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Abstract 

We present gestural music instruments and interfaces that aid musicians and 

audio engineers to express themselves efficiently. While we have mastered building 

a wide variety of physical instruments, the quest for virtual instruments and sound 

synthesis is on the rise. Virtual instruments are essentially software that enable 

musicians to interact with a sound module in the computer. Since the invention of 

MIDI (Musical Instrument Digital Interface), devices and interfaces to interact with 

sound modules such as keyboards, drum machines, joysticks, mixing and mastering 

systems have been flooding the music industry. 

Research in the past decade gone one step further in interacting through 

simple musical gestures to create, shape and arrange music in real time. Machine 

learning is a powerful tool that can be smartly used to teach simple gestures to the 

interface. The ability to teach innovative gestures and shape the way a sound module 

behaves unleashes the untapped creativity of an artist. Timed music and multimedia 

programs such as Max/MSP/Jitter along with machine learning techniques open 

gateways to embodied musical experiences without physical touch. This master's 

report presents my research, observations and how this interdisciplinary field of 

research could be used to study wider neuroscience problems such as embodied music 

cognition and human-computer interactions.  
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Preface 

The idea to pursue this project of building virtual instrument came from my 

experiences of recording and producing music from a small bedroom. I have always 

had a passion for anything to do with music. My Master’s program at Kansas State 

University and my research experiences working with Department of Arts pushed me 

to deeply understand the science and technology behind musical instruments, mixing 

and mastering. I took a keener interest towards audio engineering and machine 

learning and eventually that culminated in an interdisciplinary research featuring 

audio physics, arts, machine learning, embedded microcontrollers and neuroscience. 

This report presents my methodology to build gestural virtual music 

instruments, the experiments designed, the observed results and further research in 

related fields. Chapter 1 introduces the idea of history of MIDI, electronic music and 

virtual instruments. It explains the evolution of music and the need for smarter 

interfaces to express ourselves, further reinforces the idea of teaching your interface 

to do more than one purpose (playing, mixing or mastering). Chapter 2 dives into 

similar research in the recent past and in other related fields i.e. human-computer 

interaction, machine learning, audio Engineering, and electronic music. I also present 

my previous attempts to work on similar projects for a course project (CIS 721) and 

how I plan to improve on the project. Chapter 3 presents my holistic idea to bring 

musical interfaces controlled by gestures on a user’s laptop running a Digital Audio 

Workstation such as Ableton Live. This chapter talks about how the instrument can 

be put together with hardware, software programming, gathering data, training the 



x 

machine learning model and using the real time predictions. Chapter 4 presents the 

actual experiment conducted in MAX/MSP and Ableton Live using a Leap Motion 

controller, individual controls achieved on the console and how I interfaced a WiiMote 

with accelerometer readings to define and learn new gestures. Chapter 5 presents the 

results of the experiment, feasibility and accuracy of the model and how intensive the 

CPU usage is.  

Through the course of the report, I have actively experimented with multiple 

interfaces including Arduino, Raspberry Pi and game controllers. I have also tested 

various arrangements within the program to set up MIDI note triggers and control 

changes on the DAW. I will be primarily reporting on the simplest one that I felt is a 

quick and easy instrument to master. The complex versions take more practice to 

master, but have a wide ocean of sound synthesis potential making them ideal for 

other forms of audio such as film scoring, visual experience audio design, 

experimental art installations and neuroscience. This report lets me proudly present 

all my hours of passion and research about new ways to create musical interfaces and 

experiences.  

 

 



Chapter 1 - Introduction 

Sound is one of the essentials of human experience and recorded sounds i.e. 

audio lets us communicate with each other anywhere around the world, which makes 

it a very important form of evolution through the years. Music has been a universal 

language for centuries now and has been exponentially evolving. 

 The invention of recording sciences in the 20th century gave us a way to store 

or share sound and music on a portable device. What followed was the beginning of a 

whole new industry of music. These recording and sharing services are really 

mediation technologies that we have invented for ourselves to express art. Over the 

past 60 years, there have been a huge number of new instruments, interfaces, 

recording, signal processing techniques. A good majority of these inventions are based 

on analog electronics and signal processing. With growing processing power and 

robust computing facilities, there is active research around the world in the music 

industry to emulate acoustic and analog sounds digitally. The work in this field opens 

an ocean of unexplored sounds that I could generated digitally. Computer-based 

technologies such as digital signal processing, machine learning, human-computer 

interaction, and audio synthesis open creative paths for artists, musicians and 

audio/game engineers to generate and use sound innovatively. 

Creatively tying down all the above powerful tools, we can come up with 

elegant processes to build virtual instruments and design music for a wide range of 

experiences. One such application that is widely researched and developed as we 

speak is gestural musical interfaces. As with anything related to audio and music, 
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there is no single solution that works for every musician or audio engineer. Gestural 

musical interfaces are mere brushes for an artist to express himself. They can only 

be designed to be used in an abstract way. What the artist/musician does with the 

interface is purely subjective and creates the real essence of music in general.  

Gestural musical interfaces usually use some type of sensor to read the 

environment and generate changes in the program to shape sound. The program 

essentially polls the user’s actions and generate responses in the program. Actions 

are actively processed and recorded into the program so they can be recognized by the 

program. These actions or recognized gestures are varied and can be used to trigger 

any parameter in general according to the artist. Marc Leman (2008) in his book [1] 

talks about how the action-based interface and gestural interfaces bridge the gap 

between physical and mental perception of sound. Embodied music cognition is a 

major field of neuroscience that studies the role of human body in relation to all 

musical activities.  

Gestural interfaces give an opportunity to let the artist explore sound and 

sound parameters in their own space via creative gestures. Like any other interface 

or instrument, however a gestural interface also has obvious limitations. By 

increasing the number of sensors and how they interact with a human body, a 

complete embodied musical experience can be created.  

In this research experiment, I focus on the hand gestures of an artist to create 

a flexible instrument to play, control and mix music parameters in a Digital Audio 

Workstation. All the sound generated is virtual and there is no physical instrument 
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to touch. The actual design of the interface was inspired from classic USB MIDI 

keyboards made by AKAI. The instrument sends out MIDI triggers, control changes, 

pitch bends and any other MIDI data on specific channels to the DAW. Any DAW like 

Ableton Live is flexible in mapping the buttons in whichever way possible. The 

mapping of the triggers usually depends on the artist and what the artist wants to 

achieve ranging between performance, production, arrangement, mixing and 

mastering. The instrument also features easy to use code modules that let the user 

train gestures that they would want to use for a specific song or a show. Since all the 

modules of the instrument is strictly computer generated, the gestures and settings 

can be easily tucked into presets for convenient usage later. 

While these gestural interfaces do pose a steep learning curve and a new way 

to look at music, they do unleash creative musical experiences and can easily be used 

to generate alternative sounds such as film scoring, meditative audio therapy, dance 

generated music etc, if not the regular commercial music. They also give us a 

potential tool to study and understand neuroscience problems such as embodied 

music cognition and human-computer interaction to make art.  
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Chapter 2 - Background and Related Work 

2.1 History of electronic music interfaces 

2.1.1 Theremin (1920)  

Touch free music instruments go back to as early as the 1920s when Leon Theremin, 

a Russian and soviet inventor used a variable capacitor circuit to control pitch and 

volume of an oscillator to generate amplified sound. This instrument was totally 

hands free as it needed no physical contact. The hands acted as ground plates in the 

variable capacitor circuit. The distance of the hands from 2 antennae determine the 

pitch and volume. The Theremin was very successful and used in many major scores, 

the most famous score being the Star Wars theme song. Inventors around the world 

over the course of next 100 years have been continuously evolving and developing 

models using similar circuits such as light sensitive resistors, sonar rangers or 

infrared distance detection.  

 

Figure 2.1 A modern Theremin design used in the classic Star Wars theme 
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2.1.2 MIDI (1980-1983)   

In the early 1980s, there were wide variety of electronic music instruments 

and interfaces already manufactured by different companies and being used. 

However, there was no standardized means of synchronizing them. This need for a 

universal communication standard pushed a bunch of audio engineers and technology 

enthusiasts to come together and build a standardized protocol called MIDI or 

Musical Instrument Digital Interface. The MIDI protocol created opportunities for 

many other companies to develop innovative interfaces such as the sequencer, 

sampler, DJ console, looping machines, mixing consoles and mostly recently MIDI 

interfaces to control parameters within a program. MIDI stood the test of time and 

invention, improved speeds and utilities through USB and now even wireless. Open 

Sound Control (OSC) [2] is a protocol for wireless communication between electronic 

instruments over network ports in the form of UDP packets. Simply put, OSC is the 

wireless version of MIDI and can be used to develop innovative and portable MIDI 

technologies. OSC is still being actively developed by CNMAT, UC Berkeley. 
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MIDI is a huge subject of study in itself, interested reader is referred to “The 

Complete MIDI 1.0 specification” [3]. 

 

Figure 2.2 Akai APK Mini MIDI controller 

 

The gist of the MIDI standard can be summarised by Table 2.1 (below), consisiting of 

MIDI notes and how they can be related with frequency of sound. Any MIDI note 

ranges between 0 – 127. The table presents only one octave of the notes. Ever since, 

MIDI has been actively used in pretty much every gaming controller, music interface 

or wireless device to transmit and receive data from the device.  
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Table 2.1 MIDI notes and their relationships to different names and frequencies   

MIDI note 

number 

Key number 

(Piano) 

Note names 

(English) 

Frequency 

(Equal tuning at 

440 Hz) 

48  28 C3 130.81 

49 29 C#3/Db3 138.59 

50 30 D3 146.83 

51 31 D#3/Eb3 155.56 

52 32 E3 164.81 

53 33 F3 174.61 

54 34 F#3/Gb3 185.00 

55 35 G3 196.00 

56 36 G#3/Ab3 207.65 

57 37 A3 220.00 

58 38 A#3/Bb3 233.08 

59 39 B3 246.94 

60 40 C4 261.63 

 

2.2 Hardware and software applications 

2.1.3 Audio engineering and software 

Once a robust communication protocol for music interfaces is set up, embedded 

computers and microcontrollers burst onto the scene. Inventors came up with small 

portable devices with microcontrollers and circuits built in that could generate sound 

or transmit data to another computer.  

Taking it further, programmers began to develop software being developed 

specifically to edit music such as Digital Audio Workstations, or mix and play music 
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(DJing software), music composing software, and MIDI plugins. 

 

Figure 2.3 A screenshot of workflow in Ableton Live 

 

Among all the developed software for computer music, one category that stood 

apart is that of audio programming languages such as Max/MSP, Pure Data, ChucK, 

SuperCollider. These programming languages bridged the gap between audio 

engineers, electronic engineers and programmers to come together and develop 

complete instruments that serve multiple purposes.  

 

Max/MSP/Jitter:  Max is a visual programming language for music and multimedia 

developed and maintained by Cycling’74. The program is modular with most routines 
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existing as shared libraries and makes it very easy to create shareable modules or 

abstractions. Understanding the purpose of building a programming language to 

control music and multimedia is key to developing efficient and usable interfaces. The 

programming approaches in Max are modular and very well thought out right from 

the beginning as written in detail by the inventor, Miller Puckette, in [4] and [5]. 

 Cycling’74 is known for their community of developers which is a major part of 

surviving the competition through the years.  

Max can be viewed as a dataflow programming language as the patch cords visually 

translate data between the modules and sub modules. The design was inspired from 

patch cords used in modular analog synths built in the 70s and 80s.  

 

 

Figure 2.4 Programming patch in Max/MSP 

 



 

10 

A wide range of sensors and hardware controllers are easy to set up and communicate 

with Max/MSP through MIDI or OSC. Once the data is received by Max, it can be 

processed just like any other programming language. The processed data is used to 

create triggers in an instrument or interface to achieve virtually anything that a 

regular controller can do. The flexibility and the ease of development makes Max a 

powerful and efficient tool for musicians, performers, art enthusiasts and most 

importantly audio engineers / programmers.  

Jitter is a matrix of data used to create pixels of visualization from within Max/MSP. 

Jitter is actively used to create visual interfaces for the program. 

 

 

 

2.1.4 Sensors and microcontrollers 

The key to building virtual instruments or specifically touch free music is robust 

sensors that capture information about the musician and relay it to the processing 

modules in real time. The synthesizers use the buttons of the keyboard as sensors. 

Sensors from other sciences such as heartrate sensors, piezoelectric sensors, 

ultrasonic rangers, light sensitive resistors are all actively used to capture data to 

build an instrument.  

To build gestural interfaces, there is a strong need to capture motion data from the 

user. The problem of capturing motion data expands to many other fields of 

technology. Powerful cameras form a major portion of these sensors. Flexible stress 
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sensitive hand sensors are an expensive but strong contenders to capture gesture 

data from human hands.  

Leap Motion: Leap Motion is a computer hardware sensor that supports hand and 

finger motions as input and has seen active applications in human-computer 

interactions, hands free graphical user interface, hardware movements, virtual 

reality, gaming etc. Leap Motion uses simple IR cameras to track finger joints and 

hands. Being a relatively cheap option for tracking data, a rising number of 

researchers use Leap Motion as the tool to track fingers and hands to create 

interfaces.  

 

Figure 2.5 Hardware of a Leapmotion 

 

The Leap Motion sensor has 2 cameras and 3 infrared LEDs that can track infrared 

light with a wavelength of 850 nanometers, which is outside the visible light 

spectrum. Also, the interaction area is about 8 cubic feet and can be seen as an 

inverted pyramid in Figure 2.5 below. 
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`  

Figure 2.6 Interaction Area 

 

Wiimote: The WiiMote is the primary controller for Nintendo Wii console. The 

Wiimote is mostly known for the motion sensing capability, which allows users to 

interact with and manipulate items on screen via gesture recognition and pointing 

using accelerometer and optical sensor technology. Although it was primarily made 

only to be used as a game controller with the Wii console, developers and hackers 

quickly found ways to relay Wiimote messages on OSC and MIDI. The accelerometer 

readings and optical sensor technology made it ideal to collect continuous data to 

train models and recognize gestures. 

 

2.3 Hand Gesture Recognition 

Hand gestures are simple movements of the hands. Gestures can be classified 

into 
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1. Static Gestures: Gestures that do not take the movement of the hands into account 

and are solely dependent on the static positions of the fingers or joint relative to 

each other. 

2. Dynamic Gestures: Free flowing movements of the hands over a short time creates 

a complete dynamic gesture. 

This experiment does not research dynamic gestures, as they are a much difficult 

problem to solve. Also, the dynamic movements would compromise the pitch and 

velocity of the note held. Instead, this experiment focuses on using static gestures 

and simple motion tracking on a virtual scale laid out in front of the user. 

Using sensors, hand movements can be tracked accurately over time. The sensors 

create streams of data continuously at each frame of view. The collected data can be 

processed and pattern matched against an already recorded gesture. Gestures can be 

recognized either through static machine learning algorithms or dynamically using 

machine learning.  
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Figure 2.7 Simple gesture of a closed fist 

 

2.3.1 Recognize static gestural patterns 

Certain gestures such as pointing an index finger or a closed fist can be easily 

programmed to be recognized using features of the sensors. These patterns are not 

complex to recognize as they have a definite form of occurrence. For example, a closed 

fist always has the same distances between fingers no matter how the hand is held. 

It is possible to design an algorithm to recognize such simpler gestures robustly and 

quickly without compromising on processing power for quick changes during music. 

These easy to track and simpler gestures should be used to control parameters that 

need quick feedback and precise control. For vague or complicated gestures, machine 

learning techniques should be used.  
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2.3.2 Machine Learning  

Quoting Arthur Samuel, an  American pioneer in the field of computer gaming 

and artificial intelligence from 1959 “Machine learning is a field of artificial 

intelligence that uses statistical techniques to give computer systems the ability to 

‘learn’ from data, without being explicitly programmed.” Machine learning requires 

data in large amounts to show the ability to learn. Although, machine learning and 

statistics have been around for active research from the past 60 odd years, 

applications of machine learning in music have been rare, except a few experimental 

art installations. However, with powerful computers that can process and store data 

streams efficiently, machine learning models have been everywhere including arts 

and music.  

Machine learning with Max/MSP was a novel idea already researched in detail 

in [6]. ml.lib is an open source max and pure data object for employing a wide range 

of machine learning algorithms within Max and Pure Data. Specifically, it is a 

wrapper written around Nick Gillian’s Gesture Recognition toolkit [7] in C++.  

 

2.3.2.1 Classification 

 Precise sensors that capture motion data are critical to the functioning of an 

efficient machine learning model. In the application of gestural music instruments, 

an efficient machine learning algorithm is a perfect tool to recognize and map 

patterns in sensor data as gestures. The problem of recognizing gestures and 

translating them to musical changes can be viewed as a classification problem in 
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machine learning. The gestures in this problem are translated into classes to be 

recognized and the streams of data from the sensors are translated into feature data 

required to train on.   

Basic classification algorithms such as logistic regression, naïve bayes 

classifier or decision trees work efficiently depending on the feature data. These 

simpler techniques are ideal as we have complete transparency to understand exactly 

what the algorithm is doing. However, these basic classifiers are limited in 

functionality only to linearly separable data. If the gestures involve complex features 

that are separable only by a non-linear hyperplane, a non-linear method involving 

some type of transformation needs to be applied to your input dataset. Slightly more 

advanced techniques such as support vector machines (SVMs) using kernel tricks do 

a great job in solving classification problems which have a complex relationship 

between the data and the class of the gesture. 

 

2.3.2.2 Support Vector Machines 

Support vector machine is a classification method that works on the principle 

of fitting a boundary to a region of points which belong to a certain class. It is a 

powerful algorithm to solve classification problems with complex data. SVMs have 

been used in for solving gesture recognition problems as early as the paper [17] 

“Vision Based Static Hand Gesture Recognition using Support Vector Machines”. 

 The SVM only requires data points at the boundaries of a class. Once the 

boundaries of a class are defined, most of the internal training data is redundant. 
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These data points closer to the boundaries are called support vectors. The boundary 

is generally a hyperplane of N-1 dimensions where N is the number of features in the 

dataset. The actual boundary line or the classifier can be denoted by the equation 

𝑤𝑇𝑥 + 𝑏 = 0              

The boundary line has a thickness or wideness called the margin denoted by ‘d’. The 

two hyperplanes H1 and H2 on either side of the boundary line can be denoted by 

 𝑤𝑇𝑥 + 𝑏 ≥  +1         or  𝑤𝑇𝑥 + 𝑏 ≥ 0  𝑓𝑜𝑟 𝑑𝑖 =  +1 … . . 𝐻1 

 𝑤𝑇𝑥 + 𝑏  ≤ −1         or  𝑤𝑇𝑥 + 𝑏 ≤ 0  𝑓𝑜𝑟 𝑑𝑖 =  −1 … . . 𝐻2 

where w is a weight vector  

 x is input vector 

 b is bias 

The optimization scheme of the entire algorithm is to maximize this margin. 

SVM classification models cannot be visualized by humans once the dimensional 

feature space has more than 4 dimensions. A simple classification plot (using a linear 

kernel) for 2 dimensional feature space classified into 2 classes is shown below in 

Figure 2.7. 
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Figure 2.8 SVM classification of a 2 dimensional feature space with 2 classes 

 

 SVMs have 3 main tuning parameters that are critical to maximising the 

margin ‘d’ 

1. Kernel: Choosing a kernel decides how the feature data is transformed for the 

classification.  The idea is to gain a linear separation by mapping the data to a 

higher dimensional space.  

Linear kernel : 𝒇(𝒙) =  𝑩(𝟎) +  ∑(𝒂𝒊 ∗ (𝒙, 𝒙𝒊)) 

 

Polynomial kernel : 𝑲(𝒙, 𝒙𝒊) = 𝟏 +  ∑(𝒙 ∗ 𝒙𝒊)
𝒅         where  d is degree 

 

Radial Basis kernel: 𝑲(𝒙, 𝒙𝒊) =  𝐞𝐱𝐩 (
−(𝒙−𝒙𝒊)^𝟐

𝟐𝝈𝝈𝟐 ) 

Where x is the input vector and  
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x_i is each support vector 

2. Regularization (C) : This parameter (often termed as C parameter in python’s 

sklearn library) tells the SVM optimization how much you want to avoid 

misclassifying each training example. 

3. Gamma: The gamma parameter defines how far the influence of a single 

training example reaches, with low values meaning ‘far’ and high values 

meaning ‘close’.  

To understand SVMs in detail, refer [8] 

 

2.3.2.3 Performance metrics 

Generally, machine learning algorithms are verified using performance 

metrics such as accuracy, precision, recall. Once a machine learning algorithm is run 

i.e. predictions are made on new feature data with 2 possible classes positive and 

negative, the predictions each belong to one of the following four classes: 

1. true positives TP (number of correctly classified positive examples) 

2. true negatives TN (number of correctly classified negative examples) 

3. false positives FP (number of negative examples falsely classified as positive) 

4. false negatives FN (number of negative examples falsely classified as positive) 

Then Accuracy = TP + TN / TP + TN + FP + FN 

Accuracy can be misleading if TP and TN are imbalanced. Hence, precision and recall 

are used to calculate F-measure. 

Precision = TP / TP + FP 
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Recall = TP / TP + FN 

F-measure is the harmonic mean of precision and recall. There is often a trade off 

between recall and precision when data suffer from the class imbalance problem. 

F-measure = 2 * precision * recall/ precision + recall  

However, when there are more than 2 predicted classes, the performance metrics are 

generalized for the multi-class scenario and micro and macro averages are used to 

calculate the precision and recall.  

In micro averaging, precision and recall are calculated for individual classes. 

Assuming a model has k classes,  

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒊𝒄𝒓𝒐 = 𝑻𝑷𝟏 + 𝑻𝑷𝟐 + ⋯ + 𝑻𝑷𝒌 + 𝑭𝑷𝟏 + 𝑭𝑷𝟐 + ⋯ + 𝑭𝑷𝒌 

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒊𝒄𝒓𝒐 = 𝑻𝑷𝟏 + 𝑻𝑷𝟐 + ⋯ + 𝑻𝑷𝒌 + 𝑭𝑵𝟏 + 𝑭𝑵𝟐 + ⋯ + 𝑭𝑵𝒌 

In macro averaging, the average of the performance of all the clases are taken 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒂𝒄𝒓𝒐 = 
𝑷𝒓𝒆𝟏+ 𝑷𝒓𝒆𝟐+⋯+ 𝑷𝒓𝒆𝒌

𝒌
 

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒂𝒄𝒓𝒐 = 
𝑹𝒆𝒄𝟏+ 𝑹𝒆𝒄𝟐+⋯+ 𝑹𝒆𝒄𝒌

𝒌
 

 

2.4 Related Work 

Brain Opera [9] 

Using sensors to translate gestures into machine understandable data is a 

long-standing problem solved up to a certain extent. However, the exact application 

of using gestures to interface with a music instrument in real time is relatively new. 

Joseph A. Paradiso from the MIT Media Laboratory experimented with gestural 
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sensors for musical interaction and performance very early in 1996. Brain Opera 

created participatory electronic musical installations using embedded systems, MIDI 

systems and computers to enable the users to interact with the computers. These 

installations were built on multiple sensors that are pressure sensors, sonar rangers, 

touch sensors, tactile sensors and optical trackers. The data from the sensors usually 

in voltages is converted into Digital using a regular Analog-to-digital converter and 

fed to MIDI systems that generate a pitch and velocity of a note. 

Brain Opera used technologies to generate musical experiences primarily 

based on electronic circuits and basic MIDI programming. The instruments were 

elegantly built with piezoelectric sensors to calculate pressure on a carpet, sonar 

rangers to calculate distances. The resulting sounds from the instruments were 

arranged to mimic an orchestra of instruments that the audience can interact with. 

When the Brain Opera was designed and orchestrated in 1996, embedded computing 

and processing itself was in a nascent stage of development. 

 

Therminal C by WaveLicker 

 Swiss company WaveLicker develops Theremins that can control analog 

synthesizers. The design is simplistic in converting analog voltages into CV and 

feeding it into the synthesizer. Theremins usually control the pitch and amplitude of 

a wave signal, but this design goes further and controls pretty much anything on the 

synthesizer such as Pitch, Amplitude, Filters, LFOs, anything that can be controlled 

by an analog voltage. This project does not feature gestures but forms the basis for 



 

22 

the need of a Theremin-like synthesizer that can control sound parameters within a 

program (in this case, a synthesizer.) 

 

Figure 2.9 MI.MU musical gloves 

 

MI.MU Gloves [10] 

Years later, MI.MU gloves burst on to the scene in 2010 at a Ted talk when 

Imogen Heap, a musician and technology artist presented a pair of gloves that flexible 

sensors that calculated the movement of each joint in the hand. The gloves were a 

combination of textiles, electronics, sensors and software made for a professional 

artist interested in making complex music. They had multiple versions of the gloves 

and professional artists around the world enjoyed the relationship between electronic 
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music and organic hand gestures. The gloves were steeply priced at around 5000$ 

(excluding the laptop and software) and didn’t make it beyond the odd world tour for 

a professional musician.  However, the gloves inspired a new field of gestural 

interfaces and devices.  

 

 These are some of the projects that were actively studied before designing the 

experiment. The current gestural interface would not be possible without the 

inspirations and ideas of all the people involved in these projects. 
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Chapter 3 - Proposed Model 

3.1 Data Flow 

 

Figure 3.1 Data Flow Chart 
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 3.2 Capturing motion data 

The sensors chosen to capture motion data from the user continuously trigger the 

data flow. A sensor or controller has multiple triggers that can all be simultaneously 

used to switch and change the way the instrument behaves or creates sound. Having 

multiple sensors and controllers to capture the data ensures accurate representation 

of the gestures. Hence, synchronous timing of the sensors is critical to the data flow. 

Usually the sensors or controllers will broadcast the required data either through 

USB or OSC on a fixed port number on the network. Data from the sensors can then 

be broadcasted to more than one program or system to create various musical or 

visual triggers.  

 

 3.3 Receive data and organize training pipelines: 

The data received via USB or OSC is processed to either recognize simple gestures or 

button presses on the sensor or create a training pipeline of data for the machine 

learning models. 

 

3.3.1 Simple gestures and controller button interfacing 

Once the data is received in the raw state, it is pre-processed to separate features of 

data that can be directly used to interact with the music software. For example, 3-D 

co-ordinates can be used to control the pitch and volume of the note in real time 

without relying on any prediction or classification. If a controller has buttons or 
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wheels, they are separated from the feature data and used as direct triggers to start 

and stop the playback of sound specifically. 

 These simple buttons and gestures are a quick and direct way of interacting 

with the system. Also, as the recognition of these gestures does not require any 

processing or predictions, the lag is virtually unnoticeable for the user. If a musician 

or artist needs to immediately mute out a certain sound or module, these first layer 

of real time MIDI triggers serve the purpose.  

 

3.3.2 Feature Engineering 

For the machine learning algorithm to learn and generalize, it is critical that the 

training data is cleaned, pre-processed and engineered to represent the gesture 

motion of the hand. Features that do not contribute directly to the formation of a 

gesture are discarded. Multiple features that can be aggregated into a single feature 

having more direct relationship with a gesture are formed. Raw sensor readings 

usually do not have a direct relationship with the gesture class and end up as noisy 

data for the algorithm. 

For example, to detect the gesture of holding a knob or slider, the relevant features 

would be the relative distances between the fingers, relative distances between 

fingers and the palm. As the optical sensors can only detect approximate the 3-D 

coordinates of the joints, specific feature engineering to convert the coordinates into 

relevant features is done in this stage. The feature engineering stage in any machine 

learning algorithm defines the efficiency and ability of an algorithm to generalize 
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well. [11] presents a dataset of feature data and how they can be engineered for 

efficient use.  

 

3.3.3 Train and Deploy Framework 

The feature dataset is now ready to be sent into machine learning model with an 

appropriate class labelled on each row.  In this module, the parameters of the model 

are tweaked before the training begins. The data is stored in collections available to 

the model. Training pipelines are always updated if gestures or classes are added or 

removed. Once the training completes, the model is set into ‘map’ mode.  

During the map mode, new feature data with no class label comes in from the sensors 

or controllers, and the model makes a prediction in real time and sends the prediction 

gesture out into the MIDI processing module. 

 

 3.4 MIDI processing module 

The MIDI processing module is an abstraction that takes in directly recognized 

gestures, controller values and predictions and acts upon them. In this module, the 

MIDI triggers or control changes are generated based on the movement of the user. 

This module can also be referred to as the actual sound generation module in the 

entire program.  

 Incoming gestures or controller changes are processed and scaled according to 

the required need and mapped into a MIDI value. MIDI is always a number between 
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0-127 on a certain channel. This module can also be used to switch between presets 

within the program to totally change the functioning of the instrument.  

For example, the MIDI processing module can act as a synthesizer or drum sequencer 

or mixing interface or a digital pedalboard. This module also adds visualization for 

the triggered notes in the program to give the user active feedback. The module will 

have a MIDI outlet to transmit the MIDI messages to any virtual instrument or 

software that can accept MIDI. 

 

 3.5 Digital Audio Workstations 

Digital Audio Workstations (DAWs) are software programs within a computer that 

accept MIDI triggers and generate sound or control parameters that shape sound. 

DAWs are powerful tools to compose, edit and produce music all together. Many 

companies manufacture DAWs that support MIDI and can interface multiple MIDI 

interfaces within a computer. Producers around the world use DAWs actively as they 

are one-stop solution to all the sound engineering. Most DAWs also come with their 

own range of Audio Effects, MIDI effects and VSTs. Some DAWs also allow users to 

run free audio applications within the DAW as plugins, making the instrument chain 

complete with Digital Signal Processing effects. 

 The DAWs generate sound primarily but also, offer a wide variety of output 

options from the computer. They offer mixing and mastering options within the 

program. Controlling the mixing / mastering parameters with the instrument set to 
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a certain preset will make the production process easier and effective. This 

experiment chooses Ableton Live as the DAW due to it’s compatibility with Max/MSP. 
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Chapter 4 - Experiment 

Based on the model proposed in Chapter 3, an experiment was designed to develop a 

virtual instrument, interface. Like any other developer, I actively tried and built as 

many as five prototypes before settling with the current one being presented in this 

report. Brief outlines of some of my earlier experimental prototypes and how I made 

changes to facilitate a complete robust playable instrument. 

 

Table 4.1 Experimental prototypes 

Attributes of the experimental prototypes 

Prototype   MIDI/ 

pure 

wave 

Gestures Range Ease of use 

1 Arduino-controlled Theremin 

with distance sensors (ultrasonic 

ranger or infrared distance sensor) 

Pure 

wave 

No Narrow 

range 

Easy 

2 Leap Motion synthesizer Pure 

wave 

Yes Geospatial 

range 

Difficult: 

navigating 

notes 

3 Leap Motion MIDI MIDI Yes Geospatial 

range 

Moderate: 

Continuous 

MIDI 

trigger 

4 Leap Motion MIDI with 2 hands MIDI Yes Geospatial 

range on 2 

hands 

Complex 

5 WiiMote MIDI trigger MIDI No Limited Easy 

 

In the above Table 4.1, prototypes and their descriptions are listed along with their 

attributes of functioning. A pure wave prototype is a kind of synthesizer and does not 

need an external sound module to generate the sound. Earlier designs had no 
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gestures or very simple gestures requiring no machine learning or statistical 

learning. The lack of gestures does not make them useless instruments. In fact, an 

artist or musician on simple Theremin-like playing will have a great time with the 

simpler version. Especially because the Arduino is a small and inexpensive portable 

microcontroller. The latter focus on finding the balance between playing MIDI notes 

and keep the operation simple and expressive for the user. The last prototype uses a 

WiiMote only to trigger notes to emulate the gesture of pressing down and releasing 

the keys of the keyboard or piano.  

Learning from these experiments, the final model was proposed in Chapter 3.  

 

 4.1 Interfacing sensors with the programming language Max/MSP 

Leap Motion is a powerful sensor that has been previously used to solve gesture 

recognition problems. The sensors tracks hands frame by frame and produces lists of 

timed data for each joint of the hand, palm of the hand and vector data such as 

velocity and acceleration. The range of data tracked by the Leap Motion is displayed 

in Figure 4.1. For classifying static gestures however, all the lists of data are an 

overkill and can lead to overfitting of the model. The Leap Motion is used in the 

experiment to control the number and velocity of the note played on a horizontal 

keyboard apart from the actual gesture recognition. However, using the Leap Motion 

alone continuously triggers MIDI notes with no note holds.  

To overcome this challenge, a controller such as Wiimote is used in the experiment. 

  The Wiimote can detect button presses on the controller or continuous 
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accelerometer readings. Wiimote is used to hold and release notes like a traditional 

keyboard, change settings from the buttons or have simple gestures that control the 

pitch bend and tremolo of a note held down. This also ensures that no unwanted notes 

are played while moving across the instrument to find the next note. Using these 2 

sensors together creates a robust playable instrument with no errors or mishaps 

through the music. However, the challenge of synchronizing the sensors to work 

simultaneously sits with the programming interface. 

Max/MSP has direct objects within the programming language for interfacing 

Leap Motion sensor data. However, Leap Motion discontinued their legacy APIs after 

version 3. Hence, the experiment will be sticking to the skeletal tracking system in 

Leap Motion V2.3. The latest version Leap Motion Orion is a much more advanced 

and robust tracking system for developers, however the added overhead of getting the 

data into an audio programming language such as Max pushes developers to the 

legacy versions. 

Orion Beta and future versions may solve potential problems of occlusion and faster 

frame rate, which improves the overall gesture prediction model.  

 

OSCulator: OSCulator is a software that links controllers to a music or video 

softwares using the Open Sound Control protocol (OSC from Chapter 2). The ease of 

use and support for a wide range of wired and wireless controllers makes OSCulator 

a perfect tool for developers who do not want to reinvent the wheel in the networking 

or interfacing sensors. 
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Connecting a Wiimote to Max/MSP is quick and easy. OSCulator broadcasts 

the wiimote controller data as UDP on a specified port. Max receives the data from 

the part and triggers the data flow to other modules in the data flow model from listed 

in Figure 3.1. 

 

 

 4.2 Processing data into pitch, velocity and gestures 

Data received from the sensors or controllers is cleaned to remove unwanted lists of 

data. Simple co-ordinates of fingers and palm are mapped to pitch and velocity 

between 0-127 to emulate a MIDI note. The horizontal position of the hand generates 

pitch and the vertical position generates velocity of the note.  

For the Wiimote, Max/MSP receives UDP packets and translates the toggle messages 

from the buttons into simple if-else decisions to trigger direct interactions with the 

program. The accelerometer readings are used to control simple pitch bends and 

tremolo based on 3-D vector of acceleration. For example, the Wiimote throws out 

data about roll, pitch and yaw of the controller when moved in those particular 

directions. The instrument uses roll to control the pitch bend of the note in both 

directions i.e. Note can be bent up or down and the pitch is used to control the trigger 

of a tremolo wave on a note.  
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Figure 4.1 Position of palm in X-Y direction generates note 

 

On the other hand, for the gesture recognition system, feature sets are built or 

engineered depending on the kind of gesture to be recognized. Feature sets containing 

relevant data are crucial to the working of the machine learning algorithm. Features 

that are not directly correlated to the gesture are avoided. Instead multiple features 

can be engineered to create a single feature that is strongly correlated to the gesture.  

For example, to recognize static gestures to play a major chord, the raw data received 

from Leap Motion only has the 3-D coordinates of the joints, fingertips and the palm. 

The raw data do not definitely define a major chord when the hand moves around 

over the sensor. Instead, if the relative distances between different data point co-

ordinates in the system creates a mutual pattern that can be easily recognized by the 

machine learning algorithm.  
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4.3 Machine Learning model 

4.3.1 Feature Engineering 

A simple feature set was proposed that can be used to easily classify static gestures. 

The feature sets used for recognizing gestures for this instrument are 

1. Euclidean distances between fingertips and palm center  - 5 features 

2. Euclidean distances between two adjacent fingers - 4 features 

3. Euclidean distances thumb and the other fingers of the hand - 4 features 

Thus, a feature set of 13 features is built and fed into the machine learning model as 

the training data. A total of 5 gestures are used to interface with the program to 

create various MIDI effects.  

Hence, each of the 5 gestures are individually trained by recording the shapes into 

the training pipeline. The machine learning model then trains on this set of data to 

recognize new incoming data as the instrument is played. 

 

4.3.2 Why Support Vector Machines? 

To recognize gestures, a classifier is required that can classify complexly related data. 

Also, the model needs to classify data into multiple features. For this experiment, a 

moderate number of 5 gestures was chosen. From the section 4.1.1, the feature set 

representing the data is 13 dimensional dataset, which creates a complex dataset. As 

the features are already reduced to represent gestures, simpler classification 

algorithms such as decision trees and logistic regression do a bad job in the 

classification problem.  
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SVMs are powerful algorithms that look at the edges or the extreme cases in each 

class. Thus, enabling the model to classify complex feature spaces. Also, as the 

number of features here is lesser than the number of samples, there is no efficiency 

problems in training the model. The algorithm is memory efficient as it only works 

on the extreme data points or support vectors in each class.  

4.3.3 Training and mapping the model 

As the experiment is set up with 5 gestures to be recognized, they can seen as 

5 different classes. The training data was recorded into the program by performing 

each gesture for 10 seconds. All the training data was tagged with one of these 5 class 

labels before the data is sent to the training pipeline. All the training data is stored 

in a collection for further training pipelines. 

Once the training data is set up, the hyper parameters for the SVM model are 

chosen. As the feature space is a complex 13-D set, the polynomial kernel was picked 

against the linear kernel as the hyperplane has to generalize efficiently. The SVM 

model is trained and later set into mapping mode. In this mode, the data recorded 

from the sensors comes into the model and at each frame, the SVM model classifies 

the gesture data into one of the 5 classes. These 5 class predictions are then sent into 

the MIDI processing module where the final mapping of the gestures into MIDI 

triggers takes place. 

 



 

37 

 4.4 Creating MIDI triggers and Control Changes  

Once the prediction is completed and the raw data from the Leap Motion and Wiimote 

are mapped to a MIDI note, the MIDI processing module in the program finally packs 

all the midi events into the MIDI out format that an external DAW can understand 

and produce sound. 

 

Figure 4.2 Gestures for triads visualized in Jitter 

 

 The five gestures recognized  by the model can be used to serve a variety of 

purposes. This experiment chose to use the 5 gestures to convert a played note into 

either a  

• Major triad 

• Minor triad 

• Diminished triad 

• Augmented triad 
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• Single note 

The prediction along with the midi note and the Wiimote note hold produces a MIDI 

event to play a note in the virtual instrument sitting inside a DAW. However, there 

are a number of other ways to use this data. For example, the gestures could be 

mapped in a synthesizer to generate different wave forms while holding a note.  

 

4.4.1 Alternative uses of gestural interfaces.  

The usage of the instrument or interface is totally based on the musician and the sole 

idea came from using MIDI interface boards such as AKAI or Novation which have a 

keyboard, a pad board, faders, knobs and other similar interfaces. The keyboard and 

pad boards are essentially simple MIDI note triggers, however the faders, knobs are 

control changes in MIDI between 0 – 127. These CCs can be used to mix, master and 

manipulate parameters inside the DAW. An alternate mode for the instrument was 

set up to play pads and move faders using a specific gesture (a pinch gesture to zoom 

in) to hold the fader and move it up or down.  
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Figure 4.3 Use pinch gesture to create control changes  

The interface is very flexible and mappable according to the user’s requirements and 

the idea was to design the device that can be taught how to interpret gestures. 
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Chapter 5 - Results and Future Work 

 

Figure 5.1 Completed gestural interface UI 

The completed design has 2 jitter visualizations for a keyboard and a pad surface. 

There is a tuner, tremolo and a variable vibrato and gestures displayed as triads. 

Also, there is an octave control and the machine learning modules are packed into 

sub patches for the interested technical user. 

 5.1 Results 

This sub-section presents the results of the experiment described in the previous 

chapter. The instrument was evaluated for playability, irregular behavior, ease of 

navigation and the prediction accuracy of the gesture recognition section.  

The addition of the Wiimote to trigger note on and note off makes the system a robust 

and reliable instrument getting rid of unintended notes. The UI for the system is 

simple and self-explanatory. Hand movements and gestures are visualized using 

Jitter, a visual programming module within Max/MSP that stores data and displays 

the pixel data on a window. Clear and concise note display and the current triad 

playing defines detailed user experience.  
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The machine learning algorithm was tested by generating a confusion matrix. 

Initially the model was trained to recognize the 5 gestures and set in ‘Map’ mode. In 

the map mode, the model was tested against the actual gestures being played of a 

note sheet for simple chord progressions or melodies. 

5.1.1 SVM Model Performance  

The corresponding confusion matrix as programmed within Max/MSP is shown below 

in Figure 5.1.  The test framework is built in as a module within the program to help 

users evaluate results. As the problem is multi-classification, the performance 

measures were adapted by calculating precision, recall and F-score. Refer to Chapter 

2.3 for performance metrics used. 

 

 

Figure 5.1 Confusion matrix calculated for the SVM gesture recognition model 

Micro Averaging:  

 

Precision (micro) = 0.97 

Recall (micro) = 0.90 

F1- measure (micro) = 0.933 
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The performance metrics for the micro averaging show the prediction of the SVM 

model is reliable. (F-1 measure is greater than 0.9, a promising value.) 

Macro Averaging: 

Table 5.1 Performance metrics for macro averaging 

Class Precision Recall F1-

measure 

1 0.94 0.843 0.884 

2 0.964 0.956 0.958 

3 0.938 0.518 0.66 

4 0.818 0.951 0.876 

5 0.844 0.96 0.898 

Precision (macro) = 0.90 

Recall (macro) = 0.84 

F1-measure (macro) = 0.87 

Apart from the general results, the experiment posed problems navigating 

between the black keys on the keyboard as they are placed narrowly on the keyboard 

laid out horizontally across the width of the Leap Motion sensor. After researching, 

this was found to be a tracking limitation on the Leap Motion V2.3 and seemed to be 

fixed in latter versions of the Leap Motion. However, adding the Wiimote to control 

note on and note offs showed great results in creating expressive music when 

combined with the tremolo and pitch bend. The combination of these 2 gestures along 

with DSP plugins within Ableton Live creates amazing sounds ideal for expressive 

film scoring or instrumental pieces or writing complex music in general.  
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5.2 Future Work 

Applying machine learning in real time programming to generate predictions is not 

a novel idea, known to researchers. Gesture recognition adds a layer of application to 

the existing frameworks and makes the field of human-computer interaction 

futuristic and continuously evolving. However, the applications extend far beyond 

computers and music to neuroscience in studying embodied music cognition and 

substitutive senses.  

Improve model prediction by using a centralized database: 

A low recall and f1-measure can be observed for class 3 as the gesture 3 is very similar 

to gesture 2. This is a possible area of improvement for the algorithm. After discussion 

with my masters committee, a deep learning model can be used to improve the 

accuracy of the model by using data collected from different users. This can be a 

different design on the whole that collects data from the users over time and trains 

one major model with more gestures and pre-sets. This is a very interesting idea to 

focus on in future work. 

 Going beyond the result oriented research, I came across Marc Leman’s book 

about embodied music cognition. The book inspired ideas to pursue the field of 

neuroscience and psychoacoustics to understand perception of sound and how we can 

develop and design musical experiences beyond commercial music. Touch free music 

instruments and interfaces can improve our tools of expression. Using piezo sensors, 

force sensitive resistors, heart beat sensors to define rhythms and patterns in music 

can be used to understand the embodied music cognition. Also, much more expressive 
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sensors such as the Microsoft Kinect is known for it’s motion sensing capabilities 

more than the gaming console. These tools give us access to data beyond just hands. 

The Kinect reads the joints of the human body through the IR camera, and the joint 

data can be used to train and understand complex gestures involving dynamic 

movements controlling advance sound and light parameters. 

 Also, there is active current research in substitutive senses i.e. translating 

sound, light into alternative senses such as haptic touch, or other forms of sensory 

inputs. This could potentially help the deaf understand sounds. Combined with the 

right devices, the deaf could listen, perceive and write music. Another application of 

embodied gestural interfaces is creating the ability for the visually impaired to feel 

and create music through hand gestures and movements. Proprioception is the ability 

to sense the orientation of your body in your environment without consciously 

thinking about your spatialization within the environment. Empowering the disabled 

to interact and create music or any other form of art is my long term goals in studying 

and bringing machine learning, human-computer interaction and music technology 

together.  
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Chapter 6 - Conclusion 

Like any art form, music technology is also subjective. While there are growing 

arguments about the contemporary and electronic music lacking feeling or 

expression, any technology behaves the way it is used. Traditionally, orchestras are 

led or controlled by the conductor. The best performances or pieces are all heavily 

dependent on the conductor’s performance. The gestural interface can be viewed as a 

tool for the conductor or the modern music producer to control and express himself 

while also playing sections of the music himself. The instrument was built to allow 

flexibility of mapping and creating new sounds or even teaching the framework 

gestures that you want to incorporate in your playing. Experimentation and 

expression come hand in hand, and are subjective to each musician or artist. The 

instrument can be used to write musical pieces, score motion pictures or be used art 

installations to interact sound, light and bodily movements.  

 The results from Chapter 5 represent the accuracy and reliability of the model. 

The design along with directly interfacing a physical controller keeps the perfect 

balance for the user. The machine learning model is set up in a way to allow the user 

to teach new gestures to the instrument relatively easily or change the mapping in 

the software. So, a set of repetitive gestures will create different sounds based on the 

section of the song (verse, chorus or intro).  

 While there is still the problem of misclassification in rapid movements and 

the problem of occlusion i.e. Leap Motion does not recognize the hand when it is 

obstructed partially or the hand goes outside the region, they can be viewed as 
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physical limitations of the sensors and how expensive the sensors are. Expensive 

alternatives such as Microsoft Kinect or the MI.MU gloves add much more robust and 

reliable data. There are other relatively inexpensive and easy-to-setup options such 

as the source audio Hot Hand which are limited in their functionality. There is always 

a tradeoff between the cost and the functionality you would want to achieve in 

technology and the area it will be used as with the Wiimote.  

 However, the research in this field can be positively expanded to control 

drones, machines or anything that we can think of controlling with gestures. From 

the perspective of neuroscience, it can be used to study motor relationships with 

sound, light and other senses.  

Substitutive senses could potentially help physically impaired people to hear, 

perceive and play music or converse.  

Quoting the composer Louis Spohr who watched Beethoven in a rehearsal in 1814:  

"In forte passages the poor deaf man pounded on the keys until the strings jangled, 

and in piano he played so softly that whole groups of notes were omitted, so that the 

music was unintelligible unless one could look into the pianoforte part. I was deeply 

saddened at so hard a fate." 

Despite their disabilities, Beethoven and many other artists continued to express 

themselves and make art. The tools to express ourselves will always continue to 

evolve technologically and artistically. 
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