relationships to different names and frequencies

MIDI note

number

Key number

(Piano)

Note names

(English)

Frequency

(Equal tuning at

440 Hz)

48 28 C3 130.81

49 29 C#3/Db3 138.59

50 30 D3 146.83

51 31 D#3/Eb3 155.56

52 32 E3 164.81

53 33 F3 174.61

54 34 F#3/Gb3 185.00

55 35 G3 196.00

56 36 G#3/Ab3 207.65

57 37 A3 220.00

58 38 A#3/Bb3 233.08

59 39 B3 246.94

60 40 C4 261.63

2.2 Hardware and software applications

2.1.3 Audio engineering and software

Once a robust communication protocol for music interfaces is set up, embedded

computers and microcontrollers burst onto the scene. Inventors came up with small

portable devices with microcontrollers and circuits built in that could generate sound

or transmit data to another computer.

Taking it further, programmers began to develop software being developed

specifically to edit music such as Digital Audio Workstations, or mix and play music

8

(DJing software), music composing software, and MIDI plugins.

Figure 2.3 A screenshot of workflow in Ableton Live

Among all the developed software for computer music, one category that stood

apart is that of audio programming languages such as Max/MSP, Pure Data, ChucK,

SuperCollider. These programming languages bridged the gap between audio

engineers, electronic engineers and programmers to come together and develop

complete instruments that serve multiple purposes.

Max/MSP/Jitter: Max is a visual programming language for music and multimedia

developed and maintained by Cycling’74. The program is modular with most routines

9

existing as shared libraries and makes it very easy to create shareable modules or

abstractions. Understanding the purpose of building a programming language to

control music and multimedia is key to developing efficient and usable interfaces. The

programming approaches in Max are modular and very well thought out right from

the beginning as written in detail by the inventor, Miller Puckette, in [4] and [5].

 Cycling’74 is known for their community of developers which is a major part of

surviving the competition through the years.

Max can be viewed as a dataflow programming language as the patch cords visually

translate data between the modules and sub modules. The design was inspired from

patch cords used in modular analog synths built in the 70s and 80s.

Figure 2.4 Programming patch in Max/MSP

10

A wide range of sensors and hardware controllers are easy to set up and communicate

with Max/MSP through MIDI or OSC. Once the data is received by Max, it can be

processed just like any other programming language. The processed data is used to

create triggers in an instrument or interface to achieve virtually anything that a

regular controller can do. The flexibility and the ease of development makes Max a

powerful and efficient tool for musicians, performers, art enthusiasts and most

importantly audio engineers / programmers.

Jitter is a matrix of data used to create pixels of visualization from within Max/MSP.

Jitter is actively used to create visual interfaces for the program.

2.1.4 Sensors and microcontrollers

The key to building virtual instruments or specifically touch free music is robust

sensors that capture information about the musician and relay it to the processing

modules in real time. The synthesizers use the buttons of the keyboard as sensors.

Sensors from other sciences such as heartrate sensors, piezoelectric sensors,

ultrasonic rangers, light sensitive resistors are all actively used to capture data to

build an instrument.

To build gestural interfaces, there is a strong need to capture motion data from the

user. The problem of capturing motion data expands to many other fields of

technology. Powerful cameras form a major portion of these sensors. Flexible stress

11

sensitive hand sensors are an expensive but strong contenders to capture gesture

data from human hands.

Leap Motion: Leap Motion is a computer hardware sensor that supports hand and

finger motions as input and has seen active applications in human-computer

interactions, hands free graphical user interface, hardware movements, virtual

reality, gaming etc. Leap Motion uses simple IR cameras to track finger joints and

hands. Being a relatively cheap option for tracking data, a rising number of

researchers use Leap Motion as the tool to track fingers and hands to create

interfaces.

Figure 2.5 Hardware of a Leapmotion

The Leap Motion sensor has 2 cameras and 3 infrared LEDs that can track infrared

light with a wavelength of 850 nanometers, which is outside the visible light

spectrum. Also, the interaction area is about 8 cubic feet and can be seen as an

inverted pyramid in Figure 2.5 below.

12

`

Figure 2.6 Interaction Area

Wiimote: The WiiMote is the primary controller for Nintendo Wii console. The

Wiimote is mostly known for the motion sensing capability, which allows users to

interact with and manipulate items on screen via gesture recognition and pointing

using accelerometer and optical sensor technology. Although it was primarily made

only to be used as a game controller with the Wii console, developers and hackers

quickly found ways to relay Wiimote messages on OSC and MIDI. The accelerometer

readings and optical sensor technology made it ideal to collect continuous data to

train models and recognize gestures.

2.3 Hand Gesture Recognition

Hand gestures are simple movements of the hands. Gestures can be classified

into

13

1. Static Gestures: Gestures that do not take the movement of the hands into account

and are solely dependent on the static positions of the fingers or joint relative to

each other.

2. Dynamic Gestures: Free flowing movements of the hands over a short time creates

a complete dynamic gesture.

This experiment does not research dynamic gestures, as they are a much difficult

problem to solve. Also, the dynamic movements would compromise the pitch and

velocity of the note held. Instead, this experiment focuses on using static gestures

and simple motion tracking on a virtual scale laid out in front of the user.

Using sensors, hand movements can be tracked accurately over time. The sensors

create streams of data continuously at each frame of view. The collected data can be

processed and pattern matched against an already recorded gesture. Gestures can be

recognized either through static machine learning algorithms or dynamically using

machine learning.

14

Figure 2.7 Simple gesture of a closed fist

2.3.1 Recognize static gestural patterns

Certain gestures such as pointing an index finger or a closed fist can be easily

programmed to be recognized using features of the sensors. These patterns are not

complex to recognize as they have a definite form of occurrence. For example, a closed

fist always has the same distances between fingers no matter how the hand is held.

It is possible to design an algorithm to recognize such simpler gestures robustly and

quickly without compromising on processing power for quick changes during music.

These easy to track and simpler gestures should be used to control parameters that

need quick feedback and precise control. For vague or complicated gestures, machine

learning techniques should be used.

15

2.3.2 Machine Learning

Quoting Arthur Samuel, an American pioneer in the field of computer gaming

and artificial intelligence from 1959 “Machine learning is a field of artificial

intelligence that uses statistical techniques to give computer systems the ability to

‘learn’ from data, without being explicitly programmed.” Machine learning requires

data in large amounts to show the ability to learn. Although, machine learning and

statistics have been around for active research from the past 60 odd years,

applications of machine learning in music have been rare, except a few experimental

art installations. However, with powerful computers that can process and store data

streams efficiently, machine learning models have been everywhere including arts

and music.

Machine learning with Max/MSP was a novel idea already researched in detail

in [6]. ml.lib is an open source max and pure data object for employing a wide range

of machine learning algorithms within Max and Pure Data. Specifically, it is a

wrapper written around Nick Gillian’s Gesture Recognition toolkit [7] in C++.

2.3.2.1 Classification

 Precise sensors that capture motion data are critical to the functioning of an

efficient machine learning model. In the application of gestural music instruments,

an efficient machine learning algorithm is a perfect tool to recognize and map

patterns in sensor data as gestures. The problem of recognizing gestures and

translating them to musical changes can be viewed as a classification problem in

16

machine learning. The gestures in this problem are translated into classes to be

recognized and the streams of data from the sensors are translated into feature data

required to train on.

Basic classification algorithms such as logistic regression, naïve bayes

classifier or decision trees work efficiently depending on the feature data. These

simpler techniques are ideal as we have complete transparency to understand exactly

what the algorithm is doing. However, these basic classifiers are limited in

functionality only to linearly separable data. If the gestures involve complex features

that are separable only by a non-linear hyperplane, a non-linear method involving

some type of transformation needs to be applied to your input dataset. Slightly more

advanced techniques such as support vector machines (SVMs) using kernel tricks do

a great job in solving classification problems which have a complex relationship

between the data and the class of the gesture.

2.3.2.2 Support Vector Machines

Support vector machine is a classification method that works on the principle

of fitting a boundary to a region of points which belong to a certain class. It is a

powerful algorithm to solve classification problems with complex data. SVMs have

been used in for solving gesture recognition problems as early as the paper [17]

“Vision Based Static Hand Gesture Recognition using Support Vector Machines”.

 The SVM only requires data points at the boundaries of a class. Once the

boundaries of a class are defined, most of the internal training data is redundant.

17

These data points closer to the boundaries are called support vectors. The boundary

is generally a hyperplane of N-1 dimensions where N is the number of features in the

dataset. The actual boundary line or the classifier can be denoted by the equation

𝑤𝑇𝑥 + 𝑏 = 0

The boundary line has a thickness or wideness called the margin denoted by ‘d’. The

two hyperplanes H1 and H2 on either side of the boundary line can be denoted by

 𝑤𝑇𝑥 + 𝑏 ≥ +1 or 𝑤𝑇𝑥 + 𝑏 ≥ 0 𝑓𝑜𝑟 𝑑𝑖 = +1 … . . 𝐻1

 𝑤𝑇𝑥 + 𝑏 ≤ −1 or 𝑤𝑇𝑥 + 𝑏 ≤ 0 𝑓𝑜𝑟 𝑑𝑖 = −1 … . . 𝐻2

where w is a weight vector

 x is input vector

 b is bias

The optimization scheme of the entire algorithm is to maximize this margin.

SVM classification models cannot be visualized by humans once the dimensional

feature space has more than 4 dimensions. A simple classification plot (using a linear

kernel) for 2 dimensional feature space classified into 2 classes is shown below in

Figure 2.7.

18

Figure 2.8 SVM classification of a 2 dimensional feature space with 2 classes

 SVMs have 3 main tuning parameters that are critical to maximising the

margin ‘d’

1. Kernel: Choosing a kernel decides how the feature data is transformed for the

classification. The idea is to gain a linear separation by mapping the data to a

higher dimensional space.

Linear kernel : 𝒇(𝒙) = 𝑩(𝟎) + ∑(𝒂𝒊 ∗ (𝒙, 𝒙𝒊))

Polynomial kernel : 𝑲(𝒙, 𝒙𝒊) = 𝟏 + ∑(𝒙 ∗ 𝒙𝒊)
𝒅 where d is degree

Radial Basis kernel: 𝑲(𝒙, 𝒙𝒊) = 𝐞𝐱𝐩 (
−(𝒙−𝒙𝒊)^𝟐

𝟐𝝈𝝈𝟐)

Where x is the input vector and

19

x_i is each support vector

2. Regularization (C) : This parameter (often termed as C parameter in python’s

sklearn library) tells the SVM optimization how much you want to avoid

misclassifying each training example.

3. Gamma: The gamma parameter defines how far the influence of a single

training example reaches, with low values meaning ‘far’ and high values

meaning ‘close’.

To understand SVMs in detail, refer [8]

2.3.2.3 Performance metrics

Generally, machine learning algorithms are verified using performance

metrics such as accuracy, precision, recall. Once a machine learning algorithm is run

i.e. predictions are made on new feature data with 2 possible classes positive and

negative, the predictions each belong to one of the following four classes:

1. true positives TP (number of correctly classified positive examples)

2. true negatives TN (number of correctly classified negative examples)

3. false positives FP (number of negative examples falsely classified as positive)

4. false negatives FN (number of negative examples falsely classified as positive)

Then Accuracy = TP + TN / TP + TN + FP + FN

Accuracy can be misleading if TP and TN are imbalanced. Hence, precision and recall

are used to calculate F-measure.

Precision = TP / TP + FP

20

Recall = TP / TP + FN

F-measure is the harmonic mean of precision and recall. There is often a trade off

between recall and precision when data suffer from the class imbalance problem.

F-measure = 2 * precision * recall/ precision + recall

However, when there are more than 2 predicted classes, the performance metrics are

generalized for the multi-class scenario and micro and macro averages are used to

calculate the precision and recall.

In micro averaging, precision and recall are calculated for individual classes.

Assuming a model has k classes,

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒊𝒄𝒓𝒐 = 𝑻𝑷𝟏 + 𝑻𝑷𝟐 + ⋯ + 𝑻𝑷𝒌 + 𝑭𝑷𝟏 + 𝑭𝑷𝟐 + ⋯ + 𝑭𝑷𝒌

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒊𝒄𝒓𝒐 = 𝑻𝑷𝟏 + 𝑻𝑷𝟐 + ⋯ + 𝑻𝑷𝒌 + 𝑭𝑵𝟏 + 𝑭𝑵𝟐 + ⋯ + 𝑭𝑵𝒌

In macro averaging, the average of the performance of all the clases are taken

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒂𝒄𝒓𝒐 =
𝑷𝒓𝒆𝟏+ 𝑷𝒓𝒆𝟐+⋯+ 𝑷𝒓𝒆𝒌

𝒌

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒂𝒄𝒓𝒐 =
𝑹𝒆𝒄𝟏+ 𝑹𝒆𝒄𝟐+⋯+ 𝑹𝒆𝒄𝒌

𝒌

2.4 Related Work

Brain Opera [9]

Using sensors to translate gestures into machine understandable data is a

long-standing problem solved up to a certain extent. However, the exact application

of using gestures to interface with a music instrument in real time is relatively new.

Joseph A. Paradiso from the MIT Media Laboratory experimented with gestural

21

sensors for musical interaction and performance very early in 1996. Brain Opera

created participatory electronic musical installations using embedded systems, MIDI

systems and computers to enable the users to interact with the computers. These

installations were built on multiple sensors that are pressure sensors, sonar rangers,

touch sensors, tactile sensors and optical trackers. The data from the sensors usually

in voltages is converted into Digital using a regular Analog-to-digital converter and

fed to MIDI systems that generate a pitch and velocity of a note.

Brain Opera used technologies to generate musical experiences primarily

based on electronic circuits and basic MIDI programming. The instruments were

elegantly built with piezoelectric sensors to calculate pressure on a carpet, sonar

rangers to calculate distances. The resulting sounds from the instruments were

arranged to mimic an orchestra of instruments that the audience can interact with.

When the Brain Opera was designed and orchestrated in 1996, embedded computing

and processing itself was in a nascent stage of development.

Therminal C by WaveLicker

 Swiss company WaveLicker develops Theremins that can control analog

synthesizers. The design is simplistic in converting analog voltages into CV and

feeding it into the synthesizer. Theremins usually control the pitch and amplitude of

a wave signal, but this design goes further and controls pretty much anything on the

synthesizer such as Pitch, Amplitude, Filters, LFOs, anything that can be controlled

by an analog voltage. This project does not feature gestures but forms the basis for

22

the need of a Theremin-like synthesizer that can control sound parameters within a

program (in this case, a synthesizer.)

Figure 2.9 MI.MU musical gloves

MI.MU Gloves [10]

Years later, MI.MU gloves burst on to the scene in 2010 at a Ted talk when

Imogen Heap, a musician and technology artist presented a pair of gloves that flexible

sensors that calculated the movement of each joint in the hand. The gloves were a

combination of textiles, electronics, sensors and software made for a professional

artist interested in making complex music. They had multiple versions of the gloves

and professional artists around the world enjoyed the relationship between electronic

23

music and organic hand gestures. The gloves were steeply priced at around 5000$

(excluding the laptop and software) and didn’t make it beyond the odd world tour for

a professional musician. However, the gloves inspired a new field of gestural

interfaces and devices.

 These are some of the projects that were actively studied before designing the

experiment. The current gestural interface would not be possible without the

inspirations and ideas of all the people involved in these projects.

24

Chapter 3 - Proposed Model

3.1 Data Flow

Figure 3.1 Data Flow Chart

25

 3.2 Capturing motion data

The sensors chosen to capture motion data from the user continuously trigger the

data flow. A sensor or controller has multiple triggers that can all be simultaneously

used to switch and change the way the instrument behaves or creates sound. Having

multiple sensors and controllers to capture the data ensures accurate representation

of the gestures. Hence, synchronous timing of the sensors is critical to the data flow.

Usually the sensors or controllers will broadcast the required data either through

USB or OSC on a fixed port number on the network. Data from the sensors can then

be broadcasted to more than one program or system to create various musical or

visual triggers.

 3.3 Receive data and organize training pipelines:

The data received via USB or OSC is processed to either recognize simple gestures or

button presses on the sensor or create a training pipeline of data for the machine

learning models.

3.3.1 Simple gestures and controller button interfacing

Once the data is received in the raw state, it is pre-processed to separate features of

data that can be directly used to interact with the music software. For example, 3-D

co-ordinates can be used to control the pitch and volume of the note in real time

without relying on any prediction or classification. If a controller has buttons or

26

wheels, they are separated from the feature data and used as direct triggers to start

and stop the playback of sound specifically.

 These simple buttons and gestures are a quick and direct way of interacting

with the system. Also, as the recognition of these gestures does not require any

processing or predictions, the lag is virtually unnoticeable for the user. If a musician

or artist needs to immediately mute out a certain sound or module, these first layer

of real time MIDI triggers serve the purpose.

3.3.2 Feature Engineering

For the machine learning algorithm to learn and generalize, it is critical that the

training data is cleaned, pre-processed and engineered to represent the gesture

motion of the hand. Features that do not contribute directly to the formation of a

gesture are discarded. Multiple features that can be aggregated into a single feature

having more direct relationship with a gesture are formed. Raw sensor readings

usually do not have a direct relationship with the gesture class and end up as noisy

data for the algorithm.

For example, to detect the gesture of holding a knob or slider, the relevant features

would be the relative distances between the fingers, relative distances between

fingers and the palm. As the optical sensors can only detect approximate the 3-D

coordinates of the joints, specific feature engineering to convert the coordinates into

relevant features is done in this stage. The feature engineering stage in any machine

learning algorithm defines the efficiency and ability of an algorithm to generalize

27

well. [11] presents a dataset of feature data and how they can be engineered for

efficient use.

3.3.3 Train and Deploy Framework

The feature dataset is now ready to be sent into machine learning model with an

appropriate class labelled on each row. In this module, the parameters of the model

are tweaked before the training begins. The data is stored in collections available to

the model. Training pipelines are always updated if gestures or classes are added or

removed. Once the training completes, the model is set into ‘map’ mode.

During the map mode, new feature data with no class label comes in from the sensors

or controllers, and the model makes a prediction in real time and sends the prediction

gesture out into the MIDI processing module.

 3.4 MIDI processing module

The MIDI processing module is an abstraction that takes in directly recognized

gestures, controller values and predictions and acts upon them. In this module, the

MIDI triggers or control changes are generated based on the movement of the user.

This module can also be referred to as the actual sound generation module in the

entire program.

 Incoming gestures or controller changes are processed and scaled according to

the required need and mapped into a MIDI value. MIDI is always a number between

28

0-127 on a certain channel. This module can also be used to switch between presets

within the program to totally change the functioning of the instrument.

For example, the MIDI processing module can act as a synthesizer or drum sequencer

or mixing interface or a digital pedalboard. This module also adds visualization for

the triggered notes in the program to give the user active feedback. The module will

have a MIDI outlet to transmit the MIDI messages to any virtual instrument or

software that can accept MIDI.

 3.5 Digital Audio Workstations

Digital Audio Workstations (DAWs) are software programs within a computer that

accept MIDI triggers and generate sound or control parameters that shape sound.

DAWs are powerful tools to compose, edit and produce music all together. Many

companies manufacture DAWs that support MIDI and can interface multiple MIDI

interfaces within a computer. Producers around the world use DAWs actively as they

are one-stop solution to all the sound engineering. Most DAWs also come with their

own range of Audio Effects, MIDI effects and VSTs. Some DAWs also allow users to

run free audio applications within the DAW as plugins, making the instrument chain

complete with Digital Signal Processing effects.

 The DAWs generate sound primarily but also, offer a wide variety of output

options from the computer. They offer mixing and mastering options within the

program. Controlling the mixing / mastering parameters with the instrument set to

29

a certain preset will make the production process easier and effective. This

experiment chooses Ableton Live as the DAW due to it’s compatibility with Max/MSP.

30

Chapter 4 - Experiment

Based on the model proposed in Chapter 3, an experiment was designed to develop a

virtual instrument, interface. Like any other developer, I actively tried and built as

many as five prototypes before settling with the current one being presented in this

report. Brief outlines of some of my earlier experimental prototypes and how I made

changes to facilitate a complete robust playable instrument.

Table 4.1 Experimental prototypes

Attributes of the experimental prototypes

Prototype MIDI/

pure

wave

Gestures Range Ease of use

1 Arduino-controlled Theremin

with distance sensors (ultrasonic

ranger or infrared distance sensor)

Pure

wave

No Narrow

range

Easy

2 Leap Motion synthesizer Pure

wave

Yes Geospatial

range

Difficult:

navigating

notes

3 Leap Motion MIDI MIDI Yes Geospatial

range

Moderate:

Continuous

MIDI

trigger

4 Leap Motion MIDI with 2 hands MIDI Yes Geospatial

range on 2

hands

Complex

5 WiiMote MIDI trigger MIDI No Limited Easy

In the above Table 4.1, prototypes and their descriptions are listed along with their

attributes of functioning. A pure wave prototype is a kind of synthesizer and does not

need an external sound module to generate the sound. Earlier designs had no

31

gestures or very simple gestures requiring no machine learning or statistical

learning. The lack of gestures does not make them useless instruments. In fact, an

artist or musician on simple Theremin-like playing will have a great time with the

simpler version. Especially because the Arduino is a small and inexpensive portable

microcontroller. The latter focus on finding the balance between playing MIDI notes

and keep the operation simple and expressive for the user. The last prototype uses a

WiiMote only to trigger notes to emulate the gesture of pressing down and releasing

the keys of the keyboard or piano.

Learning from these experiments, the final model was proposed in Chapter 3.

 4.1 Interfacing sensors with the programming language Max/MSP

Leap Motion is a powerful sensor that has been previously used to solve gesture

recognition problems. The sensors tracks hands frame by frame and produces lists of

timed data for each joint of the hand, palm of the hand and vector data such as

velocity and acceleration. The range of data tracked by the Leap Motion is displayed

in Figure 4.1. For classifying static gestures however, all the lists of data are an

overkill and can lead to overfitting of the model. The Leap Motion is used in the

experiment to control the number and velocity of the note played on a horizontal

keyboard apart from the actual gesture recognition. However, using the Leap Motion

alone continuously triggers MIDI notes with no note holds.

To overcome this challenge, a controller such as Wiimote is used in the experiment.

 The Wiimote can detect button presses on the controller or continuous

32

accelerometer readings. Wiimote is used to hold and release notes like a traditional

keyboard, change settings from the buttons or have simple gestures that control the

pitch bend and tremolo of a note held down. This also ensures that no unwanted notes

are played while moving across the instrument to find the next note. Using these 2

sensors together creates a robust playable instrument with no errors or mishaps

through the music. However, the challenge of synchronizing the sensors to work

simultaneously sits with the programming interface.

Max/MSP has direct objects within the programming language for interfacing

Leap Motion sensor data. However, Leap Motion discontinued their legacy APIs after

version 3. Hence, the experiment will be sticking to the skeletal tracking system in

Leap Motion V2.3. The latest version Leap Motion Orion is a much more advanced

and robust tracking system for developers, however the added overhead of getting the

data into an audio programming language such as Max pushes developers to the

legacy versions.

Orion Beta and future versions may solve potential problems of occlusion and faster

frame rate, which improves the overall gesture prediction model.

OSCulator: OSCulator is a software that links controllers to a music or video

softwares using the Open Sound Control protocol (OSC from Chapter 2). The ease of

use and support for a wide range of wired and wireless controllers makes OSCulator

a perfect tool for developers who do not want to reinvent the wheel in the networking

or interfacing sensors.

33

Connecting a Wiimote to Max/MSP is quick and easy. OSCulator broadcasts

the wiimote controller data as UDP on a specified port. Max receives the data from

the part and triggers the data flow to other modules in the data flow model from listed

in Figure 3.1.

 4.2 Processing data into pitch, velocity and gestures

Data received from the sensors or controllers is cleaned to remove unwanted lists of

data. Simple co-ordinates of fingers and palm are mapped to pitch and velocity

between 0-127 to emulate a MIDI note. The horizontal position of the hand generates

pitch and the vertical position generates velocity of the note.

For the Wiimote, Max/MSP receives UDP packets and translates the toggle messages

from the buttons into simple if-else decisions to trigger direct interactions with the

program. The accelerometer readings are used to control simple pitch bends and

tremolo based on 3-D vector of acceleration. For example, the Wiimote throws out

data about roll, pitch and yaw of the controller when moved in those particular

directions. The instrument uses roll to control the pitch bend of the note in both

directions i.e. Note can be bent up or down and the pitch is used to control the trigger

of a tremolo wave on a note.

34

Figure 4.1 Position of palm in X-Y direction generates note

On the other hand, for the gesture recognition system, feature sets are built or

engineered depending on the kind of gesture to be recognized. Feature sets containing

relevant data are crucial to the working of the machine learning algorithm. Features

that are not directly correlated to the gesture are avoided. Instead multiple features

can be engineered to create a single feature that is strongly correlated to the gesture.

For example, to recognize static gestures to play a major chord, the raw data received

from Leap Motion only has the 3-D coordinates of the joints, fingertips and the palm.

The raw data do not definitely define a major chord when the hand moves around

over the sensor. Instead, if the relative distances between different data point co-

ordinates in the system creates a mutual pattern that can be easily recognized by the

machine learning algorithm.

35

4.3 Machine Learning model

4.3.1 Feature Engineering

A simple feature set was proposed that can be used to easily classify static gestures.

The feature sets used for recognizing gestures for this instrument are

1. Euclidean distances between fingertips and palm center - 5 features

2. Euclidean distances between two adjacent fingers - 4 features

3. Euclidean distances thumb and the other fingers of the hand - 4 features

Thus, a feature set of 13 features is built and fed into the machine learning model as

the training data. A total of 5 gestures are used to interface with the program to

create various MIDI effects.

Hence, each of the 5 gestures are individually trained by recording the shapes into

the training pipeline. The machine learning model then trains on this set of data to

recognize new incoming data as the instrument is played.

4.3.2 Why Support Vector Machines?

To recognize gestures, a classifier is required that can classify complexly related data.

Also, the model needs to classify data into multiple features. For this experiment, a

moderate number of 5 gestures was chosen. From the section 4.1.1, the feature set

representing the data is 13 dimensional dataset, which creates a complex dataset. As

the features are already reduced to represent gestures, simpler classification

algorithms such as decision trees and logistic regression do a bad job in the

classification problem.

36

SVMs are powerful algorithms that look at the edges or the extreme cases in each

class. Thus, enabling the model to classify complex feature spaces. Also, as the

number of features here is lesser than the number of samples, there is no efficiency

problems in training the model. The algorithm is memory efficient as it only works

on the extreme data points or support vectors in each class.

4.3.3 Training and mapping the model

As the experiment is set up with 5 gestures to be recognized, they can seen as

5 different classes. The training data was recorded into the program by performing

each gesture for 10 seconds. All the training data was tagged with one of these 5 class

labels before the data is sent to the training pipeline. All the training data is stored

in a collection for further training pipelines.

Once the training data is set up, the hyper parameters for the SVM model are

chosen. As the feature space is a complex 13-D set, the polynomial kernel was picked

against the linear kernel as the hyperplane has to generalize efficiently. The SVM

model is trained and later set into mapping mode. In this mode, the data recorded

from the sensors comes into the model and at each frame, the SVM model classifies

the gesture data into one of the 5 classes. These 5 class predictions are then sent into

the MIDI processing module where the final mapping of the gestures into MIDI

triggers takes place.

37

 4.4 Creating MIDI triggers and Control Changes

Once the prediction is completed and the raw data from the Leap Motion and Wiimote

are mapped to a MIDI note, the MIDI processing module in the program finally packs

all the midi events into the MIDI out format that an external DAW can understand

and produce sound.

Figure 4.2 Gestures for triads visualized in Jitter

 The five gestures recognized by the model can be used to serve a variety of

purposes. This experiment chose to use the 5 gestures to convert a played note into

either a

• Major triad

• Minor triad

• Diminished triad

• Augmented triad

38

• Single note

The prediction along with the midi note and the Wiimote note hold produces a MIDI

event to play a note in the virtual instrument sitting inside a DAW. However, there

are a number of other ways to use this data. For example, the gestures could be

mapped in a synthesizer to generate different wave forms while holding a note.

4.4.1 Alternative uses of gestural interfaces.

The usage of the instrument or interface is totally based on the musician and the sole

idea came from using MIDI interface boards such as AKAI or Novation which have a

keyboard, a pad board, faders, knobs and other similar interfaces. The keyboard and

pad boards are essentially simple MIDI note triggers, however the faders, knobs are

control changes in MIDI between 0 – 127. These CCs can be used to mix, master and

manipulate parameters inside the DAW. An alternate mode for the instrument was

set up to play pads and move faders using a specific gesture (a pinch gesture to zoom

in) to hold the fader and move it up or down.

39

Figure 4.3 Use pinch gesture to create control changes

The interface is very flexible and mappable according to the user’s requirements and

the idea was to design the device that can be taught how to interpret gestures.

40

Chapter 5 - Results and Future Work

Figure 5.1 Completed gestural interface UI

The completed design has 2 jitter visualizations for a keyboard and a pad surface.

There is a tuner, tremolo and a variable vibrato and gestures displayed as triads.

Also, there is an octave control and the machine learning modules are packed into

sub patches for the interested technical user.

 5.1 Results

This sub-section presents the results of the experiment described in the previous

chapter. The instrument was evaluated for playability, irregular behavior, ease of

navigation and the prediction accuracy of the gesture recognition section.

The addition of the Wiimote to trigger note on and note off makes the system a robust

and reliable instrument getting rid of unintended notes. The UI for the system is

simple and self-explanatory. Hand movements and gestures are visualized using

Jitter, a visual programming module within Max/MSP that stores data and displays

the pixel data on a window. Clear and concise note display and the current triad

playing defines detailed user experience.

41

The machine learning algorithm was tested by generating a confusion matrix.

Initially the model was trained to recognize the 5 gestures and set in ‘Map’ mode. In

the map mode, the model was tested against the actual gestures being played of a

note sheet for simple chord progressions or melodies.

5.1.1 SVM Model Performance

The corresponding confusion matrix as programmed within Max/MSP is shown below

in Figure 5.1. The test framework is built in as a module within the program to help

users evaluate results. As the problem is multi-classification, the performance

measures were adapted by calculating precision, recall and F-score. Refer to Chapter

2.3 for performance metrics used.

Figure 5.1 Confusion matrix calculated for the SVM gesture recognition model

Micro Averaging:

Precision (micro) = 0.97

Recall (micro) = 0.90

F1- measure (micro) = 0.933

42

The performance metrics for the micro averaging show the prediction of the SVM

model is reliable. (F-1 measure is greater than 0.9, a promising value.)

Macro Averaging:

Table 5.1 Performance metrics for macro averaging

Class Precision Recall F1-

measure

1 0.94 0.843 0.884

2 0.964 0.956 0.958

3 0.938 0.518 0.66

4 0.818 0.951 0.876

5 0.844 0.96 0.898

Precision (macro) = 0.90

Recall (macro) = 0.84

F1-measure (macro) = 0.87

Apart from the general results, the experiment posed problems navigating

between the black keys on the keyboard as they are placed narrowly on the keyboard

laid out horizontally across the width of the Leap Motion sensor. After researching,

this was found to be a tracking limitation on the Leap Motion V2.3 and seemed to be

fixed in latter versions of the Leap Motion. However, adding the Wiimote to control

note on and note offs showed great results in creating expressive music when

combined with the tremolo and pitch bend. The combination of these 2 gestures along

with DSP plugins within Ableton Live creates amazing sounds ideal for expressive

film scoring or instrumental pieces or writing complex music in general.

43

5.2 Future Work

Applying machine learning in real time programming to generate predictions is not

a novel idea, known to researchers. Gesture recognition adds a layer of application to

the existing frameworks and makes the field of human-computer interaction

futuristic and continuously evolving. However, the applications extend far beyond

computers and music to neuroscience in studying embodied music cognition and

substitutive senses.

Improve model prediction by using a centralized database:

A low recall and f1-measure can be observed for class 3 as the gesture 3 is very similar

to gesture 2. This is a possible area of improvement for the algorithm. After discussion

with my masters committee, a deep learning model can be used to improve the

accuracy of the model by using data collected from different users. This can be a

different design on the whole that collects data from the users over time and trains

one major model with more gestures and pre-sets. This is a very interesting idea to

focus on in future work.

 Going beyond the result oriented research, I came across Marc Leman’s book

about embodied music cognition. The book inspired ideas to pursue the field of

neuroscience and psychoacoustics to understand perception of sound and how we can

develop and design musical experiences beyond commercial music. Touch free music

instruments and interfaces can improve our tools of expression. Using piezo sensors,

force sensitive resistors, heart beat sensors to define rhythms and patterns in music

can be used to understand the embodied music cognition. Also, much more expressive

44

sensors such as the Microsoft Kinect is known for it’s motion sensing capabilities

more than the gaming console. These tools give us access to data beyond just hands.

The Kinect reads the joints of the human body through the IR camera, and the joint

data can be used to train and understand complex gestures involving dynamic

movements controlling advance sound and light parameters.

 Also, there is active current research in substitutive senses i.e. translating

sound, light into alternative senses such as haptic touch, or other forms of sensory

inputs. This could potentially help the deaf understand sounds. Combined with the

right devices, the deaf could listen, perceive and write music. Another application of

embodied gestural interfaces is creating the ability for the visually impaired to feel

and create music through hand gestures and movements. Proprioception is the ability

to sense the orientation of your body in your environment without consciously

thinking about your spatialization within the environment. Empowering the disabled

to interact and create music or any other form of art is my long term goals in studying

and bringing machine learning, human-computer interaction and music technology

together.

45

Chapter 6 - Conclusion

Like any art form, music technology is also subjective. While there are growing

arguments about the contemporary and electronic music lacking feeling or

expression, any technology behaves the way it is used. Traditionally, orchestras are

led or controlled by the conductor. The best performances or pieces are all heavily

dependent on the conductor’s performance. The gestural interface can be viewed as a

tool for the conductor or the modern music producer to control and express himself

while also playing sections of the music himself. The instrument was built to allow

flexibility of mapping and creating new sounds or even teaching the framework

gestures that you want to incorporate in your playing. Experimentation and

expression come hand in hand, and are subjective to each musician or artist. The

instrument can be used to write musical pieces, score motion pictures or be used art

installations to interact sound, light and bodily movements.

 The results from Chapter 5 represent the accuracy and reliability of the model.

The design along with directly interfacing a physical controller keeps the perfect

balance for the user. The machine learning model is set up in a way to allow the user

to teach new gestures to the instrument relatively easily or change the mapping in

the software. So, a set of repetitive gestures will create different sounds based on the

section of the song (verse, chorus or intro).

 While there is still the problem of misclassification in rapid movements and

the problem of occlusion i.e. Leap Motion does not recognize the hand when it is

obstructed partially or the hand goes outside the region, they can be viewed as

46

physical limitations of the sensors and how expensive the sensors are. Expensive

alternatives such as Microsoft Kinect or the MI.MU gloves add much more robust and

reliable data. There are other relatively inexpensive and easy-to-setup options such

as the source audio Hot Hand which are limited in their functionality. There is always

a tradeoff between the cost and the functionality you would want to achieve in

technology and the area it will be used as with the Wiimote.

 However, the research in this field can be positively expanded to control

drones, machines or anything that we can think of controlling with gestures. From

the perspective of neuroscience, it can be used to study motor relationships with

sound, light and other senses.

Substitutive senses could potentially help physically impaired people to hear,

perceive and play music or converse.

Quoting the composer Louis Spohr who watched Beethoven in a rehearsal in 1814:

"In forte passages the poor deaf man pounded on the keys until the strings jangled,

and in piano he played so softly that whole groups of notes were omitted, so that the

music was unintelligible unless one could look into the pianoforte part. I was deeply

saddened at so hard a fate."

Despite their disabilities, Beethoven and many other artists continued to express

themselves and make art. The tools to express ourselves will always continue to

evolve technologically and artistically.

47

References

1. Marc Leman. 2007. Embodied Music Cognition and Mediation Technology. The

MIT Press.

2. Freed, Adrian & Schmeder, Andy & Zbyszynski, Michael. (2018). Open Sound

Control (OSC) is a protocol for communication among computers, sound

synthesizers, and other multimedia devices that is optimized for modern

networking technology. Compared to protocols such as MIDI, OSC's advantages

include interoperability, accuracy, flexibility, and enhanced organization and

documentation.

3. The Complete MIDI 1.0 Detailed Specification:

https://www.midi.org/specifications-old/item/the-midi-1-0-specification

4. Miller Puckette. 2002. Max at Seventeen. Comput. Music J. 26, 4 (December

2002), 31-43. DOI=http://dx.doi.org/10.1162/014892602320991356

5. Miller Puckette. 2007. The Theory and Technique of Electronic Music. World

Scientific Publishing Co., Inc., River Edge, NJ, USA.

6. Jamie Bullock and Ali Momeni. 2015. ml.lib: Robust, Cross-platform, Open-source

Machine Learning for Max and Pure Data. In Proceedings of the international

conference on New Interfaces for Musical Expression (NIME 2015). The School of

Music and the Center for Computation and Technology (CCT), Louisiana State

University, Baton Rouge, Louisiana, USA, 265-270.

7. Nicholas Gillian and Joseph A. Paradiso. 2014. The gesture recognition toolkit. J.

Mach. Learn. Res. 15, 1 (January 2014), 3483-3487.

8. Ingo Steinwart and Andreas Christmann. 2008. Support Vector Machines (1st

ed.). Springer Publishing Company, Incorporated.

48

9. Paradiso, Joseph. (1999). The Brain Opera Technology: New Instruments and

Gestural Sensors for Musical Interaction and Performance. Journal of New Music

Research. 28. 10.1076/jnmr.28.2.130.3119.

10. Claudia Villalonga, Hector Pomares, Ignacio Rojas, and Oresti Banos. 2017.

MIMU-Wear. Neurocomput. 250, C (August 2017), 76-100. DOI:

https://doi.org/10.1016/j.neucom.2016.09.125

11. Ameur, Safa & Ben Khalifa, Anouar & Bouhlel, Med. (2016). A Comprehensive

Leap Motion Database for Hand Gesture Recognition.

10.1109/SETIT.2016.7939924.

12. Matthew Wright, Adrian Freed, and Ali Momeni. 2003. OpenSound Control:

state of the art 2003. In Proceedings of the 2003 conference on New interfaces for

musical expression (NIME '03). National University of Singapore, Singapore,

Singapore, 153-160.

13. Tobias Grosshauser and Gerhand Tröster. 2014. Musical instrument

interaction: development of a sensor fingerboard for string instruments.

In Proceedings of the 8th International Conference on Tangible, Embedded and

Embodied Interaction (TEI '14). ACM, New York, NY, USA, 177-180. DOI:

https://doi.org/10.1145/2540930.2540956

14. Maes, Pieter-Jan & Lorenzoni, Valerio & Moens, Bart & Six, Joren & Bressan,

Federica & Schepers, Ivan & Leman, Marc. (2018). Embodied, Participatory Sense-

Making in Digitally-Augmented Music Practices: Theoretical Principles and the

Artistic Case “SoundBikes”. Critical Arts. 32. 1-18. 10.1080/02560046.2018.1447594.

15. Maes, Pieter-Jan & Nijs, Luc & Leman, Marc. (2018). A Conceptual Framework

for Music-Based Interaction Systems. 793-804. 10.1007/978-3-662-55004-5_37.

16. Caruso, Giusy & Coorevits, Esther & Nijs, Luc & Leman, Marc. (2016). Gestures

in Contemporary Music Performance: A Method to Assist the Performer’s Artistic

Process. Contemporary Music Review. 1-21. 10.1080/07494467.2016.1257292.

17. Naidoo, S & Omlin, Christian & Glaser, Meryl. (1999). Vision-Based Static

Hand Gesture Recognition using Support Vector Machines.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Preface
	Chapter 1 - Introduction
	Chapter 2 - Background and Related Work
	2.1 History of electronic music interfaces
	2.1.1 Theremin (1920)
	2.1.2 MIDI (1980-1983)

	2.2 Hardware and software applications
	2.1.3 Audio engineering and software
	2.1.4 Sensors and microcontrollers

	2.3 Hand Gesture Recognition
	2.3.1 Recognize static gestural patterns
	2.3.2 Machine Learning
	2.3.2.1 Classification
	2.3.2.2 Support Vector Machines
	2.3.2.3 Performance metrics

	2.4 Related Work

	Chapter 3 - Proposed Model
	3.1 Data Flow
	3.2 Capturing motion data
	3.3 Receive data and organize training pipelines:
	3.3.1 Simple gestures and controller button interfacing
	3.3.2 Feature Engineering
	3.3.3 Train and Deploy Framework

	3.4 MIDI processing module
	3.5 Digital Audio Workstations

	Chapter 4 - Experiment
	4.1 Interfacing sensors with the programming language Max/MSP
	4.2 Processing data into pitch, velocity and gestures
	4.3 Machine Learning model
	4.3.1 Feature Engineering
	4.3.2 Why Support Vector Machines?
	4.3.3 Training and mapping the model

	4.4 Creating MIDI triggers and Control Changes
	4.4.1 Alternative uses of gestural interfaces.

	Chapter 5 - Results and Future Work
	5.1 Results
	5.1.1 SVM Model Performance
	5.2 Future Work

	Chapter 6 - Conclusion
	References

